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Abstract

Face analysis from 2D images and videos is a central task in many com-

puter vision applications. Methods developed to this end perform either

face recognition or facial expression recognition, and in both cases results

are negatively influenced by variations in pose, illumination and resolution

of the face. Such variations have a lower impact on 3D face data, which

has given the way to the idea of using a 3D Morphable Model as an in-

termediate tool to enhance face analysis on 2D data. In the first part of

this thesis, a new approach for constructing a 3D Morphable Shape Model

(called DL-3DMM) is proposed. It is shown that this solution can reach the

accuracy of deformation required in applications where fine details of the

face are concerned. The DL-3DMM is then exploited to develop a new and

effective frontalization algorithm, which can produce a frontal facing view

of unconstrained face images. The rendered frontal views result artifact-free

and pixelwise aligned, so that matching consistency between local descrip-

tors is enhanced. Results obtained with this approach are comparable with

the state-of-the-art. Lately, in contrast to local descriptors based approaches,

methods grounded on deep learning algorithms proved to be dramatically ef-

fective for face recognition in the wild. It has been extensively demonstrated

that methods exploiting Deep Convolutional Neural Networks (DCNN) are

powerful enough to overcome to a great extent many problems that nega-

tively affected computer vision algorithms based on hand-crafted features.

The DCNNs excellent discriminative power comes from the fact that they

learn low- and high-level representations directly from the raw image data.

Considering this, it can be assumed that the performance of a DCNN are

influenced by the characteristics of the raw image data that are fed to the

network. In the final part of this thesis, the effects of different raw data

characteristics on face recognition using well known DCNN architectures are

presented.
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Chapter 1

Introduction

The automatic analysis of the human face has always attracted much at-

tention in the computer vision and machine learning fields. In the last few

years, thanks to the technological advances that have opened the way to

the effective use of deep learning algorithms, we have witnessed substantial

changes in how computer vision problems are addressed, including the ones

concerning the analysis of the human face. Classic computer vision meth-

ods used to exploit hand crafted feature descriptors and human engineered

methods to devise a suitable representation of an image and extract semantic

information from it. With deep learning methods based on Convolutional

Neural Networks (CNN) the design of this representation is delegated to the

network itself. Low and high level features are learned by the networks di-

rectly from the raw image data. As a result, approaches based on the latter

have demonstrated to outperform classic computer vision methods in many

applications by a large margin. The natural consequence is that most of the

research conducted up to this point is largely focused on deep learning.

However, in both cases, a great challenge summarily consists in finding

the best “transformation” to convert the raw pixels of the image to a compact

and discriminative representation that condense the semantic information

carried by the image.

1.1 The objective

The main focus of this thesis is the problem of face recognition “in the

wild” from images and video sequences. Face recognition trivially consists

1



2 Introduction

in associating a label that represents the subject’s identity to a face image.

Generally speaking, most of the face-related tasks consist in associating a

label to a face image; this can be the emotional state of the subject cap-

tured, its expression, the gender and so on. All these problems are related

by the fact that a suitable representation of the face image must be derived

in order for a machine to extract discriminant information from it and per-

form the labeling task. It is clear in this sense that, depending on the task

and the algorithms used to perform the recognition, different representations

are likely to be more or less effective. Thus, it is reasonable to argue that,

even though recognition pipelines usually consist of many modules, the cho-

sen representation plays an important role for the final performance of the

system.

In this context the main challenge for face recognition systems that op-

erate in unconstrained scenarios is that the appearance changes in the face

images due to real world conditions are usually very large. The semantic

information associated to the identity that can be extracted is likely to be

concealed by other factors. These can concern the subject captured, for ex-

ample changes in pose, expression and aging but can also be related to the

images themselves like illumination changes, different resolutions, occlusions

and context. An example is shown in Fig. 1.1; the reader can easily deduce

that the problem is considerably hard. The goal of this research work con-

sisted in finding an effective face representation that is invariant, at least

to some extent, to the above mentioned issues. The problem has been ad-

dressed both from a computer vision and a deep learning point of view. The

main difference between the two consists in how the image representation is

devised.

Computer vision approaches are generally based on computing local fea-

ture descriptors; these are human engineered descriptors built in order to

capture recurring patterns in the image pixels e.g. Local Binary Patterns [1],

or some related characteristics e.g. gradient orientations [50]. All these de-

scriptors have been developed in the attempt of capturing discriminant char-

acteristics of objects. Even though different descriptors can result more or

less effective depending on the object to be described, they are rather generic

so that they can be used in different applications e.g. object detection, face

recognition, image stitching, 3D reconstruction. In all these cases, such de-

scriptors are usually computed in many different locations across the image

and concatenated so as to devise a representation of the whole object, faces
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in our case. However, in spite of their versatility and fast computation, in

real world scenarios, where appearance changes are due to a large number

of factors, they do not suffice to capture the details that allow to decide

if two instances of the same face are actually the same individual. Stated

differently, their generic nature makes them weak in effectively describe the

semantics of the image content and thus to infer the appearance changes

that are ascribable to different identities rather than external factors.

Deep learning approaches based on Convolutional Neural Networks in-

stead draw their powerfulness by learning a representation directly from both

the raw image data and the task. This is a fundamental peculiarity that can

be illustrated with an example: assume to have two face images of two per-

sons. One is smiling and the other not. It is likely in this context that what

makes us decide that the two images represent two subjects is not the same

visual content that makes us say that one is smiling and the other is not.

More precisely, the visual content is actually the same but the information

that we extract from it, it is probably not. Although this problem could still

be resolved with local feature based approaches, their performance tend to

drop when either (i) the external conditions induce very large appearance

changes or (ii) the number of different instances to be classified increases

a lot e.g. recognize thousands of different individuals. On the other hand

CNNs have two main drawbacks: the first is that, for each task, a network

must be trained to perform that task in order to extract a meaningful rep-

resentation. Secondly, the amount of images needed to train effectively the

network is massive, likewise the number of parameters to be learned.

For what concerns face recognition approaches based on local features, we

mainly focused on the problem of pose variations i.e. the orientation of the

head in the 3D space. In the context of face recognition “in the wild”, among

all, pose variations are surely the ones that can make a recognition system

fail the most. This can be ascribed to the fact that engineered descriptors are

conceived so as to be invariant to rather smooth illumination changes [59] and

reasonable spatial transformations [25,50]. While extreme cases occur rarely

in real conditions, natural pose variations, in a non cooperative context,

appear frequently. Moreover, these variations induce (i) a misalignment

in the spatial location of the image content, (ii) self occlusions i.e. loss

of information and (iii) a drastic change in the pixels pattern of the same

object. For these reasons, since pose variations occur in 3D space, we argued

that the use of 3D data could be convenient. To this aim, a statistical 3D
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Figure 1.1: Images of a single person captured “in the wild”.

modeling technique has been developed. It grounds on a 3D Morphable

Model [9] which is adapted to the face images and used to render a frontal

facing view.

Referring to approaches based on CNNs instead, it has been extensively

demonstrated that such networks are able to retain the discriminative infor-

mation of an image even in challenging conditions and perform recognition

accurately [75,79,81]. Despite this, not that much effort has been put in un-

derstanding how much the images themselves impact on the performance of

a deep network. To mention an example, most of the works in the field apply

a similarity transformation to the images so as to align them to a common

reference before giving them as input to the network; is this actually needed

or even useful? Are the networks able to account for visual information

other than the face i.e. the background? We try to answer these questions

through an extensive analysis of the data characteristics and preprocessing

operations that can be applied on them.

1.2 Organization of the thesis

In chapter 2 the proposed statistical 3D modeling technique is presented.

It is based on a modification on the classic 3D Morphable Model (3DMM);

instead of applying PCA to model the 3D shapes variabilities, a dictionary

learning (DL) technique is exploited. It will be shown that the proposed DL-

3DMM solution can more accurately reconstruct the shape of a face given

a 2D image. Chapter 3 presents a “Frontalization” technique based on the

DL-3DMM described in the previous chapters. This new image representa-

tion is used instead of the original images to extract local descriptors. We

experimented this solution in three different tasks, namely face recognition,

emotion recognition and action units detection. The transition from local

approaches based on hand crafted features to deep learning is presented in
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chapter 4, where we expound an extensive analysis of the effect that different

image characteristics and preprocessing operations have on the performance

of a CNN. Finally conclusions and future direction of research are reported

in chapter 5.

1.3 Contributions

The main contributions of this theses are reported in the following:

Chapter 2: In this chapter a new statistical 3D modeling technique is

presented. First, we describe a method to establish a dense correspondence

between scans even in the case of expressions that include topological varia-

tions such as open/closed mouth. This allows us to include expressive scans

in the training set, enlarging the generative capabilities of the 3DMM. Such

training data is used to build a new approach to capture the statistical

variability that, instead of exploiting standard PCA, learns a dictionary of

deformations from the deviations between each 3D scan and a generic model

computed on the vertex positions of the densely aligned training scans. We

refer to this new model composed by the average model and the learned

basis of deviations as DL-3DMM. Finally, the DL-3DMM is used to build an

efficient fitting method that only relies on the correspondence between 2D

and 3D landmarks of the face, which avoids a costly iterative optimization

by estimating the model parameters through a closed form solution.

Chapter 3: In this chapter an effective face frontalization approach is pre-

sented. In particular, we can show that performing a frontal rendering of

an unconstrained face image using the proposed technique and a properly

constructed 3DMM, capable of effectively adapting to faces with varying ex-

pression, ethnicity and gender, achieves results in line with the state of the

art even using baseline descriptors and learning solutions. The proposed face

representation is experimented in three different tasks, namely face recogni-

tion, emotion recognition ad action units detection.

Chapter 4: The main contributions and outcomes of this chapter are: (i) a

thorough experimentation on face data in the “wild” that evaluates the effect

on recognition results of bounding box dimensions, alignment, positioning

and data source; (ii) the evidence that deep architectures do not benefit
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from preprocessing operations that normalize input data both at train and

test time and (iii) the proof that different distance measures lead to very

diverse results and can be used as indicators of the effectiveness of the face

representation learned by a CNN.

Datasets: Frontalized faces in the wild The technique presented in

chapter 3 has been used to frontalize the face images contained in the dataset

Labeled Faces in The Wild [38].

Face images collector software: Finally, a web application that collects

huge amounts of face images provided a list of names has been developed. It

gets a list of names as input and queries three different search engines. The

urls returned by the engines are collected and the images are downloaded. It

performs a filtering of possibly wrong images for each subject by extracting

CNN descriptors from a subset of the downloaded images and training a SVM

classifier. It grounds on the hypothesis that the number of wrong images is

less than the correct. The trained classifier is used to discard images that

are classified as not belonging to the considered identity. A web tool allows

users to check and refine the set of collected images.



Chapter 2

Dictionary Learning Based 3D

Morphable Shape Model

In this chapter we present a new approach for constructing a 3D

Morphable Shape Model (called DL-3DMM) and show our solu-

tion can reach the accuracy of deformation required in applica-

tions where fine details of the face are concerned. For construct-

ing the model, we start from a set of 3D face scans with large vari-

ability in terms of ethnicity and expressions. Across these train-

ing scans, we compute a point-to-point dense alignment, which is

accurate also in the presence of topological variations of the face.

The DL-3DMM is constructed by learning a dictionary of basis

components on the aligned scans. The model is then fit to 2D

target faces using an efficient regularized ridge-regression guided

by 2D/3D facial landmark correspondences. Comparison between

the DL-3DMM and the standard PCA-based 3DMM demonstrates

that in general a lower reconstruction error can be obtained with

our solution.

2.1 Introduction and related work

In recent years, the analysis of human faces has become increasingly relevant,

with a variety of potential computer vision and multimedia applications. Ex-

amples include human identification based on face [24,48,90], emotional state

detection [87, 101], enhanced human-computer interaction using facial pose

7
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and expression [71,82,86,100,103], facial expression detection for medical as-

sistance or investigation [18,65], prediction of drivers cognitive load [66,99],

just to cite some of the most studied. All these applications share the diffi-

culty of dealing with problems such as variations in pose and expression, illu-

mination and resolution of the face, which are mostly related to 2D data. In

this framework, a potentially interesting idea is that of using hybrid 2D/3D

solutions in the attempt of overcoming to some extent the afore mentioned

limitations. To this end, being the acquisition of high-quality 3D data ex-

pensive and difficult, learning a generic 3D face model capable of generating

new face instances with plausible shape and appearance can be convenient.

This can be done by capturing the face variability in a training set of 3D

scans and constructing a statistical face model that includes an average com-

ponent and a set of learned principal components of deformation. Such a

model can be derived with a reasonable amount of 3D data and would allow

either to generate new face instances, or deform and fit to 2D or 3D target

faces.

In their seminal work, Blanz and Vetter [9] first proposed to create a 3D

morphable model (3DMM) from a set of exemplar 3D faces and showed its

potential and versatility. They showed how to derive a 3DMM by trans-

forming the shape and texture from a training set of 3D face scans into a

vector space representation based on PCA. A gradient-based optical flow

algorithm was used to establish dense correspondence between pairs of 3D

scans taking into account for texture and shape values simultaneously. A

reference scan was then used to transfer correspondences across scans. How-

ever, the training dataset had limited face variability (200 neutral scans of

young Caucasian individuals were included), thus reducing the capability of

the model to generalize to different ethnicity and non-neutral expressions.

Despite these limitations, the 3DMM has proved its effectiveness in image

face analysis, also inspiring most of the subsequent work, with applications

to computer graphics for face inverse lighting [76, 102] and reanimation [8],

craniofacial surgery [78], 3D shape estimation from 2D image face data [106],

3D face recognition [2], pose robust face recognition [10,55], etc.

The 3DMM was further refined into the Basel Face Model by Paysan et

al. [62]. This offered higher shape and texture accuracy thanks to a better

scanning device, and a lower number of correspondence artifacts using an im-

proved registration algorithm based on the non-rigid iterative closest point

(ICP) [3]. However, since non-rigid ICP cannot handle large missing regions
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and topological variations, expressions were not accounted for in the training

data also in this case. In addition, both the optical flow used in [9] and the

non-rigid ICP method used in [2,62] were applied by transferring the vertex

index from a reference model to all the scans. As a consequence, the choice

of the reference face can affect the quality of the detected correspondences,

and ultimately the final 3DMM. The work by Booth et al. [11], introduced

a pipeline for 3DMM construction. Initially, dense correspondence was esti-

mated applying the non-rigid ICP to a template model. Then, the so called

LSFM-3DMM was constructed using PCA to derive the deformation basis

on a dataset of 9,663 scans with a wide variety of age, gender, and ethnicity.

Though the LSFM-3DMM was built from the largest dataset compared to

the current state-of-the-art, the face shapes still were in neutral expression.

Following a different approach, Patel and Smith [61] showed that Thin-

Plate Splines (TPS) and Procrustes analysis can be used to construct a

3DMM. Procrustes analysis was used to establish correspondence between a

set of 104 manually labeled landmarks of the face, and the mean coordinates

of these landmarks were used as anchor points. A complete deformable

model was then constructed by warping the landmarks of each sample to

the anchor points and interpolating the regions between landmarks using

TPS. Finally, consistent resampling was performed across all faces, but using

the estimated surface between landmarks rather than the real one. In [20],

Cosker et al. described a framework for building a dynamic 3DMM, which

extended static 3DMM construction by incorporating dynamic data. This

was obtained by proposing an approach based on Active Appearance Model

and TPS for non-rigid 3D mesh registration and correspondence. Results

showed this method overcomes optical flow based solutions that are prone

to temporal drift. Brunton et al. [12], instead, proposed a statistical model

for 3D human faces in varying expression. The approach decomposed the

face using a wavelet transform, and learned many localized, decorrelated

multilinear models on the resulting coefficients. In [53], Lüthi et al. presented

a Gaussian Process Morphable Model (GPMM), which generalizes PCA-

based Statistical Shape Models (SSM). GPMM was defined by a Gaussian

process, which makes it inherently continuous. Further, it can be specified

using arbitrary positive definite kernels, which makes it possible to build

shape priors, even in the case where many examples to learn an SSM are not

available.

In this chapter, a new approach to the construction of a 3D Morphable
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Shape Model is expounded (note that, even though we consider the sole

shape component, throughout the chapter we will use the term 3DMM for

our solution). The proposed model is capable of capturing much of the large

variability of human faces, and it is grounded in three distinct contributions:

1. a new method to establish a dense correspondence between scans even

in the case of expressions that include topological variations such as

open/closed mouth. This allows us to include expressive scans in the

training set, enlarging the generative capabilities of the 3DMM.

2. a new approach to capturing the statistical variability in training data

that, instead of exploiting standard PCA, learns a dictionary of de-

formations from the deviations between each 3D scan and the average

model computed on the vertex positions of the densely aligned train-

ing scans. We refer to this new model composed by the average model

component and the learned basis of deviations as DL-3DMM;

3. an efficient fitting method that only relies on the correspondence be-

tween 2D and 3D landmarks of the face, and avoids a costly itera-

tive optimization by estimating the model parameters through a closed

form solution.

In the experiments, we demonstrate the DL-3DMM compares favorably with

respect to the standard PCA-based 3DMM in terms of reconstruction error.

The rest of the chapter is organized as follows: in Sect. 2.2, we present

the method for determining dense correspondence between the 3D scans of

a training set with a large spectrum of face variations; the DL-3DMM con-

struction using dictionary learning is proposed in Sect. 2.3; in Sect. 2.4, we

present the 3DMM fitting method; in Sect. 4.4, we compare the DL-3DMM

to the PCA-3DMM, and present their results in terms of reconstruction er-

ror; finally, discussion and conclusions are reported in Sect. 2.6.

2.2 Finding 3D Dense Correspondence

Given a training set, finding a dense point-to-point correspondence between

the vertices of 3D scans can be seen as a sort of mesh re-parametrization

where corresponding points must have the same anatomical reference. The

limited number of facial points detectable with sufficient accuracy, and the

presence of large regions with strong photometric variations, self-occlusions,
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facial expressions and changes in the topology of the face surface (as in the

case of mouth-closed / mouth-open), make this problem highly complex.

