
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN INFORMATICA
CICLO XXX

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Graziano Gentili

Towards Effective Anomaly Detection in
Complex Dynamic Systems

Settore Scientifico Disciplinare INF/01

Dottorando:
Tommaso Zoppi

Tutor e Co-Tutor
Prof. Andrea Bondavalli
Dott. Andrea Ceccarelli

Coordinatori
Prof. Graziano Gentili
Prof. Cristina Pinotti

Anni 2014/2017

Tommaso Zoppi: Towards Effective Anomaly Detection in Complex Dynamic Systems,
Dottorato in Matematica, Informatica, Statistica, © Anno Accademico 2016-2017

A B S T R A C T

Anomaly detection can be used to infer the presence of errors or intrusions
without observing the target service or application, but detecting variations in
the observable parts of the system on which the service or the application resides.
This is a promising technique in complex software-intensive systems, where
either instrumenting the services’ internals is exceedingly time-consuming,
or encapsulation makes them not accessible. Unfortunately, in such systems
anomaly detection is often made ineffective due to their dynamicity, which
implies changes in the services or their expected workload.

The main target of this Thesis is to present our approach to enhance the efficacy
of anomaly detection in complex dynamic systems. Evolving and Dynamic
systems may often change their behavior, adapting it to the current context,
making the characterization of the expected behavior, and consequently the
identification of anomalies, a hard challenge. As a result, there are no clear state-
of-the-art answers on applying error or anomaly detection in highly dynamic
and complex systems, while some frameworks for performing anomaly detection
in complex - not highly dynamic - systems have been described in the literature.

To contribute filling this gap, we put a promising state-of-the-art solution to
work on data flows related to the Secure! system, a Crisis Management System
which is structured as a Service Oriented Architecture (SOA). At first, we observed
that applying such strategy as it was described for non-dynamic systems does
not provide comparable detection scores, therefore we tried to adapt it by i)
expanding the data collecting strategy, ii) considering additional information on
the system, and iii) performing dedicated tuning of parameters of such strategy.
This process led us to a customized version of the basic solution which has
comparable scores with respect to other works targeting non-dynamic complex
systems. At this point, we conducted an extensive experimental campaign
targeting both the Secure! and the jSeduite SOAs based on the injection of specific
types of anomalies to substantiate and confirm the progresses we obtained
during our process.

However, the main result we obtained through these experiments was a pre-
cise definition of design guidelines that are mainly related to the necessity of
frequently reconfiguring both the monitoring strategy and the detection algorithms
to suit an adaptive notion of expected and anomalous behavior, avoiding interferences
and minimizing detection overheads. After reporting and presenting these guide-
lines according to specific viewpoints, we present MADneSs, a framework which
implements our approach to anomaly detection that is tailored for such systems.

1

2

The framework includes an adaptive multi-layer monitoring module. Monitored
data is then processed by the anomaly detector, which adapts its parameters
depending on the current behavior of the system, providing an anomaly alert.
Lastly, we explore possible future implications explicitly targeting Systems-of-
Systems, an architectural paradigm which in the recent years has started being
adopted when building dynamic complex systems.

A C K N O W L E D G E M E N T S

Surprisingly, also this step come to its end. A bit unexpected, since I never
throught that I would have been a student for 21 years since primary school.
Therefore, I learned that I am not really reliable when dealing with my future
expectations, since my predictions are usually wrong.

On the other side, during the PhD years I saw places, people and ideas that
were completely unexpected. Such experiences are something that contributed
to build today’s Tommaso, and I am really grateful to the people that gave me
those opportunities. Hence, the first sincere thanks are directed to the people
in the RCL group, who shared with me a massive amount of things. Important
mentions go to the Brazilian professors who helped me with the accommodation,
the logistics, and tried to create connections with their students. Thanks also
to the people who shared the phd room in these years. And for the others
co-workers, apologies if you are not mentioned, you can hate me in any way
you want.

Just after mentioning university-related people, the most important thanks
go to who - day by day - tolerated me during these years. I am not perfect,
you know, but for sure you contributed (and, hopefully, you will continue) to
limit the negative aspects of my nature, and this is extremely valuable: I cannot
explain how much I appreciate that. Regarding the thesis, this is very specific
and almost obscure (cit.) for non-expert people. If you are not expert and you
want to get something from this document, pay attention to this page: easter
eggs can be everywhere!

3

L I S T O F R E L E VA N T P U B L I C AT I O N S

The following publications have been produced in the context of the research
work described in this Thesis.

sort 2014 Ceccarelli, Andrea, Tommaso Zoppi, Andrea Bondavalli, Fabio
Duchi, and Giuseppe Vella. "A testbed for evaluating anomaly detection
monitors through fault injection." In Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2014 IEEE 17th International
Symposium on, pp. 358-365. IEEE, 2014. [21]

safecomp 2015 Ceccarelli, Andrea, Tommaso Zoppi, Massimiliano Itria, and
Andrea Bondavalli. "A multi-layer anomaly detector for dynamic service-based
systems." In International Conference on Computer Safety, Reliability, and
Security (SAFECOMP 2015), pp. 166-180. Springer International Publishing,
2015. [22]

sose 2016 Marco Mori, Andrea Ceccarelli, Tommaso Zoppi, Andrea Bondavalli,
On the impact of emergent properties on SoS security, in Proceedings of IEEE
System of System Engineering Conference (SoSE 2016), Kongsberg, Nor-
way. [69]

safecomp 2016 Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli.
"Context-Awareness to Improve Anomaly Detection in Dynamic Service Oriented
Architectures." In International Conference on Computer Safety, Reliabil-
ity, and Security (SAFECOMP 2016), pp. 145-158. Springer International
Publishing, 2016. [108]

student forum - srds 2016 Zoppi, Tommaso, Andrea Ceccarelli, and An-
drea Bondavalli. "Challenging Anomaly Detection in Complex Dynamic Sys-
tems." In Reliable Distributed Systems (SRDS 2016), IEEE 35th Symposium
on, pp. 213-214. IEEE, 2016. [107]

sac 2017 Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. "Explor-
ing Anomaly Detection in Systems of Systems." In Symposium on Applied
Computing (SAC 2017) - Software Architecture: Theory, Technology, and
Applications Track, ACM-SIGAPP 32th Symposium on, pp.1139-1146, 2017.
[111]

Other related works were produced, altrough they are not published in official
proceedings, since they are related to special sessions or conferences.

5

6

student forum - dsn 2015 Tommaso Zoppi, "Multi-layer anomaly detection
in complex dynamic critical systems" In Dependable Systems and Networks
(DSN 2015) - Student Forum Session, 2015

minisy 2017 Tommaso Zoppi, "Executing Online Anomaly Detection in Com-
plex Dynamic Systems" In 24th PhD MiniSymposium (MiniSy 2017), 2017.
Available at https://www.mit.bme.hu/eng/system/files/oktatas/9860/
24Minisymp_proceedings.pdf, pp. 86-89

During the PhD corse, the student also investigated other topics related to
dependable and secure systems, mainly targeting Smart Grids as reference
critical system within the IRENE project. The list of publications can be found
below.

hase 2016 Andrea Ceccarelli, Tommaso Zoppi, Paolo Lollini, Andrea Bon-
davalli, Francesco Lo Piccolo, Gabriele Giunta, Vito Morreale, Presenting
the Proper Data to the Crisis Management Operator: A Relevance Labelling
Strategy, In proceedings at IEEE High Assurance Systems Engineering
Symposium (pp. 228-235), HASE 2016, Orlando, Florida (USA). [109]

energycon 2016 Towards a Collaborative Framework to Improve Urban Grid Re-
silience Jung Oliver, Vasenev Alexandr, Ceccarelli Andrea, Clarke Tony,
Bessler Sandford, Montoya Lorena, Zoppi Tommaso, Chappell Keith, in
Proceedings of IEEE Energy Conference (ENERGYCON 2016), Leuven,
Belgium. [56]

jsep 2017 Zoppi, Tommaso, Andrea Ceccarelli, Francesco Lo Piccolo, Paolo
Lollini, Gabriele Giunta, Vito Morreale, and Andrea Bondavalli. "Labelling
relevant events to support the crisis management operator." Journal of
Software: Evolution and Process - HASE Special Issue (Wiley, 2017). [112]

resacs 2017 Alexandr Vasenev, Dan Ionita, Tommaso Zoppi, Andrea Cecca-
relli, and Roel Wieringa (2017) Towards security requirements: Iconicity as a
feature of an informal modeling language. In 22nd International Conference
on Requirements Engineering: Foundation for Software Quality - RESCS
Workshop, REFSQ 2017, 27 February 2017, Essen, Germany (pp. 1-15). [96]

irene workshop - smartgift 2017 A Tool for Evolutionary Threat Analysis
of Smart Grids Tommaso Zoppi, Andrea Ceccarelli, Marco Mori, (2017,
March). In Smart Grid Inspired Future Technologies (pp. 205-211). Springer,
Cham. [113]

irene workshop - smartgift 2017 A Modeling Framework to Support Re-
silient Evolution Planning of Smart Grids Tommaso Zoppi, Sandford Bessler,
Andrea Ceccarelli, Edward Lambert, Eng Tseng Lau, Alexandr Vasenev,

https://www.mit.bme.hu/eng/system/files/oktatas/9860/24Minisymp_proceedings.pdf
https://www.mit.bme.hu/eng/system/files/oktatas/9860/24Minisymp_proceedings.pdf

7

(2017, March). In Smart Grid Inspired Future Technologies (pp. 233-242).
Springer, Cham. [110]

Moreover, the following works contain submitted but not yet revised material,
and therefore are reported separately.

tdsc 2017 Zoppi, Tommaso, Andrea Ceccarelli, and Andrea Bondavalli. "MAD-
neSs: a Multi-layer Anomaly Detection Framework for Complex Dynamic Sys-
tems" Submitted to IEEE Transactions of Dependable and Secure Comput-
ing, 2017

tcps 2017 Andrea Ceccarelli, Tommaso Zoppi, Alexandr Vasenev, Marco Mori,
Dan ionita, Lorena Montoya, Andrea Bondavalli "Threat Analysis in Systems-
of-Systems: an Emergence-oriented Approach" Submitted to the ACM Transac-
tions on Cyber-Physical Systems, 2017

C O N T E N T S

Abstract 1

Acknowledgements 3

Relevant Publications 5

1 introduction 17

2 basics and related works 21

2.1 Dependability: Threats, Attributes, Means 21

2.1.1 Basic Definitions 21

2.1.2 Threats to Dependability: Faults, Errors, Failures 22

2.1.3 Dependability Attributes 23

2.1.4 Means to Attain Dependability 23

2.2 Dynamic and Evolving Complex Systems 26

2.3 Monitoring Evolving Systems 28

2.3.1 Basic Definitions 29

2.3.2 Classification of Monitoring Systems 30

2.3.3 On-line Monitoring 31

2.4 Anomaly Detection 31

2.4.1 Definitions 32

2.4.2 Algorithms for Anomaly Detection 34

3 anomaly detection in complex dynamic systems 39

3.1 Motivation and Open Challenges 39

3.2 Anomaly Detection in Complex Dynamic Systems 39

3.2.1 Detecting Specific Anomalies 40

3.2.2 Frameworks for Anomaly Detection in Complex Systems 42

3.3 Our Approach to Anomaly Detection in Complex Dynamic Sys-
tems 42

3.3.1 Case Study for Evaluation 43

3.3.2 Metrics for Evaluation 43

3.4 Executing SPS on a Service Oriented Architecture 45

3.4.1 A First Experimental Setup 45

3.4.2 Analysis of the Results 46

3.5 Adapting the Underlying Monitoring Strategy 47

3.5.1 A Multi-Layer Monitoring Solution 48

3.5.2 Intrusiveness of Probes 49

3.5.3 Analysis of the Results 50

3.6 Context-Awareness 51

3.6.1 Collect Services Information 52

3.6.2 Integrate Information in the Anomaly Detector 52

3.6.3 The Resulting Architecture 53

9

10

3.6.4 Analysis of the Results 54

3.7 Refining the Framework 55

3.7.1 Data Series 55

3.7.2 Anomaly Checkers 56

3.7.3 Selected Anomaly Checkers and Anomaly Threshold 56

3.7.4 Setup of the Probes and Data Series 57

3.7.5 Analysis of the Results 58

3.8 Comparison with respect to Surveyed Studies 59

3.9 Summarizing: Lessons Learned and Open Challenges 60

4 experimental evaluation 63

4.1 SOA Case Studies 63

4.2 Model of Anomalies 64

4.3 Injection Approach 65

4.4 Experimental Campaign 66

4.5 Results: Secure! 66

4.5.1 Detection Efficiency 66

4.5.2 Choice of Anomaly Checkers 67

4.5.3 Sensitivity Analysis 69

4.6 Results: jSeduite 70

4.6.1 Detection Efficiency 70

4.6.2 Choice of Anomaly Checkers 71

4.6.3 Sensitivity Analysis 72

4.7 Discussion of the Results 73

4.7.1 Detection Scores 73

4.7.2 Choice of the Indicators 74

4.7.3 Contribution of the Algorithms 75

4.7.4 Sensitivity Analysis 77

4.7.5 Summary of the Incremental Improvements 77

4.8 Performance 78

4.8.1 Training Time 78

4.8.2 Notification Time 79

5 madness : a multi-layer anomaly detection framework for

dynamic complex systems 83

5.1 Designing a Framework for Anomaly Detection 83

5.1.1 Viewpoints 83

5.1.2 Performance 90

5.2 Our Framework for Anomaly Detection in Dynamic Systems 92

5.2.1 Multi-Layer Monitoring 92

5.2.2 Detection Algorithm 92

5.2.3 Context-awareness and Contextual Information 93

5.2.4 Composed data series 93

5.2.5 Facing Point, Contextual and Collective Anomalies 93

11

5.2.6 Online Training 94

5.3 Instantiation of MADneSs 95

5.3.1 High-Level View 95

5.3.2 Methodology to Execute the Framework 97

5.3.3 Implementation Details and Requirements 98

5.4 Complexity Analysis 99

5.5 Scalability 99

5.5.1 Impact of Training 99

5.5.2 Impacts on Runtime Execution 100

6 beyond madness 101

6.1 Moving to Systems of Systems 101

6.2 Characteristics of SoSs 101

6.2.1 Architecture 102

6.2.2 Evolution and Dynamicity 102

6.2.3 Emergence 102

6.2.4 Governance 103

6.2.5 Time 103

6.2.6 Dependability and Security 103

6.3 A Possible Contribution to SoS Literature 103

6.4 Bringing Anomaly Detection into SoS Design 104

7 conclusions 109

L I S T O F TA B L E S

Table 1 Anomaly Detection Frameworks for Complex Systems in
the Literature 41

Table 2 Adapting SPS for SOA Systems 46

Table 3 Adoption of a Multi-Layer Monitoring Strategy 51

Table 4 Results with Context-Awareness and Selection of Indica-
tors 54

Table 5 Combining Context-Awareness and Composed Data Se-
ries 58

Table 6 Comparing metric scores with the surveyed frameworks.
Scores have been extracted from the original papers. 60

Table 7 Model of Anomalies targeted by the surveyed studies and
by our framework. For each framework, we reported the
categories of anomalies covered by their model of anoma-
lies. 64

Table 8 Simple Data Series (DSx) used by the selected anomaly check-
ers, in descending order 68

Table 9 Selected Anomaly Checkers for runs with the injection of
NET_USAGE anomaly, in descending order 69

Table 10 Simple Data Series (DSx) used by the selected anomaly check-
ers 72

Table 11 Selected Anomaly Checkers for runs with the injection of
NET_USAGE anomaly, in descending order 73

Table 12 Most relevant Indicators for experiments of both Secure!
and jSeduite 75

Table 13 Most relevant Layers to monitor for experiments regarding
both Secure! and jSeduite 76

Table 14 Algorithms contribution for experiments regarding both
Secure! and jSeduite 76

Table 15 Execution Time of Tests and Workload 79

Table 16 Estimation of the notification time with different setups
of the probing system. Results are reported in millisec-
onds 81

Table 17 Characteristics of the Framework according to Viewpoints 86

Table 18 Techniques for detecting categories [25] of anomalies. 94

Table 19 Tailoring Anomaly Detection on SoS Characteristics 107

13

L I S T O F F I G U R E S

Figure 1 Fault Categories from [10] 25

Figure 2 Families of Unsupervised Algorithms 34

Figure 3 SPS applied to normal (a) and faulty (b) experimental
traces logging the Http Sessions Counter. Black circles iden-
tify anomalies detected by SPS. 36

Figure 4 Scoring Metrics 44

Figure 5 Experimental evaluation of intrusiveness of probes 50

Figure 6 The resulting architecture of the Anomaly Detector 53

Figure 7 Precision, Recall and FScore(2) for experiments obtained
using Secure! 67

Figure 8 Sensitivity analysis of MEMORY experiments in Secure! 70

Figure 9 Precision, Recall and FScore(2) for experiments obtained
using jSeduite 71

Figure 10 Sensitivity analysis of MEMORY experiments in jSeduite 74

Figure 11 Detection capabilities for the six versions of anomaly de-
tectors regarding the MEMORY anomaly 78

Figure 12 Centralized and Distributed Approaches 87

Figure 13 Time quantities through the workflow 91

Figure 14 High-Level view of MADneSs 96

Figure 15 Methodology to exercise MADneSs 98

15

1
I N T R O D U C T I O N

Software-intensive systems such as cyber-physical infrastructures [80] or Systems
of Systems [62] are composed of several different software layers and a multitude
of services. Services implementation details are often not accessible, as they
may be proprietary or legacy software. Additionally, offered services are often
characterized by a dynamic behavior, making the services themselves and their
interactions with other entities being updated, reacting to short-term updates
of the environment. Further, these services can evolve through time, leading to
changes in their requirements and consequently in their behavior [23].

