3

SYSML-UML Like Modeling Environment
Based on Google Blockly Customization

Arun Babu Puthuparambil!, Francesco Brancati?, Andrea Bondavalli**
and Andrea Ceccarelli**

'Robert Bosch Center for Cyber Physical Systems, Indian Institute

of Science, Bangalore, India

ZResiltech s.r.1., Pontedera (PI), Italy

3Department of Mathematics and Informatics, University of Florence,
Florence, Italy

*CINI-Consorzio Interuniversitario Nazionale per I'Informatica-University
of Florence, Florence, Italy

3.1 Introduction

In industries, it is often observed that system designers may not be
CS/00/SysML experts and often required lot of training and support to
use the modeling tools. Ideally, designers should spend all their effort on
modeling and nothing else. However, existing modeling tools have lot of
issues related to installation and plug-ins.

The use of Google Blockly was envisaged for use of modeling and
simulation of systems. Blockly is a visual programming library, used to
model/program using interlocked blocks (Figure 3.1). Each of the blocks also
support traditional input widgets such as labels, images, textbox, checkbox,
combo box, etc. It can be configured in such a way that only compatible
blocks can be connected together (i.e. can be made “valid by design”).
Blockly supports code and XML generation, and requires only a modern web
browser which can be run on any device or operating system.

However, Blockly was not readily useable for modeling SysML/UML like
models. A lot of changes and customizations were made in Blockly to make
it more suitable for such type of modeling.

65



66 SYSML-UML Like Modeling Environment

Duck

picture:

legs:

traits:

Beak
Feathers

Figure 3.1 Various types of blocks in Blockly.

3.1.1 Goal

To create a tool to create object diagrams based on a UML/SysML profile,
which is simple, intuitive, fast, and reduce cognitive complexity. Also, the
tool must support rapid modeling and code-generation. On a whole, the goal
was to design a tool to model, validate, query, and support simulation.

3.1.2 Blockly Customization

Below is the list of customization performed on Blockly to make it more suit-
able to create SysML/UML like models. (i) support constraints; (ii) support
behaviors; (iii) support links; (iv) support viewpoints; (v) support intuitive
maximize, collapse, and semi-collapse; (vi) support requirements manage-
ment; (vii) guide user to select compatible blocks; (viii) Blockly to PlantUML
conversion; (ix) Blockly to Python code generation; (x) Blockly to graph
conversion and graph querying; (xi) support sequence diagrams; (Xii) custom
minification of JavaScript for faster loading; and (xiii) support cardinality and
singleton blocks.

3.1.3 Model Transformation

A SysML/UML profile can be given as an input to the tool, which will
be converted to an intermediately format in PlantUML. As PlantUML is a
simple textual language,? conversion to PlantUML makes it easier to debug
model transformation. This also makes possible to edit and add any extra
features/statements in the converted PlantUML by hand/tool if the earlier
format did not support certain features.

https://blockly-games.appspot.com/puzzle
Zhttp://plantum].com/PlantUML _Language_Reference_Guide.pdf



3.1 Introduction 67

@coin_type
© di hi 1_Euro
vending_machine 2 Euro
10_Cents
20_Cents
50_Cents
has a has a has a has a has a

@coin_collector ©coin_dispenser ©product_dispenser @ display_panel © keypad

\&c‘epts %spenses dispenses

o
@state_machine © coin ©product

coin_type : coin_type price : real

\:

(©)inital_state

(©) fnal_state (©) ransition

\ g To %om state

(©) state

Figure 3.2 An example of a vending machine profile in PlantUML.

Figures 3.2 and 3.3 show a simple example of a vending machine system.
The profile in PlantUML is given as input and the tool transforms it into
interconnectable blocks.

3.1.4 Requirements Management

In the tool, each block can satisfy a set of requirements and a requirement can
be satisfied by a set of blocks (Figure 3.4).

3.1.5 MDE Flow

The model-driven engineering (MDE) flow with the tool is shown in
Figure 3.5. First, a profile expert provides a domain specific profile in
SysML/UML. This profile restricts what a designer can design and which
blocks are compatible with each other. The profile is then converted
automatically to PlantUML and is imported into the Blockly format.