(a) (b)

Figure 2.1: (a) A face scan of the BU-3DFE with the 87 landmarks (in blue),

and the geodesic paths used to connect some of them (in black). These

paths partition the face into a set of non-overlapping regions. (b) Geodesic

contour of the cheek / zygoma region on the right side of the face. The

geodesic contour is resampled so that points on it (circles in the plot) are

at the same geodesic distance from each other. The interior of the region

is also resampled using linear paths on the surface (dots in the plot), which

connect corresponding points on opposite sides of the contour.

In our approach, similarly to Patel and Smith [61], we initially rely on a

set of landmarks to establish a correspondence between salient points of the

face (see Fig. 2.1(a)). However, differently from [61], where warping and TPS

interpolation is applied between the average landmarks, we interpolate and

sample the scan surface, region-by-region, while maintaining a dense corre-

spondence. We first partition the face into a set of regions using geodesic

paths between facial landmarks, applying the variant of the Fast Marching

algorithm on triangular mesh manifolds of [43], and resample the geodesics

with a predefined number of points posed at equal geodesic distance. As an

example, Fig. 2.1(b) shows (with circles), the sampled points of the geodesic

contour delimiting the cheek/zygoma region comprised between the nose and

the face boundary on the right. Hence, we sample the surface of the face

regions so that points of homologous regions are in dense correspondence

across all the training scans. This is obtained by using the geodesic contour
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of the region to guide the dense resampling of its interior surface. The idea

here is to connect pairs of sampling points on opposite side of a geodesic

contour with a linear path on the surface [51]. This line is then sampled at

the desired resolution, as illustrated in Fig. 2.1(b). Being based on the an-

notated landmarks and their connections, this approach proved to be robust

to facial expressions. In particular, the presence of landmarks which delimit

the internal and external border of the lips, makes it possible to maintain

such region correspondence also across faces with mouth-closed/mouth-open

expressions. While the method of [61] is only able to estimate the real sur-

face, in our case, we are able to interpolate and sample the true surface of

the face scans, region-by-region, maintaining a dense correspondence and

do not require an average model as in [61]. With respect to the solutions

in [3,9,62] our approach does not require a reference face model, that could

request a new face parametrization. It only requires that training faces are

labeled with a set of landmarks, that is easily obtained with good accuracy

using available detectors both in 2D [42,93] and 3D [63].

Learning a 3DMM requires a training set of 3D face scans with high

variability in terms of gender, age and ethnicity. Since we aim to generalize

to expressive data, including scans with facial expressions is also important.

To this end, we used the publicly available Binghamton University 3D Facial

Expression dataset (BU-3DFE) [97] as training set. This dataset includes

a balanced sample of human face variability and facial expressions and has

been largely employed for 3D expression/face recognition. In particular, the

BU-3DFE contains scans of 44 females and 56 males, with age ranging from

18 to 70 years old, acquired in a neutral plus six different expressions: anger,

disgust, fear, happiness, sadness, and surprise. Apart from neutral, all the

other facial expressions were acquired at four levels of intensity, from low

to exaggerated (2500 scans in total). The subjects are distributed across

different ethnic groups or racial ancestries, including White, Black, Indian,

East-Asian, Middle East Asian, and Hispanic-Latino. The 83 facial land-

marks annotated and released with the BU-3DFE provide correspondence

across the training faces for a limited set of anchor points in correspondence

to the distinguishing traits of the face.

Four additional landmarks located in the forehead have been derived from

this initial set using anthropometric considerations on face proportions [26].

The overall set of 87 landmarks is shown with blue spheres on the face scan

in Fig. 2.1(a). It is evident that these landmarks delimit salient parts of the
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face: the eyebrows, the eyes, the upper and lower lips, the nose, and the

face boundary. By connecting selected pairs of landmarks through geodesic

paths, we identified 12 regions in each side of the face (comprising the super-

orbitali, eyebrow, eye, cheek, jaw and chin), plus 9 regions covering the

middle part of the face (including the lips, the region between the upper lip

and the nose, the nose, the region between the eyes, and the forehead). As a

result, each face was partitioned into 33 regions, each delimited by a closed

geodesic contour passing through a set of landmarks, as shown in Fig. 2.1(a).

2.3 DL-3DMM Construction

Once a dense correspondence is established across the training data, we build

our DL-3DMM by learning a dictionary of deformation components exploit-

ing the Online Dictionary Learning for Sparse Coding technique [54]. Learn-

ing is performed in an unsupervised way, without exploiting any knowledge

about the data (e.g., identity or expression labels).

Let N be the set of training scans, as obtained in Sect. 2.2, each with

m vertices. Each scan is represented as a column vector fi ∈ R3m, whose

elements are the linearized X, Y , Z coordinates of all the vertices, that is:

fi = [ Xi,1 Yi,1 Zi,1 . . . Xi,m Yi,m Zi,m ]T ∈ R3m .

The average model m of the training scans is computed as:

m =
1

|N |

|N |∑
i=1

fi . (2.1)

Then, for each training scan fi, we compute the field of deviations vi with

respect to the average model m:

vi ← fi −m , ∀ fi ∈ N . (2.2)

In the classic 3DMM framework [9], new 3D shapes are generated by

deforming the average model m with a linear combination of the principal

components. In this work, instead, we propose to learn a set of deformation

components through dictionary learning. In particular, the dictionary atoms

are learnt from the field of deviations vi. Then, we morph the average model

exploiting a linear combination of the dictionary atoms. Note that the PCA

model is also constructed on the training set vi.
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Dictionary learning is usually cast as an `1-regularized least squares prob-

lem [54]. However, since the learnt directions are used to deform the average

model, the sparsity induced by the `1 penalty can lead to a noisy or, in the

worst case, a discontinuous or punctured model. We thus decided to formu-

late the dictionary learning as an Elastic-Net regression. The Elastic-Net is

a type of regression method that linearly combines the sparsity-inducing `1
penalty and the `2 regularization. The `1 norm is known to act as a shrinkage

operator, reducing the number of non-zero elements of the dictionary, while

the `2 norm avoids uncontrolled growth of the elements magnitude, while

forcing smoothness. By defining `1,2(wi) = λ1 ‖wi‖1 + λ2 ‖wi‖2, where λ1

and λ2 are, respectively, the sparsity and regularization parameters, we can

formulate the problem as:

min
wi, D

1

|N |

|N |∑
i=1

(
‖vi −Dwi‖22 + `1,2(wi)

)
, (2.3)

where the columns of the dictionary D ∈ R3m×k are the basis components,

wi ∈ Rk are the coefficients of the dictionary learning, and k is the number

of basis components of the dictionary. The number of components (dic-

tionary atoms) must be defined a priori. Instead, the set of coefficients

W = [w1, . . . , wk] ∈ Rk×k is obtained as the cumulated sum of the coef-

ficients at each iteration of the dictionary learning. The coefficients of the

matrix W are in general concentrated on the diagonal [54], and represent the

contribution of the k-th basis element in reconstructing the training vectors.

The above minimization can be rewritten as a joint optimization problem

with respect to the dictionary D and the coefficients W, and solved by

alternating between the two variables, minimizing over one while keeping

the other one fixed [54]. The average model m, the dictionary D and the

diagonal elements of the matrix W, namely the vector ŵ ∈ Rk, constitute

our Dictionary Learning based 3DMM (DL-3DMM).

2.4 Efficiently Fitting the DL-3DMM

Fitting a 3DMM to a 2D face image allows a coarse 3D reconstruction of the

face. To this end, estimating the 3D pose of the face, and the correspondence

between 3D and 2D landmarks are prerequisites. In the following, both the

average model and the basis components of the learned dictionary will be

represented in R3×m, rather than in R3m, and we refer to them as m̂ and
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Figure 2.2: The proposed 3DMM fitting and frontal face rendering: (left) the

3D head pose is estimated from the correspondence of 2D and 3D landmarks;

(right) the average 3D model is deformed using the basis components.

D̂, respectively. In order to estimate the pose, we detect a set of 49 facial

landmarks l ∈ R2×49 on the 2D face image using the technique proposed

in [42] (see Fig. 2.2 on the left). An equivalent set of vertices L = m̂(Iv) ∈
R3×49 is manually annotated on the average 3D model, where Iv is the set

of indices of the vertices corresponding to the landmark locations. Under an

affine camera model [55], the relation between L and l is:

l = A · L + T , (2.4)

where A ∈ R2×3 contains the affine camera parameters, and T ∈ R2×49

is the translation on the image. To recover these parameters, firstly, we

subtract the mean from each set of points and recover the affine matrix A

solving the following least squares problem:

arg min
A

‖l−A · L‖22 , (2.5)

for which the solution is given by A = l ·L+, where L+ is the pseudo-inverse

matrix of L. We can estimate the affine matrix with a direct least squares

solution since, by construction, facial landmark detectors assume a consistent

structure of the 3D face parts so they do not permit outliers or unreasonable

arrangement of the face parts (e.g., nose landmarks cannot stay above the

eyes). Finally, the 2D translation can be estimated as T = l−A · L. Thus,

the estimated pose P is represented as [A, T] and used to map each vertex

of the 3DMM onto the image.
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Using the learned dictionary D̂ = [d̂1, . . . , d̂k], we find the coding that

non-rigidly transforms the average model m̂ such that the projection mini-

mizes the error in correspondence to the landmarks. The coding is formu-

lated as the solution of a regularized Ridge-Regression problem:

arg min
α

∥∥∥∥∥l−Pm̂(Iv)−
k∑

i=1

Pd̂i(Iv)αi

∥∥∥∥∥
2

2

+ λ
∥∥α ◦ ŵ−1

∥∥
2
, (2.6)

where ◦ is the Hadamard product. Since the pose P, the basis components

d̂i, the landmarks l, and m̂(Iv) are known, we can define X̂ = l−Pm̂(Iv) and

ŷi = Pd̂i(Iv). By considering their linearized versions1 X ∈ R98 and yi ∈
R98 with Y = [y1, . . . , yk], we can finally estimate the non-rigid coefficients

which minimize the cost of Eq. 2.6, in closed form as follows:

α =
(
YTY + λ · diag(ŵ−1)

)−1
YTX , (2.7)

where diag(ŵ−1) denotes the diagonal matrix with vector ŵ−1 on its diag-

onal. The term ŵ−1 is used to associate a reduced cost to the deformation

induced by the most relevant components. Indeed, weighting the deforma-

tion parameters α with the inverse of the coefficients ŵ, reduces the cost of

the deformation induced by components d̂i with a large coefficient ŵi, while

the contribution of unstable and noisy components is bounded. In the clas-

sic PCA model, the same principle applies, but in this case the deformation

components d̂i are represented by the PC, while the vector ŵ corresponds

to the eigenvalues associated to the PC.

Figure 2.3 shows the dictionary coefficients compared to the well known

behavior of the PCA eigenvalues. The DL-3DMM coefficients contain the

energies used by the dictionary atoms to reconstruct the training signals;

though all the atoms contribute to the reconstruction, the actual contribution

of an atom is quantified by the related coefficient. In this sense, the weighting

ŵ−1 privileges the more contributing atoms.

Note that the pose estimation and fitting steps are alternated; we exper-

imentally found that cleaner reconstructions can be obtained by repeating

the process while keeping a high λ. This is motivated by the fact that the

initial 3D and 2D landmark layouts are likely to be very different due to the

presence of expressions, and the pose can be coarsely estimated. In this sce-

nario, the non-rigid deformation which fits the landmark locations is likely to

1The dimension 98 results from the concatenation of the coordinates of the 49 land-

marks.
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Figure 2.3: Comparison between the DL coefficients and the PCA eigenval-

ues.

excessively deform the model in the attempt of compensating also the error

introduced by the pose. On the contrary, a high λ avoids to some extent this

behavior and permits refinement of both the pose and the non-rigid defor-

mation in the next step. Thus, a balance is required between the number of

steps and the value of λ. We empirically found that the best configuration

is repeating the process 2 times, with λ ranging from 0.0001 to 0.05. More

than 2 repetitions do not produce appreciable improvement in the fitting.

A fitting example obtained using this solution is shown in Fig. 2.2. As a

result, the 3D model is deformed according to the target face image.

2.5 Experimental Results

The proposed DL-3DMM has been evaluated in two sets of experiments.

First, we investigate the modeling ability of the DL-3DMM compared with

its PCA-based counterpart in terms of 3D to 2D fitting, and direct 3D to 3D

fitting on the BU-3DFE. Then, we evaluate a cross-dataset fitting between

the BU-3DFE and the Face Recognition Grand Challenge (FRGC v2.0) [64]

dataset, by training on one dataset and testing on the other one, and vice

versa. In both these experiments, two reference projection matrices are de-

fined: Pf
ref simulates a subject facing the camera (front view); Ps

ref has

been taken simulating a pose with approximately 45◦ in yaw (side view).

The 3DMM is fit following the approach of Sect. 2.4. For the direct 3D

fitting, instead, we remove the projection P from Eq. (2.6) so as to perform

the fitting directly in the original 3D space.

2.5.1 3D Shape Reconstruction

We comparatively evaluate how the DL-3DMM and PCA-3DMM fit to a set

of test images. Experiments were performed on the BU-3DFE, processed
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as illustrated in Sect. 2.2 so that scans are densely aligned with the same

number of vertices. To train and test the 3DMMs, we split the scans into

two halves based on subject identity (so that train and test identities are

completely separated): one half of the scans is used to construct the average

model m̂, the deformation components d̂i, and the weights ŵ for both the

DL-3DMM and the PCA-3DMM; the other half is used for test. This process

is repeated 10 times on each train/test partition, and results are averaged

across the trials. To perform the 3D to 2D fitting, for each test scan we select

the set of landmarks through the indices Iv and project them onto the 2D

plane. These landmarks are used as a surrogate for the landmarks detected

on a face image and allow both avoiding inaccuracies induced by detection

and a misleading source of error not directly ascribable to the fitting. Since

the 2D landmarks are generated from the 3D scans, the original 3D data

can be used as ground-truth of the model resulting from the fitting process.

Based on this, we computed the 3D reconstruction error by accumulating

the vertex-to-vertex Euclidean distance between the ground-truth scan and

the deformed 3DMM. This measure exploits the knowledge of the exact

correspondence between all the vertices of the 3D scans given by the dense

alignment. Thus, the errors can be calculated by considering the distance

between vertices with the same index in the meshes, without requiring any

nearest vertex search. This is important, since in the presence of strong

topological changes as determined by expressive scans, finding meaningful

corresponding points for computing the errors is a complex task.

Reconstruction errors for three fitting conditions, namely, 3D-2D front

view, 3D-2D side view, and 3D-3D are reported in Fig. 2.4(a), (b) and (c),

respectively. The plots in the first row of the Figure compare the results

obtained with the DL-3DMM and the PCA-3DMM as a function of the

regularization parameter λ of Eq. (2.6) and for different number of com-

ponents. The bar graph in the middle row shows the effect of varying the

regularization parameter λ when the number of components is fixed at its

best performing number, while in the bottom row it is shown the opposite,

i.e., the effect of varying the number of components at the best regularization

value. Results show that our DL-3DMM performs generally better than the

PCA-3DMM. In particular, the two methods show a quite different behavior

regarding the number of components used. For PCA-3DMM, we observe

that increasing the number of components degrades the performance. This

fact can be explained considering that 3D scans are noisy regardless of ac-
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Figure 2.4: Reconstruction error on the BU-3DFE dataset: (a) 3D-2D fitting

with front view; (b) 3D-2D fitting with side view; and (c) direct 3D-3D

fitting. Each plot in the first row reports the errors for both DL- and PCA-

based 3DMM as a function of the regularization parameter λ and for different

number of components. The second row reports, for the best number of

components, the effect of varying λ, while in the third row the effect of

varying the number of components for the best λ value is shown. Standard

deviation is also reported for each bar.

quisition accuracy, and the alignment process can mitigate such nuisances

only to some extent. Furthermore, it is likely that some PCs reflect less

significant characteristics of the data. These facts eventually cause a drop
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DL   λ = 0.01 DL   λ = 0.05 PCA   λ = 0.001 PCA   λ = 0.05 

Figure 2.5: 3DMM fitting examples with both DL- and PCA-based 3DMM

for optimal or high regularization values. It is appreciable how our DL-

3DMM both introduces less noise in the 3D models and retains its model-

ing ability even for high regularization values (face images from the CK+

dataset [52]).

of fitting accuracy due to the introduction of noisy and ineffective compo-

nents, although regularized by their eigenvalues. This behavior is consistent

with the concept of compactness of a model (i.e., the ability of explaining

the most and significant variability of the data with the fewest number of

components). On the opposite, the DL-3DMM improves its modeling ability

with a larger number of components. This behavior is related to the fact

that larger dictionaries allow more combinations of the atoms thus covering

a wider range of possible deformations.

