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Analytic random-walk model for the coherence of a frequency comb
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We present an analytical study of the frequency comb coherence due to random noise in the pulses phases.
We derive a simple expression for the comb lineshape, which depends on a single parameter Neff with the
physical meaning of number of coherent comb pulses, inversely proportional to the variance of the phase jumps
between subsequent comb pulses. A comparison to the case of a cw-monomode laser with white noise frequency
fluctuations is also presented.
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I. INTRODUCTION

After the realization of the optical frequency comb (OFC)
[1–5], the regular comb of spectral teeth of a mode-locked
laser spectrum has been extensively used as an absolute
frequency ruler [6,7] or as a multiwavelength laser source
for spectroscopic applications [8–13]. The ultimate frequency
precision and spectral resolution in these OFC applications are
determined by the tooth linewidth, which is �ν ≈ νrep/Neff,
with νrep being the frequency of the circulating pulse in the
comb cavity, and Neff the number of comb pulses that are
coherently involved in the measurement. Each OFC can be
characterized by the value of Neff, which is determined by
the cavity-length and offset-frequency fluctuations, laser-pump
intensity noise, as well as fluctuations associated with the
residual noise of the electronic stabilization loop(s). State-
of-the-art fiber-based OFCs in the optical region allow a
projected submillihertz comb tooth linewidths corresponding
to acquisition times of the order of 103 s, and Neff ∼ 1011

[14,15].
Recently [16], by using a properly devised interferometer

[17], we experimentally investigated the pulse-to-pulse phase
jitter of a fiber-based metrological frequency comb, measuring
the phase-jitter power spectral distribution (PSD) for Fourier
frequencies between around 1 MHz and the Nyquist value
νrep/2. This frequency interval is of particular interest in
the field of combs in the extreme ultraviolet (XUV) spectral
region, which have been recently realized by using high-order
harmonic generation (HHG) from a frequency comb laser
in the near infrared (NIR) [12], and whose MHz linewidths
indicate a relatively small number of comb pulses coherently
involved (Neff ∼ 100). The experimental phase-jitter PSD
shows a continuous distribution of noise extending to the
Nyquist frequency, whose magnitude depends on the comb
amplification. Over such distribution relatively-low-frequency
monochromatic oscillations appear and contribute to the total
pulse jitter phase variance. In principle, with the evolution of
the electronics [18], such low-frequency oscillations could be
eliminated or greatly reduced and it is thus useful to estimate
the limit resolution achievable when only the flat noise floor

is left, as in the quantum-like case [19–21].1 In this paper we
investigate the spectral effect in the OFC modes of a random-
walk distribution of phase noise in the comb pulses, deriving
simple analytical expressions for the spectral coherence.

The paper is organized as follows: First we present a general
treatment of the OFC spectrum with phase noise (Sec. II),
considering both the uncorrelated and the correlated pulse-
phase jump cases. In Sec. III we discuss the phase-diffusion
model, which corresponds to the case of a free running OFC.
Finally, we conclude with a comparison between the modes of
the phase-diffusion model comb and the case of cw monomode
laser with white-noise frequency fluctuations (Sec. IV).

II. COMB MODEL

We start from the following expression for the electric field
of a comb of N pulses [22]:

E(t) =
N−1∑
n=0

eiψnF (t − nTrep)e2πiνct + c.c., (1)

where Trep = 1/νrep is the comb circulation period, νc =
νoff + mcνrep is the carrier frequency (mc is an integer), νoff =
νrep�φceo/2π is the offset frequency, with �φceo being the
carrier-envelope phase slip. As compared with Ref. [22], we
introduced a phase term eiψn to allow a phase jitter between
subsequent pulses; the phase difference between two subse-
quent pulses being ψn − ψn−1 + �φceo. We consider the phase
jumps ψn − ψn−1 as N − 1 stationary Gaussian processes
and neglect the noise in the pulse amplitude by assuming a
common pulse envelope F , the integral of |F |2 being propor-
tional to the pulse energy.2 For the ideal case ψn → 0 and

1The phase fluctuations induced by spontaneous emission in the
intracavity pulse intensity is expected to give the ultimate fundamental
quantum limit with a Schawlow–Townes linewidth contribution equal
for all comb modes, but other high-level quantum noise with similar
pulse-phase noise behavior is present in this kind of laser source.