68 SYSML-UML Like Modeling Environment

{1 My_Vending_Machine |

Has a - State machine (1) - G2

Has a - Coin collector (1)

Has a - Coin dispenser (1)
Has a - Product dispenser (1)

Has a - Display panel (1) Display panel

Has a - Keypad (1) LEEL simple_keypad |

Figure 3.3 An exampleof a vending machine model under construction.

All requirements have been met Satisfied by block(s) -

Requirements 1. Vending machine : vm

Vending_Machine-System

?2) = Requirement: (D) KELIT
x Requirement: (#3) ling

Satisfies requirement(s) :
1
2.2

|G R

Vending machine : £

Has a - State machine (1) : State machine :

Figure 3.4 An example of requirements management.



X

Profile expert

Provides
a profile Automatic
model
transformation

Blockly /1

Blockly based designer

Analyze resuttsl IVaIidation|

Designer

3.1 Introduction 69

Export\

N
[python}  [Prantumd] XM

Collect resultsl ICode generation|

NS

|Other formatsl

Figure 3.5 MDE flow.

3.1.6 Guiding and Warning Users

The designer now uses the tool to model and validate the design. After
validation code can be generated in Python programming language, which
can be used for simulation/testing. After testing the results can be analyzed
and changes can be made in the model if necessary. This cycle continues till
the model is refined as necessary.

The tool guides the designer in two ways: (i) Suggestions for the list of
compatible blocks (Figure 3.6); and (ii) Using the type-Indicator plugin®
(Figure 3.7).

*https://github.com/SPE-Systemhaus/blockly-type-indicator/wiki/Type-Indicator



70 SYSML-UML Like Modeling Environment

(5]

Vending machine : ((ELD

Has a - State machine (1)

State machine : {ELD

s - Inital state (s) C'
- Final state (s) : E358 |

Is composed of - Transition (s) : &3
Transition (New)

——» Transition - all_transitions / t1
——» Transition - all_transitions / t2
— Transition - all_transitions / t3
——» Transition - all_transitions / t4

Figure 3.6 An Example of guiding users with compatible blocks (for Transitions).

(o]

Vending machine : [(EILD

Has a - State machine (1)
State machine : ((ELD

Has - Inital state (s) - E3E8
—

REERISIERCE IO + |
—

Is composed of - Transition (s)

Figure 3.7 An example of type indicator plugin (Shows which blocks are compatible with
the current selected block “Transition/t4” with yellow color).

Constraints make a model more precise, hence design time constraints are
supported to warn designers when they make mistakes. These constraints are
written in JavaScript and are evaluated at every on change event of a block
(Figure 3.8).



3.1 Introduction 71

warn_if (block.has_final state.length != 1, "Vending machine should have ONE final state");

(%)
SlEICINE T Name |

Has - Inital state (s) : ! Inital state / sO §

Has - Final state (s) : | Final state / sF §

Is composed of - Transition (s) : [ ]
[ ]
[ ]
[ ]

warn if (block.has_final state.length != 1, "Vending machine should have ONE final state");

Warnings

1. Vending machine should have ONE final state

State machine :

s - Inital state (s) | Inital state / sO §
—

- Final stats

Is composed of - Transition (s) | Transition /t1 J|
| Transition /2 §
| Transition /3§
{ Transition /t4 §

Figure 3.8 An example of constraints.

3.1.7 Modular Design and Viewpoints

Meaningful groups can be formed to modularize design and links can be
used instead of lines to connect two blocks which are away from each other.
Use of groups and links avoid the spaghetti diagrams in large models (see
Figure 3.9).



72 SYSML-UML Like Modeling Environment

LM all_states | (0]

Vending machine : (TR
Inital state : )

State : & Has a - State machine (1)
State : €3 State machine
State : &)
Final state : § s
U (SF | Has - Inital state (s) : 38 @

Has - Final state (s) : (G5
|

Group
Is composed of - Transition (s) : (ElkB

Transition
Transition
Transition
Transition

Transition
—

Figure 3.9 An example of groups and links.