Results show that an optimal value of λ is about 0.01 and 0.001 for the

DL and PCA methods, respectively. We point out here that despite pro-

ducing the minimum error, using low regularization values to fit the 3DMM

can occasionally result in noisy models; it is desirable instead to generate a

model which is as smooth as possible. It can be observed from Fig. 2.4 that

the reconstruction error is more stable across increasing λ values for the

DL-3DMM rather than for the PCA-3DMM. It is then possible to choose

a larger regularization value to ensure a smooth model, without renounc-

ing modeling precision. This behavior is accentuated for increasing number

of DL components. Apart from the increased accuracy, since the fitting is
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(a) α = −100 α = −70 α = −35 α = 35 α = 70 α = 100

Figure 2.6: Example of the deformation obtained using single dictionary

atoms. In column (a), the deformation heat-maps are reported; the models

generated by applying different deformation magnitudes are shown in the

other columns.

quickly performed in closed form, we also note that the computational time

still is acceptable even for a large number of components. We experimen-

tally found that 2 repetitions of the whole fitting process of Sect. 2.4 take

17, 31, 103 and 185ms for, respectively, 50, 100, 300, 500 components for both

DL- and PCA-based 3DMM. We also found that after model deformation,

the pose estimate is improved of about 0.5 degrees, with a final mean er-

ror of 5.0, 2.4, 4.1 degrees, respectively, for pitch, yaw and roll angles. In

Fig. 2.5 some examples of the 3DMM fitting, obtained using all the com-

ponents, are shown. Both the DL-3DMM and the PCA-3DMM are able to

model expressive faces but, nonetheless, our model has some advantages: 1)

using the optimal λ value it introduces less noise in the resulting 3D model

with respect to the PCA one; 2) if a smoother model is desired, the regu-

larization value can be increased without sacrificing modeling ability. The

PCA-3DMM, on the other hand, is not able to fit the expression properly in

this case.

In Fig. 2.6 we show some examples of the deformation obtained using

single dictionary atoms. Observe that DL components result in localized

variations of the model, with a remarkable gap between different face parts.
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Moreover, by varying the magnitude of the deformation applied to the aver-

age model it is possible to generate new meaningful models.

Additional experiments have been conducted in order to assess the ro-

bustness of the proposed model and fitting technique. First, we compare

the modeling ability of the DL-3DMM and the PCA-3DMM when some

landmarks are missing. Then, we show the importance of regularizing the

fitting procedure by first removing the inverse weighting of the deformation

parameters α, then by totally removing the regularization.

Missing data To evaluate the modeling ability in the case of missing land-

marks, we report in Fig. 2.7 the reconstruction error obtained subsampling

the landmarks with step 2 and 4 so as to perform the fitting with 24 (top

row) and 12 (bottom row) landmarks, respectively. The experiment has

been conducted both for faces in front view (left column) and side view

(right column). We observe a predictable slight increase in the overall error

(not higher than 0.2 − 0.3mm), both for the DL-3DMM and PCA-3DMM

in all the cases. Nonetheless, the general behavior of the error for different

number of components and λ values is consistent with the case where all

the landmarks are used. This suggests that both the models and the fitting

procedure are rather robust to missing data.

Removing the inverse weighting In our fitting procedure, the deforma-

tion parameters α are weighted by the vector ŵ−1. Depending on the con-

sidered model, this vector contains the coefficients of the dictionary learning,

for DL-3DMM, or the eigenvalues for PCA-3DMM. Without the weighting

term, the minimization problem is rewritten as:

arg min
α

∥∥∥∥∥l−Pm̂(Iv)−
k∑

i=1

Pd̂i(Iv)αi

∥∥∥∥∥
2

2

+ λ ‖α‖2 . (2.8)

Considering the definitions of Sect.2.4 the solution then becomes:

α =
(
YTY + λ · I

)−1

YTX , (2.9)

where I is the identity matrix. Experiments have been performed consider-

ing the best configuration both for the DL-3DMM and the PCA-3DMM, i.e.,

with 300 and 50 components, respectively. Results are reported in Fig. 2.8.

While the impact of removing the weighting is not crucial for the DL-3DMM

(even though the minimum error is obtained with the weighting), the results
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Figure 2.7: Each plot reports the reconstruction error for the DL- and PCA-

based 3DMM as a function of the regularization parameter λ and the number

of components. The 3DMM fitting is obtained using 24 landmarks (top) and

12 landmarks (bottom).

for the PCA-3DMM drop. This behavior does not surprise much: the eigen-

values of the PCA quantify the amount of variance retained by the related

eigenvectors, and most of the total variance lies on the first few principal

components. It is reasonable to suppose that some eigenvectors will, to

some extent, represent the variance induced by the noise or less significant

characteristics of the data. The term ŵ−1 then limits the contribution of
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Figure 2.8: Effect of removing the inverse weighting ŵ−1 from the 3DMM

fitting: DL-3DMM (top); PCA-3DMM (bottom).

such vectors increasing their cost in the minimization, while reducing the cost

associated to the most relevant ones. Similarly, in the DL-3DMM, we aim at

giving the priority to components that contributed more in reconstructing

the training set.

Removing the regularization To assess the importance of the regular-

ization term in the fitting procedure, we carried out an experiment setting

the λ value to 0, i.e., removing the regularization. Without the regularization
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Figure 2.9: Examples of deformed models when the regularization is re-

moved. The uncontrolled growth of the deformation coefficients α leads to

an excessive deformation of the 3D model.

term on the deformation coefficients, the problem becomes:

arg min
α

∥∥∥∥∥l−Pm̂(Iv)−
k∑

i=1

Pd̂i(Iv)αi

∥∥∥∥∥
2

2

. (2.10)

Considering again the definitions of Sect 2.4, we retrieve the coefficients as:

α =
(
YTY

)−1

YTX . (2.11)

As expected, the effect of removing the regularization is dramatic: the un-

controlled deformation coefficients lead to an excessive deformation of the

model that barely resembles a human face, as shown in Fig. 2.9.

2.5.2 Cross-dataset 3D Shape Reconstruction

We performed a cross-dataset fitting experiment using the FRGC dataset in

addition to the BU-3DFE. The FRGC v2.0 includes 4,007 scans of 466 sub-

jects acquired with frontal view from the shoulder level, with very small pose

variations. About 60% of the faces have neutral expression, while the others

show spontaneous expressions of disgust, happiness, sadness, and surprise.

Scans are given as matrices of 3D points of size 480×640, with a binary mask

indicating the valid points of the face. 2D RGB images of the face are also

available and aligned with the matrix of 3D points. Ground-truth landmarks

are not available in this dataset. To apply our alignment procedure, we first

run the landmark detector in [42] to extract 68 points from the 2D images
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Figure 2.10: Cross-dataset reconstruction errors obtained using FRGC for

train and BU-3DFE for test (top) or vice versa (bottom). (a) 3D-2D fitting

with frontal camera; (b) 3D-2D fitting with side camera; and (c) direct 3D-

3D fitting. Each plot reports the errors for both DL- and PCA-based 3DMM

as a function of λ, and for different number of components.

(the detection failed on just 6 images). Since 2D images and matrices of 3D

points are aligned pixel-wise, the 2D landmarks position, plus 6 landmarks

in the forehead of the face, can be transferred to 3D scans. Then, the align-

ment process described in Sect 2.2 is applied. In order to have a meaningful

alignment between the two datasets, the same partitioning described above

has been applied to the BU-3DFE considering a subset of 68 out of the 83

landmarks available as ground truth and re-aligning the whole dataset. In

this experiment, the whole FRGC dataset was used to construct the aver-

age model m̂, the deformation components d̂i, and the weights ŵ, while all

the models of the BU-3DFE have been used for test. The same experiment

was performed considering the BU-3DFE as train and the FRGC for test.

Reconstruction errors obtained for both DL- and PCA-based 3DMM shape

fitting are reported in Fig. 2.10. It is possible to appreciate that when the

FRGC is used for train, the reconstruction error is higher for both DL- and
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PCA-based 3DMM. A possible motivation for this is that, though the FRGC

dataset contains about four times the number of identities of the BU-3DFE,

it includes less intense expressions. Comparing the results of the DL- and

PCA-based 3DMM, they are very close, even though DL obtains a slightly

smaller error. On the other hand, when the BU-3DFE is used to learn the

deformation components, the error decreases of about 2mm. We explain this

with the fact that adding more heterogeneous expression variations in the

training permits the model to have a larger spectrum of deformations that

ultimately result in more accurate reconstructions.

2.6 Conclusions

This chapter presented a dictionary learning based method for constructing

a 3DMM, and its effectiveness compared to traditional methods for 3DMM

construction based on PCA was shown. The proposed solution has the ad-

vantage of permitting more localized variations of the 3DMM that can better

adapt to expressive faces. This capability to account for fine face deforma-

tions also depends on the inclusion in the training data of faces with large

expression variability. This required us to develop a new method to establish

a dense, point-to-point, correspondence between training faces. An approach

to effectively deforming the 3DMM has been also proposed, which includes

pose estimation and regularized ridge-regression fitting. The comparative

evaluation of the DL- with the PCA-based 3DMM shows a clear advantage

of the DL based solution in terms of 3D reconstruction error.

A potential drawback of a 3DMM that includes expressive scans is the

difficulty in discriminating between components modeling identity traits and

components modeling facial movements. Further investigation would be use-

ful to determine: 1) if more accurate vertex correspondences can be found

by using different landmark detectors that induce more uniform partitioning

of faces (which would also improve visual appearance of our models); 2) if

an extended solution can be found that balances the tradeoff between the

efficiency of fitting against greater precision; and 3) if deviations beyond

shape can be accounted for in an extended 3DMM (for example by applying

DL also to the texture component of faces).

In the next chapter it is described a frontalization technique based on the

DL-3DMM. This technique exploits the 3D information to compensate the

out of plane rotation of the face in a 2D image and render a frontal view.
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Chapter 3

Effective 3D Based

Frontalization for Face Analysis

This chapter describes a new and effective frontalization algo-

rithm for frontal rendering of unconstrained face images. Ini-

tially, the DL-3DMM presented in the previous chapter is fit to

a 2D face image, then an interpolating function is used to map

each pixel inside the face region to the 3D model’s space. In

this way we can render a frontal view without introducing arti-

facts in the final image thanks to the exact correspondence be-

tween each pixel and the 3D coordinates of the model. The align-

ment induced by the 3D model allows to extract image descriptors

on the frontalized images in repeatable positions across differ-

ent images, enhancing the matching consistency. The effective-

ness of this solution is experimented in the three different tasks,

namely face recognition, emotion/expression recognition and Ac-

tion Units (AU) detection.

3.1 Introduction and related work

Face recognition and facial expression recognition represent the core of many

biometric techniques. A clear advantage of approaches based on face analy-

sis with respect to other biometric signatures resides in its non-intrusiveness,

that allows deployment also in unconstrained scenarios, without user coop-

eration. This latter capability is one of the main reasons for the increasing

29
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demand for surveillance systems that can operate in real contexts, even un-

der strong variations in the face pose, expression, illumination, resolution,

etc. In a broad sense, face recognition performs coarse grained (inter-class)

face analysis, where face variations that separate different identities are ac-

counted for. Conversely, in applications that recognize facial expressions or

Action Units (AU), fine grained (intra-class) face analysis is required, where

subtle and local variations of the face occur under the action of groups or

individual facial muscles. In both the cases, 2D data manifest evident lim-

itations and performing face analysis in 3D can be convenient [16, 73, 105].

Nevertheless, in real scenarios the availability of 3D data cannot be granted.

For these reasons, using 2D/3D solutions becomes a suitable alternative.

In the last few years, an impressive development has been registered in

this research area, with results which have substantially closed the gap with

the human-level performance, also thanks to the introduction of the Deep

Neural Net (DNN) architectures and learning methods [80]. Despite these

recent advancements, there are some aspects in the conventional face recogni-

tion pipeline (including detection, alignment, representation, classification)

that require further investigation. In particular, the alignment step is of

fundamental importance for the subsequent stages, as for many other face

analysis applications [23]. The alignment involves, amongst other things,

the compensation for in-plane and out-of-plane rotations of the head. In

most of the cases, this also demands for precise detectors of face landmarks,

which is, by itself, a difficult problem, particularly in the presence of face

occlusions due to pose variations. In unconstrained face recognition, com-

pensating out of plane rotations is one important issue. Since head rotations

occur in the 3D space, pose normalization (also known as face frontalization)

solutions require that some 3D information of the face is inferred. Methods

that address this problem are usually classified as 2D or 3D. In general, ef-

fective results have been obtained with methods in both categories, but since

pose variations occur in the 3D space, 3D methods are more promising in

perspective [104].

2D methods usually cope with the lack of explicit depth information

by relying on a training image database, which includes images with dif-

ferent pose (and thus different 3D views). Some 2D transformations (e.g.,

piecewise affine, thin plate splines) are often used to approximate the 3D

transformation, while the error is compensated by some statistical learning

strategy. Following this general idea, Berg and Belhumeur [7] presented a
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face verification built upon a large and diverse collection of linear classifiers

that distinguish between two people. Authors propose an identity-preserving

alignment procedure based on the detection of 95 face parts that enforces a

fairly strict correspondence across images. This alignment procedure uses a

reference dataset to distinguish geometry differences due to pose and expres-

sion from those that pertain to identity. Ho and Chellappa [33] proposed a

method for reconstructing the virtual frontal view of a non-frontal image by

using Markov Random Field (MRF), and a variant of the belief propagation

algorithm. In this approach, the input face image is divided into a grid of

overlapping patches and a set of possible warps for each patch is obtained by

aligning it with images from a training database of frontal faces. A statistical

approach to face frontalization is also proposed by Sagonas et al. [72]. The

key observation of this work is that, for the facial images lying in a linear

space, the rank of a frontal facial image, due to the approximate structure

of human face, is much smaller than the rank of facial images in other poses.

Based on this, a unified method is proposed for joint face frontalization (pose

correction), landmark localization, and pose-invariant face recognition using

a small set of frontal images only.

3D methods are based on a 3D face model, either deformable or not-

deformable, used to precisely estimate the 3D face. In one of the first exam-

ples, Blanz and Vetter [10] used their 3DMM to simulate the process of image

formation in 3D space, and estimated 3D shape and texture of faces from

single images for face recognition. Later, Romdhani and Vetter [70] used the

3DMM for face recognition by enhancing the deformation algorithm with

the inclusion of various image features. To build a pose robust face recogni-

tion system, Yi et al. [95] used a 3DMM, but performing the transformation

in the filter space. Differently from the other 3DMM based methods, this

solution proposes a “Pose Adaptive Filter” method, which transforms the

filters according to the pose and shape of face image retrieved by fitting a

3DMM to the face image, and then uses the pose adapted Gabor filters for

feature extraction. Later on, Juefei-Xu et al. [41] proposed the Spartans

framework, which uses a 3D Generic Elastic Model (3D-GEN) to generate

virtual face images with various poses for the gallery, and then match the

probe to the virtual face images. In particular, the 3D-GEN is used to derive

the depth information from a single frontal image per subject of the training

set. The high-dimensional Walsh LBP descriptor is uniformly sampled on

periocular regions of facial images with robustness toward alignment. During
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the learning stage, subject-dependent correlation filters are learned for pose-

tolerant non-linear subspace modeling in kernel feature space followed by a

coupled max-pooling mechanism. Zhu et al. [107] presented a 3DMM based

pose and expression normalization method to recover the canonical-view,

expression-free image, preserving the face appearance with little artifact and

information loss. Variants of 3D methods use a single, unmodified 3D refer-

ence model to estimate a rough approximation of the 3D face surface, and

use this surface to generate the new views [30,56,80].

Recently, this idea has been followed by Hassner et al. [31]. First, a face

is detected, cropped and rescaled to a standard coordinate system. Then,

facial feature points are localized [93] in the query image, and used to align

it to the feature points on a reference face photo.From the 2D coordinates

on the query image and their corresponding 3D coordinates on the model,

a projection matrix is estimated. An initial frontalized face is obtained by

back-projecting the appearance (colors) of the query image to the reference

coordinate system using the 3D surface as a proxy. A final result is produced

by borrowing appearances from corresponding symmetric sides of the face

wherever facial features are poorly visible due to the pose of the query.

In all these cases, the 3DMM was used mainly to compensate for the pose

of the face, with some examples that performed also illumination normal-

ization. Expressions were typically not considered. Indeed, the difficulty in

making 3DMM work properly in fine face analysis applications is confirmed

by the almost complete absence of methods that use 3DMM for expression

recognition. Among the few examples, Ramanathan et al. [67] constructed a

3D Morphable Expression Model incorporating emotion-dependent face vari-

ations in terms of morphing parameters that were used for recognizing four

emotions. Ujir and Spann [84] combined the 3DMM with Modular PCA

and Facial Animation Parameters (FAP) for facial expression recognition,

but the model deformation was due more to the action of FAP than to the

learned components. In [21], Cosker et al. used a dynamic 3DMM [19] to

explore the effect of linear and non-linear facial movement on expression

recognition through a test where users evaluated animated frames. Huber

et al. [40] proposed a cascaded-regressor based face tracking and a 3DMM

shape fitting for fully automatic real-time semi dense 3D face reconstruction

from monocular in-the-wild videos.

In this chapter an effective face frontalization approach is presented. In

particular, we can show that performing a frontal rendering of an uncon-
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strained face image using the proposed technique and a properly constructed

3DMM capable of effectively adapting to faces with varying expression, eth-

nicity and gender, achieves results in line with the state of the art, even using

baseline descriptors and learning solutions.

The rest of the chapter is organized as follows: In Sect. 3.2, the proposed

frontalization technique is presented. In Sect. 3.3 we describe the feature

extraction and unsupervised learning process. A comparative evaluation of

the proposed approach with respect to other frontalization methods in terms

of face recognition is reported in Sect. 3.4, together with the application of

the proposed frontalization to face recognition, expression recognition ad AU

detection in comparison with state-of-the-art methods. Finally, discussion

and future work are reported in Sect. 3.5.

3.2 3D based Face Frontalization

Our face frontalization grounds on two steps: (i) 3D head pose estimation

and 3DMM fitting; (ii) estimation of the transformation used to back-project

the image texture to the 3D model’s space and render the frontal image.

The pose estimation and model fitting have been described in the previous

chapter. For more details see 2.4.

Once the 3D model is fitted and projected onto the image, a straight-

forward way to perform an image rendering consists in associating to each

projected vertex of the model the RGB value of the pixel it falls onto, as

in [55]. In this manner, we get a full correspondence between 3D vertices

and RGB values. Even though we are now able to build a rendering at ar-

bitrary poses, the original coordinate frame of the 3D model is constructed

such that the model faces the z axis; thus, we can easily build a frontal view

by just dropping the z value and construct the image by defining a dense

regular grid and by putting the RGB values in correspondence of the (x, y)

coordinates of the model on the grid. Points in the grid where no vertices

fall are interpolated. This approach is easy, but the quality of the rendering

is not optimal and many artifacts are introduced in the final image. This can

happen for many reasons; for instance, depending on the 3D rotation, some

vertices can fall on the same pixel once projected onto the image plane or,

on the contrary, pixels can be missed resulting in additional interpolations.

