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This paper deals with the matter of applying a geoadditive model to produce estimates for
some geographical domains in the absence of point referenced geographical data. Geoadditive models
introduced by Kammann and Wand (2003), allow to analyze the spatial distribution of the study
variable while accounting for possible linear or non-linear covariate effects by merging an additive
model (Hastie and Tibshirani, 1990) and a kriging model (Cressie, 1993) and by expressing both as a
linear mixed model. Therefore, when data are spatially located and explicit consideration is given to
the possible importance of their spatial distribution in the analysis or in the interpretation of results,
geoadditive models represent a powerful geostatistical methodology. However, their implementation
needs the statistical units to be referenced at point locations and if we use them to produce model-based
estimates of a parameter of interest for some geographical domains, the spatial location is required
for all the population units. Often we don’t know the exact location of all the population units,
especially when socio-economic data are involved. Typically, we know the coordinates for sampled
units (which could be specifically collected for the analysis), but we don’t know the exact location of
all the non-sampled population units. For the non-sampled units we know just the areas to which
they belong like census districts, blocks, municipalities, etc. In such situation, the classic approach is
to locate all the units belonging to the same area by the coordinates (latitude and longitude) of the
geographical centre or centroid of the area. This is obviously an approximation, induced by nothing
but a geometrical property, and its effect on the estimates can be strong, depending on the level
of nonlinearity in the spatial pattern and on the area dimension. In this paper we propose to fill
the holes in the geographical information following a stochastic imputation approach instead of the
classic deterministic one with the centroids. In particular we suggest to treat the lack of geographical
information imposing a distribution for the locations inside each area. This is realized through a
hierarchical Bayesian formulation of the geoadditive model in which a prior distribution on the spatial
coordinates is defined. The performance of our imputation approach is evaluated through various
Markov Chain Monte Carlo (MCMC) experiments.

Methodological Framework and Basic Assumption

Let t;, 1 < i < n, be a linear predictor of y; at spatial location s;, s € R2. A geoadditive model
for such data can be formulated as

(1) yi=a+tB+ h(si) + e, g; ~ N(0,02),

where h is an unspecified bivariate smooth functions. Representing h(-) with a low-rank thin plate
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spline with K knots

K

h(s) = Bos + "By + Y urbips(s, ki)
k=1

the model (1) can be written as a mixed model (Kammann and Wand, 2003)
(2) y=XB+Zu+e,

with

where

X = [1,13@',5?] 1<i<n’
IB = [ﬂ(ﬁﬁtvﬁ{} ) /BO =« +BOS

u=[uy,.., ugl,

and Z is the matrix containing the spline basis functions, that is

Z= [btp8<si7 Hk)]lgignJSkSK =[C(si — K'k)]lgz'gn,lgkgK [C (kn — ’ik)]l_gl{fkgl( )
where C(v) = ||v|?log ||v|| and &1, ..., kx are the spline knots locations.

The amount of smoothing for the spline component of the model can be quantified through the
variance components ratio o2/o2.

The addition of others explicative variables is straightforward: smoothing components are added
in the random effects term Z, while linear components can be incorporated as fixed effects in the X
term. Moreover, the mixed model structure provides a unified and modular framework that allows to
easily extend the model to include various kind of generalization and evolution.

Now, suppose to have a population of N units divided in Q regions, and to be interested in
estimating the regional mean of a study variable y. We take a sample of n units from which we collect
the response variable y, the location s and, possibly, some other covariates (that are known without
error for all the population units). To obtain the regional mean, we want to apply a model-based
mean estimator based on (1):

.1 .
(3) Y= N, Z i + Z (Xiﬁ + Ziu) =
| 1€5 1€ER,

K
1 A A > A~
e [Tt T (o s bt )|
a k=1

i€Sq i€Rq

where N, is the total number of units in region ¢, ¢ = 1,...,Q, and S; and R, indicate respectively
the indexes of the sampled units and of the non-sampled units belonging to region gq.

