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Abstract

This thesis is focused on road network problems in the field of transportation

planning, which has gained greater attention in the research community in

last decades. Modeling the user behavior in order to approximate real traffic

scenarios is of interest in many practical applications, such as the planning

of new urban networks or the evaluation of enhancements, like widening

existing roads or designing new arterial ones.

Furthermore, the estimation of the transportation demand on a multi-

modal network is of interest since understanding which parts of the network

act as generators or attractors of flow have a key role for investments, such

as deciding where to build new commercial centers or how to optimize the

existing transportation tariff system or building a new one. Transportation

planning problems and network equilibrium problems lead to challenging

optimization problems that motivate the development of suitable algorithms

able to deal with large-scale problems arising in real cases. The main purpose

of the work is to develop (in a rigorous way from a mathematical program-

ming point of view) specialized and efficient algorithms, based on a sound

convergence theory.

Then, convergent and efficient algorithms have been designed for opti-

mal traffic assignment with both elastic and inelastic demands, formulated as

convex, constrained minimization problems. The proposed algorithms can

be viewed as block-coordinate descent methods where, at every iteration,

a block-component is selected and an inexact minimization is performed.

Global convergence results have been established. The extensive experimen-

tal and computational study shows that the algorithms are able to obtain

very high levels of accuracy on all the large test networks in a limited time

(compared with that of state-of-the-art algorithms).

Besides to network equilibrium problems, other planning problems, such

as the transportation demand estimation and the design of tariff systems for

public transportation networks have been studied. Derivative-free algorithms

have been proposed for the estimation of Origin/Destination demands. The

extensive set of computational experiments shows the effectiveness of the

proposed black-box approach.

Finally, a new local search heuristic has been studied and realized for the

planning of zonal tariff systems.
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Chapter 1

Introduction

Traffic assignment consists mainly in the forecast of loading on road arcs in a

transportation network. It is a key component of the conventional transport

planning process. As it is described in detail by [41], such process can be

divided into four steps, also known as the Four Step Model (FSM), which

derives from transportation system analysis as a particular application.

FSM can be examined in a planning paradigm firstly proposed by [40]

and expanded later by [17], which is reported in Figure 1.1.

As it is shown in Figure 1.1, the equilibration step is only a part of the

whole framework. In such paradigm, the transportation system T, composed

by all the transportation elements as well as services, and the activity system

A, defined as a set of socio-economic factors (spatial distributions of land use,

the demographic and/or economic activity that occurs in those land uses

which act as attractors or generators), are exogenous inputs to performance

procedures P and demand procedures D, respectively.

The first procedure reflects mode-specific trips, such as person or vehicle,

defined at a link level (e.g., freeway vehicle trips per hour) while the second

typically produces person trips, defined as the travel from an origin to a

destination with the aim of performing some activity, therefore, at a zonal

level. Both procedures represents the basic FSM and are interconnected by

the path level, since paths comprise sequences of links that connect Orig-

in/Destination (O/D) pairs.

Resolve demand and performance procedures at different spatial levels

is the main task of the equilibration process. Starting from the framework

in Figure 1.1, the Four Step Model (FSM) in Figure 1.2 was developed as a

1



2 Introduction

Figure 1.1: The transport planning process framework proposed by [40] and

[17].

sequential model to deal with complex realistic applications in which demand

functions cannot be estimated directly in order to provide the network flows,

together with standard link performance functions and path enumeration.

Figure 1.2: The Four Step Model.

The first step is the trip generation, which provides trip frequency based
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on an estimation of the propensity to travel. Such trips consist of trip ends,

productions and attractions. In trip distribution, trip productions are dis-

tributed to match the trip attraction distribution and to reflect the underly-

ing time and/or cost influences, yielding aggregate trip tables of person-trip

demands. In mode choice, such tables are then factored in order to reflect

relative proportions of trips by alternative modes. Finally, in route choice,

each modal trip table is assigned to a mode-specific network based on the

properties of the transportation system.

Through the equilibration process, the flow on the arcs of the network

can be estimated. In case are used by a feedback in previous steps, the

equilibration is called traffic assignment with elastic demand, in which trip

distribution and mode choice are influenced by the forecasted quantity of load

on the network, otherwise is called traffic assignment with fixed demand.

Furthermore, the traffic equilibration can be used to evaluate the effect of

a variation in the characteristics of the transportation system T in a typical

supply procedure S, as it is shown in Figure 1.1. For example, widening an

arc road can lead to a modification of the distribution of the traffic in the

network. Similarly, the arrangement of flow estimated by the equilibration

procedure can be used as an input of a location procedure L, which variates

the characteristics of the exogenous contribute of the activity system A. If

an area of the network is estimated to be broadly used then it can be more

attractive for socio-economic activities.

The equilibration process is the core of the present work and it is mainly

studied from an optimization point of view. The main algorithmic contribu-

tions have been introduced for the Traffic Assignment Problem (TAP) with

fixed demand in Chapter 2, in which a new efficient path-based and glob-

ally convergent method has been developed to solve a smooth convex and

nonlinear optimization problem with simplex and nonnegativity constraints.

Such problem represents the optimization formulation of the user equilibrium

principle introduced by Wardrop in [62].

In Chapter 3, the same algorithmic solution has been employed in the

Traffic Assignment Problem (TAP) with elastic demand, where, as it is il-

lustrated in Figure 1.2, the network flows are used as a feedback for the trip

distribution.

Since demand functions can’t be derived directly, an estimation of the

Origin/Destination (O/D) matrix can be obtained observing the real flows

on a set of network links. Assuming that the link flows satisfy the user
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equilibrium principle, in Chapter 4 the proposed TAP algorithm is used

as a black-box in a derivative-free optimization problem with the aim of

estimating the O/D demand matrix while reducing the distance between

simulated and observed flows.

Another relevant application of the transport planning process is the pub-

lic transportation planning. In Chapter 5, the zone-based public transporta-

tion system firstly proposed in [57] has been described and a new metaheuris-

tic algorithm has been developed to solve the correspondent global NP-hard

optimization problem.

Finally, in Chapter 6, the obtained results are discussed.



Chapter 2

New algorithms for the Traffic

Assignment Problem

In this chapter, the Traffic Assignment Problem (TAP) is introduced in Sec-

tion 2.1, while in Section 2.2, the existing contributions about TAP in litera-

ture are analyzed. The discussion about the proposed algorithm is organized

as follows. In Section 2.3, an introduction to Path Equilibration Algorithms

(PEAs) is reported. The proposed algorithms ISMO and ISMO-ACG are

presented in Section 2.4 and 2.5 respectively, while in Section 2.6 two non-

monotone versions of ISMO-ACG are considered. In Section 2.7, a general

path-based framework is introduced where several equilibration strategies

can be employed in the same column generation framework. Finally, in Sec-

tion 2.8, an extensive analysis of the obtained results is reported.

2.1 Preliminary background

The aim of a network equilibrium model is to predict the link flows of a net-

work which depend on the paths connecting Origin/Destination pairs (from

now on, O/D pairs) chosen by the users of the network. This challenging

problem has a great importance since finding fast algorithms to solve it is of

interest in different practical applications and has received attention in the

last 50 years motivating the development of many algorithms to tackle the

difficulty due to the size of real problems.

The traffic assignment problem mainly relies on the user equilibrium def-

inition stated by Wardrop in [62].

5



6 New algorithms for the Traffic Assignment Problem

Definition 1 (User Equilibrium). For each O/D pair, the costs of all paths

actually used, i.e., with nonzero flow, are equal or less than those which

would be experienced by a single vehicle on any unused path.

The definition stated in Definition 1 models a non-cooperative behavior of

users on the network, that is, each user on the network chooses independently

its route on the base of its perception about which could be the fastest path

from its origin to its destination.

Before modeling it as an optimization problem, let’s introduce the nota-

tion that will be used throughout the chapter.

Let G = (N,A) be the network graph with N as the set of nodes and A

as the set of arcs. Each node u ∈ N can be a crossroad, a place or even an

abstract centroid which acts as a generator or an attractor of flow. In the

same way, an arc a ∈ A can be an existing road or a virtual link between

centroids and nodes in the network.

Let P ⊆ N ×N be the set of all O/D pairs for which is defined a travel

demand Dp > 0. Generally, the O/D matrix D = {Dp}, p = (u, v), can be

viewed as a sparse matrix since the transportation demand is often defined

for O/D pairs connecting centroids, while network nodes such crossroads are

rarely sources or destinations of flow.

With k we indicate a path, i.e., a sequence ui, ui ∈ N , of nodes. The

finite set of paths connecting an O/D pair p ∈ P is denoted with Kp, in

which only a-cyclic (simple) paths are considered.

The set of all paths is indicated with K,

K =
⋃
p∈P

Kp (2.1)

For convenience, let np = |Kp| and n = |K|. We denote by x ∈ Rn the

vector of path flows and with xk the flow on path k ∈ K. For each O/D pair

p ∈ P we define its block of path flows variables with x(p) ∈ Rnp and its i-th

element as x(p),i.

Through the definition of an arc-path incidence matrix such as

δak =

{
1 if arc a ∈ A belongs to path k ∈ K
0 otherwise

(2.2)

for all a ∈ A and k ∈ K, the arc flow va is a function of the vector of path

flows x and it’s obtained as follows

va(x) =
∑
k∈K

δakxk, ∀ a ∈ A. (2.3)
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Each arc a ∈ A of the network has associated a cost function sa(·) which,

in general, is dependent on the overall flow distribution in the network. In

this thesis, however, sa(·) is a function only of the flow va(x) of the arc a ∈ A,

thus costs are separable. Let’s summarize in the following assumption.

Assumption 2.1 (Separable costs). The arc costs sa(·) are separable, ∀ a ∈
A, i.e., sa(·) depends only on the flow va(x) on arc a ∈ A.

Moreover, we assume additivity of path cost functions denoted by sk(·).

Assumption 2.2 (Additivity). The cost sk(·) of a path k ∈ K is the sum

of the cost of each arc belonging to the path, i.e.,

sk(x) =
∑
a∈A

δaksa(va(x)). (2.4)

Finally, we state the following assumption.

Assumption 2.3 (Strictly increasing cost). The arc cost sa(·), ∀ a ∈ A, is

a continuously differentiable and strictly increasing function.

The above assumptions allow formulating the TAP as a linearly con-

strained convex programming problem. In particular, there are two formu-

lations of the problem, the first one is the so-called arc-node formulation,

while the second one is the arc-route formulation.

The former representation has a polynomial number of arc flow variables

and flow conservation constraints, whereas the latter has a simpler constraint

structure, but an exponential number of path flow variables, which must be

enumerated iteratively. In this thesis, we will refer to the arc-route formula-

tion, which is presented in the following proposition.

Proposition 2.4 (TAP convex programming problem). With the assump-

tions stated above, the TAP arc-route formulation is given as follows

min
x

f(x) =
∑
a∈A

∫ va(x)

0

sa(t) dt

s.t.

np∑
i=1

x(p),i = Dp, ∀ p ∈ P

x(p) ≥ 0, ∀ p ∈ P

(2.5)
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It’s easy to show that the partial derivative ∇kf(x) of the objective

function in (2.5) with respect to the path flow variable xk is the cost sk(x)

of path k ∈ K.

Finally, the problem (2.5) can be rewritten in a more compact way as

follows
min
x

f(x)

s.t. x ∈ F =
∏
p∈P
Fp

(2.6)

where f(·) is a convex continuously differentiable function and F is the carte-

sian product of simplices Fp defined as follows

Fp = {x(p) ∈ Rnp :

np∑
i=1

x(p),i = Dp, x(p) ≥ 0}. (2.7)

2.2 Related work

The algorithms proposed in the wide literature can be divided into three main

classes (for a suitable treatment and for references to the other methods one

may refer to [52]).

Link-based. The algorithms of this class, where the optimization variables

are link flows, are mainly the Frank-Wolfe method (see [19]) and its

variants. It is one of the most common algorithm for the TAP, since its

memory requirement is relatively small. However, the main drawback

of the method lies in its slow convergence rate. Several modifications

(see [20,34,43,53]) have been proposed to accelerate the speed of con-

vergence trying to avoid the zig-zagging which typically occurs in later

iterations (see [50]) of the method.

Bush-based. In bush-based methods the optimization variables are link

flows associated with the different origins; see, e.g., [6,7,13,25,44,45,64].

Path-based. This class of methods has gained a greater attention in re-

cent years thanks to the development of efficient algorithms which ad-

dress properly the problem of optimizing with respect to path variables,

which are hard to enumerate a priori.

Indeed, the common feature of path-based algorithms is the adoption

of a column generation approach in order to avoid storing all possible
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paths for each O/D pair. By the column generation strategy, only a

subset of active path variables are kept in memory, those whose current

flow value is positive, and new paths are iteratively generated, when

needed, to reach optimality. The column generation procedure involves

the computation of the shortest route, which often constitutes the most

computationally intensive part of a path-based algorithm.

When performing column generation, the problem (2.6), at each iter-

ation t, becomes the following

min
x

f(x)

s.t. x ∈ F t =
∏
p∈P
F tp

(2.8)

where F tp is a lower-dimensional subset (restriction) of the factor set

Fp.

These methods mainly differ in:

(i) whether or not to adopt a column generation strategy,

(ii) whether or not to adopt a decomposition strategy;

(iii) whether or not to exactly solve the problem (2.8) (or the corre-

sponding subproblems in a decomposition framework);

(iv) the employed minimization method.

Many path-based algorithms have been proposed in the literature, see,

e.g., [11, 16,18,32,35].

In this work, we refer mainly to path-based algorithms. Many of these

can be embedded in a general framework where, at each iteration, a feasible

and descent direction is computed, and the current solution is updated by

performing a step along this direction.

The so-called Path Equilibration Algorithms (PEAs) are path-based meth-

ods where the search direction contains only two nonzero elements, those

corresponding to two paths of the considered O/D pair with different costs.

The stepsize along this direction is computed with the aim of equalizing the

two costs.

PEAs belong to the class of Gauss-Seidel decomposition methods and

have a long history. The first contribution can be found in [11], in which,
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at each iteration, a quadratic approximation of the objective function along

the search direction is computed.

In [18], the same decomposition strategy is performed and the minimum

and maximum cost routes are optimized in a single inner iteration for each

O/D pair. In a later work (see [16]), the inner optimization is performed

with an adaptation of the Rosen’s projected gradient algorithm.

The proposed algorithms are both PEAs and will be presented after a

preliminary introduction about the PEAs framework.

2.3 Path Equilibration Algorithms (PEAs)

Path Equilibration Algorithms (PEAs) can be viewed as cyclic block-coordi-

nate (or Gauss-Seidel) methods. At every iteration, a block-component (cor-

responding to an O/D pair p ∈ P ) is selected in cyclic order and a suitable

quantity of flow is shifted from a (maximum) cost used route to a lower

(minimum in some cases) cost route.

In order to formally define a general framework of PEAs, given an O/D

pair p ∈ P , we introduce the definition of a direction di,j(p) ∈ Rn with only

two nonzero components in correspondence to the indices i, j ∈ {1, . . . , np},
i 6= j,

di,j(p),h =


1 if h = i

−1 if h = j

0 otherwise

(2.9)

It can be easily shown that di,j(p) is a feasible direction at a point x̄ ∈ F if and

only if x̄(p),j > 0. Moreover, since f is convex, di,j(p) is a descent direction if

and only if

∇if(x̄) < ∇jf(x̄).

Indeed, we have
∇f(x̄)>di,j(p) < 0⇔

∇if(x̄)−∇jf(x̄) < 0⇔
∇if(x̄) < ∇jf(x̄)

(2.10)

A sketch of a PEA is reported below in Algorithm 1. PEAs differ in:

(a) the choice of the pair (i?, j?);

(b) the computation of the stepsize α.



2.3 Path Equilibration Algorithms (PEAs) 11

Algorithm 1: Path equilibration framework

Data: a feasible point x0 ∈ F
1 t← 0;

2 while xt is not a solution do

3 for p ∈ P do

4 select a pair of indices (i?, j?) such that ∇i?f(xt) < ∇j?f(xt);

5 dt ← di
?,j?

(p) ;

6 compute the stepsize αt along di
?,j?

(p) ;

7 xt+1 ← xt + αtdi
?,j?

(p) ;

8 t← t+ 1;

9 end

10 end

Concerning point (a), we observe that the choice of the pair (i?, j?) must

guarantee that the corresponding search direction di
?,j?

(p) is a feasible and

descent direction at x. Furthermore, as already explained, it is not reasonable

in practice to store all the possible variables x(p),h, with h = 1, . . . , np.

Therefore, a column generation approach is usually adopted and is based on

the idea of adding new paths when necessary. In particular, given an O/D

pair p ∈ P and a solution xt at iteration t, let us introduce the index set

Ip = {1, . . . , np}

and

I+
p (xt) = {i ∈ Ip : xt(p),i > 0},

i.e., the set of active path indices at iteration t. Thus, the algorithm requires

to store only the variables that have positive flow value. Then, the pair

selection rule usually employed in PEAs is the following

i? ∈ arg min
i∈Ip
∇if(xt)

j? ∈ arg max
j∈I+p (xt)

∇jf(xt)
(2.11)

Recalling the meaning of partial derivatives, this is equivalent to selecting

the minimum and the maximum cost routes, where the latter has to be active

since di
?,j?

(p) is a feasible direction.
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Paths corresponding to indices i? and j? are then equalized and i? will

be added to I+
p (xt) if necessary, while j? may leave the working set I+

p (xt)

if the flow has gone to zero.

As regards point (b) concerning the computation of the stepsize α along

the direction di
?,j?

(p) , the following rules have been proposed:

(i) (see [11]) a quadratic model of the objective function is used, i.e.,

f(x+ α di
?,j?

(p) ) ≈ mq(α)

mq(α) = f(x) + α∇f(x)>di
?,j?

(p) +
1

2
α2di

?,j?

(p)
>∇2f(x) di

?,j?

(p) ,

(2.12)

and α is set as follows

α ∈ arg min
0≤α≤x(p),j?

mq(α) = min{x(p),j , α
?}, (2.13)

where α? is the unconstrained minimum of mq(α), i.e.,

α? = −
∇f(x)>di

?,j?

(p)

di
?,j?

(p)
>∇2f(x) di

?,j?

(p)

(2.14)

Thus, α? is computed using second-order information. Recalling the

form of the search direction di
?,j?

(p) , α? is explicitly given as follows

α? = − ∇i?f(x)−∇j?f(x)

∇2
i?f(x) +∇2

j?f(x)− 2∇2
i?j?f(x)

(2.15)

and from Problem (2.5), with a few steps, we have

α? = −

∑
a∈i?\(i?∩j?)

sa(va(x))−
∑

a∈j?\(i?∩j?)

sa(va(x))

∑
a∈i?\(i?∩j?)

∂sa
∂a

(va(x)) +
∑

a∈j?\(i?∩j?)

∂sa
∂a

(va(x))

(2.16)

It can be seen from (2.16) that only non-common arcs of paths i? and

j? are used for the computation of α?;

(ii) (see [18]) the stepsize α is computed by solving a one-dimensional prob-

lem, i.e.,

α ∈ arg min
0≤α≤x(p),j?

f(x+ αdi
?,j?

(p) );
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(iii) (see [52]) the stepsize is computed by the Armijo backtracking line

search based on the acceptance condition of the form

f(x+ αdi
?,j?

(p) ) ≤ f(x) + γα∇f(x)>di
?,j?

(p) ,

with γ ∈ (0, 1).

2.4 ISMO

In [12] a convergent and efficient PEA was developed, which introduces a

novel strategy for the column generation procedure. The main idea is to

avoid, for each O/D pair, the generation of a new path at each iteration

t. Since it involves the computation of the shortest route (see the first row

in (2.11)), the column generation is an expensive computational task and

it represents most of the time spent during the optimization. The resulting

pair of selected indices (i?, j?) is then relative to active paths belonging to

the current working set I+
p (xt) and the resulting direction di

?,j?

(p) is such that

the equilibration is performed among between existing used paths.

Thus, (2.11) is modified as follows

i? ∈


arg min

i∈Ip
∇if(xt) if column generation is applied

arg min
i∈I+p (xt)

∇if(xt) otherwise

j? ∈ arg max
j∈I+p (xt)

∇jf(xt)

(2.17)

However, in order to guarantee the convergence (discussed in Section

2.4.1), the procedure must be applied within a prefixed finite number L of

iterations where the given block-component x(p) is selected.

For what concerns the computation of the stepsize α, a Quadratic Line

Search (QLS) (described in Appendix A) has been used which guarantees

that the distance between successive points tends to zero, which is a usual

requirement in the context of decomposition methods to guarantee global

convergence properties.

None of the reported rules in the previous Section, indeed, ensure the con-

vergence without further assumptions. As an example, the standard Armijo
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line search does not satisfy the above requirement, while in [11] the conver-

gence has been proved by assuming that the arc cost functions are sufficiently

close to some strictly convex quadratic function.

The lack of a proper convergence analysis in most of the algorithms in lit-

erature has been pointed out in [51], since most researchers in the field come

from an area different from mathematical programming. As a consequence,

very often important mathematical programming issues related to the con-

vergence theory are not suitably investigated and analyzed. For instance,

in the seminal paper [13] that led to the current state-of-the-art algorithms,

the author clearly wrote: “For the Reader requiring more rigorous support

than this writer can provide for mathematical claims made here, we suggest

Ahuja et al. (1993), Bertsekas (1995), Patriksson (1994) and Rockafellar

(1984).”

The main purpose of the work presented in [12] is to develop (in a rig-

orous way from a mathematical programming point of view) a specialized

and efficient algorithm, based on a sound convergence theory, for network

equilibrium problems with arc cost functions that are separable.

Summarizing, the peculiarities of the proposed algorithm, as a PEA, are

the following:

- it performs a Gauss-Seidel decomposition;

- it sequentially and inexactly solves subproblems of two variables, which

is the minimal number of variables that can be updated, by performing

suitable line searches along feasible and descent directions;

- for each block-component x(p), with the aim of reducing the computa-

tional effort, the column generation procedure is not applied for each

block-component at every iteration but within a prefixed number L of

iterations.

The algorithm, called Inexact Sequential Minimal Optimization (ISMO),

is formally described below in Algorithm 2.

