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1. Introduction 

 

 The aim of the paper is both to review the scientific literature about spatial data 

mining methods - in particular spatial clustering methods developed in recent years - 

and to present an original application of the recently proposed RedCap
1
 method (Guo, 

2008) of spatial clustering and regionalization on Florentine Metropolitan Area (FMA). 

Demographic indicators computed on official data provided by the Italian Institute of 

Statistics (Istat), are the input of a spatial clustering and regionalization model in order 

to get a classification of the FMA municipalities into a number of homogeneous (with 

respect to demographic structure) and spatially contiguous zones.  

 In the optics of a progressive decentralization of the governance activities we 

believe that the FMA represents a very interesting case of study. This due to the fact 

that the individuation of new spatial areas built considering both the demographic 

characteristics of the resident population and the spatial dimension of the territory where 

this population insists could become a useful tool for local governance. 

 The paper is structured as follows. In section 2 we present some theoretical 

considerations about data mining and spatial data mining. In section 3 we analyze some 

of the most important methods of spatial clustering. In section 4 we briefly describe 

regionalization process and RedCap’s major features. In section 5 we describe the FMA 

and present the results of the empirical application. In section 6 we propose some final 

conclusions. 

                                                             
1Regionalization with dynamically constrained agglomerative clustering and partitioning (Guo, 2008). 
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2. Data mining and spatial data mining: some theoretical considerations 

 

 For several years spatial data mining has been considered as the multi-

dimensional equivalent of temporal data-mining (Roddick and Spiliopoulou, 1999) but 

today researchers agree to consider spatial data mining as an independent approach to 

analyzing data and measuring phenomena as confirmed by recent studies (Angayarkkani 

and Radhakrishnan, 2009; Behnisch and Ultsch, 2009, 2010; Jin and Guo, 2009; Moran 

and Bui, 2002; Szalay et al., 2000; Yu Pan and Faloutsos, 2002). 

Before define spatial data mining it could be useful to explain what classic data 

mining is. Data mining is a relatively young discipline concentrating on the 

manipulation of extensive data bases. Lots of definitions have been elaborated by 

researchers belonging to different disciplines like mathematics, computer sciences, 

statistics and so on. One of the first points which should be define is the data mining’s 

main goal. According to Miller and Han (2001), data mining searches for deeply hidden 

information that can be turned into knowledge of strategic decision making and 

answering fundamental research questions. Shekhar and Chawla (2003) give us more 

details about data mining process defining it as the process of discovering interesting 

and potentially useful patterns of information embedded in large data bases. Beginning 

from these basic considerations and following the theoretical formulation of Koperski et 

al. (1996), we can say that spatial data mining is a knowledge discovery process of 

extracting implicit interesting information, spatial relations, or other spatial pattern not 

explicitly stored in spatial databases.  

Clarified these key points, the main differences between data mining and spatial 

data mining are straightforward. From a theoretical and conceptual point of view these 

are the same that exist between classic and spatial statistical analysis and this is due to 

the fact that data mining directly derives from the statistical science (Hoskin et al, 

1997). It’s well known that one of the most important assumptions of classical statistical 

analysis is that the data samples are independently generated; on the contrary, the spatial 

approach refuses this assumption and theorizes that the spatial location of the samples is 

an item that cannot be ignored (Tobler, 1970). Thus, it follows that data mining is 

connected to the concept of patterns while spatial data mining is connected to the 

concept of spatial patterns (Shekhar and Chawla, 2003). Obviously, these theoretical 

differences between classic and spatial data mining, have important repercussions in 
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operative terms. Apply a spatial (data mining) approach implies that the dimension of 

large databases become larger as spatially referenced objects also carry information 

concerning their representation in space by geometrical and topological properties 

(Koperski et al., 1996). This implies the following needs: more powerful techniques to 

manipulate data and extract knowledge; new kind of cartographic knowledge to 

represent the results obtained and make them readable to a non technical people (policy 

makers, local administrators etc.); finally, more flexible software in order to encourage 

the human interaction with the data. 

