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Abstract

Non-functional requirements of changeability and adaptability have primary

relevance for a large class of software intensive systems that are intended for

managing great volumes of data with a high degree of variety in the structure

of contents. The attainment of these qualities can be largely facilitated by

the assumption of a tailored software architecture.

The Reflection architectural pattern is an elegant reusable solution to design

software applications based on a meta-model that provides a self-representation

of the types used in the domain model. This provides significant benefits in

terms of adaptability, maintainability, self-awareness, and direct involvement

of domain experts in the configuration stage.

However, design by patterns does not account for performance as first-class

requirement, and naturally incurs in well-known performance anti-patterns,

which may become crucial when volume and variety must meet also veloc-

ity. The complexity is further exacerbated when the object oriented domain

model is mapped to a relational database.

The aim of this dissertation is to address performance engineering of a meta-

modeling architecture based on J2EE technological stack, documenting com-

mon performance issues connected to the persistence layer and proposing

some solutions.

In this work are presented four selected performance anti-patterns about

object-relational mapping strategies and proposed refactoring solutions. This

research project also reports comparative experimental performance results

attained by combining the pattern-based domain logic with a persistence

layer based on NoSQL paradigm, and proposes techniques to identify and

improve performance issues in a J2EE architecture.

Experimental results are obtained by applying proposed solutions in the con-

crete case of a real application of data management in Healthcare context

based on Reflection architectural pattern. Those results indicate the gain
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obtained in several use cases by using refactoring actions in the relational

database scenario, and by replacing the persistence layer with NoSql tech-

nology (in particular MongoDB) in the secondo scenario.
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Chapter 1

Introduction

My research activity in these years has been focused on the advanced software

architectures topic, with particular focus on non-functional requirements like

high performance, maintainability and adaptability [3,45], in the experimen-

tal and application context of Healthcare information systems.

A software architecture can be described following some recurrent scheme

and architectural style called architectural patterns [17], that, together with

the design patterns that operate in the modules and relationships domain

[36], allow to define systems and frameworks. The use of such solutions leads

to some important advantages such as maintainability, scalability and mod-

ularity [3, 45].

During these three years of research a key role has been played by the

study and application of the Reflection architectural pattern and Observa-

tions and Measurements analysis pattern, that suggest methods to model a

system capable of changing its structure and behaviour in a dynamical way.

Thanks to this pattern it has been possible to design Adaptable Systems [20],

that are systems capable of evolving in time, adapting to modifications of the

functional requirements, of the data types to manage, and of the technologies

used.

1.1 The objective

The goals are focused around various arguments in the Software Methods

and Technology area, with reference to themes of Information Management

1
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Systems (IMSs)1, in particular:

• Adaptable Systems applied to IMSs

• Performance and engineering of IMSs based on J2EE technological

stack

• Performance evaluation of IMSs using different data persistence tech-

nologies.

The medical domain fits perfectly the experimentation of software architec-

tures implementing the Reflection pattern, given its complex and evolving

nature. Thanks to the ongoing collaboration between the Software Tech-

nologies Lab (STLab) and the main hospital of Florence Careggi (AOUC)

and the Institute for Oncological Study and Prevention (ISPO), it has been

possible to apply reflection’s modeling principles inside the process of gath-

ering and organization of clinical data, thanks to the help of instruments

like Electronic Health Record Systems (EHRSs) [46] and Clinical Decision

Support Systems (CDSSs) [14].

In particular, EHR systems must be able to adapt to a variety of medical

concepts from different specializations [82]. The reference standard for the

clinical records is Open-EHR [11] [10] which is defined through archetypes.

Generally an EHRS has some conflicting requirements, such as the need

to represent data in a structured way, to integrate and verify information

coming from different sources, and to adapt to users with different levels of

specialization. Moreover, an EHRS should be adaptable to diversified con-

texts that require deep customization of information’s structure.

The Regional Registers is another application context, in which informa-

tion about the individuals that live in a specific territory are gathered. This

information include the kind of the diagnosed disease, biographical data of

the patient, its clinical condition, the treatments he has been given and that

he is still following, and the disease evolution. This kind of application has

1The term Information Management Systems can be reductive for this kind of architec-

ture. In literature systems are mainly differentiated in Data, Information and Knowledge

systems [4,13,86]. Due to the abstraction introduced by multi-levels, this architecture can

be able to collect low level data (e.g. raw data from sensors), offer data aggregation (i.e.

information, e.g. dossiers or documents), and also support data mining techniques for

knowledge discovery. For this reason these terms are used interchangeably in this thesis.
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some common requirements with EHRs (i.e. represent data in a structured

way and high-configurability to deal with data structures that change over

time) but also needs to address the scalability issue because of the increasing

volume of data. Scalability refers to the characteristic of a system to increase

performance by adding additional resources or growing in complexity.

1.2 State of the art

Modeling adaptable systems and relative challenges is a topic largely ad-

dressed in literature [17,20,31,83]. In particular, several patterns have been

described to deal with data variability and requirements evolution, in order to

realize meta-modeling architectures [83] (also referred as reflective architec-

tures [17]): Adaptive Object-Model (AOM) [47, 82], Reflection architectural

pattern [17] and Observations and Measurements analysis pattern [34].

Healthcare systems are analyzed in [45,72] where emerges that adaptability

and changeability are primary requirements for this context. The usage of

Adaptable Systems in healthcare context is reported in [11] as a reference

standard, and in other works [34,61].

Performance is one of systems and software requirements [3,45] that de-

fines the quality of the product. One way to evaluate performance is through

the identification of software performance anti-patterns, first described by

Smith and Williams in [68, 69, 71]. Several approaches have been proposed

for their detection or to evaluate the overall performance of software sys-

tems [5, 22,51,74,75].

Performance anti-patterns are also contextualized to performance evaluation

of J2EE architectures in [18,28].

Finally, performance evaluation of persistence layers for J2EE architectures

are presented in [65,80,85], and specifically to NoSql technologies in [42,57,

81].

1.3 Contributions

The developing of systems capable of dynamically changing their structure

and their behaviour inevitably translates to a bigger architectural complex-

ity, making the reference model more abstract, less intuitive [8] and harder to

develop [83]. In particular, a meta-modeling architecture often suffers of per-
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formance problems. In fact the high abstraction level of the model requires

the instantiation of a growing number of objects and relations at run-time,

that can have an impact on the use of the in-memory resources. Such critical

issue can be more evident whenever it’s needed to have a database persistence

layer, like in web applications, leading to a growth in number and complexity

of the query needed to retrieve the information.

The issue of performance has been faced in my research with two parallel

and complimentary studies:

• the identification of performance anti-patterns [68,69,71] in the context

of adaptable architectures

• the experimentation of different layers for data persistence (i.e. rela-

tional databases and NoSql technologies [38])

One of the goals of the research was to extend literature in the topic of

performance anti-pattern defining four new recurrent problems and their so-

lution, that can be kept in mind during the design and development phases

of a meta-modeling architecture. The proposed solutions have been exper-

imented, without losing their general purpose, even in a real application of

medical record in use at the Florence AOUC. The results show how some

design choices, that can appear counterintuitive from the modeling point of

view, translates to a relevant performance improvement. Specifically, two of

the most important applicative use cases have been analyzed along with how

their mapping on a MySql relational database influences the system response

times, comparing the results of the original implementation with the ones

measured after the proposed refactoring.

The article [33] has been presented at the conference International Confer-

ence on Performance Engineering 2017 (ICPE 2017).

The second goal of the research was instead focused on the usage of

different data management tools from the usual ones, like non-relational

dbms, that can guarantee the persistence of a high volume of information,

always available online, and above all can easily acquire data without a

fixed schema. The research has been focused not on the evaluation of the

available technologies in the non-relational databases area, but more on the

performance engineering of existing applications through the substitution of

the persistence scheme, keeping the domain logic structure unchanged. The

choice of technologies Not Only Sql (NoSQL) under test is made because of
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their data structure and the promising performance improvement [42] [81].

Through an experimental analysis has been possible to measure the per-

formance gain using technologies like Neo4j and MongoDB showing how the

proposed data representation using these databases can be considered equiv-

alent and complete, in comparison to the original relational representation.

The evaluation has been done referring the main interaction scenario of one

of the medical applications: a medicine doctor opens the patient file to look

at his past clinic exams and read the gathered data, through a read opera-

tion on the database.

The article [32] has been presented at the conference International Confer-

ence on Performance Engineering 2016 (ICPE 2016).

1.4 Roadmap

The rest of the thesis is organized as follows.

In Ch. 2, I expose characteristics of multi-level meta-modeling architec-

tures and their usefulness in contexts where flexibility and high-configurability

are essential requisites even at run-time. I also present some popular pattern-

based solution in literature and few benefits and limits of these approaches.

In Ch. 3 I report my laboratory’s experience with a Data Collection

System (DCS) in the Healthcare domain, based on a meta-modeling archi-

tecture, that has been the subject of my performance research and improve-

ment. For completeness, I refer also to others DCS in Healthcare and other

applicative contexts.

In Ch. 4 I briefly describe Java EE specifications used to realized the

meta-modeling architectures previously presented and I introduce the re-

lated performance topic, mainly related to the data persistence tiers of the

J2EE stack.

Ch. 5 and Ch. 6 are the novel contribution of this thesis. Each is struc-

tured with a presentation of the context, some detected performance issues,

a proposed solution, an experimental evaluation and a final discussion of

results. In particular, Ch. 5 addresses performance engineering of a meta-

modeling architecture through a suite of anti-patterns and refactoring ac-
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tions, detailing results of this refactor applied to the EHR system mentioned

before. Ch. 6 reports the result of experimentations on the EHR aimed at

measuring the performance gain obtained moving from relational database

(MySql) to two different NoSQL technologies (Neo4j and MongoDB).

Discussion and some ideas for future work are provided in Ch. 7.



Chapter 2

Meta-modeling architectures for

adaptable systems

This Chapter shows characteristics, advantages and issues of multi-

level meta-modeling architectures and their usefulness in contexts

where flexibility and high-configurability are essential requisites

even at run-time.

2.1 Motivations

Non-functional requirements of changeability and adaptability [45] have pri-

mary relevance for a large class of software intensive systems that are in-

tended for managing great volumes of data with a high degree of variety in

the structure of contents. In fact, domains characterized by high volatility

and flexibility, where software requirements are not stable but evolve over

time, require architectures that are capable of support variation.

Consolidated object-oriented systems generally represent business enti-

ties as separate classes hard-coded directly into software and database mod-

els [24, 41]. This approach, which could be said static, fits well the devel-

opment of systems demanding limited complexity of the domain ontology,

rapid development, with expected low rate of change and limited evolution-

ary maintenance. Typically, object-oriented systems use distinct classes to

represent domain concept, hard-coding into them information about their

properties. There are particular application classes in which the domain

concepts can change in time, either after a natural evolution or because

7
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the context complexity can lead to a difficulty in knowledge transfer be-

tween the domain expert and the developer, often due to the difficulty in

acquiring and inferring the requirements, calling for subsequent fixing in-

terventions [40]. Every time an update is necessary, this results in a cycle

of re-coding, re-building, re-testing, and re-deploying of the software appli-

cation. For example let’s theorize to have to represent a library and the

books inside: with a classical approach, every book should be represented

with a class with its attributes (e.g., title, author, classificationIdentifier,

...). Whenever, after a reorganization, the classification system is modi-

fied, it could be necessary to transform the attribute classificationIdentifier

in two different attributes: category and identifier. This change will affect

methods, tests, persistence layer, user interface, etc. and it will need a sys-

tem shutdown, a new deploy and a reboot. Therefore, it is clear that the

complexity deriving from particular variations should be managed in a more

dynamic way, through a mechanism that allows run-time configurability [45].

2.2 Pattern-based solutions

To address the problem of variability many solutions can be found in lit-

erature. Model-driven engineering systems have focused on generative ap-

proaches, where code is generated automatically from model, enabling sub-

sequent changes or refined of components. However, these changes must be

introduced by developers (change agents) and produce a re-compile and re-

deploy cycle.

Architectures that needs to (a) allow the configuration of the systems’ vari-

ability at run-time (b) expand the notion of change agents outside the scope

of the development team (c) represent a huge domain evolving over time,

can be instead built using pattern-based solutions [29].

In the literature [31], adaptable architectures are mainly addressed as meta-

modeling architectures [83] or reflective architectures [17].