The same happens also depending on the scale factor induced by the image

resolution; in low resolution images many vertices will be projected onto
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Figure 3.1: Difference between the proposed frontalization approach (left)

and the one used in [55] (right). It can be appreciated how the rendering

artifacts are removed. Note that the original image size is 250×250, but the

face bounding box is approximately 90× 90. Better seen in digital.

the same pixel, while the opposite happens in high resolution images. The

proposed frontalization approach overcomes such issues by exploiting the

prior knowledge of the face 3D shape. Basically, instead of interpolating the

RGB values of pixels associated to any or multiple vertices, we interpolate

the 3D position of each image coordinate inside the region 0 defined by the

convex hull of the projected 3D model. This can be practically done since

for each vertex i in the 3D shape, we know the 2D position on the image,

Pi = (Xi, Yi, Zi) 7→ (xi, yi) = pi. We can use these correspondences to fit

a surface of the form P = F (x, y), being Pi a vertex in the 3D model and

pi the corresponding projection on the image plane, i.e., a pixel coordinate.

We can then evaluate the surface values for each pixel (u, v) inside the face

region 0. In doing so, a new 3D shape can be built:

∀(u, v) ∈ 0, P(u,v) = F (x(u,v), y(u,v)) . (3.1)

The resulting 3D model’s vertices perfectly fall on each pixel of the image

regardless the resolution or the viewpoint. We can now use the new 3D model

to sample the RGB values and build the frontalized image in the same way

as in [55], but in a clean and more accurate way.

An issue arising here is that out-of-plane rotations will eventually make

some points to be self occluded; once projected onto the image, self-occluded

points will have (approximately) the same (x, y) coordinates visible ones, but

a much different z coordinate in 3D. The interpolating function will then esti-

mate ambiguous values and fail. To overcome this problem, first an estimate
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(a) (b) (c) (d) (e)

Figure 3.2: Frontalization result for heavy out-of-plane rotation (> 40 de-

grees). In (a) the original image. In (b), frontalization without self occlusion

handling; many errors due to ambiguities in the 3D coordinates interpolation

arise. Excluding the occluded points eliminates the errors and introduces

black areas (c). In (d), the 3D model resulting from Eq. (3.1) is reported.

Final result, obtained by symmetrizing the visible part is shown in (e).

of the visible 3D vertices given the 3D rotation is obtained, then the surface

F (x, y) is computed considering those visible points only. Evidently, the re-

sulting 3D model and, accordingly, the rendered image will have some missing

values, substituted by black pixels. Nevertheless, they correspond to points

where the information is actually missing. These missing areas, generated by

self-occlusions, can be filled with the symmetric visible part. An illustrative

example is shown in Fig. 3.2. It is worth to notice in Fig. 3.2(d) how the

reconstructed 3D model is not uniform, but shows a sort of parametrization

imposed by the actual appearance of the particular image. In the example

of Fig. 3.2, the face image undergoes a yaw rotation of ≈ −45◦; even if the

density of the 3D model is higher in the visible part of the face, we can notice

that it depends also on the orientation of the point’s normals with respect

to the image plane: the more the projected surface patches normals show

orientation parallel to the image plane, the less dense the surface will be.

3.3 Face representation

Usual face analysis approaches perform the interested task e.g. face verifi-

cation, expression recognition, by computing local image descriptors on the

whole sub-image defined by the face bounding box, process them in some

way, and feed the resulting early fusion to some classifier. Other than build-

ing an accurate frontal rendering, we exploit our frontalization method to
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precisely localize the image coordinates, where feature descriptors will be

computed. As described in Sect. 3.2, the rendered image is built based upon

the 3D model; thanks of this, we can easily back-project the 3D points in the

frontal image. Such points define the coordinates in the image where descrip-

tors are going to be extracted, as done in [55]. This has a two fold advantage:

(1) We can choose where to extract our descriptors; it is well known that

some facial areas are more discriminative than others; (2) Thanks to the

3DMM, we get an intrinsic alignment between single descriptors across the

different images. The final face descriptors will always have the same length,

regardless of the image size.

Figure 3.3: Localizing the feature descriptors. Our localization strategy

permits us to more accurately match descriptors with the same semantic

meaning in spite of the location on the image (green arrows).

Two different strategies were implemented depending on the task; for

face recognition/verification the feature descriptors were computed selecting

a subset of vertices of the 3D model located around the landmarks. We

argued that for the specific task, where inter-personam variations are of in-

terest, the most of the information was retained in such areas (namely, eyes,

eyebrows, nose, mouth); moreover those are the parts less prone to be self

occluded. The latter points have been chosen pretty densely so as to gen-

erate redundancy based on the result in [13], where it is demonstrated that

face recognition benefits from high dimensional feature vectors. Differently,
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for expression recognition and AU detection, where learning intra-personam

variations is crucial and the information from the whole face is significant,

feature descriptors were computed on a subset of the vertices of the whole

3D model.

Since the proposed 3DMM is capable of moving the vertices to fit the face

image, we get a more accurate alignment between descriptors. As shown in

Fig. 3.3, this allows us to precisely match descriptors related to points with

the same semantic meaning (see in particular the mouth area). For each

task, we concatenate the descriptors extracted from a face so as to form a

unique descriptor, and reduce its dimensionality by applying PCA with a

number of PCs that retain at least the 95% of variance. The metric used for

matching is the cosine distance.

3.4 Experimental Results

In this section, we report experiments on our approach. The proposed face

representation has been evaluated in three different tasks, namely face recog-

nition, emotion recognition and AU detection. For all the tasks a common

pipeline has been defined, which follows a standard classification structure

and consists of: 1) image alignment i.e. frontalization in our case; 2) feature

extraction; 3) classifier training 4) matching. There will be subtle differences

in the various pipelines depending on the task; details will be given in the

related sections.

For face recognition, first we report the comparison with other face

frontalization algorithms using the standard feature extraction approach,

which is performed by computing image descriptors over a regular grid on

the image. Then, the proposed face representation is compared to state-of-

the-art methods on two benchmark datasets.

The evaluation on the tasks of emotion recognition and AU detection

is conducted comparing the developed representation against other base-

line feature extraction methods and the state-of-the-art on two benchmark

datasets; details are given in Section 3.4.2.

3.4.1 Face Recognition

Tests have been performed on the Labeled Faces in the Wild (LFW) bench-

mark [38], and on the IARPA Janus Benchmark A (IJB-A) dataset [45]. The
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LFW dataset represents a challenging benchmark for face verification algo-

rithms including about 13000 face images of 5749 subjects taken under spon-

taneous conditions, with variabilities in terms of expressions, occlusions and

partial pose variations. The recent IJB-A dataset pushes these challenges

to the limit including images and videos taken under extreme conditions of

illumination, resolution and including full pose variations (i.e., full profiles).

For the LFW dataset, we designed our solution following the View -1

protocol defined in [38] and used the View -2 protocol to produce our final

results. View -2 provides 10 sets of 600 image pairs, each set including 300

pairs of the same subject and 300 pairs of different subjects. Ten-fold cross

validation is used. We followed the “Unsupervised” protocol and report the

results in terms of Area under the ROC curve (AUC). More details on the

above mentioned protocols can be found in [36].

The IJB-A dataset [45] provides for two types of protocols, namely, search

and compare. The search protocol is intended to measure the accuracy of

search among N gallery templates, each of which including one or more im-

ages of a subject, in terms of the true acceptance rate (TAR) at various false

acceptance rates (FAR). The compare protocol, instead, aims at evaluating

the verification accuracy between two templates. The metrics used are the

TAR corresponding to FAR equal to .1 and .01, and the rank-1 and rank-5

accuracy. The IJB-A contains 10 splits of data. A detailed descriptions of

the protocols and metrics for the evaluation can be found in [45].

Comparison with Other Frontalization Algorithms We compared

our frontalizations with the ones obtained with the funneling [35] and deep-

funneling [37] algorithms, and with the solution proposed by Hassner et

al. [31]. For this experiment, which aims at evaluating the quality of the

frontalizations, we considered a slightly different version of our pipeline,

identical for all the above mentioned methods; instead of localizing the de-

scriptors exploiting the re-projected 3D model, we densely sampled LBP

features on a regular grid with cells of size 10× 10 on the whole image. The

face images obtained with funneling, deep-funneling and with the Hassner’s

technique have size around 100 × 100 pixels, while our solution generates

bigger images (≈ 200 × 200). For a fair comparison, we also report results

obtained with a rescaled version of our frontalizations (Our-resized), in or-

der to approximately match the size of the others. Matching is performed

using a simple NN-classifier. Results reported in Fig. 3.1 and Table 3.2 show
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Table 3.1: ROC curves on LFW

using dense sampling on the

frontalized face images.

Method AUC EER

Funneled [35] 81.36 26.07

Deep-funneled [37] 85.91 22.20

Hassner et al. [31] 88.69 19.30

Our-resized 91.28 16.97

Our-original 92.00 16.27

Table 3.2: Area Under Curve

(AUC) and Equal Error Rate (EER)

values on LFW using dense sampling

on the frontalized images. Values are

in percentage

that our method produces a more effective frontal rendering inasmuch as the

same verification algorithm is used. Even halving the size of the images does

not significantly undermine the performance.

Comparison with State of the Art In the following, we report the re-

sults obtained on the LFW dataset and the IJB-A dataset using our full

pipeline, and compare them with the state-of-the-art. We report the results

on the LFW dataset obtained following the “Unsupervised” protocol in com-

parison with the four best performing state of the art techniques1, namely:

MRF-MLBP [5], Spartans [41], MRF-fusion-CSKDA [4] and Pose Adaptive

Filter (PAF) [95]. It is possible to appreciate from Fig. 3.3 and Table 3.4

that we obtain comparable performance with respect to the state of the art.

It is also worth to note that our method and the PAF technique, both based

on fitting a 3DMM, show the same trend in Fig. 3.3, while the other methods

are based on different algorithms.

In Table 3.5, we report the results on the IJB-A dataset in compari-

son with two baselines: a government-off-the-shelf (GOTS) algorithm, and

the open source face recognition algorithm OpenBR [46]. We obtain higher

performance with respect to the two baselines. However, it is difficult to

analyze our performance in comparison to the GOTS algorithm due to miss-

1We do not report the curve for MRF-Fusion-CSKDA [4] since the relative data are

not available.
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Table 3.3: ROC curves: com-

parison with state of the art on

LFW.

Method AUC

MRF-MLBP [5] 89.94

Spartans [41] 94.28

PAF [95] 94.05

MRF-fusion-CSKDA [4] 98.94

Our 94.29

Table 3.4: Area Under the Curve

(AUC) values for our method and

the state of the art on LFW. Values

are in percentage

ing details about this solution. For OpenBR, instead, despite the similar

pipeline, which comprises a step of dimensionality reduction via PCA fol-

lowed by the application of Linear Discriminant Analysis (LDA), we show

largely improved performance. We can argue that our solution generates a

frontal rendering of the face image, which is more effective than unprocessed

images if applied to recognition.

Metric GOTS OpenBR [46] Our

1:N (Search Protocol)

TAR@FAR=0.01 .406 ± .014 .236 ± .009 .609± .015

TAR@FAR=0.10 .627 ± .012 .433 ± .006 .801± .013

RANK@1 .443 ± .021 .246 ± .011 .608± .023

RANK@5 .595 ± .020 .375 ± .008 .767± .014

Table 3.5: Results on the IJB-A dataset

3.4.2 AU Detection and Emotion Recognition

To the best of our knowledge, 3DMMs have not been used for the analysis

of facial expressions; this can be reasonably ascribed to the difficulty of

including expressive scans in the training data, which limits the capability

of deforming a 3D model accurately in the presence of facial expressions, as

shown in Fig. 3.4.
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Without expressive scans With expressive scans

Figure 3.4: Example of fitting an expressive face with a 3DMM. The im-

portance of including expressive scans in the training set can be appreciated:

a 3DMM built without expressive scans fails in fitting the expressive face.

Facial expression analysis can be conducted mainly at two different lev-

els: a finer one, i.e., Action Unit (AU) detection, which aims at detecting

subtle movements of small parts of the face; and a more holistic one, which

tries to classify the emotional state of the subject based on the whole face

appearance, i.e., Emotion recognition.

Facial AUs are defined by the Facial Action Coding System (FACS) [32],

which categorizes human facial movements based on the face appearance

changes induced by the activity of the underlying muscles. The activation

of an AU can thus be inferred from the observation of a face image. The AU

detection task consists in deciding whether a particular AU is active or not in

a given face image. Using this definition, in the literature, facial expressions

have been systematically defined as the simultaneous activation of different

AUs [52]. Facial expressions share common characteristics in the resulting

face appearance and are also related to the emotional state of the subject

showing the expression. Despite the precise definition, it is common that

experts manually label face images referring to a set of standard discrete

emotions, e.g., anger, fear, disgust, joy, happiness, relief, contempt, sadness

and surprise.

To perform AU detection and Emotion Recognition the pipeline ex-

pounded in Section 3.4 has been followed. The frontalized face images are

described using LBP features [59], that are concatenated and projected to

a lower dimensional space by PCA. Finally, classification/detection is per-

formed using linear SVM classifiers, trained separately for each AU or emo-



42 Effective 3D Based Frontalization for Face Analysis

tion. The choice of using baseline image descriptors (LBP) and classifiers

(LinearSVM) is motivated by the fact that our final goal is to assess the

improvement that can be obtained using the 3DMM to enhance image de-

scription.

State of the art methods for AU detection and emotion recognition [17,

23,29,92] have been evaluated and compared mainly on the Extended Cohn-

Kanade (CK+) [52] and the Facial Expression Recognition and Analysis

(FERA) [85] datasets. The CK+ dataset contains image sequences of posed

and non-posed spontaneous expressions of 123 subjects (593 sequences in

total). Each sequence has an average duration of about 20 frames, with

the initial neutral expression varying up to a peak. The peak frame is AU-

labeled, while an emotion label is associated to the entire sequence. The

FERA dataset contains video sequences of 7 trained actors portraying 5

emotions. As in [23, 29], we used the training subset, which includes 87

videos ranging between 40 and 110 frames in length. Each frame is AU-

labeled, while there is a single emotion label for the entire sequence. In both

the datasets, the head pose is frontal in most of the sequences.

In the experiments, face images are described by LBP features [59], with

a radius of 10px, following four different configurations:

� Dense grid, DeGr: First, the face image is cropped. Then, eyes position

is retrieved from landmark detection, and used to align the image to a

common reference. In this phase, in-plane rotations are compensated.

Finally, the image is resized to 200× 200 pixels, and LBP descriptors

are computed over 20× 20 non overlapping patches;

� Landmarks, LM: LBP descriptors are computed over patches centered

in correspondence to 49 landmarks detected on the original image using

the method in [42];

� DL-(O) or PCA-(O): LBP descriptors are computed over patches lo-

calized by a subset of the vertices of the 3DMM, projected onto the

original image;

� DL-(F) or PCA-(F): LBP descriptors are computed over patches lo-

calized by a subset of the vertices of the 3DMM, projected onto the

frontalized image.

The first two solutions do not use the 3DMM; the third and fourth, instead,

perform local image description exploiting the localization provided by the
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3DMM vertices. We experimentally found that a uniform subsampling of

the vertices with step of 7 is the best balance between the face descriptor

dimension and the patches overlap ratio. In fact, it is known that high

dimensional face descriptors and a large overlapping ratio between patches

improve the effectiveness of the face description [13]. For each modality, we

concatenate the LBP extracted from a face so as to form a unique descriptor,

and reduce the descriptor dimensionality by applying PCA with a number

of PCs that retain at least the 95% of variance.

AU Detection – According to the experimental setup suggested in [52,

85], both for the CK+ and FERA datasets a leave-one-subject-out cross

validation has been performed. For the CK+, only the neutral (first frame)

and peak frames of each video sequence were used (the peak frame is the only

one labeled). On the contrary, the FERA dataset comes with AUs labeled

for each frame. However, not all the frames of a sequence have been used in

the training phase since AUs are characterized mainly by an onset, a peak,

and an offset phase. As suggested in [85], for each sequence, we consider the

set of consecutive frames labeled with the peak label, and take its middle

frame as corresponding to the peak phase.

Since the effect of each AU is limited to a portion of the face, accordingly

to [85], AUs have been divided into upper and lower AUs corresponding to

the upper half and lower half of the face, respectively. To train the SVMs,

we used only the descriptors computed on points in the lower or upper part

of the face, depending on which AU is considered. Each SVM is also trained

independently, without accounting for the semantic relationships between

different AUs (e.g., if the AU associated to the eyebrows raising is active,

the AU associated to the eyebrows lowering cannot be active).

In Tables 3.7, 3.6, 3.8 and 3.9, we report the AU detection results for

the CK+ and FERA datasets, respectively. Detection performance is mea-

sured in terms of F1-score (i.e., the harmonic mean of precision and re-

call) and Area Under the ROC Curve (AUC). Three main facts emerge

evidently: First, localizing the descriptors with either DL-3DMM or PCA-

3DMM, rather than using the regular dense grid improves the results, since

the alignment is more significant; Secondly, the greater number of points

provided by the projected mesh allows the computation of more descriptors,

which improves the performance; Lastly, the alignment and consistency of

the image representation provided by our frontalization improves the dis-

criminating power resulting in higher overall results. This behavior is more
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evident for the FERA dataset, which is more challenging than the CK+.