2We assume short pulses: F (t − nTrep)F (t − mTrep) ≈ 0 for m �= n.
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N → ∞, Eq. (1) becomes E(t) = e2πiνctG(t) + c.c., where
G(t) = ∑+∞

n=−∞ F (t − nTrep) is a complex periodic function
[G(t + Tr ) = G(t)], as reported in Ref. [23].

In this paper we assume the phase jumps to be independent
stationary Gaussian processes to model the free-running comb-
pulse phase behavior. Anyhow, as a phase-control and locking
systems is involved in almost all OFC applications, we consider
in the next discussion on comb coherence the case of correlated
phase jumps.

A. Comb coherence

Let us consider an ideal experiment of interference be-
tween two comb pulses, where the comb field is transmitted
through an amplitude-splitting interferometer, introducing a
delay kTrep,3 thus giving a signal from the interference between
couples of pulses n, n + k. Because the pulse amplitude is as-
sumed the same for all pulses, the visibility of the interference
signal is determined by the phase difference:

�
(n)
k = k�φceo + ψn+k − ψn

= k�φceo +
k−1∑
h=0

(ψn+h+1 − ψn+h). (2)

The variance of �
(n)
k grows as a function of delay k due to the

accumulation of random-phase jumps, leading to progressive
dithering of the interference fringe. For a stationary noise
process we can drop the pulse index superscript and find a
variance

σ 2
k = 〈(

�
(n)
k − 〈

�
(n)
k

〉)2〉
=

k−1∑
h,h′=0

〈(ψn+h+1 − ψn+h)(ψn+h′+1 − ψn+h′ )〉

=
k−1∑

h,h′=0

R(h − h′), (3)

where R(s) = 〈(ψn+s+1 − ψn+s)(ψn+1 − ψn)〉 is the phase-
jump correlation function, with R(0) = σ 2

1 being the variance
of the phase difference between subsequent pulses. Finally,
considering that R(−s) = R(s), Eq. (3) can be cast in the form
(for k � 1)

σ 2
k = kR(0) + 2

∑
m>m′

R(m − m′)

= kσ 2
1 + 2

k−1∑
h=1

(k − h)R(h). (4)

This equation is a general relation, indicating how the phase-
correlation function determines the variance growth. The
experimental functional dependence on k of σ 2

k can be used to
define the number Neff of laser pulses that interacts coherently
through

σ 2
k=Neff

= 1. (5)

3In Ref. [16] an experiment for k = 1 is reported.

FIG. 1. Standard deviation of phase difference between k pulses.
Continuous red trace is the numerical simulation (average over 30
runs) where the independent phase jumps are taken from a Gaussian
distribution with σ1 = 2 mrad, corresponding to the model of a
free-running comb considered in this paper. Dashed blue trace shows
the effect of a phase feedback loop (shown in the inset and described in
the text) characterized by the response time τ = 103Trep. The number
of coherent pulses is Neff = 1/σ 2

1 = 2.5 × 105 for the case of no
feedback, whereas it is ∞ in the case of the feedback loop [as for
Eq. (5)]. The free-running random-walk behavior σk = σ1

√
k, and the

feedback limit σ∞ = σ1

√
τ/Trep are also shown by light gray lines.

We will see in the following paragraphs how Neff determine
the spectral characteristics of the comb, i.e., the contrast and
the linewidth of the comb modes.

In Fig. 1 (red trace) a numerical simulation shows this
growth for the case of a random extraction of independent
phase jumps from a Gaussian distribution of standard deviation
σ1 = 2 mrad. For independent phase jumps we have a complete
loss of memory and R(h) = δ0hσ

2
1 . In this case, Eq. (4)

corresponds to a linear growth of variance, σ 2
k = kσ 2

1 , and we
get Neff = 1/σ 2

1 .
Statistical independence cannot be assumed when some

kind of active phase stabilization is operating, as shown by
the saturating trace (dashed blue) of Fig. 1. We simulate this
case with the system shown in the figure inset, where the
phase jump is considered as a continuous variable δψ(t), fed
to a proportional-integral controller whose Laplace response
function is K(s) = KP + KI/s, with KP and KI being the
proportional and integral constants, respectively. The con-
troller drives the phase actuator, here taken in its simplest
form as a first-order system characterized by a response time τ