The real-world scenarios that can benefit from these solutions are all those

that have a very complex domain, that is subject to frequent changes in

terms of information representation or organizational process: for example,

healthcare, public administration, business, and industry.
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2.2.1 The Adaptive Object-Model

An Adaptive Object-Model (AOM) is a system that represents classes, at-

tributes, relationships, and behavior as metadata. The system is a model

based on instances rather than classes. Users change the metadata (object

model) to reflect changes in the domain. These changes modify the system’s

behavior.

Adaptive Object-Model architectures are usually made up of several

smaller patterns:

• TypeObject: most object-oriented languages structure a program as

a set of classes. A class define the structure and behavior of objects.

Object-oriented systems generally use a separate class for each kind of

object, so introducing a new kind of object requires making a new class,

which requires programming. However, developers of large systems

usually face the problem of having a class from which they should

create an unknown number of subclasses [47].

Each subclass is an abstraction of an element of the changing do-

main. TypeObject makes the unknown subclasses simple instances

of a generic class; new classes can be created at run-time by instanti-

ating the generic class. Objects created from the traditional hierarchy

can still be created but making explicit the relationship between them

and their type. Fig. 2.1 shows an example of how a Car class with a set

of subclasses such as Caravan. Camry. and Explorer is transformed

into a pair of classes, Car and CarType. These transformed classes

represent the class model of the interpreter and are used at runtime to

represent the Entities and EntityTypes for the system. Replacing a hi-

erarchy like this is possible when the behavior between the subclasses

is very similar or can be broken out into separate objects. In these

cases, the primary differences between the subclasses are the values of

their attributes.

• Property: the attributes of an object are usually implemented by its

instance variables. These variables are usually defined in each sub-

class. If objects of different types are all the same class, how can their

attributes vary? The solution is to implement attributes differently.

Instead of each attribute being a different instance variable, make an

instance variable that holds a collection of attributes (Fig. 2.2). This

can be done using a dictionary, vector, or look up table. In our exam-
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Figure 2.1: Type-Object Pattern

ple, the Property holds on to the name of the attribute, its type, and

its current value.

Figure 2.2: Property Pattern

• TypeSquare: in most Adaptive Object Models, TYPE OBJECT is

used twice: once before using the PROPERTY pattern, and once after

it. TYPE OBJECT divides the system into Entities and EntityTypes.

Entities have attributes that can be defined using PROPERTIES. Each
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Property has a type, called PropertyType, and each EntityType can

then specify the types of the properties for its entities.

Fig. 2.3 represents the resulting architecture after applying these two

patterns, which we call TypeSquare [82]. It often keeps track of the

name of the property, and also whether the value of the property is a

number, a date, a string, etc. The result is an object model similar to

the following: Sometimes objects differ only in having different prop-

erties. For example, a system that just reads and writes a database

can use a Record with a set of Properties to represent a single record,

and can use RecordType and PropertyType to represent a table.

Figure 2.3: Type Square Pattern

• Composite: Composite [37] is used for building dynamic tree structure

types or rules. For example, if the entities need to be composed in a

dynamic tree like structure, the Composite pattern is applied.
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2.2.2 The Reflection architectural pattern

The Reflection architectural pattern [17] provides a mechanism that allows

for dynamically changing data structure and system behaviour at run-time.

To this end, the domain logic is modeled using two different levels of ab-

straction (Fig. 2.4):

• a meta level provides a self-representation of the system encoding

knowledge about data type structures, algorithms, and relationships;

• a base level application logic carries concrete data whose interpretation

is determined by the values of so-called metaobjects.

Metaobjects in the meta level encapsulate and represent information

about the software that may change, while providing an interface to facilitate

modifications to the meta-level. The base level defines the application logic

and uses information provided by the meta level. Changing metaobjects

changes the way in which base-level components communicate, but without

modifying the base-level code. Furthermore, it’s important to note that, in

contrast to a layered architecture, there are mutual dependencies between

both layers. The base level builds on the meta level, and vice-versa. Fi-

nally, through the metaobject protocol (MOP), it’s possible to manipulate

the metaobjects and to check the correctness of the change specification.

Figure 2.4: The Reflection Architectural Pattern
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2.3 Benefits and limits

A meta-modeling architecture represents classes, attributes, relationships

and behaviors as metadata, providing great flexibility for applications. It

allows relationships, attributes and behaviors to be changed at runtime by

programmers, and sometimes by end users, carrying out an inversion of re-

sponsibility since domain expert are directly involved in the configuration

stage, overcoming misunderstandings between domain specialists and soft-

ware developers. In so doing, the whole development cycle is speeded up,

reducing significantly the number of required maintenance interventions.

There are several reasons to implement this kind architecture:

• The number of subclasses is unknown upfront

• The number of subclasses is huge

• Business rules rapidly change

• Changes to the system have to be made without the system going down

Furthermore, design by patterns brings a number of further benefits, mostly

linked to the quality of the code, and notably to maintainability, reusability,

and consolidated understanding of implementation choices and consequences.

However, modeling systems that emphasize changeability and adaptabil-

ity as primary requirements result in a more complex software architecture,

with various drawbacks. A pattern-oriented architectural design can par-

tially mitigate hurdles resulting from the increased complexity induced by

the application of meta-modeling principles, but the system remains hard to

understand, code, test, and maintain [83].

Secondly, developing adaptable systems implies some relevant implemen-

tation challenges:

• mapping the high-level reference model into a low-level data layer, in

order to make the model persistent;

• adapting Graphical User Interfaces (GUIs) to volatile domain concepts

at run-time;

• supporting system maintenance for both software developers and do-

main experts, through the use of specific tools and GUIs.
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• a meta-modeling architecture is often exposed to performance ineffi-

ciencies.



Chapter 3

Adaptable systems in healthcare

This Chapter describes how meta-modeling architectures princi-

ples are particularly suited in the Electronic Health Record (EHR)

systems context and how they can be applied to build a Data Col-

lection System in the Healthcare domain.

Note that the medical context is only one of those possible ap-

plication scenarios based on a meta-modeling architecture: for

instance, we applied the same paradigm to develop a system for

monitoring the state of various types of buildings after a natu-

ral disaster, or for representing different University courses of

study. However, the usage of Adaptable Systems in healthcare

context results particularly appropriate.

The main contribution to the Empedocle’s architecture developed

in the Software Technologies Lab (STLab) and reported in 3.2

is provided by Valeriano Sandrucci, Fulvio Patara [61], Simone

Mattolini and others. I report here some details of this architec-

ture to clarify the performance research and improvement in the

next chapters.

3.1 Electronic Health Record systems

The literature reports a number of real usages and examples application

of adaptable systems that emphasize flexibility and run-time adaptability

via a meta-modeling architectural style, covering a variety of different do-

mains: from generic frameworks to represent and manipulate attribute com-

15
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posite objects [30], to health information systems to collect clinical observa-

tions [34].

The process of gathering and organization of clinical data is typically

achieved thanks to the help of instruments like Electronic Health Record

Systems (EHRSs) [46] and Clinical Decision Support Systems (CDSSs) [14].

EHR system: is a software system to record, retrieve, and manipulate repos-

itories of retrospective, concurrent, and prospective information regarding

the health status of a subject-of-care.

Modeling and collecting heterogeneous clinical data via an EHR system

have many challenges:

• Structured vs. Free-text data: Clinical information can be designed

in a mixed solution combining well-defined structures and legible text

that suits human natural language;

• Adaptability to different contexts-of-use: The main differences are in

terms of which kind of information is managed, which level of granu-

larity is used to represent clinical data, and which subjects-of-care are

involved;

• Domain expert empowerment: Medical experts should change system

structure and behavior, improving system maintainability and reducing

efforts and delays induced by the intermediation of ICT experts;

• Interoperability at different levels of abstraction: Sharing information

between different users or departments/hospitals is essential to achieve

a high level of quality about health services provided to a subject-of-

care;

• Requirements evolution over time: Medical domain is characterized by

high volatility in terms of medical concepts needed to be taken into

account.

For these reasons, the usage of Adaptable Systems in healthcare context

is particularly appropriate.

The reference standard for the clinical records is Open-EHR [11] [10] which

is defined through archetypes.

In addition to that, Health Level-7 (HL7) refers to a set of international
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standards, guidelines, and methodologies for the exchange, integration, shar-

ing, and retrieval of electronic health information that supports clinical prac-

tice and the management, delivery and evaluation of health services [26].

3.1.1 The Observations & Measurements analysis pat-

tern

The Observations & Measurements analysis pattern [34] implements the re-

flection principle specializing the abstraction for the case of clinical process.

This pattern mimics the separation in two layers of the Reflection pattern,

that in this context are defined as:

• operational level: contains the observations relative to medical con-

cepts

• knowledge level: contains the observation types representing the fixed

medical knowledge and defines the configuration of the operational

level.

A classical modeling approach would record the information of an object

as its attributes. If we examine the case of a single person data, its height

could be stored as a simple integer linked to such entity. Specifically, height

is a quantity, that combines a number with a unit of measure: modeling both

as objects we can define, for example, methods to convert quantities. The

quantity object (Fig. 3.1) can be modeled with two attributes:

• value: Number

• unit: Unit

Figure 3.1: Person, Quantity and Unit of Measurement

In cases where is necessary to record a lot of information about an object,

representing these as properties can lead to a bad programming anti-pattern
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like the God Object, because its attributes and the operations inside the class

would grow a lot.

A possible solution is to treat as object every possible measurement and

to introduce types for those objects, called phenomenon types. In this way

the person will only have a single attribute measurement that will contain a

multitude of associations between measurements (quantity) and phenomenon

types (Fig. 3.2).

Figure 3.2: Separation in two levels to represent measurements and phe-

nomenon types

The measurements can be added daily at the operational level, while

phenomenon types will be created less frequently at the knowledge level,

because they represent the knowledge of what is measured.

The concept of observation extends the pattern even more, allowing to

manage not only quantitative information, but also qualitative ones, like

gender, blood type etc. They will have a category instead of a quantity. We

can then define a new type, the observation, that acts like a super-type for

a measurement and a qualitative observation (Fig. 3.3).

The gender of a subject is then an instance of the phenomenon type,

while male/female are category instances.

To enforce the usage of some categories only on certain phenomenon types

a relationship between category and phenomenon type must be added. This

can be achieved moving the category at the knowledge level and naming it

phenomenon (Fig. 3.4).

For example the fact that a subject has “blood type A” is stored as an

Observation Category of the subject, which Phenomenon is “group A”. Said

phenomenon is linked to the phenomenon type “blood type”.
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Figure 3.3: Qualitative observation and quantitative measurement

Figure 3.4: Phenomenon

Note that the Observations & Measurements pattern exploits the same

typesquare’s principles to separate clinical Observations from their Phe-

nomenonTypes.
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3.2 The Empedocle EHR system

As seen in sect.3.1, an EHRs has some conflicting requirements, such as the

need to represent data in a structured way, to integrate and verify infor-

mation coming from different sources, and to adapt to users with different

levels of specialization. Moreover, an EHRS should be adaptable to diversi-

fied contexts that require deep customization of information’s structure.

We propose an architecture based on meta-modeling principles that imple-

ments an EHR system characterized by adaptability and changeability as

primary requirements.

The implemented EHR system, named Empedocle, combines the basic

functionalities that comprise the expected commodity level of any EHR sys-

tem, with specific requirements posed by an outpatient scenario, where a

variety of medical specialities take part (Fig. 3.5).

Figure 3.5: A typical outpatient scenario, specifying the major actors in-

volved in the care process and their interaction with an EHR system.
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In this section I describe how the Reflection architectural principles [17]

can be implemented through a powerful combination of the Observations

& Measurements analysis pattern [34] and the Composite pattern [36] to

implement an EHR system able to deal with medical concepts and clinical

data characterized by complexity and volatility.

3.2.1 A two-level meta-modeling EHR architecture

Fig. 3.6 represent the UML class-object diagram that provides a high-level

specification of the domain model implemented in the core of the Empedo-

cle EHR system. This pattern-based architecture is in use since more than

4 years in various units of the major hospital of Tuscany Region (Careggi

hospital, in Florence). Its use in more than one real-world scenario proved

how the meta-modeling approach has been useful under different aspects.

Especially, the flexibility, re-configurability and extensibility attributes al-

lowed on one hand to create instances of the software in different contexts in

a few hours, on the other to directly involve doctors and domain experts in

the configuration process, without prior definition of all the context concepts.

As can be seen, the domain logic of Empedocle is split in two layers so

as to support dynamic adaptation of the system in response to changing

requirements. On the one hand, medical concepts are represented in a so-

called knowledge level. On the other hand, clinical data are represented in a

so-called operational level. These principles are obtained through a pattern-

oriented design, addressed in the architectural perspective by the Reflection

pattern [17], and in the conceptual perspective by the Observations & Mea-

surements pattern [34].