In line 13, an initial stepsize αt0 is computed using first-order information,

which, in general, may be unfeasible. However, in Algorithm QLS reported

in Appendix A, the initial stepsize of the procedure is computed using the

minimum value between αt0 and βt in order to mantain the feasibility of the

update.

According to the instructions of steps 17–18, whenever the computation

of the shortest route for the p−th O/D pair is performed and the step length
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Algorithm 2: Inexact Sequential Minimal Optimization (ISMO) Al-

gorithm

Data: A feasible point x0 ∈ F , an integer L > 0, c > 0

1 t← 0;

2 lp ← 1, I+
p (xt)← {i ∈ Ip : xt(p),i > 0}, ∀ p ∈ P ;

3 while xt is not a solution do

4 for p ∈ P do

5 if lp = 1 then

6 i? ← arg min
i∈Ip
∇if(xt);

7 else

8 i? ← arg min
i∈I+p (xt)

∇if(xt);

9 end

10 j? ← arg max
i∈I+p (xt)

∇if(xt);

11 dt ← di
?,j?

(p) ;

12 βt ← xt(p),j? ;

13 αt0 ← −c∇f(xt)>di
?,j?

(p) ;

14 αt ← QLS(xt, dt, αt0, β
t);

15 xt+1 ← xt + αtdt;

16 I+
p (xt+1)← {i ∈ Ip : xt+1

(p),i > 0}, I+
q (xt+1) = I+

q (xt), q 6= p;

17 if αt = βt and lp = 1 then

18 lp = 1;

19 else

20 lp ← mod (lp, L) + 1;

21 end

22 t← t+ 1;

23 end

24 end
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αt is equal to the maximum feasible step length βt, at the next iteration

where the same O/D pair is considered, the column generation procedure

must be applied again. This plays a theoretical role for ensuring global con-

vergence properties and is exploited in the proof of Proposition 2.8 discussed

in the next section.

2.4.1 Convergence analysis

Let us consider problem (2.6). Given a feasible point x̄, we denote by D(x̄)

the set of feasible directions at x̄. A feasible point x̄ is a solution of problem

(2.6) if and only if

∇f(x̄)>d ≥ 0 ∀ d ∈ D(x̄). (2.18)

The following result can be easily proved.

Proposition 2.5. A feasible point x∗ is a solution of Problem (2.6) if and

only if for all p ∈ P we have

∇f(x∗)>di,j(p) ≥ 0 ∀ di,j(p) ∈ D(x?). (2.19)

The next result was stated in [36] (assertion (i) of Proposition 4).

Proposition 2.6. Let {xk} be a sequence of feasible points such that xk →
x? for k →∞. Then, for k sufficiently large we have

D(x?) ⊆ D(xk). (2.20)

Before we can prove the global convergence of ISMO, we must state the

following technical result.

Proposition 2.7. For each p ∈ P , let Tp be the subset of iterates where

the index p is selected. Then, there exists a number Mp such that, for every

t ∈ Tp, there exists an index m(t) such that t+m(t) ∈ Tp,

0 ≤ m(t) ≤Mp (2.21)

and

αt+m(t) < βt+m(t), (2.22)

where βt+m(t) is the maximum feasible step length along dt, that is

βt+m(t) = x
t+m(t)

(p),jt+m(t) . (2.23)
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Proof. Given p ∈ P , we have

Tp = {p− 1, p− 1 + |P |, p− 1 + 2|P | . . . , }. (2.24)

The instructions of the algorithm imply

f(xt+1) ≤ f(xt).

For simplicity’s sake, and without loss of generality, we can assume

f(xt+1) < f(xt). (2.25)

For each k ∈ Tp let ‖xt(p)‖0 be the number of non–zero components of xt(p).

We will assume that, at every iteration h ≥ t, with h ∈ Tp, the algorithm will

only perform iterations where αh = βh, and show that this cannot happen

for more than a prefixed number Mp of iterations. After every iteration h,

we have

xh(p),jh > 0 xh+1
(p),jh

= 0.

Two cases can happen

1. xh(p),ih = 0. Then ‖xh+1
(p) ‖0 = ‖xh(p)‖0. Furthermore, xh+1

(p),ih
= xh(p),jh

and xh+1
(p),jh

= xh(p),ih , so we can see that the vector xh+1
(p) is a permuta-

tion of xh(p).

2. xh(p),ih > 0. Then ‖xh+1
(p) ‖0 = ‖xh(p)‖0 − 1.

As xh(p) ∈ Rnp and there are np! permutations for a vector of size np, from

(2.25) the first case cannot happen for more than np! consecutive iterations

where the index p is selected. Moreover, ‖xh(p)‖0 cannot be lower than zero,

and can never increase, so the second case can happen at most for a number

of iterations (where the index p is selected) equal to np. Then, recalling

(2.24), we have αh < βh for some h ∈ Tp and h ≤ t + |P | · np · (np!), and

hence we obtain

Mp = |P | · np · (np!). (2.26)

The global convergence of the ISMO Algorithm is stated in Proposition

2.8.
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Proposition 2.8. Let {xt} be the sequence generated by Algorithm ISMO.

Then {xt} admits limit points and each limit point is a solution of Problem

(2.6).

Proof. The instructions of the algorithm imply that the sequence of points

{xt} belongs to the feasible set, which is a compact set, so that {xt} admits

limit points. Furthermore, we have

f(xt+1) = f(xt + αtdt) ≤ f(xt), (2.27)

so that, we can recall condition (A.3) of Algorithm QLS, and we can

write

lim
t→∞

‖xt+1 − xt‖ = 0. (2.28)

From (2.28), as ‖dt‖ =
√

2, we get

lim
t→∞

αt = 0. (2.29)

Let x? be a limit point of {xt}, i.e., there exists an infinite subset T ⊆ N
such that

lim
t∈T,t→∞

xt = x?. (2.30)

By contradiction, let us assume that x? is not a solution. From Proposi-

tion 2.5, there exist p̂ ∈ P , î, ĵ ∈ Ip̂ such that

∇f(x?)>dî,ĵ(p̂) < 0. (2.31)

Taking into account the instructions of the algorithm it follows that, for

all t ∈ T , there exists an integer l(t) ≤ |P | · L such that

pt+l(t) = p̂,

and

it+l(t) ∈ arg min
i∈Ip̂
∇if(xt+l(t)). (2.32)

Let

T = {t1, t2, . . .}

and define

T1 = {t1 + l(t1), t2 + l(t2), . . .}.
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Note that, by definition, T1 ⊆ Tp̂, being Tp̂ the subset of iterates where the

index p̂ is selected.

As it holds l(th) ≤ L · |P | for h = 1, 2, . . . ,∞, recalling (2.28), we have

lim
t∈T1,t→∞

xt = x?. (2.33)

For each t ∈ T1, let m(t) be the first nonnegative integer such that

t+m(t) ∈ Tp̂ and

αt+m(t) < βt+m(t). (2.34)

Proposition 2.7 ensures the existence of such an index. Further we have

m(t) ≤Mp̂, hence we can write

lim
t∈T1,t→∞

xt+m(t) = x?. (2.35)

The definition of the index m(t) implies that either m(t) = 0 and

αt < βt,

or m(t) ≥ 1 and

αt+j = βt+j

for t = 0, . . . ,m(t)− 1. In the former case, as t ∈ T1, from (2.32) we obtain

it ∈ arg min
i∈Ip̂
∇if(xt).

In the latter case, recalling again that t ∈ T1, taking into account the test

and the instruction at steps 17–18, we have

it+j+1 ∈ arg min
i∈Ip̂
∇if(xt+j+1), (2.36)

for j = 0, . . . ,m(t)− 1. Then, in all cases we can write

it+m(t) ∈ arg min
i∈Ip̂
∇if(xt+m(t)). (2.37)

Therefore, for all t ∈ T1 we have t+m(t) ∈ T1 and

∇f(xt+m(t))>dt+m(t) ≤ ∇f(xt+m(t))>di,j(p̂) ∀ di,j(p̂) ∈ D(xt+m(t)). (2.38)
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Since dt+m(t) belongs to a finite set, we can extract a further subset of

T1, that we relabel again with T1, such that dt+m(t) = d? for all t ∈ T1.

Furthermore, (2.38) and Proposition 2.6 imply

∇f(xt+m(t))>d? ≤ ∇f(xt+m(t))>dî,ĵ(p̂) < 0. (2.39)

From (2.29) and (2.34) we get

αk+m(k) < min{λ, βk+m(k)},

where λ is the fixed initial step length in Algorithm QLS. Therefore, the

instructions of Algorithm QLS imply

f

(
xt+m(t) +

αt+m(t)

δ
d?
)
> f(xt+m(t))− γ

(
αt+m(t)

δ

)2

‖d?‖2. (2.40)

From (2.40), using the Mean Value Theorem, we can write

∇f(ξt+m(t))>d? ≥ −α
t+m(t)

δ
‖d?‖2,

where

ξt+m(t) = xt+m(t) + ωt
αt+m(t)

δ
d?

and ωt ∈ (0, 1). Then, taking the limits for t ∈ T1 and t → ∞, recalling

(2.35), (2.39) and (2.29), we obtain

lim
t∈T1,t→∞

∇f(xt+m(t))>d? = ∇f(x?)>d? = 0. (2.41)

Therefore, using (2.41) and (2.39), we obtain

∇f(x?)>dî,ĵ(p̂) ≥ 0,

which contradicts (2.31).

2.5 ISMO-ACG

As it is shown in Section 2.8, the column generation strategy adopted by

ISMO is able to obtain valuable performances compared to the case where
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shortest paths are recomputed at each iteration. Moreover, global conver-

gence is proven thanks to the adoption of the Quadratic Line Search proce-

dure. However, the algorithm shows difficulties in achieving high precisions

when the size of the network increases. It turns out that when the algorithm

reaches a given precision of the solution, the initial stepsize αt0 computed

with first-order information becomes unsuitable from a numerical point of

view. The line search procedure, indeed, is then not able to reduce prop-

erly the stepsize in order to ensure an update which actually decreases the

objective function.

This is due to a numerical issue which occurs when dealing with finite

precision floating point representations. It can be shown that, when the

initial stepsize becomes smaller as the precision of the solution increases,

the line search procedure tends to accept it without requiring any reducing

iteration. In other words, the line search becomes useless when reaching the

limits of the floating representation. Thus, the solution is updated using

only first-order information and this leads to an oscillatory behavior.

Such a behavior is confirmed in [12] when a numerical workaround is

adopted which consists in reducing the stepsize αt by a given factor τ ∈ (0, 1)

when the oscillation event occurs. The adoption of this trick leads, indeed, to

a significant increase of the solution precision in closest iterations. However,

as it is expected, it does not resolve the issue at all.

The development of the algorithm described in [22] concerns mainly two

different aspects:

(i) solving the numerical issues experienced by ISMO while computing the

stepsize αt along dt with the aim of achieving high solutions precision;

(ii) developing a new column generation strategy which adaptively com-

pute shortest paths when needed, in order to increase the efficiency of

method.

For what concern (i), the rule employed in [11] and described in Section

2.3 is suitably combined with QLS, that is, the optimum of the quadratic ap-

proximation of the objective function along the search direction dt is adopted

as the initial line step.

Regarding point (ii), let’s recall again the idea underlying the approach

proposed in [12] and described in Section 2.4. The column generation strat-

egy, which adds variables when necessary, involves the computation of the
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shortest route, which constitutes the most computationally intensive part

of path-based algorithms. For each block-component p, with the aim of

reducing the computational effort, in the algorithm ISMO the column gen-

eration procedure is not applied at every iteration; in order to guarantee the

convergence, the procedure must be applied within a prefixed number L of

iterations where the given block-component is selected.

We observe that, in ISMO, the parameter L is the same for all the O/D

pairs and is fixed across iterations. The strategy designed in [22] associates

different parameters to different O/D pairs. Thus, the shortest path between

origin and destination for p ∈ P is computed once every Lp iterations and

this value may be updated during the optimization.

When a new path is added at iteration t for the O/D pair p, it is expected

that, moving a suitable quantity of flow from the most costly path to the

new path, which is the shortest path, a larger decrement in the quadratic

approximation (needed for the computation of the step as in [11]) is obtained

compared to the one achieved at the previous iteration, when column gener-

ation has not been performed. The benefit deriving from the adoption of the

column generation is evaluated by measuring the reduction of the quadratic

model, i.e., by computing

∆t+1
p = αt∇f(xt)>di

?,j?

(p) +
1

2
(αt)2di

?,j?

(p)
>∇2f(xt) di

?,j?

(p) (2.42)

where the stepsize αt is given by formula (2.14). If ∆t+1
p is greater than

∆t
p, then the column generation is considered effective, and hence the value

of parameter Lp is decreased (i.e., column generation for O/D pair p will be

performed more frequently). Otherwise, the value of Lp is increased since

the benefit of the column generation is not considered valuable. In any case

Lp should be bounded in [Lmin, Lmax], 0 < Lmin < Lmax < ∞, in order

to maintain the convergence properties of the algorithm, which derive from

ISMO and are briefly discussed below.

The algorithm, which has been called Inexact Sequential Minimal Opti-

mization with Adaptive Column Generation (ISMO-ACG), is summarized in

Algorithm 3. In order to facilitate the readability, some steps needed for the

convergence analysis reported for ISMO have been removed and the notation

simplified.

Note that, for each O/D pair p, the shortest path is computed every Lp
iterations (see lines 5–9), furthermore, the value of Lp can be increased or
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Algorithm 3: Inexact Sequential Minimal Optimization with Adaptive

Column Generation (ISMO-ACG)

Data: x0 ∈ F , Lmin, Lmax ∈ N : 0 < Lmin < Lmax <∞

1 t← 0;

2 Lp ← Lmin, tp ← t, ∀ p ∈ P ;

3 while xt is not a solution do

4 for p ∈ P do

5 if (t− tp) mod Lp = 0 then

6 i? ∈ arg min
i∈Ip
∇if(xt);

7 else

8 i? ∈ arg min
i∈I+p (xt)

∇if(xt);

9 end

10 j? ∈ arg max
j∈I+p (xt)

∇jf(xt)

11 dt ← di
?,j?

(p) ;

12 βt ← xt(p),j? ;

13 compute step αt0 as in (2.13)

14 αt ← QLS(xt, dt, αt0, β
t);

15 xt+1 ← xt + αtdt;

16 compute ∆t+1
p as in (2.42)

17 if (t− tp) mod Lp = 0 then

18 if ∆t+1
p > ∆t

p then

19 Lp ← max{Lmin, Lp/2};
20 else

21 Lp ← min{Lmax, Lp ∗ 2};
22 end

23 tp ← t

24 end

25 t← t+ 1;

26 end

27 end
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decreased (see lines 17–24).

Concerning the convergence properties, we observe that Algorithm 3,

differently from ISMO, uses different parameters Lp for each O/D pair p ∈ P ,

whose value may vary during the iterates. Recalling the convergence proof

reported in Section 2.4.1, the main assumption is that of ensuring, for each

O/D pair, the application of the column generation at least once every L · |P |
iterations, where |P | is the number of O/D pairs.

However, as Lp is bounded in [Lmin, Lmax] with Lmax finite, the global

convergence properties stated for ISMO still holds by simply replacing in the

proof the constant L with Lmax. Therefore we can state the following result.

Proposition 2.9. Let {xt} be the sequence generated by Algorithm ISMO-

ACG. Then {xt} admits limit points and each limit point is a solution of

Problem (2.6).

Despite the simplicity of the basic ideas underlying the proposed method,

its computational performances reported in Section 2.8 are remarkable. Note

that the traffic assignment problem has a unique solution in terms of link

flows but not in terms of path flows. Then, the proposed approach in ISMO-

ACG tries to advantageously exploit the nonuniqueness of the solution driv-

ing the iterates towards sparse solutions that may be efficiently computed

with limited memory requirements. Indeed, the path-equilibration method,

the choice of the initial stepsize in the line search and the strategy of ap-

plying the column generation procedure (to possibly generate new variables)

only when “necessary”, tend to facilitate very sparse solutions. This may

improve the rate of convergence to equilibrium points and yields computa-

tional advantages to efficiently perform computational operations during the

iterates.

2.6 Nonmonotone ISMO-ACG

During the development of ISMO and ISMO-ACG, several solutions, here not

reported, have been tested. Most of these were purely technical experiments,

while other were methodological, although not supported by a convergence

theory. From these, it is worth describing two nonmonotone versions of

ISMO-ACG. Both share the abolition of the Quadratic Line Search, thus

losing the convergence properties of ISMO and the nonmonotonicity since

the Dafermos step, adjusted with respect to the maximum feasible step, is

immediately accepted.
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The first one is simply the PEA in Algorithm 3 without the line search

step, thus the stepsize αt is given as follows

αt ← min{αt0, βt}. (2.43)

The correspondent algorithm, is conveniently named ISMO-NM, where

the acronym ACG of ISMO-ACG is removed for the sake of simplicity. In

Section 2.8 the results show that the method is able to converge without

requiring the convergence properties ensured by the adoption of QLS.

The second version applies a perfect alternation, based on the external

number of iterations l, between the Dafermos step and its double,

αt =

{
min{αt0, βt} if l mod 2 = 0

min{2 · αt0, βt} otherwise.
(2.44)

The main motivation of this idea is that, in the first stages of the opti-

mization, several paths with a small amount of flow enter in the working set

and remain until the equilibrium is reached.

Accepting a step that is two times the one obtained through the min-

imization of the quadratic approximation as in Dafermos, the probability

of removing these paths increases, thus allowing a better exploiting of the

sparsity of the solution in the space of path flows. This latter nonmonotone

version is named ISMO-NM-A.

2.7 A framework for Path-Based Algorithms

In this section we aim to show that the column generation strategy em-

ployed in algorithm ISMO-ACG can be viewed as a general decomposition

framework for generic path-based algorithms.

In Algorithm 4, there are four main components:

(i) the Gauss-Seidel decomposition over O/D pairs p ∈ P ;

(ii) the adaptive column generation in step 6;

(iii) the solution update in step 8;

(ii) the adaptive column generation frequency update in step 9.
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Algorithm 4: Adaptive Column Generation Framework

Data: x0 ∈ F , Lmin, Lmax ∈ N : 0 < Lmin < Lmax <∞
1 t← 0;

2 Lp ← Lmin, tp ← t, ∀ p ∈ P ; I+
p (xt)← {i ∈ Ip : xt(p),i > 0};

3 while xt is not a solution do

4 for p ∈ P do

5 if (t− tp) mod Lp = 0 then

6 I+
p (xt)← i? ∈ arg min

i∈Ip
∇if(xt);

7 end

8 xt+1,∆t+1
p ← EquilibrationAlgorithm(xt, I+

p (xt));

9 if (t− tp) mod Lp = 0 then

10 if ∆t+1
p > ∆t

p then

11 Lp ← max{Lmin, Lp/2};
12 else

13 Lp ← min{Lmax, Lp ∗ 2};
14 end

15 tp ← t

16 end

17 t← t+ 1;

18 end

19 end

In step 8, the value ∆t+1
p is returned by the equilibration algorithm along

with the updated solution xt+1. This value represents the reduction of the

quadratic model obtained during the equilibration and it is used in the adap-

tive column generation update of the shortest paths computation frequency.

Refer to Section 2.5 for more details.

In next paragraphs, three path-based algorithms are briefly described

besides the PEA discussed in Section 2.3 and here reported for the sake of

completeness.
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PEA

The equilibration phase of the Algorithm 4 can be summarized in the fol-

lowing Algorithm 5.

Algorithm 5: Path-Equilibration Algorithm (PEA)

Input: xt ∈ F , I+
p (xt) ∈ Ip

Output: xt+1,∆t+1
p

1 i? ∈ arg min
i∈I+p (xt)

∇if(xt);

2 j? ∈ arg max
j∈I+p (xt)

∇jf(xt);

3 dt ← di
?,j?

(p) ;

4 βt ← xt(p),j? ;

5 compute step αt0 as in (2.13)

6 αt ← QLS(xt, dt, αt0, β
t);

7 xt+1 ← xt + αtdt;

8 compute ∆t+1
p as in (2.42)

9 return xt+1,∆t+1
p

Gradient Projection Algorithm

As it is summarized in [52], the method called Gradient Projection (GP)

proposed in [28] and further developed in [10] consists in shifting flow from

all non-shortest paths to the shortest one.

Each shift is computed as in PEAs, i.e., defining a direction with only

two nonzeros components. Then, the chosen stepsize is the Dafermos one

in (2.13). Differently from the original method, in Algorithm 6 and in the

following ones the line search procedure QLS has been introduced in order to

perform a fair comparison with respect to the proposed method ISMO-ACG

in the computational experiments reported in Section 2.8.

Rosen Gradient Projection Algorithm

In [16] the Gradient Projection Algorithm is developed on the basis of the

Rosen’s method (see [54]).
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Algorithm 6: Gradient Projection (GP) Algorithm

Input: xt ∈ F , I+
p (xt) ∈ Ip

Output: xt+1,∆t+1
p

1 i? ∈ arg min
i∈I+p (xt)

∇if(xt);

2 ∆t+1
p ← 0;

3 for j ∈ I+
p (xt), j 6= i? do

4 dj ← di
?,j

(p) ;

5 βj ← xt(p),j ;

6 compute step α0
j as in (2.13)

7 αj ← QLS(xt, dj , α
0
j , βj);

8 dtj ← −αj
9 compute ∆j as in (2.42);

10 ∆t+1
p ← ∆t+1

p + ∆j ;

11 end

12 dti? ← −
∑

j∈I+p (xt),j 6=i?
dtj

13 xt+1 ← xt + dt;

14 return xt+1,∆t+1
p

The main idea of the algorithm is to move flow from the paths that have

cost greater than the current average path cost s̄ to the paths that have cost

less than s̄. The resulting direction is the following

dtj ← s̄−∇if(xt), j ∈ I+
p (xt) (2.45)

The initial stepsize is computed like in (2.13). However, in this case, the

direction is not made of only two nonzero components. We remark that the

maximum step βt is equal to the minimum flow value among paths that have

cost greater than the average path cost s̄. Then, as shown in Algorithm 7, a

line search along dt is performed and the solution updated.