[Laplace transform 1/(1 + sτ )]. The phase noise is represented
by the generator N (s) (a stochastic generator) giving the
interpulse phase δψ(s). We assume an ideally instantaneous
measurement of δψ , and the instantaneous phase error feed to
the stabilization loop is the difference between the phase set
(δψo = 0 corresponds to setting a zero-phase jump between
successive pulses) and the resulting jump δψ . Considering that
even the fastest controller nowadays available has a response
times orders of magnitude greater than Trep, here we report
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a simulation with τ = 103Trep. As expected, the phase trace
is stabilized in a time of the order of τ to a value depending
on the loop parameters [in our example σ 2

k → σ 2
1 (τ/Trep)]. In

this case the correlation between phase jumps introduced by
the stabilization loop breaks the linear variance growth and
leads to a perfect comb [Neff = ∞ following our definition
(5)]. In the real world, inevitable long time drifts would finally
lead to a complete dephasing also for the phase-locked system:
state-of-the-art systems have demonstrated coherence figures
as high as Neff = 1011 [14,15]. Nevertheless, the initial linear
growth of the stabilized system, during ≈τ , is relevant in the
generation of combs in the extreme ultraviolet (XUV) through
high-order harmonic generation, where it determines the comb
linewidth, as we pointed out in previous work [16].

B. Comb spectrum

Taking the Fourier transform of Eq. (1), we get after few
simple passages

Ẽ(ν) = F̃ (ν − νc)
N−1∑
n=0

eiψne
−2πin ν−νc

νrep + cc[−ν], (6)

where cc[−ν] is an abbreviation for the complex conjugate of
the previous term, with the replacement ν → −ν.4 For short
pulses, of duration τp ∼ 10 fs, the Fourier transform of the
envelope, F̃ , is a wide bump of width ∼1/τp∼100 THz. If we
consider a range of detunings �ν = ν − νc around the carrier
νc, with |�ν| � 1/τp, the cc term in Eq. (6) is negligible and
we are led to the following expression for the field power
spectrum:

IE(�ν) ∝ ∣∣Ẽ∣∣2 = ∣∣F̃ (�ν)
∣∣2

∣∣∣∣∣
N−1∑
n=0

eiψne
−2πin �ν

νrep

∣∣∣∣∣
2

. (7)

For ν → ν ± νrep each complex exponential is unchanged:
as expected, neglecting the envelope frequency dependency,
the spectrum is a comb, a periodic function with period νrep.
Moreover, for ψn → 0 the comb peaks correspond to the mode
frequencies ν = νoff + mνrep (m integer). In the following
we study in some detail the comb part of Eq. (7), which in
dimensionless units can be written as IE(�ν) ∝ ZN (x), where
x = �ν

νrep
and

ZN (x) =
∣∣∣∣∣
N−1∑
n=0

eiψne−2πinx

∣∣∣∣∣
2

. (8)

The average of Eq. (8) over phase fluctuations is calculated
in the next paragraph. Here we conclude with a brief discussion
of an ideal case, labeled by the superscript (id), to be used as
reference in the following: a comb with finite number of pulses
and no phase jitter (ψn = 0). To determine simple analytical
expressions for the lineshape, here we consider the frequency
interval around a maximum of the spectrum, i.e., a comb peak.

4As Fourier transform of a real function, the field spectrum is always
of the form Ẽ(ν) = f (ν) + f (−ν)∗, where f is a complex function
of ν. This ensures that Ẽ(−ν) = Ẽ(ν)∗.

Elementary algebra shows that

Z
(id)
N (x) =

∣∣∣∣1 − e−2πixN

1 − e−2πix

∣∣∣∣2

x= �ν
νrep

= N2

∣∣∣∣ sin (πxN )

N sin (πx)

∣∣∣∣2

x= �ν
νrep

≈ N2sinc2(Nx). (9)

Thus, in this limit the modes are sinc shaped,5 i.e., they have
a diffraction-type lineshape, and mode contrast6 and mode
linewidth (FWHM) are respectively given by

ρ
(id)
N = N2, (10)

�ν
(id)
N = νrep

0.886

N
. (11)

III. PHASE-DIFFUSION MODEL

In this section we consider a phase-diffusion model where
the phase jumps are independent stationary Gaussian pro-
cesses, with mean value μ = 0, and with a common standard
deviation σ1.