Summarizing, the term “spatial data mining” refers to the search of spatial 

patterns into spatial (or geographical) databases. Necessarily this search must have some 

specific characteristics that allow us to define it as a knowledge discovery process. In 

particular, it should be non trivial and with the highest number of automated operations 

as possible in order to reduce to a minimum level the human efforts. Besides, the funded 

spatial patterns should be, with the regard to the research objectives, interesting, useful 

and unexpected (Shekhar and Chawla, 2003). 

Nonetheless, there is no unique way to classifying data mining and spatial data 

mining methods and techniques. Han (1999) divides general (or classic) data mining 

into two main categories: descriptive data mining and predictive data mining. 

Descriptive data mining describes the behavior of data sets and presents interesting 

general properties of data while predictive data mining attempts to construct models in 

order to help predicting the behavior of the new datasets. Another important distinction 

that regards more specifically the statistical component of mining process is about the 

pattern recognition. In that case, researchers tend to distinguish between statistical 

pattern recognition – where everything is learnt from observations - and structural 

pattern recognition – where the most of the structure is imposed from a priori 

knowledge (Ripley, 1996). Others classify the mining process on the base of the 

analysis approach applied. Berry and Linoff (1997) define two approaches of analysis: 

top-down (confirmative) and bottom-up (explorative). The first approach, using mainly 

traditional statistics methods and techniques, tries to confirm or refuse some hypothesis 

by finding new aspects of a phenomenon not completely unknown. The second 

approach tries to find some unexpected information of a relatively unknown 

phenomenon. Another distinction is between unsupervised and supervised methods. In 
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the first case, there is no know grouping of the observations while in the second case the 

observations are known to be grouped in advance and the task is to group or to predict 

future observations (Ripley, 1996). Finally, we can find a great number of 

classifications with regards to spatial data mining techniques and methods. Ester et al. 

(1997) divide them into four general groups: spatial association rules, spatial clustering, 

spatial trend detection and spatial classification. Shekhar and Chawla (2003) define 

three non controversial techniques of spatial data mining: classification, clustering and 

association rules. Our attention is focused on spatial clustering techniques that we will 

analyze in the next paragraph. 

 

 

3. Spatial clustering: an overview on methods and techniques 

 

Spatial clustering is a process of grouping a set of spatial objects into meaningful 

subclasses (that is clusters) so that the members within a cluster are similar as much as 

possible whereas members of different clusters differ as much as possible from each 

other (Jiao and Liu, 2008). The spatial data mining role is to scale a spatial clustering 

algorithm to deal with the large geographical datasets (Shekhar and Chawla, 2003).  

Spatial clustering algorithms and approaches can be separated into four general 

categories: partitioning method, hierarchical method, density-based method and grid-

based method. This categorization is essentially based on the classification proposed 

Han et al. (2001, 2009). Following this, we propose a description of the most important 

spatial clustering methods. 

 

Partitioning methods 

 The partitioning approach characterized early studies in clustering and still 

remain one of the most cited and used approach. A partitioning algorithm organizes the 

objects into clusters such that the total deviation of each object from its cluster center is 

minimized. The deviation of a point can be computed in different ways and is usually 

called similarity function (Han et al., 2001, 2009). At the beginning of the process each 

object is classified as a single cluster. In the following steps, all data points are 

iteratively reallocated to every clusters until a stopping criterion is met. Partitioning 

algorithms organize the objects into k clusters such that the similarity function of each 

object, with respect to its cluster representative, is minimized. A cluster representative 
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could be the cluster centre, the most centrally located object in the cluster or a 

probability distribution representing the cluster. Usually, similarity function correspond 

to Euclidean distance so minimize the similarity function between a given object and its 

cluster representative means to associate the object to the cluster having the closest 

representative (Varlaro, 2008). A great numbers of algorithms that belong to this 

method have been developed, nonetheless all of them can be considered as derivations 

of three basic algorithms: K-means (McQueen, 1976), K-medoid (Vinod, 1969; 