As a result, instrumenting each individual service to monitor dependability-
related properties in such complex systems is generally difficult if not unfeasible
[26], [29], [104]. These difficulties are mainly related to the multitude of rela-
tions, interconnections and interdependencies that propagate potentially wrong
decisions through the system: for example an update, a configuration change,
or a malfunction in a single module or service can affect the whole system.

anomaly detection To tackle this problem, several works are focusing on
anomaly detection, which refers to the problem of finding patterns in data that
do not conform to the expected behavior [25]. Such patterns are changes in the
indicators characterizing the behavior of the system caused by specific and non-
random factors. For example, pattern changes can be due to a system overload,
the activation of software faults or malicious activities. However, dynamicity
makes the characterization of the expected behavior, and consequently the
identification of the anomalous one, a complex challenge. As an example, the
set of (web)services or applications provided by the target system may change:
services may be updated, added or removed.

Consequently, the definition of the expected behavior needs to be repeatedly
updated, because its validity is going to be deprecated through time. The
collection of data in such dynamic systems needs frequent reconfigurations of
the algorithms and of the monitoring strategy. As a negative drawback, most
of the state-of-the-art techniques start suffering of issues related mainly to the
performance, i.e., training phases can occur very often, reducing the efficacy
of the strategy. Frequent training phases can ovecome the normal activity of
a system, that may spend more time in training their anomaly-based error
detectors or failure predictors than in executing the usual tasks.

our contribution In the literature, there are no clear answers on applying
error or anomaly detection in highly dynamic complex systems. To contribute
filling this gap, in this Thesis we discuss our approach to anomaly detection

17

18

in complex dynamic systems. Our starting point was the study in [18], where
authors showed that their solution was very effective in detecting anomalies
due to software faults in an Air Traffic Management (ATM) system, which has
clear functionalities which are not intended to change along time. Therefore, we
applied such approach to a prototype of the Secure! system, a Crisis Management
System which is structured as a Service Oriented Architecture (SOA), or rather one
of the most common implementations of a complex system.

At first, we observed that applying such strategy as it was described for
non-dynamic systems does not provide comparable detection scores. Anomalies
were not detected as it was described in [18], meaning that some changes needed
to be implemented to improve the performance of the strategy for dynamic
systems. Since in the original proposal the authors monitored data related to 10

Operating System (OS) indicators, we first tried to expand the pool of monitored
system indicators by observing data related to different system modules instead
of observing only OS data. More precisely, when services exposed from such
systems change, the notion of expected and anomalous behavior may change
consequently requiring a new configuration of the anomaly detector: since
layers underlying the services’ layer are not modified when services change, the
monitoring system is unaltered. It follows that the adoption of this multi-layer
monitoring strategy does not negatively affect the applicability of our solution
for dynamic systems.

In addition, to have a better characterization of the expected behavior of
the system, we gathered some information related to the current context of
the system which may be obtained at runtime e.g., which are the services
being called at a given time instant. Context-awareness is then used to train the
parameters of the implemented anomaly detection algorithm, tailoring them
on the current context and ultimately maximizing their ability in detecting
anomalies. As in [18], the algorithm we selected in our implementation is
SPS (Statistical Predictor and Safety Margin, [14]), which is able to predict an
acceptability interval for the next observed value based on a sliding window
of past observations. SPS is more suitable for dynamic systems than other
algorithms as clustering or neural networks [25] since it just requires short
periods of training and consequently it is faster in recomputing the best values
of its parameters.

Lastly, we performed dedicated tuning of parameters of the whole strategy,
to understand which indicators provided actionable information for anomaly
detection, and how to combine all the different alerts that the instances of the
SPS algorithm - one for each data series related to the same indicator - may
raise. This process led us to a customized version of the initial strategy in [18]
which has comparable scores with respect to other works targeting non-dynamic
complex systems. This is substantiated by an extensive experimental assessment
conducted by conducting anomaly detection alternatively on the Secure! [4]
Crisis Management System (CMS) and on jSeduite [30]. Both systems are structured

19

as a Service Oriented Architecture (SOA), where services are managed by different
entities and are deployed on different nodes. Such services may incur in frequent
updates, or even new services may be introduced, together with modification
to their orchestration. Consequently, while instrumenting each service with
monitoring probes is unfeasible, the opportunity to observe the underlying
layers, i.e., middleware, Operating System (OS) and network, is offered in both
systems.

the framework Our experimental process lead devising some design pat-
terns to be followed in order to define a monitoring and anomaly detection
framework for a dynamic complex system. Design solutions are presented ac-
cording to viewpoints, or rather dimension of analysis of a generic monitoring
and anomaly detection system: Purpose, type of Anomalies, Monitoring Approach,
Selection of the Indicators, and Detection Algorithm. For each viewpoint, design
solutions are proposed to build an anomaly detection framework limiting the
adverse effects that dynamicity - and consequent reconfigurations and context
changes - has on our ability of identifying anomalies.

Such design patterns are then implemented in MADneSs, a Multi-layer Anomaly
DetectioN framEwork for complex Dynamic SystemS tackling the challenges above.
The monitoring approach we adopt in MADneSs consists in shifting the obser-
vation perspective from the application layer, where services operate, to the
underlying layers, namely operating system (OS), middleware, and network. This
allows detecting anomalies due to errors or failures that manifest in services that
are not directly observed. Further, a more accurate definition of the context i.e.,
context-awareness, improves the detection accuracy. When monitoring a wide
set of indicators, the most relevant for anomaly detection purposes should be
identified depending on the current context, which is reconstructed by dedicated
mechanisms.

summary and thesis structure Overall, our main contributions to the
state of the art on anomaly detection in complex dynamic systems consist in:

• depicting the typical challenges for performing anomaly detection in
complex dynamic systems, togheter with the proposed solutions;

• structuring a multi-layer monitoring module observing different system
layers;

• describing how the knowledge of the context i.e., context-awareness, can
be used to improve anomaly detection;

• assessing the whole solution on more case studies;

• defining a methodology and the associated MADneSs framework for
anomaly detection in dynamic complex systems;

20

• comparing MADneSs with related state-of-the-art frameworks.

• exploring possible future applications of our approach in Systems-of-
Systems, a recent architectural paradigm for complex systems.

The Thesis is organized as follows. Section 2 presents the state of the art on
dependability, monitoring and anomaly detection; the other sections build on
such basics. Section 3 describes our process of building an anomaly detection
strategy that is suitable for dynamic complex systems, built as subsequent incre-
mental improvements of an initial solution. The section concludes discussing
the typical challenges we face when performing anomaly detection in complex
systems. The framework obtained at the end of this section is targeted by an
extensive experimental campaign, which is presented in Section 4 along with the
discussion of the results obtained. In such experimental campaign we applied
our resulting framework to both the Secure! and the jSeduite Service Oriented
Architectures. Section 5 presents the design guidelines which we devised during
our process: these are dimensions of analysis of each monitoring and anomaly
detection system for complex and dynamic systems. In the same section, such
design guidelines are implemented in the resulting MADneSs framework, along
with the associated methodology. Possible future implications of our findings
are deepened in Section 6, with a particular emphasis that is put on applying
anomaly detection in Systems-of-Systems. Section 7 concludes the Thesis.

2
B A S I C S A N D R E L AT E D W O R K S

This section reports on the basics on dynamic and evolving systems, together
with some basics on dependability and anomaly detection. Related works and
state-of-the-art contributions are reported within the descriptions above.

2.1 dependability: threats, attributes , means

According to [10], Dependability is the ability to deliver service that can justifiably be
trusted. This definition stresses the need for justification of trust. Looking more
in detail to services, an alternate definition is:

The dependability of a system is the ability to avoid service failures that are more
frequent and more severe than is acceptable.

It is usual to say that the dependability of a system should suffice for the
dependence being placed on that system. Therefore, the dependence of system
A on system B represents the extent to which system A’s dependability is (or
would be) affected by that of system B. The concept of dependence leads to trust,
which can very conveniently be defined as accepted dependence.

This section presents a basic set of definitions that will be used in the rest
of the thesis. When dealing with dependability and security of computing
and communication systems, the reference taxonomy and definitions are those
given in [10]: this work is the result of a work originated in 1980, when a joint
committee on Fundamental Concepts and Terminology was formed by the technical
committee on Fault-Tolerant Computing of the IEEE CS.

2.1.1 Basic Definitions

In [10], a system is defined as an entity that interacts with other entities, i.e.,
other systems, including hardware, software, humans, and the physical world
with its natural phenomena; the environment of the given system is composed
by these entities. The boundaries of a system are the common frontiers between
the system and its environment.

What the system is intended to do represents the function that a system
realizes and is described by the functional specification for the subsequent
validation. What the system really does to implement its function, is defined,
instead, as the behavior of the system and is described by a sequence of states

21

22

that are targeted by verification processes. These two notions were formally
defined in [33] as

Validation. The assurance that a product, service, or system meets the needs of the
customer and other identified stakeholders. It often involves acceptance and suitability
with external customers. Contrast with verification.

Verification. The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition. It is often an internal
process. Contrast with validation.

The system can be recursively seen as the integration of a set of components
interacting together, where each component recursively is another system. When
a component is considered to be atomic (or any further internal structure is not
of interest) the recursion stops. Consequently, the total state of a system is a
combination of the set of the (external) states of its atomic components.

The behaviour of a system (provider) as it is perceived by another system
(user) is referred as service. The structure of the service can be considered an
ensemble of three different parts:

• interface, or rather the provider’s system boundary where service delivery
takes place;

• external state, the part of the provider’s total state that is perceivable at the
service interface, while

• the remaining part is its internal state.

2.1.2 Threats to Dependability: Faults, Errors, Failures

When a given service implements the system function, the delivered service is
correct. On the other side, when a service does not comply with the functional
specification, one or more service failures occur. In other terms, a service failure
can be seen as a transition from a correct provision of a service to an incorrect one,
or rather to a state that does not implement the system function anymore. The
period of delivery of incorrect service defines the service outage. The transition
from incorrect service to the correct service is the service recovery. The deviation
from a correct service may assume different forms that are called service failure
modes and are ranked according to different severities.

Since a service is a sequence of the system’s external states, a service failure
means that at least one (or more) external states of the system deviate from
the correct service state. The deviation is called an error, while the adjudged or
hypothesized cause of an error is a fault. For this reason, the definition of an
error is the part of the total state of the system that may lead to its subsequent
service failure. It is important to note that errors may not reach the system’s

23

external state and cause a failure. A fault is active when it causes an error,
otherwise it is dormant.

Faults, errors and failures are considered threats to dependability as they can
induce a system to deliver an incorrect service, or to not deliver the service at
all. More in detail, the computation process can cascadingly induce an error that
can propagate within a given component (internal propagation): an error is suc-
cessively transformed into other errors. Error propagation from one component
to another component occurs when an error reaches the service interface of the
first component. When the functional specification of a system includes a set of
several functions, the failure of one or more of the services implementing the
functions may leave the system in a degraded mode that still offers a subset of
needed services to the user. The specification may identify several such modes,
e.g., slow service, limited service, emergency service.

2.1.3 Dependability Attributes

As developed over the past three decades, dependability is an integrating concept
that encompasses the following attributes:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the envi-
ronment;

• Integrity: absence of improper system alterations;

• Maintainability: ability to implement modifications and repairs;

• Confidentiality: the absence of unauthorized disclosure of information.

Based on the above definitions, Security is defined as the composition of the
following attributes: confidentiality, integrity, and availability.

2.1.4 Means to Attain Dependability

Over the past 50 years many means have been developed to attain the various
attributes of dependability and security. Those means can be grouped into four
major categories:

• Fault Prevention: the techniques belonging to this class aim at preventing
the occurrence or the introduction of faults in the system. Examples are
design review, component screening, testing, quality of control methods,
formal methods and software engineering methods in general.

24

• Fault Tolerance: the fault tolerance techniques allows a system providing
a correct service even in presence of faults. Fault tolerance is carried out
by error processing and fault treatment: the first aims at removing errors
from the computational state, possibly before the occurrence of a failure,
while the second aims at preventing faults from being activated again. This
Thesis will address methodologies that belong to this group.

• Fault Removal: these techniques aim at reducing the presence (amount,
likelihood) of faults, and they are obtained by means of a set of techniques
used after that the system has been built. They are verification (checking
whether the system fulfills its specifications), diagnosis (diagnosis the
fault which prevented the verification conditions from being fulfilled), and
correction.

• Fault Forecasting: the purpose of fault forecasting techniques is to estimate
the number, the future incidence and consequences of faults. Indeed, no
existing fault tolerant technique is capable to avoid a failure scenario.
Therefore, fault forecasting represents a suitable mean to verify the ad-
equacy of a system design with respect to the requirements given in its
specification.

Fault and Error Classification

All faults that may affect a system during its life are classified according to
eight basic viewpoints, leading to the elementary fault classes, as shown in
Figure 1. If all combinations of the eight elementary fault classes were possible,
there would be 256 different combined fault classes. However, not all criteria are
applicable to all fault classes; for example, natural faults cannot be classified by
objective, intent, and capability. Possible combined fault classes can be classified
in three major partially overlapping groupings. Development faults include all
faults occurring during development; if the faults is originated by hardware
malfunction, we speak about physical faults. Lastly, all the external faults are
grouped as interaction faults. Knowledge of all possible fault classes allows the
user to decide which classes should be included in a dependability and security
specification.

Failure Modes

The different ways in which the deviation is manifested are a systems service
failure modes [77]. Each mode can have more than one service failure severity.
Ranking the consequences of the failures upon the system environment enables
failure severities to be defined.

The CRASH scale is an important and very useful failure classification [59]
where the authors define a failure as an incorrect error/success return code,

25

Figure 1: Fault Categories from [10]

26

abnormal termination, or loss of program control, stating that each failure
revealed a robustness gap, in that the system failed to respond correctly to a
set of inputs. As authors stated in such paper, it is possible to group failures
according to the severity of the effect on an end-use system through the 5-points
CRASH scale:

C Catastrophic (OS crashes/multiple tasks affected)

R Restart (task/process hangs, requiring restart)

A Abort (task/process aborts, e.g., segmentation violation)

S Silent (no error code returned when one should be)

H Hindering (incorrect error code returned)

The actual severity of each class on the 5-point scale depends on the specific
application area. In a typical workstation environment, the CRASH ordering
represents decreasing order of severity in terms of operational impact (i.e.,
catastrophic is the most severe, and hindering the least severe). However, relative
severity could vary depending on the specific point of view. For example,
software developers might perceive silent failures as a tricky concern because
they indicate that an opportunity for software bug detection has been missed. A
missed software bug may lead to an indirect error manifestation that is more
difficult to track down, or may leave a latent bug to crop up after the software
is fielded. For fault-tolerant systems, the restart, silent, and some catastrophic
failures may be of the most concern. This is because fault-tolerant systems are
typically constructed with a fail-fast assumption. Indeed, a restart failure or
hanging types of catastrophic failure would create an undetected failure that
persists for a period of time, rather than a fast system failure.

2.2 dynamic and evolving complex systems

A formal discussion on dynamic and evolutionary properties of complex systems
comes from [23], where authors specifically target Systems-of-Systems (SoSes), an
architectural paradigm which defines a system as an ensemble of subsystems
with specific peculiarities.

Amongst all the peculiarities of SoSes, we remark here that most of the ba-
sic characteristics of SoSs are common to all the complex systems that are
usually employed for different purposes e.g., Service Oriented Architectures
(SOAs) or Cloud environments. These systems are intended to provide spe-
cific (web)services to the final user, and may change over time to suit different
needs of the company or the individuals that are requesting such services. It
follows that these systems are often not meant to change their behavior during
all their operational life. They are characterized by specific properties such as

27

dynamicity and evolution that determine their current and future behavior. We
define:

Evolution: Process of gradual and progressive change or development, result-
ing from changes in its environment or in the system itself.

Dynamicity: The capability of a system to react promptly to changes in the
environment. A system that is not intended to change during its life is called
static or semi-static.

Changes usually regard the services the system exposes to the final user. As
example, a company which has Business Intelligence processes deployed on a
SOA may want to update some of the key features to stay up-to-date with
the market, or new customers may want some internal services act remotely.
Moreover, new functionalities can be added to the system, as well as its internal
organization, that may evolve by adding more hardware resources or more
machines to the network, to the grid or to the cloud. Systems that are constituted
by the aggregation of several subsystems are often called complex systems.