Specifically, during each Examination in operational level, a series of clin-

ical information items like signs (i.e., objective evidences noticed), symptoms

(i.e., subjective evidences reported by patient), and other clinical observa-

tions are captured by health professionals as instances of the Fact class.

Conversely, all medical concepts can be defined directly by domain experts

as instances of the FactType class in knowledge level.

Hierarchical structured data resulting from repeated aggregation of basic

observations and measurements can be cast in the representation through

a mix-in of the Composite pattern [36], by allowing an observation or mea-

surement be implemented as a collection of references to other observations

or measurements.
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Figure 3.6: The two-level domain model of the Empedocle EHR system
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Accordingly, four different categories of knowledge can be identified:

• TextualType, for free-text information (e.g., patient’s anamnesis);

• QualitativeType, for values in a finite range of acceptable Phenomena

(e.g., blood type with groups A, B, AB, and 0 );

• QuantitativeType, for quantities with a specified set of acceptable

Units (e.g., heart rate, measured in beats-per-minute);

• CompositeType, for composing FactTypes in a hierarchical structure

(e.g., vital sign including temperature, blood pressure, heart and respi-

ratory rate).

The same categories can be identified at the operational level:

• TextualFact

• QualitativeFact

• QuantitativeFact

• CompositeFact.

ExaminationType class represents the structure of an Examination in

terms of which FactTypes (and related Facts) have to be considered during

a medical examination.

To give another example of the utilization of the meta-modeling archi-

tecture, I reported in Fig. 3.7) the domain model of the Regional Cancer

Registry. In this Registry information about the individuals that live in a

specific territory are gathered, in particular diagnosed neoplasms and clinical

sources that testify the presence of the disease.

Differently from Empedocle EHR system, the major point of variation for

this scenario arises not in the necessity of addition of new data to collect

(i.e., add instances of FactType) but in the requirement to deals with new

kind of clinical sources (i.e., add instances of SourceType).

Furthermore, this scenario needs to address the scalability issue because of

the increasing volume of data, more than in Empedocle’s case.
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Figure 3.7: The two-level domain model of the Regional Cancer Registry

system

In the same way, we applied the same paradigm to develop systems that

deviate from the healthcare context, for example a system for monitoring

the state of various types of buildings after a natural disaster, and a system

for representing different University courses of study.



Chapter 4

Performance evaluation of a

J2EE architecture

This Chapter introduces the Java EE specifications, with refer-

ences to consolidated architectural patterns. Late it will be il-

lustrated how a meta-modeling architecture can be implemented

as a web application, using j2ee technologies, especially referring

to Empedocle EHR System. Finally, some performance problems

are shown, mainly related to the lower tiers of the j2ee stack, that

are the ones responsible of data persistence.

4.1 J2EE

Java EE provides a standard way to handle transactions with Java Transac-

tion API (JTA), messaging with Java Message Service (JMS), or persistence

with Java Persistence API (JPA). Java EE is a set of specifications intended

for enterprise applications. It can be seen as an extension of Java SE to facil-

itate the development of distributed, robust, powerful, and highly available

applications. The J2EE platform is a multi-tiered system (Fig. 4.1), with

various advantages :

• force separation of user interface logic and business logic, following

Model-View-Controller approach;

• business logic sits on small number of centralized machines (may be

just one);

25



4.1 J2EE 26

• it’s easy to maintain, to manage, to scale thanks to the loosely coupling

of tiers.

Figure 4.1: Typical architecture of a J2EE application.

In common practice, the tier separation of the J2EE architecture is real-

ized through several architectural patterns [23]. In Fig. 4.2 some of the main

ones are shown along as some of the technologies used to realize them, in

the context of web applications:

• Presentation Layer: displays information to the user and handle

user request (mouse clicks, keyboard hits); provides services, HTTP

requests, command-line invocations, batch API; can be a command-

line or text-based menu system, a rich-client graphics UI (e.g., based

on Swing), or an HTML-based browser UI (xhtml, jsf...).
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Figure 4.2: Architectural patterns and technologies in J2EE architectures.

• Controllers (or Business Logic): play the work that the appli-

cation needs to do for the domain you’re working with; carries out

calculations based on inputs and stored data, validation of data from

the presentation, selection of data source logic to dispatch, reacting to

commands from the presentation. Business Logic directly depends on

use cases, decoupling Domain Entities from use cases. These objects

are made of java + CDI annotations

• Domain Entities (or Business Objects): represent concepts of do-
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main and contain indications of how to store these objects in the un-

derlying layers.

From the technological point of view these objects are made of Java,

JPA annotations, CDI annotations.

• Data Access Objects (DAOs): encapsulate access to data source, de-

coupling business logic from persistence operations. The DAO object

manages the connection with the data source to retrieve and/or per-

sist data. Since the interface exposed by the DAO doesn’t change

when the underlying data source changes implementation, this pattern

allows the Data Access Object to adapt to different implementation

schemes without affecting in any way the client or the business layer

components. Substantially the DAO works as an adapter between the

business tier components and the data source.

From the technological point of view these objects are made of Java,

JPA operations, CDI annotations.

• Data Layer: consists of Object-Relational Mapping (ORM), a data-

access layer that resolves the object-relational impedance mismatch

[44], and Data Storage (e.g., relational databases, noSql databases,

in-memory databases,..).

4.2 Performance testing

Performance testing can be defined as the testing practice performed to

determine how a system performs in terms of responsiveness and stability

under a particular workload. Performance of web applications can be deter-

mined in terms of Availability, Response Time, Throughput, Utilization and

Latency [55].

Load testing and stress testing are the most common kind of performance

tests.

Load testing is the simplest form of performance testing. A load test is

usually conducted to understand the behaviour of the system under a spe-

cific expected load. This load can be the expected concurrent number of

users on the application performing a specific number of transactions within

the set duration. This test will give out the response times of all the im-

portant business critical transactions. The database, application server, etc.
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are also monitored during the test, this will assist in identifying bottlenecks

in the application software and the hardware that the software is installed on.

Stress testing is normally used to understand the upper limits of capac-

ity within the system. This kind of test is done to determine the system’s

robustness in terms of extreme load and helps application administrators to

determine if the system will perform sufficiently if the current load goes well

above the expected maximum.

There are a lot of tools to create and simulate end user work flows (e.g.,

HP LoadRunner, NeoLoad, Apache JMeter, Selenium WebDriver, Rational

Performance Tester, Silk Performer and Gatling [66]). Most of the tools

perform ”Record & Replay” tests, where the testing tool captures all the

network transactions which happen between the client and server.

According to the Microsoft Developer Network [25] the Performance Test-

ing Methodology consists of the following activities:

• Identify the Test Environment

• Identify Performance Acceptance Criteria (e.g., response time, through-

put, and resource-use goals and constraints)

• Plan and Design Tests (scenarios, variability, metrics to be collected)

• Configure the Test Environment

• Implement the Test Design

• Execute the Test

• Analyze Results, make a Tuning Change and Retest.

4.2.1 Performance evaluation of a meta-modeling archi-

tecture

Our contribution is focused on response time, one of the most important

parameter to reflect the quality of a Web Service. Response time is the total

time it takes after the client sends a request till it gets a response. This in-

cludes the time the message remains in transit on the network, which can’t

be measured exclusively by any load-testing tool. So we’re restricted to test-

ing Web Services deployed on a local machine.
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As seen in Sec. 4.1, the loose coupling between the J2EE architecture layers

encourages the experimentation of different technologies and development

solutions to measure the various effects on the performance of the web ap-

plication. Specifically, we addressed performance issues occurring in Data

Layer and in components responsible for communications with this level.

Referring to Performance Testing Methodology in previous section, test-

ing activities were limited to last steps, since the experimentation has relied

on the analysis of an application under production (Empedocle EHR Sys-

tem). The acceptance criteria were already well defined by what end users

expect from the software system and our goal was to carry out a performance-

driven software refactoring without altering system’s functionalities [35]. In

addition, having full access to the source code, our approach to the profil-

ing and the identification of the major performance bottlenecks was able to

follow a white-block strategy, without using external tool to evaluate the

overall system.

While referring to our Empedocle EHR System for the sake of experimen-

tation concreteness, most of the subsequent discussions about the develop-

ment of this kind of model as well as about its impact on system performance

are more generally applicable to most schemes that can be designed in the

style of the Reflection architectural pattern.

In fact, design by patterns does not account for performance as first-class

requirement, and naturally incurs in well-known performance anti-patterns

[7, 69], which may become crucial when volume and variety must meet also

velocity [27]. These drawbacks are largely exacerbated when the domain

logic is persisted over a relational storage layer, due to the nature of the

domain model and its mismatch with the relational tier [6].

In general, the persistence of a domain model with complex structure

into a relational database comes with a number of performance penalties,

that translate in longer time required for key persistence operations. These

issues can be partially mitigated with ad-hoc optimizations in the design of

the relational database [65], pertaining to the choice of a particular repre-

sentation for class inheritance, the use of auxiliary tables to store additional

information, and the smart use of data fetching.

The interposition of an object-relational mapping (ORM) layer between
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the domain logic and the storage layer can mitigate this problem. In the

practice of development of Java enterprise applications, Java Persistence

API (JPA) specification represents a mature and state-of-the-art ORM solu-

tion which grants many benefits [15]. First of all, it allows to persist domain

classes with a minimal boilerplate code, thanks to simplified annotation fa-

cilities. Also, it provides full integration with the Java application stack,

composed by other technologies such as EJB (for encapsulating the business

logic) and CDI (for implementing the Inversion of Control pattern [53]).

However, JPA further increases the degree of indirection and this can have

negative effects on the system performance, also due to the loss of design

control on the impact that domain logic operations have on the storage pro-

cess.

In the following sections, I report the evaluation of different approaches

aimed at performance improving in the case of a meta-modeling architecture

for data management.



Chapter 5

Performance anti-patterns

roadmap for a meta-modeling

architecture

Designing systems able to change structure and behavior dynam-

ically inevitably results in a more complex software architecture,

making the reference model more abstract, less intuitive [8], and

hard to develop [83]. Moreover, a meta-modeling architecture is

often exposed to performance inefficiencies, determined in the de-

sign activity but made evident only after the deployment phase,

and usually solved with expensive and partially resolutive inter-

ventions [70]. The high degree of abstraction of the underlying

meta-model requires to process and instantiate, at run-time, an

increased number of objects and relationships to reproduce the

whole domain. This drawback is further exacerbated when the

meta-model is made persistent through an Object-Relational Map-

ping (ORM) layer, which increases the degree of indirection. For

these reasons, performance engineering comprises an essential

question to be properly integrated along the whole development

lifecycle.

In this section, I address performance engineering of a meta-

modeling architecture through a suite of anti-patterns and refac-

toring actions, aimed at improving performance while supporting

and preserving reusability and maintainability.

32
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5.1 Performance anti-patterns and ORM’s per-

formance

Performance issues have been widely addressed in the literature of perfor-

mance anti-patterns, which describes recurring problems with significant im-

pact on performance. Note that an anti-pattern is not only a simple bad

habit, bad practice, or bad idea: it is a commonly used process, structure, or

pattern of action that despite initially appearing to be an appropriate and

effective response to a problem, has more bad consequences than good ones.

In [69] and their following works, 14 generic problems are identified and cor-

responding solutions are suggested. Several techniques aimed at automated

detection of performance anti-patterns in software architectural models are

proposed by [75] and [60], followed by [7], which defines refactoring actions

after problems detection.

Performance of object-relational mapping is analyzed in few studies. The

influence of optimizations and configurations on the performance of the

object-relational mapping tool Hibernate is evaluated in [78] and [67]. Hiber-

nate performance is also discussed in [77] and [48], comparing with outdated

solutions of object-oriented databases through benchmarks.

5.2 Reflective Architecture: growing model com-

plexity

A meta-modeling architecture natively requires a large amount of objects

to be created at run-time, to encode knowledge concepts and operational

values. This verbose objects mechanism hinders performance especially when

the domain model grows in complexity. For the sake of concreteness, but

without loss of generality, we refer to the case of an Electronic Health Record

(EHR) system [46], named Empedocle [62], in which the complexity is related

to the specialty under consideration. For instance, performance was not an

issue for the context of Ophthalmology, whose basic examination results in

a lightweight tree-like structure, where only few tens of observations were

collected for each patient.

Table 5.1 highlights that the complexity of object models is characterized

by the number of nodes, leaves and depth of the tree-like structure used to

represent a medical examination, as reported in Fig.5.1. In particular, the
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Table 5.1: Comparison of Ophthalmology and Cardiology examination struc-

tures.