Kaufman and Rousseeuw, 1990) and EM–expectation maximization (Dempster et al., 

1977; Yu et al., 1998; Bradley et al., 1998). K-means and k-medoid algorithms are very 

similar since in both methods the cluster is represented by a centrality measure that 

becomes the gravity center of the cluster (centroid or mean) in the first case and the 

most centrally located object in the cluster in the second (Han et al., 2001). On the 

contrary, EM clustering algorithms use a distribution consisting of a mean and a 

covariance matrix to represent each cluster so, instead of assigning each object to a 

dedicated cluster, these algorithms assign each object to a cluster according to a 

probability of membership which is computed from the distribution of each cluster (Han 

et al, 2001). From a more general point of view it’s important to underline that every 

kind of partition methods is equivalent to a Voronoi diagram and each cluster is 

contained in one of the Voronoi polygons thus these methods tend to find clusters of 

spherical shape which is relatively restrictive for many applications (Sander et al., 1988; 

Shekhar and Chawla, 2003).  

 Like Han et al (2009) show, the objective criterion used in the K-Mean 

algorithm is typically the squared error function defined as: 

          
 

    

 

   

  

where E is the sum of the square-error for all objects in the data set; x is the point 

representing a given object and    is the mean of cluster    (both   and    are 

multidimensional). The K-mean algorithm is relatively efficient in processing large data 

bases but presents important limitations. As mentioned above, it can’t discover clusters 

with non convex shapes or clusters of very different size. It is also sensitive to noise and 

outlier data points (Han et al., 2001). 
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 To reduce the limitations of clustering methods base on K-mean algorithms the 

K-medoid algorithms have been elaborated. In this case, instead of taking the mean 

value of the objects in a cluster as reference point, an actual object is picked to represent 

each cluster. As mentioned above this representative object is the medoid - the most 

centrally located object within the cluster - while each remaining object will be 

clustered with the representative object to which is the most similar (Han et al., 2009). 

The principle is to minimize the sum of dissimilarities between each object and its 

corresponding reference point in terms of an absolute error criterion defined as:  

          

    

 

   

 

where E is the sum of absolute error for all objects in the data set; x is the point 

representing a given object in cluster    and    is the representative object of   . The 

major limitation of this spatial clustering algorithms is that their computational 

dimension become very costly with large data sets (Han et al., 2009).  

 In the case of EM–algorithms each cluster can be represented mathematically by 

a parametric probability distribution. The data are clustered by using a finite mixture 

density model of M probabilistic distributions where each distribution represents a 

cluster. A mixture model can be formalized as:  

                   

 

   

 

where the parameters are                     such that     
 
     , and each 

   is a density function parameterized by   . That is, M component densities are mixed 

together with M mixing coefficients    (Han et al., 2009). The log-likelihood expression 

for this density from observed data x is given by: 

                                 

 

   

               

                      

 

   

 

where we posit the existence of unobserved data          
  whose values inform us 

which component density “generated” each data item. For example, if the i-th element 



7 
 

was generated by the k-th mixture component,                    (Han et al., 

2009). The goal is to find   that maximize   and to achieve that the EM-algorithm is 

used. The EM-algorithm is in fact a general method of finding the maximum-likelihood 

estimate of the parameters of an underlying distribution from a given data set when the 

data is incomplete. It can be viewed as an extension of the k-means paradigm because, 

instead of assigning each object to a dedicated cluster, it assigns each object to a cluster 

according to a weight representing the probability of membership (Han et al., 2009).

 Some of the recent algorithms that are based on the partitioning method are: 

Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990), Clustering 

LARge Applications (CLARA) (Kaufman and Rousseeuw, 1990) and Clustergin 

LARge Applications based upon RANdomized Search (CLARANS) (Ng and Han, 

1994) (Han et al., 2001, 2009; Varlaro, 2008). 