Indeed, the continuous and spontaneous nature of the sequences included

in the FERA dataset induces strong nuisances in the resulting feature de-

scriptors. The alignment and consistency obtained with our representation,

however, proved to be effective in reducing the complexity to be learned by

the classifier, increasing the overall results on both CK+ and FERA.

AU AUC

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 95.4 95.4 98.4 98.0 98.6 98.2

2 96.7 94.2 97.6 97.3 97.5 96.9

4 92.9 91.9 95.9 96.3 96.6 97.0

5 95.7 98.0 96.6 96.1 97.8 97.5

6 94.8 94.0 95.2 95.0 95.6 95.6

7 87.7 91.8 90.1 91.4 90.1 91.9

9 99.4 99.5 99.6 99.6 99.6 99.6

11 91.2 89.1 92.8 92.6 92.9 94.5

12 98.5 98.4 98.8 98.5 98.9 98.5

15 94.7 94.9 95.5 95.4 96.2 96.5

17 95.9 94.2 97.1 97.5 97.9 97.9

20 97.7 96.5 98.4 98.0 98.6 98.5

23 91.2 95.0 94.7 95.4 94.7 94.8

24 88.6 92.8 91.9 93.0 93.0 93.7

25 97.9 98.8 99.0 98.8 99.0 98.9

26 91.6 89.0 89.6 88.8 89.7 90.2

27 99.6 99.8 99.8 99.8 99.8 99.8

Avg. 95.3 95.5 96.7 96.7 97.0 97.1

Table 3.6: AU detection on CK+. Comparison of different feature ex-

traction modalities. Results are reported in terms of AUC. The average

is weighted with respect to the number of positive instances, as indicated

in [52]

For the comparison between using DL or PCA for 3DMM shape fitting,

on the CK+ results are very close and this is in some way expected. In

this dataset, for each sequence, we have that only the peak frame is AU

labeled. Furthermore, the expressions shown are also rather exaggerated, as

appreciable in the examples of Fig. 2.5. This makes the separation between
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AU F1-score

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 77.6 75.8 84.8 81.2 84.9 83.2

2 81.2 79.2 81.4 79.7 79.4 77.2

4 71.0 67.0 77.7 79.9 80.6 79.3

5 72.5 81.3 78.2 78.7 79.6 79.1

6 68.4 66.4 67.7 72.2 70.5 68.8

7 58.2 60.7 60.0 64.8 65.1 64.9

9 85.9 91.7 88.9 90.7 90.3 92.1

11 45.1 36.1 30.8 32.3 41.7 40.6

12 85.2 81.5 85.1 84.4 85.9 84.1

15 71.3 60.2 74.0 73.2 77.6 76.1

17 80.5 73.8 83.1 84.7 83.0 82.8

20 74.7 76.0 81.5 81.7 85.4 83.6

23 52.8 69.9 58.5 64.1 69.3 65.1

24 58.3 58.8 62.7 64.5 59.7 62.8

25 88.3 92.8 92.3 91.1 92.6 91.1

26 41.5 37.6 33.7 35.5 38.1 30.8

27 89.1 90.9 89.5 89.4 90.7 91.9

Avg. 75.3 75.1 78.2 78.9 80.0 78.8

Table 3.7: AU detection on CK+. Comparison of different feature extrac-

tion modalities. Results are reported in terms of F1-score. The average

is weighted with respect to the number of positive instances, as indicated

in [52]

the activation of different AUs somewhat easy and localizing the descriptors

with sufficient precision becomes not crucial. This is proved by the fact that

results on this dataset tend generally to saturate towards the maximum,

with a rather small gap between baseline methods (DeGr and LM) and the

3DMM. The FERA dataset is instead much more challenging. The continu-

ous and spontaneous nature of the sequences makes the gap between baseline

methods (DeGr and LM) and the 3DMM increase significantly, supporting

the usefulness of the latter. Finally, results show that DL performs better

than PCA-3DMM on this dataset; this is mainly motivated by the fact that

the face variations are more subtle and smooth and thus a better modeling

improves the classification performance.



46 Effective 3D Based Frontalization for Face Analysis

AU F1-score

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 47.7 55.9 64.8 63.8 65.3 70.2

2 56.2 54.7 62.0 62.6 61.3 65.6

4 17.4 32.2 25.8 20.0 26.1 29.5

6 55.5 52.6 60.8 57.0 66.7 66.3

7 48.3 55.8 45.5 47.7 52.9 52.0

12 39.2 55.1 55.2 55.9 58.0 59.3

15 68.5 65.0 77.2 77.1 79.7 80.4

17 26.4 25.8 36.9 42.6 31.1 33.1

Avg. 44.9 49.6 53.5 53.4 55.1 57.1

Table 3.8: AU detection on FERA. Comparison of different feature extrac-

tion. Results are reported in terms of F1-score.

AU AUC

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 77.7 78.8 83.0 81.9 85.1 83.9

2 63.5 71.0 80.7 79.1 79.2 85.8

4 48.2 53.1 46.5 51.8 52.1 54.7

6 73.0 77.3 76.3 72.9 81.0 80.0

7 71.1 66.8 57.5 57.0 62.1 64.9

12 66.5 62.9 64.8 66.5 63.9 64.9

15 73.8 81.5 84.6 82.7 85.8 87.5

17 60.5 66.9 65.3 69.9 58.8 61.7

Avg. 66.8 69.8 69.8 70.2 71.0 72.9

Table 3.9: AU detection on FERA. Comparison of different feature extrac-

tion. Results are reported in terms of F1-score and AUC

In Table 3.10 and 3.11 we provide a comparison with the state of the art

in terms of average F1-score and AUC values. For the sake of completeness,

results for the CjCRF method [92] on FERA are also reported, though they

have been obtained by testing only on 260 frames out of the about 5000 total

frames. Our method obtains comparable performance with respect to the

state of the art on both datasets. Lower performance on the FERA dataset

is likely due to the fact that our solution uses off-the-shelf descriptors and
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Method F1-score AUC

IF [23] 76.6 91.3

Wang et al. [88] 82.4 96.7

CjCRF [92] 80.7 94.9

PCA-(F) 80.0 97.0

DL-(F) 78.8 97.1

Table 3.10: AU detection on CK+. Comparison with the state of the art.

Results are reported in terms of F1-Score and AUC

Method F1-score AUC

Wang et al. [88] 52.3 -

Data-Free [49] 52.6 -

IF [23] 59.0 74.5

DICA [29] 59.1 -

CjCRF [92]* 59.6 -

PCA-(F) 55.1 71.0

DL-(F) 57.1 72.9

Table 3.11: AU detection on FERA. Comparison with the state of the art.

Results are reported in terms of F1-Score and AUC

classifiers, and does not compensate directly for the influence of the identity

in the training as is explicitly done in [23, 29]. We believe that in this sense

still there is enough room for improvements.

Emotion Recognition – Data used for emotion recognition have some

particular characteristics: as in the AU case, in the CK+ dataset each se-

quence has only two labels, one for the neutral and one for the peak frame; in

the FERA dataset instead, each sequence is marked with a single label, rep-

resenting the emotion of the entire sequence. For the CK+ dataset, emotion

recognition is performed by considering the peak frames of each sequence in

both the train and test sets; for FERA, we subsample each sequence and

consider only 1 frame every 10.

In Table 3.12 and Table 3.13, we report emotion recognition results ob-

tained using the four feature extraction methods presented in Sect 3.4.2.

Consistent with the AU detection case, the results on CK+ are saturated

with a small gap between the solutions that include the 3DMM and the
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Emotion DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

Anger 97.6 99.0 98.6 98.8 98.9 99.4

Contempt 99.8 99.6 99.9 99.7 99.8 99.9

Disgust 99.2 97.3 97.3 93.9 99.6 99.7

Fear 99.9 99.9 99.9 99.9 99.9 99.9

Happiness 98.2 99.9 99.7 99.2 98.6 99.0

Sadness 98.8 98.9 99.2 99.0 98.8 98.8

Surprise 98.1 99.6 99.4 99.3 97.6 99.4

Avg. 98.8 99.1 99.2 98.6 99.1 99.5

Table 3.12: Emotion recognition on CK+. Comparison of different feature

extraction modalities. Results are reported in terms of AUC

Emotion DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

Anger 56.4 66.7 64.4 63.0 67.7 70.5

Fear 85.8 73.7 77.4 73.0 81.9 88.4

Joy 93.0 91.4 90.9 91.9 92.1 91.5

Relief 80.2 76.4 77.4 75.6 79.5 79.0

Sadness 81.1 78.0 81.0 80.7 86.2 81.5

Avg. 79.3 77.2 78.2 76.8 81.5 82.2

Table 3.13: Emotion recognition on FERA. Comparison with the state of

the art. Results are reported in terms of AUC

others. However, the ones that exploit 3DMM and frontalization are the

best performing. Results on FERA, instead, show that there is actually a

tangible advantage in using the 3DMM for emotion recognition. From Ta-

ble 3.13 we can see that DL-(F) and PCA-(F) are, respectively, the best and

the second best performing solutions, but DeGr performs better than DL-

(O) and PCA-(O). This behavior can be explained considering that emotion

recognition is based on the observation of the whole face appearance. In

this case, localizing the descriptors precisely seems to become less important

than having a consistent and pixel-wise aligned image representation.

In Table 3.14 and Table 3.15, we report our results in terms of AUC in

comparison with state of the art solutions, respectively, for the CK+ and

FERA datasets. We observe that our solution outperforms the state of the

art on the CK+ dataset, but scores lower performance than [23] on FERA.
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Emotion IF [23] PCA-(F) DL-(F)

Anger 96.4 98.9 99.4

Contempt 96.9 99.8 99.9

Disgust 96.0 99.6 99.7

Fear 95.5 99.9 99.9

Happiness 98.9 98.6 99.0

Sadness 93.3 98.8 98.8

Surprise 97.6 97.6 99.4

Avg. 96.4 99.1 99.5

Table 3.14: Emotion recognition on CK+. Comparison with the state of

the art. Results are reported in terms of AUC

Emotion IF [23] PCA-(F) DL-(F)

Anger 78.6 67.7 70.5

Fear 85.5 81.9 88.4

Joy 95.0 92.1 91.5

Relief 88.4 79.5 79.0

Sadness 84.8 86.2 81.5

Avg. 86.5 81.5 82.2

Table 3.15: Emotion recognition on FERA. Comparison with the state of

the art. Results are reported in terms of AUC

As for AU detection, this deficit of performance can be safely ascribed to the

fact that differently from [23], we do not compensate the identity influence

in the training.

3.5 Conclusions

In this chapter it has been described an effective algorithm able to gener-

ate an artifact-free frontal rendering of unconstrained face images based on

fitting the DL-3DMM. The fitted 3D model is then used to locate the coor-

dinates where to extract local feature descriptors on the frontalized images.

This strategy enhances the consistency and alignment between descriptors,

leading to improved results. The method has been tested in three different

tasks, namely face recognition, emotion recognition and AU detection. It
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has been demonstrated that with the proposed face representation results

comparable with the state-of-the-art can be achieved, even using baseline

descriptors and learning strategies.

However, the method is not exempt from limitations. First of all, it heav-

ily relies on the accuracy of the landmark detector. Moreover, the 3DMM

fitting, besides being lightly affected by the accuracy of the landmark de-

tection as well, is conditioned by the image resolution since it indirectly

determines the magnitude of the deformation applied to the 3DMM. Finally,

for extreme poses (>≈ 60◦ in yaw rotation), the method introduces some ar-

tifacts in the final image due to a wrong estimation of the projected model’s

convex hull. Some future developments will regard finding solutions to the

latter issues.



Chapter 4

Face recognition with DCNN

representation

Deep learning based approaches proved to be dramatically effective

to address many computer vision applications, including “face

recognition in the wild”. It has been extensively demonstrated that

methods exploiting Deep Convolutional Neural Networks (DCNN)

are powerful enough to overcome to a great extent many prob-

lems that negatively affected computer vision algorithms based on

hand-crafted features. These problems include variations in illu-

mination, pose, expression and occlusion, to mention some. The

DCNNs excellent discriminative power comes from the fact that

they learn low- and high-level representations directly from the

raw image data. Considering this, it can be assumed that the

performance of a DCNN are influenced by the characteristics of

the raw image data that are fed to the network. In this chap-

ter, we evaluate the effect of different bounding box dimensions,

alignment, positioning and data source on face recognition using

DCNNs. A thorough evaluation of different distance measures is

also presented exploiting two well known, public DCNN architec-

tures.

51
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4.1 Introduction and Related Work

In Computer Vision, the human face has been studied for long time either

for understanding emotional states from expressions or as biometric feature

for recognizing subjects’ identity. Face recognition, in particular, compared

to other biometric modalities is attractive since it does not require the con-

tact with any sensor and can be performed at a distance in an uncooperative

way. However, recognition based on faces suffers from several factors that

can potentially impair the accuracy of the results. Many of these factors

are not directly related to the natural variability of human faces due to sex,

ethnicity, age. Some of them depend on variations of the face induced by fa-

cial expressions, beard, face occlusions due to hair or accessories like glasses,

scarves, etc. We refer to these factors as intrinsic, since the variations as-

sociated to them directly affect the face surface. On the other hand, other

factors that make face recognition a difficult task are due to the extrinsic

conditions under which the face is captured. These include ambient illu-

mination, pose, distance, resolution of the captured images, availability of

single or multiple images or videos. Three-dimensional acquisitions of the

face are also possible.

Most of the research work on face recognition tried to define and ex-

tract hand-crafted features capable of capturing the traits of the face that

can better discriminate from subject to subject. For many years, this has

been done on images acquired in cooperative contexts. The shift from co-

operative to uncooperative datasets, acquired in the wild without subjects

cooperation [39], contributed to substantially advance the research in this

field orienting it towards more realistic solutions. Indeed, the last few years

have seen the increasing success in applying deep learning based solutions

to face recognition [60, 75, 79, 81]. One substantial innovation of deep con-

volutional neural networks (DCNNs) is the idea of letting the deep architec-

ture to automatically discover low-level and high-level representations from

labeled (or/and unlabeled) training data, which can then be used for de-

tecting, and/or classifying the underlying patterns. However, this implies

an extremely costly training phase, where millions of parameters must be

optimized, thus requiring a huge number of example images. This problem

can be smoothed by learning on one dataset and then reusing such learned

features in different contexts using transfer learning [83] or fine tuning [98].

The literature on face recognition has been dominated for long-time by

the definition and use of hand-crafted features such as Local Binary Patterns
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(LBP) [1], Histogram of Gradients (HOG) [25] or Scale Invariant Feature

Transform (SIFT) [28]. These features were extracted from face images

and subsequently used for training classifiers like SVM [77]. The trained

classifiers were ultimately used to recognize the identities. In the last few

years, the scenario has been drastically changed by the combined availability

of increasing computational resources and of very large datasets that made

possible the effective training of neural networks with deep architecture.

These learning tools showed impressive recognition results in several visual

tasks, including face recognition. In the following, we revise some recent

works that use DCNN architectures for face recognition.

In [81], Taigman et al. proposed DeepFace, a nine-layer deep neural

network architecture for face recognition. DeepFace comprised more than

120 million parameters using several locally connected layers without weight

sharing, rather than the standard convolutional layers. This network was

trained on an identity labeled dataset of four million facial images belonging

to more than 4,000 identities. Explicit 3D face modeling was used to align the

images using a piecewise affine transformation. The learned representations

coupling the accurate model-based alignment with the large facial database

generalized well to faces in unconstrained environments, even with a simple

classifier.

In [79], Sun et al. proposed to learn a set of high-level feature representa-

tions through deep learning for face verification. These features, referred to

as Deep hidden IDentity features (DeepID), were learned through multi-class

face identification tasks, whilst they can be generalized to other tasks (such

as verification) and new identities unseen in the training set. DeepID features

were taken from the last hidden layer neuron activations of DCNN. When

learned as classifiers to recognize about 10,000 face identities in the training

set and configured to keep reducing the neuron numbers along the feature

extraction hierarchy, these DCNNs gradually form compact identity-related

features in the top layers with only a small number of hidden neurons. These

features were extracted from various face regions to form complementary and

over-complete representations.

The FaceNet system proposed in [75] by Schroff et al., learned a mapping

from face images to a compact Euclidean space, where distances directly

correspond to a measure of face similarity. Once this space is obtained,

tasks such as face recognition, verification and clustering were implemented

using standard techniques with FaceNet embedding as feature vectors. A
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DCNN was trained to directly optimize the embedding itself, rather than

an intermediate bottleneck layer as in previous deep learning approaches.

Triplets of roughly aligned matching / non-matching face patches generated

using an online triplet mining method were used for training, with the main

benefit of a better representation efficiency. State-of-the-art face recognition

performance was obtained using only 128-bytes per face.

In the work of Parkhi et al. [60], a much simpler and yet effective network

architecture achieving near state-of-the-art results on all popular image and

video face recognition benchmarks was proposed. On the one hand, they

showed how a very large scale dataset (2.6M images of over 2.6K people)

can be assembled by a combination of automation and human in the loop,

and discussed the trade off between data purity and time. On the other,

they traversed through the complexities of deep network training and face

recognition to present methods and procedures to achieve comparable state

of the art results.

The work of Masi et al. in [57], addressed unconstrained face recognition

in the wild focusing on the problem of extreme pose variations. As opposed

to other techniques that either expect a single model to learn pose invari-

ance through massive amounts of training data, or normalize images to a

single frontal pose, this method explicitly tackled pose variation by using

multiple pose specific models and rendered face images. DCNNs were used

to learn discriminative representations, called Pose-Aware Models (PAMs)

using 500K images from the CASIA WebFace dataset [96]. In a comparative

evaluation, PAMs achieved better performance than commercial products

also outperforming methods that are specifically fine-tuned on the target

dataset.