Specialty configuration N
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Ophthalmology 64 45 5 3.7

Cardiology 639 495 7 3.6

number of nodes and leaves in a Cardiology examination is ten times bigger

than values for an Ophthalmology examination.

cardiology 
examination: 
CompositeType

medical history:
CompositeType

tests:
CompositeType

diagnosis:
CompositeType

ecg:
CompositeType. . .

echo-Doppler:
CompositeType . . . . . .

lves:
QuantitativeType

analysis:
textualType

aortic stenosis 
severity:

QualitativeType

Figure 5.1: A simplified cardiology examination represented in Empedocle

as a tree-like structure. Rounded boxes represent instances of FactType and

define medical concepts that are to be taken into account during a typical

cardiology examination. In the Operation Level, a similar structure of Facts

will be instantiated to represent collected clinical observations.

Performance limitations were observed after the transition from the Oph-

thalmology’s context to Cardiology, in two main scenarios of interaction,
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namely “performing a medical examination” and “accessing the patient’s

EHR content” (see Fig. 3.5).

In the first scenario, in which the user performs a medical examination,

the examination structure is first loaded; then clinical information corre-

sponding to observed facts are filled by the user; finally, the examination is

marked as concluded and the system stores clinical data collected during the

examination into the EHR of the current patient.

In the second scenario, the health professional accesses the patient’s EHR

content to load a performed medical examination and display collected clin-

ical information.

Loading the examination structure and loading or saving the clinical

information can be a very expensive task, especially if the number of fields

that form the examination is considerable.

The scenarios under exam have been selected as performance bottlenecks

via measurements of the main use cases after the user/client sends a request

till he gets a response. In order to isolate performance issues closely related

to the reflective architecture from those more related to technology solutions

adopted, specific performance tests focused on the meta-level domain model

were implemented and run, so as to evaluate time and number of queries

executed for completing each tasks.

5.3 Model refactoring for performance improve-

ment

The analysis presented in Sect. 5.2 suggests that performance issues can be

related to the number and complexity of queries that underlie the execu-

tion of each task, due to the strongly characterization of abstraction on the

architecture under consideration.

We identified four performance anti-patterns about mapping strategies.

Specifically, we detected that some choices in mapping strategies can provide

tangible benefits at the application level, by facilitating navigability between

objects and by simplifying the code, but conversely they can also affect data

access performance, and increase the number of queries and their complexity.

We report on four refactoring solutions that have been adopted so as to

overcome the negative consequences of these performance issues, while sup-

porting maintainability and preserving reusability.
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Each anti-pattern is described using a systematic template as, for in-

stance, in [70]:

• Problem: the recurrent situation that causes negative consequences

• Context: explanation of the context where we can find the anti-pattern

in a meta-modeling architecture

• Solution: how can we avoid, minimize or refactor the anti-pattern

• Sample Code: an example of the anti-pattern related to the problem

and an example of the proposed solution (in Java language with JPA

annotations)

5.3.1 Mapping inheritance structures: joins explosion

Problem

Hierarchical structures can create problems when they are mapped to a re-

lational database which does not natively support inheritance. To overcome

this lack, different techniques were introduced, as reported in [6]:

• map the entire class hierarchy to a single table;

• map each concrete class to its own table;

• map each class to its own table;

• map the classes into a generic structure.

In cases where the domain model can change very often in terms of at-

tributes or sub-classes, the most natural solution consists in mapping each

class to its own table (i.e., joined-tables strategy). This approach requires

to create separate tables for each entity and related direct descendants in

the object oriented hierarchy with one-to-one relationships: the table cor-

responding to a generic Fact (or FactType) contains one column for each

attribute common to its children, while each table corresponding to a sub-

typed entity contains columns specific to its own attributes and one extra

column as foreign key for uniquely identifying a row in the hierarchy.

This strategy offers various well-known advantages in the perspective of

software architecture [6], related to understandability, support for polymor-

phism, and maintainability of class inheritance hierarchies.
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However, it exposes some limits, due to the number of tables generated,

one for every sub-class in the hierarchy. Data reading and data writing result

in heavier operations because they require the joining of multiple tables for

polymorphic queries (e.g., the total set of attributes for a particular instance

is represented as a join along all tables in its inheritance path).

Context

In the case of a reflective architecture, as depicted in Fig. 3.6, Facts (or

FactTypes) are specialized in different kind of entities to represent various

concepts and information. Using the joined-tables strategy, a table corre-

sponding to a generic Fact (or FactType) is generated, which contains one

column for each attribute in common with its children, while each sub-typed

entity is mapped in a different table that contains only columns specific to its

own attributes and one extra column as foreign key for uniquely identifying

a row in the hierarchy. Data size grows in direct proportion to growth of the

number of objects with strong impact on performances.

Solution

In order to overcome performance issues caused by the joined approach, a

mapping strategy based on a single table approach should be preferred (see

Fig. 5.2). In so doing, all attributes of super- and sub-classes are mapped

into the same table, and the type of each instance is distinguished by a

special discriminator column (i.e., @DiscriminatorValue in Listing 5.2).

Single table strategy collects all data are in one table, and queries result less

complicated due to the reduced number of join required (from a join along

all tables to a single join). In a performance perspective, the reduction

of queries complexity and limited use of joins translate into a significant

decrease of time to access the data. In general, this migration is largely

eased in the case of models characterized by simple and static hierarchies,

and with minimal overlapping (in terms of attributes in common) between

classes in hierarchies. This is, in fact, the case of Empedocle.

Nevertheless, it should be noted that single table strategy limits the power

of the normalization in relational database and requires more attention to

be paid at the application level to avoid inconsistencies in the data.
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Figure 5.2: Mapping inheritance in Joined or Single Table strategy.

Sample Code

Mapping inheritance structures

1 @Entity

2 @Inheritance(strategy = InheritanceType.JOINED)

3 @Table(name = "facts")

4 public abstract class Fact {

5

6 private Long id;

7 ...

8

9 }

10

11 @Entity

12 @Table(name = "textual_facts")

13 @PrimaryKeyJoinColumn(name="FACT_ID")

14 public class TextualFact extends Fact {
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15

16 private String text;

17 ...

18 }

19

20 @Entity

21 @Table(name = "qualitative_facts")

22 @PrimaryKeyJoinColumn(name="FACT_ID")

23 public class QualitativeFact extends Fact {

24

25 private Phenomenon phenomenon;

26

27 @ManyToOne(cascade = CascadeType.REFRESH)

28 @JoinColumn(name = "phen_id")

29 public Phenomenon getPhenomenon () {

30 return phenomenon;

31 }

32 ...

33 }

34 ...

Listing 5.1: anti-pattern: joined table strategy to map inherithance of

TextualFact, QualitativeFact, QuantitativeFact, and CompositeFact from

Fact class

1

2 @Entity

3 @Table( name = "facts" )

4 @Inheritance( strategy=InheritanceType.SINGLE_TABLE )

5 @DiscriminatorColumn(

6 name= "from_class",

7 discriminatorType=DiscriminatorType.STRING )

8 public abstract class Fact {

9

10 private Long id;

11 ...

12 }

13

14 @Entity

15 @DiscriminatorValue( "TX" )

16 public class TextualFact extends Fact {

17

18 private String text;

19 ...

20 }

21

22 @Entity
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23 @DiscriminatorValue( "QL" )

24 public class QualitativeFact extends Fact {

25

26 private Phenomenon phenomenon;

27

28 @ManyToOne

29 @JoinColumn( name = "phen_id" )

30 public Phenomenon getPhenomenon () {

31 return phenomenon;

32 }

33 ...

34 }

35 ...

Listing 5.2: solution: single table strategy to map inherithance of

TextualFact, QualitativeFact, QuantitativeFact, and CompositeFact from

Fact class

5.3.2 Mapping hierarchical structures: queries explo-

sion

Problem

In Sect. 5.3.1 we have introduced the problem of mapping inheritance struc-

tures to relational databases, and we have suggested a refactoring solution

able to reduce the complexity of executed queries. However, another per-

formance question still remains open: how to reduce the number of queries

required to retrieve all nodes in a sub-tree?

Context

In the context of a reflective architecture, domain structures are charac-

terized by two different hierarchical levels: one resulting from Fact and

FactType inheritance (discussed in the previous section), and another one

from composition of those entities in part-whole hierarchies through the

CompositeType class. Since tree traversal for loading in memory the whole

structure requires one query per nodes, growing the dimension of the tree

increases the number of queries required. Specifically, to retrieve the whole

tree, the traversal function starts from the root node, stores all children of

that node, and then repeats the traversal for each child until every leaf is

visited, requiring almost one query per node.
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Solution

To optimize the amount of queries, ancestor-descendant relations were added

in the hierarchical structure, where each node of the hierarchy maintains a

list of its ancestors (note that each node is also ancestor of itself). In so doing,

the hierarchy can be represented as an ordered directed tree (see Fig. 5.3),

where only one query is required for retrieving all the information contained

in the whole structure. Moving from a per node query to a single query

results in a considerable gain of performance, because of parsing, compilation

and optimization times spent for each of them.

A

B C

D E

Figure 5.3: Ancestor-descendant relations in a hierarchical structure.

The proposed solution drastically reduces the number of queries but re-

quires to maintain a list of ancestors for each node: in the worst case, when

all nodes belong to the same path from the root to the leaf, given a tree with

depth D, being d the current depth, and nd the number of nodes at d level,

the total number of ancestors A results: A = 1 +
∑D

d=1 d ∗ nd.
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Sample Code

Mapping hierarchical structures

1 @Entity

2 @Inheritance(strategy = InheritanceType.JOINED)

3 @Table(name = "facts")

4 public abstract class Fact {

5 private Long id;

6 private FactType type;

7 private List <Fact > facts = new ArrayList <Fact >();

8

9 @OneToMany(cascade = CascadeType.ALL)

10 @JoinColumn(name = "cmp_fact_id", nullable = false)

11 public List <CompositeFactItem > getItems () {

12 return items;

13 }

14 }

Listing 5.3: anti-pattern: retrieving nodes in a sub-tree through tree

traversal

1

2 @Entity

3 @Table( name = "facts" )

4 @Inheritance( strategy=InheritanceType.SINGLE_TABLE )

5 @DiscriminatorColumn(

6 name= "from_class",

7 discriminatorType=DiscriminatorType.STRING )

8 public abstract class Fact {

9

10 private Long id;

11 private FactType type;

12

13 private Set <Fact > ancestors;

14 private Set <Fact > descendents;

15

16 @ManyToMany( fetch=FetchType.LAZY )

17 @JoinTable(

18 name = "fact_ancestors",

19 joinColumns = { @JoinColumn( name = "fact_id",

referencedColumnName="id" ) },

20 inverseJoinColumns = { @JoinColumn( name = "

ancestor_fact_id", referencedColumnName = "id") } )

21 protected Set <Fact > getAncestors () {

22 return ancestors;

23 }

24
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25 @ManyToMany( mappedBy = "ancestors", fetch=FetchType.LAZY )

26 protected Set <Fact > getDescendents () {

27 return descendents;

28 }

29

30 }

Listing 5.4: solution: retrieving nodes in a sub-tree through ancestors

strategy

5.3.3 Mapping entity associations: fetching overloading

Problem

In a domain model, associations represent the relationships between classes.

While object-oriented languages represent associations using object refer-

ences that are navigable, in the relational world, an association is represented

as a foreign key column that it is not a directional relationship by nature.

In order to smooth the object/relational paradigm mismatch, association

mapping plays a lead role.

Object Relational Mapping layers often include the ability to make one-

to-many relationships either unidirectional or bidirectional. Since unidirec-

tional associations are more difficult to query, one of the best practice for

large application, suggests to turn almost all associations navigable in both

directions in queries [63]. However, in some contexts, this approach can

result in retrieving data not really necessary in every use-cases, leading to

memory overload.

Context

Referring to Fig. 3.6, all information related to a particular context may be

easily fetched without recurring to an explicit query using bidirectional asso-

ciations between Fact and FactContext, navigating through and iterating

over persistent objects.

However, while this solution brings evident advantages at the object level,

it may not be the most convenient choice in terms of performance, relying on

the specific context-of-use of the system: in the practice of EHR systems, for

example, a medical examination is not required to be aware about clinical

information collected during its execution; viceversa, it is mandatory for a

clinical information to know its own context.
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«composite»
Fact Examination* 1

(a) First version

«composite»
Fact Examination

1

(b) Refactored version

Figure 5.4: Bidirectional vs unidirectional relationships.