Incremental Gradient Projection Algorithm

Comparing PEA and GP in Algorithms 5 and 6, it is easy to observe that

GP, at each iteration, performs the path equilibration update in PEA, as well
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Algorithm 7: Rosen Gradient Projection (RGP) Algorithm

Input: xt ∈ F , I+
p (xt) ∈ Ip

Output: xt+1,∆t+1
p

1 s̄←
∑

i∈I+p (xt)

∇if(xt)/|I+
p (xt)|;

2 for i ∈ I+
p (xt) do

3 dtj ← s̄−∇jf(xt);

4 end

5 βt ← min
j:dtj<0

xt(p),j ;

6 compute step αt0 as in (2.13)

7 αt ← QLS(xt, dt, αt0, β
t);

8 xt+1 ← xt + αtdt;

9 compute ∆t+1
p as in (2.42);

10 return xt+1,∆t+1
p

as other equilibrations between the shortest path and all the non-maximum

active cost paths. Since only one path, the shortest one, receives flow from

the others, an oscillatory behavior may occur when many paths are active at

the same time. In RGP this is handled considering the average cost value.

In this version of GP developed in this work, which has been called

Incremental Gradient Projection (IGP), subsequent path equilibrations are

performed between the shortest path and the non-shortest ones. The Algo-

rithm 8 moves from xt to xt+1 across intermediate solutions x̂. In such a

way, a monotone descent of the objective function is guaranteed. We remark

that the line search procedure QLS described in Appendix A returns a zero

step if the direction dt is not of descent for f . This may occur when path i?

is no longer the shortest one after one or more equilibrations.

2.8 Computational results

Once the experimental setup is described (test problems, measure of con-

vergence and implementation details, in Sections 2.8.1, 2.8.2 and 2.8.3), the

results of algorithms ISMO and ISMO-ACG are reported in 2.8.4. In the

following Section 2.8.5, both the convergence capability and the efficiency of
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Algorithm 8: Incremental Gradient Projection (IGP) Algorithm

Input: xt ∈ F , I+
p (xt) ∈ Ip

Output: xt+1,∆t+1
p

1 i? ∈ arg min
i∈I+p (xt)

∇if(xt);

2 x̂← xt;

3 ∆t+1
p ← 0;

4 for j ∈ I+
p (xt), j 6= i? do

5 dj ← di
?,j

(p) ;

6 βj ← xt(p),j ;

7 compute step α0
j as in (2.13)

8 αj ← QLS(x̂, dj , α
0
j , βj);

9 x̂← x̂+ αjdj ;

10 compute ∆j as in (2.42);

11 ∆t+1
p ← ∆t+1

p + ∆j ;

12 end

13 xt+1 ← x̂;

14 return xt+1,∆t+1
p

the nonmonotone versions of ISMO-ACG are evaluated.

In section 2.8.6, we compare the proposed Path Equilibration Algorithm

ISMO-ACG with other path-based algorithms with the column generation

strategy being the same. In other words, each time an O/D pair is selected,

the algorithms differ only in the way the direction is defined and the solution

is updated, regardless if the shortest paths are computed or not. The goal

is to show the effectiveness of sequential minimal optimizations employed

in PEAs with respect to the path-based algorithms described in Section 2.7.

Furthermore, we will show how the proposed column generation strategy can

improve the performances of the other path-based methods.

Finally, in Section 2.8.7, the proposed algorithm ISMO-ACG is compared

with state-of-the-art bush-based algorithms. In the last Section 2.8.8, some

numerical aspects of ISMO-ACG are analyzed further.
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2.8.1 Test problems

The test problems used for the experiments are described in Table 2.1. All

the test problems are freely available at web page http://www.bgu.ac.il/

~bargera/tntp/. The datasets vary from small networks to big ones, with

a large number of links, nodes and O/D pairs to equilibrate. It is worth

noting that the intra-zonal trip demands are not considered in the count of

the number of O/D pairs.

Network Code # links # nodes # centroids # O/D pairs

Sioux-Falls SF 76 24 24 528

Barcelona B 2,522 1,020 110 7,922

Winnipeg W 2,535 1,067 154 4,345

Chicago-Sketch CS 2,950 933 387 93,135

Berlin-Center BC 28,376 12,981 865 49,688

Philadelphia P 40,003 13,389 1,525 1,149,795

Chicago-Regional CR 39,018 12,982 1,790 2,296,227

Table 2.1: Network datasets details

Finally, the network Sioux-Falls is not used to evaluate the effectiveness

of the proposed algorithm, since the comparison on such a small network

may be influenced by different implementations of the methods and different

test environments. It has been used only to evaluate the numerical behavior

of ISMO-ACG discussed in Section 2.8.8.

2.8.2 Measure of convergence

The convergence of the algorithms is evaluated using the relative gap (rg)

measure (see for instance [6, 7]), defined as follows

rg(x) =
∇f(x)>x−∇f(x)>x̂

∇f(x)>x
(2.46)

where

x̂ ∈ arg min
y∈F
∇f(x)>y (2.47)

which corresponds essentially to assign all the demand Dp to the shortest

path of each O/D pair p ∈ P .

http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/
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A point x? ∈ F is a solution if and only if rg(x?) = 0. An algorithm

generating a sequence {xt} terminates whenever rg(xt) ≤ ε, where ε > 0

defines the required level of accuracy.

2.8.3 Implementation details

The algorithm has been implemented in C++ and the computation of short-

est paths is performed by the Dijkstra implementation available in the well-

known Boost C++ libraries collection. In the implementation of the algo-

rithm, shortest paths are computed from a given origin to all other nodes

instead of calculating, as formally described in the algorithm, the shortest

path between each O/D pair.

All the numerical experiments have been executed on an Ubuntu 14.04

environment with an Intel®Xeon 12-Core E5-2430 2.50GHz and 16 GB of

RAM.

The arc cost function sa(·) is the well-known Bureau of Public Roads

(BPR) function, which models the link travel time, and takes the form

sa(va(x)) = t0

(
1 + b

(
va(x)

ca

)p)
(2.48)

where t0 is the free flow travel time, ca is the link capacity and b, p ∈ R are

arc-dependent parameters. All these values are available in the Bar-Gera’s

networks.

For what concerns the parameter L, which represents the column genera-

tion period, its definition is discussed throughout the next paragraphs. The

parameters of the Quadratic Line Search have been set as follows

δ = 0.5 γ = 10−8

while the ISMO parameters are the following

c = 103 τ = 0.05.

We recall that c > 0 contributes to the ISMO initial stepsize based on first-

order information (line 13 in Algorithm 2) and τ ∈ (0, 1) is the contraction

factor of the stepsize computed by the line search procedure that is employed

when numerical issues arise.
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2.8.4 Numerical results of ISMO and ISMO-ACG

In this section, the benefits of computing shortest paths periodically with

period L > 1 is shown compared with the case L = 1. Then, moving from

ISMO to ISMO-ACG, the effect of the initial step as the one employed in [11]

is discussed for cases L = 1 and L > 1, in order to assess the improvements

in terms of both precision and efficiency independently from the column

generation frequency. Finally, the effect of the adaptive strategy is discussed.

Recalling the ISMO algorithm 2 presented in Section 2.4, we validate the

choice of the value L through the comparison of three different cases1:

(i) ISMO-L1: the algorithm ISMO with L = 1;

(ii) ISMO-L5: the algorithm ISMO with L = 5;

(iii) ISMO-L10: the algorithm ISMO with L = 10;

In Table 2.2 the computational times needed to reach various level of the

convergence measure rg are reported.

From the results we can observe that such column generation strategy

is effective compared with the case L = 1. As L increases, the algorithm is

able to reach higher precision levels in less time. For instance, the case of

dataset Philadelphia (P) is impressive: the algorithm ISMO with L = 10 is

able to reach the rg value of 10−8 in an eighth of the time compared to the

case L = 1.

This is widely confirmed in Table 2.3 where the number of iterations is re-

ported instead of computational times. On Philadelphia, ISMO-L10 reaches

the rg value of 10−8 in a comparable number of iterations and a signifi-

cant saving of time is achieved, since the column generation is performed

once every ten iterations. While a greater number of iterations is needed

to reach 10−6 or 10−8 of the relative gap measure, which is rather expected

since in most of the iterations the shortest paths might not be considered in

the equilibration phase, this is not generally true for higher precisions. On

Chicago-Sketch (CS) and on Philadelphia (P), dealing with fewer paths may

ease the achievement of more accurate precisions in fewer iterations.

Generally, the case with L = 10 seems to be the best one in terms of

quality and efficiency and is considered as the default one for ISMO.

Summarizing, the results of ISMO with L > 1 shows the effectiveness of

such column generation strategy. However, it can be noticed from Figure

1A similar test has been performed in [12]
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-L1 0.55 2.35 13.89 17.23 38.10

ISMO-L5 0.46 1.52 5.38 7.65 25.53

ISMO-L10 0.49 0.80 4.38 5.36 7.47

W ISMO-L1 2.19 3.28 5.50 14.17 17.56

ISMO-L5 0.64 1.16 1.77 5.04 6.02

ISMO-L10 0.76 1.25 1.88 4.69 5.53

CS ISMO-L1 2.77 7.80 11.87 86.60 -

ISMO-L5 1.73 2.17 3.54 4.54 -

ISMO-L10 1.77 2.04 3.34 3.73 8.64

BC ISMO-L1 26.11 41.33 146.50 - -

ISMO-L5 13.93 18.47 103.24 - -

ISMO-L10 12.41 17.01 66.20 - -

P ISMO-L1 438.63 2316.42 - - -

ISMO-L5 185.01 512.62 2557.73 - -

ISMO-L10 191.45 363.73 757.68 10356.20 -

CR ISMO-L1 1026.08 2025.27 4664.05 - -

ISMO-L5 475.35 921.94 1228.45 - -

ISMO-L10 413.27 892.05 1456.52 - -

Table 2.2: Comparison of several column generation periods L in terms of

CPU time (secs.)

2.1 that the convergence behavior is fairly irregular on all the networks.

Especially on networks Chicago-Regional and Philadelphia, a sharp step in

the convergence pattern is visible when the algorithm attains a precision

of nearly 10−9. This is due to the numerical trick described in Section 2.5

that has been employed in order to deal with numerical issues when the line

search procedure is no more able to determine a suitable step.

One of the main concerns of the development of ISMO-ACG is the anal-

ysis of such convergence problems, which leads to the adoption of an initial

stepsize of QLS obtained by exactly solving a quadratic approximation of

the function along the current descent direction, which was firstly employed

by Dafermos et al. in [11].

In order to assess the benefits of this enhancement and to confirm the

effectiveness of the column generation strategy independently of each other,
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-L1 21 109 638 779 1731

ISMO-L5 51 181 618 844 3174

ISMO-L10 94 144 671 809 1084

W ISMO-L1 88 133 223 573 716

ISMO-L5 96 165 238 612 738

ISMO-L10 163 249 361 774 916

CS ISMO-L1 22 71 110 770 -

ISMO-L5 54 71 131 167 -

ISMO-L10 103 125 221 248 561

BC ISMO-L1 16 26 96 - -

ISMO-L5 38 54 332 - -

ISMO-L10 63 93 420 - -

P ISMO-L1 84 429 - - -

ISMO-L5 135 342 1332 - -

ISMO-L10 258 447 822 6678 -

CR ISMO-L1 138 273 572 - -

ISMO-L5 264 495 636 - -

ISMO-L10 420 837 1280 - -

Table 2.3: Comparison of several column generation periods L in terms of

number of iterations.

the algorithms

(i) ISMO-L1-D: ISMO with L = 1 and the Dafermos step in (2.14);

(ii) ISMO-L10-D: ISMO with L = 10 and the Dafermos step in (2.14).

are compared with ISMO-L1 and ISMO-L10, respectively. Computa-

tional results can be found in Table 2.4.

In order to understand properly the reported results, firstly, for each

dataset, pairs of rows have to be compared independently, in such a way to

validate the adoption of the Dafermos step, regardless the use of the column

generation strategy or not. Secondly, the addition of the Dafermos step to

ISMO with L = 10 has to be evaluated.

For what concern the comparison pair by pair, the use of the Dafer-

mos step leads to significant improvements both in terms of achieved preci-
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Figure 2.1: Convergence of the algorithms with different column generation

periods L. CPU time (s).
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-L1 0.55 2.35 13.89 17.23 38.10
ISMO-L1-D 0.45 0.79 1.29 1.87 2.52

ISMO-L10 0.49 0.80 4.38 5.36 7.47
ISMO-L10-D 0.30 0.36 0.43 0.5 0.56

W ISMO-L1 2.19 3.28 5.50 14.17 17.56
ISMO-L1-D 2.38 3.69 5.02 6.47 7.90

ISMO-L10 0.76 1.25 1.88 4.69 5.53
ISMO-L10-D 0.41 0.69 0.99 1.36 1.76

CS ISMO-L1 2.77 7.80 11.87 86.60 -
ISMO-L1-D 2.60 6.58 11.40 16.31 20.75

ISMO-L10 1.77 2.04 3.34 3.73 8.64
ISMO-L10-D 1.59 1.94 2.20 2.48 2.86

BC ISMO-L1 26.11 41.33 146.50 - -
ISMO-L1-D 22.73 52.64 271.58 280.55 292.53

ISMO-L10 12.41 17.01 66.20 - -
ISMO-L10-D 9.40 14.05 17.09 20.14 23.19

P ISMO-L1 438.63 2316.42 - - -
ISMO-L1-D 431.34 1700.28 4368.99 6815.69 7665.03

ISMO-L10 191.45 363.73 757.68 10356.20 -
ISMO-L10-D 146.00 257.10 533.84 820.32 952.24

CR ISMO-L1 1026.08 2025.27 4664.05 - -
ISMO-L1-D 983.34 1938.45 3451.31 5132.97 5949.00

ISMO-L10 413.27 892.05 1456.52 - -
ISMO-L10-D 327.47 529.65 816.80 1133.21 1337.31

Table 2.4: Comparison of first-order and second-order based stepsize in

terms of CPU time (secs.)

sion (10−14 in all tests) and computational times. The exception of dataset

Berlin-Center (BC) for the case L = 1 is not relevant since, as it is discussed

later, such dataset has a few characteristics which differ substantially from

the ones of the other considered datasets.

From the results, it is clear that the column generation strategy and the

nature of the employed initial step affect the resulting equilibrium solutions

independently of each other. The test ISMO-L10-D, i.e., ISMO with the
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Dafermos step, shows the best performances, with a relevant save of com-

putational time for each dataset along with a high quality solution of the

equilibrium, previously unreachable by the algorithm ISMO-L10 (from now

on we will get back to the original notation, i.e. ISMO).

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-L1 21 109 638 779 1731
ISMO-L1-D 20 38 64 95 133

ISMO-L10 94 144 671 809 1084
ISMO-L10-D 93 115 135 169 204

W ISMO-L1 88 133 223 573 716
ISMO-L1-D 100 157 216 279 342

ISMO-L10 163 249 361 774 916
ISMO-L10-D 100 160 224 306 391

CS ISMO-L1 22 71 110 770 -
ISMO-L1-D 21 60 107 155 198

ISMO-L10 103 125 221 248 561
ISMO-L10-D 90 112 132 155 184

BC ISMO-L1 16 26 96 - -
ISMO-L1-D 14 34 180 186 194

ISMO-L10 63 93 420 - -
ISMO-L10-D 42 72 100 117 133

P ISMO-L1 84 429 - - -
ISMO-L1-D 84 330 826 1282 1440

ISMO-L10 258 447 822 6678 -
ISMO-L10-D 207 345 636 942 1098

CR ISMO-L1 138 273 572 - -
ISMO-L1-D 132 261 464 688 798

ISMO-L10 420 837 1280 - -
ISMO-L10-D 327 510 738 972 1134

Table 2.5: Comparison of first-order and second-order based stepsize in

terms of number of iterations.

This efficiency, however, can not be attributed to a computational com-

plexity difference of the two ways in which the initial stepsize is computed.

Indeed, in Table 2.5, such computational gap is clearly justified by the sig-
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nificant difference of the number of iterations needed to reach various accu-

racies. For example, on Philadelphia (P), ISMO-L10 requires 6678 iterations

to reach rg equal to 10−12, while ISMO-L10-D reaches needs only 942 iter-

ations.

In Figure 2.2 the convergence patterns are reported. Again, two pairs

of lines can be discerned, with or without the employing of the column

generation. Nevertheless, the adoption of Dafermos step results in a smooth

convergence of the algorithm compared to the case of the use of first-order

information for the initial step. In this way, the finite representation of real

numbers is suitably handled by the algorithm without requiring any trick.

Finally, for what concerns this series of comparisons, starting from a

generic PEA (as ISMO with L = 1 is) and ending with the proposed method

ISMO-ACG, we present the computational results of algorithm ISMO-ACG

in Table 2.6, where only the test ISMO-L10-D is considered. We recall

that ISMO-ACG is the ISMO algorithm with the initial stepsize described

in (2.14) and with the adaptive column generation strategy described in

Section 2.5. Regarding the parameters of the adaptive column generation

strategy, Lmin has been set equal to L = 10, while Lmax, whose definition is

less critical as it has only to be finite in order to ensure convergence, has been

set equal to 120. In this case, the convergence plots of ISMO-ACG as well as

the table which summarize the number of iterations are not reported, since

the behavior is comparable with the one of ISMO-L10-D on all networks.

We can observe that the adoption of the adaptive column generation

strategy yields computational advantages particularly when high levels of

precision are required. For instance, in the Philadelphia test, the two versions

are comparable to reach a rg equal to 10−6, while ISMO-ACG requires about

half of the CPU time spent by ISMO-L10-D to reach a value of rg equal to

10−14.

The adoption of the Dafermos stepsize allows accurate updates of the

solution and this affect positively the quality of the equilibrium and the

required time to reach a given precision, since the oscillatory behavior is

avoided. The column generation strategy introduced in ISMO and the im-

proved one in ISMO-ACG lead to significant time savings. However, reducing

and differentiating the frequency of the shortest paths computation by itself

is not enough to motivate these relevant results. An increasing number of

iterations needed to reach a given precision may be expected, indeed. Thus,

we may obtain comparable computational times with respect to the case in
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Figure 2.2: Comparison of the convergence behavior of algorithms with the

Dafermos step. CPU time (s).
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-L10-D 0.30 0.36 0.43 0.50 0.56

ISMO-ACG 0.29 0.38 0.44 0.51 0.56

W ISMO-L10-D 0.41 0.69 0.99 1.36 1.76

ISMO-ACG 0.30 0.50 0.62 0.85 1.11

CS ISMO-L10-D 1.59 1.94 2.20 2.48 2.86

ISMO-ACG 1.55 1.83 1.90 2.07 2.19

BC ISMO-L10-D 9.40 14.05 17.09 20.14 23.19

ISMO-ACG 7.27 7.91 9.09 9.91 10.10

P ISMO-L10-D 146.00 257.10 533.84 820.32 952.24

ISMO-ACG 136.02 211.51 353.74 481.83 538.98

CR ISMO-L10-D 327.47 529.65 816.80 1133.21 1337.31

ISMO-ACG 313.71 500.29 646.33 881.91 981.67

Table 2.6: Computational results of the introduction of the adaptive column

generation. CPU time (secs.)

which no column generation strategy is employed.

Anyway, this is not the case. The proposed algorithms are able to reach

a given precision requiring a comparable number of iterations and thus re-

quiring less paths to be equilibrated, since shortest path are not computed

at each iteration. Recalling that the traffic assignment problem has a unique

solution in terms of link flows but not in terms of path flows, the sparsity

of the solution may be exploited in order to obtain an equilibrium with the

minimum possible number of involved active paths, since less paths to be

equilibrated means less computational time.

The numbers reported in Table 2.7 for the two largest networks confirm

what has been remarked, where the Dafermos step has been considered. Less

paths are required by ISMO-L10-D and ISMO-ACG to reach a given preci-

sion of the solution, indeed. This is easily deducible from the percentages of

O/D pairs with at least two (active) paths at different values of the relative

gap.

We note that, as we may expect, in the case of ISMO-L1-D such a per-

centage strongly increases with the number of iterations since the column

generation is performed at each iteration and new paths are possibly added.
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

P ISMO-L1-D 25.88 % 39.36 % 47.76 % 49.82 % 50.08 %

ISMO-L10-D 10.44 % 18.35 % 25.84 % 28.38 % 28.60 %

ISMO-ACG 10.85 % 16.75 % 21.32 % 22.77 % 22.94 %

CR ISMO-L1-D 21.44 % 27.86 % 33.09 % 36.23 % 37.14 %

ISMO-L10-D 9.28 % 13.49 % 17.92 % 21.32 % 21.93 %

ISMO-ACG 9.08 % 13.01 % 15.77 % 18.03 % 18.22 %

Table 2.7: Percentage of O/D pairs with at least two (active) paths at the

given precision.

With the column generation strategy employed in ISMO-L10-D, such per-

centage is more or less halved. Thus, the solution obtained has many more

O/D pairs with only one active path than that of ISMO-L1-D and this yields

advantages in terms of overall effort. Indeed, the O/D pairs having only one

active path are skipped by the minimization process and this leads to obvious

computational advantages.

ISMO-ACG, compared to ISMO-L10-D, is able to further reduce such

percentage, exploiting better the sparsity of the solution. The adaptive strat-

egy has the effect of generating less paths since the parameter Lp is adjusted

according to a measure of effectiveness of the column generation, as it is

described in Algorithm 3, and new paths are inserted less often through it-

erations. This is widely confirmed in Figures 2.3 and 2.4, where the mean

value and the final distribution of Lp are reported, respectively, for the two

largest networks Chicago-Regional and Philadelphia.

The mean value of Lp computed on all O/D pairs starts from L = 10

and grows as the algorithm converges to the solution, confirming that the

column generation is gradually and globally less useful. In fact, in Figure

2.4 we can observe that only a small percentage of O/D pairs at the end of

the optimization has required to generate new paths with the initial highest

frequency of L = 10.

2.8.5 Numerical results of nonmonotone ISMO-ACG

The nonmonotone methods ISMO-NM and ISMO-NM-A described in Sec-

tion 2.6 are evaluated with respect to the globally convergent algorithm

ISMO-ACG. Two different aspects are of interest in this experiment:
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(i) whether or not the nonmonotone algorithms converge;

(ii) whether or not computational advantages exist removing QLS and ex-

ploiting the sparsity of the solution;
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We recall that the nonmonotone methods ISMO-NM and ISMO-NM-A

share with ISMO-ACG the same adaptive column generation strategy.