 

Hierarchical methods 

 These clustering methods hierarchically decompose the spatial dataset by 

splitting or merging all clusters until a stopping criterion is met. The result of the 

decomposition is a dendrogram of spatial objects, that is a tree structure where each no-

leaf node is composed by the same elements composing its children nodes. In this way, 

the result of a clustering task is not a partition of dataset but a hierarchy of clusters 

where each level describes a partition of source data (Varlaro, 2008). The dendrogram 

can either be created from leaves up to the root (agglomerative hierarchical clustering) 

or from the root down to the leaves (divisive hierarchical clustering) (Sander et all., 

1998). The agglomerative hierarchical approach, also called bottom-up approach, starts 

with each object forming a separate group. At every interaction the two most similar 

clusters (according to the considered similarity function) are merged together into a new 

cluster until all of the objects are in a single cluster or until a termination condition 

holds (Han et al. 2001). The divisive hierarchical approach, also called top down 

approach, starts by considering each object belonging to the same general cluster and, at 

each iteration, one of the available clusters is split into smaller clusters according to 

some measure, until each object is in one cluster or a termination condition holds 

(Varlaro, 2008). AGNES (Agglomerative Nesting) is one of the first agglomerative 
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hierarchical algorithm while DIANA (Divisive analysis) is one of the first divisive 

algorithm (Han et al., 2001, 2009).  

 We propose now an example using AGNES and DIANA algorithms elaborated 

by Han et al. (2009). 

 

We have a data set of 5 objects            . Initially, AGNES places each object into a 

cluster of its own. At each stage, the algorithm joins the two clusters that are closest 

together (i.e., most similar). The cluster merging process repeats until all of the objects 

are eventually merged to form one cluster. DIANA does the reverse of AGNES. The 

measures for the distance between two objects or points are formulated by the following 

equations: 

                                                 

                                                 

                                   

                                                 

where      | is the distance between two objects or points, p and p’;    is the mean 

for a cluster,    and    is the number of objects in   .When an algorithm uses the 

minimum distance to measure the distance between two clusters it is called single-

linkage algorithm; on the contrary, when an algorithm uses the maximum distance it is 

called complete-linkage algorithm (Han et al., 2009). It is to note that, differently from 

the mean distance, minimum and maximum distances tend to be very sensitive to 

overlay or out noise data.  

 In contrast to partitioning algorithms, hierarchical algorithms do not need k as an 

input parameter. However a termination condition has to be define indicating when the 

merge or division process should be terminated. Alternatively, an appropriate level in 

the dendrogram has to be selected manually after the creation of the whole dendrogram. 

a,b,c,d,e

a,b c,d,e

a b c d e

d,e

AGNES

(agglomerative)

DIANA

(divisive)
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A limitation of the hierarchical algorithms is that they are computationally intensive: as 

a pair wise confrontation of all the objects is required at each step, the computational 

dimension grows fast. 

 Some of the recently used hierarchical clustering algorithms are Balancend 

Iterative Reducing and Clustering using Hierarchies (BIRCH) (Zang et al., 1996), 

Clustering Using REpresentatives (CURE) (Guha et al., 1998), a Hierarchical 

Clustering Algorithm using Dynamic Modeling (CHAMELEON) (Karypis et al., 1999). 

 

Density – based methods 

 These kind of methods has been developed to overcome the major limitations of 

clustering methods based on the distance between objects (i.e. partitioning and 

hierarchical methods). In fact, with these new family of methods based on the concept 

of density, clusters of arbitrary shapes can be discovered (Han et al., 2001). In the 

density-based methods clusters are regarded as dense regions, that is regions 

characterized by an high number of spatial objects. These dense regions are separated 

each other by regions of low density and constraining noise (Han et al., 2009). Despite 

their properties, density-based methods find difficulties when the number of dimension 

is high (Varlaro, 2008).  

 One of the most famous density-based clustering methods is the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996). The 

algorithm of this method grows regions with sufficiently high density into clusters and 

discovers clusters of arbitrary shape in spatial databases with noise (Han et al, 2009). 

Another two important density-based methods are the Ordering Points to Identify the 

Clustering Structure (OPTICS) (Ankerst et al., 1999) and the Clustering Based on 

Density Distribution Functions (DENCLUE) (Hinneburg and Keim, 1998). OPTICS 

was proposed to overcome the limitation that DBSCAN algorithm presents in terms of 

wasted time due to its sensitivity to the input parameters. OPTICS, produces an ordering 

of the data points such that clustering result for any lower or similar value compare to 

the two input parameters can be visualized and computed easily. DENCLUE is a 

clustering method based on a set of density distribution functions. The method is based 

on some basic ideas: 1) the influence of each data point can be formally modeled using 

a mathematical function, called influence function, which describes the impact of a data 
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points on its neighborhood; 2) the overall density of the data space can be modeled 

analytically as the sum of the influence function of all data points; and 3) clusters can 

then be determined mathematically by identifying density attractors, where density 

attractors are local maxima of the overall density function (Han et al., 2001). 