Solution

Moving from bidirectional (see Fig. 5.4a) to unidirectional association (see

Fig. 5.4b) and removing the redundant one-to-many association mapping,

preserves the capability to retrieve the FactContext related to a specific

Fact simply exploiting the entity association. On the other hand, retrieving

all Facts belonging to a specific FactContext can be done through a single

query.

This results in some interesting advantages. First, dependencies between

classes and packages are lower and clearer, thanks to the increased number of

unidirectional relationships. Second, the whole code appears well structured

in self-contained areas, and this facilitates testing and future refactoring in-

terventions. In a performance perspective, queries are more efficient because

only objects really necessary are loaded and additional information can be

retrieved through dedicated queries. Third, from a performance perspective,

queries become more efficient because only small objects are loaded, and

additional information can be retrieved through dedicated queries. Finally,

note that this kind of mapping reduction is applicable to classes that are

in a weak form of association. Conversely, the bidirectional mapping must

be preserved when classes are in a strong form of association (e.g., compo-

sition), in order to emphasize the dependency of the contained class to the

life cycle of the container class.
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Sample Code

Mapping entity associations

1 @Entity

2 @Table( name = "examinations" )

3 public class Examination {

4

5 private Long id;

6 private ExaminationType examinationType;

7 private Patient patient;

8 private List <Fact > facts = new ArrayList <Fact >();

9

10 @OneToMany(cascade = { CascadeType.PERSIST , CascadeType.MERGE ,

11 CascadeType.REFRESH })

12 @JoinColumn(name = "exam_id")

13 public List <Fact > getFacts () {

14 return facts;

15 }

16 ...

17 }

18

19

20 @Entity

21 @Inheritance(strategy = InheritanceType.JOINED)

22 @Table(name = "facts")

23 public abstract class Fact {

24

25 private Long id;

26 private FactType type;

27 private Examination examination;

28

29 @ManyToOne(fetch = FetchType.LAZY)

30 @JoinColumn(name = "exam_id")

31 public Examination getExamination () {

32 return examination;

33 }

34 ...

35 }

Listing 5.5: anti-pattern: bidirectional relationships between Examination

and Facts that belong to it

1 @Entity

2 @DiscriminatorValue( "EX" )

3 public class Examination {

4

5 private ExaminationType type;
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6

7 @ManyToOne( fetch = FetchType.EAGER )

8 @JoinColumn( name = "exam_type_id" )

9 public ExaminationType getType () {

10 return type;

11 }

12 ...

13 }

14

15 @Entity

16 @Table( name = "examinations" )

17 @Inheritance( strategy=InheritanceType.SINGLE_TABLE )

18 @DiscriminatorColumn(

19 name= "from_class",

20 discriminatorType=DiscriminatorType.STRING )

21 @DiscriminatorValue( "BS" )

22 public class Examination {

23 ...

24 }

25

26 @Entity

27 @Table( name = "facts" )

28 @Inheritance( strategy=InheritanceType.SINGLE_TABLE )

29 @DiscriminatorColumn(

30 name= "from_class",

31 discriminatorType=DiscriminatorType.STRING )

32 public abstract class Fact {

33 private Type type;

34 private Examination examination;

35

36 @ManyToOne( fetch=FetchType.LAZY )

37 @JoinColumn( name = "examination_id" )

38 public Examination getExamination () {

39 return examination;

40 }

41 ...

42 }

Listing 5.6: solution: unidirectional relationships between Examination and

Facts that belong to it
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5.3.4 Inheritance vs. aggregation: fetching overloading

Problem

One of the most common technique for reusing functionality in object-

oriented systems is class inheritance, where a class may inherit fields and

methods of its superclass and may override some of those fields and meth-

ods to alter the default behavior. However, this approach leads up to some

inherent hurdles. On the one hand, the whole model design is affected by

this choice, resulting in a less intuitive representation of information, due

to the workarounds often required to overcome some implementation barri-

ers (e.g., multiple inheritance). On the other hand, increasing the number of

specialized classes, inheritance-based model ends up including several classes

derived from the base one, very different from each other, driving to more

complex (and slow) queries, as described in Sect. 5.3.1 and in Sect. 5.3.2.

Context

In the meta-modeling architecture of Fig. 3.6, a special category of knowl-

edge is represented by QualitativeType instances, i.e. domain concepts

where related information can assume only specific values (called Phenomenon)

in a finite range (e.g., for blood type, allowable phenomena are 0, A, B, and

AB). In general, a Phenomenon is sufficiently characterized by its label, but

sometimes a plain string is not enough and it is necessary to encode extra

and more structured information. However, sometimes, a plain string is not

enough to fully describe a Phenomenon, and it is necessary to encode extra

and more structured information, in order to deal with this special category

of phenomena.

A typical example is the International Classification of Diseases (ICD)

[58], which represents the international standard diagnostic tool for epidemi-

ology, health management and clinical purposes, maintained by the World

Health Organization. This standard is designed to map diseases and other

health problems to generic categories together with specific variations, as-

signing an ICD code, depending on the standard version (e.g., in the ICD-

9-CM version, 427.31 corresponds to atrial fibrillation in the Cardiac dys-

rhythmias category).

At the beginning, ICD-9-CM codes were treated as specializations of

Phenomenon types (e.g., ICD9CM), so as to support their exploitation inside

qualitative clinical information (see Fig. 5.5a). Increasing the number of
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special phenomenon types to deal with (e.g., different ICD versions to man-

age), inheritance-based model ends up to include several classes derived from

Phenomenon, very different from each other, driving to more complex (and

slow) queries.

Solution

As first solution, ICD codes may be treated as specializations of Phenomenon

types, in order to support their exploitation inside qualitative information.

However, aggregation represents a more efficient solution in terms of per-

formance (Fig.5.5b). In this way, classes corresponding to special phe-

nomenon categories (e.g. ICD9CM) can be placed in weak association with

the Phenomenon class, and consequently, they are responsible for generat-

ing associated phenomena, starting from extra collected information. The

resulting model is easier to maintain, test, and extend. In terms of per-

formance, queries concerning phenomena become simpler, faster and more

efficient, due to the smaller information retrieved.

Sample Code

Inheritance vs. aggregation

1 @Entity

2 @Table(name = "phenomena")

3 public abstract class Phenomenon {

4

5 private Long id;

6 private String label;

7 ...

8 }

9

10 @Entity

11 @Table(name = "icd9cm")

12 public class Icd9cm extends Phenomenon{

13

14 private Long id;

15 private String code;

16 private String description;

17 ...

18 }

Listing 5.7: anti-pattern: inheritance strategy to map specific phenomenon

type
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1 @Entity

2 @Table( name = "phenomena" )

3 public class Phenomenon {

4

5 private Long id;

6 private String label;

7 ...

8 }

9

10 @Entity

11 @Table(name = "icd9cm")

12 public class Icd9cm {

13

14 private Long id;

15 private String code;

16 private String description;

17 private Phenomenon phenomenon;

18

19 @ManyToOne( cascade = { CascadeType.ALL } )

20 @JoinColumn( name = "phen_id" )

21 public Phenomenon getPhenomenon () {

22 return phenomenon;

23 }

24 ...

25 }

Listing 5.8: solution: aggregation strategy to map specific phenomenon type
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Figure 5.5: From inheritance to aggregation.
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5.4 Experimental Evaluation

We conducted some experiments and collected performance measurements on

a dataset of clinical examinations acquired by a real case of context-specific

EHR system, named Empedocle [62], presently in use in various clinics at

AOUC, the main hospital in Florence.

5.4.1 Methodology

In the context of EHR systems, the complexity is often related to the medi-

cal specialty under consideration. In our experience, performance is not an

issue for the context of Ophthalmology, whose basic examination results in a

lightweight data structure, where only few tens of observations are collected

for each patient. Otherwise, when the system was configured for operating

in the Cardiology department, performance issues have made evident (see

Table 5.1). In particular, the number of nodes and leaves in a Cardiology

examination is ten times bigger than values for an Ophthalmology examina-

tion.

As highlighted in sect. 5.2 performance limitations were observed in two

main scenarios of interaction, namely “performing a medical examination

(UC1)” and “accessing the patient’s EHR content (UC2)”. In UC1, the

examination structure is first loaded; then clinical information corresponding

to observed facts are filled by the user; finally, the system stores clinical

data collected during the examination. UC1 combines fetching operations to

retrieve the data structure from the knowledge level (i.e., FactContextType),

and writing operations to persist collected data at the operational level (i.e.,

FactContext). In UC2, the health professional accesses a performed medical

examination and consults collected clinical information. Since this scenario

requires to just retrieve data structure and content, UC2 is characterized by

read-only operations.

We investigate the time to execute each task, and, in particular, the num-

ber of queries and joins generated during each scenario under consideration,

which significantly impact on performance as documented by [69] in terms

of “N+1 queries” and “Circuitous Treasure Hunt” anti-patterns.

The time to perform each task was evaluated for all 22 000 examinations

in the Ophthalmology dataset and for all 13 000 examinations in the Car-

diology dataset. Each experiment has been repeated 100 times to estimate

the mean time value in order to limit impact of the start-up time required
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by ORM and any outer factor that can influence performance. All reported

experiments were performed on a MacBook Pro with 2.8 GHz Intel Core i7

and 16GB of 1066 MHz SDRAM DDR3L installed in pairs (two 8GB mod-

ules).

5.4.2 Results

The performance of the refactored model obtained after removing the four

anti-patterns described in Sect. 5.3 was tested through the measurements and

comparison of time to perform the two scenarios discussed in Sect. 5.4.1, so as

to evaluate the performance gain obtained applying the proposed refactoring

solutions.

Table 5.2 and Table 5.3 illustrate the impact on performance produced

by the complexity of the object model of Empedocle in the different config-

urations of Ophthalmology and Cardiology.

Specifically, the upper part of Table 5.2 compares the average time and

the coefficient of variation for completing the UC1 scenario measured before

and after the refactoring interventions, while the upper part of Table 5.3

compares the number of queries and joins related to the same scenario, as

determined by the structure of the examinations involved in the experimen-

tation. In the same way, the lower part of Table 5.2 and Table 5.3 are related

to the UC2 scenario.

Table 5.2: Time mean value (µ) and coefficient of variation (cv) for UC1

(fetch and write) and UC2 (read-only) before and after refactoring (100

repetitions).

Specialty

configuration

Before After

µ (ms) cv µ (ms) cv

UC1
Ophthalmology 203.65 0.22 163.67 0.29

Cardiology 2004.89 0.08 1755.57 0.85

UC2
Ophthalmology 252.3 0.12 44.18 0.7

Cardiology 585.43 0.13 196.02 0.41

The comparison of results in Table 5.2 reveals a gain of performance by

a factor of 1.24 for Ophthalmology and 1.14 for Cardiology in the UC1 sce-

nario. Indeed, most of the reported optimizations in the refactored model
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Table 5.3: Number of queries and joins for UC1 (fetch and write) and UC2

(read-only) before and after refactoring.

Specialty

configuration

Before After

Q
u

e
ri

e
s

J
o
in

s

Q
u

e
ri

e
s

J
o
in

s

UC1
Ophthalmology 557 261 630 25

Cardiology 5755 561 6167 71

UC2
Ophthalmology 141 6274 10 29

Cardiology 322 13701 39 65

give their major contribution to the UC2 scenario. For this reason, it is rele-

vant to pay attention on data reported in the lower part of Table 5.2, where a

huge improvement in read-only operations emerges. Performance for the sec-

ond scenario presents a gain of almost 5.7 and 3.0 times for Ophthalmology

and Cardiology, respectively.

Moreover, the overall number of queries and joins is being limited. Specif-

ically, while some additional queries are required by the refactored model to

perform the first scenario (as reported in the upper part of Table 5.3), a sub-

stantial reduction in the number of accesses to the database is highlighted

for the UC2 scenario, as depicted in the lower part of Table 5.3 by factor of

14.1 for Ophthalmology and 8.3 for Cardiology.

Turning to details, the solution provided in Sect. 5.3.1 decreases the num-

ber of join operations during the UC2 ; furthermore, the refactoring proposed

in Sect. 5.3.2 limits the number of queries needed for this scenario, by reduc-

ing them to only one. The different way to map entity associations shown in

Sect. 5.3.3 is intended to avoid unnecessary references that carry an overload

of objects in memory. Finally, moving from inheritance to aggregation as re-

ported in Sect. 5.3.4 limits the amount of retrieved data when a lightweight

Phenomenon associated to a QualitativeFact is requested.

5.4.3 Reproducibility of results

The experiments have been run using a medical examinations dataset, from

a real-world scenario of the major hospital fo Florence.