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-ACG 0.29 0.38 0.44 0.51 0.56

ISMO-NM 0.27 0.53 0.58 0.61 0.62

ISMO-NM-A 0.30 0.35 0.37 0.40 0.42

W ISMO-ACG 0.30 0.50 0.62 0.85 1.11

ISMO-NM 0.32 0.40 0.55 0.70 0.80

ISMO-NM-A 0.44 0.51 0.67 0.74 0.82

CS ISMO-ACG 1.55 1.83 1.90 2.07 2.19

ISMO-NM 1.59 1.88 1.97 2.15 2.34

ISMO-NM-A 1.74 1.93 2.08 2.30 2.56

BC ISMO-ACG 7.27 7.91 9.09 9.91 10.10

ISMO-NM 7.41 8.36 9.34 10.16 10.45

ISMO-NM-A 7.99 8.57 9.27 9.82 10.13

P ISMO-ACG 136.02 211.51 353.74 481.83 538.98

ISMO-NM 132.00 202.86 313.93 427.17 517.62

ISMO-NM-A 143.75 191.86 265.28 345.66 380.82

CR ISMO-ACG 313.71 500.29 646.33 881.91 981.67

ISMO-NM 301.09 444.49 542.18 672.86 -

ISMO-NM-A 295.17 392.10 429.18 478.45 -

Table 2.8: Results of the nonmonotone algorithms in terms of CPU time

(secs.)

In Table 2.8 the results are reported. For what concern the convergence to

the solution, ISMO-NM and ISMO-NM-A are able to converge to rg = 10−14

on almost all the networks. The only exception is on Chicago-Regional,

where rg = 10−12 is the maximum reached precision. Although it can be

easily interpreted as an effect of nonmonotonicity, actually the reason is

purely numerical. In Section 2.8.8 we will show how the way in which the

relative gap is computed can impact the reliability of the measure.

In the case of ISMO-NM, the abolition of QLS leads to a computational

saving which can be observed in tests Philadelphia and Chicago-Regional,

although a general greater number of iterations is required to reach the same

precision than ISMO-ACG, as shown in Table 2.9. Shortest paths are the
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main computational demanding part of the optimization and the Dafermos

step has turned out to generally satisfy the QLS condition without requir-

ing subsequent reductions, thus, explaining such slight differences between

ISMO-ACG and ISMO-NM in terms of CPU time.

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-ACG 91 123 148 178 211

ISMO-NM 80 270 308 334 355

ISMO-NM-A 85 119 137 165 183

W ISMO-ACG 89 169 224 302 389

ISMO-NM 105 167 254 326 405

ISMO-NM-A 133 173 241 289 345

CS ISMO-ACG 84 114 130 154 186

ISMO-NM 84 112 127 151 182

ISMO-NM-A 99 117 137 171 227

BC ISMO-ACG 52 64 92 112 128

ISMO-NM 52 72 100 116 131

ISMO-NM-A 64 82 100 106 112

P ISMO-ACG 207 342 636 944 1104

ISMO-NM 207 342 620 914 1174

ISMO-NM-A 237 423 801 1191 1383

CR ISMO-ACG 327 549 740 1092 1270

ISMO-NM 327 519 686 928 -

ISMO-NM-A 375 717 873 1077 -

Table 2.9: Results of the nonmonotone algorithms in terms of number of

iterations.

The case of ISMO-NM-A is instead of interest. It is worth observing that

a direct comparison with ISMO-ACG on CPU time should not be performed,

since ISMO-NM-A does not employ the line search procedure in order to

carry out the alternation described in Section 2.6. Thus, it is evaluated with

respect to ISMO-NM. The alternation of the Dafermos step and its double

lets a significant reduction of the computational times on the two largest

networks despite a greater number of iterations needed by the algorithm.

The reason of the efficiency of ISMO-NM-A lies in the evolution of the

set of active paths for each O/D pair through iterations, reported in Table
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2.10. In such table, ISMO-NM is not reported since it shows a behavior

similar to ISMO-ACG, while ISMO-L1-D and ISMO-L10-D are reported for

the sake of completeness and in order to let the reader figure out how the

sparsity of the equilibrium solution in terms of path flows can be exploited

with the relative gap being equal.

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

P ISMO-L1-D 25.88 % 39.36 % 47.76 % 49.82 % 50.08 %

ISMO-L10-D 10.44 % 18.35 % 25.84 % 28.38 % 28.60 %

ISMO-ACG 10.85 % 16.75 % 21.32 % 22.77 % 22.94 %

ISMO-NM-A 3.31 % 6.18 % 9.12 % 10.43 % 10.91 %

CR ISMO-L1-D 21.44 % 27.86 % 33.09 % 36.23 % 37.14 %

ISMO-L10-D 9.28 % 13.49 % 17.92 % 21.32 % 21.93 %

ISMO-ACG 9.08 % 13.01 % 15.77 % 18.03 % 18.22 %

ISMO-NM-A 2.36 % 3.76 % 5.54 % 6.10 % -

Table 2.10: Percentage of O/D pairs with at least two (active) paths at the

given precision.

The percentages reported in Table 2.10 related to ISMO-NM-A are indeed

impressive. Considering the network Philadelphia, in the first stage of the

optimization, let’s say rg = 10−6, ISMO-NM-A requires to equilibrate a

percentage of O/D pairs which is more than three times lower than the one

of ISMO-ACG and nearly eight times lower than in the case of ISMO-L1-D.

The effect of the alternation lets to maintain active a number of paths which

is far less than the previous methods. At the end of the optimization on

Philadelphia, only 10.91% of O/D pairs have at least two active paths. This

means that approximately 90% are in equilibrium with only one active path.

Such advanced exploiting of the sparsity of the equilibrium solution has

two important benefits. The first is about the computational advantages

that performing fewer equilibration steps causes. The latter is regarding

the applicability of the path-based methods on large-scale networks for what

concern the requirement of computer memory. It is well-known that path-

based methods suffer from the fast growing of the space of paths and that

column generation strategies must be employed. If only a small part of the

O/D pairs collects more than one active path, the requirement of memory is

sustainable even for very large networks.

In conclusion, the convergence patterns of ISMO-NM and ISMO-NM-A
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Figure 2.5: Comparison of the convergence behavior of the nonmonotone

algorithms. CPU time (s).
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are reported in Figure 2.5. While ISMO-NM is comparable with ISMO-

ACG, ISMO-NM-A shows the expected oscillatory behavior caused by the

alternation process.

Despite the performances of ISMO-NM-A, it has not be considered for

the publication yet, mainly due to the lack of convergence properties.

2.8.6 ISMO-ACG compared to other path-based algo-

rithms

In this section we compare ISMO-ACG, which is a PEA, with the three

different path-based algorithms described in Section 2.7:

(i) Gradient Projection (GP) algorithm, developed in [28] and [10];

(ii) Rosen Gradient Projection (RGP) algorithm, proposed in [16];

(iii) Incremental Gradient Projection (IGP) algorithm, a monotone variant

of GP proposed in this work.

Moreover, we will show how the column generation strategies employed in

ISMO and then in ISMO-ACG can improve both the efficiency and the con-

vergence capability of the other path-based methods.

In order to obtain a fair comparison between ISMO-ACG and the other

path-based algorithms, the adaptive column generation strategy ACG has

been considered.

From Table 2.11 it turns out that the PEA method ISMO-ACG is globally

the most efficient. While all the four methods are comparable on datasets

Barcelona (B), Winnipeg (W), Chicago-Sketch (CS) and Berlin-Center (BC),

on datasets Philadelphia (P) and Chicago-Regional (CR) differences in terms

of CPU time are more evident. Generally, RGP-AGC is the less efficient

method, while GP-AGC encounters difficulties in reaching high precisions

on Chicago-Regional (CR). For what concerns the comparison between GP-

ACG and IGP-ACG, the incremental version proposed in this work is clearly

better than the original one from both efficiency and effectiveness. Further-

more, IGP-ACG is comparable with ISMO-ACG, although the latter is more

efficient in all the cases.

Finally, in Figure 2.6 we report the convergence patterns of GP, RGP

and IGP on the two largest networks, Philadelphia and Chicago-Regional,

with three different column strategies:
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-ACG 0.29 0.38 0.44 0.51 0.56

GP-ACG 0.31 0.39 0.45 0.50 0.55

RGP-ACG 0.42 0.54 0.65 0.77 0.86

IGP-ACG 0.31 0.35 0.39 0.45 0.49

W ISMO-ACG 0.30 0.50 0.62 0.85 1.11

GP-ACG 0.51 0.86 1.25 1.67 1.96

RGP-ACG 0.76 1.46 2.28 3.11 3.82

IGP-ACG 0.38 0.63 0.88 1.13 1.39

CS ISMO-ACG 1.55 1.83 1.90 2.07 2.19

GP-ACG 1.55 1.97 2.05 2.22 2.41

RGP-ACG 1.90 2.18 2.44 2.79 3.17

IGP-ACG 1.65 1.82 1.95 2.10 2.30

BC ISMO-ACG 7.27 7.91 9.09 9.91 10.10

GP-ACG 7.29 8.26 9.20 10.01 10.21

RGP-ACG 7.59 8.31 8.92 10.14 10.68

IGP-ACG 7.28 8.25 9.23 10.03 10.36

P ISMO-ACG 136.02 211.51 353.74 481.83 538.98

GP-ACG 166.95 290.37 503.15 717.57 814.26

RGP-ACG 280.39 686.31 1523.70 1950.90 2113.20

IGP-ACG 149.99 259.80 465.49 635.97 697.47

CR ISMO-ACG 313.71 500.29 646.33 881.91 981.67

GP-ACG 340.80 567.05 732.65 - -

RGP-ACG 771.89 1338.94 2189.50 2947.13 3568.30

IGP-ACG 332.38 534.28 697.05 881.25 982.82

Table 2.11: Comparison of several path-based methods in terms of CPU

time (secs.)

(i) L1, where shortest paths are computed at each iteration;

(ii) L10, where shortest paths are computed once every L = 10 iterations,

as in ISMO described in Section 2.4;

(iii) ACG, the adaptive column generation described in Section 2.5.

Starting from the two methods GP and RGP, from Figure 2.6 we can observe

that the column generation strategies L10 and ACG are very effective with
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Figure 2.6: GP, RGP and IGP methods with different column generation

strategies on Philadelphia and Chicago-Regional. CPU time (s).
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respect to L1: computing the shortest paths once every L = 10 iterations

lets to reach higher precisions in less time, whereas with L1 the two methods

GP and RGP stop around a precision of 10−6 and 10−9 on both networks,

respectively. The further specialization of the column generation defined in

ACG leads generally to better computational performances and solutions

accuracy, especially for RGP.

Although the sparsity of the solution exploited by L10 and ACG could

reduce the oscillatory behavior of GP when several non-shortest paths give

flow to the shortest one, the convergence patterns of GP on Philadelphia

and Chicago-Regional show some oscillations, mainly in the later stages of

the optimization.

At the contrary, the method IGP, which has been introduced indeed with

the aim of stabilizing the behavior of GP, has a smooth convergence to very

high precisions even without any column generation strategies, thus showing

a better robustness than GP.

The employment of L10 and ACG in IGP has the effect of reducing

progressively the computational times on the two networks.

2.8.7 ISMO-ACG compared to bush-based algorithms

We report in Table 2.12 the results of the comparison between ISMO-ACG

and state-of-the-art bush-based methods. These latter are NS-SPT and NS-

SFST methods proposed by [64] and the method DBA proposed by [13].

For the network Barcelona (B), results of NS-SPT and NS-SFST are not

available.

The method DBA has been implemented by the author following [45].

For the methods proposed by [64] we report the results shown in the cited

paper, so the comparison is very rough. Furthermore, the results of the

methods NS-SPT and NS-SFST are reported in [64] up to a precision of

10−12. The method DBA is able to attain the precision 10−14 only on small

networks: on Philadelphia and on Chicago-Regional, the method is not able

to reach high precisions since it tends to oscillate around a relative gap of

10−12 and 10−6, respectively, during later iterations.

We observe that the ideas underlying the proposed PEA and the method

DBA are very similar: a feasible and descent search direction related to the

longest and shortest paths is defined and a step along it is performed. How-

ever, PEAs define the search direction by the shortest path (either among

the used paths or computed by the column generation procedure) and the



52 New algorithms for the Traffic Assignment Problem

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B NS-SPT - - - - -

NS-SFST - - - - -

DBA 0.62 0.99 1.44 1.99 2.51

ISMO-ACG 0.29 0.38 0.44 0.51 0.56

W NS-SPT 2.60 3.40 4.40 5.30 -

NS-SFST 4.00 4.40 5.20 6.10 -

DBA 2.80 4.48 6.20 8.18 10.11

ISMO-ACG 0.30 0.50 0.62 0.85 1.11

CS NS-SPT 3.20 3.60 4.40 5.30 -

NS-SFST 3.90 4.60 5.50 6.40 -

DBA 2.30 4.24 6.78 9.27 12.28

ISMO-ACG 1.55 1.83 1.90 2.07 2.19

BC NS-SPT 72.00 72.00 156.00 162.00 -

NS-SFST 228.00 246.00 264.00 282.00 -

DBA 55.69 103.18 375.85 390.98 410.37

ISMO-ACG 7.27 7.91 9.09 9.91 10.10

P NS-SPT 480.00 708.00 1140.00 1698.00 -

NS-SFST 540.00 792.00 1266.00 1782.00 -

DBA 618.48 2515.76 5390.68 8360.53 -

ISMO-ACG 136.02 211.51 353.74 481.83 538.98

CR NS-SPT 1278.00 1890.00 3534.00 5418.00 -

NS-SFST 762.00 1236.00 2412.00 4206.00 -

DBA 1353.41 - - - -

ISMO-ACG 313.71 500.29 646.33 881.91 981.67

Table 2.12: Comparison with state-of-the-art algorithms in terms of CPU

time (secs.)

maximum cost used path. DBA, as bush-based method, defines the search

direction using the longest path and the shortest path within a given bush

(i.e., a directed sub-network of the original network, rooted at a given origin,

connected and acyclic). As a consequence, the search directions computed

by a PEA and DBA are quite different, and this leads to different realizations

and performances.

Beyond the ability of reaching high precisions of the equilibrium solutions,
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the algorithm ISMO-ACG outperforms the other methods on all networks

and for all levels of precision, especially on the medium-big networks of

Berlin-Center, Chicago-Regional and Philadelphia.

The case of Berlin-Center is of interest in this analysis, since this network

has a few properties which can guide the comprehension of the effectiveness

of ISMO-ACG compared to state-of-the-art methods. From Table 2.1 it can

be seen that Berlin-Center is a network comparable with Philadelphia and

Chicago-Regional in terms of size, but the number of O/D pairs is signif-

icantly lower. Thus, as ISMO-ACG is a PEA performing a Gauss-Seidel

decomposition over the different trips, the effort of the equilibration of the

O/D pairs is far less the effort of computing the shortest paths on the net-

work. As it can be seen in Tables 2.4 and 2.6 as well, the adoption of the

column generation strategy employed in ISMO and its refinement in ISMO-

ACG leads to a significant saving of computational time.

On Philadelphia and Chicago-Regional the proposed method is very ef-

fective with respect to state-of-the-art methods, however the computational

gap is less evident than in the case of Berlin-Center, mainly due to a higher

number of O/D pairs to equilibrate.

2.8.8 ISMO-ACG and finite numerical precision

In this section we aim to investigate further on the numerical behavior of

the proposed algorithm. Firstly, we will show how the computation of the

relative gap can be affected by the way it is computed. Lastly, we will analyze

the convergence capability of ISMO-ACG beyond the limits of the common

double-precision floating point representation of real numbers.

Recalling the relative gap measure reported in Section 2.8.2, we derive

two equivalent ways to compute it, respectively referenced as path-based rg

and arc-based rg.

Path-based rgφ

With respect to the notation introduced in Section 2.1, we have

rg(x) =
∇f(x)>x−∇f(x)>x̂

∇f(x)>x
=

∑
p∈P

∑
k∈Kp

sk(x) · xk −
∑
p∈P

s?pDp∑
p∈P

∑
k∈Kp

sk(x) · xk
=
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=

∑
p∈P

∑
k∈Kp

sk(x) · xk −
∑
k∈Kp

s?pxk


∑
p∈P

∑
k∈Kp

sk(x) · xk

where s?p is the shortest path cost of O/D pair p ∈ P . Finally, we have

rgφ(x) =

∑
p∈P

∑
k∈Kp

xk ·
(
sk(x)− s?p

)
∑
p∈P

∑
k∈Kp

sk(x) · xk
(2.49)

Arc-based rgα

Recalling that sk(x) =
∑
a∈A δaksa(va(x)) and va(x) =

∑
k∈K δakxk, we

have

rg(x) =
∇f(x)>x−∇f(x)>x̂

∇f(x)>x
=

∑
k∈K

sk(x) · xk −
∑
p∈P

s?pDp∑
k∈K

sk(x) · xk
=

=

∑
k∈K

∑
a∈A

δak · sa(va(x)) · xk −
∑
p∈P

s?pDp∑
k∈K

∑
a∈A

δak · sa(va(x)) · xk
=

=

∑
a∈A

sa(va(x)) ·
∑
k∈K

δak · xk −
∑
p∈P

s?pDp∑
a∈A

sa(va(x)) ·
∑
k∈K

δak · xk

and finally

rgα(x) =

∑
a∈A

sa(va(x)) · va(x)−
∑
p∈P

s?pDp∑
a∈A

sa(va(x)) · va(x)
= 1−

∑
p∈P

s?pDp∑
a∈A

sa(va(x)) · va(x)

(2.50)
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Although are mathematically equivalent, the two formulas show a dif-

ferent numerical behavior with finite precision and with respect to the em-

ployment TAP algorithm. Since ISMO-ACG is a path-based method and x

represents the vector of path flows, the arc flow va(x), given as

va(x) =
∑
k∈K

δakxk, (2.51)

is the flow summation over the paths that pass through a ∈ A. Depending on

the number of flows that contribute to the sum and on the current precision

of the equilibrium solution, the error propagation of the sum may affect

significantly the reliability of the measure computed as in (2.50). This is

generally true even for the path cost sk(x)

sk(x) =
∑
a∈A

δaksa(va(x)) (2.52)

since it is again a summation and sa(·) relies on a possibly noisy value va(x).

However, in (2.49), the contribute
(
sk(x)− s?p

)
is strictly related to the choice

of the descent direction in ISMO-ACG. Thus, when no descent direction can

be found, the O/D pair is in equilibrium. In other words, there is a direct

correspondence between the direction definition and the measurement of the

equilibrium given in (2.49). Conversely, this is not the case for the relative

gap formula in (2.50).
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Figure 2.7: Comparison of the convergence behavior of rgα and rgφ. CPU
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In Figure 2.7 we show an example of the different behavior of rgα and rgφ
on the network Chicago-Regional. In ISMO-ACG, rgα stops at a precision

of 10−14, while the algorithm continues to refine the equilibrium solution

since rgφ goes down to 10−18. The case of ISMO-NM is interesting: while

in Section 2.8.5 we could observe that the nonmonotonicity might be the

reason of a not optimal convergence to high precisions, in Figure 2.7 we can

notice that the reason is purely numerical. With rgφ, ISMO-NM is able to

reach a precision 10−16, while with rgα it stops to 10−12.

In conclusion of this numerical analysis, we observe that path-based meth-

ods should use rgφ as the relative gap measure formula, while rgα is more

suitable for bush-based algorithms.

Finally, in order to assess the finite precision behavior of ISMO-ACG, we

performed further experiments on the smallest network, that is, Sioux-Falls.

In particular, we tested ISMO-ACG using three floating point representa-

tions available in C++ and reported in Table 2.13.

type # bits ε C++ library

float 32 2−24 ≈ 5.96 · 10−08 native

double 64 2−53 ≈ 1.11 · 10−16 native

float128 128 2−113 ≈ 9.63 · 10−35 quadmath

Table 2.13: Floating point representations

For each floating point representation we plot in Figure 2.8 the relative

gap versus the number of iterations (since the quadruple precision is software-

simulated and hence the comparison in terms of CPU time is not suitable2).

Figure 2.8 shows how the finite precision arithmetic affects the perfor-

mance of algorithm ISMO-ACG in terms of the level of accuracy of the

equilibrium solution. We can observe that ISMO-ACG is able to converge to

equilibrium solutions at a precision comparable to the limits of the adopted

floating point representation.

2As an example, in this test an iteration with 128 bits of precision is nearly 12 times

slower than an iteration with 64 bits.



2.8 Computational results 57

0 200 400 600 800 1,000 1,200 1,400
10−38

10−33

10−28

10−23

10−18

10−13

10−8

10−3

102

Number of iterations

r
g

32 bit

64 bit

128 bit

Figure 2.8: The rg measure with the three different floating point represen-

tations according to the number of iterations on the Sioux-Falls network
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Chapter 3

A computational study on the

Elastic Demand Traffic

Assignment Problem

While the most standard traffic assignment models assume fixed demand, a

more realistic case considers elastic demands, that is, the case in which the

demand of each O/D pair p ∈ P depends on the cheapest route cost.

Once the formulation of the equilibrium with fixed demand is defined

in Section 3.1, the well-known result of equivalence between inelastic and

elastic demand approach is described in Section 3.2. Such result lets the

employment of the algorithms developed for the inelastic case even in the

elastic case.

We will focus here on a computational study of the path-based algorithms

embedded in the general column generation framework described in Section

2.7. Exploiting the equivalence and with minor technical modifications to

existing algorithms, we present the numerical results in Section 3.3 which

demonstrate the efficiency of such path-based methods in attaining very

high levels of precision (comparable with the machine precision) in all the

tested networks. To our knowledge, similar levels of precision were never

attained by algorithms previously presented in the literature for the case of

elastic demand.

59
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3.1 Formulation

For the notation, we generally refer to the one adopted in Section 2.1. For

what concern the relation between the demand Dp and the cheapest route

cost up
Dp = Γp(up) (3.1)

we assume that it is continuously differentiable, nonnegative, upper bounded,

and strictly decreasing.

In order to add the elastic factor in the equilibrium formulation, the

inverse function Γ−1
p (·) is considered.

up = Γ−1
p (Dp) (3.2)

Since Γ−1
p (·) is a strictly decreasing and continuosly differentiable func-

tion, in the formulation of the TAP with elastic demand, the opposite of

Γ−1
p (·) will be considered.