Unsupervised joint alignment of images has been demonstrated to im-

prove performance on face recognition. The alignment reduces undesired

variability due to factors such as pose, while only requiring weak supervision

in the form of poorly aligned examples. Following this idea, Huang et al. [34]

proposed Deep funneling as a novel combination of unsupervised joint align-

ment with unsupervised feature learning. Specifically, they incorporated

deep learning into the alignment framework. In addition, the learning algo-

rithm was modified for the restricted Boltzmann machine by incorporating a

group sparsity penalty, leading to a topographic organization of the learned

filters and improving subsequent alignment results. The method was applied

to the LFW database. Using the aligned images produced by this unsuper-
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vised algorithm, higher accuracy in face verification was achieved compared

to prior work in both unsupervised and supervised alignment.

In [58], a comprehensive study was presented that evaluates the perfor-

mance of deep learning based face representation under several conditions, in-

cluding the varying head pose angles, upper and lower face occlusion, chang-

ing illumination of different strengths, and misalignment due to erroneous

facial feature localization. Face representations were extracted using two

successful and publicly available deep learning models, namely, VggFace [60]

and Lightened CNN [91]. Images acquired in controlled conditions were

used in the experiments. The obtained results showed that although deep

learning provides a powerful representation for face recognition, it can still

benefit from preprocessing, for example, for pose and illumination normal-

ization. In particular, from this study it emerged that if variations included

in test images were not included in the dataset used to train the deep learn-

ing model, the role of preprocessing became more important. Experimental

results also showed that deep learning based representation is robust to mis-

alignment and can tolerate facial feature localization errors up to 10% of the

inter-ocular distance.

Though the proliferation of deep learning based solutions for face recog-

nition, there are several aspects of their behavior that remain not completely

understood or that have not been investigated at all. In addition, the effect

on the final recognition accuracy of intrinsic or extrinsic factors has been

evaluated only in a limited set of cases under controlled conditions [58].

In this chapter, it is presented a thorough study on the effect that dif-

ferent bounding boxes, alignment and positioning variations have on deep

learning based face recognition. In addition, we also experiment how different

data sources (still images of video frames) weigh on the effectiveness of the

representations learned through DCNNs. To this end, we first identified two

publicly available and effective DCNN architectures, namely, AlexNet [47]

and vgg-vd16 [60]. We trained these networks on face data in the “wild”

taken from [60] and tested them on the publicly available IARPA Janus

Benchmark-A (IJB-A) [44] and YouTube Faces [89] datasets.

We compared the results obtained by using the images/frames included

in the original dataset, with respect to the case where these images have been

normalized in a preprocessing phase. In summary, the main contributions

and outcomes of this work are: (i) a thorough experimentation on face data

in the “wild” that evaluates the effect on recognition results of bounding
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box dimensions, alignment, positioning and data source; (ii) the evidence

that deep architectures do not benefit from preprocessing operations that

normalize input data both at train and test time and and (iii) the proof

that different distance measures lead to very diverse results and can be used

as indicators of the effectiveness of the face representation learned by a CNN.

4.2 Face Images Preprocessing for DCNN

The effectiveness of a face recognition system based on CNN architectures

depends on some main aspects. First, the network architecture and learning

strategy: depending on the task, different networks and learning methodolo-

gies can be more or less effective, for instance in face recognition it has been

demonstrated that deeper architectures obtain better results [60]. Second,

the image content: the effect that variations in illumination, pose, expres-

sion, resolution and others have on the final performance is a crucial aspect

that indeed has been extensively studied in controlled conditions [58]. Third,

the data preprocessing: this includes, first of all, the detection and the clip-

ping of the interested area, i.e., the face, the compensation of nuisances such

as in-plane or out-of-plane rotations, misalignments and scale differences.

Finally, the source of the data, i.e., whether video frames or still images are

considered.

Our aim consists in evaluating the impact that different factors have on

the performance of a face recognition system based on CNN representation,

rather than the image content itself. To this aim, we consider the following

aspects: (i) bounding box dimension; (ii) alignment and (iii) positioning.

4.2.1 Bounding Boxes Dimension

The dimension of the bounding box that contains the face is relevant inas-

much as it works as a trade-off between the amount of useful information,

i.e., the face and non-useful information, i.e., background that will be fed to

the network. Tighter bounding boxes will reduce the amount of background

included but, on the other hand, will eventually reduce the amount of facial

information and vice versa. In this sense, it can be beneficial to understand

how size differences can impact on the representation obtained through the

CNN. Since many different face detection algorithms exist, inferring a gen-

eral rule to simulate their response and define a bounding box might result
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Figure 4.1: Examples of different bounding box dimensions: (top) tight

bounding boxes; (bottom) large bounding boxes.

tricky. Alternatively, one could have tried to define such boxes based on

any arbitrary consideration on fiducial parts of the face e.g. eyes distance.

However, the bottleneck of this solution is that face shapes can differ a lot,

yielding to subject-specific boxes that ultimately could impair the generality

of the conclusions. Thus, we considered the output of a generic face detector

to devise two different bounding box sizes:

� Tight : these bounding boxes consider a square that goes from the chin

to just above the eyebrows. They resemble the output of most of the

available face detectors, which are designed to minimize the amount of

background. See examples in Fig. 4.1 (top row);

� Large: these bounding boxes are taken so as to include the whole

head, thus the amount of background is variable depending on the

head position. To roughly obtain such boxes, the tight ones have been

enlarged by 15% on each side, see Fig. 4.1 (bottom row).

4.2.2 Alignment

The alignment process consists in bringing all the faces in the same relative

position inside the crops so as to enhance the description semantics. Al-

though the usefulness of the alignment step is well founded for engineered

computer vision methods based on hand-crafted features, it has not been

fully investigated if the effort made to perform the alignment is worth when

using CNN representations. To this end, we applied two different strategies

on the images used both to test and train the networks:

� Similarity Transformation: it is performed using the eyes position,

identified by either manual annotation (if available) or exploiting a
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Figure 4.2: Faces aligned with a similarity transformation (top row) and

frontalization (bottom row).

landmark detector [42]. Following a standard procedure, the image

is warped so that the line connecting the eyes is horizontal and the

distance between them is 100px. Their relative position inside the

image is kept fixed. Some examples of aligned faces are shown in

Fig. 4.2 (top row);

� Frontalization: with the term “frontalization” we refer to the process

of bringing a generic face image in a frontal pose. This implies the

compensation of out-of-plane rotations of the head and the rendering

of a virtual frontal face image. To perform the frontalization, the

method in [27] has been used. It exploits the 3D information provided

by a 3D Morphable Model (3DMM). Through 2D and 3D landmark

correspondences, the method estimates the 3D pose of the head and

fits the 3D model to the face image. It then samples and associates the

face pixel values to the 3D model vertices and finally renders a frontal

face image. The rendered image is pixelwise aligned by construction.
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Some examples are shown in Fig. 4.2 (bottom row).

4.2.3 Positioning

If the alignment is not applied to the images, the relative position of the

face inside the bounding box can vary, with more pronounced variations for

larger bounding boxes. Assuming that different face detectors can produce

different outputs and that we cannot exclude detection errors, the goal here

is to evaluate if and how much this behavior affects the recognition. To this

aim, we consider the larger bounding boxes (we can assume that it is always

possible to enlarge a bounding box if it is too tight) and take random or

fixed crops out of it. In doing so, we also have the chance to understand if

there are some face parts that retain more discriminative information than

others.

4.3 Face Representation with DCNN

We used the data collected in [60] to train two DCNN architectures, namely

AlexNet [47] and vgg-vd16 [60]. Different versions of these two architectures

have been trained varying the preprocessing applied to the training face

images. In particular, we considered different bounding boxes dimensions

and alignments, as described in Sect. 4.2.1 and Sect. 4.2.2, respectively.

These networks have been trained as face classifiers considering N =

2, 622 unique individuals. For each individual, an average of 1000 face images

have been used during training, for a total of 2, 622, 000 images. The final

fully-connected layer containing N linear predictors, one per identity, along

with the empirical softmax log-loss are used to train the classifier.

4.3.1 AlexNet

The architecture of this network takes a 227×227 image and is made up of 8

layers, 5 convolutional (Conv) and 3 fully connected (FC), each one followed

by a rectification layer (ReLU). Max pooling is applied after the second and

the fifth Conv layers. Three FC layers follow, and the output of the final

FC is fed to a 2, 623-way softmax, which produces a distribution over the

classes.

We trained five configurations of this architecture. As input for the train-

ing of two of these networks, we considered the original training images with



60 Face recognition with DCNN representation

two different bounding boxes dimensions (tight or large), but without align-

ment. Then, we trained two other configurations applying the similarity

transformation described in Sect. 4.2.2 to both tight and large bounding

boxes. For these four configurations, augmentation based on both random

flip and the choice of a random crop have been used during training.

Finally we trained a network considering the frontalized images. In this

case the training set comprises about 1, 800, 000 images; this is due to land-

marks detection failures for the remaining 800, 000 images. Data augmen-

tation is not applied since frontalized faces are pixel-wise aligned and thus

selecting a random crop would only result in a loss of information.

4.3.2 Vgg-vd16

We also considered the VggFace pre-trained network built upon the Vgg-

vd16 architecture that has been released by the authors of [60]. This network

takes a 224 × 224 input image and has 8 convolutional blocks, each one

followed by a ReLU. Max pooling is applied every 2 Conv layers until layer

10, then every 3. The last 3 blocks are FC layers and, similarly to AlexNet,

the output of the last FC is fed to the softmax layer. No alignment has been

applied to the face images used for training. Augmentation based on both

randomly flipping and cropping the images was applied during training.

In this work we exploit the publicly available pre-trained model and, for

a more thorough comparison, we also trained a Vgg-vd16 network using the

frontalized images and the settings described in Sect. 4.3.1 for the AlexNet-

frontalized.

4.4 Experimental Results

We evaluate the performance of the different DCNNs in a set of experi-

ments that involve the preprocessing operation presented in Sect. 4.2. First,

we evaluate face identification and verification accuracies both for different

combinations of train and test data normalization, i.e., whether alignment

or frontalization are applied or not, and in function of the bounding box

dimension. Regarding the latter, we also conduct an experiment aimed at

finding its optimal size. Then, an evaluation of which face part carry the

most valuable and discriminative information is performed. These analyses

have been carried out considering mainly the AlexNet architecture. Finally,
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a specific protocol in which gallery and probe images are divided in terms

of the data source (i.e., still images or frames) is devised, so as to figure out

how much this aspect influence a DCNN recognition accuracy.

Experiments have been carried out on the recently released IARPA Janus

Benchmark-A (IJB-A) [44] and the YouTube Faces (YTF) [89] datasets.

Both are divided in ten splits for experimental evaluation; for each trial, we

use 1 split as test set and the other 9 splits as training set.

IJB-A: Released by IARPA, this dataset is specifically designed to push

the challenges of face recognition to the extreme, including face imagery

coming both as still images or video frames captured under severe variations

of imaging conditions, focusing on the extreme cases. The dataset comprises

a total of 25800 images and video frames of 500 subjects. There are two

main protocols defined: face identification (1:N) and face verification (1:1);

in both the protocols the identities to be matched or retrieved are expressed

by means of templates, i.e., sets of images/frames of the same subject. This

setting is sometimes referred in literature as template based face recognition.

Specifically, in the identification protocol, identities in the probe set have to

be retrieved among the ones in the gallery set. In the gallery, each template

corresponds to a single identity while in the probe set a single identity can

have more than one template.

YouTube Faces: The YTF dataset collects videos from YouTube and it is

specifically designed to study the problem of face verification in videos. The

dataset contains 3425 videos (the average video length is 181 frames) of 1595

subjects, and the task is to decide whether two video sequences contain the

same subject.

4.4.1 Recognition Pipeline

In order to assess the role that different image preprocessing procedures

have on the final performance, we followed a standard recognition pipeline,

exploiting the trained DCNNs as feature extractors and applying the prepro-

cessing methods described in Sect. 4.2 to the test images. For all the tests,

the output of the last fully connected layer is used as 4096-dimensional face

descriptor. The latter is extracted from the images and their horizontally

flipped version; the final descriptor is obtained as the average of the two. The

descriptors of the training set are used to compute a PCA projection matrix

to perform dimensionality reduction on the test set. Finally, we perform

the matching, though in a slightly different manner for the IJB-A and YTF;
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specifically, for the IJB-A, the cosine distance between each image included

in each template is computed and the sum of the minimum of the distances

and their average is taken as final measure. We found that including the

average improves the results since it attenuates the effect of possible outliers

in the templates. For YTF instead, for each video sequence, the average

descriptor is coarsely obtained from all the frames and used as final descrip-

tor for the subject in the sequence. The verification is then performed by

computing the cosine distance between pairs of descriptors.

4.4.2 Preprocessing Analysis

Results for the identification and verification protocols on the IJB-A are re-

ported in Table 4.1 and 4.2, respectively. The second and third columns in-

dicate the type of preprocessing; Large(L) or Tight(T) refer to the bounding

box dimension while Original(O) or Aligned(A) refer to whether a similarity

transformation is applied to the images or not. All the possible combinations

of train and test data have been experimented and for each training data

type, the best configuration is reported in bold (excluding the configurations

that use the frontalized version of the images).

From the results, we can first observe that there is a clear advantage in

using larger bounding boxes both in training and testing the networks. This

suggests that the networks are able to separate between useful (face) and

non useful (background) content themselves while training, taking advantage

from the larger amount of available information. If larger bounding boxes are

used in the training phase, however, the performance loss using tighter boxes

in the test phase is evidently less than the opposite case. This is somewhat

not surprising, since it is evident that the networks cannot recognize visual

information unseen during the training. A more surprising fact instead is

that, for each testing configuration, better results are achieved when using

larger boxes with non aligned data to train the networks. This evidence

suggests that the networks are able to account for and be somewhat invariant

to similarity transformations. This capability is beneficial also if aligned

data is being tested (note that the original VggFace architecture used in this

work exploits non aligned data for training). The fact that this is not true

when using tighter boxes can be ascribed to the lack of meaningful visual

information. We can reasonably suppose from the experimental evidence

that the available visual content is not sufficient to make the network fully

extrapolate the features that carry the identity information. Finally, it is
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worth to stress that the consistency between training and testing data is

of fundamental importance; for all the different training configurations, the

best performance are obtained with testing data that is consistent with the

training one.

Identification 1:N Verification 1:1

Net Train Test TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

AlexNet A-L A-L 0.873± 0.012 0.728± 0.029 0.861± 0.014 0.967 ± 0.004 0.850± 0.018 0.731± 0.028

AlexNet A-L A-T 0.806 ± 0.014 0.603 ± 0.022 0.797 ± 0.011 0.947 ± 0.007 0.795 ± 0.019 0.651 ± 0.031

AlexNet A-L O-L 0.870 ± 0.008 0.712 ± 0.018 0.857 ± 0.011 0.971± 0.003 0.845 ± 0.017 0.709 ± 0.030

AlexNet A-L O-T 0.832 ± 0.008 0.638 ± 0.026 0.819 ± 0.008 0.956 ± 0.005 0.833 ± 0.020 0.693 ± 0.035

AlexNet O-L A-L 0.887 ± 0.010 0.738 ± 0.020 0.872 ± 0.008 0.971 ± 0.004 0.854 ± 0.018 0.732± 0.033

AlexNet O-L A-T 0.825 ± 0.010 0.633 ± 0.018 0.811 ± 0.014 0.955 ± 0.008 0.807 ± 0.022 0.668 ± 0.029

AlexNet O-L O-L 0.894± 0.010 0.753± 0.022 0.886± 0.010 0.977± 0.003 0.862± 0.020 0.731 ± 0.025

AlexNet O-L O-T 0.867 ± 0.009 0.697 ± 0.016 0.857 ± 0.007 0.968 ± 0.004 0.857 ± 0.021 0.720 ± 0.040

AlexNet A-T A-L 0.728 ± 0.025 0.516 ± 0.025 0.724 ± 0.023 0.919 ± 0.009 0.742 ± 0.026 0.606 ± 0.037

AlexNet A-T A-T 0.827± 0.013 0.666± 0.031 0.817± 0.016 0.939 ± 0.006 0.808 ± 0.024 0.687± 0.038

AlexNet A-T O-L 0.754 ± 0.019 0.541 ± 0.027 0.749 ± 0.017 0.932 ± 0.008 0.754 ± 0.027 0.616 ± 0.031

AlexNet A-T O-T 0.816 ± 0.013 0.632 ± 0.024 0.807 ± 0.019 0.946± 0.005 0.819± 0.017 0.682 ± 0.050

AlexNet O-T A-L 0.596 ± 0.024 0.330 ± 0.023 0.582 ± 0.022 0.859 ± 0.018 0.651 ± 0.020 0.515 ± 0.025

AlexNet O-T A-T 0.717 ± 0.023 0.497 ± 0.024 0.717 ± 0.020 0.911 ± 0.011 0.731 ± 0.019 0.582 ± 0.040

AlexNet O-T O-L 0.653 ± 0.019 0.384 ± 0.031 0.642 ± 0.022 0.896 ± 0.013 0.690 ± 0.025 0.539 ± 0.024

AlexNet O-T O-T 0.749± 0.020 0.507± 0.050 0.750± 0.021 0.924± 0.009 0.779± 0.024 0.604± 0.079

AlexNet F F 0.839 ± 0.014 0.698 ± 0.032 0.832 ± 0.019 0.952 ± 0.006 0.817 ± 0.021 0.563 ± 0.125

Table 4.1: Results on the IJB-A dataset using AlexNet architecture with

different train and test data preprocessing methods.