“Complex Systems is an approach to science studying how relationships
between parts give rise to the collective behaviors of a system, and how the
system interacts and forms relationships with its environment. There are three
interrelated approaches to the modern study of complex systems: i) how interac-
tions give rise to patterns of behavior, ii) the space of possibilities, and iii) the
formation of complex systems through pattern formation and evolution”. [12]

In a nutshell, complex systems that provide services are forced to evolve
to suit the novel necessities of the user. However, checking the behavior of a
complex system is not trivial. Some of its parts may be owned by third-party
components, making the observation of the internals not possible. Moreover, due
to dynamic and evolutionary characteristics of such systems, the usual behavior
of some services may vary frequently, leading to reconfigure the whole behavior-
checking structure. As a result, checking each individual service to monitor
dependability-related properties is generally unfeasible [26] if not possible at all.
Several works in the last decade [66], [29], [104] confirm this aspect, reporting
on the difficulties of detecting service errors in complex systems before they
escalate into a more severe failure. These difficulties are mainly related to the
multitude of relations, interconnections and interdependencies that propagate
potentially wrong decisions through the system: an update, a configuration
change, or a malfunction in a single module or service can affect the whole
system.

28

2.3 monitoring evolving systems

To ensure that the system behaviour complies with its functional specification
in their final environment, extensive and costly efforts are put during the
system development cycle. Despite the evolution of fault prevention practices -
that are used to increase the correctness of the system design and the software
implementation -, no existing technique is capable of avoiding a failure scenario. When
observing the behavior of computing systems, first it is required to monitor
its actual behavior, and then to evaluate it. In both of these phases, the more
accurate we are in the observation of the system, the more reliable are the results
we collect, and the more accurate are the decisions we are able to take:

• in on-line monitoring, we collect data related to the system behavior;

• in the evaluation, we are able to take off-line decisions using collected
information.

Depending on the system details, monitoring can present particular challenges
[65]. System internals are not always easily observable, or are not observable
at all. Many systems have limited resources or have real-time software require-
ments that must adhere to strict execution deadlines. It follows that we need to
minimise the overhead of monitoring, since high overhead could compromise
core system resources or affect scheduling, causing interference to the target
application. The activity of checking monitored data can be performed:

• at runtime, if the monitoring outputs are checked at runtime,

• off-line, if the monitoring outputs are first stored in dedicated data struc-
tures and then analyzed in a post-processing phase.

This approach of monitoring and checking can be used for various purposes,
as testing, debugging, verification, logging of errors, fault recovery of the system
to a safe state and maintenance/diagnosis procedures in the field. Examples
of runtime checking systems are detailed in [43], [68] [32]. Published reviews
of monitoring approaches have been presented in the past [75]. In particoular,
this review considers various monitoring approaches, including: the use of
internal system signals with hardware probes (hardware monitoring), the addition
of code to the target system’s software in order to perform operations related to
monitoring at certain points in the application’s execution (software monitoring),
the combination of both approaches (hybrid monitoring). Selected references [49],
[40], [100] highlight the problems and advantages that have been considered
in the past relating to these approaches. Emphasis is placed on achieving
non-intrusive (or minimally intrusive) monitoring in embedded systems. The
importance of non-intrusive monitors and the problems with intrusive software

29

monitoring systems are discussed in [49], where the authors present a less
intrusive software monitoring system. Moreover, [40] examines non-intrusive
and low intrusive monitoring in the context of more complex systems, and in
particular embedded systems [100].

Some of the recent works adopt Complex Event Processing (CEP) systems to
manage streams of data, especially for complex, large scale systems where large
amounts of information is generated. We report here two relevant examples that
have been considered as references to structure our work. In [98] and [37] the
high flexibility allowed by CEP queries is used for anomaly detection in critical
infrastructures. In particular, [98] proposes a Security Information and Event
Management (SIEM) framework where the event correlation engine is able to
parallelize arbitrary rules expressed as CEP queries. In [37] authors propose
a CEP approach for on-line detection and diagnosis, which allows to detect
intrusions by collecting diverse information at several architectural layers as
well as perform complex event correlation.

2.3.1 Basic Definitions

In this thesis, the system in which monitoring activities are performed is referred
to as the target system or system under test, and the software application whose
execution is being monitored is referred to as the target application or target
service [65].

Although the term monitoring can be used synonymously with observing,
this Thesis uses the term monitoring to mean the combined task of observing
and making use of the observations to track the target’s behaviour. The specific
elements of a monitor that practically allows to observe a target system are
called probes. Probes are attached to the system (or placed within it) in order
to provide information about the system’s internal operation, and provide an
intermediate output. Such probes can be classified [93] as

• hardware probes: pieces of additional hardware that monitor internal system
signals;

• software probes: code instructions added to the target software in order to
output information about the internal operation of the program.

The installation of probes in a given target system is called instrumentation.
Probes must be capable of observing enough information about the internal
operations of the system to fulfill the purpose of the monitoring. Moreover, the
behaviour of the target system should not be affected when such probes are
added.

30

2.3.2 Classification of Monitoring Systems

The classification of monitoring systems according to the probing approaches
above has been fully reported in [93].

Hardware Monitors

A typical hardware monitoring arrangement or “bus monitor” uses dedicated
monitoring hardware on the target system, e.g., to observe information sent
over the internal system bus. The observed data is sent by the monitoring
hardware for verification. The non-intrusivity of the hardware monitors for the
target system using additional hardware for the monitoring function is a key
advantage. The difficulties of monitoring the hardware are expanded in [43],
where the authors noted the problem of newer systems offering less physical
probe points, and suggested at the time that hardware monitors were becoming
obsolete. Moreover, in [68] the authors also note the inapplicability of hardware
monitors with respect to complex systems.

Software Monitors

There are different ways to modify the target system through the addition of
software for monitoring. One solution is to perform observations directly on
the target application, adding the software probes to the target application code.
Alternatively, software probes can be inserted within the operating system of the
target system. Another possible solution is to implement the probes as separate
processes. The advantage of monitoring a system using a software monitor
within the target is acknowledged in [31], where such monitors have access to
extensive information about the operation of a complex system, in contrast to
the limited information available externally to hardware probes.

hybrid monitors Hybrid monitoring refers to approaches that use a com-
bination of additional software and hardware to monitor a target system, relying
on the advantages of each approach and at the same time attempting to mit-
igate their disadvantages. For example, the source code of the target process
is instrumented; an additional code is added to it to emit events when process
features (e.g. variable values) being monitored are updated. These events are
sent to the dedicated monitoring hardware, which analyses the events and
checks them against the provided monitoring rules. Various hybrid monitoring
systems have been developed for distributed systems [100], real-time systems
[49] and embedded systems [20].

31

2.3.3 On-line Monitoring

On-line monitoring aims at observing system events from several perspectives
(faults, attacks, vulnerabilities) while the system is running. Several proposals
exist where monitoring tools and facilities are proposed with slightly different
aims and capabilities. Some examples of automatic on-line monitoring tools are
the following [27]:

SWATCH (Simple WATCHer) [48]: it generates alerts based of the recognition of
specific patterns while on-line scanning log files; its main drawback is
that it does not support means to correlate recognized events. Swatch
constitutes the basis of LogSurfer [78]

SEC (Simple Event Correlator) [82]: it recognizes specific patterns based on
predefined rules; SEC is able to correlate observed events and trigger
specific alarms.

Monitoring mechanisms in critical infrastructures are required to filter the
events observed to understand the nature of errors occurring in the system, with
respect to multiple classes of faults, ultimately feeding the diagnostic facilities.
As it can be noted, most of these tools are using log files as the primary source
of information. However, data can also be obtained by dedicated probes which
read specific system indicators such as the memory usage.

In any case, the monitored information is extracted at runtime, filtering all
the available information in order to identify only information relevant for
monitoring purposes (the so called events); the diagnostic engine then processes
the flow of the observed events, identifying unexpected trends both from the
observation of suspicious events and from the correlation of specific simple not-
alarming events [32]. The goal is in fact to recognize not only malfunctions on
top of self-evident error events, but also alarming situations on top of observed
(possibly not alarming) events. Such approach is general enough to be used for
the identification of different kinds of alarming situations such as i) hardware
faults (e.g. a stuck at error message), ii) software faults (e.g. an exception message),
or iii) malicious attacks (e.g. several messages about a failed attempt to login as
root).

2.4 anomaly detection

The analysis of monitored data is a crucial stage to recognize if something
unexpected has occurred in the system and to trigger error and fault handling
procedures. Faults and errors in the internal state can be addressed at different
levels, from the hardware (e.g., machine check, division by zero, etc.), to the
services. In any case, the aim is to detect errors before they can propagate to

32

errors or failures for other different component(s) or to failure for the overall
system.

Most of these techniques belong to direct detection strategies: they try to infer
the system health status by directly querying it, or by analyzing events it is
able to produce (e.g., logs, exceptions). However, problems can arise because of
the nature of software faults. According to [6], it is impossible to anticipate all
the faults and their generated errors in a system: “If one had a list of anticipated
faults, it makes much more sense to eliminate those faults during design reviews than to
add features to the system to tolerate those faults after deployment. It is unanticipated
faults that one would really like to tolerate”. Additionally, in [36] authors describe
experiments performed on a Wide Area Network to assess and fairly compare the
quality of service (QoS) provided by a large family of failure detectors. Authors
introduced choices for estimators and safety margins used to build several
failure detectors.

For instance, the activation of a fault manifests in an incorrect internal state,
i.e., an error; however, this does not necessarily mean that this error is detected.
Consequently, some errors generate an exception or a message, while others are
present but not yet detected. Besides causing a failure, both latent and detected
errors may cause the system or component to have an anomalous behavior as a
side effect. This non-normal behavior is called anomaly.

2.4.1 Definitions

According to [25], anomaly detection refers to the problem of finding patterns in
data that do not conform to the expected behavior. Such patterns are changes in the
system indicators characterizing an unstable behavior of the system caused by
specific and non-random factors. For example, pattern changes can be due to a
system overload, the activation of software faults or malicious activities. In the
same work, authors classify anomalies as:

• point: a single data instance that is out of scope or not compliant with the
usual trend of a variable. It is sometimes called outlier;

• contextual: a data instance that is unexpected in a context;

• collective: a collection of related data instances that is anomalous with
respect to the entire data set.

Depending on the system, data can be stored in different ways. The way the
data is stored strongly influences the data analysis strategy that turns out to
be suitable for such case study. More in detail, some datasets provide one or
more labels associated with a data instance, denoting if that instance of data
corresponds to an unstable state of the system, e.g., an attack was performed at
the time instant in which the data instance was collected. It should be noted that

33

obtaining labeled data which is accurate as well as representative of all types
of behaviors is often prohibitively expensive. Labeling is often done manually
by a human expert and hence requires a substantial effort to obtain the labeled
training data set. Based on the extent to which the labels are available, anomaly
detection techniques can operate in one of the following three modes [25].

Supervised Anomaly Detection

These techniques assume the availability of a training data set which has labeled
instances for both normal and anomaly classes. A typical approach in such cases
is to build a predictive model to classify normal and anomaly classes. Any unseen
data instance is compared against the model to determine which class it belongs
to. There are two major issues that arise in supervised anomaly detection. First,
the anomalous instances are far fewer compared to the normal instances in
the training data. Issues that arise due to imbalanced class distributions have
been addressed in the data mining and machine learning literature [54]. Second,
obtaining accurate and representative labels, especially for the anomaly class is
usually challenging. A number of techniques that inject artificial anomalies in a
normal data set to obtain a labeled training data set have been proposed [94],
[7]. Other than these two issues, the supervised anomaly detection problem is
similar to building predictive models.

Semi-Supervised Anomaly Detection

Techniques that operate in a semisupervised mode assume that the training
data has labeled instances either for the normal or the anomaly class. Other
instances are not labeled, meaning that they can belong to the same class of the
labeled instances or that they can build a new class. Since they require less labels,
their range of applicability is wider than supervised techniques. For example, in
space craft fault detection [42], an anomaly scenario would represent an accident
which is not easy to model. The typical approach used in such techniques is to
build a model for the class corresponding to normal behavior, and use the model
to identify anomalies in the test data by difference. A limited set of anomaly
detection techniques exist that assume availability of only the anomaly instances
for training [28], [38]. Such techniques are not commonly used, mainly because
it is difficult to obtain a training data set which covers every possible anomalous
behavior that can occur in the data.

Unsupervised Anomaly Detection

Techniques that operate in unsupervised mode do not require labeled training
data, and thus are most widely applicable. The techniques in this category make
the implicit assumption that normal instances are far more frequent than anomalies
in the data; breaking this assumption would lead these techniques to generate a

34

huge number of false alarms. As a remark, many semi-supervised techniques
can be adapted to operate in an unsupervised mode by using a sample of the
unlabeled data set as training data.

2.4.2 Algorithms for Anomaly Detection

Different types of algorithms can be implemented depending on the structure of
the system or the dataset under investigation. We report here some examples of
unsupervised algorithms (see Figure 2), since they do not require labelled data
and consequently are suitable in most of the application domains.

Figure 2: Families of Unsupervised Algorithms

Clustering-Based: K-means

K-means [85] is a popular clustering algorithm that consists of grouping data
points into k clusters by their feature values. Objects are classified in the same
cluster when they have similar feature values. First, the k cluster centroids are
randomly initialized. Then, each data record is assigned to the cluster with the
nearest centroid and the centroids of the modified clusters are recalculated. This
process stops when the centroids are not changing anymore. A distance function
should be specified in order to compute the distances between a data record
and the centroids. The most popular distance function is the Euclidean distance,
defined as:

d(x,y) =

√√√√ m∑
i=1

(xi − yi)2

where x and y are two input vectors with m quantitative features. Finally,
scores of each data point inside a cluster are calculated as the distance to its
centroid. Data points which are far from the centroid of their clusters are labeled
as anomalies.

35

Distance-Based: Kth-Nearest Neighbor (kNN)

kNN [81] is a distance-based method which was primarily designed to identify
global anomalies. For each data point, the k nearest neighbors are computed.
Then, an anomaly score is given as the distance to the kth-nearest neighbor.
Consequently, the data points that have the largest kNN distance are classified
as anomalies.

Density-Based: Local Outlier Factor (LOF)

LOF [19] is a density-based method designed to find local anomalies. For each
data point, the k nearest neighbors are computed. Then, using the computed
neighborhood, the local density of a record is computed as the Local Reachability
Density (LRD):

LRD(x) =
|kNN(x)|∑

o∈kNN(x)

dk(x,o)

where dk(x,o) is the Reachability Distance, or rather the Euclidean Distance
if the cluster in not highly dense [44]. Finally, the LOF score is computed by
comparing the LRD of a record with the LRD of the previously computed
k-nearest neighbors:

LOF(x) =

∑
o∈kNN(x)

LRDk(o)

LRDk(k)

|kNN(x)|

As LDCOF, data points classified as normal by LOF will have smaller scores,
close to 1.0, and data points classified as anomalies will have larger scores, since
both algorithms employ the idea of local densities.

Statistical: Statistical Predictor and Safety Margin (SPS)

The Statistical Predictor and Safety Margin (SPS) algorithm was initially designed
to compute the uncertainty interval at a time within a given coverage, namely
the probability that the next value of the time series will be inside the uncertainty
interval. This algorithm can be adapted to compute adaptive bounds for anomaly
detection activities with minor changes. As shown in [17], the uncertainty
interval computed by SPS algorithm consists in a combination of i) the last value
of the series, ii) the output of a predictor function (P), and iii) the output of a
safety margin (SM) function, namely:

Tl(t) = x(t0) − P(t) − SM(t0), Tu(t) = x(t0) + P(t) + SM(t0)

36

(a) Normal Execution (b) Faulty Execution

Figure 3: SPS applied to normal (a) and faulty (b) experimental traces logging the Http
Sessions Counter. Black circles identify anomalies detected by SPS.

Where Tl and Tu are the upper and the lower bounds at time t , and t0 is
the last value of the series. The predictor function provides an estimation of the
behavior of the time series. The safety margin function aims at compensating
possible errors in the prediction and/or in the measurement of the actual value
of the time series. The safety margin is computed at and it is updated only
when new measurements arrive. We refer to [14] for technical details about the
predictor and the safety margin functions.

In a nutshell, SPS works as follows. It computes a prediction of the behavior
of an indicator, based on a statistical analysis of the past observations. The past
elements are managed through a sliding window mechanism, which keeps track
of the last elements of such data series. The prediction produces the interval
[Tl, Tu] in which the value of the indicator is expected to fall. If the value of the
indicator is outside the interval, SPS signals that an anomaly is suspected for
such indicator. An example can be seen in Figure 3, where SPS was applied to
traces related to the observation of the number of HTTP sessions during a normal
(Figure 3a) and to a faulty (Figure 3b) experiment.

Angle-Based: Fast Angle-Based Outlier Detection (FastABOD)

This angle-based approach is a variant of the ABOD [47] algorithm. For each
point, ABOD computes the angle to all the other pairs of points, while the
weighted variance of these computed angles is used as anomaly score. FastA-
BOD, instead, computes these angles only to the pair of points among the
kNNs.