 

Grid-based methods 

 Using a grid based structure, the grid–based clustering methods overcomes the 

limitations of density based method mentioned above. In particular, in the grid-based 

methods data are quantized into a finite number of cells that represent the elements that 

will be clustered (Varlaro, 2008).  

 The main advantage of that approach is its fast processing time, since the time is 

independent on the number of data objects, but dependent on the number of cells (Han 

et al, 2001). Some of the most important grid-based algorithms are the STatistical 

Information Grid (STING) (Wang et al., 1997), which explores statistical information 

stored in the grid cells; Clustering In QUEst (CLIQUE) (Agrawal et al., 1998), which 

represents a grid and density-based approach for clustering in high dimensional data 

space; A Multi-Resolution Clustering Approach for Very Large Spatial Databases 

(WAVECLUSTER) (Sheikholeslami et al., 1988), which represents a grid-and density 

based approach for clustering in high-dimensional data space (Han et al., 2001). 

 

 

4. Regionalization with dynamically constrained agglomerative clustering and 

partitioning (RedCap): a brief description 

 

 According to Guo (2008) we define regionalization as a process that divides a 

large set of spatial objects into a number of spatially contiguous regions while 

optimizing an objective function, which is normally a homogeneity (or heterogeneity) 

measure of derived regions. Therefore regionalization is a special kind of spatial 

clustering where the condition of spatial contiguity among spatial objects plays a 

priority role. As Guo (2008) suggests, existing regionalization methods can be classified 

in four groups: 1) non-spatial clustering followed by spatial processing; 2) non–spatial 

clustering with a spatially weighted dissimilarity measure; 3) trial-and-error search and 

optimization; 4) spatially constrained and partitioning. In the first case, the clusters are 

derived only regard to an attribute similarity an then the clusters are divided or merged 
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to regions in a geographic space (Guo, 2008). In the second case the algorithm modifies 

the similarity measure to incorporate spatial information explicitly using some measures 

like distance-weighted attribute similarity or treating geographic coordinates as 

additional variables (Guo, 2008). In the third case the algorithm takes a trial-and-error 

optimization approach and, finally, in the fourth case the algorithm considers spatial 

constraints with a non-spatial clustering method (Guo, 2008).  

 RedCap is a new method of spatial clustering and regionalization elaborated by 

Guo (2008). It is essentially based on a group of six methods for regionalization which 

are composed by the combination of three agglomerative clustering methods (Single 

Linkage clustering, SLK; Average Linkage clustering, AVG; Complete Linkage 

clustering, CLK) and two different spatial constraining strategies: First-Order 

constraining and Full-Order constraining (Guo, 2008). Referring to the work of Guo 

(2005, 2008) for technical and computational details about these six methods of 

regionalization we just briefly describe the theoretical context in which RedCap have to 

be collocated and how RedCap works in the case, applied in our analysis, of CLK-Full 

Order method.  

 Existing methods for multivariate spatial analysis and clustering span a 

continuum between computational and visual approaches. The first ones exploit the 

computational power and the formalism of statistical inference to search patterns while 

the second ones capitalize the ability of human vision to identify patterns and facilitate 

this process by presenting the data from different perspectives (Guo, 2005). 

Unfortunately, the historical development of these two methods for multivariate spatial 

analysis has proceeded independently as underlined by Guo (2005, 2006). 