Viewpoints / Bu ocks
iewpoints / Building block: s / Building t

@ Architecture

S campe

ok

SIS Acknowledged - |

Satisfies the condition of - Security (s) : Gl Security - [}
Is composed of - System (s) (T 1 JH Name = ) : G G Name |
=

Is modified by - Evolution (s) - (€38 J1anaged NI Name |
May require - Dependability guarantee (s) - (i Dependability guarantee
N
Has - Behaviour (s) Expected and beneficial behaviour : ({ELE)
—~

Satisfies the condition of - Security (s)

Figure 3.10 Enabling and disabling viewpoints in model.

Viewpoints are used in profile to reduce cognitive complexity for the
designers. Viewpoints allow users to focus on one aspect of the model, e.g.:
Architecture/Communication etc. Usually viewpoints do not exist in isola-
tion; various viewpoints have relationships between each other. Figure 3.10 is
an example of viewpoints in the tool; the viewpoints can be enabled/disabled.



3.1 Introduction 73

3.1.8 Model Querying

On large models, it is important to query for blocks satisfying certain con-
ditions. Thus, support for model querying in JavaScript was provided in the
tool. The user provides a filter function, which is checked with all blocks. If
the condition is satisfied, then it is highlighted, else it is not. Figure 3.11 is an
example of the query “return true;” query, i.e., does not apply any filter and
show all blocks. In Figure 3.12, instead, a filter is applied: it selects all blocks
of type “RUMI” (return block.of_type == ‘RUMI’).

. e <
Qe ss |/ o ° e
¢ G Pt 2% °
' S ° ®
o “Q %_ © [
AR AL I s
$ A a Vi e i
o e o [N\ X £ 7w [ T%a
° oy ‘Ag: Pae Z W
- < > A A
° | /X ?
e o [ ] '
§/ . s Y—_ : A
*—/ o (NP - i A ’A “' ok *
o $ e e el \J /X i SN .
¢ Py oo A - A :
6 S 1 e\ = NN L VAR A\ N
e Y, ~ °
o Q" e Q B A —® @ .}\# ;.
¢ SRTAN Tesdel o 5§ ‘
o y o A \ ¢ il
LI A% ¥ o A Ay ¥ N\ 1 ¢ .0 .
= ~ e
x| 3 Y o= N/ B LI
o & ‘7 /. o A
ey % - * i
e gy : A K \: ® ®
Q. 3 .'“7 " “ . t ¢
e Nl ok o)
e w [ 3 'y ® ¢ o
° ; ® & =
) ‘Q“"‘D ¢ .
¢
- o

Figure 3.11 Model query without any filter (return true;).



74 SYSML-UML Like Modeling Environment

¢’ »
9
% °
@
L
o KX . .
8-
o % s A
” * [ ] ¥
o, R &
a4 ¢ L2 g °
‘_' ‘ * @
R e
® ®
) ¢ o
o
9
° - P &
- ’
®
[ ) $ /e
k)
¢ ® »
p- o
Y
¢
¢
°

Figure 3.12 Example of model query to select all blocks of type “RUMI” (return
block.of _type == ‘RUMI’).

3.1.9 Code Generation and Export to PlantUML

From the model, code can be generated to Python automatically. Python
was chosen as it is one of the simplest object oriented programming lan-
guage. However, other programming languages can easily be supported in

Blockly.*
Also, as the model is available in .xml format and PlantUML format,

custom code® and other programming languages can be supported in future.
Blockly models can be exported to PlantUML (Figure 3.13). The
PlantUML version of model consist of two type of diagrams (i) the whole

*https://developers.google.com/blockly/guides/configure/web/code-generators
>https://developers.google.com/blockly/guides/create-custom-blocks/generating-code



3.1 Introduction 75

TINN3UR] 03 paylodxae  suryoew Suipusy,, Jo [opouwr ojdwexa Jo josqns ayJ,

45 33835 03 31835 0

5™ jeus

23835 Woly e 0]

sey )
«UoRIs >

4o pesodwiod si

83835 LWoly 83835 Lo 83835 03 83835 Woy

€3 S} 2
suoRisuen» «uopisuen» suogisues»