37

Classification-Based: One-class Support Vector Machine (one-class SVM)

Differently from the supervised support vector machines (SVMs), this algorithm
is a commonly used method for semi-supervised anomaly detection [25] that
aims to learn a decision boundary to group the data points [84]. However,
one-class SVMs can be used for unsupervised anomaly detection when applying a
soft-margin. In this scenario, the one-class SVM is trained with the dataset and
then each data point is scored, considering as score the normalized distance of
the data point from the determined decision boundary [8].

3
A N O M A LY D E T E C T I O N I N C O M P L E X D Y N A M I C S Y S T E M S

We present here the process we followed to identify the key challenges and
obstacles behind the definition of an anomaly detection framework for dynamic
complex system. All the steps we made are presented sequentially, highlighting
the technical advancements we achieved. However, details about each step are
expanded in the following chapters, along with a more complete experimental
evaluation.

3.1 motivation and open challenges

Currently, there are no clear state-of-the-art answers on applying error or
anomaly detection in highly dynamic and complex systems. High dynamic-
ity, along with evolutionary characteristics of such systems, often make the
characterization of the expected behavior, and consequently the identification
of anomalies, a challenging task. In addition, complex relationships among
modules lead to unpredictable behavioral fluctuations.

Problems are mainly related to the necessity of frequently reconfiguring the
detection algorithms to match changes of the observed system. When the current
context of the system changes very often, the definition of anomaly changes
accordingly. While point anomalies are not usually dependent on the context,
contextual and collective anomalies cannot be defined without characterizing
the expected behavior of the system. Therefore, performing anomaly detection
strongly depends on our ability to define a normal - expected - behavior as long
as the system evolves.

Dealing with systems that may often change, most of the techniques presented
in the literature start suffering of issues related mainly to the performance, since
training phases can occur very often, reducing the efficiency of the strategy.
Frequent training phases can ovecome the normal activity of a system, that
may spend more time in training their anomaly-based error detectors or failure
predictors than in executing the usual tasks.

3.2 anomaly detection in complex dynamic systems

As remarked in the previous section, anomaly detectors have been proposed
to detect errors and intrusions [66] or to predict failures [11], based on the
hypothesis that the activation of a fault or the manifestation of an error generates
increasingly unstable performance-related behavior before escalating into a

39

40

failure. An anomaly detector analyzes such behavior, eventually triggering
alerts.

3.2.1 Detecting Specific Anomalies

Point anomalies can be detected using algorithms that identify outliers [35]
in a flow of observations, such as pattern recognition [46] or statistical-based
methods which are able to reconstruct the statistical inertia of the data flow
under investigation [18], [76].

Contextual anomalies can be detected by techniques that are able to tune their
behaviour depending on the current state of the system. Concisely, they define
the expected behaviour of the current context in which the system is running;
successively, they use historical [35], user/operator-provided [106], or runtime
[102] data to compare the expectations with the data provided by the monitoring
modules. In this way, a single value that is not classified as a point anomaly can
be labeled as anomalous because it is not expected in the current context.

Collective anomalies are usually harder to detect [25], and require more
sophisticated detection techniques, either looking for specific patterns [106] or
using wider training sets to better define them.

In the following, we give a report on the frameworks that perform anomaly
detection in complex systems. A summary is reported in Table 1.

4
1

Framework
System Under Test Anomaly Detection

Category Case Study Dynamicity Target Anomalies

ALERT [92] Cluster
Environment

IBM System S
Stream Processing,

PlanetLab

Medium Anomaly
Prediction

Point, Contextual

CASPER [11] Air Traffic Control Selex-ES System Very Low Failure Prediction Point

[9] Distributed
Application

Web Banking Low Error Detection Point, Collective

SEAD [73] Cloud RUBiS Distributed
Online Benchmark,

MapReduce

Low Failure Prediction Point, Contextual

TIRESIAS
[101]

Distributed
Environment

EmuLab Low Failure Prediction Point

[41] Distributed
Environment

Hadoop, SILK Low Workflow Error
Detection

Point

SSC [87] Web Services DayTrader
Benchmark
Application

Low Intrusion
Detection

Point, Contextual

McPAD [74] - DARPA, GATECH,
ATTACK datasets

Very Low Intrusion
Detection

Point

Table 1: Anomaly Detection Frameworks for Complex Systems in the Literature

42

3.2.2 Frameworks for Anomaly Detection in Complex Systems

Different parts of a system have been deemed suitable for anomaly detection
purposes. For example, indicator values obtained from observing the network
layer are generally suitable for intrusion detectors [46], [76], while the operating
system is usually monitored when detecting performance issues [9] or malware
activities [99]. Some anomaly detection algorithms dynamically adapt their
behavior to suit the current state of the system [73], [76], but in general they are
not supported by a framework that manages a dedicated data collection without
requiring manual intervention at services change.

Instead, several studies describe frameworks tackling anomaly detection in
complex systems that are not expected to frequently change along time i.e., semi-
static systems. In general, these works address either error detection or failure
prediction, gathering data about indicators related to multiple system layers.
In particular, in CASPER [11] the authors adopt different detection strategies
based on symptoms aggregated through Complex Event Processing (CEP) tech-
niques using data gathered by the non-intrusive observation of network traffic
parameters. TIRESIAS [101] predicts crash failures through the observation of
network, OS and application-specific metrics by applying an anomaly detection
strategy that is instantiated on each different monitored parameter. Differently,
SEAD [73] aims at detecting configuration or performance anomalies in cluster
and cloud environments by observing data coming from the middleware or the
cloud hypervisor. In [9], the authors describe a process for invariant building,
including advanced filtering and scoring techniques aimed at selecting the most
relevant ones. Moreover, in [18] the authors applied SPS to detect the activation
of software faults in an Air Traffic Management (ATM) system that has a defined
set of services and predictable workloads. Observing only OS indicators, SPS al-
lowed performing anomaly-based error detection with the highest scores among
the surveyed works.

Noticeably, while the works mentioned above target semi-static systems,
ALERT [92] aims at triggering anomaly alerts to achieve just-in-time anomaly
prevention in dynamic hosting infrastructures. The authors propose a novel
context-aware anomaly prediction scheme to improve prediction accuracy.

3.3 our approach to anomaly detection in complex dynamic sys-
tems

This Thesis stems from studies by the same authors [14], [17] who devised
anomaly detection strategies to perform error detection using the Statistical
Predictor and Safety Margin (SPS, see Section 2.4.2) algorithm. SPS is able to
detect anomalies without requiring offline training; this was proved to be very

43

effective in less dynamic contexts [18], where the authors applied SPS to detect
the activation of software faults in an Air Traffic Management (ATM) system.

Due to the widespread use of complex architectures and systems such as
Service Oriented Architectures (SOAs, [34]) and Cloud [66] systems, we tried
to adopt such successful strategy to a different category of systems, which we
will call dynamic complex systems in our work. As highlighted in the previous
section, in such systems the traditional anomaly detection techniques may not
be applicable due both to frequent changes and to a very high number of
connections and relations among modules of such systems. In the rest of this
section we will describe step by step all the technical advancements we made
during our work to define a suitable strategy for performing anomaly detection
in complex dynamic systems, using [14], [17], [18] as core basic works.

3.3.1 Case Study for Evaluation

We executed our experiments to evaluate the effectiveness of our approach on a
prototype of the Secure! Crisis Management System (CMS) [4]. Secure! exploits
information retrieved from a large quantity and several types of data sources
available in a target geographical area, in order to detect critical situations and
command the corresponding reactions including guiding rescue teams or deliv-
ering emergency information to the population via the Secure! app. Input data
to Secure! may come from the following sources: i) social media as for example
Twitter, ii) web sites, iii) mobile devices and their embedded sensors as camera,
microphone and GPS, iv) sensor networks available in the infrastructures (e.g.,
surveillance cameras, proximity sensors). Data is received, collected, homoge-
nized, correlated and aggregated in order to produce a situation for the CMS
system that is ultimately shown to operators in a control room which take the
appropriate decisions. The final Secure! prototype is composed of different vir-
tual machines in charge of the different services. While all the virtual machines
will have the same configuration in terms of operating system, application server
and security solutions, virtual machines and services are owned by different
partners and may change due to updates, reconfigurations, or modification of
their orchestration. Togheter, such machines build a distributed SOA, which
exposes services for managing, processing and storing critical information on
crises which are used by dedicated mobile apps and accessed by authorites
when needed.

3.3.2 Metrics for Evaluation

As authors remark in [17], metrics coming from diagnosis literature are usually
used to compare the performance of detectors: coverage measures the detector
ability to reveal an anomaly, given that an anomalous trend really occurs;

44

accuracy is related to mistakes that an anomaly detector can make. Coverage can
be measured as the number of detected failures divided by the overall number of
failures, while for accuracy there are different metrics. Moreover, in [13] consider
the mean delay for detection (MDD) and the mean time between false alarms (MTBFA)
as the two key criteria for on-line detection algorithms. Analysis are based on
finding algorithms that minimize the mean delay for a given mean time between
false alarms and on other indexes derived from these criteria.

Another group of metrics [88] comes from pattern recognition and information
retrieval with binary classification. All of these metrics are based on indexes (see
Figure 4) representing the correct predictions (true positives, TP, or true negatives,
TN) and the wrong ones, due to missed detections (false negatives, FN) or wrong
anomaly recognitions (false positives, FP). More complex measures based on the
abovementioned ones are: precision (also called positive predictive value), the
fraction of retrieved instances that are relevant, recall (also known as coverage),
the fraction of relevant instances that are retrieved, and F-Score(β). Especially in
the F-Score(β), varying the parameter β makes it possible to weight the precision
with respect to the recall (note that F-Score(1) is referred as F-Measure).

However, since anomalies and related errors are rare events, using only preci-
sion and recall is not a good choice because they do not account for evaluating
the detector mistake rate when no failure occurs. Hence, in combination with
precision and recall, we use the False Positive Rate (FPR), which is defined as the
ratio of incorrectly detected anomalies to the number of all the correctly labeled
normal instances (TNs). Fixing precision and recall, the smaller the false positive
rate, the better. Lastly, Accuracy [88] is the ratio of all correct decisions to the
total number of decisions that have been taken (see Figure 4).

Figure 4: Scoring Metrics

As we noted in our literature analysis, not all the studies report FPR values,
while almost all of them report their precision and recall scores. Despite not being
optimal according to the conclusions above, we chose to adopt as main scoring
metrics precision and recall, analyzing FPR where available. We aggregate

45

precision and recall in the F-Score(2) metric, which considers the recall twice
more relevant than the precision. This is motivated considering that we are
targeting critical systems, and consequently we prefer to reduce the occurrence
of missed detections (FN), even at the cost of a higher rate of FP or rather low
precision scores.

3.4 executing sps on a service oriented architecture

3.4.1 A First Experimental Setup

First, we took the setup presented in [18] and we applied it to work with data
collected from the Secure! system. This required to:

• Creating a Workload We identified 11 different safety/security-related
web services, including authentication mechanisms, file storage, and event
management that can be invoked by the Secure! users. Therefore, we created
the All Services workload that invokes all them multiple times in different
orders, with a time interval of 1 second between successive invocations.
Overall, a single execution of the workload lasts approximately 65 seconds.

• Anomalies Model. In our experiments we inject faults that generate -
among others - anomalies in the usage of the resources, namely the central
memory (MEMORY anomaly), and the network, labeled as NETWORK
anomaly.

• Defining Injections The injection points were chosen out of a list of func-
tions used by the Secure! web services (package com.liferay.portlet). We
targeted i) the function documentlibrary.store.FileSystemStore in charge of
managing the addition of a directory in the Liferay filesystem, ii) the encod-
ing strategy involved in the exchange of data between the database and the
UI showing the calendar (calendar.service.impl.CalEventLocalUtil._encodeKey
function), and iii) the creation of a SOAP model describing the request
of adding a bookmark (bookmarks.model.BookmarksFolderSoap.toSoapModel
function) in the user data. The injection is triggered by a chronometer: the
code is mutated only when the timer expires. The chronometer is set to
expire in three different instants, approximately at 70%, 80%, or 90% of
the workload. This leads to 9 possible ways of injecting anomalies in our
experiments: 3 injection points per 3 injection instants.

• Instrumenting the OS Probes that observe the OS indicators are located
in kernel modules. 10 Indicators from OS are retrieved in our Linux
implementation using System Tap, according to the setup in [18]. System
Tap exploits the modularity of the Linux kernel design to produce a
module that once loaded has visibility on kernel structures. The System

46

Tap compiler produces a kernel module which directly accesses kernel
internal data. OS indicators generate signals for the next upper layers, and
provide to a monitoring module with information about the current status
of the system.

Overall, the whole experimental setup is composed by two machines. The
first machine, or Target Machine, is one of the four virtual nodes composing
the prototype of the Secure! system. This machine has been modified with the
introduction of the OS probe, which is activated when each experiment starts
and then shoutdown at the end of the experiment. The Detector Machine, instead,
runs the data analysis logic (SPS algorithm) on the data that the OS probes
installed in the Target Machine send through dedicated TCP socket. As soon
as this data arrives, it is processed by the instances of the SPS algorithm, one
for each of the 10 different indicators, which run in parallel. Also, to reduce
the impact on the observed system, OS probes send their data without any
rearrangement, which is left to the Detector Machine. Target and Detector
Machines are virtual machines that run on a rack server with 3 Intel Xeon
E5-2620@ 2.00 GHz processors.

Our experimental campaign was organized as follows: we executed 60 prelim-
inary runs in which we inject faults generating the MEMORY anomaly and other
60 in which we inject faults generating the NETWORK anomaly. The faults gen-
erating the anomalies were i) MEMORY - an anomalous memory consumption
(filling a Java LinkedList), and ii) NETWORK - a wrong network usage (fetching
HTML text data from an external web page). The validation experiments are
organized as follows: in 40 runs we inject the MEMORY anomaly, while in
the other 40 runs the NETWORK anomaly is injected, always alternating the
injection points as stated before.

3.4.2 Analysis of the Results

Layers Indicators P R F2 FPR

[18] OS 10 97.0 100.0 99.3 1.9

[18] in SOA OS 10 26.3 41.1 36.9 14.7

Table 2: Adapting SPS for SOA Systems

The first step in our process of building an anomaly detector for complex
dynamic systems consists of adapting the work in [18] on the data gathered
from the Secure! SOA. In such work authors applied SPS on data traces related
to the trend of OS indicators on a virtual machine during the execution of an Air
Traffic Management (ATM) system. The ATM case study, namely the SWIM-BOX

47

middleware for the interoperability of future ATM systems, consists of a system
with complex functionalities that is intended to provide such functionalities or
services for its entire life, without long-term planned evolutions or short-term
dynamic changes. Differently from [18], we aim at applying SPS on the same
OS indicators retrieved from a different target system. Nevertheless, our model
of anomalies is different from the faults from Orthogonal Defect Classification
(ODC [91]) authors injected in such paper. However, we tried to model generic
anomalies in the memory and network usage, trying to replicate some of the
effects that the manifestation of the ODC faults may have.

In our experiments we observed that switching to a more dynamic system
had severe effects on the metric scores regarding anomaly detection. As it can
be noted in Table 2, the same detection algoritm executed on data related to
the same indicators on a more dynamic system lead to very poor metric scores.
This makes the setup (which performed almost perfectly in the ATM system)
useless in the Secure! system: it is worth mentioning the recall value of 41.1,
which demonstrates how in our experiments SPS was able to detect only the
41% of the injected anomalies, while the remaining 59% were not detected at all.
On the other side, applying SPS on OS indicators in the ATM system showed a
perfect recall score of 100%.

It is important to remark that such results cannot be precisely compared:
despite the fact we tried to replicate the experimental setup, some aspects -
such as the model of anomalies - cannot be copied as they are. However, these
results give us a rough estimation of how the approach in [18] is going to work
in a more dynamic context. As it can be noted, such approach is not well suited
for dynamic systems, and the scores in the last row of Table 2 highlight that
changes need to be made to make this strategy suitable for a different category
of systems.

Lesson Learned 1 (LL1). Techniques that were proven useful for anomaly detection
in static or semi-static systems could incur in a degradation of metric scores - an higher
number of both FPs and FNs - when applied to data traces collected from more dynamic
systems.

3.5 adapting the underlying monitoring strategy

Since different faults in the system may cause errors which manifest as many
different kinds of anomalies, a partial explanation of the poor results above could
be that in complex systems observing only such a specific subset of indicators
related to the same layer does not provide a comprehensive view of the target
system. In fact, some of the surveyed frameworks such as [101], [92] analyze
data coming from multiple system layers, namely OS and middleware, which
in our case is represented by the Java Virtual Machine, since Secure! is written in
Java.

48

3.5.1 A Multi-Layer Monitoring Solution

The instrumentation of the Java middleware requires implementing AS probes,
or Java probes. Data about the middleware can be collected relying on the Java
Management Extensions (JMX): JMX gets the values of the observed indicators
by means of some Java objects called Managed Beans (MBeans). For instance,
MBeans allows the runtime extraction of information on execution time, number
of activations, risen exceptions, application errors, amount of data exchanged
between services. Each MBean maps onto a Java indicator to be extracted,
creating a significant set available to external modules. More in detail, we
selected the following MBeans and Java indicators:

• Java Threadings (2 indicators). Provides information about Java thread
management. These AS indicators report the amount of current running
threads and the amount of all threads started since the Java Virtual Machine
(JVM) started, including daemons, non-daemons and ended threads.