Proposition 3.1 (TAP with elastic demand). With the assumptions stated

in Section 2.1, the TAP formulation with elastic demands is given as follows

min
x,D

f(x)− g(D) =
∑
a∈A

∫ va(x)

0

sa(t) dt−
∑
p∈P

∫ Dp

0

Γ−1
p (w) dw

s.t.

np∑
i=1

x(p),i = Dp, ∀ p ∈ P

x(p) ≥ 0, ∀ p ∈ P

0 ≤ Dp ≤ ∆p, ∀ p ∈ P

(3.3)

As in Section 2.1, a compact form of 3.3 can be derived

min
x,D

f(x)− g(D)

s.t. x ∈ F(D) =
∏
p∈P
Fp(D)

(3.4)

where F(D) is the cartesian product of simplices Fp(D) defined as follows

Fp(D) = {x(p) ∈ Rnp :

np∑
i=1

x(p),i = Dp, x(p) ≥ 0} (3.5)

with 0 ≤ Dp ≤ ∆p.
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3.2 On the equivalence between the inelastic

and elastic TAP

The algorithms proposed for the inelastic formulation stated in Section 2.1

can be easily extended to the more general case of problem (3.4) with variable

demand. The presence of demand variables D with upper bounds can be

easily managed by simple network transformations and the problem can be

transformed into an equivalent inelastic problem like (2.6).

In this case, we exploit one of the transformations described in [58], the

so-called excess demand formulation, in which the excess demand variable

zp is considered for each O/D pair p ∈ P .

zp = ∆p −Dp, (3.6)

The variable zp represents the exceding quantity of demand with respect to

the bound ∆p. Performing the variable substitution in Γ−1
p (·) we can define

the following function

Wp(zp) = Γ−1
p (∆p − zp) = − 1

γ
log

∆p − zp
∆p

(3.7)

and the function g(·) in (3.3), by simple manipulations, can be replaced by

the following

g̃(z) = g(∆− z) = −
∑
p∈P

∫ ∆p−zp

0

Γ−1
p (Dp − v) d(Dp − v) =

=
∑
p∈P

∫ ∆p−zp

∆p

Wp(v) dv =

= −
∑
p∈P

∫ ∆p

∆p−zp
Wp(v) dv =

=
∑
p∈P

∫ zp

0

Wp(v) dv −
∑
p∈P

∫ ∆p

0

Wp(v) dv =

(3.8)

Since the second integral is constant with respect to zp, in the minimization

function of (3.3) will be not considered. Thus, we have

h(z) =
∑
p∈P

∫ zp

0

Wp(v) dv (3.9)

and the resultant formulation is the following one.
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Proposition 3.2 (Excess demand formulation). The TAP formulation with

elastic demands and excess demand variables is given as follows

min
x,z

f(x)− h(z) =
∑
a∈A

∫ va(x)

0

sa(t) dt+
∑
p∈P

∫ zp

0

Wp(v) dv

s.t.

np∑
i=1

x(p),i + zp = ∆p, ∀ p ∈ P

x(p) ≥ 0, ∀ p ∈ P

zp ≥ 0 ∀ p ∈ P

(3.10)

It is worth noting that for the variable zp, which is originally bounded in

[0,∆p], only the nonnegativity constraint has to be added to the formulation,

since it can’t be greater than ∆p due to the demand conservation constraint.

The modelistic interpretation of the formulation (3.10) can be easily de-

rived. The excess demand variables add new arcs in the network with cost

function Wp(·) and flow value zp, each one connecting directly an O/D pair

p ∈ P . As a consequence, a new path, made only of one arc, enters in the

set of paths Kp connecting p ∈ P . An illustration of the transformation is

reported in Figure 3.1.

The formulation with excess demand variables is indeed a formulation

with fixed demands, since ∆p is fixed. Thus, all the algorithms described in

Chapter 2 can be used even in the elastic case.

3.3 Computational Results

The aim of the work described in this chapter is to perform a computational

study on the elastic demand traffic assignment problem. In this study, all the

path-based algorithms described in Section 2.7 are compared by exploiting

the excess demand formulation.

In [55] a modification of the gradient projection algorithm, originally

proposed in [28] for inelastic problems, has been defined for the elastic case,

which is essentially equivalent to the method GP-ACG described in Section

2.7 without any column generation strategy, as the ones employed in ISMO

and ISMO-ACG.
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Figure 3.1: a) In the example, the O/D set is composed by three pairs, (1, 4),

(2, 4), and (4, 3). b) The addition of excess demand variables leads to a new

graph with extra arcs connecting the O/D pairs.

3.3.1 Test problems

The test problems used for the experiments are actually the same as in Sec-

tion 2.8.1 and are conveniently reported in Table 3.1. However, the network

Berlin-Center has been removed since unsolvable numerical problems related

to the properties of the network and to the choice of the function Γ(·) have

been experienced. In its place, a very large-scale network, Sydney, available

at http://www.bgu.ac.il/~bargera/tntp/, has been added.

Network Code # links # nodes # centroids # O/D pairs

Barcelona B 2,522 1,020 110 7,922

Winnipeg W 2,535 1,067 154 4,345

Chicago-Sketch CS 2,950 933 387 93,135

Philadelphia P 40,003 13,389 1,525 1,149,795

Chicago-Regional CR 39,018 12,982 1,790 2,296,227

Sydney S 75,379 33,113 3,264 3,340,619

Table 3.1: Network datasets details

As we will observe in the numerical results, the computational times are

greater than in the case of inelastic demand, with the relative gap being

equal. This is mainly due to the existence, at each iteration, of at least two

http://www.bgu.ac.il/~bargera/tntp/
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active paths for each O/D pair p ∈ P , one real and the other representing the

average excess demand variable, which is generally active, as it is remarked

in the implementation details in Section 3.3.3. Thus, at each iteration, each

O/D pair is likely to be selected for an equilibration update between at least

two paths. The network Sydney has been introduced in order to show that

path-based methods can be used on very large networks, even without the

exploitation of the solution sparsity discussed in Section 2.8.5.

3.3.2 Measure of convergence

Since a result of equivalence holds, the relative gap measure reported in

Section 2.8.2 is used even in the elastic case.

rg(x) =
∇f(x)>x−∇f(x)>x̂

∇f(x)>x
(3.11)

However, in [55], a different relative gap measure1 rgτ is used by the

authors

rgτ (x, z) =

∑
p∈P

np∑
i=1

x(p),i ·
∣∣c(p),i −Wp(zp)

∣∣
∑
p∈P

np∑
i=1

x(p),i · c(p),i

(3.12)

where

c(p),i = ∇x(p),i
f(x). (3.13)

is the cost of i-th route connecting OD pair p ∈ P . However, the employment

of this measure may lead to misleading results compared to the standard

relative gap measure. In Section 3.3.5, a comparison of the two measures is

reported.

3.3.3 Implementation details

The implementation details of the path-based algorithms are the ones de-

scribed in Section 2.8.3.

For what concerns the transformation of the network caused by the addi-

tion of the excess demand variables, no extra arcs have been actually added

1The formula reported in (3.12) is the correct one, as confirmed by the authors of [55]
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to the network. The new variables have been maintained exclusively in the

set of active paths of each O/D pair as special paths. Its cost is then con-

sidered in the objective function.

As in [55], we adopt the following O/D demand function,

Dp = Γp(up) = ∆pe
−γup , ∀ p ∈ P (3.14)

where ∆p is an upper bound of the demand Dp, up is the least cost path

connecting p ∈ P and γ > 0 is a factor which reflects the sensitivity of the

transport demand with respect to the transport cost. The upper bound ∆p

has been set as double the amount of the original O/D demand provided by

the network datasets, while γ has been set to 0.05.

The starting point (x0, z0) has been chosen as follows:

� z0 has been set, for each O/D pair, equal to ∆p/2, that is, the original

O/D demand Dp;

� x0 has been set by assigning, for each O/D pair, the remaining flow

quantity ∆p/2 to the shortest path in the unloaded network.

In conclusion, it is worth observing that the excess demand path with

flow zp is generally active. Its cost function Wp(·) in (3.10) is given as follows

Wp(zp) = − 1

γ
log

∆p − zp
∆p

(3.15)

If zp = 0, then the cost Wp(zp) is equal to zero. Since at least one real

path k is active with flow xk equal to ∆p > 0, its cost sk(x) must be zero.

However, since sa(·) is a nonnegative strictly increasing function, as assumed

in Assumption 2.3, this can not happen.

Moreover, zp should not be the only active path for p ∈ P . In such case,

zp = ∆p and its cost will be infinite, thus leading to numerical problems when

the directional derivative has to be computed. For this reason, a precaution

check has been implemented to avoid assigning all the demand to zp.

3.3.4 Numerical results

The analysis of the numerical results here reported aims to evaluate firstly

the convergence capability of the method Incremental Gradient Projection

(IGP) described in Section 2.7 with respect to the original GP (see [10, 28])
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and then to compare all the path-based method reported in Section 2.7

within the Adaptive Column Generation framework.

In order to evaluate IGP with respect to GP, in Table 3.2 a comparison

without any advanced column generation strategy is performed. Then, in

Table 3.3 where all path-based methods are reported, a comparison between

IGP and GP with the Adaptive Column Generation can be extracted. We

recall that, in Section 2.8.4, the solution without column generation has

been denoted by the suffix L1, thus in Table 3.2 we will compare IGP-L1

and GP-L1. Furthermore, it is worth noting that GP-L1 corresponds to

the Gradient Projection path-based method adapted for the elastic Traffic

Assignment Problem proposed in [55].

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B GP-L1 3.15 6.35 11.36 - -

IGP-L1 2.91 6.44 12.25 15.17 18.46

W GP-L1 4.84 - - - -

IGP-L1 4.43 10.37 18.75 26.50 33.26

CS GP-L1 4.02 8.15 12.06 15.58 18.88

IGP-L1 4.03 7.77 12.92 17.48 22.01

P GP-L1 640.52 - - - -

IGP-L1 508.09 2169.64 6973.41 - -

CR GP-L1 905.24 - - - -

IGP-L1 760.69 3368.17 12217.30 - -

S GP-L1 1102.28 1401.97 2569.08 - -

IGP-L1 1112.65 1751.07 2761.97 - -

Table 3.2: Comparison between IGP-L1 and GP-L1 in terms of CPU time

(secs.)

From Table 3.2, we can observe that the convergence capability of IGP

is generally improved with respect to GP. Considering the case of Winnipeg

(W), IGP is able to obtain a solution that is eight orders of magnitude more

accurate. However, keeping fixed the solution precision, GP is generally more

performant.

Introducing the Adaptive Column Generation ACG, in Table 3.3 we can

observe that the method GP-ACG seems to take advantage of the generally
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lower number of existing active paths, as it is discussed in Section 2.8.4 and

shown in Table 2.7. Both GP-ACG and IGP-ACG are able to reach the

highest precision rg = 10−14 on all networks, with the exception of Phladel-

phia (P) and Chicago-Regional (CR), where IGP-ACG is less accurate then

GP-ACG on the first and more accurate on the latter, respectively. Thus,

conversely from the case of inelastic demand, IGP-ACG does not lead to a

significant improvement of the convergence capability in the case of elastic

demand.

Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-ACG 4.23 6.11 8.58 11.29 13.76

GP-ACG 4.70 7.62 10.08 12.95 14.49

RGP-ACG 68.08 - - - -

IGP-ACG 4.75 9.85 12.85 15.14 16.78

W ISMO-ACG 2.60 4.59 7.20 9.61 11.40

GP-ACG 3.19 7.57 12.30 16.89 20.50

RGP-ACG 28.46 - - - -

IGP-ACG 3.18 5.74 8.53 11.16 13.13

CS ISMO-ACG 5.40 7.15 10.82 14.01 16.49

GP-ACG 6.06 8.57 10.66 13.03 14.75

RGP-ACG 74.73 230.78 - - -

IGP-ACG 7.05 10.27 13.72 16.69 18.93

P ISMO-ACG 319.52 892.31 2063.07 3125.33 3708.94

GP-ACG 402.51 1252.01 2972.87 4966.50 -

RGP-ACG 6634.81 - - - -

IGP-ACG 365.31 1012.12 - - -

CR ISMO-ACG 663.26 1453.85 2850.60 6204.40 9225.00

GP-ACG 732.44 2466.67 - - -

RGP-ACG 13253.30 - - - -

IGP-ACG 753.70 1438.05 6093.89 - -

S ISMO-ACG 1374.08 3358.54 3730.85 4530.50 4819.55

GP-ACG 1264.55 2302.03 3924.95 4850.31 5348.12

RGP-ACG - - - - -

IGP-ACG 1605.45 2113.11 4438.80 4795.76 5368.34

Table 3.3: Comparison of the path-based methods in terms of CPU time

(secs.)
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From what concern ISMO-ACG, as it has been already observed in Sec-

tion 2.8.6, it is the best path-based method among the tested algorithms even

in the elastic case. It is able to reach very high precisions on all the networks

and it exhibits the best performances with respect to the other methods, with

the only exception of network Chicago-Sketch. To our knowledge, such high

quality of the solutions were never achieved by existing algorithms in liter-

ature. Since ISMO-ACG is the best one, it outperforms the method GP-L1

proposed in [55] as a consequence.

The Rosen’s gradient-based method RGP-ACG encounters severe difficul-

ties even on small networks, as it can be noticed in Figure 3.2. The reasons

behind these results might be represented by either methodological or tech-

nical issues. However, at the moment no apparent problem has been found

during an analysis of the method execution.

Finally, in Table 3.4, the nonmonotone methods ISMO-NM and ISMO-

NM-A described in Section 2.6 are compared with ISMO-ACG.

Since at least two paths are active for each O/D pair, an equilibration is

always performed, which involves in algorithm ISMO-ACG the line search

procedure QLS described in Appendix A. At the contrary, in ISMO-NM the

initial stepsize given by the minimization of the quadratic approximation

is immediately accepted, thus leading to a considerable saving of computa-

tional time, in the case the convergence is not affected. Except for Chicago-

Regional, where ISMO-NM is not able to reach a precision greater than 10−8,

this is generally true for the other networks: the performances of ISMO-NM

are impressive with respect to ISMO-ACG, especially in the case of networks

Philadelphia and Sydney.

Contrary to what has been observed in the inelastic case, ISMO-NM-A

is not able to exhibit the same excellent performances even for the elastic

case, where the alternation process described in Section 2.6 affects nega-

tively the convergence of the method. Moreover, the sparsity of the solution

can’t be exploited with the purpose of reducing the number of O/D pairs to

equilibrate, since each O/D pair has at least two active paths.

3.3.5 Comparison of rgφ and rgτ

In this section we will show how the employment of measure rgτ (·) may lead

to misleading results compared to rg(·). We will consider the formula rgφ
derived in (2.49) since rgτ considers path flows as well. For example, let’s

consider the following case. Given a network with only one O/D pair p ∈ P ,



3.3 Computational Results 69

0 20 40 60

0

-3

-6

-9

-12

-15

Barcelona

r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

0 10 20 30 40

0

-3

-6

-9

-12

-15

Winnipeg
r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

0 100 200

0

-3

-6

-9

-12

-15

Chicago-Sketch

r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

0 5,000 10,000 15,000

0

-3

-6

-9

-12

-15

Philadelphia

r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

0 5,000 10,000 15,000

0

-3

-6

-9

-12

-15

Chicago-Regional

r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

0 5,000 10,000 15,000

0

-3

-6

-9

-12

-15

Sydney

r
g
(1

0
e
)

ISMO-ACG

GP-ACG

RGP-ACG

IGP-ACG

Figure 3.2: Comparison of the convergence behavior of the path-based algo-

rithms. CPU time (s).
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Dataset Algorithm 10−6 10−8 10−10 10−12 10−14

B ISMO-ACG 4.23 6.11 8.58 11.29 13.76

ISMO-NM 1.64 2.20 3.11 4.45 5.24

ISMO-NM-A 3.29 29.39 29.72 30.13 30.95

W ISMO-ACG 2.60 4.59 7.20 9.61 11.40

ISMO-NM 1.09 2.06 2.89 3.71 4.46

ISMO-NM-A 1.54 2.81 3.90 5.21 6.34

CS ISMO-ACG 5.40 7.15 10.82 14.01 16.49

ISMO-NM 2.81 3.44 5.11 6.77 7.82

ISMO-NM-A 7.31 57.39 - - -

P ISMO-ACG 319.52 892.31 2063.07 3125.33 3708.94

ISMO-NM 157.91 408.59 907.71 1338.05 1673.69

ISMO-NM-A 320.47 1056.85 - - -

CR ISMO-ACG 663.26 1453.85 2850.60 6204.40 9225.00

ISMO-NM 302.73 599.14 - - -

ISMO-NM-A 591.83 - - - -

S ISMO-ACG 1374.08 3358.54 3730.85 4530.50 4819.55

ISMO-NM 658.24 1338.90 1448.71 1768.95 1885.56

ISMO-NM-A 3311.78 - - - -

Table 3.4: Results of the nonmonotone algorithms in terms of CPU time

(secs.)

the set of active paths is made by the excess demand path zp with cost

Wp(zp), n paths xk with cost sk(x) = Wp(zp) and an other path xk? , which

is the shortest path, with cost sk?(x) = Wp(zp)/(n + 1). For simplicity, we

will assume that ξ = zp = xk = xk? = ∆p/(n+ 2), k = 1, . . . , n. Exploiting

the relative gap formula in (2.49) described in Section 2.8.8, we have

rgφ(x, z) =

ξ ·
n∑
k=1

(sk(x)− sk?(x)) + ξ · (Wp(zp)− sk?(x))

ξ ·
np∑
i=1

sk(x) + ξ ·Wp(zp) + ξ · sk?(x)

=

=
(n+ 1) · (Wp(zp)− sk?(x))

(n+ 1) ·Wp(zp) + sk?(x)
=

(n+ 1) ·
(
Wp(zp)−

Wp(zp)

n+ 1

)
(n+ 1) ·Wp(zp) + sk?(x)

=
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=
n ·Wp(zp)

(n+ 1) ·Wp(zp) + sk?(x)

and

rgτ (x, z) =

ξ ·
n∑
k=1

|sk(x)−Wp(zp)|+ ξ · |sk?(x)−Wp(zp)|

ξ ·
np∑
i=1

sk(x) + ξ ·Wp(zp) + ξ · sk?(x)

=

=
|sk?(x)−Wp(zp)|

(n+ 1) ·Wp(zp) + sk?(x)
=

∣∣∣∣Wp(zp)

n+ 1
−Wp(zp)

∣∣∣∣
(n+ 1) ·Wp(zp) + sk?(x)

=

=

n ·Wp(zp)

n+ 1
(n+ 1) ·Wp(zp) + sk?(x)

The ratio between the two measures is then

rgφ(x, z)

rgτ (x, z)
= n+ 1 (3.16)

This means that, in this case, the true relative gap rgφ(·) is (n+ 1) times

the one measured by rgτ (·). If n = 9, then there is a difference of one order

of magnitude between the two measures. Obviously, the O/D pair is not in

equilibrium, thus the measure given by rgφ(·) is more reliable than the one

obtained with rgτ (·).
Similar remarks can be done conversely, in case

sk(x) = sk?(x) = Wp(zp)/(n+ 1).

This time,
rgφ(x, z)

rgτ (x, z)
=

1

n+ 1
(3.17)

and the equilibrium solution of the O/D pair is (n+ 1) times more accurate

than what is measured by rgτ (·).
In Figure 3.3 an example of the gap between these two measures is re-

ported on Chicago-Sketch and Chicago-Regional with algorithm ISMO-NM.

While in the first stages of the optimization rgφ and rgτ are comparable, the

latter ends up with a relative gap that is lower than rgφ on Chicago-Sketch

and higher on Chicago-Regional.
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Figure 3.3: Comparison of the convergence behavior of rgφ and rgτ . CPU

time (s).

Finally, we can observe an oscillation behavior of rgτ right after the

achieving of 10−3 on Chicago-Sketch, while rgφ shows a smooth convergence

and thus seems to be more robust than rgτ .



Chapter 4

Black-box optimization for O-D

Matrix Estimation

In this chapter, the estimation of the Origin/Destination matrix problem

is considered. An Origin/Destination (O/D) matrix describes the behavior

of the traffic on a network and its knowledge represents an essential input

to many traffic models. Transportation demands are a critical requirement,

either in static or dynamic models for traffic assignment, indeed.

However, an accurate O/D matrix is rather hard to obtain, since demands

are not yet directly observable; thus, the current practice consists of adjusting

an initial or a historical matrix from link flow counts, speeds, travel times

and other aggregate demand data directly observable.

As smart cities evolve fast, the growing number of sensors lets the collec-

tion of useful information for the estimation of O/D matrices of large-scale

real networks. The increasing availability of traffic measurements, as it is

pointed out in [30], leads to the formulation and development of more accu-

rate and efficient algorithms. However, since most of the existing algorithms

rely on the use of a TAP algorithm in a bi-level programming approach, the

accuracy of the estimated matrix strongly depends, besides the quality of

the seed matrix, on the equilibrium precision achievable by the TAP algo-

rithm. Furthermore, the efficiency of the equilibrium process has a key role

in the estimation problem, especially in the case large-scale networks are

considered.

In this chapter, the ability of the algorithm ISMO-ACG to reach high

precision solutions with high computational performances is exploited in the

73
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O/D matrix estimation problem. The chapter is organized as follows. In

Section 4.1, the main contributions on the O/D matrix estimation problem

existing in literature are briefly described. In Section 4.2, a basic black-

box derivative-free method is presented which takes advantage of the TAP

algorithm ISMO-ACG, while in Section 4.3 a decomposition-based approach

has been developed in order to deal with real-size network problems. Finally,

in Section 4.4, the results of the approaches are discussed, both from the

optimization and the estimation points of view.

4.1 Related Work

The problem of estimating an Origin/Destination (O/D) matrix from ob-

served traffic flows on road networks has gained a lot of attention in past

decades. Several methods have been proposed and these mainly differ in the

way that the observed data is used and the resulting O/D matrix is assigned

to the paths of the networks.

Initially, uncongested networks were considered, as in [61]. Then, in

[9,15,29,56,63], congested networks have been introduced in the estimation

problem, leading to the formulation of a bi-level programming problem. In

such methods, the observed link flows are assumed to be an equilibrium flow

pattern with respect to the Wardrop’s first principle (User Equilibrium, [62])

stated in Definition 1 in Chapter 2.