The Table 5.1 contains the exact structure configurations of the two medical
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examination types used to measure the performance of the use cases, as

shown in Table 5.2 and Table 5.3. Whoever is interested in developing a

model based on the Fig. 3.6, can easily reproduce the experiments configuring

an ExaminationType following the structure in Table 5.1. Clinical data are

protected by strict privacy rules, but it’s possible to generate a test dataset

of synthetic observations using random strings and quantities.
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5.5 Discussion

Designing and implementing a software intensive system based on a a meta-

modeling architecture offers several proven benefits in the software engineer-

ing perspective: improved maintainability; high degree of adaptability, to

fit the needs of complex and volatile domains; inversion of responsibility, to

delegate changes on the systems structure and behavior to domain experts,

without intermediation of software engineers. However, a meta-modeling ar-

chitecture also carries performance consequences, that often remain hidden

until testing and deployment.

In this research, we identified and illustrated four performance anti-

patterns which may occur when a meta-modeling architecture is mapped

into a relational database, and we discussed design and mapping choices

that may have a sound rational in the perspective of Object Oriented design

but can have significant and negative impact in the performance perspective.

For each of these anti-patterns, we proposed design solutions and implemen-

tation choices that comprise a performance-oriented guideline for software

developers.

The significant and positive impact of the proposed refactoring strategies

was assessed through experimentation on an EHR in use at a major hospital

of Tuscany, referring to real scenarios of the clinical practice consisting in the

execution of a clinical examination and in the access to a patients medical

history. Specifically, while our proposed solutions preserve performances

in write-dominant scenarios, a huge improvement emerges when read-only

operations are performed, since refactoring interventions are mainly focused

on three specific targets: i) decrease the number of queries, in order to

minimize access to database; ii) reduce the queries complexity, so as to

downsize the number of join operations between tables; iii) limit the retrieved

data to the minimum necessary amount.

Finally, since model refactoring to improve performance may affect other

functional and nonfunctional system requirements (e.g. reliability, maintain-

ability, etc.), consistency and tradeoffs among these properties must be taken

into account by sw developers during this kind of intervention.



Chapter 6

Performance evaluation of

different data models over

NoSQL persistence layers

The previous chapter investigated about performance improv-

ing provided by refactoring actions applied to the reflective do-

main model and its mapping strategies. The recent rise of the

NoSQL movement motivates investigation on the performance

impact that new persistence approaches can bring in the model-

driven re-engineering of a consolidated object-oriented software

architecture. In this chapter, I report on the performance engi-

neering of a three-tier web-application focused on the replacement

of a relational + ORM persistence stack by two different NoSQL

technologies. I describe how a reflection-based architecture can

be modeled over the graph-oriented Neo4j [2] and the document-

oriented MongoDB [1] databases, and discuss challenges in con-

version of the original model in the other ones. Finally, I com-

pare experimental performance results achieved by the different

solutions with performance of the original relational implemen-

tation.

56
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6.1 Not Only Sql (NoSQL)

As seen in previous chapters, the persistence of a domain model with com-

plex structure into a relational database comes with a number of performance

penalties, that translate in longer time required for key persistence opera-

tions. These issues can be partially mitigated with ad-hoc optimizations

in the design of the relational database [65], pertaining to the choice of a

particular representation for class inheritance, the use of auxiliary tables to

store additional information, and the smart use of data fetching.

The interposition of an object-relational mapping (ORM) layer between the

domain logic and the storage layer can mitigate this problem. In the practice

of development of Java enterprise applications, Java Persistence API (JPA)

specification represents a mature and state-of-the-art ORM solution which

grants many benefits [15]. First of all, it allows to persist domain classes

with a minimal boilerplate code, thanks to simplified annotation facilities.

Also, it provides full integration with the Java application stack, composed

by other technologies such as EJB (for encapsulating the business logic) and

CDI (for implementing the Inversion of Control pattern [53]). However, JPA

further increases the degree of indirection and this can have negative effects

on the system performance, also due to the loss of design control on the

impact that domain logic operations have on the storage process.

With the rise of the Not Only Sql (NoSQL) movement [73], other options

in the design of the storage layer are now available, and provide various

advantages, including reduced access time through the clustering of similar

data [64], and increased adaptability to the variety and variability of data

over time through the use of a schemaless structure.

This motivates the investigation on engineering the performance of exist-

ing applications by changing the storage schema from a relational + ORM

persistence stack to a NoSQL solution, while preserving the domain logic

structure. In particular, this subtends a problem of re-modeling content

representation in the schema of some NoSQL technology and quantitatively

evaluating the performance gain that can be attained. In so doing, different

NoSQL paradigms are more or less close to the domain model and suited

for its main operations [52, 76], and a pattern-based organization of the do-

main logic can drive the refactoring of the data model towards more efficient

performance results.
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6.2 Reflective Architecture: model details

To fully understand the following discussion it’s necessary to make some

statement about the architecture presented in Sect. 3.2. In particular, it’s

necessary to introduce some details that were omitted as a simplification.

Patient

EHR

Examination

FactFactType

CompositeFactQuantitativeFactQualitativeFactTextualFactCompositeType

FactContextExaminationType
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Figure 6.1: The domain model of the Empedocle EHR system with Type and

Fact Links explicitated

The UML class-object diagram of Fig. 6.1 provides a high-level specifi-

cation of the domain model implemented in the core of the Empedocle EHR

system. Accordingly, four different categories of knowledge can be iden-

tified: TextualType, for free-text information (e.g. patient’s anamnesis);

QualitativeType, for values in a finite range of acceptable Phenomena (e.g.

blood type with groups A, B, AB, and 0 ); QuantitativeType, for quanti-

ties with a specified set of acceptable Units (e.g. heart rate, measured in

beats-per-minute); and CompositeType, for composing FactTypes in a hier-

archical structure through a Composite pattern implementation (e.g. vital

sign including temperature, blood pressure, heart and respiratory rate). The

same categories can be identified at the operational level: TextualFact,

QualitativeFact, QuantitativeFact, and CompositeFact.

ExaminationType class represents the structure of an Examination in
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terms of which FactTypes (and related Facts) have to be considered during

a medical examination.

The main difference between the model previously referred is the intro-

duction of TypeLink and FactLink associations, that specify the multiplicity

of occurrence of each Fact in order to dynamically adapt the structure to

multiple contexts-of-use that require a different number of instances to be

recorded. In so doing, the reuse of already defined named FactTypes is sup-

ported, so as to avoid their proliferation, just referencing them in multiple

parts of the structure. Alternatively, anonymous FactType instances (i.e.,

FactTypes that do not need to be referenced by others) can be used, and the

definition of their structures is directly included inside the parent structure.

As relevant consequence, as depicted in Fig. 6.2, the FactType structure will

CompositeType_2CompositeType_1

TypeLink_24

TextualType_3

TypeLink_13

TextualType_4

TypeLink_14

CompositeFact_X

FactLink_XY

TextualFact_Y TextualFact_Z

FactLink_XZ

Knowledge Level Operational Level

2

1

11

1

Figure 6.2: An example of Examination structure as represented using the

domain model shown in Fig. 6.1: on the left, a direct acyclic graph obtained

composing FactTypes and TypeLinks; on the right, a tree-like structure as

resulting from the composition of Facts and FactLinks. Note that rect-

angles represent instances of FactType and Fact classes and define, respec-

tively, medical concepts and clinical observations that are to be taken into

account during a clinical examination. Rounded boxes represent instances of

TypeLink and FactLink classes and are used to increase the expressiveness

of each Type-to-Type and Fact-to-Fact association (for example, through

the definition of its cardinality).

result in a direct acyclic graph, while the derived Fact structure will result

in a tree, usually with an increased number of nodes due to the multiplicity

attribute.
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6.3 Modeling Reflection over a NoSQL persis-

tence layer

In the common practice of software development, the persistence layer deals

with retrieving data from and storing data to a relational data store, usually

through the interposition of an ORM layer. In this kind of approach, the

persistence model is largely determined by the object-oriented design of the

domain logic.

By contrast, when persistence relies on a NoSQL solution, design gives

space to alternative choices in the definition of the storage data model, which

is, to a large extent, independent from the structure of object types. In fact,

the absence of a fixed schema provides multiple options concerning the defi-

nition of the database structure, facilitating the representation of heteroge-

neous data characterized by high variability over time. The overall design

results more flexible, but inevitably more complex and harder to understand

for software developers used to deal with traditional relational databases [16];

it also requires to take into account some specific aspects so as to realize data

migration in the most opportune way [64].

In the rest of this Section, I describe two new data models as imple-

mented using different NoSQL technologies, Neo4j [2], and MongoDB [1].

The choice of these two technologies was made so as to experiment with

their data structure and promising performance improvement [42, 81], and

to compare graph- and document-oriented NoSQL solutions applied to the

case of a reflection software architecture that combines the Observations &

Measurements and Composite patterns, as described in Chap. 3. Finally, the

validity of the proposed models is proved, in terms of integrity of persisted

data and equivalence of data representations.

6.3.1 A model for Neo4j

Neo4j [2] relies on a graph-oriented structure, which can natively represent

the domain logic of a reflection architecture, whose data structures are direct

acyclic graphs and trees [79]. As a schemaless database, the data model

in Neo4j is inherently defined by the nodes and relationships persisted in

the database. Every node and relationship can also be characterized by an

arbitrary number of properties.
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From version 2.0, Neo4j developers tweaked its schemaless nature by in-

troducing labels and indexes, two concepts that help modelling data in a more

organized way, without losing the database original adaptability. Specifically,

labels can be used to group together nodes, and each node can optionally be

labeled with one or more text descriptions, and indexed to improve query

expressiveness and flexibility. Moreover, indexes can be defined on properties

of labelled nodes, to improve performance during query operations, similarly

to the relational case. Both labels and indexes are optional.

In our concrete case, modeling the domain logic in Neo4j comes down

to: i) identifying the node structure that forms the model; ii) defining the

relationships between nodes; iii) defining the properties that characterize

nodes and relationships, and iv) labeling with the appropriate qualifiers.

Type:CompositeType
{ name : “compositeType”}

Type:TextualType

Type:QualitativeType

Type:QuantitativeType

Phenomenon
{ name : “Phenomenon1” }

Unit
{ name : “unit1”, 
symbol : “u1” }

Has Phenomenon

Phenomenon
{ name :“Phenomenon2” }

Unit
{ name : “unit2”,
symbol : “u2” }

Has Children
{ "uuid" : �,
name : “aQualitativeType” }

Type:CompositeType
{ name : “namedType” }

Has Phenomenon

Has Children
{ "uuid" : �,
name : “aNamedType” }

Has Children
{ "uuid" : �,
name : “aQuantitativeType” }

Has Children
{ "uuid" : �,
name : “aTextualType” }

Has Unit
{ digits : 5,
decimals : 2 }

Has Unit
{ digits : 3,
decimals : 4 }

Fact:TextualFact
{ value : “aText” }

Fact:QualitativeFact

Has Children
{ “type” : � }

Fact:CompositeFact

Has Children
{ “type” : � }

Has Children
{ “type” : � }

Has Children
{ “type” : � }

Has Unit

Has Phenomenon

Has Type

Has Type

Has Type

Has Type

Has Type
Knowledge Level Operational Level

Fact:CompositeFact

Fact:QuantitativeFact
{ value : 10.2 }

… …

Figure 6.3: The representation of an instance of the domain model de-

scribed in Sect. 6.2 on the graph model of Neo4j database. Oval shapes

represent nodes, and arcs between nodes represent relationships, with labels

written in bold, and properties reported between braces. For example, a

Type:CompositeType node is characterized by multiple labels: the first one

specifies that it is an instance of FactType class, the second one identifies

its role in the hierarchy. The Has Children relationship identifies children

nodes. For reasons of readability, uuid property values have been replaced

with symbols.
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Specifically, as depicted in the schema of Fig. 6.3, each class that is an

entity in the original model has been represented as a node in the target

model (i.e., FactType and Fact hierarchy classes, and Phenomenon and Unit

classes). The resulting nodes have been labeled with a correspondent quali-

fier and, in addition to that, nodes that are part of the FactType and Fact

hierarchies contain an extra label to identify their role in the class hierar-

chy (e.g. Fact:QualitativeFact qualifies a QualitativeFact inside a Fact

hierarchy).

As it can be observed in the schema, the name property is used for

identifying, at the knowledge level, a named FactType. The value property is

used to record, at the operational level, the value assumed by a TextualFact

or a QuantitativeFact node: a string of text in the first case, and a double

precision number in the latter case. In this model, there is basically no

difference between named and anonymous FactTypes: both are modeled

using a node, and the only distinction between them is the presence of the

name property.