• Managers (4 indicators). Provides information about HTTP sessions: rate of
session creation and expiration during the execution of a certain workload,
or the sessions that have been rejected because the maximum limit has
been reached.

• Memory Pools (6 indicators, 2 each). Provides information about memory
allocation. The JVM sees different kinds of memory for different usages.
We consider Code Cache, Eden Space and Perm Gen memory space as the
most significant for our monitor. Code cache is non-heap memory used
to compile and store native code. Eden space is heap memory used to
allocate the major part of Java objects. Perm Gen (Permanent Generation)
is non-heap memory used to manage class and method reflection.

• Memories (3 indicators). Provides information about heap/non heap mem-
ory management performed by the JVM.

• Requests (5 indicators). Provides information about management of HTTP
requests.

• Operating Systems (5 indicators). In spite of its name, those are still
middleware probes, because they provide information about the OS tools
required by the JVM at such layer.

Overall, this update adds 25 indicators which are continuously monitored
togheter with the 10 OS indicators read using SystemTap. This novel setup makes
35 indicators available for anomaly detection.

49

3.5.2 Intrusiveness of Probes

Since the probing system has changed, the analyses in [18] may not be valid
anymore. To such extent, here we estimate the intrusiveness [15] of the probes
on a Target Machine, both in terms of system load and network utilization. To
reach this purpose we performed experiments using Secure! to observe the status
of the Target Machine with and without probes. This requires developing the
following measuring instruments.

• The Target Machine is equipped with a module that every second gets some
information about system parameters using the top UNIX function; system
parameters that we collect are CPU usage, RAM / swap usage, buffer size,
system usage per task.

• The Detector Machine is used as in the other experiments without running
the anomaly detector module. Secure! services are invoked and probes data
is collected. On the Detector Machine, the packet sniffer Wireshark executes,
collecting packet traffic data coming from the Target Machine. Note that
the introduction of top and Wireshark modules does not affect the quality
of the analysis: i) the packet sniffer Wireshark is not located on the Target
Machine, and ii) the top command is launched in every test, including
those without activating probes, ultimately introducing a systematic error
which is considered equal in all experiments.

• To generate different workloads, we observed that the AllServices workload
(see Table 15) is a cyclic sequence of invocations of Secure! SOAP services.
This allowed us to create four different workloads NullStress, LowStress,
MediumStress, HighStress that differ in the delays between subsequent
invocations of the services. Noticeably, the workload NullStress simulate
the execution of the Target Machine without calling any of the Secure!
services during the time it is exercised. Each of the other three workloads
generates different amount of loads on the Machine, ranging from a very
low load (1 invocation every 3.2 seconds in LowStress), to higher loads (1
invocation per second in average in HighStress). The duration of the four
workloads is approximately between 60 and 80 seconds. Note that the
values above are comprehensive of the waiting time for the completion of
the execution of the call, which is a rather long time for some services as
these devoted to file transmission. Lastly, we remark that the workload
AllServices that we used for the experimental campaign corresponds to the
LowStress workload.

The following experiments are planned and executed: for each of the 4 work-
loads above, 5 runs with probes active and 5 runs with deactivated probes
are executed for a total of 40 runs. Results related to the memory utilization

50

(a) Usage of RAM Memory (b) Data sent through the Network

Figure 5: Experimental evaluation of intrusiveness of probes

are visible in Figure 5a, which shows the average results for each workload
including standard deviation, matching the execution in presence and absence
of active probes.

Data related to system utilization allows understanding how the probe pro-
cesses affect the memory utilization (about 5% RAM on the Machine, that
corresponds to about 150 MB, see the difference between the red and yellow
bars in Figure 5a), while no significant alteration are identified for the CPU
consumption and consequently not shown for brevity. The number of active
tasks differs by 15: these are the tasks required to execute the JVM and OS for
the available set of indicators.

Relevant differences for the execution with and without active probes can be
observed in Figure 5b regarding the network usage, which is affected by data
generated by the probes. For example, for the NullStress workload, the amount
of bytes exchanged without probes is significantly less than those exchanged
with active probes. The other three workloads produce network traffic, like
remote calls or file transfer, that pile up on the traffic generated by the probes as
it is evident from the figures. The additional invocations do not alter the amount
of data transmitted by the probes; this is as expected, although it cannot be
verified graphically in the figures mostly due to data aggregation at lower stack
layers.

3.5.3 Analysis of the Results

Differently from the previous step, we instantiated a multi-layer anomaly de-
tection strategy on our prototype of the Secure! [4] SOA. Briefly, observing
indicators related to different layers will provide a more complete and compre-
hensive view of the system, and will provide us more data related to different
modules to analyze. It is not straightforward that this will improve our detection
scores, since more available data means more information to extract, and we
may not be able to extract this information correctly. However, the works in

51

Layers Indicators P R F2 FPR

[18] OS 10 97.0 100.0 99.3 1.9

[18] in SOA OS 10 26.3 41.1 36.9 13.7

[21] OS, Java 35 25.6 50.4 42.2 11.1

Extensive
Multi-Layer

OS, Java,
Network

42 31.4 60.3 50.9 9.3

Table 3: Adoption of a Multi-Layer Monitoring Strategy

the literature [101], [92] suggest adopting such strategy, and therefore we will
implement and evaluate if the adoption of multi-layer monitors will help us
improve metric scores. According to such studies, as an additional step, we
instrumented also the /proc filesystem of Linux, retrieving 7 network indicators.

The experimental results achieved (see Table 3) showed that metric scores
were overall better, still highlighting very low precision scores, capping at 31.4.
The bigger pool of indicators with respect to the previous setup reduced the
number of missed detections i.e., the FNs are lower, and consequently the recall
is higher. Indeed, some indicators have very discontinuous trends, meaning that
they still raise a big amount of false positives, as confirmed by the precision and
false positive rate scores.

We explain these outcomes as follows. SPS detects changes in a stream of
observations identifying variations with respect to a predicted trend: when
an observation does not comply with the predicted trend, an alert is raised.
If the system has high dynamicity due to frequent changes or updates of
the system components, or due to variations of user behavior or workload,
such trend may be difficult to identify and thus predict. Consequently, our
ability in identifying anomalies is affected because boundaries between normal
and anomalous behavior cannot be defined properly. Further discussions are
expanded in [22].

Lesson Learned 2 (LL2). Montoring only the underlying layers of a system without
knowing anything about the services does not help in tracing the boundaries between
normal and anomalous behavior.

3.6 context-awareness

We previously highlighted the need of acquiring more information on the target
system, still maintaining the main benefits of the abovementioned approach.
Consequently, we investigate which information on SOA services we can obtain
in absence of details on the services internals and without requiring user context
(i.e., user profile, user location). In SOAs, the different services share common

52

information through an Enterprise Service Bus (ESB, [51]) that is in charge of i)
integrating and standardizing common functionalities, and ii) collecting data
about the services. This means that static (e.g., services description available
in Service Level Agreements - SLAs) or runtime (e.g., the time instant a service
is requested or replies, or the expected resources usage) information can be
retrieved using knowledge given by ESB. Consequently, having access to the
ESB provides knowledge on the set of generic services running at any time t. We
refer to this information as context-awareness of the considered SOA; note that
we do not require information on the user context, contrary to what is typically
done in the state-of-the-art on context-awareness [95].

Noticeably, we can exploit this contextual information to define more pre-
cisely the boundaries between normal and anomalous behavior of the SOA. For
example, let us consider a user that invokes a store file service at time t. We can
combine contextual information with information on the current behaviour of
the service, which here is about data transfer. Therefore, if the store file service
is invoked at time t, we expect an exchange of data during almost the entire
execution of the service. If we observe no data exchange, we can reveal that
something anomalous is happening.

3.6.1 Collect Services Information

Let us start from the example of the store file service. Our target is to characterize
the normal behavior of the service, building a fingerprint of its usage. More in
details, we need a description of the expected behavior of the service, meaning
that we need to describe the usual trend of the observed indicators while the
service is invoked. In such a way, we can understand if the current observation
complies or not with the expectations. This information can be retrieved in a
SOA by observing the ESB and producing a new service fingerprint when the
addition, update or removal of a service is detected. In several cases it is also
possible to obtain a static characterization of the services looking at their SLA,
where each service is defined from its owner or developer for the final user. We
remark that we do not consider any assumption about the services except their
connection with the ESB: consequently, we can obtain services information from
any kind of service running in the SOA platform.

3.6.2 Integrate Information in the Anomaly Detector

Summarizing, information about the services can be obtained i) statically, looking
at SLAs, ii) at runtime, invoking services for testing purposes or iii) combining
both approaches: in this Thesis we explore the second approach. This contextual
information needs to be aggregated and maintained (e.g., in a database) together

53

with the calculated statistical indexes (e.g., mean, median), whenever applicable,
to support the anomaly detection solutions.

3.6.3 The Resulting Architecture

Figure 6: The resulting architecture of the Anomaly Detector

In Figure 6 we depict a high level view of the resulting framework which
now includes contextual information. Starting from the upper left part of the
figure, the framework can be described as follows. The user executes a workload,
such as the AllServices workload in Section 3.4.1. In this machine probes are
running, observing the indicators coming from 3 different system layers: i) OS, ii)
middleware and iii) network. These probes collect data, at defined time instants.
The probes forward the data to the communication handler. Indicators data
related to the same time instant is aggregated in a snapshot, and sent to the
communication handler of the Detector Machine.

Data is analyzed on a separate machine, the Detector Machine (which includes
a Complex Event Processor - CEP). This allows i) not being intrusive on the Target
Machine, and ii) connecting more Target Machines to the same Detector Machine
(obviously the number of Target Machines is limited by the computational
resources of the Detector Machine). The communication handler of the Detector
Machine collects and sends these data to the monitor aggregator, which merges
them with runtime information (e.g., list of service calls) obtained from the ESB.
This allows storing contextual information in the database. Looking at runtime
information, the monitor aggregator can detect changes in the SOA and notify
the administrator that up-to-date services information is needed to appropriately
tune the anomaly detector. The tuning includes the choice of the 10 indicators

54

out of the total 55 which are more performing in identified anomalies with the
current setup. Some training runs are executed with injection of anomalies, and
the indicators which gave better F2 scores after applying SPS were selected as
the 10 indicators to monitor for validation. When applying SPS, if at least 5 out
of the 10 selected indicators raise an anomaly simoultaneously, an anomaly alert
for the system is delivered to the administrator.

The snapshots collected when SOA is opened to users are sent to the anomaly
detection module, which can query the database for services information and
analyzes each observed snapshot to detect anomalies. If an anomaly is detected,
the system administrator, which takes countermeasures and applies reaction
strategies (which are outside from the scope of this work and will not be
elaborated further), is notified.

3.6.4 Analysis of the Results

Layers Indicators Context P R F2 FPR

[18] OS 10 NO 97.0 100.0 99.3 1.9

[18] in SOA OS 10 NO 26.3 41.1 36.9 13.7

[22] OS, Java 35 NO 25.6 50.4 42.2 11.1

Extensive
Multi-Layer

OS, Java,
Network

42 NO 31.4 60.3 50.9 9.3

[108] OS, Java,
Network

42 YES 41.8 91.3 72.7 4.9

Table 4: Results with Context-Awareness and Selection of Indicators

At the present stage we use contextual information to characterize what the
system is intended to do in a specific context, i.e., while providing a specific
service. In other words, context-awareness allows defining more precise expec-
tations about the behavior of the target system in a defined time window, or
rather its normal behavior. This has key advantages for anomaly detection, since
the boundaries between normal and anomalous data instances are traced more
carefully. Results in Table 4 certify that having a better definition of the normal
behavior positively impacts on our ability of detecting anomalies, with higher
metric scores in the table. Noteworthy, the FPR dropped to approximately 5,
while recall is over 90%. Altrough not perfect, we can state that assuming knowl-
edge of the services that are running at time t on the observed machine gave
us the opportunity to consider additional contextual information that resulted
fundamental to improve our anomaly detection capabilities.

55

Indeed, there is still room for improving. More in detail, relations among
indicators cannot be catched with the current setup: a simoultaneous light
increase or decrease of more than one indicators’ value may be related to the
manifestation of an error, but it cannot be detected at the current stage. Also,
depending on the anomaly, an optimal setup of the parameters needs to be
found to maximize metric scores. Choosing the best 10 indicator to apply SPS
may not be the better choice in some cases, or may be the worst choice at all.

Lesson Learned 3 (LL3). Introducting Context Awareness helped defining the
characteristics of the anomalies and tuning our anomaly detection stategies.

3.7 refining the framework

After introducing i) a multi-layer monitor, and ii) context-awareness, our anomaly
detection framework needed to include a more robust training phase, directed to
identify the best parameters setup e.g., defining which and how many indicators
are useful for detecting a specific anomaly on a given target system. In the
previous section we extracted the best 10 indicators that gave higher F2 scores in
the training runs, raising an anomaly if and only if at least 5 out of 10 raised an
anomaly simoultaneously. However, this basic setup may not be the optimal one,
and further combinations need to be exploited. Moreover, the data analyzed
by the SPS algorithm is related to single indicators separately, preventing us to
correlate different potentially anomalous trends in related indicators. To such
extent, we refined the framework by formalizing data series and anomaly checkers,
and specifying as main parameters to train the selected anomaly checkers and the
anomaly treshold.

3.7.1 Data Series

We define a data series as a triple

indicator,data_category, series_layer

Indicator represents the indicator responsible for the set of data we are an-
alyzing. For example, this can be the usage of the memory, the number of
accesses to the hard disk or the number of active threads managed by the OS.
Data_category specifies if the data series refers either to PLAIN e.g., 234 threads
are currently active, or to the linear difference DIFF among subsequent elements
e.g., 2 threads were created since the previous observation. Lastly, series_layer
describes the system layer from which the data are collected. By default, this
is the system layer that offers the indicator values, and the series_layer value
is the name of the layer. Noteworthy, a data series may also result from the

56

linear combination of two existing data series e.g., cache_hit_rate = cache_hits /
cache_misses, originating a composed data series. For the sake of simplicity, in
our study composed data series are obtained only through linear relations that
use one single matemathical operator (+, -, *, /).

3.7.2 Anomaly Checkers

The detection of anomalies is demanded to a set of anomaly checkers, selected
according to a given metric. An anomaly checker is assigned to a given data
series, and evaluates if the current value of the selected data series is anomalous
or expected following a set of given rules or algorithms. More anomaly checkers
can be created for the same data series. Given a snapshot as input, each anomaly
checker produces an anomaly score; the individual outcomes of the set of
anomaly checkers is then combined to decide if an anomaly is suspected for
the current snapshot. Consequently, an anomaly is raised only if this combined
score meets or exceeds a given treshold. For each data series, we build two
anomaly checkers:

• Historical (HIST): this anomaly checker implements a contextual check by
comparing the values of a given data series with the expectations defined
in the fingerprint. If this quantity is outside of the interval defined by
average ± standard deviation in the fingerprint, an anomaly is raised.

• SPS: for a given data series, this anomaly checker applies the SPS algorithm
described in [14], [17]. Such algorithm was preferred among others due
to i) the knowledge we had of the implementation our research group
has, and ii) promising past results as reported in [18], especially regarding
precision, recall and false positive rate metrics).

3.7.3 Selected Anomaly Checkers and Anomaly Threshold

Once the metric i.e., FScore(2), is defined, it is used to automatically detect the
best configuration of each anomaly checker. Moreover, we detect anomalies
depending on a set of anomaly checkers that are selected from the pool of
available ones according to specific rules. The selected anomaly checkers are
extracted by choosing:

• BEST x: the x anomaly checkers that have the best scores according to the
metric e.g., BEST 5 (B5) represents the 5 anomaly checkers which show
higher individual FScore(2) on the training set;

• FILTERED y: the y anomaly checkers that have the best metric scores,
filtered to avoid having two anomaly checkers exercised on the same data

57

series. For example, it avoids selecting SPS and HIST anomaly checkers on
the same HeapMemoryUsage PLAIN data series.

Once the selected anomaly checkers are defined, the appropriate anomaly
treshold is selected as follows. A snapshot is evaluated as anomalous if at least
a given number of selected anomaly checkers raise an anomaly reaching or
exceeding the anomaly threshold. We evaluate different approaches to set this
threshold, namely:

• ALL: all the selected anomaly checkers must evaluate their data series
instance of the snapshot as anomalous;

• QUARTER / THIRD / HALF: a quarter / third / half of the selected
anomaly checkers must evaluate their data series instance related to the
snapshot as anomalous;

• ONE: the snapshot is evaluated as anomalous if at least one of the anomaly
checkers raises an anomaly.

It is important to remark that the choice of the anomaly threshold heavily
impacts on the overall detection performances. The usage of a single anomaly
checker (i.e., ONE threshold) reduces the amount of false negatives; instead a
consensus among several anomaly checkers, e.g., ALL threshold, reduces the
number of (false) alarms raised, but may negatively affect false negatives.

