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Statistical Methods for the Analysis of Spatial
Patterns: a Geoadditive Approach

Chiara Bocci and Alessandra Petrucci

Abstract The explosive growth of spatial data and widespread use of spatial
databases emphasize the need for the discovery of spatial knowledge.

Nowadays, very rich databases of spatially referenced socio-economic data are
available from local statistical offices and in the last few years the demand of spa-
tially detailed statistical data is dramatically increased. Extracting interesting and
useful patterns from spatial data sets is more difficult than extracting corresponding
patterns from traditional numeric and categorical data due to the complexity of spa-
tial data types, spatial relationships, and spatial autocorrelation.

The complexity of spatial data and intrinsic spatial relationships limits the useful-
ness of conventional techniques (i.e. data mining) for extracting spatial patterns.
Moreover, the area definition and the assignment of the data to appropriate areas
can pose problems in the estimation process. This paper presents statistical methods
which face these problems and analyze the geographical pattern of the spatially ref-
erenced socio-economic data by incorporating the spatial location as an additional
covariate.

Key words: spatial statistics, semiparametric methods, socio-economic data

1 Introduction

The analysis of the regional spatial pattern of socio-economical processes has be-
come a relevant area of economics. Since the early seventies, regional economics
has been defined as the field concerned with the role of space, distance and regional
differentiation in economics [15].

Chiara Bocci, Alessandra Petrucci
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Several reasons support the importance of this subject: first, the spatial clustering
of economic activities is a product of the regional differences and could reflect indi-
vidual inequalities that are object of policies; second, the geographical pattern can
have great influence on the results of economic policies; and third, exploring spatial
clustering of economic activities is a relevant input to model economic theories at a
regional scale.

Research in this area focuses on the specification and estimation of spatial effects
in a theoretical economic model, and on the use of such estimates to obtain spatial
interpolations and predictions of the study variables. The set of methodologies con-
cerned with this target belongs to the field of spatial econometrics [1, 2], that is
defined by [1] as the collection of techniques that deal with the peculiarities caused
by space in the statistical analysis of regional science models.

The explosive growth of spatial data and widespread use of spatial databases
have emphasized the need for the discovery - also automated - of spatial knowledge.
Moreover, very rich databases of spatially referenced socio-economic data are avail-
able from local statistical offices and in the last few years the demand of spatially
detailed statistical data is dramatically increased.

Nowadays, the fields of spatial statistics is broadly understood. In general, spatial
statistics is concerned with statistical and mathematical descriptors of spatial struc-
ture and it focuses on the nature of space and spatial data. In this way it can face
with problems which are characterized by the difficulties associated with assessing
the importance of spatial dependence and spatial heterogeneity, the so-called “spa-
tial effects” mentioned before.

Extracting interesting and useful patterns from spatial data sets is more difficult
than extracting corresponding patterns from traditional numeric and categorical data
due to the complexity of spatial data types, spatial relationships, and spatial auto-
correlation. The complexity of spatial data and intrinsic spatial relationships limits
the usefulness of conventional techniques (i.e. data mining) for extracting spatial
patterns. Therefore, the area definition and the assignment of the data to appropriate
areas can pose problems in the estimation process.

It is worth to stress the usefulness of the geographical location for the analysis
of non stationary spatial phenomena. The “global” dependence models, such as the
classical regression model, assume the independence of the data from the spatial
location, generate spatially autocorrelated residuals and bring often to wrong con-
clusions. Thus, statistical models which take into account the spatial variability can
help to understand the underlying phenomenon.

This study discusses a new approach to identify the spatial pattern using recent
advances in semiparametric models that allow incorporation of spatial location as
an additional component. Thus, the estimated spatial patterns reflect the propensity
of the considered characteristic in a region, after controlling for other unit-level ef-
fects. In particular, the work focuses on socio-economic data collected by the World
Bank program on Living Standard Measurement Study (LSMS) [6]. The program
is designed to assist policy makers in their efforts to identify how policies could be
designed and improved to positively affect outcomes in health, education, economic
activitgies, housing and utilities, etc.
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As a matter of fact the goal of many empirical studies in urban economics, re-
gional science, and geography is to measure the effects of proximity.

A primary issue, also considering just a single-explanatory variable model, is the
functional form: frequently the exact shape of the function is ultimately an empir-
ical issue. Some studies attempt to isolate the effects of proximity to a site while
controlling for the effects of other variables. While the results of such studies can
be highly sensitive to functional form assumptions, multiple explanatory variable
models are made more complicated by the necessity of controlling for the effects of
other variables that may be highly correlated with the one of central interest.