We note that the dimensionless spectrum (8) for e−2πinx →
1 is the expression of the N th step position in a random walk
of a particle in the plane, this being the case of a unitary free-
flight length between two collisions, andψn being the emerging
angle after a collision. Different from the plane random walk
where a flat emission probability covers an angle of 2π , in the
comb case the angle is in general restricted to a small region
around the origin, which can be quantified by the standard
deviation σ1 of the comb phase diffusion. In the averaging of
Eq. (8),

〈ZN (x)〉 = N +
〈∑

n>m

ei(ψn−ψm)e−2πi(n−m)x + c.c.

〉
,

let us consider a term with n > m as a succession of phase
jumps between subsequent pulses, and remember that they are
statistically uncorrelated:

〈ei(ψn−ψm)e−2πi(n−m)x + c.c.〉
= 〈ei(ψn−ψn−1)〉 · · · 〈ei(ψm+1−ψm)〉︸ ︷︷ ︸

n–m terms

e−2πi(n−m)x + c.c.

= e−(n−m)σ 2
1 /2e−2πi(n−m)x + c.c.

= 2e−(n−m)σ 2
1 /2 cos 2π (n − m)x,

having considered that, for a stochastic variable yg with a
normal distribution of mean value μg and standard deviation

5ZN (x) ≈ N 2sinc2(xN ) for |x| � 1.
6The mode contrast is defined as the ratio between the peack

value Io and the plateau level in the intermediate region between
two successive peaks. To evaluate it, we note that the denominator
of Eq. (9) has unit period when x = 1/2 + δx, and it is nearly at
its maximum, while the numerator has period 1/N and zeros in
δx = ±1/2N (N odd), or in δx = 0 (N even). Thus, the local maxima
of the numerator in the plateau region are in δx = ±1/2N (N even)
or in δx = 0 (N odd). Taking the minimum of the maxima as the
plateau, ZN ≈ 1, and consequently the contrast is N2.
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FIG. 2. Comb-field intensity spectrum ZN [Eq. (8)] as a function of the normalized frequency detuning x = �ν/νrep (distance from the
carrier frequency measured in units of νrep). (a) Ideal case (no phase fluctuations) ZN (x) = sin2(πNx)/ sin2(πx); the comb modes appear
on integers of x. The dimensionless comb-field intensity spectrum normalized to N2 for one comb mode is shown for the three regimes:
(b) N � Neff (ideal case), (c) N = Neff, and (d) N � Neff. Using a Brownian motion model to introduce random-phase fluctuations between
successive comb pulses, the spectrum [gray lines in panels (b)–(d)] presents an irregular shape for N � Neff. Averaging over such spectra leads
to an analytic expression, shown by red lines, whose shape depends on the number of coherent pulses Neff = 1/σ 2. Around the integers the
spectrum is well approximated by a sinc shape in panel (b) and by the Lorentzian curve (with � = 1/2πNeff as FWHM) in panel (d). These
two asymptotic curves are plotted as dashed lines. Note the different scales in panels (a)–(c) (1/N vs 2π/Neff).

σg , is 〈eiyg 〉 = eiμg−σ 2
g /2. Thus, averaging over the phase jumps

leads to the following expression of the comb spectrum:

〈ZN (x)〉 = N + 2
∑
n>m

e−(n−m)σ 2
1 /2 cos 2π (n − m)x,

and, considering that there are N − 1 terms with n − m = 1,
N − 2 terms with n − m = 2, . . . , and that there is just one
term with n − m = N − 1:

〈ZN (x)〉 = N + 2
N−1∑
k=1

(N − k)e−kσ 2
1 /2 cos 2πkx

= N +
N−1∑
k=1

(N − k)[uk + c.c.], (12)

where the following notations are used:

u = eα, (13)

α = 2π (ix − �/2), (14)

� = σ 2
1 /2π = 1

2πNeff
. (15)

The sum can be calculated in closed form by using a property
of the geometric series,7 obtaining finally

〈ZN (x)〉 = N +
[
N

(
−1 + 1 − uN

1 − u

)
+ NuN

1 − u

−u
1 − uN

(1 − u)2 + c.c.

]
. (16)

A key parameter in this expression of the comb spectrum is
the number Neff of coherent pulses, which defines two regimes:
N/Neff is �1 or �1. The spectroscopic characteristics of
the comb in these two regimes are graphically summarized in
Fig. 2, where the average spectrum and a simulated spectrum
are compared for three cases :N � Neff [Fig. 2(b)], N ∼ Neff

[Fig. 2(c)], and N � Neff [Fig. 2(d)]. Mode linewidth and
contrast behavior are illustrated in Fig. 3.