3.7.4 Setup of the Probes and Data Series

Differently from the previous version of the probes, we looked at the data
provided by SystemTap in our current implementation, which we inherited from
[18]. 10 OS indicators were retrieved, but specific areas of the OS were not
covered e.g., cache accesses, size of buffers. Then, we looked at the UNIX /proc
filesystem, which makes available a huge set of indicators related to the network
- which we already instrumented - but also on the hysical and virtual operating
system. Therefore we replaced the OS probe with a module which reads data
from /proc as well as it was done with the network probe. Intrusiveness is not
negatively affected, since the SystemTap module is no longer running in the
system, and calls to /proc have minimum delays.

The updated probing system running the target machine is composed of three
probes: OS and Network probes are shell modules reading data from the /proc
virtual filesystem, while the JVM probe consists in a Java module accessing
performance data through Java Management Beans (MBeans). These three probes
monitor a total of 55 different indicators: 23 from the OS, 25 from the Java,
and 7 related to the network. These probes are coordinated by a Java-based
communication handler that manages the collection of data, encapsulates them

58

in JSON format and sends the data through a TCP socket. The version of Java
required on the target machine(s) to be instrumented with our probing system is
7 or higher. Here we remark that despite several enterprise solutions providing
monitoring facilities exist, we chose to develop our own probes to limit the
intrusiveness of such enterprise monitoring tools.

Regarding the observed data series, let us consider our set of 55 indicators
and 49 couples of related indicators, which are combined using the +, -, *, /
matemathical operations obtaining 196 novel composed data series. Note that
the 49 couples of indicators were selected by choosing the couples which scored
a Pearson correlating index [64] above 0.9. Considering both PLAIN and DIFF
data categories for each indicator, we obtained 110 separate single data series
and 392 composed data series. On each data series we can instantiate either the
SPS or the HIST algorithm, totalizing 1004 possible anomaly checkers. The set
of checkers to be used is reduced and then ranked during the training phase.

3.7.5 Analysis of the Results

Layers Indicators Context P R F2 FPR

[18] OS 10 NO 97.0 100.0 99.3 1.9

[18] in SOA OS 10 NO 26.3 41.1 36.9 13.7

[22] OS, Java 35 NO 25.6 50.4 42.2 11.1

Extensive
Multi-Layer

OS, Java,
Network

42 NO 31.4 60.3 50.9 9.3

[108] OS, Java,
Network

42 YES 41.8 91.3 72.7 4.9

Current
(avg)

OS, Java,
Network

55 YES 64.4 96.1 87.5 2.6

Table 5: Combining Context-Awareness and Composed Data Series

The results of the experiments in terms of precision, recall, FScore(2) and False
Positive Rate are reported in Table 5. The last row reports on the average scores
obtained regarding the detection of MEMORY and NETWORK anomalies. The
improvement at this stage is consistent and it is mainly due to:

• the inclusion of composed data series as data source for creating SPS and HIST
anomaly checkers. This allows shaping linear relations among different
indicators, ultimately providing more knowledge of the monitored system.

• the definition of a training process directed at identifying the most per-
forming anomaly checkers (selected anomaly checkers) togheter with the

59

best voting strategy to use with them. This strongly contributed to reduce
the number of false positives raised by our framework when choosing an
anomaly threshold that was too tight, labeling normal fluctuations of the
trends of the indicators as anomalies. Relaxing this treshold lowers the
number of false positives, but consequently exposes false negatives. The
best tradeoff among these two is the chosen anomaly treshold.

With respect to the first application of SPS to the data of Secure!, the enhance-
ments are surprising. The number of false negatives dropped consistently i.e.,
recall is higher than 95% and the false positive rate went down to 2.6 being
roughly 14 at the beginning. It is important to remark that altrough higher than
at the beginning, these scores are still significantly lower than the ones obtained
in the study we took as starting point [18]. In fact, it is easy to observe that in
several cases a false positive rate of 2.6 may not be accepted, expecially when an
alarm triggers complex and expensive recovery strategies which in case of FP
will result in a waste of time, money and resources. Nevertheless, depending
on the system, this can be either a strong limitation for the application of our
technique or a reasonable price to pay considering the difficulties of performing
anomaly detection in such complex dynamic systems.

3.8 comparison with respect to surveyed studies

At this stage of the process of enhancing the capabilities of the anomaly detector,
we compared our partial results with the anomaly detection scores from the
surveyed studies (see Table 6). We consider results of the studies we already
used in Table 1, and we also include our partial result. We show only results for
anomalies related to the resource usage, because they are the only anomalies
(MEMORY, NETWORK), we injected during our experimental process.

Overall detection performances (we show Precision, Recall, F-Score(2) and False
Positive Rate where available) are strongly influenced by the characteristics of
the target system. In fact, when the dynamicity of the system is low, it is easier
to define the expected behaviour. This results in a significantly lower number of
false positives and false negatives as in [18], [11] and [101] with respect to [9]
(see Table 6). High precision scores are obtained also in [92], where ALERT is
exercised in a cluster environment. The system shows good dynamicity, because
hosts are added or removed; however, the cluster runs a fixed pool of tasks
during its operational life. Moreover, SEAD [73] obtains high recall scores by
analysing data gathered from an hypervisor, but no quantitative information to
compute precision or FScore are reported.

Finally, our partial results present recall and false positive rate values that
are competitive with the other solutions, especially considering that we are
exercising the anomaly detector on a highly dynamic system. Our precision is
low, meaning that many false positives are generated. We already mentioned that

60

Framework
Metric Scores

Precision Recall FScore(2) FPR

CASPER [11] 88.5 76.5 78.6 11.26

[9] 76.0 99.0 93.3 n.a.

SEAD [73] n.a. 92.1 n.a. n.a.

TIRESIAS [101] 97.5 n.a. n.a. 2.5

[18] (best setup) 97.0 100.0 99.3 1.9

ALERT [92] ~100.0 > 90.0 > 90.0 < 10.0

Our Results 64.4 96.1 87.5 2.6

Table 6: Comparing metric scores with the surveyed frameworks. Scores have been
extracted from the original papers.

in our setup we favour recall because our aim is to minimize missed detections,
even at the cost of a higher number of false positives.

3.9 summarizing: lessons learned and open challenges

As highlighted in the beginning of this chapter, detecting anomalies in complex
and dynamic systems is not trivial. There are intrinsic challenges due to the
nature of such systems that need to be tackled in order to make the classic
anomaly detection techniques suitable. To such extent, the preliminary analy-
ses presented in the previous sections provided useful lessons and directions
in identifying the main challenges that need to be tackled in order to tailor
anomaly detection on such systems. Such lessons learned are combined togheter
with some conclusions found in the literature [25], resulting in the following
challenges.

CH 1 Adaptive notion of expected behavior. The intrinsic dynamicity of the
target system leads to frequent changes in the expected - and consequently
anomalous - behavior. This means that the model of the expected behavior
needs to be repeatedly updated [25], because its validity is going to be
deprecated through time (see LL1 in Section 3.4 and LL3 in Section 3.6).
In [73] and [92], the authors propose self-adaptive anomaly detection
strategies to deal with such evolving notion of expected behavior.

CH 2 Avoiding Interferences and Minimizing Overhead. The anomaly detec-
tion logic must not interfere with the target system. More in detail, the
anomaly detection framework must not steal computational resources or
introduce relevant overheads e.g., during training of the anomaly detection

61

algorithms. Intrusiveness of anomaly detection frameworks are evaluated
in [11], [18], mainly analyzing CPU and RAM usage.

CH 3 Applicable monitoring strategy. Data is collected from different sources
that compose the target system (see LL2 in Section 3.5. However, insights
of the services or components may not be observable, for example in case
of third-party components or encapsulated components [58]. Moreover, the
set of services may change; for example, services may be updated, added
or removed. This calls for an applicable monitoring strategy that identifies
viable monitoring targets and does not require manual reconfiguration
when the services evolve.

CH 4 Suitable anomaly detection algorithms. The anomaly detection logic
needs to rapidly cope to frequent changes of the expected behavior (LL1).
Algorithms that require a massive training effort - such as clustering [73]
or Markov-based models [11] - are not adequate when the system changes
frequently.

CH 5 Selection of the indicators. To reduce their impact on the system and/or
the network, monitors should observe only the minimum set of features
(indicators), which are required by the anomaly detector to run its logic.
For example, indicators values obtained observing the network layer are
generally suitable for intrusion detectors [46], [76], while the operating
system is usually monitored when detecting performance issues or mal-
ware activities [99]. Other studies on the selection of the indicators are in
[9] regarding the filtering of invariants, and in [73] where authors describe
how they select 14 indicators out of 653 from the Xen hypervisor.

4
E X P E R I M E N TA L E VA L U AT I O N

In this section, we present an extensive experimental evaluation of the resulting
anomaly detection framework. In the previous section we described the process
which led us to build an anomaly detector for complex dynamic systems (i.e.,
SOAs) with metric scores comparable with the works in the literature. However,
the experiments we executed in such steps were not extensive, and a more
complete experimental campaign is needed to evaluate all the components of
such framework. More in detail, experiments will include a wider model of
anomalies, an additional case study, and an higher number of experimental runs
executed.

To the purpose of the evaluation, we run an automatic controller that checks
input data and manages the communications among the different modules
of a Target Machine and the Detector Machine. This facilitates the automatic
execution of the experimental campaign without requiring user intervention
except for the setup. All data are available at [1].

4.1 soa case studies

Here we describe the case studies we considered to evaluate our framework for
anomaly detection in complex dynamic systems. It is worth mentioning that
both case studies are based on a SOA structure, which nowadays is one the most
common instantiation of complex dynamic system. The first is Secure!, which
we already presented and used in the previous section, while the second one is
the jSeduite SOA [30]. jSeduite is an open source SOA dealing with information
broadcast inside academic institutions, and is composed of atomic web services
representing information sources and BPEL orchestrations expressing business
processes. Despite the fact this system is free from safety implications in case
of malfunctions, some of the available services cover basic operations such as
file uploads, error logs and data gathering that represents the pillars on which
safety and/or security critical services are built upon. We distributed jSeduite
on a Glassfish Java-based server, setting its services to use a MySql database.

We identified a subset of jSeduite services that are both characterizing this
system and matching some of the services that are implemented in the Secure!
CMS. A description of the whole set of services is available at [24]. In our setup,
we also considered to use a subset of the services that were already used in
this previous study, to help the discussion and some comparisons among the
obtained results. This resulted in the definition of a workload composed by 8

63

64

different service calls, namely ErrorLogger, DataCache, FileUploader, ApalWrapper,
TvHelper, FeedRegistry, TwitterWrapper, and InternalNews. The services are called
multiple times without following a specific order.

4.2 model of anomalies

We identify the model of anomalies that we aim to detect. To such extent, we
review here well-known anomalies model from the literature identifying which
of them are in scope for our work. Most of the works were already described in
Table 1 regarding their characteristics and suitability for anomaly detection in
complex dynamic systems.

Framework
Categories of Anomalies

Reconfiguration Misconfiguration Interaction Resource
Usage

ALERT [92] 3

CASPER [11] 3

[9] 3 3 3

SEAD [73] 3

TIRESIAS [101] 3

[41] 3

[67] 3 3

Our
Framework

3 3 3

Table 7: Model of Anomalies targeted by the surveyed studies and by our framework.
For each framework, we reported the categories of anomalies covered by their
model of anomalies.

Most of these frameworks consider anomalies in the resource usage, while
in [9] authors also consider anomalies related to reconfiguration and erroneous
configuration (misconfiguration) of parameters of the targeted system or ap-
plications. Concerning reconfiguration, we assume to re-train the framework
every time a reconfiguration is detected, making the detection of such anomalies
out of scope. Instead, we do include anomalies concerning misconfiguration in
our anomalies model. Moreover, other studies consider also anomalies due to
interaction among modules and components of the complex system. In partic-
ular, [67] defines a set of behaviors that can emerge in complex systems, such
as: i) deadlock/livelock, ii) trashing, iii) phase change, iv) synchronization and
oscillation, and v) chaotic.

65

Similarly to reconfigurations, phase changes are considered main variations
of our system, thus calling for a new training step and not considered in our
anomalies model. Furthermore, since the Anomaly Detection module treats each
Target Machine individually, synchronization, oscillation and chaotic behaviors
have minor impact or likelihood. Additionally, our selected middleware (JVM)
automatically controls thrashing: the JVM manages the garbage collection and
context switches with the objective of avoiding performance degradation. Instead,
deadlock and livelock should be considered in our model of anomalies as they
are possible source of anomalies in complex systems.

Consequently, the resulting anomalies model is composed by i) performance
anomalies, and in particular we identify four anomalies that we name MEMORY,
CPU, DISK, NET_USAGE, ii) anomalies due to deadlock/livelock, that we label
as DEADLOCK, and iii) anomalies due to misconfigurations; more in detail, we
will focus on misconfiguration of the network permissions, labeling them as
NET_PERMISSION.

4.3 injection approach

Similarly to what we expanded in Section 3.4.1 for Secure!, with jSeduite the
injections were performed in 10 different functions related to 4 of the selected 8

web services (all belonging to the fr.unice.i3s.modalis.jSeduite.technical package).
More in detail, we instrumented the TvHelper service (tv.extract), the TwitterWrap-
per service (messaging.twitter.getIntendedTweets, messaging.twitter.getChannel, and
messaging.twitter.getFreeTokens), the ApalWrapper service (apal.getTopWithTreshold,
apal.getTop10, apal.getLoosers, and apal.getPromos), and FeedRegistry (registry.getURL,
registry.getCategories, and registry.getNicknames). As in Secure!, the injection is
triggered by a chronometer which allows the execution of the mutated code
only when at least 50% of the workload is already executed. Note that all the
considered services are invoked through the whole workload.

In our experiments, we inject a single error in each individual run. Noteworthy,
we are interested in detecting the first anomaly that is generated after the activation of
the error and that can be explained by the error itself. In fact, the manifestation of
a single fault can lead to several cascading effects on the system, with consequent
variations from the expected behavior i.e., multiple anomalies. The complexity of
our target system does not allow studying the propagation effects of the injected
faults. Therefore, we are not able to distinguish if and especially how different
anomalies are related. It follows that only the first anomaly that is detected
after the activation of the injected fault is considered a true positive (TP) in
our analysis. Further, this anomaly must be detected within a limited temporal
distance from the injection time instant; this way, we are more confident that the
anomaly is a consequence of the injected error and not a false positive (FP). We
set this temporal distance to 1 second after some preliminary experiments.

66

Successive anomalies, which can be due to i) brand new manifestations of
errors, ii) cascading effects of the injected anomalies, and iii) false positives, are
ignored. We are aware that with this approach we are ignoring several anomalies
that are most likely true positives. Consequently, another strategy is to include
all the anomalies the framework raises after the activation of the fault, until the
termination of the workload. As explained before, it is difficult to understand
if such anomalies are related to the injected fault (TP) or are FP. Consequently,
we disregard this approach despite it would probably improve our recall and
precision.

4.4 experimental campaign

We present here how we organized our experimental campaign. We first con-
ducted 100 golden runs in which we executed the chosen workload without any
injection. We then performed runs with injections for the 6 anomalies that are
present in our model of anomalies. For each anomaly, we executed 10 runs for
each injection (9 in Secure!, 10 in jSeduite) as discussed before.

Overall, respectively 640 and 700 experiments for each case study were con-
ducted. This number was defined observing the standard deviation for the
results, which was acceptable i.e., smaller than the mean. To guarantee the cor-
rectness of the experiments, we restarted our target application - either Secure!
or jSeduite - before the execution of each experiment. This allows completely
resetting the status of the system running on the Target Machine before execut-
ing each experiment, providing independency among subsequent experiments.
These experiments served both as preliminary runs for the training phase and to
validate the efficacy of the our framework itself. In particular, all the 100 golden
runs and 70% of the other runs were used for the training phase. The remaining
runs were instead used for the validation of the framework.

4.5 results: secure!

4.5.1 Detection Efficiency

The results of the experiments regarding Secure! in terms of precision, recall,
and FScore(2) are depicted in Figure 7. Each set of bars reports on the results
with a given injection: as an example, the first set is related to injections of a
MEMORY anomaly. Moreover, each set of bars reports results related to two
possible choices of selected anomaly checkers and anomaly threshold, namely
i) BEST 3 (ALL), labeled as B3 and represented with solid fill in Figure 7, and
FILTERED 10 (HALF), which is labeled as F10 with a striped pattern. In the
figure, precision, recall and FScore(2) of B3 strategies are reported using bars
with solid fill, while the ones regarding F10 are filled with a vertical-striped

67

pattern. Overall, we can observe how recall scores, or rather B3_Recall and
F10_Recall in the figure, are significantly higher than their precision counterparts.
This is due to i) the intrinsic characteristics of the system, and ii) the setup we
adopted during training. In fact, targeting FScore(2) as reference metric for the
whole process favors anomaly checkers that give higher recall scores. Regarding
MEMORY and DEADLOCK experiments in Figure 7, both scoring strategies
were able to detect all the anomalies we injected, paying a price in terms of a
relatively high number of false alarms. In fact, it is easy to observe that in several
cases, precision is lower than 50%. Depending on the system, this can be either
a strong limitation for the application of our technique or a reasonable price to
pay considering the challenges identified for such complex dynamic systems.