We obtain the estimated parameters from the sampled units, but we cannot use directly (3) as
we don’t know s for the not-sample units. In the classic approach the s;, values are replaced with
the region centroid cg, that is a constant for all the units in region ¢g. Here we suggest to impute
the s; values through a stochastic Bayesian imputation procedure. Thus we adopt a hierarchical
Bayesian formulation of model (1) (Ruppert et al, 2003) with a prior distribution fs(8,) for s; inside
each region g and then use the joint posterior distribution of all parameters given the data as the
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basis of inference. Thus, under stochastic imputation, our complete hierarchical Bayesian formulation
(following specifications of Crainiceanu at al, 2003) is

K
ind
yilB,u,02 X' N (50 + Biti + BLs + Z“kbtm(sv"*k)703> ;

(@

u|o?~N(0,0%1k),
5i|0g~f5(04),
with non-informative priors for 84, not specified as depending on the choice of f,, and for 3, o2, 02
Bos Be, Bs ™ N(0,10%)

o 20?2 nd Gamma(1078,107%).

The parametrization of the Gamma(a,b) distribution implies that the parameter has mean a/b = 1
and variance a/b?> = 108. Moreover, it should be noticed that we parameterize the inverse of the
variance, that is the precision parameter.

We should note that the choice of the prior distribution fs(6,) identifies a specific imputation
process. Anyway this choice may take into account the a priori knowledge about the spatial distri-
bution of the studied phenomenon and the spatial distribution of the sampled points (that is their
spatial representativeness). If the true function fs is known, it is obviously ”opportune” to use it, but
this assumption is against our work hypothesis. If no information on the distribution of the true point
locations is available but the sample can be assumed representative of it, a non-informative fs; which
learns from the sample is a ”"good” choice. In particular if the spatial pattern is not too complex
(like multi-modal or clustered distributions) the Beta distribution can be used. When the spatial
pattern is more complex a more flexible (i.e. mixture model) prior should be used. However the use
of a non-informative prior works well as long as the spatial distribution of the sampled points reflects
the spatial distribution of the population points. When this condition is not satisfied, because the
sampling design is not self-weighting and the inclusion probabilities depend on the spatial locations,
a possible prior is a categorical distribution with each category corresponding to the coordinates of
a sampled point and associated probability proportional to the corresponding sampling weights. The
same solution could be adopted if the spatial non-representativeness of the sample does not depend
on the sampling design but on non sampling errors as long as the survey weights can be estimated.
When the relation between the spatial distribution of the sampled points and the spatial distribution
of the population is unknown, the problem can only be solved making assumptions on this relation.
Finally, we note that if for each region fs(6,) is a probability mass function that assumes value 1 when
s = centroid and otherwise 0, then our formulation corresponds to the centroid imputation approach.

MCMC Experiments

In order to evaluate the performance of our approach with respect to the centroids classic
approach, various MCMC experiments are implemented under different scenarios. All the analysis are
implemented using the OpenBUGS Bayesian inference package. We access OpenBUGS using the package
BRugs in the R computing environment.

All MCMC scenarios are characterized by the following setting:

e The study variable is simulated by the model
Yi = a+ ez + f(si) + &

where g; ~ N(0,02), 0. = 0.2, a = 10, 3, = 0.4, z ~ Ber(0.5) is a dummy variable known for the
whole population, s represents the spatial location that is generated by a different spatial point
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process in each scenario and function f(s) is obtained as a bivariate normal mixture density and
is represented in Figure 1(a).

e The population consisting of N = 3000 units is located in the unit squared O = [0,1] X
[0, 1] which is divided in @ = 9 rectangular regions that can be represented by their vertices
[(Lig, mig), (lag, m1g), (I2g, m2g), (l1g,ma2q)]. The regions are obtained using a random binary
splitting procedure.

e f(s) is modeled considering a penalized thin plate spline function with K; = 64 knots selected
on a regular grid on space. We choose this type of splines since it tends to have good numerical
properties and, as pointed out by Crainiceanu et al.(2005, p.2), the posterior correlation of
parameters for the thin-plate splines is much smaller than for other basis, which greatly improves
mixing.

e the MCMC analysis is implemented with a burn-in period of 15000 iterations and then we
retain 5000 iterations, thinned by a factor of 5, resulting in a sample of size h = 1000 retained
for inference.

e the geoadditive model (4) is fitted using a sample of n = 500 units and in order to take into
account not only the model variability but also the variability due to the sampling design each
MCMC experiment is repeated 100 times.