7We start from the geometric series formula
∑N−1

k=0 uk = 1−uN

1−u
.

Differentiating with respect to u, and multiplying by u, we ob-
tain

∑N−1
k=0 kuk = −NuN

1−u
+ u 1−uN

(1−u)2 . From this we obtain
∑N−1

k=1 (N −
k)uk = N (−1 + 1−uN

1−u
) + NuN

1−u
− u 1−uN

(1−u)2 .
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FIG. 3. In panels (a) and (b) the linewidth �ν (the FWHM of the
mode peak), and the contrast ρ (peak value over the plateau level of
the spectrum), normalized by the corresponding asymptotic values
for N → ∞ (�ν∞ and ρ∞), are shown as a function of N/Neff. The
corresponding behaviors for the ideal case (no phase fluctuations) are
shown as gray lines.

For N � Neff a straightforward but lengthly calculation
shows that the ideal expression limit, Eq. (9), is indeed obtained
from Eq. (16). In this case each mode has a sinc lineshape, as in
Fig. 2(b), with a linewidth decreasing as 1/N [corresponding
to the gray line of Fig. 3(a)], and a contrast increasing as N2

[Fig. 3(b), gray line]. This is the expected result when there is
no phase fluctuation in the pulses, and consequently the comb
resolution increases with the number of measured comb pulses.

For N � 2πNeff we find around each integer k, �ν
νrep

= k +
x, with |x| � 0.5:

〈ZN (x)〉 ≈ N
�

2π

1

x2 + �2

4

+ 1

2π2

x2 − �2

4[
x2 − �2

4

]2 + x2�2
. (17)

The first term is a Lorentzian line, with FWHM � = 1/2πNeff

and a peak value 4NNeff. The second term is a dumped
harmonic-oscillator term, a negative correction to the peak
value which is significant for N � 2πNeff and becomes negli-
gible for N → ∞. Thus, for N � Neff the mode strength and
the mode linewidth are

I∞ = 4NNeff, (18)

�ν∞
νrep

= 1

2πNeff
. (19)

Finally, to get the contrast in this case, the following expression
can be derived for the frequency range between two successive
modes:

〈ZN (x)〉 ≈ N
1 − e−2π�

1 − e−2π� − 2e−π� cos (2πx)
. (20)

From this we obtain a plateau value N
4Neff

, i.e., an asymptotic
contrast ratio

ρ∞ = 16N2
eff. (21)

Comparing Eqs. (21) and (19) with Eqs. (10) and (11),
we find that the number Neff of coherent pulses, apart from
a factor (which is four for the contrast, and ∼2π for the
width), plays the same role as N in an ideal comb. From a
spectroscopic point of view it is thus useless to go into the
regime N � Neff: as shown in the Figs. 3(a) and 3(b), there
is no advantage both in the frequency resolution and in the
mode contrast. This is clearly explained by observing the
gray simulation in Fig 2(d): each observation (8) made on N

comb pulses substantially differs from the average (17), given
a constant contrast. In other words, it is not possible to gain
knowledge on the mean mode frequency with an accuracy less
than ≈ 1

Neff
for a free-running OFC.

IV. COMPARISON TO A CONTINUOUS-WAVE
MONOMODE LASER

In the previous section we obtained a Lorentzian lineshape
of the comb modes for large N . Here we consider an heuristic
alternative approach illustrating the parallelism with a cw laser
with white-noise frequency fluctuations. In fact, for the case of
large N the sum in Eq. (7) can be written as a Fourier integral.
We have for ν around the frequency νm = νoff + mνrep:

ZN =
∣∣∣∣∣
N−1∑
n=0

eiψne−2πinTrep(ν−νm)

∣∣∣∣∣
2

≈
∣∣∣∣ 1

Trep

∫ NTrep

0
dte−2πitνe2πiνmt+iψ(t)

∣∣∣∣
2

. (22)

Any mode index leads to the same spectral profile, be-
cause νm − νc is an integer multiple of νrep, the period-
icity of the summed exponentials. The integral expression
can be read as the spectrum of a quasimonochromatic field
Em(t) = cos[2πνmt + ψ(t)], where the mode phase function
ψ(nTrep) = ψn, sampled at a rate νrep, is associated with an
offset-frequency fluctuation

δν
(
nTrep

) = (ψn − ψn−1)/2πTrep

∼ ψ̇(nTrep)/2π (23)

that can also be read as a mode frequency fluctuation of the
underlying modes. Thus, interpulse phase jitter and equivalent
mode-frequency fluctuation are indeed proportional, and the
comb phase jitter is equivalent to a mode field which is a phase-
modulated sinusoid.