Due to nonconvexity and nondifferentiability, bi-level programming prob-

lems are generally hard to solve. Moreover, the evaluation of the objective

function or the gradient vector of the upper level (leader) problem requires

the computation of the solution of the lower level (follower) problem.

As a consequence, in recent years, many single-level approaches have

been proposed in order to overcome the difficulties caused by the bi-level

formulation. In [42] the estimation and the equilibrium steps are merged

in a single-level continuous formulation, while in [46], and in a following

development [59], the Wardrop’s user equilibrium principle is not strictly

enforced, thus leading to the involvement of paths which do not satisfies the

equilibrium conditions.

In [30], the O/D matrix estimation problem has been formulated as a

black-box derivative-free optimization problem where various traffic data

types have been used. With a dynamic traffic assignment model as a black-

box, several derivative-free methods have been tested.
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4.2 A black-box approach

The aim is to estimate the O/D matrix D, i.e., the demand Dp for each

O/D pair p ∈ P , starting from a set Ā ⊆ A of network arcs for which the arc

flow v̄a, a ∈ Ā, is observed. The observations v̄a are assumed to be relative

to an equilibrium state of the network with respect to the user equilibrium

principle. Starting from the bi-level programming problem

min
x,v,D

1

2

∑
a∈Ā

(va(x)− v̄a)
2

s.t. Dp > 0, ∀ p ∈ P

x ∈ arg min
z

{
f(z) :

np∑
i=1

z(p),i = Dp, z(p) ≥ 0,∀ p ∈ P

} (4.1)

where x is the solution of the equilibrium problem stated in Proposition 2.5

and va(x) =
∑
k∈K δakxk, the black-box problem is given as follows, with

the notation introduced in Chapter 2,

min
D

F (D) =
1

2

∑
a∈Ā

(va − v̄a)
2

s.t. v = TAP(D)

lb ≤ Dp ≤ ub ∀ p ∈ P

(4.2)

where

TAP : R|V |×|V | → R|A|

is the black-box function that, given the O/D matrix D, returns the vector

of arc flows of the network in equilibrium and lb, ub are the lower and upper

bounds of Dp, respectively.

The aim of this work is to evaluate the algorithm ISMO-ACG presented in

Section 2.5 as the black-box function TAP in (4.2). The black-box algorithm

developed is basically a coordinate descent algorithm. We refer with ISMO-

CD to this solution in the following. In Algorithm 9 a sketch of the adopted

approach is reported where we conveniently denote with ∆t
e the mesh size

along the direction e which corresponds to a specific coordinate, i.e., a specific

O/D demand variable.
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Algorithm 9: Sketch of ISMO-CD Coordinate Descent Algorithm

Data: An initial matrix D0, an initial mesh size ∆0 ∈ R|P |

1 t← 0;

2 E ← {e1, . . . , e|P |,−e1, . . . ,−e|P |};
3 while a termination criterion is not met do

4 d← arg min
e∈E

F (Dt + ∆t
ee);

5 D̄ ← Dt + ∆t
d d;

6 if F (D̄) < F (Dt) then

7 Dt+1 ← D̄;

8 else

9 Dt+1 ← Dt;

10 end

11 ∆t+1 ← updateMesh(∆t, F (D̄), F (Dt));

12 t← t+ 1;

13 end

4.3 A decomposition-based black-box

approach

The results reported in the literature generally refer to test networks with

limited size and number of O/D pairs, whose demand has to be estimated,

mainly due to the difficulties encountered by the existing methods when

dealing with large-scale real networks. Here we apply a typical Gauss-Seidel

decomposition on the O/D demand variables in order to decompose the

problem and take advantage of a smaller dimension of the subproblems.

Similar solution have been employed in [23] and in [37], where derivative

information is available only on a subset of blocks, while on the others a

derivative-free approach is used.

In Algorithm 10 we report the integration of ISMO-CD in a Gauss-Seidel

decomposition framework. The method is called D-ISMO-CD.

4.4 Computational results

The computational results are divided in two main parts. In the first one, the

algorithm ISMO-CD is evaluated and then compared with other estimation
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Algorithm 10: Decomposition-based ISMO-CD (D-ISMO-CD)

Data: An initial matrix D0 = {D0
1, D

0
2, . . . , D

0
m}, a maximum number

of iterations tmax, a block decomposition B = (b1, . . . , bm)

1 t← 0;

2 while t < tmax do

3 for b ∈ B do

4 Dt+1
b ∈ arg min

ξ
F (Dt+1

1 , Dt+1
2 , . . . , ξ, . . . ,Dt

m) using ISMO-CD;

5 end

6 Dt+1 = (Dt+1
1 , Dt+1

2 , . . . , Dt+1
m );

7 t← t+ 1;

8 end

methods existing in literature on benchmark networks. In the second part,

the decomposition-based solution D-ISMO-CD is compared with ISMO-CD

on a larger network then the benchmark ones in order to evaluate the effect

of the space decomposition in the estimation process.

For what concern ISMO-CD, in order to perform a robust evaluation of

the effectiveness of an O/D estimation algorithm, a validation framework

has to be defined. In this work, we refer to the framework reported in [59],

which is quite commonly used in the O/D estimation literature.

4.4.1 Test problems

The test problems used for the experiments are described in Table 4.1.

Network Code # links # nodes # centroids # O/D pairs

Yang Y 14 9 4 4

Sioux-Falls Small SFS 76 24 9 6

Sioux-Falls SF 76 24 24 528

Table 4.1: Network datasets details

The two small networks are used as benchmark networks for the evalu-

ation of the estimation capability of ISMO-CD whereas the original Sioux-

Falls network with 528 O/D demands is used for the tests concerning the

decomposition-based approach D-ISMO-CD, since such dimension is com-
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monly considered as large-scale for the estimation of the O/D demand ma-

trix.

It can be observed that the first two networks count a very small number

of O/D pairs as they are commonly used as a benchmark for O/D estimation

algorithm. The network Yang is a small grid originally appeared in [63] and

used in [46, 59]. The network Sioux-Falls Small differs from the original

network Sioux-Falls in the O/D pairs number. The networks Yang and

Sioux-Falls Small are reported in Figures 4.1 and 4.2, along with the true

O/D matrices.

4.4.2 Measure of performances

The effectiveness of the algorithm is measured evaluating the quality of the

O/D matrix estimation. In [59], several measures have been used. In this

work, however, only the Percentage Root Mean Square Error (PRMSE) is

used. Denoting with D? the true O/D demand matrix, the PRMSE measure

is as follows.

PRMSE(D) = 100 ·

√∑
p∈P (Dp −D?

p)2

|P |

/∑
p∈P D

?
p

|P |
(4.3)

4.4.3 Validation framework

Once a true O/D matrix D? is defined, as the ones available in benchmark

networks Yang and Sioux-Falls Small, an equilibrium solution is computed

and the arc flows on the network in equilibrium, which represents link counts,

are considered as the only data source available.

Then, the estimation process is evaluated varying the following parame-

ters.

� Standard deviation σp of a normally distributed variable used to sample

an initial historical demand D̂p from the true one D?
p: since the true

matrix D? is unknown and has to be estimated, a historical matrix

D̂ is built, where each O/D demand D̂p is sampled from a normally

distributed variable with mean D?
p and variance σ2

p. The value σp has

been set proportional to the true demand D?
p, i.e.,

σp = εD?
p
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(a) Network

O D Demand

1 3 200

1 4 150

2 3 140

2 4 185

(b) True O/D matrix

Figure 4.1: Yang (image by [59])

(a) Network

O D Demand

4 20 20000

4 21 10000

12 2 5000

12 18 10000

24 3 15000

24 8 15000

(b) True O/D matrix

Figure 4.2: Sioux-Falls Small (image by [59])
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where several values of ε has been chosen in order to simulate different

levels of reliability of the historical matrix D̂,

ε ∈ {0.01, 0.1, 0.2,∞}.

With ε =∞ we conveniently indicate the case of maximum uncertainty,

in which the historical matrix D̂ is set to zero.

� The probability parameter p̄ of a Bernoulli distribution such that dif-

ferent coverage cases of link counts can be evaluated1. Values chosen

for p are the following.

p̄ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Besides the evaluation of the quality of the estimation related to different

combinations of accuracy of the historical demand matrix and coverage per-

centage of link counts, the effect of the TAP algorithm has been evalutated

with respect to different precisions of the equilibrium solution. Since the

assumption on the observed data is that the link flows satisfy the Wardrop’s

User Equilibrium condition, the quality of the solution of the black-box func-

tion may affect the estimation process. For this reason, several precision

levels have been considered

rg ∈ {10e−4, 10e−7, 10e−10, 10e−14}

where rg is the Relative Gap measure described in Section 2.8.2.

Finally, each test combination

(ε, p̄, rg)

is performed ten times and the mean values of the objective function F (·)
and PRMSE measure are considered.

4.4.4 Implementation details

The TAP algorithm used for the O/D estimation is ISMO-ACG with the

implementation details described in Section 2.8.3. For what concern the

1However, a sensor coverage pattern with parameter p̄ does not necessarily have 100·p̄%
of the links being chosen as observed links.
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derivative free method of coordinate descent, the NOMAD library [1] in-

spired by the contributions [3,33] has been employed, which is a C++ black-

box optimization software. In order to perform a basic coordinate descent

optimization, only the set of directions GPS 2N STATIC has been used and

the model search as well as the opportunistic evaluation and the spectu-

lative search have been disabled. Besides the default termination criteria

employed by NOMAD, as the limits of the mesh size for example, for each

run a maximum number of evaluations has been set to 5000.

4.4.5 Numerical results of ISMO-CD

In Tables 4.2 and 4.3 are reported the results of ISMO-CD on networks Yang

and Sioux-Falls Small concerning the final objective function F (·) of the

black-box problem (4.2) and the O/D matrix estimation measure PRMSE,

respectively. In order to understand properly the results reported in the

tables, a threshold equal to 10−5 has been identified and results with the

value greater than such threshold are reported in bold face and considered

as failures of either the optimization of (4.2) or the O/D matrix estimation.

In this way, the evaluation of the effect of different values of ε, p̄ and rg can

be discussed without actually analyze the numbers in details.

Starting from the results of the objective function, from Table 4.2 it is

clear that the performances improve as the coverage of link count increases.

For what concern the reliability of the historical matrix, as the uncertainty

around the true demand matrix increases, the algorithm reaches the optimum

less frequently. However, the performances do not degrade as expected, even

for low percentages of link coverage or for the case ε =∞.

This is generally true for both networks Yang and Sioux-Falls Small.

However, in case of low precisions of the TAP algorithm, significant difference

in the results can be observed when the parameter ε varies from 0.01 to 0.2.

When rg = 10−4, the poor quality of the equilibrium solution together with

a high uncertainty of the historical matrix lead to local minima. From Table

4.2, it can be observed that high precisions of the equilibrium lead to better

performances in general, especially in the case of network Sioux-Falls Small.

However, since each result is the average value of ten runs, some of them

may be affected by individual runs that fail to reach the optimum, leading

to a high final average value. As an example, the cases of (ε = 0.1, p̄ =

0.2, rg = 10−4) and (ε = 0.1, p̄ = 0.2, rg = 10−14) discredit the idea that

high precisions of the TAP algorithm lead to better estimation results.
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rg(1e-) ε p̄=0.2 p̄=0.3 p̄=0.4 p̄=0.5 p̄=0.6 p̄=0.7 p̄=0.8 p̄=0.9

4 0.01 0.0e+00 7.1e-25 3.7e-26 5.6e-25 1.0e-04 3.4e-26 8.6e-26 3.6e-26

4 0.1 2.7e-25 5.7e-27 2.5e-26 2.8e-25 9.0e-26 1.5e-25 4.0e-25 1.6e-25

4 0.2 1.6e+02 6.5e-26 3.2e-24 1.0e-25 6.0e-26 9.5e-26 2.6e-25 1.1e-25

4 ∞ 0.0e+00 2.3e-27 1.3e-28 3.0e-26 0.0e+00 0.0e+00 3.3e-26 1.7e-28

7 0.01 1.3e-25 3.6e-20 5.5e-25 9.9e-23 5.1e-25 1.1e-25 7.1e-26 8.2e-26

7 0.1 0.0e+00 1.5e-25 2.1e-06 9.2e-25 7.8e-27 4.5e-26 8.4e-26 2.0e-26

7 0.2 3.8e+02 9.0e-26 3.1e-25 2.3e-07 9.7e-26 6.4e-26 6.0e-26 1.7e-25

7 ∞ 7.8e-26 0.0e+00 1.4e-25 2.9e-08 3.7e-26 2.9e-26 5.4e-26 5.3e-26

10 0.01 1.2e-24 5.0e-26 1.2e-23 5.1e-04 1.5e-21 1.3e-20 1.2e-21 1.2e-21

10 0.1 1.2e-20 9.6e-05 1.3e+00 3.3e-21 5.6e-20 9.1e-22 9.7e-21 2.5e-21

10 0.2 8.2e-27 3.5e-07 3.0e+00 1.9e-02 2.9e-21 3.4e-21 4.7e-21 5.7e-21

10 ∞ 2.2e-17 5.6e-21 2.0e-23 2.0e-21 3.4e-29 2.8e-24 1.7e-21 6.6e-21

14 0.01 3.2e-26 2.6e-25 1.3e-25 3.9e-11 1.4e-23 1.6e-24 6.5e-24 6.1e-24

14 0.1 1.1e-25 4.6e-23 8.7e-24 8.7e-24 1.6e-23 8.8e-24 5.4e-24 2.0e-23

14 0.2 6.8e-22 1.2e-23 1.1e-23 9.4e-02 2.4e-24 1.5e-23 2.0e-25 1.7e-23

14 ∞ 1.6e-25 1.1e-27 7.9e-26 7.9e-24 2.0e-25 1.5e-23 2.0e-23 1.7e-23

(a) Yang

rg(1e-) ε p̄=0.2 p̄=0.3 p̄=0.4 p̄=0.5 p̄=0.6 p̄=0.7 p̄=0.8 p̄=0.9

4 0.01 2.8e-20 5.7e-16 1.6e-22 2.7e+00 8.3e-23 2.3e-01 9.2e-23 8.2e-23

4 0.1 1.0e-22 2.2e-22 2.6e-22 5.0e-22 2.2e-01 3.9e-01 3.3e-01 2.9e-01

4 0.2 4.0e+05 9.5e+04 5.8e+00 4.2e+05 1.8e-22 1.1e-22 1.5e-22 3.2e-01

4 ∞ 5.7e-01 6.1e-23 6.1e-23 9.7e-23 1.1e-22 7.8e-23 2.0e-22 7.8e-23

7 0.01 8.2e-03 3.9e-08 2.2e-07 3.6e-08 2.1e-10 4.0e-07 1.3e-07 2.3e-07

7 0.1 1.5e+00 2.4e-08 1.9e-07 8.7e-10 1.9e-10 2.2e-09 4.2e-13 1.6e-09

7 0.2 1.1e-07 2.6e-02 3.9e-12 4.1e-09 2.2e-09 6.2e-11 3.7e-08 1.0e-13

7 ∞ 9.8e-09 2.0e-07 7.5e-16 1.1e-08 1.5e-14 1.7e-08 7.7e-16 1.1e-11

10 0.01 1.1e-07 4.6e-03 2.8e-12 6.5e-13 1.0e-12 1.5e-12 5.6e-13 8.1e-13

10 0.1 2.7e-12 8.5e-13 7.3e-13 1.1e-12 8.6e-13 9.6e-13 2.2e-13 2.2e-13

10 0.2 3.8e-08 1.8e-01 1.2e-12 7.5e-12 1.3e-12 4.7e-13 4.8e-13 5.0e-13

10 ∞ 2.3e+05 5.2e+00 1.5e-13 3.8e-13 5.0e-13 1.2e-12 2.1e-13 4.8e-13

14 0.01 3.0e+00 1.5e-02 2.6e-20 2.2e-20 2.4e-20 6.8e-20 2.1e-20 8.9e-21

14 0.1 1.3e+04 9.0e-14 6.9e-20 2.2e-20 2.0e-20 1.5e-20 8.5e-20 2.7e-20

14 0.2 9.3e+03 2.0e-20 1.7e-06 1.8e-20 2.5e-20 3.0e-16 4.2e-20 5.3e-18

14 ∞ 7.0e+00 1.3e-20 2.2e-20 4.0e-21 5.4e-21 1.2e-20 8.3e-21 1.3e-20

(b) Sioux-Falls Small

Table 4.2: Final objective function values. Values greater than 1e − 5 are

reported in bold face.

Analogous remarks can be done for the analysis of the PRMSE measures

reported in Table 4.3. While solving the black-box problem does not imply

obtaining a clean estimation of the true O/D demand matrix in general, in

this case a correspondence can be found, mainly because the networks are

small and only a few O/D pairs are considered. There nevertheless is the

case of Yang, in which a good estimation of the true demand matrix seems
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rg(1e-) ε p̄=0.2 p̄=0.3 p̄=0.4 p̄=0.5 p̄=0.6 p̄=0.7 p̄=0.8 p̄=0.9

4 0.01 1.1e+01 1.3e-12 5.9e-01 1.7e-12 9.0e-01 6.2e-13 2.4e-13 1.4e-13

4 0.1 7.4e+00 5.2e+00 7.5e-13 1.4e-12 9.6e-13 3.7e-13 1.0e-12 4.0e-13

4 0.2 4.7e+01 1.7e-13 9.2e-12 2.4e-13 1.7e-13 3.0e-13 3.6e-13 2.6e-13

4 ∞ 0.0e+00 1.1e+02 0.0e+00 1.3e-13 0.0e+00 0.0e+00 1.3e-13 0.0e+00

7 0.01 9.8e-13 1.3e-09 9.2e-13 1.6e-11 1.3e-12 2.6e-13 1.9e-13 2.4e-13

7 0.1 4.3e+01 7.3e-13 3.4e+00 1.3e-12 3.5e-13 1.7e-13 2.8e-13 1.1e-13

7 0.2 5.9e+01 3.6e-13 8.5e-13 2.9e-03 3.3e-13 4.9e-14 1.8e-13 3.5e-13

7 ∞ 2.5e-12 0.0e+00 3.8e-13 6.6e+00 0.0e+00 6.7e-14 0.0e+00 0.0e+00

10 0.01 2.6e-01 6.7e-11 1.0e-10 7.4e-01 2.8e-11 1.2e-10 2.9e-11 2.5e-11

10 0.1 2.6e-10 1.2e+01 1.5e+01 4.7e-11 1.8e-10 2.3e-11 1.0e-10 3.5e-11

10 0.2 2.4e+01 5.1e-03 7.2e+00 1.8e+00 5.7e-11 4.7e-11 5.7e-11 6.5e-11

10 ∞ 7.2e+01 7.0e-11 9.5e-11 1.1e-10 0.0e+00 0.0e+00 3.9e-11 1.0e-10

14 0.01 1.8e-01 1.3e-01 4.4e-01 4.7e-05 6.3e-12 1.9e-12 1.8e-12 1.4e-12

14 0.1 6.7e+00 2.7e-11 2.8e-12 2.0e-11 3.0e-12 2.9e-12 1.7e-12 3.6e-12

14 0.2 1.1e-10 3.4e+00 3.3e-12 8.0e+00 2.2e-12 3.5e-12 3.3e-13 2.8e-12

14 ∞ 4.3e-12 3.9e+01 3.8e+01 2.2e-12 6.7e-14 2.7e-12 2.7e-13 3.0e-12

(a) Yang

rg(1e-) ε p̄=0.2 p̄=0.3 p̄=0.4 p̄=0.5 p̄=0.6 p̄=0.7 p̄=0.8 p̄=0.9

4 0.01 5.7e-12 6.2e-10 6.4e-13 7.4e-02 2.4e-13 1.3e-02 2.0e-13 1.3e-13

4 0.1 2.7e-13 4.7e-13 4.1e-13 4.1e-13 2.0e-02 1.9e-02 1.2e-02 1.3e-02

4 0.2 3.3e+01 2.7e+01 1.9e+00 3.1e+01 2.7e-13 1.8e-13 2.6e-13 1.6e-02

4 ∞ 7.7e-02 1.7e-13 2.0e-13 3.8e-13 2.4e-13 1.3e-13 3.8e-13 1.5e-13

7 0.01 5.1e-02 5.3e-06 3.2e-05 1.3e-05 3.5e-07 5.1e-05 1.2e-05 1.6e-05

7 0.1 4.8e+00 9.6e-06 7.4e-05 1.4e-06 4.0e-07 1.4e-06 1.9e-08 1.0e-06

7 0.2 1.7e+01 2.2e-02 6.2e-08 2.6e-06 1.5e-06 2.3e-07 5.7e-06 1.0e-08

7 ∞ 5.7e-06 2.8e-05 5.9e-10 4.4e-06 2.2e-09 2.8e-06 5.5e-10 1.1e-07

10 0.01 1.6e+00 1.4e-02 1.1e-07 1.8e-08 4.8e-08 3.6e-08 3.2e-08 1.9e-08

10 0.1 3.6e-08 4.7e-08 1.8e-08 3.0e-08 1.8e-08 5.0e-08 1.1e-08 7.3e-09

10 0.2 1.7e-05 7.4e-02 6.5e-08 9.3e-08 5.0e-08 1.7e-08 1.0e-08 1.6e-08

10 ∞ 3.8e+01 3.0e+00 2.3e-09 2.4e-08 1.8e-08 2.9e-08 9.0e-09 8.8e-09

14 0.01 1.0e+00 2.2e-01 5.4e-12 4.6e-12 4.5e-12 7.4e-12 2.1e-12 2.1e-12

14 0.1 7.0e+00 1.4e-08 5.6e-12 4.6e-12 3.9e-12 2.9e-12 7.5e-12 4.5e-12

14 0.2 5.2e+01 6.9e-12 4.4e-05 2.3e-12 3.2e-12 6.2e-10 4.7e-12 6.1e-11

14 ∞ 1.3e+00 4.4e-12 6.3e-12 1.1e-12 0.0e+00 2.3e-12 3.2e-12 2.3e-12

(b) Sioux-Falls Small

Table 4.3: PRMSE measure. Values greater than 1e−5 are reported in bold

face.

to be achievable starting from a coverage pattern with p̄ greater than 0.5,

although the black-box problem is often solved at the optimum.