Another characteristic of the graph model in Fig. 6.3 is the capability

of modeling TypeLink and FactLink classes using relationships. These two

classes were introduced in the original model to represent the parent-child

relationship between FactType or Fact classes. For this reason, they can be

naturally represented as a relationship in a graph-oriented model. In addi-

tion, since Neo4j represents relationships as directed arcs that can be tra-

versed in both directions, this allows to simplify the model introducing a sin-

gle relationship, called Has Children, for modeling TypeLink and FactLink

classes, without any impact on query capabilities. Note that Neo4j allows

to put a relationship only between two nodes, and this precludes the possi-

bility to use a relationship to represent the reference between TypeLink and

FactLink, as in the original model. Properties have been used to solve this

problem, as follows: i) the uuid property of each TypeLink is used for storing

an identifier value; ii) the same value is copied into the type property of the

related FactLink. Properties have been used to solve this problem without

transforming these two classes from relationships to nodes. Finally, the Has

Type relationship is used to link together Fact and FactType nodes.

The self-explanatory Has Unit and Has Phenomenon relationships are

ambivalent across the knowledge and the operational level, and are used to

connect a QuantitativeType or QualitativeType node with a set of pos-

sible Unit or Phenomenon nodes, and the corresponding QuantitativeFact
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or QualitativeFact node with the selected Unit or Phenomenon node.

6.3.2 A model for MongoDB

{ "_id" : ObjectId("55e45670d4c67eba5b0e9e16") ,
"name" : “namedType",
"class" : "cmp",
"children" : [ { "class" : "txt",

    "name" : "aTextualType",
    "uuid" : ♦ },

       { "class" : "qnt",
    "name" : "aQuantitativeType",
    "uuid" : ♥,
    "units" : [ { "name" : "unit1",

           "symbol" : "u1",
   "format" : "5,2" },

                                                { "name" : "unit2",
      "symbol" : "u2",
     "format" : "3,4" } ] } ]

db.facts

{ "_id" : ObjectId("62e45671d4c67eba5b0e9e1a") ,
  "name" : “compositeType”,

"class" : "cmp",
"children" : [ { "class" : "qlt",

           "name" : "aQualitativeType",
            "uuid" : ♠,

                                 "values" : [ "Phenomenon1", "Phenomenon2" ] },
{ "class" : "ref",
    "name" : "aNamedType",

           "uuid" : ♣,
    "reference" : ObjectId("55e45670d4c67eba5b0e9e16") } ]

{ "_id" : ObjectId("552168dcdb77569140663ba7") ,
      "class" : "cmp",
      "typeId" : ObjectId("62e45671d4c67eba5b0e9e1a"),
      "children" : [ { "class" : "qlt",

     "type" : ♠,
     "value" : "Phenomenon1" },

                           { "class" : "cmp",
                                  "type" : ♣,
                                  "children" : [ { "class" : "txt",
                  "type" : ♦,
                  "value" : "aText" },
                                                       { "class" : "qnt",
                  "type" : ♥,
                  "value" : "10.2",
                                                             "unit" : "u1" } ] } ]
}

db.types

Knowledge Level Operational Level

Figure 6.4: The representation of an instance of the domain model described

in Sect. 6.2 on the document model of MongoDB database. The two sides of

the figure show the collections used to persist FactType and Facts instances,

named db.types and db.facts, respectively. At knowledge level, two named

types have been persisted, with names compositeType and namedType. The

first type includes the second one, as noted by the use of the ObjectId ref-

erence, and both of them include anonymous types as sub-documents. For

reasons of readability, uuid property values have been replaced with symbols.

MongoDB [1] data model is based upon a document-oriented structure.

A document is a collection of attribute-value pairs, with values that can

be basic types, array of values or nested sub-documents. Documents with

similar characteristics are grouped together and stored in collections. Re-

lation between documents can be represented using references, that pro-

duce a normalized data model, or by embedding related data in documents,

producing denormalized models. In particular, the use of denormalization

techniques [49] is promoted by document-oriented NoSQL solutions for dis-

couraging the usage of JOIN queries, and solving typical performance issues
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that affect relational databases, preserving data consistency and complete-

ness [84].

The schema of Fig. 6.4 illustrates the document-oriented model used in

our concrete case, representing data in accordance with the domain model

of Fig. 6.1. Usually, modeling an object-oriented domain logic using a

document-based data model can be achieved in a direct way, but, in the

case of study of a reflection architecture, this simplicity is weakened from

the indirect structure of the model. The proposed solution attains a good

balance, mixing together documents embedding approaches with references

techniques [50] for obtaining a flexible data representation without perfor-

mance degradation. In particular, the FactType hierarchy comprises a neat

example of mixed modelation. In fact, while named FactType instances are

persisted as documents, and are referenced by other documents using their

ObjectId, anonymous FactType instances are persisted as embedded docu-

ments inside the named FactType document in which they are defined.

To efficiently recognize the subtyping-class of an instance in the FactType

or Fact hierarchy, every persisted document has a property called class that

can assume the following values: i) txt, for referring to a TextualType

or TextualFact instance; ii) qlt, for referring to a QualitativeType or

QualitativeFact instance; iii) qnt, for referring to a QuantitativeType or

QuantitativeFact instance; and, iv) cmp, for referring to a CompositeType

or CompositeFact instance. In so doing, it is sufficient to check the class

property value of a document to recognize its nature, avoiding to pre-emptively

explore its properties. In the case of named FactTypes, the class property is

valued with the string value ref, and an additional property called reference

contains the ObjectId of the named FactType.

This different behaviour in FactType persistence drops the need to per-

sist the TypeLink class as a separate entity. For this reason, TypeLink

and FactType classes are modeled in MongoDB as a single entity, and the

name property of embedded documents inside CompositeType instances cor-

responds to the TypeLink name property of the original model. Note that

since the embedded documents are always anonymous, the FactType name

property is specified only for the root document of a FactType instance.

The Fact hierarchy does not have the same need for reusability and

referencing that characterize FactTypes. For this reason, Fact instances

can always be represented as a single document, in which Fact children are
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embedded as sub-documents. In so doing, the number of queries for data

retrieval is considerably limited.

Fact and related FactType instances are linked together with different

strategies, based on the nature of the Fact. In the case of a Fact root

document, the typeId property is used to store the ObjectId of the referenced

FactType instance. Otherwise, when dealing with sub-documents of the Fact

root, the type property is used to refer to the uuid value of the corresponding

FactType. Consequently, for completely retrieving a Fact and its FactType,

it is necessary to: i) query for the Fact; then, ii) query for the corresponding

FactType using the ObjectId referenced by the Fact root; iii) link together

the retrieved Fact and FactType instances using the type property.

For the sake of completeness, Phenomenon entities are modeled as embed-

ded documents inside QualitativeFact and QualitativeType documents

with the intent of minimizing the number of retrieval query in reading opera-

tions. In the same manner, Unit entities are modeled inside QuantitativeFact

and QuantitativeType documents.

6.4 Information equivalence across data mod-

els

A comparison of the performance among different data storage implementa-

tions (i.e., from relational to a graph- or document-oriented model) requires

that they are in some sense equivalent. Since data can be modeled in various

ways through the use of different data structures offering the same informa-

tion capacity, a notion of model equivalence, or hierarchy of equivalences [43],

is required to be defined. In a general sense, two data structures can be

considered equivalent in terms of information-capacities if they can be asso-

ciated to the same number of states, such that each state of a data structure

can be mapped to a database state of the other structure, preserving any

relationship attribute value.

For the purpose of our experimentation, it is not necessary to prove the

complete equivalence between two representations, but it is sufficient to prove

the query equivalence of two models [9], i.e., the possibility to extract the

same information from both models through query operations. Specifically,

the equivalence problem consists in casting information data into structures

(i.e., graphs or tree) of the same type. Comparing and matching graphs (i.e.,
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graph homomorphism) is a well-known NP-complete problem [39], and dif-

ferent approaches have been proposed to determine the distance between two

graphs using specific heuristic [19, 21]. In our case, proving the equivalence

of Neo4j and MongoDB data models with respect to the actual relational

model means showing that they have the same representativeness of infor-

mation. This means that the equivalence problem will be focused on showing

that two data structures are exactly identical in the information they carry,

rather than identifying similarities and differences between data models. Fur-

thermore, it is not necessary to verify the query dominance for the new data

model, but simply proving that it is possible to query the same Examination

and ExaminationType structure across different representations.

In a practical manner, we consider equivalent two data representations

of the same domain logic using different persistence models when the carried

information can be serialized into an equivalent string of information. In so

doing, given two different persistence models, named A and B, A and B are

equivalent if it is possible to generate the same string serialization for each

given Examination and ExaminationType instance represented in A and B.

Consequently, if A is a valid model, and A and B are equivalent, than B is

also valid. Note that we assume that the actual relational model is a valid

reference model, from which we want to prove the validity of the converted

NoSQL models.

We have started by choosing a dataset with an arbitrary number of clin-

ical information data persisted in the relational model. Then, we have re-

trieved all the Examinations and ExaminationTypes instances contained in

the dataset, and we have serialized the information data in a string represen-

tation. Finally, for testing the equivalence, we have converted information

data from the relational model to the target NoSQL model, serializing again

the information data, and comparing the resulting string with the string ob-

tained from the relational model at the previous step. The validation process

is considered successful, if we are able to obtain an equivalence between the

reference relational model and the target NoSQL model for every string of

information.

Fig. 6.5 illustrates an example of the string produced during the serial-

ization process applied to the information data as so represented using the

models depicted in Figs. 6.3 and 6.4. The structure of the serialization is

deliberately similar to a JSON document, due to its simple and readable



6.4 Information equivalence across data models 67

syntax. This string serialization can be also used to verify which are the

essential properties that a model must implement to be valid.

Note that the completeness of the new representation is also granted by

the structures of target models. In fact, the conversion from MySQL to Neo4j

model is the most natural way since it allows to maintain nodes and rela-

tionships according to the structure of the original tree or graph. Moreover,

the MongoDB document representation is modeled in a way that can be con-

sidered an inverse operation of vertical decomposition during normalization

process, as discussed in [9] and [12].

1 "compositeType" : {

2 "aNamedType" : {

3 "aQuantitativeType" : "10.2 u1"

4 "aTextualType" : "aText"

5 }

6 "aQualitativeType" : "Phenomenon2"

7 }

8

Figure 6.5: An example of serialization of a clinical Examination. The

pattern used to serialize the information is as follows: type.name : fact.value.

CompositeFact values are described by the list of values assumed by children

Facts defined between braces.
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6.5 Experimental Evaluation

An experimentation was carried out to evaluate the performance of the three

different implementations based on MySQL+Hibernate, Neo4j, and Mon-

goDB, and their sensitivity to the characteristics of the dataset.

The evaluation was focused on the Access EHR content use case (see

Fig. 3.5), in which a health professional actor access past medical exam-

inations related to a specific patient in order to review collected clinical

information. This use case has turned out to have the most relevant impact

on the perceived performance in the context-of-use and, at the same time,

constitutes a major scenario of interaction in EHR systems.

6.5.1 Methodology

We can expect that the response time of different storage schemes be de-

pendent on the complexity of the collection of domain logic objects that are

read-from or written-to the persistence layer. Due to the pattern-based ar-

chitecture of classes in the domain logic, objects are organized in an almost

tree-like structure, and their complexity can thus be characterized in terms

of number of nodes and depth of the tree in the examination structure.

For this reason, we experimented with two different kind of datasets: i) a

real dataset of clinical examinations acquired in the Empedocle EHR system

for which we provide a description of the statistics about the number of

nodes and the depth of the tree structure; ii) a synthetic dataset for which

we can control the statistics so as to stress the indexes of complexity.

The real dataset consists of about 13 000 examinations 1 that belong to

the same medical speciality and thus share the same structure. Table 6.1

summarizes the complexity of the examination structure, i.e., the number

of FactTypes included in each examination, which is the number of meta-

objects in the knowledge level. The structure of the examination includes

243+110+99 fields, which are organized in a graph whose depth (intended as

the maximum distance from the root node) is equal to 8, and which includes

144 FactTypes that act as composition nodes.

Note that, at the operational level, the complexity of the tree structure

depends on the course of each specific examination, and its statistic is re-

1The real dataset was conveniently anonymized by omitting patients’ personal infor-

mation, and by obfuscating textual observations recorded during each clinical session.
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Depth 8

Number of nodes 596

CompositeType 144

QualitativeType 243

QuantitativeType 110

TextuaType 99

Table 6.1: Characteristics of the considered examination structure in the

dataset, with additional details about the distribution of type nodes con-

tained in the structure. Of the 596 nodes that form the examination type,

452 nodes are leaf nodes, which actually contain a value.

sumed in Figs. 6.6 and 6.7. Fig. 6.6 reports the distribution of examinations

per number of nodes. Fig. 6.7 characterizes the distribution of examina-

tions per depth of the tree structure. From these statistics, it is possible to

note that the size of the tree-like structure (composed by Facts) is always

much lower than the size of the corresponding graph structure (composed by

FactTypes), which depends on the fact that, during a standard clinical ses-

sion, not all the observations allowed by the examination structure (≈ 600)

are actually recorded.