4o pasodwiod si jo pesodwod s jo pasodwiod s 4o pasodwiod st

€1°€ 2an31y

23835 03

T

«UoRISU

23835 Woly

sey




76 SYSML-UML Like Modeling Environment

model without viewpoints; and (ii) model divided into separate files with
grouped as viewpoints. These PlantUML models can be used for further
refinement or be used with other tools.®

3.1.10 Simulation

Simulation of scenarios is supported using sequence diagrams and simu-
lation related blocks custom code in Python. Domain specific sequence dia-
grams blocks are supportedto make design easier and error-free. As opposed
to traditional generic sequence diagrams, these domain specific blocks are
non-ambiguous and it allows correct code generation. Figure 3.14 shows
an example of a sequence diagram containing domain specific blocks. Each
sequence diagram can consist of sub-sequence, which in turn can consist of
simple blocks such as: if, while, parallel, etc., and may also contain custom
domain specific blocks.

The sequence diagram drawn using blocks can also be automatically
converted to classical sequence diagram view as shown in Figure 3.15.

Custom code to be run before starting and after ending simulation
can also be added using the simulation related blocks (Figure 3.16).
These blocks can be used in initializing variables before simulation, pre-
processing of data before simulation, and post-processing of results after
simulation.

3.1.11 Conclusion and Future Work

This chapter has introduced an intuitive and simple semi-formal tool to be
used to model, validate, query and simulate systems based on a SysML/UML
profile. There is always scope to improve upon the approaches proposed
in the chapter especially to make semi-formal methods popular among
non-experts.

Some of the possible future research areas are: (i) Blocks with images or
blocks shaped as images could make a great feature to make the design more
intuitive (Figure 3.17); (ii) Currently, a transformation from Eclipse/Papyrus
to PlantUML is available and can be readily used by the tool, however
many more transformations can be written to PlantUML; and (iii) More
programming languages support could be added in future.

Shttp://plantuml.com/running



3.1 Introduction 17

LI ENE[E B TestSequenceDiagram |

Has - Sub sequence (s)
S{EL T GetChargingContext - DriverApp-EMobility |

Has - Sequence (s) fervice request

SRS Choose a charging opportunty

Has - Sequence (s)
Execute

=15k choose 1_charging_opportunity |

CS-Cs (1) @21 CS /DriverApp

Sub sequence

Has - Sequence (s) Service request
Service request

Service request
=

SRS 1) 3 EV Charg

Has - Sequence (s) Send thing

Service request

Service request
Send thing
—

Figure 3.14 Example sequence diagram in Blockly.



78 SYSML-UML Like Modeling Environment

*(3osqns) weiSerp oouanbas Jo Mmara [eIISSB)

(TroE)

0S5 20TATSSAATTTAONT

(THDY) _ _ _ _(zro) _ (o) _
TraoNT Traona TraoHE 08D
] L |
(3senbax 30TAISS)
()uoTawazasax adaooe
sl
(1R0¥) _ _ _ _(Tanw) _ (IR®)
TraoHT | | TraoHa 082

(assnbsz 307ATSE)
() uoTavAzaE=Z BUTHIRYS OP

fraatap 03 2uss 3q 03 uoTARAIISRZ 30TATISAITTTAONT

O]

(zHnd)

053 20TAZSSAITTTAONT

[ — s:&-ﬂ-:gnﬁ

ST°¢ 2an3iy

_(Tana)

_ (s2) _

2o7A:

Traons

(THnY)

20TAZ3SAITTTONT GAYIRATIQ

(assnbaz 357A235)

()uoTavATSsex DutbIvus op

tel

(as3nbaz 397AT35)

() s373TUR3Z0dd0” BUTBIRYS STARTTRAR 238

psanbaz”satatTunazoddo” ButBIeys 30 aTRsaT ddyzsataq

8]

_(zaoe)

_ (s2) _

Traona|

(zHn¥)

20TAZ3EAATTTGONT GAYIRATIQ




3.1 Introduction 79

Mo file selected.

Browse...

# initalization code in Python

random.seed (None)

3 < S0 s b initialize_simulation

Figure 3.16 Blocks to support custom simulation initialization and code to execute when
simulation ends.

RELIVEE

Figure 3.17 Blocks with images.