 RedCap represents an integrated geographic discovery environment that is able 

to detect multivariate spatial patterns with high-dimensional geographic data; support 

human interactions to examine and explain the patterns; create new regionalization that 

minimize heterogeneity among clusters and at the same time satisfy the condition of 

spatial contiguity among them. The architecture of RedCap presents two fundamental 

steps: in the first step the method finds spatial clusters without imposing any spatial 

constraining strategy; in the second step the method completes the regionalization 

process. The results of these two steps are related and visualized on an interactive map.  
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 The first step is based on the iterative algorithms of the Self Organizing Map 

(SOM) (Kohonen, 2001) that represents an intermediate approach between visual and 

computational approaches. The SOM projects high-dimensional data to a low-

dimensional space with preserving nonlinear relationship by producing a similarity 

graph of the input data. The SOM result is visualized using two types of hexagons: 1) 

node hexagons, each of which contains a circle that is scaled to depict the number of 

data items in the node; 2) distance hexagons, each of which is shaded to represent the 

multivariate distance between two neighboring hexagons. This kind of graphic display 

of the SOM result is called U-matrix (unified distance matrix) (Kohonen, 2001). 

RedCap presents also a method of encoding patterns with colors utilizing systematic 

variation in both hue and lightness to construct a 2D array of logically ordered but 

discriminable colors (Guo, 2005).  

 The second step of analysis is based on a contiguity matrix and a set of 

constrained strategies that drive the agglomerative clustering method. The Complete 

Linkage clustering method (CLK) defines the distance between two clusters as the 

dissimilarity between the furthest pair of data points (Guo, 2008): 

                                

where L and M are two clusters,     and     are two data points and d is the 

dissimilarity between u and v. At the beginning of the process, each individual data is a 

cluster by itself then original data are updated with the information of the SOM 

algorithms and the most similar (given by the distance definition) pair of clusters are 

selected and merged into one. The merging process incorporates the contiguity 

constraints using the Full Order constraining strategy (Guo, 2008). Contiguity-

constrained agglomerative clustering requires that two clusters cannot be merged if they 

are not spatially contiguous. This is the differential element between classic spatial 

clustering and regionalization. A Full-Order constraining strategy includes all edges in 

the clustering process, and the distance between two clusters is defined over all edges. 

This strategy is dynamic because it updates the contiguity matrix after each merge to 

track all edges which connect two different clusters (Guo, 2008).  
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5. Application and Results
2
 

 The Florentine Metropolitan Area (FMA) is defined by the deliberation of the 

regional council of Tuscany n.130 on 13/2/2000. This area is composed by three 

provinces (Firenze, Pistoia and Prato) divided in 73 municipalities (Fig.1). Due to its 

recent definition a few studies on its population structure and dynamic are available in 

the literature (Petrucci et al., 2008; Petrucci et al., 2006; Vignoli et al., 2007) and, in 

particular, there are no studies that consider directly the spatial dimension in the 

analysis. The FMA is a very heterogeneity area in terms of demographic structures and 

dynamics, settlements models, geo-morphological structures and economic 

specialization. In addiction the FMA is strongly affected by many phenomena of 

mobility: residential migrations, daily migrations (commuting), international 

migrations. Due to this strong heterogeneity and in the optics of a progressive 

decentralization of the activities of governance we believe that FMA represents a very 

interesting case of study.  

 

Figure 1. Florentine Metropolitan Area  

 

 We select as input variables five demographic indexes (computed for each 

municipality of FMA) plus the spatial attributes of each municipality. The five 

demographic indexes, computed by using data on resident population produced by 

Italian National Institute of Statistics (Istat), are: 

                                                             
2 These results were presented to the Joint Meeting GfKl – CLADAG 2010, held in Florence 8-10 

September 2010. 
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Youth 

dependency   
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Aging     

index        

(IV) 

Elderly 

dependency 

index (IDA) 
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active age 
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index (IS) 

Population in 

active age 

replacement index 

(IR) 

     

      
     

    

     
     

    

      
     

      

      
     

      

      
     

 

 Firstly, an explorative analysis based on the results of the SOM algorithms is 

carried out. Applying a visual approach we build groups of similar clusters through the 

results of clustering process visualized on the unified distance matrix without taking 

into account the condition of spatial contiguity among them.  

 

Fig. 2 General results (without constraining strategy)  

a. Multivariate Mapping 

 

b. Clustering with SOM 

 

 

 

c. Multivariate visualization of clusters (Parallel Coordinate Plot) 
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 Starting from 73 municipalities we identify 16 clusters that are defined by the 

node hexagons on the SOM (Fig.2b). Territorial units with the same color belong to the 

same cluster and clusters with similar colors present a low level of dissimilarity. The 

level of similarity is measured and visualized by the Parallel Coordinate Plot (PCP) 

(Fig.2c). In this plot we can observe the profile of each cluster. More in detail, we have 

five parallel axes (one for each index) scaled by nested means method (Guo, 2005). 