Identification 1:N Verification 1:1

Net Train Test TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

VggFace - A-L 0.903 ± 0.010 0.760 ± 0.028 0.890 ± 0.011 0.975 ± 0.004 0.883 ± 0.017 0.749 ± 0.030

VggFace - A-T 0.880 ± 0.015 0.712 ± 0.027 0.867 ± 0.013 0.967 ± 0.006 0.853 ± 0.017 0.707 ± 0.039

VggFace - O-L 0.926± 0.011 0.804± 0.022 0.910± 0.014 0.983± 0.003 0.896± 0.016 0.759± 0.041

VggFace - O-T 0.914 ± 0.011 0.746 ± 0.032 0.894 ± 0.011 0.979 ± 0.003 0.888 ± 0.017 0.735 ± 0.052

Vgg-vd-16 F F 0.852 ± 0.010 0.725 ± 0.022 0.849 ± 0.008 0.938 ± 0.006 0.824 ± 0.021 0.574 ± 0.122

Table 4.2: Results on the IJB-A dataset using the VggFace architecture with

different train and test data preprocessing methods.

Acknowledged that larger bounding boxes lead to improved representa-

tions, an analysis on the optimal dimension is conducted. The DCNN used

in this experiment is the AlexNet architecture trained on large non aligned

images. Fig. 4.3 reports results obtained enlarging and reducing the bound-

ing box of a certain percentage starting from a base dimension, that is the

one that precisely contains the whole head. The results evidence that the

latter is the optimal dimension. One could have instead expected that, since

the network has been trained on larger boxes, the performance could have

benefit from an enlargement. However, we observe that, being equal the

percentage, the accuracy drop is relative when enlarging the box while be-

ing more significant when reducing its dimension. This suggests us that

the DCNN indeed takes advantage from all the available useful information
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and suffers more when that information is missing rather than when more

background is included.
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Figure 4.3: Recognition performance as a function of the dimension of the

bounding box.

Table 4.3 reports results obtained simulating different shifts in the bound-

ing box position that can occur due to detection errors. As shown in Fig. 4.4,

we considered 3 cases: the first case (Fig. 4.4 (a)) simulates slight errors in

the detection; the images are resized to 256 × 256 and random 224 × 224

crops are selected. Fig. 4.4 (b) and (c) instead refer to more extreme cases,

where respectively only the upper or the lower halves of the face are visible.

We here aim at assessing which face regions carry the most of the identity
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(a) Random crop (b) Upper half (c) Lower half

Figure 4.4: Examples of: (a) random bounding box of the face; (b) upper

part of the face visible; (c) lower part of the face visible.

information. A similar analysis regarding the occlusion of face parts is also

conducted in [58], where subjects wearing sunglasses (eyes region occlusion)

and scarfs (mouth-nose region occlusion) are considered. In [58] the authors

show that occlusions of the eyes region dramatically worsen the recognition,

while occlusions of the lower area do not influence much the results. Dif-

ferently, in our experiments, we included the eyes region in both the cases

(Fig. 4.4(b)-(c)) so as to deepen which of the two regions carries more dis-

criminative information. Considering the asymmetric vertical position of the

eyes, in order to retain approximately the same amount of visual information,

we cut out a slightly smaller region for the upper half case (Fig. 4.4 (b)).

The sizes of the crops are the 28% and 35% of the image height for the

upper and lower halves respectively. Consistently with the finding of [58],

Table 4.3 shows that removing the upper half of the face leads to a more sig-

nificant drop of performance than excluding the lower half. Nonetheless, we

can conclude that, since the eyes region is present in both, the eyebrows and

forehead parts are of greater importance for the final representation. Ran-

domly shifting the position of the bounding box, and so removing a small

portion of the content, is instead not that crucial as data augmentation is

applied in training the network.

4.4.3 Data Source Analysis

As data coming from both video sequences and still images is available in

the IJB-A dataset, we devised a protocol to evaluate the impact of the data
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AlexNet

TAR@FAR 0.01 Rank 1 Rank 10

Lower-Half 0.612 ± 0.023 0.600 ± 0.018 0.881 ± 0.011

Upper-Half 0.724 ± 0.016 0.707 ± 0.015 0.924 ± 0.008

Random-Crop 0.886 ± 0.011 0.869 ± 0.011 0.974 ± 0.003

Best Configuration 0.894± 0.010 0.886± 0.010 0.977± 0.003

VggFace

Lower-Half 0.684 ± 0.022 0.700 ± 0.018 0.921 ± 0.011

Upper-Half 0.745 ± 0.017 0.743 ± 0.014 0.936 ± 0.005

Random-Crop 0.918 ± 0.010 0.899 ± 0.011 0.981 ± 0.003

Best Configuration 0.926± 0.011 0.910± 0.014 0.983± 0.003

Table 4.3: Comparison of different bounding box positioning for the best

configuration of train and test data.

source. In this protocol four setups in which gallery and probe sets contain

exclusively still images or frames are considered. To this end, we select the

subset of the IJB-A identities that have at least one still image and one frame.

Since in the original protocol identities in the probe set can be missing in the

gallery set, this selection is made only for the gallery, so as to maintain the

same set across all the setups. It resulted that, for each split, 95 out of the

total 112 gallery identities are retained in all the setups. For the probe set

instead, images are filtered out depending on whether still images or frames

are used.
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Figure 4.5: Rank-1 accuracy using different sources for gallery and probe;

(left) AlexNet; (right) VggFace.
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In Fig. 4.5 is shown that actually the data source does influence the

accuracy. For both the DCNN architectures a performance drop is observed

when gallery and probe data come from different sources, with a much more

significant loss when the gallery is composed of video frames. Being aware

that generally video frames have a lower resolution than still images, we

believe that the different capturing formats still lead to changes in the image

content and so in the extracted representation. This suggests us that can be

useful to include video frames in the training set of a DCNN.

In order to confirm this assumption and better understand how different

training data influence the learning procedure, a dataset containing anno-

tated video frames has been collected, the UMD-Faces dataset [6]. It com-

prises 367,888 still images for 8,277 subjects and over 3.7 million annotated

video frames from over 22,000 videos of 3100 subjects. Some of the 3100

identities appearing in the video frames set overlap with the identities of

the YTF dataset; for this reason we selected 2927 identities out of the 3100.

Following the guidelines regarding the bounding boxes, the ones provided in

the dataset have been enlarged so as to approximately match the optimal

size derived in Sect. 4.2.1. No alignment has been applied to the cropped

face images.

The dataset has been used to finetune/retrain both AlexNet and VggFace

and in particular, the following operations have been performed:

� Retrained AlexNet from scratch. The images have been subsampled

in order to approximately match the number of images included in the

data collected in [60]. Out of the ≈ 2,500,000 images, ≈ 150,000 are

still images while the rest are video frames. Similarly to the original

one, we trained the network for 20 epochs. We will refer to this solution

as “AlexNet-umd”;

� Fine-tuned VggFace selecting ≈ 175,000 images and video frames. A

new fully connected layer is stacked upon and trained with the soft-

max supervision to classify the new identities. For what concerns the

underlying layers, two different strategies have been used :

1. All the layers have been kept frozen except for the last fully con-

nected layer i.e. the most semantic layer. We will refer to this

solution as “Vgg-fc7”;

2. All the layers have been fine-tuned. We will refer to this solution

as “Vgg-all”;
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VggFace Vgg-fc7 Vgg-all

ImgVsImg 0.886 0.877 0.895

ImgVsFrames 0.842 0.834 0.859

FramesVsFrames 0.846 0.830 0.864

FramesVsImg 0.761 0.759 0.786

Table 4.4: Rank@1 recognition accuracy using different sources for gallery

and probe for different configurations of VggFace.

AlexNet AlexNet-umd

ImgVsImg 0.863 0.816

ImgVsFrames 0.817 0.750

FramesVsFrames 0.824 0.758

FramesVsImg 0.665 0.583

Table 4.5: Rank@1 recognition accuracy using different sources for gallery

and probe for different configurations of AlexNet.

Both these two solutions have been trained for 10 epochs.

The experiments on the new protocols have been repeated with the new

networks and results are reported in Tables 4.4 and 4.5. Results show that,

first, different data sources and generally the training data has a certain

impact on the final capabilities of a CNN. Secondly that there is a clear

difference between the behaviors of the two networks. For what concerns

the VggFace architecture, we can see that the accuracy drops if all but the

last fully connected layer are blocked. We argued that the slightly differ-

ent characteristics of still images and video frames could have impaired the

learned representation while attempting to classify the new identities. This

is demonstrated by the fact that, if all the layers are fine-tuned, the accuracy

increases. On the contrary, the performance of the AlexNet architecture

drop considerably if trained with the UMD dataset. Such a behavior could

have many reasons that need further investigation. Among them, one could

be that the AlexNet architecture is too shallow or simple to model the wider

variabilities induced by the inclusion of video frames. Another reason could

be the imbalance between frames and still images as well. Other than that,

we wondered if the better performance obtained with VggFace could be as-

cribable to the fact that the original dataset contained only still images. An

attempt of fine-tuning AlexNet using the same strategy and data as for Vg-

gFace has been then made, but it failed to converge, even changing various
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configurations.

Moreover, the new networks have been tested also on the full IJB-A

dataset and results are reported in Table 4.6. These outcomes prove that

Identification 1:N Verification 1:1

TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

VggFace 0.926 0.804 0.910 0.983 0.897 0.760

VggFace-fc7 0.911 0.773 0.896 0.979 0.881 0.721

VggFace-All 0.937 0.825 0.917 0.984 0.906 0.784

AlexNet 0.894 0.753 0.886 0.977 0.860 0.729

AlexNet-umd 0.844 0.642 0.829 0.968 0.811 0.671

Table 4.6: Results on the IJB-A dataset for the different configuration of

VggFace and AlexNet.

the different training data types do impact on the results and indeed it can

be useful to include video frames in the training data. On the other hand, it

has also been shown that, depending on the architecture, the additional com-

plexity carried by the different datasets can impair the learning capabilities

and make the general training procedure harder.

Even though these conclusions could be somewhat expected, in the at-

tempt of better understanding the implications on the learned representa-

tion, in the following we expound an analysis regarding the final matching

procedure. As stated in Sect. 4.4.1, different distance measures can be used

depending on the scenario. To better understand the implications of this

choice, we might want to consider the following fact: the softmax-loss used

to train a network and classify identities tries to maximize the conditional

probability of all the examples in the training mini-batches. In so doing,

it tends to fit well to high quality faces, while difficult ones are ignored so

that their uncertainty weighs as little as possible in the final cost. As a

result, descriptors associated to hard examples eventually share a very low

L2-norm, while good examples for which the classifier is confident, have high

L2-norm [68]. For this reason, in the descriptors space, hard examples tend

to be randomly displaced, usually in a common “uncertainty” area far away

from the centroid of the belonging distribution, i.e., identity, as shown in

Fig. 4.6. Hence, if a template includes such examples, correctly or wrongly

matching two templates considering the minimum distance, as with a near-

est neighbor classifier, ends up to be a matter of chance. On the contrary,

if the network learns effective descriptors, the majority of them should be

located close to each other and, on average, farther from descriptors of dif-

ferent classes. Inspired by this, we conducted a series of experiments on
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Figure 4.6: T-sne plot of descriptors for 5 different identities from the IJB-

A. Different colors indicate different identities while the red circled dots

represent the centroid of each set of descriptors.

the various distance measures used to match the templates, in particular we

considered:

� MIN: the minimum of the distances between templates;

� MEAN: the average distance between templates;

� MIN+MEAN: the minimum plus the average of the distances, as de-

picted in Section 4.4.1.

� MEAN-DESCR: the average descriptor is computed from all the tem-

plate descriptors.

The last strategy has a particular meaning: in fact, it gives some clues

about both the goodness of the learned representation and the templates

themselves. Referring to Fig. 4.6, we can see that the centroids (red circled

dots) of the different identities are well separated, while some outliers make

the regions (polygons) intersect. In this sense, the accuracy gap between the

different distances can help in understanding the goodness of the face de-

scription. Nevertheless it should be noted that, in Fig. 4.6, all the descriptors

of the 5 identities are considered. In the matching phase, the templates are
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Figure 4.7: True acceptance rate for different false acceptance rates on the

IJB-A dataset for (a) AlexNet, (b) VggFace, (c) VggFace-All in function of

the different distance measures.

actually composed by a subset of them. Depending on both the number of

images per template and which of them are selected, we can get many useful

clues about which cases make the recognition fail or which images produce

uncertain descriptions. In any case, intuitively, good results obtained using

the average descriptor imply that the most of the descriptors of each iden-

tity are close to each other and the amount of outliers is reduced. Thus,

while selecting “random” subsets, the probability of having centroids that

are close to the belonging distribution is higher. On the contrary we argue

that the minimum distance as matching measure is not totally faithful if the

objective is to build an effective face representation where similar images

end up close to each other in the descriptors space. Consider the situation in

which some images, for whatever reason, are projected near the centroid of

another class; we can take as example the pale blue points (ID-1) in Fig. 4.6

located near the centroid of the ocher class(ID-4). If these points are enough

close to each other, the minimum distance will classify them correctly. On

the other hand, this means that the related descriptors havebeen generated

as if they belonged to a different class ( the ocher class); in other words, the

network did not correctly model the distribution of the data and the images

have been misclassified.

In Figs. 4.7 and 4.8 results on the IJB-A for different distance measures

are reported. Observing the results we can gather some considerations. First,

the behavior of the two networks is different; while the VggFace architecture

benefits from computing the mean descriptor or the average distance, the
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Figure 4.8: Rank@1 and Rank@10 on the IJB-A dataset for for (a) AlexNet,

(b) VggFace, (c) VggFace-All in function of the different distance measures.

AlexNet architecture does not. This can be reasonably attributed to the

minor modeling power of the AlexNet network, which can also be the cause

of the lower accuracy obtained with the second version of the network trained

on the UMD dataset, as reported in Table 4.6. Secondly, referring to Fig. 4.7

results show that, more evidently for the VggFace network, we get a higher

performance boost for lower false acceptance rates; for a false acceptance

rate of 10−5, we get an increase of approximately 10% over each different

distance measure. Computing the mean descriptor results in a noticeable

55.1 TAR@10−5FAR.

However, as stated previously, in the optimal case we expect the results

of different measures to converge to a similar value. From the gaps between

these values, some questions arise: one may wonder for instance if larger

gaps are due to an improved or worse description capability or to minor

invariance to nuisances such as pose variations. For the particular cases

taken into account, the AlexNet architectures show worse results but rather

small gaps between them, while the VggFace networks, on the opposite, are

much more accurate but also much more sensible. Nevertheless, results in

terms of retrieval i.e. Rank@1/10 in Fig. 4.8 show a stronger stability for

the VggFace architectures.
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Identification 1:N Verification 1:1

Method TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

UMD (DCNN+metric) [15] – – 0.852± 0.018 0.954± 0.007 0.787± 0.043 –

UMD (DCNNfusion) [14] – – 0.903± 0.012 0.977± 0.007 0.838± 0.042 –

PAMs [57] – – 0.840± 0.012 0.946± 0.007 0.826± 0.018 0.652± 0.037

Template Adaptation [22] 0.774± 0.050 – 0.928± 0.010 0.986± 0.003 0.939± 0.013 0.836± 0.027

TPE [74] 0.932± 0.010 0.753± 0.030 0.932± 0.010 0.977± 0.005 0.900± 0.010 0.813± 0.020

All-In-One CNN + TPE [69] 0.792± 0.020 – 0.947± 0.008 0.988± 0.003 0.922± 0.010 0.823± 0.020

NAN [94] 0.817± 0.041 – 0.958± 0.005 0.986± 0.003 0.941± 0.008 0.881± 0.011

AlexNet* 0.894± 0.010 0.753± 0.022 0.886± 0.010 0.977± 0.003 0.862± 0.020 0.731± 0.025

VggFace* 0.926± 0.011 0.804± 0.022 0.910± 0.014 0.983± 0.003 0.896± 0.016 0.759± 0.041

VggFace-All* 0.937± 0.008 0.825± 0.018 0.917± 0.008 0.984± 0.001 0.905± 0.008 0.784± 0.028

Table 4.7: State of the art results on the IJB-A dataset. *Best configurations

for both AlexNet and VggFace have been selected. Best results are reported

in bold and second best are underlined.

4.4.4 Comparison with State of the Art

For the sake of completeness, we compare the best configuration for both

the two considered DCNNs with state of the art methods on the IJB-A and

YTF datasets. Results are reported in Table 4.7 and Fig. 4.9, respectively.

Results on the IJB-A show that our best configurations get very competitive

results.

For what concerns the YTF dataset, we considered the original frames

(without any preprocessing) to extract the DCNN descriptors. As for the

bounding boxes, the provided annotations define a crop that resembles the

tight one shown in Fig. 4.1. As we found that the best option is to have

a large bounding box, we conducted the experiment two times, using both

the original annotations and an enlarged version. The bounding boxes have

been enlarged of 15% so as to approximately match the optimal dimension in

the latter case. The ROC curves in Fig. 4.9 show that the best performance

is obtained with the VggFace-All network, finetuned on the UMD, which

outperforms the state of the art. We remark here that the overlapping iden-

tities between the two datasets have been removed from the training data.

The results of the other architectures are consistent with the conclusions

expounded so far and follow the same trend as for the IJB-A dataset.

4.5 Conclusions

In this chapter, nuisance factors that can influence face recognition per-

formance have been investigated. We focused on the images preprocessing

steps, for both training and testing. From the experimental evidence we can
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Figure 4.9: ROC curves on the YouTube Faces database for the trained

architectures and the state of the art.

mainly conclude that there exist a strong dependency between train and test

data and that actually the image representation derived from the DCNNs

does not benefit from image normalization operations. Moreover, we evi-

denced that the data source combinations (images or frames) have a certain

impact on the final performance, and along with them the different distance

measures employed.

From this analysis some useful insights have also been derived that can

help to lighten the effort in developing new solutions for face recognition in

the wild exploiting DCNN.



Chapter 5

Conclusion

In the following sections, the contributions of this thesis work are presented

and possible directions for future research are expounded.