In addition to functional form issues, another critical issue in spatial data analysis
is that important variables are highly correlated and no study includes all relevant
variables. Some variable is always missing no matter how long the variable list
gets. The problem of spatially correlated missing variables is endemic and is not
confined to direct measures of proximity. Thus, the model has a spatial dimension
even though the analysis is not explicitly spatial at first glance.

Both the issues, functional form and spatially correlated missing variables, have
largely been treated separately in the empirical literature. Functional form choice
is typically addressed directly using series expansions or nonparametric estimation
procedures. Spatially correlated missing variables are often considered only indi-
rectly through tests for spatial autocorrelation.

The standard models used to address spatial autocorrelation are based on ad hoc
specifications of a spatial weight matrix. A common approach is to begin with a
simple functional form, test for spatial autocorrelation, and then to estimate a model
that includes a spatially lagged dependent variable or that accounts directly for spa-
tial autocorrelation in the error terms. After perhaps including some experimenta-
tion with different specifications of the spatial weight matrix, further specification
testing typically stops.

The main problem with this approach is that it is likely to fail in identifying
the root cause of the spatial autocorrelation. Functional form misspecification can
itself cause residuals to be spatially correlated. More importantly, if the underlying
problem is that a spatially correlated variable has been omitted from the regression,
a misspecified spatial econometric approach may be accepted in place of the true
model [11]. Unfortunately, the real solution of adding the omitted variable to the
analysis may not be feasible if the data are not available. In this case, the role of
further statistical testing is to assess the robustness of the results to alternative model
specifications. We can have more confidence in the results if a variety of model
specifications lead to similar results.

Nonparametric and semiparametric models are attractive alternatives to paramet-
ric alternatives because they admit at the start that the true model structure is un-
known. However, nonparametric estimation suffers from the rapidly increase of the
variance of the estimates with the number of variables. In this situation, semipara-
metric models become an effective alternative to full nonparametric estimation. The
advantage of the semiparametric approach is that it imposes parametric structure
where the structure may be reasonable, while leaving the structure of the modelun-
restricted for another set of variables. Thus, the semiparametric approach is a par-
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ticularly easy and flexible approach for modeling broad spatial trends while also
permitting the effects of other explanatory variables to vary by location.

The paper is structured as follows. In the next section, the methodology is exten-
sively discussed. The third section describes the datasets used in the analysis and
the presents the empirical results. The final section summarizes the main findings
and discusses the possible limitations of the analysis.

2 Methodology

Geostatistical methodologies are concerned with the problem of producing a map of
a quantity of interest over a particular geographical region based on measurement
taken at a set of locations in the region. The aim of such a map is to describe and
analyze the geographical pattern of the phenomenon of interest.

These methodologies are born and apply in areas such as environmental studies
and epidemiology, where the spatial information is traditionally recorded and avail-
able. However, in the last years the diffusion of spatially detailed statistical data
is considerably increased and these kind of procedures - possibly with appropriate
modifications - can be used as well in any statistical fields of application.

Basically, to obtain a surface estimate we can exploit the exact knowledge of
the spatial coordinates (latitude and longitude) of the studied phenomenon by using
bivariate smoothing techniques, such as kernel estimate or kriging [5, 16]. However,
usually the spatial information alone does not properly explain the pattern of the
response variable and we need to introduce some covariates in a more complex
model.

Geoadditive models, introduced by [9], answer this problem as they analyze the
spatial distribution of the study variable while accounting for possible linear or non-
linear covariate effects. Under the additivity assumption they can handle such co-
variate effects by merging an additive model [7] - that accounts for the relationship
between the variables - and a kriging model - that accounts for the spatial correlation
- and by expressing both as a linear mixed model. The linear mixed model repre-
sentation is a useful instrument because it allows estimation using mixed model
methodology and software. Moreover, we can extend geoadditive model to include
generalized responses, small area estimation, longitudinal data, missing data and so
on [17].

Lets; andt;, 1 <i<n,be continuous predictors of y; at spatial location x;, X € R2.
A geoadditive model for such data can be formulated as

yi = f(s;) +g(t;) +h(x;) + &, & ~N(0,62), (1)

where f and g are unspecified smooth functions of one variable and 4 is an unspec-
ified bivariate smooth functions.

Considering two low-rank truncated linear splines for f and g and a low-rank
thin plate spline for £, the model (1) can be written as a mixed model
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locations for the three functions.