Each scenario differs from the others for the spatial point process used to generate s (an ho-
mogenous Poisson process, an inhomogeneous Poisson process and a cluster Poisson process) and for
the sampling design (proportional stratified simple random sampling (PSRT) with strata correspond-
ing to the regions and unequal probability (UP) design). Figures 1(b), 1(c) and 1(d) show the three
different spatial patterns. Figure 2 shows the posterior density of the regional mean estimator under
four different scenarios: (A) an homogeneous Poisson process for s and a PSTR sampling design; (B)
an inhomogeneous Poisson process for s and a PSTR sampling design; (C) a cluster Poisson process
for s and a PSTR sampling design; and (D) an homogenous Poisson process for s and an UP sampling
design.

For each scenario the regional mean estimator is evaluated under three different types of im-
putation, that is considering three different a prior: distributions for s: uniform distribution, beta
distribution and mass function on the centroid. In addition specifically for the scenario D we consider
the imputation using a categorical distribution and the mean estimator (3) is modified in order to
weight the observed y values with their corresponding sampling weights. For lack of space the Figure
2 shows the results only for 3 of the 9 geographic domains in which the study area is partitioned.

Concluding remarks

In the last years the use of geostatistical techniques to produce model-based estimates of a
parameter of interest for some geographical domains is grown. Their use however is not always
straightforward as it needs for all the population units to be referenced at point location, but this
requirement in not so easy to be accomplished. In this paper we suggest a solution to this problem
that propose a hierarchical Bayesian formulation of a geoadditive model in which a prior distribution
for the spatial coordinates is defined. The missing spatial coordinates are then extracted from their
posterior distribution, obtained by MCMC simulation.

Observing Figure 2 it is straightforward to note that, when the sampling design is self-weighting,
if the imputation distribution corresponds to the population spatial distribution, the stochastic impu-
tation approach produces better estimates than the classic centroid approach. This is the case of the
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Figure 1: Spatial distributions of the population units: (a) homogeneous Poisson process, (b) inhomogeneous
Poisson process, (¢) inhomogeneous Poisson process on each region, (d) independent bivariate Beta distribution
on each region.

Uniform approach in scenario A. Also the Beta imputation approach works well in scenario A, due to
the fact that the true spatial distribution in each region is a special case of the bivariate Beta distri-
bution, but it produces less precise estimates than the Uniform imputation since the Beta parameters
need to be estimated in the fitting process. When none of the imputation models corresponds to the
population spatial distribution, the Beta approach still presents a good performance. This depends
on the fact that the Beta distribution has the advantage of modeling different shapes depending on
the parameters value. In our approach these parameters are estimated directly in the MCMC pro-
cess exploiting the spatial distribution of the sampled units and producing a posterior bivariate Beta
distribution that is as similar as possible to the sample spatial distribution. Obviously, the good per-
formance of this approach relies on the representativeness of the sample, as seen in scenario D. Under
such scenario, we obtain a good performance with the Categorical imputation approach that consider
explicitly the sampling weights.

Finally when the spatial pattern is more complex the use of a more flexible prior may pro-
duce better results then the Beta imputation approach. Research in the use of a mixture of Beta
distributions would certainly be our next step.

p.5000
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(d) Scenario D

Figure 2: Posterior density of the regional model-based mean estimator under the four scenarios and for the
four imputation approaches: Centroid (green line), Uniform (red line), Beta (blue line) and Categorical (purple
line). The vertical lines indicate the true mean values.
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