5.1 Summary of contribution

The first part of the thesis dealt with the problem of face recognition “in

the wild” based on local, hand-crafted features. The main challenges that

comes with this problem are basically induced by the heavy changes in the

face image appearance, which can be due to pose, illumination and expression

variations, to mention some. The assumption on which this work is grounded

on is that we can overcome some of the challenges by constructing a face

representation in which variations are less relevant. This is achieved by

means of a deformable 3D model.

In chapter 2, we described an effective 3D Morphable Shape Model based

on Dictionary Learning which is able to fit a 3D shape to a single 2D face

image in an accurate way relying solely on some facial landmarks correspon-

dences. The model is constructed exploiting a dataset of 3D scans, which

have to be registered together so as meaningful statistical information on the

shapes can be derived. As a contribution, it is proposed a dense alignment

method that can effectively register the set of 3D scans even in the presence

of large topological changes, which are mainly due to expressive scans. We

then build the morphable model by applying a dictionary learning (DL) tech-

nique on the aligned scans. We demonstrate that in presence of expressive

models, which lead to a greater statistical variability in the data, DL better
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retains the information and can deform the model more accurately than a

classic PCA based solution.

In chapter 3 we exploit the afore mentioned 3DMM to fit to target face

images and generate a frontalized i.e. frontal facing view image that we

prove to be more effective if used for face recognition. Briefly, the 3DMM is

projected on the image plane exploiting 2D/3D landmark correspondences

and fit to the face image. Then the RGB values of the face region are

sampled so as to build a complete 3D model comprising shape and texture.

The model is built computing an inverse projection that brings each single

pixel in the face region to the 3D space. The complete model can then

be rotated to a frontal pose and a new image is generated. In doing so,

the model can be again back projected onto the new image; this allows us

to define a set of points where to extract local feature descriptors. With

respect to dividing the image into non overlapping cells and extracting the

features in correspondence of the landmarks, the proposed solution get much

better results. We tested the approach in three different tasks, namely face

recognition, emotion recognition and Action Units detection. In all the cases

the proposed face representation and feature extraction technique performed

better than baseline approaches; moreover, results are comparable to state-

of-the-art solutions, even using basic descriptors and learning solutions.

Nonetheless, simultaneously, the interest and the development of deep

learning based solutions for face recognition improved drastically the average

performance in the field. It has become clear that older techniques struggled

to endure. In chapter 4 we present a thorough analysis on the behavior

of deep networks trained for face recognition. We focused the analysis on

the image representation, having being the latter a key step so far. In the

chapter it is shown that, even though the focus is often directed on other

aspects like the network architecture or the training algorithm, we can still

get large benefits if the correct image representation is used.

In summary, the main findings of this work are the following:

� Dictionary Learning techniques can be effectively applied to capture

the variability of the shape of human faces and used to construct a

deformable model (DL-3DMM) able to fit unseen faces accurately, even

in the presence of expressions.

� The DL-3DMM can be exploited to produce a frontal facing view of a

generic face image. This enhances the representation by alleviating the

effect of various nuisances like pose variations. An effective technique
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based on the 3D model to localize points where to extract local features

is also proposed. This technique improved the description semantics by

inducing a more accurate alignment between descriptors, which finally

resulted in better recognition performance.

� The preprocessing operations applied to the images and the image rep-

resentation itself are relevant also when deep learning algorithms are

concerned. Depending on the characteristics of the data, its consis-

tency in the training and testing phases and the different preprocessing

operations, results can consistently vary. Taking the right choice can

help to improve the final results and understand the critical aspects of

such algorithms.

5.2 Directions for future work

Besides the huge evolution of computer vision and machine learning algo-

rithms, there is still a great room for improvements and discoveries. To-

gether with the renovation of the techniques adopted to solve the problems,

the problems themselves are also evolving, in the attempt of pushing to the

limit the requirements and the capabilities of systems. While results on

many benchmark datasets are saturating, many other more challenging ones

are being released, slightly changing also the problem itself. In the field of

face recognition, this is happening in the sense that:

� Datasets include always more and more identities and images, so that

the size of the problem is increasing. This obviously has an impact

both on the effectiveness and efficiency requirements;

� Extreme cases are the ones of most interest; these include people turned

the other way from the camera, very low resolutions, almost full oc-

clusions and so on. This suggests that there is an interest in studying

the inclusion of other information other than the face itself to solve the

problem;

� Deep learning solutions are being applied also to 3D data, so that the

opportunity of building hybrid methods seems feasible
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Appendix A

Automatic face image collector

based on CNN descriptors

In this appendix a web application to automatically collect huge amounts of

face images provided the name of the subjects is presented. The application

works as follows:

� Through the list of names it queries three differente search engines.

The urls returned by the engines are collected and the images are

downloaded;

� A face detector is run on each image and the faces are automatically

cropped;

� A filtering of the possibly wrong images is performed i.e. images of

subjects different from the requested one; for each subject it extracts

CNN descriptors from a subset of the downloaded images and trains a

SVM classifier. This step grounds on the hypothesis that the amount

of wrong images is lower than the amount of correct ones. This step

is necessary also because many images contain more than one face e.g.

group pictures.

� The trained classifier is finally used to discard images that are classified

as not belonging to the considered identity.

In addition, a tool to manually check the downloaded images and the applied

filtering has been implemented. The tool allows to check the whole set of
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Figure A.1: Screenshot of the tool developed to manually check the results

of the filtering.

images for each subject. The images that have been filtered out from the set

are marked in red (Fig. A.1). The user can manually remove other images by

selecting them or restore the discarded images if a wrong filtering has been

applied. Finally the dataset can be exported considering only the images

that have been selected as genuine. It is also possible to exclude a whole

identity by clicking on the thumbnail of the subject (the image in the top

left corner of Fig. A.1).



Appendix B

Frontalized Faces in The Wild

In this appendix we present a dataset created using the technique expounded

in Sect. 3. The dataset considered is the “Labeled Faces in the Wild” [38],a

database of face photographs designed for studying the problem of uncon-

strained face recognition. It contains 13233 images of 5749 people. 1

Figure B.1: Images from the frontalized faces in the wild dataset built.

1Available at https://www.micc.unifi.it/resources/datasets/frontalized-faces-in-the-

wild/.
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Appendix C

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. Claudio Ferrari, G. Lisanti, S. Berretti, A. Del Bimbo. “A dictionary

Learning Based 3D Morphable Shape Model”, IEEE Transactions on Multi-

media, vol. PP in press, May 2017.[DOI: 10.1109/TMM.2017.2707341] 1 citation

International Conferences and Workshops

1. Claudio Ferrari, G. Lisanti, S. Berretti, A. Del Bimbo. “Investigating

Nuisance Factors in Face Recognition with DCNN Representation”, in Proc.

of IEEE International Conference Computer Vision and Pattern Recognition

Workshops (CVPRW), Honululu, (Hawaii), 2017. Best Paper Award

2. Claudio Ferrari, G. Lisanti, S. Berretti, A. Del Bimbo. “Effective 3D

based Frontalization for Unconstrained Face Recognition”, in Proc. of IEEE

International Conference on Pattern Recognition (ICPR), Cancun (Mexico),

2016. 6 citations

3. Claudio Ferrari, G. Lisanti, S. Berretti, A. Del Bimbo. “Dictionary Learn-

ing Based 3D Morphable Model Construction for Face Recognition with

Varying Expression and Pose”, in Proc. of IEEE International Conference

on 3D Vision (3DV), Lyon (France), 2015. 10 citations

1The author’s bibliometric indices are the following: H -index = 3, total number of

citations = 25 (source: Google Scholar on January, 2018).
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4. I. Masi, Claudio Ferrari, A. Del Bimbo, G. Medioni. “Pose Independent

Face Recognition by Localizing Local Binary Patterns via Deformation Com-

ponents”, in Proc. of IEEE International Conference on Pattern Recognition

(ICPR), Stockholm (Sweden), 2014. 8 citations
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[59] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of tex-

ture measures with classification based on featured distributions,” Pattern

Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[60] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in

British Machine Vision Conf. (BMVC), vol. 1, no. 3, 2015, p. 6.

[61] A. Patel and W. A. P. Smith, “3D morphable face models revisited,” in IEEE

Conf. on Computer Vision and Pattern Recognition, 2009.

http://arxiv.org/abs/1603.07254


90 BIBLIOGRAPHY

[62] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3D face

model for pose and illumination invariant face recognition,” in IEEE Int.

Conf. on Advanced Video and Signal Based Surveillance, 2009.

[63] P. Perakis, G. Passalis, T. Theoharis, and I. A. Kakadiaris, “3D facial land-

mark detection under large yaw and expression variations,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1552–1564,

2013.

[64] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoff-

man, J. Marques, J. Min, and W. Worek, “Overview of the face recognition

grand challenge,” in IEEE Workshop Face Recognition Grand Challenge Ex-

periments, 2005.

[65] E. Pia̧tkowska and J. Martyna, “Spontaneous facial expression recognition:

Automatic aggression detection,” in Int. Conf. on Hybrid Artificial Intelli-

gent Systems, 2012.

[66] E. Pontikakis, C. Nass, J. N. Bailenson, L. Takayama, and M. E. Jabon,

“Facial expression analysis for predicting unsafe driving behavior,” IEEE

Pervasive Computing, vol. 10, no. 4, pp. 84–95, 2011.

[67] S. Ramanathan, A. Kassim, Y. V. Venkatesh, and W. S. Wah, “Human facial

expression recognition using a 3D morphable model,” in Int. Conf. on Image

Processing, 2006.

[68] R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained softmax loss

for discriminative face verification,” arXiv preprint arXiv:1703.09507, 2017.

[69] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa, “An

all-in-one convolutional neural network for face analysis,” arXiv preprint

arXiv:1611.00851, 2016.

[70] S. Romdhani and T. Vetter, “Estimating 3D shape and texture using pixel in-

tensity, edges, specular highlights, texture constraints and a prior,” in IEEE

Conf. on Computer Vision and Pattern Recognition, 2005.

[71] S. D. Roy, M. K. Bhowmik, P. Saha, and A. K. Ghosh, “An approach for au-

tomatic pain detection through facial expression,” in Int. Conf. on Intelligent

Human Computer Interaction, vol. 84, 2015.

[72] C. Sagonas, Y. Panagakis, S. Zafeiriou, and M. Pantic, “Robust statistical

face frontalization,” in IEEE Int. Conf. on Computer Vision, 2015.

[73] G. Sandbach, S. Zafeiriou, M. Pantic, and L. Yin, “Static and dynamic 3D

facial expression recognition: A comprehensive survey,” Image and Vision

Computing, vol. 30, no. 10, pp. 683–697, 2012.

[74] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and R. Chellappa, “Triplet

probabilistic embedding for face verification and clustering,” in IEEE Int.



BIBLIOGRAPHY 91

Conf. on Biometrics Theory, Applications and Systems (BTAS), 2016, pp.

1–8.

[75] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding

for face recognition and clustering,” in IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), June 2015, pp. 815–823.

[76] D. Shahlaei and V. Blanz, “Realistic inverse lighting from a single 2D image

of a face, taken under unknown and complex lighting,” in IEEE Int. Conf.

on Automatic Face and Gesture Recognition, 2015.

[77] J. Sivic, M. Everingham, and A. Zisserman, “Who are you? learning per-

son specific classifiers from video,” in IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2009, pp. 1145–1152.

[78] F. C. Staal, A. J. Ponniah, F. Angullia, C. Ruff, M. J. Koudstaal, and

D. Dunaway, “Describing Crouzon and Pfeiffer syndrome based on principal

component analysis,” Journal of Cranio-Maxillofacial Surgery, vol. 43, no. 4,

pp. 528–536, 2015.

[79] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from

predicting 10,000 classes,” in IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), June 2014, pp. 1891–1898.

[80] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification,” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2013, pp. 1701–1708.

[81] ——, “Deepface: Closing the gap to human-level performance in face verifi-

cation,” in IEEE Conf. on Computer Vision and Pattern Recognition, 2014.

[82] A. Tawari and M. M. Trivedi, “Face expression recognition by cross modal

data association,” IEEE Trans. on Multimedia, vol. 15, no. 7, pp. 1543–1552,

2013.

[83] L. Torrey and J. Shavlik, “Transfer learning,” Handbook of Research on Ma-

chine Learning Applications and Trends: Algorithms, Methods, and Tech-

niques, vol. 1, p. 242, 2009.

[84] H. Ujir and M. Spann, Facial Expression Recognition Using FAPs-Based

3DMM, ser. Lecture Notes in Computer Science. Springer Netherlands,

2013, pp. 33–47.

[85] M. F. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer, “Meta-analysis

of the first facial expression recognition challenge,” IEEE Trans. on Systems,

Man, and Cybernetics, Part B, vol. 42, no. 4, pp. 966–979, 2012.

[86] D. J. Walger, T. P. Breckon, A. Gaszczak, and T. Popham, “A comparison

of features for regression-based driver head pose estimation under varying



92 BIBLIOGRAPHY

illumination conditions,” in IEEE Int. Work. on Computational Intelligence

for Multimedia Understanding, 2014.

[87] Y. Wang, L. Guan, and A. N. Venetsanopoulos, “Kernel cross-modal factor

analysis for information fusion with application to bimodal emotion recogni-

tion,” IEEE Trans. on Multimedia, vol. 14, no. 3, pp. 597–607, 2012.

[88] Z. Wang, Y. Li, S. Wang, and Q. Ji, “Capturing global semantic relationships

for facial action unit recognition,” in IEEE Int. Conf. on Computer Vision,

2013.

[89] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained videos

with matched background similarity,” in IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2011, pp. 529–534.

[90] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face

recognition via sparse representation,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[91] X. Wu, R. He, and Z. Sun, “A lightened CNN for deep face representation,”

CoRR, 2015.

[92] Y. Wu and Q. Ji, “Constrained joint cascade regression framework for si-

multaneous facial action unit recognition and facial landmark detection,” in

IEEE Conf. on Computer Vision and Pattern Recognition, 2016.

[93] X. Xiong and F. De la Torre, “Supervised descent method and its applica-

tions to face alignment,” in IEEE Conf. on Computer Vision and Pattern

Recognition, 2013.

[94] J. Yang, P. Ren, D. Chen, F. Wen, H. Li, and G. Hua, “Neural aggregation

network for video face recognition,” arXiv preprint arXiv:1603.05474, 2016.

[95] D. Yi, Z. Lei, and S. Z. Li, “Towards pose robust face recognition,” in IEEE

Conf. on Computer Vision and Pattern Recognition, 2013.

[96] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from

scratch,” CoRR, vol. arXiv:1411.7923, 2014.

[97] L. Yin, X. Wei, Y. Sun, J. Wang, and M. Rosato, “A 3D facial expression

database for facial behavior research,” in IEEE Int. Conf. on Automatic Face

and Gesture Recognition, 2006.

[98] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-

tures in deep neural networks?” in Advances in neural information processing

systems, 2014, pp. 3320–3328.

[99] A. Yuce, H. Gao, G. Cuendet, and J. P. Thiran, “Action units and their cross-

correlations for prediction of cognitive load during driving,” IEEE Trans. on

Affective Computing, vol. to appear, 2016.



BIBLIOGRAPHY 93

[100] G. Zen, L. Porzi, E. Sangineto, E. Ricci, and N. Sebe, “Learning personalized

models for facial expression analysis and gesture recognition,” IEEE Trans.

on Multimedia, vol. 18, no. 4, pp. 775–788, 2016.

[101] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of affect

recognition methods: Audio, visual, and spontaneous expressions,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp.

39–58, 2009.

[102] L. Zhang, Y. Wang, S. Wang, D. Samaras, S. Zhang, and P. Huang, “Image-

driven re-targeting and relighting of facial expressions,” in Computer Graph-

ics Int., 2005.

[103] T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan, and K. Yan, “A deep neu-

ral network driven feature learning method for multi-view facial expression

recognition,” IEEE Trans. on Multimedia, vol. to appear, 2016.

[104] X. Zhao, W. Zhang, G. Evangelopoulos, D. Huang, S. K. Shah, Y. Wang, I. A.

Kakadiaris, and L. Chen, “Benchmarking asymmetric 3d-2d face recognition

systems,” in IEEE Int. Conf. and Work. on Automatic Face and Gesture

Recognition, 2013, pp. 1–8.

[105] Q. Zhen, D. Huang, Y. Wang, and L. Chen, “Muscular movement model-

based automatic 3D/4D facial expression recognition,” IEEE Trans. on Mul-

timedia, vol. 18, no. 7, pp. 1438–1450, 2016.

[106] X. Zhu, J. Yan, D. Yi, Z. Lei, and S. Z. Li, “Discriminative 3D morphable

model fitting,” in IEEE Int. Conf. on Automatic Face and Gesture Recogni-

tion, 2015.

[107] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li, “High-fidelity pose and expression

normalization for face recognition in the wild,” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2015, pp. 787–796.


	Abstract
	Contents
	Introduction
	The objective
	Organization of the thesis
	Contributions

	Dictionary Learning Based 3D Morphable Shape Model
	Introduction and related work
	Finding 3D Dense Correspondence
	DL-3DMM Construction
	Efficiently Fitting the DL-3DMM
	Experimental Results
	3D Shape Reconstruction
	Cross-dataset 3D Shape Reconstruction

	Conclusions

	Effective 3D Based Frontalization for Face Analysis
	Introduction and related work
	3D based Face Frontalization
	Face representation
	Experimental Results
	Face Recognition
	AU Detection and Emotion Recognition

	Conclusions

	Face recognition with DCNN representation
	Introduction and Related Work
	Face Images Preprocessing for DCNN
	Bounding Boxes Dimension
	Alignment
	Positioning

	Face Representation with DCNN
	AlexNet
	Vgg-vd16

	Experimental Results
	Recognition Pipeline
	Preprocessing Analysis
	Data Source Analysis
	Comparison with State of the Art

	Conclusions

	Conclusion
	Summary of contribution
	Directions for future work

	Automatic face image collector based on CNN descriptors 
	Frontalized Faces in The Wild
	Publications
	Bibliography