In Table 4.4 a comparison in terms of PRMSE of the algorithm ISMO-CD

is performed with the results reported in [59], where a bi-level programming

approach developed by Patriksson et al. [29] is compared with the single-level

methods proposed by Nie et al. [46] and Shen et al. [59]. In these results,
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Network Algorithm ε θ<50% 50%≤θ≤75% θ>75%

Y Patriksson et al. 18.14 0.44 0.01

Nie et al. 59.47 35.84 33.25

Shen et al. 63.87 5.53 6.41

ISMO-CD 0.01 1.05 0.14 7.2e-12

ISMO-CD 0.1 7.73 2.3e-11 1.7e-11

ISMO-CD 0.2 11.72 0.82 1.5e-11

ISMO-CD ∞ 21.58 0.55 1.7e-11

SFS Patriksson et al. 22.38 8.68 2.33

Nie et al. 46.86 46.86 6.00

Shen et al. 33.54 12.30 0.00

ISMO-CD 0.01 0.24 7.3e-03 3.5e-06

ISMO-CD 0.1 0.98 3.2e-03 3.1e-03

ISMO-CD 0.2 10.92 2.58 2.0e-03

ISMO-CD ∞ 3.53 6.0e-07 1.6e-08

Table 4.4: PRMSE for three different classes of coverage.

three different levels θ of coverage are reported. For the considered algorithm

ISMO-CD, we report the average results with respect to the four different

values of ε computed considering all the levels of coverage and all the preci-

sions of the TAP algorithm. In such a way, the comparison with the other

methods is not affected by different strategies concerning the computation

of the historical matrix. The most unfavorable case for ISMO-CD is indeed

the case with ε =∞ and one may refer to it for the comparison.

Despite the simplicity of the method, the results reported in Table 4.4

show that ISMO-CD is able to obtain very accurate estimations of the true

O/D demand matrix compared to the other methods, regardless the level of

coverage θ and the uncertainty of the historical matrix related to the values

of ε.

4.4.6 Numerical results of D-ISMO-CD

The evaluation of the decomposition approach D-ISMO-CD is performed

with respect to the case without decomposition ISMO-CD. In this section

we aim to evaluate both the effectiveness of this strategy and the impact as

the size of the problem increases. For what concern the comparison with
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ISMO-CD, the overall number of function evaluations of each test has been

maintained fixed in order to ensure fairness. For the latter goal, since Sioux-

Falls counts 528 O/D demands, several sub-networks can be defined.

In Table 4.5 six different networks have been derived from Sioux-Falls, in

which SF528 corresponds to SF and the other have been built maintaining

the network and subsampling the O/D matrix. For each problem size, several

space decomposition patterns have been tested with the same break-down

rule used for the subsampling of the O/D matrix. In such a way, the test

bed can be easily illustrated in Table 4.5 and in the following. Furthermore,

for each test and for each block count, a number of Gauss-Seidel iterations

and maximum evaluations per run have been set in order to ensure that

the overall number of evaluations will be the same for each problem size.

Finally, the case with one block corresponds to ISMO-CD and no external

Gauss-Seidel iteration is performed in this test.

For what concern the employment of ISMO-CD inside of D-ISMO-CD,

the following settings have been used:

(ε = 0.1, p̄ = 0.5, rg = 10−12)

Each result of D-ISMO-CD is the average of ten runs and the mean of ob-

jective function F (·) and PRMSE has been collected in Tables 4.6 and 4.7,

respectively.

For what concern the performances from the black-box optimization point

of view, the results show the effectiveness of the approach. We can observe

that the cases with a small number of variables in each block (from 2 to at

most 6) are the best ones. The gap between D-ISMO-CD and the 1-block

optimization is more evident as the size of the network increases. Although

the number of evaluations is the same for all the tests, the approach with de-

composition may take advantage of several subsequent runs of the black-box

optimization on different and separate parts of the variables space. Bas-

ing on these considerations, we have performed further tests with one block

increasing the outer number of Gauss-Seidel iterations while reducing the

number of black-box evaluations of each run in order to maintain the fixed

number of total evaluations. The aim of this test is to restart the coordinate

descent method from the current iteration several times, restoring the initial

mesh size.

The results of this test are not reported here since significant differences

with respect to the case with one single run have not be observed. Thus,

we can conclude that the main benefit of the decomposition consists in the
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Networks
# blocks

1 11 33 66 132 264 528

SF528 # iterations 1 32 24 16 12 8 8

# run evals 152064 432 192 144 96 72 36

# total evals 152064 152064 152064 152064 152064 152064 152064

SF264 # iterations 1 32 16 12 8 8

# run evals 76032 216 144 96 72 36

# total evals 76032 76032 76032 76032 76032 76032

SF132 # iterations 1 24 12 8 8

# run evals 38016 144 96 72 36

# total evals 38016 38016 38016 38016 38016

SF66 # iterations 1 12 8 8

# run evals 19008 144 72 36

# total evals 19008 19008 19008 19008

SF33 # iterations 1 8 8

# run evals 9504 108 36

# total evals 9504 9504 9504

SF11 # iterations 1 8

# run evals 3168 36

# total evals 3168 3168

Table 4.5: Test bed for the evaluation of the decomposition approach

Networks
# blocks

1 11 33 66 132 264 528

SF528 2330 127 16.5 3.49 3.36 2.52 5.01

SF264 4830 89.9 26.2 26.7 16.4 36

SF132 1520 60 5.24 7.59 8.51

SF66 318 3.83 9.75 10.5

SF33 257 2270 3.62

SF11 0.0699 0.0396

Table 4.6: Final objective function values. Best values are reported in bold

face.
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Networks
# blocks

1 11 33 66 132 264 528

SF528 125.0 75.2 86.3 90.9 97.8 96.3 82.4

SF264 256.0 88.2 82.0 68.6 87.7 74.4

SF132 127.0 75.1 55.6 67.5 47.6

SF66 65.4 27.6 26.1 31.1

SF33 19.1 18.4 16.2

SF11 7.84 8.94

Table 4.7: PRMSE measure. Best values are reported in bold face.

alternation of several optimizations on small sets of variables. Anyway, a

rigorous analysis of the reasons underneath the performances of D-ISMO-

CD have not be performed yet and we are currently trying to confirm such

results on a general benchmark with several well-known test problems in the

field of derivative-free optimization.

The estimation capability of the approach is improved as well, as it can

be observed in Table 4.7. However, differently from the case of the test

networks Yans and Sioux-Falls Small, the Percentage Root Mean Square

Error (PRMSE) is considerably high and it generally increases as the number

of O/D pairs increases. As an example, on SF528 the test with the best

PRMSE is able to estimate the O/D matrix demand with an average error

of 75% on each demand variable.

The parameter p̄ = 0.5 may lead to these poor results from the estimation

point of view, thus we performed another test, here not reported, in which the

link coverage has been extended to 80%, which is unlikely in real scenarios.

However, although the estimation capability improves, the best PRMSE on

SF528 is nearly equal to 50%.

From these test on Sioux-Falls (528 O/D pairs) we can observe that,

while the optimization problem can be solved even for real networks, the

estimation task is still hard in case of a number of O/D pairs greater than a

few dozens.

In conclusion, since the networks SF11, SF33, SF66, SF132, SF264 have

been built subsampling the original O/D demand of network Sioux-Falls, the

results and the complexity of the estimation problem may be affected by the

sampling approach. Furthermore, considering only a part of the O/D pairs

means obtaining a new user equilibrium solution which is fundamentally

different from the original one. Thus, we have followed another approach
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in which the O/D matrix is not sampled and the variables not considered

in the optimization are maintained fixed to the true value. For example, in

case of SF11, the estimation involves 11 variables, while the remaining 517

are fixed. In such a way, no fictitious element might be inserted from the

subsampling process.

Anyway, the results obtained generally confirm what have been observed

for both the estimation and the optimization capabilities of D-ISMO-CD and

ISMO-CD.



Chapter 5

Zone Planning Problem

Starting from a robust O/D demand estimation framework, transportation

planners can deal with several modelling scenarios. One of these could be

the design of new transportation systems. Since a new public transportation

solution has to satisfy both customers and companies needs, the knowledge

of how many users actually travel from an origin to a destination has a

significant relevance when the effect of a variation has to be evaluated.

For a transportation planning task like the one described in this chapter,

i.e., a zonal-based tariff system, one may take advantage of the development

of a demand estimation framework in order to build a public transportation

O/D demand matrix, rather than, for example, relying on outdated surveys.

This chapter is structured as follows. In Section 5.1, an introduction of

the problem is reported. In Section 5.2, the zone planning problem is intro-

duced and described while in Section 5.3 a brief analysis of the literature on

zone planning methods is reported. In Section 5.4, the proposed algorithm is

described, along with an overview on metaheuristics. Finally, computational

results are reported and discussed in Section 5.5.

5.1 Introduction

The planners of public transport systems have shown a rising interest in

promoting the integration of different means of transport and companies

in order to improve the attractiveness of their offers (see, e.g., [27, 57]).

Nowadays the integration is commonly achieved simplifying and unifying

the ticket and the tariff system. While traditional tariff plans were based on

89
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distance traveled and on special marketing strategies, zone tariff plans are

based on a partition of the public transport network into a finite number of

zones and the price of a ticket just depends on the number of zones which

have to be traversed during a trip from origin to destination. An increasing

number of municipalities in Europe switched to this system or are planning

such a change of pricing policy (see, for example, the fare systems in many

German cities like Köln, Frankfurt, München, or the regional fare system

in the Saarland’s area studied in [27]). We were faced ourselves with this

interesting problem for a study regarding the design of tariff zones for the

Tuscany region of Italy. There exist also alternative fare systems, even within

those based on zones, in which the fare depends explicitly on the origin and

destination zones. Although a methodology like the one proposed here might

in principle be extended to this case also, we did not pursue this here.

In [21] a set of methods is presented, which can be used to approximately

solve the zone planning problem. This problem is characterized by two levels:

in the first level, assuming a partition of the network into zones has been

already performed, the problem to be solved is that of deciding the cost of the

ticket required to travel between any two zones. This decision should take

into account the conflicting objectives of transport companies, who do not

want to lose income, and of users, who are not willing to pay more than they

used to pay with the original system. It has already been shown [57], and

here we generalize the result, that this problem is easily solved. At the second

level, given the rule to generate “optimal” tariffs, the problem becomes that

of designing the zones. Here we propose a local-search based heuristic which

produces very good results in reasonable time, when compared with the few

existing algorithms in the literature.

5.2 Problem definition

Let G(N,A) be the graph of a Public Transportation Network (PTN), where

the node set N represent single bus stops, or demand centroids or even whole

municipalities. An arc exists between any pair of nodes directly connected

by a public transport line. By this we mean that an arc connects two nodes

i, j ∈ N if and only if there is at least one way by which, through public

transport, it is possible to travel from i to j or viceversa without touching

any other node in N . If N are bus stops, arcs connect stops which are

adjacent along at least a bus line. If N is composed of regions (e.g., zones
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with the same zip code), arcs connect two zones if a bus connection exists

between the two zones which does not need to touch any other region.

Given L ∈ N, any partition of nodes in G, Z = {Z1, Z2, . . . , ZL}, such

that

Z1, Z2, . . . , ZL ⊆ N

Zi
⋂
Zj = ∅ ∀ i 6= j

L⋃
i=1

Zi = N,

might be called a zone partition; usually, however, the subgraph of G induced

by each zone Zi,

( Zi, {(u, v) ∈ A : u ∈ Zi, v ∈ Zi} ) ,

is assumed to be connected, i.e. we require that, once a zone has been

defined, it is possible to travel between any two nodes in the same zone

without having to cross a zone border.

Given any two nodes u, v ∈ N , let nuv the minimum number of zones bor-

ders to be crossed along a path in G from u to v. Given a zone partition, the

zone planning problem consists in deciding the price c(n) to be paid by users

whose shortest path from origin to destination crosses n ≥ 0 zones borders;

of course the case n = 0 corresponds to trips which are included in a single

zone. By “shortest path” in this context we mean the path which requires

the minimum number of zone border crossing, as the total tariff to be paid

increases with the number of zones. Any user traveling from node u to node

v has to pay a ticket whose price is c(nuv). We assume that customers travel

along shortest paths from origin to destination, even if it might happen,

however, that other factors, different from shortest paths, might influence

customer choices, like traveling time, ticket price or the number of changes

of means of transportation along a path. Here we assume that users travel

along a path with minimum number of zone crossing, as this also corresponds

to minimum cost paid per travel.

Let D ∈ N|N |×|N | be the Origin-Destination (O/D) matrix with estimates

of transport demand Duv from origin u to destination v and let Puv be

a reference price paid by users before the introduction of the new tariff

system. This reference price might be a weighted average of prices paid when

using different companies between the two nodes, or even a weighted average
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between single ride and special tariff tickets (like student fares, monthly fares,

subscription or season tickets). A new fair tariff plan is expected to minimize

the deviations between the new tariff and the reference prices. As this is a

multi-objective problem, usually it is transformed into a single aggregate

one. Let, for every (u, v) ∈ N × N , Wuv be non negative weights. Typical

examples are

b∞ = min
c

max
u,v∈N

Wuv|c(nuv)− Puv| `∞ objective (5.1)

or

b1 = min
c

∑
u,v∈N

Wuv|c(nuv)− Puv| `1 objective (5.2)

In [21], the `∞ objective function is considered, as this is perceived as

more fair with respect to users. In such objective function, weights Wuv can

be chosen in many different ways:

� WD
uv = Duv: new tariffs are defined such that maximum deviation in

total income for transport companies is minimum as possible;

� WU
uv = 1: new tariffs are defined such that maximum deviation among

old and new fares is minimum as possible;

� WR
uv = 1/Puv: apparently ignored in literature, relative price variation

is considered as opposed to the absolute variation.

It is very important to notice that the model we are proposing is fairly

general and that, by just changing the value of the weights W , different

objectives can be optimized, ranging from a user-centric perspective in which

tariffs change as little as possible for the users, to a company-based one in

which total company income are kept as stable as possible. Of course by

changing these weights, different compromise solutions can be found as it is

typical of multi-objective models. What is important to remark here is that,

given the weights W , the analysis we perform as well as the algorithms we

develop and propose are unchanged.

Whichever the weight chosen, it is easy to show that the optimal fare can

be easily found. Given a zone partition Z, let Mn(Z) be the set of pairs of

nodes whose distance (minimum number of zones to be crossed) is n.

Theorem 5.1. Let Z = {Z1, Z2, . . . , ZL} a given zone partition and let

b∞(n) = min
c

max
(u,v)∈Mn(Z)

Wuv |c(n)− Puv|



5.2 Problem definition 93

the `∞−objective as a function of the number of zone to be crossed n. Define

ω((u, v), (w, x)) =
WuvWwx

Wuv +Wwx
(Puv − Pwx), (5.3)

then

b∞ = max
n

b∞(n)

and optimal fares are

c?(n) =
Wu∗v∗Pu∗v∗ +Ww∗x∗Pw∗x∗

Wu∗v∗ +Ww∗x∗

where

((u∗, v∗), (w∗, x∗)) ∈ arg max
(u,v),(w,x)∈Mn(Z)

ω((u, v), (w, x)) (5.4)

The proof, which is quite elementary, is omitted (it can be derived gener-

alizing a similar one published in [27, 57]). A quite similar result exists also

for the `1 objective function.

As it can be seen from the above theorem, finding optimal fares is an

easy problem, once criteria and weights have been defined and the zones

have been determined. It is worth observing, however, that the problem of

assigning fares, although easy, has a complexity which might be non negli-

gible when the graph G is large: a straightforward implementation requires

O(|N |4) operations, which includes shortest paths computation, Mn(Z) sets

definition and optimal fares computation.

Summarizing previous observations, the formulation of the problem of

solving the zone planning problem is stated in Definition 2.

Definition 2 (Zone Planning Problem). Let G(N,A) be a PTN graph,

D ∈ N|N |×|N | be the O/D matrix with demand Duv, ∀ u, v ∈ N , Puv and

Wuv be respectively reference prices and non negative weights, ∀ u, v ∈ N .

Given L ∈ N and assuming `∞ as the objective function, the zone planning

problem can be defined as finding a zone partition

Z∗ = {Z∗1 , Z∗2 , . . . , Z∗L}

such that

Z∗ ∈ arg min
Z

max
n

max
(u,v),(w,x)∈Mn(Z)

WuvWwx

Wuv +Wwx
(Puv − Pwx)
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and the subgraph of G induced by zone Z∗i , i.e.

( Z∗i , {(u, v) ∈ A : u ∈ Z∗i , v ∈ Z∗i } ) ,

is connected, ∀ i = 1, . . . , L.

Note that in a fair solution n can vary from zero, i.e. the set of pairs of

nodes within the same zone, to at most L− 1, when traveling from an origin

to a destination requires crossing all planned zones.

As it is proven in [27,57], the Zone Planning Problem is NP-hard. Once

a partition of G is fixed, a zone graph GZ = 〈Z,AZ〉 can be defined, in which

the nodes are the zones and AZ ⊆ Z × Z are arcs connecting two adjacent

zones, i.e. pairs of zones for which there exists a direct transport connection.

The focus of the work is on the `∞ objective function and its properties

are exploited to obtain better search speed and quality.

5.3 Related work

It is quite surprising that a planning problem of this kind, which involves

medium to long-term planning horizon, with relevant investment decisions,

constraints, conflicting objectives, has received such a little attention in the

operations research community.

The main contributions on zone planning are reported in [5, 27, 57].

Reference [27, 57] have already been cited and they are the most relevant

ones in the literature; in [5] the problem is mainly analyzed from the point of

view of complexity and several theoretical results are proven. In [2] the need

of an integrated tariff system is due to pollution and traffic congestion issues,

so the aim is to make the tariff system more attractive for users. In addition,

different approaches exist in literature. In [31] a price-oriented tariff system

is proposed for a simplified and easy to understand distance-price scheme, in

which prices are a piece-wise constant function of the distance to be traveled

with fixed differences between consecutive prices.

Three heuristic methods have been proposed in [57] for the problem of

fare zone design, with some numerical evidence reported. Here we discuss

the ideas behind these methods.

Sequential Agglomerative Hierarchical Nonoverlapping (SAHN) clustering :

the algorithm starts by assigning each node in N to a different zone;
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then, until a prefixed number L of zones has been obtained, using a dis-

similarity criterion, two zones are clustered into a single one. Initially,

pairs of zones Zi and Zj are compared on the basis of the reference

price Pij , i.e., d(Zi, Zj) = Pij . Then, zones are merged following one

of the following criteria:

� single linkage: Zx and Zy separated by the shortest distance are

merged into a new zone Zk and dissimilarity measures are updated

as follows

d(Zh, Zk) = min{d(Zh, Zx), d(Zh, Zy)}, ∀ h.

� complete linkage: Zx and Zy separated by the farthest distance

are merged into a new zone Zk and dissimilarity measures with

each other zone Zh are updated as follows

d(Zh, Zk) = max{d(Zh, Zx), d(Zh, Zy)}, ∀ h.

Other possibly criteria exist.

Greedy heuristic: the method starts, similarly with the previous one, as-

signing one zone to each node and proceeds by sequentially merging

two zones into a single one guided by the criterion of minimizing the

resulting `∞ objective function.

Spanning tree heuristic: unlike the other two, the algorithm starts with a

single zone containing all nodes. On the graph G equipped with the

reference prices P , a maximum weight spanning tree is built. Then, the

most costly arcs of the spanning tree are removed until L connected

components remain.

In [21] is shown, and here is reported, how to build a local search heuristic

which outperforms these methods both from the point of view of the quality

of the resulting subdivision and for the CPU time required. It might seem

surprising that CPU is a criterion to evaluate the goodness of a zone design

algorithm, as this is a long-term planning problem, which might be solved,

possibly, once every few years. However, standard implementations of ele-

mentary heuristics might require, for graphs of moderate to large dimension,

even several hours of CPU time; an exact model, based on mathematical pro-

gramming, would require an enormous amount of CPU time and in general
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it may not be able to close the duality gap to a sufficiently small value, as we

had the opportunity to see in a few trials with tiny dimensional instances.

In fact, the unique published approaches in the literature related to this sub-

ject are devoted to heuristics. As the fare planning problem is in practice a

multi-objective one in which the contrasting objectives of both the users and

the transport companies have to be taken into account, having a relatively

efficient algorithm is fundamental in order to give transport managers a tool

which can be used to simulate different scenarios and to experiment with

different weights before arriving to the final decision.

5.4 Algorithm description

The proposed method arises from classical local search based metaheuristics.

Using `∞ as the objective function, the algorithm consists in an Iterated

Local Search (ILS) [38], in which each local search is performed by a Tabu

Search (TS), as proposed in [26] to overcome local optima during search.

Among the huge literature on tabu search, we recommend [24,26], where

the main features of TS are described: allowing nonimproving moves and

avoiding cycling back to previously visited solutions by the use of memories,

called tabu lists, that record the recent history of the search.

As TS is an extension of classical local search methods, the search space

and the neighborhood structure must be defined. For zone planning prob-

lems, the search space is made of all zone partitions of network graph G

such that corresponding zone graphs Zg are connected and each zone is a

connected sub-graph of G. The simplest possible neighborhood structure is

considered, i.e. the one associated to moves corresponding to the displace-

ment of a single node u ∈ N from its current zone to a destination node,

which might be an adjacent one, or a new one, thus allowing for the creation

of a new zone. Moves that lead to the emptying of a source zone are con-

sidered too, whose effect is to remove zones from the partition. In such a

context, a move is considered tabu as well as its inverse; in the special case

in which a move empties a zone, the inverse move is considered as that which

moves that node from its current zone and creates a new one consisting of

that node only. With respect to the problem definition given in Section 5.2,

where the number of zones L is fixed, this neighborhood structure allows for

the increase or decrease of L. In such a way it is possible to overcome the

limitation of a fixed and pre-defined value for L.
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Once the neighborhood structure is defined, several neighborhoods can

be built. Here we present a set of possible choices.

Complete 1–neighborhood : composed of all possible single node moves;

Unaltered Zone Graph neighborhood (UZG) : if we associate to each

arc of the zone graph GZ (corresponding to a zone partition of G) a

cost equal to one, it can be easily shown (see. e.g., [27,57]) that shortest

paths among all pairs of nodes in G, in terms of number of zone edges

to be crossed, are equivalently calculated using Gz. Thus, if a move

does not change Gz, shortest paths do not need to be recomputed and

a faster computation of `∞ can be obtained.