Assuming that δν can be represented by a stochastic
stationary Gaussian process, then the average of Eq. (22) can be
computed by well-known standard techniques [24,25], because
ψ(t) = 2π

∫ t

0 dt ′δν(t ′) is also a Gaussian random variable,
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with vanishing mean and variance

〈ψ(t)2〉 = 4π2
∫ +∞

−∞
df Sδν(f )sinc2(f t), (24)

where sinc(x) = sin(πx)/πx, and Sδν is the power spectral
distribution of δν. Once the latter is specified, Eq. (24) allows
the calculation of the average of 〈Ẽ(ν)〉 as the characteristic
function of a Gaussian process:8

〈Ẽ(ν)〉 ∝
∫ NTrep

0
dte−2πitνe2πiνmt 〈eiψ(t)〉

=
∫ NTrep

0
dte−2πitνe2πiνmt−〈ψ(t)2〉/2. (25)

For white-noise fluctuations, i.e., Sδν = So = const., we get
from Eq. (24)

〈
ψ(t)2

〉 = 4π2So

∫ +∞

−∞
df sinc2(f t)

= 4π2Sot = 2π�ot, (26)

provided that the product time Nyquist cutoff frequency νN =
νrep/2 satisfies tνN � 1. To get the rate constant �o in term of
the phase-jitter variance σ 2

1 = 〈(ψn − ψn−1)2〉 we use Eq. (23):
2νNSo = 〈δν2〉 = σ 2

1 ν2
rep/4π2, giving So = σ 2

1 νrep/4π2 and

2π�o = σ 2
1 νrep = νrep

Neff
, (27)

in agreement with the dimensionless counterpart (15). Aver-
aging of Eq. (22) leads finally to

〈Ẽ(ν)〉 ∝
∫ NTrep

0
dte−2πitνe2πiνmt−2π�ot/2 + cc[−ν]

≈ −1

2πi(νm − ν) − 2π�o/2
+ cc[−ν], (28)

8I.e. 〈exp[iψ(t)]〉 = exp(−〈ψ(t)2〉/2).

where the upper-limit contribution, proportional to
e−π�oNTrep = e−Nσ 2

1 /2, has been neglected. The square of
Eq. (28) thus leads to Lorentzian modes, with �o as mode
linewidth (FWHM), proportional to the variance of the phase
jitter, i.e., inversely proportional to the coherence number
Neff. Each mode of the combs behaves as a cw monomode
laser field with a frequency fluctuations characterized by a
white-noise power spectral density [19–21].

V. CONCLUSIONS

We studied the comb spectrum in the presence of random
jitter for the phases of the mode-locked laser pulses. On
the average of multiple laser round trips, a simple analytical
expression for the comb lineshape is derived which depends
on a single parameter Neff that is inversely proportional to the
variance of the phase jumps between subsequent comb pulses,
and with the physical meaning of the number of coherent comb
pulses. Different spectral regimes of the resulting OFC modes
are analyzed as a function of the number of interacting pulses
compared with the coherence number Neff.

For interaction times shorter than the coherence time
NeffTrep, the comb modes are those of a pulsed mode-locked
oscillator without phase fluctuations, with increasing resolu-
tion and contrast as a function of interaction time. Although
this regime is not often used for metrological comb-based
applications, it turns out to be relevant to applications based
on the interaction of a few laser pulses, such as the frequency
comb generation in the XUV through high-order harmonic
generation and its spectroscopic applications [16].

For interaction times around NeffTrep, pulses begin to be not
coherently added because of the phase noise accumulated in
the intermediate laser pulses. Further increase of the interaction
time is of no advantage, both for the comb-mode resolution and
its contrast.

Finally, we have shown that the Lorentzian mode shape
resulting from our model for very long interaction times is in
agreement with that expected for a cw monomode laser when
limited by a white frequency noise.
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