Figure 7: Precision, Recall and FScore(2) for experiments obtained using Secure!

4.5.2 Choice of Anomaly Checkers

Table 8 and Table 9 respectively report on: i) the data series used by the se-
lected anomaly checkers, and ii) the 10 selected anomaly checkers that show the
best FScore(2) when NET_USAGE is injected. The detailed list of the anomaly
checkers for each category of anomalies is not reported here for brevity and can
be found in [1]. In Table 8, we can observe how the data series related to the
selected anomaly checkers are balanced among layers, meaning that all the three
instrumented layers are fundamental in providing actionable information for
anomaly detection. In Table 9 we notice that the checkers AC1 and AC2 use
composed data series that are respectively built on data series DS1, DS2 and
DS3, DS4. In Table 8, we can notice that 3 out of these 4 data series belong to

68

data from the network layer. Consequently, it can be observed that the composite
data series that are used by the two best anomaly checkers are from the network
layer.

Indicator Data
Category

Series
Layer

DS1 Tcp_Close PLAIN NETWORK

DS2 Tcp_Established PLAIN NETWORK

DS3 Tcp_TimeWait DIFF NETWORK

DS4 SystemCpuLoad DIFF JVM

DS5 CPU User Processes PLAIN CENTOS

DS6 CurrentThreadUserTime DIFF JVM

DS7 HeapMemoryUsage.committed DIFF JVM

DS8 CPU Kernel Processes PLAIN CENTOS

DS9 Tcp_Syn PLAIN NETWORK

DS10 Buffers PLAIN CENTOS

DS11 Net_Received PLAIN NETWORK

DS12 CurrentThreadCpuTime PLAIN JVM

DS13 FreePhysicalMemorySize PLAIN JVM

DS14 Free Virtual Pages PLAIN CENTOS

Table 8: Simple Data Series (DSx) used by the selected anomaly checkers, in descending
order

Although not shown in the tables for brevity, we further observed that, for
the CPU anomalies, an anomaly checker executing SPS on the composed data
series that is built upon DS6 +DS12 enters the top 5 of best checkers. This
complies with our expectations since the activation of the CPU anomaly causes
the execution of additional instructions for one second in the usual flow of
service calls, ultimately altering CPU-related data series. Another interesting
finding regards the experiments with the injection of DEADLOCK anomalies.
Here the anomaly causes a new thread temporarily competing for an object
that is requested by the main thread to be instantiated, resulting in the known
concurrency issue. In this case AC5 becomes one of the best 3 checkers. More
in detail, the instantiation of a new Java object (the thread) and the busy wait
loop trying to acquire the token for the critical section cause the increase of heap
memory usage.

Summarizing, the list of anomaly checkers in Table 9 is not intended to be
a selection of data series and anomaly checkers valid for any complex system.

69

#
Data Series

Algorithm
Indicator Data

Category
Series
Layer

AC1 DS1 / DS2 PLAIN CROSS HIST

AC2 DS3 / DS4 PLAIN CROSS HIST

AC3 CPU User Processes PLAIN CENTOS SPS

AC4 CurrentThreadUserTime DIFF JVM SPS

AC5 HeapMemoryUsage.committed DIFF JVM SPS

AC6 CPU Kernel Processes PLAIN CENTOS SPS

AC7 DS9 + DS10 PLAIN CROSS SPS

AC8 Net_Received PLAIN NETWORK HIST

AC9 DS12 + DS13 DIFF CROSS SPS

AC10 Free Virtual Pages PLAIN CENTOS SPS

Table 9: Selected Anomaly Checkers for runs with the injection of NET_USAGE anomaly,
in descending order

Instead, this is a list of both the data series and the anomaly checkers that
performed better in our experiments and consequently in the Secure! system.
The list may vary depending on the characteristics of the target system. A guide
for the selection of the appropriate data series when using our framework is
further expanded in Section 4.7.2.

4.5.3 Sensitivity Analysis

We apply all the possible combinations among the selected anomaly checkers
to identify the setup that ultimately gives a higher FScore(2) score. In Figure
8 we report the graphical result of the sensitivity analysis on the runs we
used as validation of our framework to detect MEMORY anomalies. On the
horizontal axis, we can observe the different strategies for the choice of the
selected anomaly checkers. On the depth axis, instead, we report the anomaly
thresholds we consider in our setup. For example, a snapshot can be labeled as
anomalous if at least half (HALF in the figure) of the anomaly checkers raise an
alert simultaneously.

Regarding the detection of the anomaly MEMORY, an optimal setup is rep-
resented by F10 (HALF), as can be observed in Figure 8. F10 (HALF) labels a
snapshot as anomalous if at least five anomaly checkers trigger an anomaly
for that snapshot. Other optimal setups can be obtained by considering the B3,
that raises an anomaly either if i) at least one out of three checkers detects an

70

Figure 8: Sensitivity analysis of MEMORY experiments in Secure!

anomaly (ONE, QUARTER, THIRD on the z-axis of Figure 8), or ii) all three
anomaly checkers raise anomalies (ALL in the z-axis).

Results of the sensitivity analyses for the other injected anomalies are not
reported here for brevity, but lead to similar observations and can be found in
[1].

4.6 results: jseduite

4.6.1 Detection Efficiency

The results of the experiments regarding jSeduite in terms of precision, recall, and
FScore(2) are depicted in Figure 9. As in Figure 7, each set of three bars reports
on the results with the injection of a given anomaly. The scores we reported
for each anomaly were obtained using the best possible setup of parameters
(i.e., selected anomaly checkers and anomaly treshold) for each specific anomaly.
Noticeably, the optimal setups vary when injecting different anomalies. This is
not surprising, althrough it can be noted that for all the 6 anomalies the optimal
selected anomaly checkers are always composed by at most 10 anomaly checkers,
confirming the trend we already observed in the experiments regarding Secure!.
Further discussions will be expanded in Section 4.7.

Overall, it turns out that recall scores are significantly higher than their
precision counterparts. The number of false negatives is low, leading recall scores
to be always higher than 65%. More in detail, regarding DISK and NET_PERM
experiments in Figure 9, we were able to detect all the anomalies, paying a price
in terms of a higher amount of false alarms.

71

Figure 9: Precision, Recall and FScore(2) for experiments obtained using jSeduite

4.6.2 Choice of Anomaly Checkers

As counterparts of Table 8 and Table 9, Table 10 and Table 11 respectively report
on: i) the data series used by the selected anomaly checkers, and ii) the 10 selected
anomaly checkers that show the best FScore(2) when NETWORK anomaly is
injected in the jSeduite experiments. The detailed list of the anomaly checkers for
each category of anomalies is not reported here for brevity and can be found in
[1]. In Table 8, we can observe how the data series related to the selected anomaly
checkers are not balanced among layers. As expected, indicators related to the
network played the most relevant role in identifying NETWORK anomalies.
Other useful indicators were related to the OS, involving the number of files and
highlighting an anomalous number of CPU Idle / User processes. This can be
explained considering that the activation of the anomaly starts a process which
fetches http data from a remote web site, storing read data in a dedicated file.
The indicators gathered from the middleware (JVM), instead, do not take part
to the selected anomaly checker set, meaning that this specific type of anomaly can
be detected without looking at such data.

This trend is emphasized by the selected anomaly checkers (see Table 10): the
6 checkers with higher scores are built only on data series extracted from
the network layer. In particular, Tcp_Established and Tcp_Close data series are
widely used by most of these checkers, which apply either the HIST or SPS
algorithm on complex data series created by combining such network-related
simple data series. Further, we can observe how the selected checkers are
mainly built on composed data series. To detect such NETWORK anomaly,
different indicators were combined creating composed data series that provided

72

Indicator Data
Category

Series
Layer

DS1 Tcp_Close PLAIN NETWORK

DS2 Tcp_Established PLAIN NETWORK

DS3 Tcp_Close DIFF NETWORK

DS4 Tcp_Established DIFF NETWORK

DS5 Active Files PLAIN CENTOS

DS6 Inactive Files PLAIN CENTOS

DS7 CPU Idle Processes DIFF CENTOS

DS8 CPU User Processes DIFF CENTOS

DS9 Net_Received DIFF NETWORK

DS10 Tcp_Listen PLAIN NETWORK

DS11 Major Page Faults PLAIN CENTOS

Table 10: Simple Data Series (DSx) used by the selected anomaly checkers

actionable information, turning out to be more useful than single simple data
series.

4.6.3 Sensitivity Analysis

As in Section 4.5.3, we apply all the possible combinations among the selected
anomaly checkers to identify the setup that ultimately gives a higher FScore(2)
score. In Figure 10 we report the graphical result of the sensitivity analysis on
the runs we used as validation of our framework to detect MEMORY anomalies.
On the horizontal axis, we can observe the different strategies for the choice
of the selected anomaly checkers, while on the depth axis we report the anomaly
thresholds we consider in our setup.

Figure 10 highlights that the optimal setup is represented by F10 (HALF),
which labels a snapshot as anomalous if at least five anomaly checkers trigger an
anomaly for that snapshot. When considering checkers set composed by more
than 10 elements the scores gradually degrade, meaning that the set of anomaly
checkers that really determine our detection capabilities regarding MEMORY
anomalies is limited.

Moreover, the usage of anomaly tresholds such as THIRD, QUARTER, ONE low-
ers the global FScore(2) since it raises the number of false positives, consequently
lowering the precision. Results of the sensitivity analyses for the other injected
anomalies are not reported here for brevity, but lead to similar observations and
can be found in [1].

73

#
Data Series

Algorithm
Indicator Data

Category
Series
Layer

AC1 DS1/DS2 DIFF CROSS HIST

AC2 DS3/DS4 DIFF CROSS HIST

AC3 DS3/DS4 PLAIN CROSS HIST

AC4 DS1-DS2 DIFF CROSS SPS

AC5 DS3-DS4 PLAIN CROSS SPS

AC6 Tcp_Close DIFF NETWORK SPS

AC7 DS5-DS6 PLAIN CROSS SPS

AC8 DS7+DS8 DIFF CROSS SPS

AC9 DS9+DS4 PLAIN CROSS SPS

AC10 DS10-DS11 DIFF CROSS SPS

Table 11: Selected Anomaly Checkers for runs with the injection of NET_USAGE anomaly,
in descending order

4.7 discussion of the results

We discuss here the scores obtained by applying our framework on both Secure!
and jSeduite SOAs. Despite the intrinsic differences due to the application of our
framework on two different case studies, we highlight the trends that turned out
to be more relevant aggregating the results presented in Section 4.5 and Section
4.6. Data underlying the information presented here can be entirely found in [1].

4.7.1 Detection Scores

Overall, detection scores are evaluated taking FScore(2) as reference metric, since
it combines precision and recall, weighting recall as more relevant than precision,
as explained in Section 5.1. Experiments using the Secure! SOA scored higher
values than the corresponding ones obtained using jSeduite.

Looking at the scores reported in Figure 7 and Figure 9, we can observe how
both precision and recall scores are higher when analyzing traces related to
the Secure! system. It is worth mentioning the results of the NET_PERMISSION
anomaly: in both systems recall scores are very high, while precision is the
lowest with respect to the other 5 anomalies. This can be explained as follows:
several selected anomaly checkers are able to detect fluctuations related to the
injected anomaly, but indeed these checkers are affected by a huge variability of
the underlying data series, that leads them to raise a very high number of false

74

Figure 10: Sensitivity analysis of MEMORY experiments in jSeduite

alarms, thus generating low precision scores. Recall, instead, is generally low
when trying to detect CPU anomalies. In the architecture of a system, processing
units are always stimulated by a plethora of different tasks, including OS-level
operations that cannot be controlled, since they may refer to less relevant context
switches which may alter the CPU trend unpredictably. To limit the number of
false positives, anomaly checkers are forced to set their internal parameters (e.g.,
the pdv, pdf paramaters of SPS) to looser values, consequently leading to miss
some anomalies, which turns out to be FNs rather than TPs.

4.7.2 Choice of the Indicators

The large availability of indicators - and, consequently, anomaly checkers - forced
us to aggregate the FScores obtained during the training phase for each anomaly
checker, emphatizing the role of the indicators employed by the checkers. Results
are shown in Table 12. Here we report a list of the most relevant indicators
according to the strategy we used to aggregate the single scores of the anomaly
checkers, the TOP_10 Avg FScore(2). This calculates the average of the FScores
obtained during training by the best 10 anomaly checkers that use a data series -
either simple or composed - which regards a specific indicator. Looking at the
first row of Table 12, the best 10 anomaly checkers that involve the Tcp_Established
indicator as a part of the investigated data series score on average 0.21 as FScore(2)
considering all the experiments with injection of anomalies in both Secure! and
jSeduite systems.

75

Indicator TOP_10 Avg FScore(2))

Name Layer Rank Avg Secure! jSeduite

Tcp_Established NETWORK 1 0.21 0.25 0.17

Tcp_Close NETWORK 2 0.21 0.23 0.19

Tcp_TimeWait NETWORK 3 0.18 0.26 0.10

Net_Received NETWORK 4 0.15 0.18 0.14

CPU Idle Processes CENTOS 5 0.14 0.11 0.17

Buffers CENTOS 6 0.13 0.18 0.07

CurrentThreadUserTime JVM 6 0.13 0.18 0.08

CPU User Processes CENTOS 6 0.13 0.12 0.13

Minor Page Faults CENTOS 9 0.12 0.12 0.12

CurrentThreadCpuTime JVM 9 0.12 0.13 0.10

FreePhysicalMemorySize JVM 9 0.12 0.13 0.11

Tcp_Syn NETWORK 9 0.12 0.17 0.06

HeapMemUsage.committed JVM 9 0.12 0.15 0.09

Table 12: Most relevant Indicators for experiments of both Secure! and jSeduite

Further, we can observe that the 4 most relevant indicators belong to the
NETWORK layer. This is remarked in Table 13, where the TOP_10 Avg FScore(2)
was calculated aggregating all the indicators belonging to a specific layer. In
particular, NETWORK layer turned out to be the most relevant, while JVM and
OS (CENTOS) layers are a bit below on average. It is important to remark that
such tables report on average scores: having the NETWORK layer as the best on
average does not mean that the most performing anomaly checker is built on
a data series that use indicators coming from the NETWORK. Therefore, our
result is that the NETWORK layer provided on average good indicators for our
analysis such as Tcp_Established, Tcp_Close, Tcp_TimeWait, and Net_Received in
Table 12, but it is not straightforward that the best checkers for identifying -
as example - MEMORY anomalies use indicators coming from such layer. This
information is really anomaly and system-dependent and must be analyzed case
by case.

4.7.3 Contribution of the Algorithms

Along with the analysis on the most relevant layers to instrument that was
expanded before, we also analyzed the impact on the choice of the algorithms
that are implemented by the anomaly checkers. Unfortunately, in our implemen-

76

Layer
TOP_10 Avg FScore(2))

Rank Avg Secure! jSeduite

NETWORK 1 0.20 0.23 0.16

JVM 2 0.18 0.18 0.17

CENTOS 3 0.17 0.16 0.17

Table 13: Most relevant Layers to monitor for experiments regarding both Secure! and
jSeduite

tation we considered only two algorithms, namely SPS and HIST (see Section
5.3.1), which limits the number of statistics we are going to present. In fact, we
can only compare SPS and HIST algorithms to find out which one was more in
the selected anomaly checker sets selected by our framework in all the experiments
we executed. Table 14 summarizes our analysis on algorithms: we reported
average and standard deviation scores regarding three metrics. These report
on the number of checkers that are built on a given algorithm considering the
best 10 (OCC_TOP_10), best 50 (OCC_TOP_50), and best 100 (OCC_TOP_100)
checkers in each experiment building our experimental campaign.

Algorithm
OCC_TOP_10 OCC_TOP_50 OCC_TOP_100

Avg Std Avg Std Avg Std

SPS 5.50 1.76 37.90 1.01 81.60 0.65

HIST 4.50 2.56 12.10 3.18 18.40 3.00

Table 14: Algorithms contribution for experiments regarding both Secure! and jSeduite

Overall, we can notice that the number of SPS checkers, regardless the size
of the considered best checkers set, occur in a higher number. Especially when
increasing the size of the considered set, the difference between the amount
of SPS and HIST checkers becomes more evident. In particular, looking at the
OCC_TOP_100 results in Table 14, we observe that approximately 84 anomaly
checkers over the best 100 use SPS as detection algorithm. This trend is confirmed
also by the OCC_TOP_50 metric, while the OCC_TOP_10 results highlights that
the best 10 checkers are usually balanced among the two algorithms. Summariz-
ing, on average there are 4-5 HIST-based checkers that are ranked in the top 10

in our experimental campaign, while following postitions of the rank are mainly
occupied by SPS-based checkers.