What is important to compare is the profile of each segment (that is to say each cluster) 

comparing to the central value of each axe that is the value of that index computed for 

the total area. 

 On the base of the results showed in Fig.2, we classify the 16 clusters in three 

main groups. The first group, that we define “young”, is composed by 5 clusters and 29 

municipalities  (Fig.3).  This group  has a relatively young  structure and a  high level of 

 

Fig. 3 Group 1: “Young” 

a. Multivariate Mapping 

 

b. Clustering with SOM 

 

 

 

c. Multivariate visualization of clusters (Parallel Coordinate Plot) 
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inner homogeneity as the colors of the node hexagons and the PCP show. The 5 clusters 

present a low level of the IV, IDA and ISPA indexes, a high/medium level of IDG and, 

finally, a low/medium level of IRPA index (Fig.3c). 

 The second group, that we define “old”, is composed by 4 clusters and 15 

municipalities. This second groups of clusters is characterized by a population with a 

very old structure as the PCP shows clearly (Fig.4c). In fact, the level of IDG is low 

while the level of the others indexes (IV, IDA, IS, IR) is medium/high in one case and 

very high in the others three cases. This group of clusters presents a great level of inner 

homogeneity as the colors of node hexagons in SOM and the profiles of the PCP show 

(Fig.4). 

 

Fig. 4 Group 2: “Old” 

a. Multivariate Mapping 

 

b. Clustering with SOM 

 

 

 

c. Multivariate visualization of clusters (Parallel Coordinate Plot) 
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 The third group of clusters, that we define “medium”, is composed by 6 clusters 

and 26 municipalities. As we can see in the Fig.5 this third group is composed by 

clusters that present a medium level of all indexes. The inner homogeneity of this group 

is relatively low as we can see by the colors of the node hexagons of the SOM (Fig.5b) 

and in the profile of the clusters represented in the PCP (Fig.5c). Actually, this group 

could be divided in two sub-groups: “medium high” (individuated by the blue nodes) 

and “medium low” (individuated by the pink-brown nodes).  

 

Fig. 5 Group 3: “Medium” 

a. Multivariate Mapping 

 

b. Clustering with SOM 

 

 

 

 

c. Multivariate visualization of clusters (Parallel Coordinate Plot) 

 

 

 After the explorative analysis we apply the Complete Linkage Clustering 

method together with a Full Order constraining strategy (CLK-Full Order) in order to 

obtain n area that, given the condition of spatial contiguity, minimize the inner 

heterogeneity regarding to the demographic structure of the population. We individuate 
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six areas (Fig.6 and Fig.7). Areas A and B, are very similar to each other and both are 

characterized by a high level of inner homogeneity. In fact, by a visual analysis we can 

clearly see that the municipalities that belong to these areas have basically the same 

colors (Fig.2a). Therefore, areas A and B present a very old structure of their resident 

population as we can verify by observing the PCP of the “old” group of clusters 

(Fig.4c). The similarity between areas A and B is not only in terms of demographic 

structure: these areas are in fact mountain areas characterized by rural settlements and 

both are localized on the boundary of the FMA. The fact that these areas present a very 

old demographic structure is probably connected to their recent demographic history. 

As known, these areas (like the majority of the mountain areas of Italy) were interested 

by a depopulation process caused by a strong internal rural-urban migration flows. The 

actors of these internal migration movements were mainly young people and young 

couples in search of a more modern and dynamic society (typically urban) where the 

opportunity of study and employment were higher. For similar reasons, these areas are 

not become destination areas for international migrants (especially for international 

labor migrants) that usually prefer areas where the labor market is dynamic and 

characterized by a high incidence of informal sectors (typically the urban and peri-urban 

areas). Most probably this double migratory mechanism in addition to the aging process 

that involve the whole Italian population, have determined the extremely old structure 

of the population of these two areas.  