Greedy neighborhood (GRDY) : subset of the 1–neighborhood com-

posed of moves which affect nodes involved in the definition of the `∞
value. As the objective function is computed as

b∞ = max
n

max
(u,v),(w,x)∈Mn(Z)

ω((u, v), (w, x)) = ω((u∗, v∗), (w∗, x∗)),

where ω((u, v), (w, x)) is defined in (5.3), the aim is to consider a set

of moves that involves only nodes u∗, v∗, w∗, x∗, in a greedy attempt

to separate pairs (u∗, v∗) and (w∗, x∗).

The complete 1–neighborhood, is computationally expensive when the

size of the network increases. Instead, the GRDY neighborhood contains a

few moves, mainly dependent on the connection degree of nodes u∗, v∗, w∗, x∗.

Furthermore, GRDY leads in practice to good solutions in few iterations and

is preferred over the other neighborhoods. Although the UZG neighborhood

is bigger than GRDY and less effective, its properties allow for a fast compu-

tation of all moves and can be used for a refinement of the current solution.

Thus, based on previous considerations, our algorithm developed for the

zone planning problem, Zone Planning Iterated Local Search (ZP-ILS ), is

described below in Algorithm 11.

Given a random solution with an estimate of the desired number of zones

L, in which each node is assigned to a zone using a uniform distribution, the

main cycle corresponds to the ILS scheme with the definition of a termination

criterion. Its body performs a TS with neighborhood GRDY followed by a

perturbation of the current solution, which possibly allows to escape from a

local minimum.
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Algorithm 11: Zone Planning Iterated Local Search ZP-ILS

Data: a feasible solution s0 consisting of L zones

1 s∗ ← s0;

2 k ← 0;

3 while a termination criterion is not met do

4 ŝk ← TS <GRDY>(sk);

5 s∗ ← AcceptanceCriterion(s∗, ŝk);

6 sk+1 ← Perturbation(s∗);

7 k ← k + 1;

8 end

9 ŝ∗ ← TS<UZG>(s∗);

10 s∗ ← AcceptanceCriterion(s∗, ŝ∗);

In the end, a tabu search with neighborhood UZG is performed, in order

to refine the final solution. It is worth noticing that each local search is

followed by the application of an acceptance criterion of the solution found

with respect to the best one. We perform the simplest criterion, i.e., TS

solution is accepted, with a fixed tolerance, if it is better than the current

best one.

5.5 Computational results

Firstly, we describe the datasets used for the experiments. Then some im-

plementation details are reported, as well as the adopted experimental envi-

ronment. Finally, results are presented and discussed.

Datasets

In order to solve the zone planning problem several information are needed,

such as the PTN graph, reference prices and the estimated transport de-

mands between pairs of nodes.

Two real datasets were used for experiments. The first was extracted

from the Metropolitan Area of Florence where the 73 nodes are munici-

palities. Reference prices were collected from kilometric tables of the local

transportation companies. The O/D demands were available from a survey.

The other dataset was extracted from the Washington Metropolitan Network
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[4]. The network is made of 91 stations and 118 connections and the refer-

ence prices were collected on the website. The O/D matrix was built starting

from a survey of rail station-to-station passenger counts in May 2012, avail-

able at the metro’s planning blog [8]. Several O/D matrix are available: we

chose the survey made in week days at the AM peak.

However, as we discuss later, the case of the Washington Metropolitan

Network is critical for the considered zone planning model since, except for a

few central stations, which are well connected, the peripherical stations can

be reached only through dedicated metro lines. Thus, it can be expected

that a large number of small zones (even made of a single station) can be

arranged around a big central zone.

Since these two datasets are of small size and obtaining a comprehensive

set of real data of arbitrary size was not possible, we defined a process to

generate our own synthetic datasets, under suitable assumptions. First, we

extracted graphs from existing road networks, then we generated population

πi of each node i according to an exponential distribution

πi ∼ Exp(λ).

with λ equal to the reciprocal of the desired population mean. Reference

prices Pij for trips between node pairs were assigned using a set of kilometric

tables. Finally, given πi, πj population of nodes i, j, reference price Pij and

positive constants a, b, we estimated the O/D demand Dij with the following

formula

Dij = a
πiπj
P bij

,

known as gravity form [49]; this model has been used in several trip dis-

tribution models in order to derive origin/destination flows proportional to

population sizes and inversely correlated with transportation cost; in this

context, the model was used in order to derive a reasonable O/D matrix

based on a simple, widely accepted, generation tool.

Graphs were extracted from Manhattan (375 nodes) and Brooklin (636

nodes) using OpenStreetmap data [48]. For each graph we generated a

dataset with 10% and 50% of nonzero entries in O/D matrix D, which rep-

resent travel flows, for a total of four synthetic datasets. All the datasets are

summarized in Table 5.1.
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Dataset # nodes # arcs # O/D pairs

Florence 73 186 5329

Washington 91 118 8281

Manhattan10 375 543 14062

Manhattan50 375 543 70312

Brooklin10 636 1000 40449

Brooklin50 636 1000 202248

Table 5.1: Details of the datasets used for the computational experiments.

Implementation details

The algorithm was implemented in C++ [14] and compiled using the GNU

Compiler Collection [60] version 4.4.3 using the -O2 optimization flags, MET-

Slib [39] framework for the tabu search logic, and the OpenMP [47] exten-

sions for simple code parallelization. All the instances were solved on a

workstation equipped with an Intel Core(TM) i7-870 CPU and 8 GB of

main memory.

Termination criterion of ILS in Algorithm 11 is based on a maximum

number of iterations (set to 25), while both the tabu searches TS use a

termination criterion based on the maximum number of non improving it-

erations (set to 25). The tabu list tenure is of 10 elements and an accepted

move is made tabu for the next iterations along with its opposite. Tabu

moves can be accepted if they satisfy a so-called aspiration criterion: in this

case, an improvement of the current best solution has the effect to accept

the move, even if it has been marked as tabu.

Results

The described algorithm ZP-ILS were compared with the heuristics greedy,

clustering (SAHN) and spanning tree reported in [27, 57] and described in

Section 5.3, using the `∞ objective function and weights WD
uv, W

U
uv, W

R
uv as

defined in Section 5.2. Results are shown in Tables 5.2-5.4 where best values

are reported in bold face.

Results show that ZP-ILS was able to produce the best solution most of

the times, on real and synthetic datasets. In those cases in which ZP-ILS

was not able to produce the best solution, the returned solution is quite close
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greedy clustering spanning tree ZP-ILS

`∞ time `∞ time `∞ time `∞ time

Florence 478.9 5s 342.2 <1s 478.9 <1s 266.1 <1s

Washington 664.5 12s 1389.1 <1s 1047.4 <1s 329.0 6s

Manhattan10 108.4 26m 54s 108.9 <1s 118.1 <1s 78.1 17m 57s

Manhattan50 235.3 3h 53m 214.0 5s 242.2 4s 180.0 7h 39m

Brooklin10 101.9 5h 0m 113.0 1s 121.8 1s 69.6 5h 22m

Brooklin50 261.3 48h 48m 239.9 20s 209.2 19s 188.7 15h 29m

Table 5.2: Results on real and synthetic datasets with WD
uv.

greedy clustering spanning tree ZP-ILS

`∞ time `∞ time `∞ time `∞ time

Florence 1.05 3s 1.05 <1s 1.3 <1s 0.975 1s

Washington 1.875 2s 1.875 <1s 1.875 <1s 0.796 7s

Manhattan10 2.550 7m 28s 2.550 <1s 2.225 <1s 2.000 12m 24s

Manhattan50 5.675 19m 27s 7.200 <1s 7.200 <1s 6.150 23m 42s

Brooklin10 2.750 1h 12m 2.925 <1s 2.750 <1s 2.550 22m 2s

Brooklin50 7.200 2h 57m 6.350 <1s 6.500 <1s 5.600 47m 30s

Table 5.3: Results on real and synthetic datasets with WU
uv.

greedy clustering spanning tree ZP-ILS

`∞ time `∞ time `∞ time `∞ time

Florence 0.512 1s 0.5 <1s 0.538 <1s 0.458 2s

Washington 0.465 2s 0.465 <1s 0.465 <1s 0.229 5s

Manhattan10 0.689 7m 51s 0.613 <1s 0.578 <1s 0.631 18m 31s

Manhattan50 0.832 19m 16s 0.643 <1s 0.754 <1s 0.613 27m 5s

Brooklin10 0.689 1h 14m 0.659 <1s 0.613 <1s 0.564 36m 3s

Brooklin50 0.762 3h 6m 0.753 <1s 0.745 <1s 0.600 1h 1m

Table 5.4: Results on real and synthetic datasets with WR
uv.

to that of the best performing method; on the contrary, in many cases ZP-

ILS is capable of generating a solution whose quality is significantly better

than that produced by the other methods we tested. Moreover, when the

number of nodes increases, the execution time of the heuristic greedy, which

is considered the best one in practical cases, as it is shown in [27,57], grows

more rapidly than ZP-ILS , as we can observe mainly in Table 5.2.
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On the real dataset of Washington Metropolitan the proposed algorithm

produces solutions which are considerable better than the ones obtained

by the three heuristics. It’s worth observing that the heuristics produce

solutions of the same cost, respectively for the weights WU
uv and WR

uv. From

tests, it turns out that these costs are the same for every possible number

of planned zones, i.e., ∀ L ∈ [1, |N |]. Thus, the heuristics show a lack of

robustness in this case compared to the algorithm ZP-ILS , which, on the

contrary, produces solutions of good quality. Indeed, for the WU
uv weight, a

maximum variation of 0.796 $ is obtained on a single ticket for each O/D pair,

while, for the WR
uv weight, the maximum percentual variation is of 22.9%,

which is significant compared to the variations obtained on the synthetic

datasets. However, the number of planned zones is too large compared to

the number of stations. As an example, the solution with weight WU
uv is

made of 39 zones on a network of 91 stations. As expected, the biggest zone

includes all the central stations and smaller zones are arranged along the

different metro lines.

The proposed model is more suitable for a dataset like the Metropolitan

Area of Florence, where neighboring municipalities are connected properly

by the transportation companies. Thus, it’s easier to define a zone made of

nodes geographically close which can be reached each other without exiting

the zone itself. The efficacy of ZP-ILS compared to the three heuristics is

less evident on this dataset, however it’s able to achieve the best result for

all weights. In Figure 5.1 we report a solution obtained on this dataset with

weight WU
uv

1.

For this solution, the price table is reported in Table 5.5 for a number

of zones to be crossed varying from 0 (the trip starts and ends in the same

zone) to 6.

0 1 2 3 4 5 6

Ticket cost (e) 1.8 2.12 2.72 3.17 4.02 5.15 6.13

Table 5.5: Price table for the solution reported in Figure 5.1.

Although the analysis of the real impact on transportation companies

1It’s worth observing that Figure 5.1 has the purpose to show qualitatively a division

in zones of the municipalities. The reported tessellation, however, does not respect at all

the contiguity of zones, which is represented by the arcs connecting the zones.
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Figure 5.1: Zone partition solution on the Metropolitan Area of Florence

with WU
uv.

cannot be easily done observing the results in the case of weight WD
uv, for

the results concerning the weights WU
uv and WR

uv we observe that, mostly on

the synthetic datasets, the deviation from the reference prices is significant

while the use of a relative price variation weight like WR
uv seems to be more

fair, leading to a variation of approximately 50% of the reference prices over

all synthetic datasets.

Furthermore, a significant computational gap can be observed between

using the weight WD
uv instead of the other two weights WU

uv and WR
uv. The

reason is both mathematical and computational. It can be shown that the

computation of (5.4) can be speeded up with some mathematical trick re-

gardless the choice of the weight. Moreover, if the weight chosen is WU
uv or

WR
uv, the computation is even faster.

Our numerical experiments show that there are several solutions and

improvements to be introduced in order to exploit better the properties of

`∞. Such objective function is indeed made of large connected areas of equal

cost, thus a combination of `∞ with a second objective function could be

exploited in order to follow a secondary goal, without sacrificing the quality

of the solution for what concerns the primary objective. For example, the



104 Zone Planning Problem

primary goal could be, for customers, the minimization of the maximum

variation among old and new fares, while the secondary goal could take into

account the total income for transport companies in order to minimize their

losses.

Finally, we observe that the tabu search’s greedy neighborhood GRDY

may contain a small number of moves, leading to a premature termination

of the search. One way to add new greedy moves could be defining moves

which consider nodes that belong to a path between (u∗, v∗) or (w∗, x∗) in

order to affect the number of zone crosses needed from origin to destination.



Chapter 6

Conclusions

In this work we have defined new algorithms for transportation planning

problems, with the main focus on network equilibrium problems.

The main contribution concerns the development of a new path-based

method for the Traffic Assignment Problem (TAP) with inelastic demand.

Its first version, Inexact Sequential Minimal Optimization (ISMO), has been

introduced in [12] and described in Chapter 2, where a Path Equilibration

algorithm (PEA) has been suitably combined with a novel column generation

strategy, where the shortest paths are computed once every L iterations for

each Origin/Destination (O/D) pair. With the employment of a Quadratic

Line Search (QLS), where the initial step is based on first-order information,

convergence properties have been demonstrated.

The results reported in 2.8 show the effectiveness of such column gener-

ation, with a significant improvement of the performances with respect to

the case where shortest paths are computed at each iteration. However, the

method exhibits a poor convergence capability on large networks compared

to state-of-the-art path-based or bush-based methods. Moreover, numerical

issues have been observed which led to an oscillatory behavior in later stages

of the optimization.

Such numerical problems have been solved in a new version of ISMO de-

veloped in [22] where the initial step of QLS has been defined as the optimum

of the quadratic approximation of the objective function along the chosen di-

rection, as in Dafermos [11]. The algorithm, called ISMO Adaptive Column

Generation (ISMO-ACG), introduces also an advanced adaptive column gen-

eration, where the frequency of the shortest paths computation is variable

105
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and it is adaptively updated with respect to a measure, defined at O/D pair

level, which reflects the obtained decrease of the objective function.

Moreover, this column generation strategy has been considered as a gen-

eral decomposition path-based framework in which different equilibration

methods can be embedded. Besides the proposed PEA with QLS and the

Dafermos step, the Gradient Projection algorithm GP-ACG, the Rosen Gra-

dient Projection method RGP-ACG and an improved version of GP-ACG,

called Incremental Gradient Projection (IGP-ACG), have been embedded.

The results of ISMO-ACG show excellent performances from both the

efficiency and the convergence capability points of view. High solution pre-

cisions have been achieved on all the tested networks within competitive

computational times. Furthermore, the Path-Equilibration algorithm ISMO-

ACG outperforms all the other path-based method with the column gener-

ation strategy being fixed.

Removing the QLS procedure, two nonmonotone versions of ISMO-ACG

have been defined, ISMO-NM and ISMO-NM-A, where the latter performs

an alternation of the Dafermos step and its double through the iterations.

While ISMO-NM is comparable with ISMO-ACG although slightly faster,

ISMO-NM-A outperforms significantly ISMO-ACG on the largest networks.

Moreover, it is able to further exploit the sparseness of the equilibrium so-

lution in terms of path flows, thus leading to extremely competitive compu-

tational performances.

Finally, for what concern the inelastic TAP, the new method IGP-ACG

results to be more stable than GP-ACG and it is able to obtain more accurate

equilibrium solutions.

The algorithm ISMO-ACG developed for the inelastic case has been

adapted to the elastic case in Chapter 3 thanks to an equivalence result

between TAP with elastic and inelastic demand. ISMO-ACG is again the

more accurate and fast algorithm among the tested path-based methods and

is able to reach very high solution precisions compared to the ones existing

in the literature. While ISMO-NM-A has been proved to be very efficient in

the inelastic case, in the elastic case it shows convergence difficulties. At the

contrary, ISMO-NM, which is essentially ISMO-ACG without line search, is

able to obtain impressive computational performances.

In Chapter 4, the algorithm ISMO-ACG has been used as a black-box

TAP function for the estimation of the O/D demand matrix. A derivative-

free black-box formulation has been defined in which the O/D matrix is
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estimated while reducing the distance between real observed flows and flows

obtained by the equilibration process on a sample of network links. A simple

coordinate descent algorithm has been compared with some existing methods

in the literature on benchmark networks and it shows good optimization

and estimation capabilities. Since the benchmark networks count only a

small number of O/D pairs to be estimated, a test on a real-size network

with more than 500 O/D pairs has been carried out. In order to deal with

such a large problem, a decomposition-based coordinate descent algorithm

has been defined which outperforms significantly the basic version from the

optimization point of view. However, the estimation capability of both the

versions turns out to be rather poor, thus confirming that the large-scale

O/D matrix estimation problem is still hard to solve.

Finally, for what concerns the transportation planning problem described

in Chapter 5, the algorithm developed for the Zone Planning Problem im-

proves significantly over the heuristics reported in the literature. The ap-

proach based on local search leads to a better exploration of the search space

and it allows for an increase or decrease of the number of zones at each it-

eration, whereas the existing heuristics never revise the choose of the initial

number of zones.
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Appendix A

Quadratic Line Search

The properties of an Armijo-type line search do not guarantee, without fur-

ther assumptions on the search direction dk, that the distance between suc-

cessive points tends to zero, which is a usual requirement of decomposition

methods. Such a property can be satisfied by the line search algorithm de-

scribed below and based on the acceptance condition

f(xk + αkdk) ≤ f(xk)− γ
(
αk‖dk‖

)2
,

which replaces the Armijo’s condition

f(xk + αkdk) ≤ f(xk) + γαk∇f(xk)>dk

Before describing the line search procedure, we state a formal assumption

on the sequence of search directions.

Let dk ∈ Rn be a feasible direction at xk ∈ X, where X ⊆ Rn is the

feasible set. Let βk be the maximum feasible step length along dk. Taking,

for instance, x̂k ∈ X and dk = x̂k − xk 6= 0, it follows βk ≥ 1.

Assumption A.1. {dk} is a sequence of feasible search directions such that

(a) for all k we have ‖dk‖ ≤M and βk ≤ β̄ for given numbers M > 0 and

β̄ > 0;

(b) for all k we have ∇f(xk)>dk < 0.

The Quadratic Line Search algorithm can be described as follows.

The properties of Algorithm QLS are stated in the next proposition.
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Algorithm 12: Quadratic Line Search QLS

Input: xk ∈ X, dk ∈ Rn, αk0 , βk

Output: αk

Data: δ ∈ (0, 1), γ > 0

1 if ∇f(xk)>dk ≥ 0 then

2 return αk ← 0

3 end

4 α← min{αk0 , βk};
5 j ← 0;

6 while f(xk + αdk) > f(xk)− γ
(
α‖dk‖2

)
do

7 α← δα;

8 j ← j + 1;

9 end

10 return αk ← α

Proposition A.2. Let {xk} be a sequence of points belonging to the feasible

set X, and let {dk} be a sequence of search directions satisfying Assumption

A.1. Then:

(i) Algorithm QLS determines, in a finite number of iterations, a scalar

αk such that

f(xk + αkdk) ≤ f(xk)− γ(αk‖dk‖)2; (A.1)

(ii) if {xk} converges to x̄ and

lim
k→∞

(
f(xk)− f(xk + αkdk)

)
= 0, (A.2)

then we have

lim
k→∞

αk‖dk‖ = 0, (A.3)

and

lim
k→∞

βk∇f(xk)>dk = 0. (A.4)

Proof. In order to prove assertion (i), let us assume, by contradiction, that

condition of the while cycle is violated for every j ∈ {0, 1, . . .}. Then, we

have for j = 0, 1, . . .

f(xk + ᾱδjdk) > f(xk)− γ
(
ᾱδj
)2 ‖dk‖2,
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where ᾱ = min{βk, λ}. Taking limits for j →∞ we obtain:

∇f(xk)>dk ≥ 0,

which contradicts (b) of Assumption A.1.

From (A.1) and (A.2) it follows that (A.3) holds. In order to prove (A.4),

assume by contradiction that there exists an infinite subset K ⊆ {0, 1, . . .}
such that

lim
k∈K,k→∞

βk∇f(xk)>dk = β?∇f(x̄)>d̄ < 0. (A.5)

From (A.5) we get, for k ∈ K and k sufficiently large,

βk ≥ η1, (A.6)

and

‖dk‖ ≥ η2, (A.7)

for some numbers η1, η2 > 0.

Then, (A.3) and (A.7) imply that we can write

lim
k∈K,k→∞

αk = 0. (A.8)

From (A.8) and (A.6) we obtain, for k ∈ K and k sufficiently large,

αk < ᾱ = min{βk, λ},

which implies, recalling the instructions of the algorithm,

f

(
xk +

αk

δ
dk
)
> f(xk)− γ

(
αk

δ
‖dk‖

)2

. (A.9)

From (A.9), using the Mean Value Theorem, it follows

∇f(ξk)>dk > −γ
(
αk

δ

)
‖dk‖2, (A.10)

where

ξk = xk + tk
αk

δ
dk

and tk ∈ (0, 1). Taking the limits for k ∈ K and k →∞, recalling (A.8), we

obtain

∇f(x̄)>d̄ ≥ 0,

which contradicts (A.5).
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Appendix B

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below. 1

International Journals

1. D. Di Lorenzo, A. Galligari, and M. Sciandrone, “A convergent and efficient

decomposition method for the traffic assignment problem”, Computational

Optimization and Applications, vol. 60, no. 1, pp. 151-170, 2015. [Online].

Available: http://dx.doi.org/10.1007/s10589-014-9668-6.

2. A. Galligari and M. Sciandrone, “A convergent and fast path equilibration

algorithm for the traffic assignment problem”, Optimization Methods and

Software, pp. 1-18, 2017. [Online]. Available: http://dx.doi.org/10.1080/

10556788.2017.1332621

3. A. Galligari, M. Maischberger, and F. Schoen, “Local search heuristics for

the zone planning problem”, Optimization Letters, vol. 11, no. 1, pp. 195-

207, Jan 2017. [Online]. Available: https://doi.org/10.1007/s11590-016-

1069-6.

National Conferences

1. A. Galligari, N. Bulgarini, and M. Sciandrone, “Decomposition algorithms

for traffic assignment problems”, Associazione Italiana di Ricerca Operativa

(AIRO), Pisa (Italy), 7-10 Settembre 2015.

1The author’s bibliometric indices are the following: H -index = 1, total number of

citations = 3 (source: Google Scholar on October 2017).
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