Let
cllg, 0 0
Var(w)=%,=| 0 oflg, O
0 0 ollg,
and

Var(y) =V =2%,Z" + o1,

be the covariance matrices of u and y. Following from the linear mixed model the-
ory, representation (2) permits to fit model (1) simultaneously using mixed model
methodology and software, to obtain the estimates 3 and @ by the EBLUPs (3) and

4)
B=(X"V'X)"' X"V, 3)
a=352"V"(y—Xp), “4)

and 62, 67, 62 and 62 by REML/ML estimation.

The addition of others explicative variables is straightforward: smoothing com-
ponents are added in the random effects term Zu, while linear components can be
incorporated as fixed effects in the X term. Moreover, the mixed model structure
provides a unified and modular framework that allows to easily extend the model to
include various kind of generalization and evolution.
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3 Data and Empirical Results

The 2002 Living Standard Measurement Study (LSMS), conducted in Albania by
the INSTAT (Albanian Institute of Statistics), provides individual level and house-
hold level socio-economic data from 3,599 households drawn from urban and rural
areas in Albania. The sample was designed to be representative of Albania as a
whole, Tirana, other urban/rural locations, and the three main agro-ecological areas
(Coastal, Central, and Mountain). The survey was carried out by the Albanian Insti-
tute of Statistics (INSTAT) with the technical and financial assistance of the World
Bank.

Four survey instruments were used to collect information for the 2002 Albania
LSMS: a household questionnaire, a diary for recording household food consump-
tion, a community questionnaire, and a price questionnaire. The household question-
naire included all the core LSMS modules as defined in [6], plus additional modules
on migration, fertility, subjective poverty, agriculture, and nonfarm enterprises. Ge-
ographical referencing data on the longitude and latitude of each household were
also recorded using portable GPS devices [19].

In addition to the geographical location of each household, the covariates se-
lected to fit the geoadditive model are chosen following prior studies on poverty
assessment in Albania [3, 12]. We have selected the following household level co-
variates:

e size of the household (in term of number of components)
e information on the components of the household:

— age of the householder,

— marital status of the householder,

— age of the spouse or husband of the household,

— number of children 0-Syears,

— age of the first child,

— number of components that work,

— highest level of education in the household;
e information on the house:

— building with 2-15 units,

— built with brick or stone,

— built before 1960,

— number of rooms per person,

— house surface < 40 m2,

— house surface 40 — 692,

— wc inside;
e presence of facilities in the dwelling:

-TV,

— parabolic,

— refrigerator,

— washing machine,

— air conditioning,
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— computer,
— car;
e ownership of agricultural land
The response variable is the logarithm of the household per-capita consumption
expenditure. The use of the logarithmic transformation is typical for this type of data

as it produce a more suitable response for the regression model (see the distributions
presented in Figure 1).

Histogram of per—capita consumption Histogram of log per—capita consumption
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Fig. 1 Distribution of the household per-capita consumption expenditure, both in original scale
and in logarithmic scale.

After the preliminary analysis of various combination of parametric and non-
parametric specifications for the selected covariates, the chosen model is composed
by a bivariate thin plate spline on the universal transverse Mercator (UTM) coor-
dinates, a linear term for all the other variables and a random intercept component
for the area effect. The spline knots are selected setting K = 100 and using the clara
space filling algorithm of [10] that is available in the R package cluster (the re-
sulting knots location is presented in Figure 2). The model is then fitted by REML
using the 1me function in the R package nlme.

The estimated parameters are presented in Table 1, along with their confidence
interval at 95% and the p-values. With the exclusion of the intercept and the coor-
dinates coefficients (that are required by the model structure), almost all the param-
eters are highly significant. The exceptions are the coefficients of *marital status of
the householder’, number of children 0-5years’ and ’built with brick or stone’ that
are significant at 5% level, and the coefficient of ’building with 2-15 units’ that is
significant at 10% level.

The resulting spatial smoothing of the log per-capita consumption expenditure is
presented in Figure 3. From this map, it is evident the presence of a spatial dynamic
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Knot locations for bivariate spline smoothing
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Fig. 2 Knots location (in red) for the thin plate spline component. Black dots indicate the locations
of the LSMS sample.

in the Albanian consumption expenditure, even after controlling for all the descrip-
tive household level covariates. The variable presents a clear geographical pattern,
with the higher values in the south, south-west and north-east of the country and the
lower value in the mountainous area (north and east). These results are consistent
with previous applications on the same datasets presented in literature [12, 18].