The synthetic dataset contains generated examinations with a full binary

tree structure, with depth ranging from 2 to 8. For each depth, a fixed

number of 100 examinations has been generated. Being a full binary tree,

the number of nodes n in each of the trees of depth d is given by:

n = 2d+1 − 1,

ranging from 3 to 511 nodes. The synthetic dataset does not correspond

to a real situation in the present context-of-use of our EHR system, but it

can become a possible scenario in the evolution of the use of the Empedocle

EHR system, and, for this reason, represents a relevant part of the moti-

vation for this performance engineering investigation. In the more general

perspective of a reflection architecture, this corresponds to the case where

different courses can be described on a structure with different degrees of

completeness.

The evaluation has been carried out with reference to a major scenario of

interaction: a health professional accesses a patient’s EHR content in order
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Figure 6.6: The histogram describes the distribution of examinations as the

number of nodes varies. Note that about 35% of the examinations in the

dataset are in the neighbourhood of 23±6, with peaks in 19, 20, 25 and

27. This shows clearly how, usually, only a small part of the examination

structure, comprising 596 nodes, is actually filled out by health professionals.

Only about 9% of the examinations in the dataset have more than 70 nodes

filled out.

to review past medical examinations and read collected clinical information.

To do that, each examination in the dataset has first been retrieved and,

then, a read-only operation has been performed in order to simulate the real

interaction of users with the EHR system through the interfaces exposed by

the Presentation Layer.

As a metric of performance, we evaluated the total time required to

complete the selected scenario, from data retrieving to data serialization,
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Figure 6.7: The histogram describes the distribution of examinations as the

depth increases. Note that 96% of the examinations in the dataset have

depth comprises between 4 and 6.

for all compared models. Note that the examination retrieval also implies

the retrieval of the associated type structure. In the process of measuring

the total time, we do not distinguish time passed by the various phases of

data retrieval and process: specifically, we measure the time to complete the

whole use case, that comprises database retrieval operations, interactions

with Java database APIs or with the ORM persistence layer present only in

the relational case.

Experimental results not reported here indicate that the ORM layer,

implemented by Hibernate in the current application stack, does not signifi-

cantly impact the overall performance, since it is optimized for the underlying

database technology [56,80]. No comparison has been carried out regarding

storage space requirements for the considered technologies, not representing

a critical aspect for the EHR system in the case under consideration.

The experiments were conducted on a computer with the following char-

acteristics: Debian 3.2.60 operating system, with 2 x Intel Xeon E5640 @

2.66 GHz 64-Bit CPU, and 32 GB of RAM Memory.



6.5 Experimental Evaluation 72

µ (ms) CV min (ms) max (ms)

MySQL +

Hibernate
76.06 0.031 70.79 81.94

Neo4j 51.29 0.0024 50.94 51.57

MongoDB 2.27 0.064 1.82 2.57

Table 6.2: Comparison between MySQL+Hibernate, Neo4j, and MongoDB,

evaluated using the real dataset comprising 12953 examinations. Table re-

ports the mean value (µ) and the coefficient of variation (CV ) for the execu-

tion of a single examination, as well as the minimum (min) and maximum

(max ) execution time registered during the 100 iterations for a specific tech-

nology.

6.5.2 Results

Table 6.2 reports the results of the experimentation on the real dataset,

showing the mean value (µ), measured in ms, and the coefficient of variation

(CV ) of the time spent to complete the read-only operation for a single ex-

amination in the three implementations under test. These statistical indexes

were evaluated by repeating the task for 100 times on all 12 953 examinations

in the dataset.

In comparison with the MySQL + Hibernate implementation, Neo4j re-

duces the retrieval time by approximately 1.5 times, and MongoDB reduces

it by more than 33 times. Performance with relational database such as

MySQL are deeply linked to the number of JOIN in the executed queries.

For this reason, in the considered model, the retrieval of specific classes of

Facts has a different impact on the complexity of the query. In particular,

since CompositeFacts represent hierarchical structures in the Facts tree,

querying operations result in a higher number of JOINs, which produces a

significant impact on performance, documented by [69] as “N+1 queries”

data access anti-pattern or “Circuitous Treasure Hunt” problem. In a sim-

ilar way, QuantitativeFacts and QualitativeFacts also produce more

complex queries, since an additional JOIN operation is required to retrieve

related Phenomena and Units.

Table 6.3 shows the results of experimentation on the synthetic dataset.

We report the mean value (µ), measured in ms, and the coefficient of varia-

tion (CV ) of the time spent to complete the read-only operation for a single
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examination in the three implementations under test, evaluated by repeat-

ing the task for 100 times on all 100 examinations in the dataset. Results

indicate that MongoDB attains by far a better performance and slower sensi-

tivity to the examination depth. It should also be noted that the MySQL +

Hibernate implementation performs better than Neo4j for examination with

depth lower than 7.

Depth
MySQL +

Hibernate
Neo4j MongoDB

µ (ms) CV µ (ms) CV µ (ms) CV

2 6.93 0.12 18.76 0.12 1.07 0.05

3 9.54 0.11 19.41 0.09 1.2 0.06

4 12.6 0.1 21.57 0.09 1.38 0.07

5 18.87 0.09 26.04 0.08 1.64 0.07

6 28.17 0.09 33.94 0.05 2.2 0.07

7 48.18 0.08 44.03 0.05 3.05 0.08

8 121.29 0.04 72.93 0.05 4.88 0.07

Table 6.3: Comparison between MySQL+Hibernate, Neo4j, and MongoDB,

evaluated using the synthetic dataset comprising 100 examinations with in-

creasing depth. Table reports the mean value (µ) and the coefficient of

variation (CV ) for the execution of a single examination. Results in the ta-

ble show that the MySQL + Hibernate implementation performs better than

Neo4j for examination with depth lower than 7, while MongoDB attains by

far a better performance and slower sensitivity to the examination depth.

6.5.3 Reproducibility of results

Both MongoDB and Neo4j synthetic databases containing the data used for

test the implementation of the considered domain model are shared with

community through Zenodo, a research data repository created by Ope-

nAIRE and CERN.

The repository contains also a Java benchmark scripts used to test the per-

formances of these implementations [54].

Results of this research test also a MySQL+JPA implementation that is

used as a reference in the comparison of the experimentation results with
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other technologies. Database and code for this implementation is not public,

since it would mean exposing some legacy Java library actually used at the

major hospital of Florence (AOUC) and Institute for Oncological Study and

Prevention (ISPO).

For the same reason, real dataset of clinical examinations is protected by se-

vere privacy laws. However, it’s possible to reproduce results of performance

comparison generating synthetic observations following characteristics re-

ported in Table 6.1 or in Table 6.3.

6.6 Discussion

In this dissertation I described a consolidated software architecture, pattern-

based, which persistence data layer was originally based on the MySQL

relational database and JPA. Using a model-driven approach I described

new data persistence models based on promising NoSQL technologies, such

as Neo4j [2] and MongoDB [1]. These models have been engineered to

balance in the best way elements such as: ease of conversion, embedding

and references, granting data integrity and equivalence in the information

representation with the relational model.

I presented experimental results on performance gain achieved through

the use of such databases. The comparison is based on the study of the real

world scenario of our EHR system, called Empedocle, based on the Observa-

tions & Measurements [34] and Composite [36] patterns, where the main re-

quirement is the structure flexibility. Since the considered NoSQL databases

do not have a fixed schema, non-functional requirements of changeability

and adaptability can be easily achieved. In addition, they constitute a good

solution for big clusters of data which structure is subject to change over

time.

Performance results obtained during experimentations in real and syn-

thetic datasets indicate a clear gain in performance through the use of Mon-

goDB database, and more generally, a better scalability of NoSQL solutions

when the depth of the examination structures grows, due to the increased

number of JOINs and reference operations affecting the MySQL solution.

Moreover, both tested NoSQL technologies offer advantages in terms of flex-

ibility in the data model, scalability and reliability.

Results also indicate a counter-intuitive conclusion: the graph-oriented
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data model of Neo4j allows a more natural and direct data conversion, which

also permits a simpler implementation; however, the document-oriented data

model of MongoDB produces by far better performance results. Specifically

Neo4j, which modeling is more natural in our software architecture con-

text, presents a performance increase of 1.5 times compared to MySQL +

Hibernate. On the other hand, MongoDB, which required a bigger engineer-

ing investment to convert our data model balancing between redundancy,

adaptability and performance, presents a gain of almost 33 times compared

to MySQL + Hibernate.

The present investigation is completely open to explore the performances

of NoSQL databases in other use cases, not only limited to read-only op-

erations, but also extended to write and update scenarios, whose impact

on the application is less relevant but nonetheless interesting to have a full

comparison between the various models [59].



Chapter 7

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

7.1 Summary of contribution

In this research project we described a consolidated software meta-modeling

architecture, pattern-designed, based on j2EE technological stack. The illus-

trated Reflection architectural pattern provides significant benefits in terms

of adaptability, maintainability, self-awareness, and direct involvement of do-

main experts in the configuration stage.

Healthcare comprises a notable domain of interest, where the availability of

a large amount of information can be exploited to take relevant and tangible

benefits in terms of efficiency of the care process, improved outcomes and

reduced health system costs.

However, design by patterns does not account for performance as first-class

requirement, and naturally incurs in well-known performance anti-patterns,

which may become crucial when volume and variety must meet also veloc-

ity. The complexity is further exacerbated when the object oriented domain

model is mapped to a relational database.

With this experimentation we addressed performance engineering of a

meta-modeling architecture and we presented experimental results indicat-

ing the gain obtained by applying refactoring in the concrete case of a real

application of data management in Healthcare context [33].
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This research project reported also comparative experimental performance

results attained by combining the pattern-based domain logic with a persis-

tence layer based on NoSQL paradigm, using a model-driven approach to

balance in the best way elements such as: ease of conversion, embedding

and references, granting data integrity and equivalence in the information

representation with the relational model [32].

7.2 Directions for future work

The research activity still ongoing is aimed at extend the work about per-

formance:

• widening investigation in growing complexity model (especially for the

experimentation about anti-pattern, through the utilization of a syn-

thetic dataset where statistics can be controlled);

• analyzing more user-goal level use cases and operations (e.g. write-

dominant scenario for NoSql experimentation);

• testing different databases technologies;

• discussing an hybrid solution between MySql and NoSql databases

(Polyglot Persistence).

We want also to consider other software quality parameters in these dif-

ferent mapping and technological choices. Specifically, we want to take into

account the ability to provide efficient indexes for researching data stored

into the database, and the evaluation of disk space employed by data repre-

sentation in the technology.

At the same time, the performance testing topic has been refined in the

context of J2EE architectures. It is hard to adhere to a single standard as

software performance testing has to be tailored to their contextual environ-

ments. In particular, in J2EE architectures, a performance bottleneck can

be difficult to be identified and can be hard to figure out the layer that is

responsible of this problem. Referring to Fig. 4.2, we focused on performance

analysis of the Data Layer and related component, but we would like to offer

a formalized way to identify the J2EE layer that represents a performance

slowdown and to provide an overview of possible methods to change or im-

prove the portion of code that lies in this layer. Additionally, as a future
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work, we would like to investigate empirically the diffusion of the proposes

anti-patterns in systems based on a meta-modeling architecture.

At last, the issue of functional testing of a model that follows the schema

of the Reflection pattern is especially interesting. In fact, the loosening of

type-checking requires, under standard and formal methods, the realization

of a test-suite focused on verify the model resilience, making its design a

delicate task.



Appendix A

Publications

This research activity has led to some publications in international confer-

ences.

International Conferences and Workshops

1. S. Fioravanti, S. Mattolini, F. Patara, E. Vicario, “Experimental

performance evaluation of different data models for a reflection software ar-

chitecture over NoSQL persistence layers”, in 7th ACM/SPEC International

Conference on Performance Engineering (ICPE 2016), March 12-16 2016.

2. S. Fioravanti, F. Patara, E. Vicario, “Engineering the Performance of a

Meta-modeling Architecture”, in 8th ACM/SPEC International Conference

on Performance Engineering (ICPE 2017), April 22-26 2017.
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