 

Figure 6 – Regions A, B and C 
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 Area C presents a medium level of inner homogeneity as indicated by the 

different shades of colors of the municipalities that belong to this area (Fig.6). The 

demographic structure of the population of this area is medium old: some municipalities 

(the green ones) have an old structure; others (the pink and the brown) have younger 

demographic structure. Area C is composed by two important urban centers, Firenze 

and Pistoia, and by a peri-urban area around these two cities. Therefore, we can say that 

area C presents an urban settlements and a medium old demographic structure but with 

an internal spatial structure that can be divided in two sub-structures: a more properly 

urban area – the core of FMA - with a relatively old demographic structure and a peri-

urban area with a relatively younger structure. These results, especially with regards to 

Firenze and Pistoia, find confirmation in the evidences of Petrucci et al. (2008). By a 

theoretical point of view this demographic situation can be explained by the following 

considerations: a) in recent years Firenze and Pistoia (like the majority of medium and 

large size cities of Italy) were involved in the suburbanization process. Typically this 

process involves mainly people with a relatively old age structure that move themselves 

in search of areas less urbanized and with a higher quality of life (Benassi et al., 2009). 

In the case of Pistoia and, especially, Firenze this process probably involves also young 

people and young couples that decide to leave parental home and, due to the extremely 

asymmetric structure of the house market that characterize these cities, they probably 

migrated to less central areas; b) the high cost of life and houses in Firenze and Pistoia 

affects also the residential choice of international migrants; c) the urban way of life is 

typically associated with relatively low level of Total Fertility Rate. 

 

Figure 7 – Regions D, E and F  
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 According to the core-ring model for the study of urban development (Van den 

Berg, 1992) areas D and F (Fig.7) can be defined as a ring around the more properly 

urban area. Area D presents a medium/old demographic structure and a medium inner 

homogeneity as the different colors of the municipalities of this area underline. This 

area is characterized by a semi-urban and rural settlements. Some specific sub-areas of 

area D (the Chianti area for example) are destination for retirement migrants from north 

Europe (especially U.K. and Germany) and north America (Benassi and Porciani, 

2010). Due to this spatial proximity to the core of the metropolitan system  this area is 

also probably the destination area for internal migrants involved in the suburbanization 

process of area C. Area F is the second part of the ring around the core of the FMA 

system. The inner homogeneity of this area is relatively low but presents a younger 

demographic structure compare to the area D. This is probably due to the fact that this 

area is not a destination area for retirement migrants but, on the contrary, is certainly a 

destination area for international labor migrants and also for young people and young 

couples. A is in fact more influenced by the dynamics of area E, that represents the alter 

ego of area C. Like this area, in fact, is an urban area characterized by an urban 

settlements but, differently from area C, it presents a very young demographic structure. 

The reason of this dual situation is that area E is strongly involved in international 

migration movements. As known, it is an attractive area for international migrants 

(especially the Chinese community) that are very concentrated in this area and, in 

particular, in the municipality of Prato. On the other hand the suburbanization process 

mainly driven by young people and young couples probably interests this area as a 

destination area for the people that migrate from area C. 

 

 

6. Concluding remarks 

 

 The RedCap method has some advantages but also some limitations. It is very 

ductile, user friendly, free, allows to interact directly with the data, and takes into 

account directly the spatial dimension. On the other hand, it is not a probabilistic 

clustering method. 

 The spatial analysis of the demographic structure of the resident population of 

the Florentine Metropolitan Areas has produced some important results that clearly 
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show how the spatial attributes influence the demographic structure of the population. 

The FMA is a demographic complex spatial system where coexist: a) mountain areas 

with a very old demographic structure (areas A and B); b) dual core metropolitan areas 

composed by a relatively young area (E) and a relatively old area (C); c) two ring areas 

that are basically the spatial extension of the FMA core (areas D and F). 

 Starting from these empirical evidences we want to underline that ignoring 

spatial dimension can lead to misleading inference. The use of appropriate methods for 

the detection of spatial clusters can improved the measurement and interpretation of 

urban socio-economic phenomena and provide a useful information to local authorities 

and policy makers for regional and urban planning. 
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