4 Concluding remarks and open questions

The interest in the spatial data analysis is increased in every area of statistical re-
search. Particular interest is given to the possible ways in which spatially referenced
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image plot of bivariate smooth
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Fig. 3 Spatial smoothing of the household log per-capita consumption expenditure.

data can support local policy makers, especially in areas of social and economical
interventions. The geographical information is frequently available in many areas
of observational sciences, and the use of specific techniques of spatial data analysis
can improve our understanding of the studied phenomena.

A large literature has emerged emphasizing the importance of location in influ-
encing economic phenomenon, however the impact of location has generally been
ignored in the majority of the studies. The findings of our analysis make a contribu-
tions in this direction introducing geoadditive models and developing an application
in a fields of statistics that differ from their native research areas.

Moreover, the geoadditive model produces a continuous surface estimation over
the entire area of study overcoming the modifiable area unit problem (MAUP) [8].

The empirical evidence suggests that, despite being overlooked in the previous
studies, the spatial location is an important component to understand the distribu-
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Table 1 Estimated parameters of the geoadditive model for the household log per-capita consump-
tion expenditure.

Parameter Estimate Confidence Interval — p-value
Fixed Effects
Intercept 17.0828 (- 71.59 ; 105.75) 0.706
X coordinate -0.2504  (-1.7389; 1.2382) 0.742
Y coordinate -0.1650  (-2.1115;1.7814) 0.868
household size -0.0752  (-0.0890;-0.0612) < 0.001
age of the householder 0.0031 (0.0016 ; 0.0046) < 0.001
marital status of the householder 0.0754 (0.0008 ; 0.1500) 0.048
age of the spouse or husband -0.0022  (-0.0035 ; -0.0009) 0.001
number of children 0-5years -0.0221  (-0.0401 ; -0.0040) 0.017
age of the first child -0.0025  (-0.0039 ; -0.0010) 0.001
number of components without work -0.0674  (-0.0799; -0.0549) < 0.001
high level of education 0.0930 (0.0662 ; 0.1198) < 0.001
medium level of education 0.2410 (0.2015 ; 0.2804) < 0.001
building with 2-15 units 0.0272  (-0.0028 ; 0.0572) 0.075
built with brick or stone 0.0295  (-0.0005 ; 0.0642) 0.095
built before 1960 -0.0425  (-0.0719;-0.0131) 0.005
number of rooms per person 0.1398 (0.1070; 0.1726) < 0.001
house surface < 40 m? -0.0529  (-0.0944 ;-0.0113) 0.013
house surface 40 — 692 -0.0361  (-0.0623 ; -0.0099) 0.007
wc inside 0.0520 (0.0194 ; 0.0846) 0.002
TV 0.1076 (0.0515;0.1637) < 0.001
parabolic 0.0803 (0.0506 ; 0.1100) < 0.001
refrigerator 0.1161 (0.0802 ; 0.1519) < 0.001
washing machine 0.1064 (0.0763 ; 0.1366) < 0.001
air conditioning 0.2451 (0.1601 ; 0.3302) < 0.001
computer 0.2398 (0.1656 ; 0.3139) < 0.001
car 0.3269 (0.2878 ; 0.3659) < 0.001
ownership of agricultural land 0.0624 (0.0279 ; 0.0969) < 0.001
Random Effects
oy 0.8999 (0.7228;1.1294) < 0.001
O, 0.3307 (0.3230;0.3386) < 0.001

tion of the consumption expenditure. In particular, the results from this paper show
that the region morphology can explain, to some degree, the spatial patterns of the
household per-capita consumption expenditure that remain after controlling for all
the descriptive household level covariates effect.

A strictly connected method, which it is not presented in this work, is the spatial
small area estimation (SAE) method that exploit the spatial information to borrow
strength from the neighbour areas to produce more reliable estimations [14]. As
both the SAE models and the geoadditive models are formulated as linear mixed
models, it seems an obvious choice to merge the two models in a geoadditive SAE
model to take advantage of the spatial information and produce estimates at small
area level [13]. This development is broadly discussed in [4]. Here we recall that
the condition for which the analysis is carried out is to knowledge of the location
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of all population units at the point level. This requirement is not so easy to be ac-
complished, especially if we work with socio-economic data. Usually is much more
easy to know the areas to which the units belong to (i.e. census districts, blocks,
municipalities, enumeration areas, etc.) and the classic approach is to refer the data
with respect to the area centroids. Another aspect to be explored is the use of a more
precise spatial location data: a measurement error approach which considers a more
realistic hypothesis on spatial distribution. Definitely, further investigations should
be done in this direction.
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