77

4.7.4 Sensitivity Analysis

Also regarding the choice of the selected anomaly checkers and the anomaly threshold
parameters, differences can be observed among the two case studies. The optimal
setups for both parameters were the same i.e., F10(HALF), despite that in the
Secure! case study we observed that also the B3 setup for the selected anomaly
checkers, was sub-optimal. Overall, as shown in Figure 8 and Figure 10, scores are
generally lower in jSeduite than in the Secure! case study. In particular, precision
results are low in jSeduite, leading also to lower FScore(2) values thn in Secure!.
Recall itself is usually high - more than 80% -, representing a big achievement
keeping in mind the challenges related to perform anomaly detection in dynamic
systems.

We observe that, when possible, the framework automatically tries to balance
the average low precision score by suggesting an anomaly threshold that requires
several anomaly checkers to raise an anomaly simoultaneously, e.g., HALF, ALL.
This lowers the number of false alarms, since a consensus among different
anomaly checkers is requested, therefore limiting the fluctuations due to single
indicators that may raise anomalies that are not linked with the occurrence of
faults.

4.7.5 Summary of the Incremental Improvements

To conclude the analysis of the results, we present our resulting setup of the
framework by enphatizing the subsequent introductions of technical advance-
ments, starting from the anomaly detector running SPS in static systems which is
described in [18]. Such technical advancements have already been summarized
in Table 5. We present here the scores obtained step-by-step by considering: i) the
model of anomalies we built in this chapter, and ii) the metric scores regarding
both Secure! and jSeduite SOAs.

In Figure 11 we depicted Precision, Recall and F-Score(2) that we obtained
when we applied the above anomaly detectors to our SOAs. The figure allows
noticing that the introduction of a new technical advancement always increased
both recall and FScore(2). In particular, F-Score(2) and recall are significantly
improved when network probes are added. This can be easily explained, because
the observation of the network layer introduces new relevant data series (see
Table 13) for anomaly detection.

Instead, precision often decreases when including new data series, either
due to the instrumentation of a new layer or to the addition of the DIFF data
type (technical advancement iv in Figure 11). We explain this as follows. The
introduction of novel data series increases the number of anomaly checkers,
without the ability to distinguish which are the most effective (this is instead
done in the successive technical advancements, number v on the x-axis in Figure

78

(a) Secure! (b) jSeduite

Figure 11: Detection capabilities for the six versions of anomaly detectors regarding the
MEMORY anomaly

11). Consequently, the anomaly checkers may be able to improve detection
capability (increase of recall), at the cost of an increased number of false alarms.
This will be solved in the successive technical advancement, where information
on the context is included and it will allow improving the definition of the
expected behavior.

Lastly, the introduction of a composed data series and the inclusion of a
sensitivity analysis lead to the final version of the framework, and consequently
to the best scores in Figure 11.

4.8 performance

4.8.1 Training Time

According to our methodology, we need to build the fingerprints of the (web)
services. Here we investigate the time required to i) exercise the expected work-
load by conducting preliminary runs, and ii) analyse these data to characterize
services and to obtain the parameters that each anomaly checker requires.

In Table 15 we report the time required to execute preliminary runs: we com-
pute the time needed to test i) a single web service, and ii) all the web services
in a row (All Tests). Once preliminary runs are conducted - and services infor-
mation is stored in the database - data is analysed to select the best combination
of parameters for each considered anomaly checker. The performance of this
operation is strictly dependent on the characteristics of the anomaly checker,
and on the amount of training data that is used to select the best configuration.

Regarding anomaly checkers, we analysed the time needed to select the best
configuration using the data related to experiments conducted on Secure!. We

79

Service Single Test

Name Type Average St.Dev

Authentication_getCredentials Authentication 8.88 0.60

WT_addBookmark Serv. Test 13.25 1.22

WT_addBookmarkFolder Serv. Test 9.35 0.65

WT_addEventInCalendar Serv. Test 11.05 0.86

WT_addFiles Serv. Test 11.25 0.43

WT_createFolder Serv. Test 12.10 0.94

WT_deleteFolder Serv. Test 10.97 0.22

WT_getBookmarkFolder Serv. Test 16.36 4.16

WT_getFolder Serv. Test 11.06 0.22

WT_newPoll Serv. Test 9.55 1.24

WT_removeEventInCalendar Serv. Test 10.39 0.50

All Tests Test All 72.98 7.65

All Services Workload 64.04 5.87

Table 15: Execution Time of Tests and Workload

analysed all the 478 training runs, that corresponds to 100 golden runs and 63

runs for each of the 6 anomalies of our experimental evaluation. For (average,
median, standard deviation), the SPS anomaly checkers measured (42.68, 42.21,
1.15) ms, while the HIST measured (0.45, 0.33, 0.19) ms. While these times are
short, we remark that they are related to the analysis of a single anomaly checker.
In the worst case, when all the possible 1004 anomaly checkers are considered,
we respectively need 1348.9 and 14.2 seconds to select the best configurations of
anomaly checkers for SPS and HIST for a single set of 63 training runs.

4.8.2 Notification Time

After discussing the time needed for training, it is important to evaluate how
fast the response of the framework is. An anomaly detector that is not able to
provide a quick anomaly evaluation could be useless although it performs a
very efficient detection of anomalies.

To evaluate the notification time, we analyze the observation time (ot), probe-
monitor transmission time (pmtt), data aggregation time (dat), and detection time (dt)
quantities related to the experiments. To understand the impact that the setup
of the probing system has on the notification time, we exercised the AllServices
workload on the Secure! system with different setups of the probes. We used the

80

same setup described in Section 4.4, without injecting any anomaly. We collected
performance data of 100 golden runs for each of the following setups of the
probes:

• Single Indicator: data related to a single indicator per layer is read i.e., JVM
SessionCounter, CentOS Buffers, Network Tcp_Syn;

• Half Indicators: a few indicators are monitored during each run i.e., 15

CentOS, 4 Network, 7 JVM;

• All Indicators: all the indicators are observed for each layer i.e., 23 CentOS,
7 Network, 25 JVM. This is the setup that was adopted in the experimental
campaigns we presented previously;

• No CentOS: the probes monitoring the CentOS layer are disabled;

• No Network: the probes monitoring the Network layer are disabled;

• No JVM: the probes monitoring the JVM layer are disabled;

As scoring metric, we considered precision, while the selected anomaly checkers
and anomaly treshold parameters were respectively set to BEST 10 and ALL, as it
results from the sensitivity analysis related to such data.

The results of such experiments are reported in Table 16. It can be noted
that the task that needs more time to be completed is the transmission of the
information from the Target Machine to the Detector Machine. In fact, the time
quantity pmtt represents on average the 53% of the whole notification time (see
last row of the table. The detection time is short, scoring on average the 8% of nt:
these performances are strictly related both to the number and to the type of the
anomaly detectors that need to be checked on each step. While HIST checkers
need on average 10 µs to execute their tasks, the SPS ones need on average 320

µs each with the current hardware setup of the machines in which we ran the
experiments. This means that if the selected anomaly checkers set is mainly built of
SPS chechers, the time needed for detection is supposed to grow.

Moreover, we observe that the time spent from the probes in retrieving data
(ot) is not too dependent on the amount of indicators from the same layer we
consider. We can also observe that despite the ot seems strongly dependent
on the number of observed indicators (the value in the experiment “many
indicators” is doubled compared to the “less indicators” or “single indicator”
one in Table 16), from the last experiment we can observe how the ot value is
significantly lower if we do not consider the JVM probe. For each indicator, this
probe activates the JMX primitives, asking to JVM to look at different MBeans.
CentOS and Network probes, instead, use UNIX primitives (e.g., top command,
reading /proc/vmstat file) which retrieve the whole block of possible indicators,
so selecting all or only a small subset of them will not heavily affect the ot value.

81

Probing Setup
ot pmtt dat

avg std % nt avg std % nt avg std % nt

Single Indicator 6.32 0.50 30.6 12.01 41.89 58.2 0.38 0.01 1.8

Half Indicators 6.06 0.95 27.5 12.25 39.76 55.7 0.52 0.07 2.3

All Indicators 11.72 1.35 37.5 15.49 49.63 49.5 1.46 3.05 4.7

No CentOS 12.66 0.52 41.5 15.31 32.33 50.1 1.26 2.23 4.1

No Network 12.75 0.39 39.7 15.95 35.07 49.7 0.95 0.08 3.0

No JVM 6.83 0.92 31.4 12.70 20.68 58.3 0.50 0.10 2.3

Average % 34.7 53.6 3.0

Probing Setup
dt nt

avg std % nt avg std

Single Indicator 1.93 0.32 9.4 20.64 42.72

Half Indicators 3.18 0.96 14.4 22.01 41.74

All Indicators 2.61 0.49 8.4 31.28 54.52

No CentOS 1.31 0.17 4.3 30.54 35.25

No Network 2.44 0.41 7.6 32.10 35.96

No JVM 1.75 0.21 8.0 21.79 21.91

Average % 8.7

Table 16: Estimation of the notification time with different setups of the probing system.
Results are reported in milliseconds

Summarizing, also with the setup of the machines that could be improved
both in terms of hardware and network speed, the notification time nt is very
challenging for non-real time systems. However, it might be needed to look
at a bigger set of indicators of to use more predictors for anomaly detection
purposes. This would lead to a wider time window between the observation
of a system snapshot and the possible anomaly notification, slowdowning the
whole process.

5
M A D N E S S : A M U LT I - L AY E R A N O M A LY D E T E C T I O N
F R A M E W O R K F O R D Y N A M I C C O M P L E X S Y S T E M S

This section presents the main results of this Thesis. More in detail, we first
expand the design guidelines we extracted from the experiments we run and
discussed previously; then, such guidelines are implemented in the MADneSs
framework.

5.1 designing a framework for anomaly detection

Here we explore the main design principles - summarized as viewpoints (VP)
- behind a monitoring framework for anomaly detection, highlighting: i) the
purpose of the framework, ii) the investigated anomalies, iii) the monitoring
approach, iv) the indicators to be monitored, and v) the anomaly detection
technique. In Table 1 we reported several frameworks obtained through a non-
systematic literature review in which authors adopted different approaches to
solve the design challenges discussed below. In Table 17, instead, we grouped
all the relevant characteristics of such frameworks according to the viewpoints
that are discussed in this section.

5.1.1 Viewpoints

Here we summarize different ways to design, develop and maintain dependable
and/or secure complex systems as viewpoints. More in detail, these viewpoints
are dimensions of analysis for designing a monitoring and anomaly detection
framework for complex systems. In particular, we will expand and focus on
the viewpoints purpose, anomalies, monitoring approach, selected indicators, detection
algorithm.

VP: Purpose

As discussed in Section 2.4, anomaly detection was proven effective to the
purpose of security and dependability. Depending on the specific needs of
the administrator or the owner of the system, a monitoring framework can
be designed to prioritize security (e.g., intrusion detection) or dependability
(e.g., error detection, failure prediction) through the identification of anomalous
behaviors. This choice influences the whole planning of the framework, defining
the threats we want to detect.

83

84

approaches in existing frameworks The frameworks in Table 17 are
meant to conduct anomaly detection for different purposes. Frameworks for
error detection [9] investigate anomalies to interrupt the fault-error-failure chain.
Failure predictors [11], [101], [73] assume that errors already manifested in
the system, and try to avoid their escalation in failures or the propagation to
unsafe states. In the security domain, we can classify i) intrusion detectors
[74], [87], which represent a security layer preventing or blocking possible
malicious attacks, and ii) malware detectors, which analyse the system to identify
anomalous behaviours due to malicious modules that are already infecting the
system. Frameworks aiming at detecting malware through anomaly detection
are not reported in the table since they are mainly directed to standalone mobile
devices.

VP: Anomalies

Right after the choice of the purpose of the framework, a deep analysis of
the system is needed to clarify which can be the sources of errors that may
damage the system while executing. Once the major sources of possible errors
will be identified, we can proceed to set the anomaly detector to look at specific
parts of the system that are related to such root causes. In fact, anomalies
are consequences of the manifestation of errors, and their definition is a key
activity while organizing a monitoring framework, since it helps tracing the
boundaries between normal and anomalous behaviors for the part of the system being
intrumented with probes. Beyond that, a key advantage of anomaly detection
with respect to - as example - pattern or fingerprint based detectors is that
in some cases the manifestation of unknown errors or zero-day attacks may
generate anomalies that are detected by the framework also if it is not specifically
targeting them. However, this will happen only when the expectations - or rather
what the system is intended to do during its normal behavior - are clearly
defined. To such extent, anomalies can either be defined as unexpected usage
of resources, or suspicious requests to modules, or new actions taken by users
without previous acknowledgment.

approaches in existing frameworks Almost all the anomaly detectors
investigate anomalies related to resource usage. This has key drawbacks when
monitoring for intrusion detection [74], [87], because common attacks such
as Denial of Service or Ping Flood conduct an abnormal number of requests to
the targeted system through the network to damage the normal operations.
However, when monitoring for dependability, an anomalous usage of system
resources such as i) memory and CPU [101], [9], ii) disk accesses [92], [73], iii)
network-only detectors [11], or iv) logs [41], may be due to the activation of
some errors in one of the service or module composing the system. Instead,
only a few studies focus the attention on anomalies due to misconfiguration or

85

wrong interactions [9], [67]; these are usually harder to define and also to detect,
making the implementation of a framework targeting such specific aspects more
complex.

8
6

Framework Purpose Anomalies Monitoring
Approach

Selected Indicators Detection
Algorithm

ALERT [92] Dependability Resource Usage Distributed From IBM SystemS,
PlanetLab layers

Decision Tree
Classifier

CASPER [11] Dependability Resource Usage Centralized Network layer Hidden Markov
Models

[9] Dependability Reconfiguration,
Misconfiguration,
Resource Usage

Distributed CPU, Memory usage,
Network layer

Invariants

SEAD [73] Dependability Resource Usage Centralized Dom0 and Xen
Hypervisor layers

Support Vector
Machines

TIRESIAS
[101]

Dependability Resource Usage Distributed CPU, Memory Usage,
Context Switches

Dispersion Frame
Technique

[41] Dependability Resource Usage Distributed log files Finite State
Automation

SSC [87] Security Resource Usage Centralized proc, sysinfo UNIX data,
JVM

Most Appropriate
Collaborative
Component

Selection

McPAD [74] Security Payload Centralized HTTP data exchange Support Vector
Machines

Table 17: Characteristics of the Framework according to Viewpoints

87

(a) Centralized Approach (b) Distributed Approach

Figure 12: Centralized and Distributed Approaches

VP: Monitoring Approach

Different monitoring approaches [55], [65], [103] can be adopted depending on
where the data analysis engine e.g., the anomaly detector, is executed. Moreover,
data sets storing historical or generic support data that are used for analyses
can be i) put on an external machine coordinating the monitoring and data
analysis activities, or ii) distributed on the target nodes of the complex system.
This results in the following two monitoring and data analysis approaches, as it
can be seen in Figure 12.

centralized approach An external coordinator (Detector Machine) man-
ages both monitoring and data analyses activities. It sends basic rules to setup
the probes on the Target Machine(s) and waits for monitored data, that is gath-
ered by the probes on the Target Machine(s) and is directly sent to the Detector
Machine without performing any additional operation. The Detector Machine
also keeps track of historical or support data to assist anomaly detection. Once
received, monitored data is analyzed for anomaly detection purpose, and even-
tually an alert is raised to the administrator if anomalies are detected (see Figure
12a).

distributed approach In this setup, the coordinator only provides to
Target Machines policies or rules for data collection and analysis e.g., set of
indicators to monitor, thresholds or parameters of the anomaly detector (see
Figure 12b). This allows the Target Machines to share a common core of parame-
ters for data analysis. With this approach, the coordinator does not represent a
bottleneck; instead, each Target Machine must allow running custom tasks that
may drain system resources, negatively impacting on system performances.

88

approaches in existing frameworks Depending on the context, frame-
works for anomaly detection can be designed to centralize or decentralize the
heaviest computing operations. Distributing operations [92], [41] reduces the
bottleneck around the coordinator, but requires well-developed distribution of
loads and tasks among the target machines. Nevertheless, the surveyed anomaly
detection frameworks [74], [87] targeting security do not usually consider a
distributed data analysis approach. Instead, the preferred method is to send
collected data to a central elaboration unit. This does not allow sharing param-
eters of the anomaly detection strategy with all the target machines, blocking
adversaries that want to intercept such communications in order to read, corrupt
or modify such critical parameters.

VP: Selection of Indicators

Nowadays software is becoming more complex and consequently a large num-
ber of performance indicators e.g., memory usage, cache hits, packets shared
through the network, can be captured by specific probes at defined time instants.
Observing indicators related to different layers of the system e.g., OS, network,
database can provide a more accurate view of the system. The observed data
needs to be transmitted and analyzed continuously, potentially slowdowning the
monitored system. Thus, it becomes fundamental to select only those indicators
that are most useful to detect anomalies. [52]

In fact, previous research shows that even in a complex system the set of
relevant variables is typically quite small [50]. Moreover, depending on the
specific analyses that will be conducted using the monitored data, indicators can
be classified extracting a minimum set that allows reaching defined performance
scores. For example, sets of indicators were extracted targeting failure prediction
[52], anomaly detection through invariants [9] and errors due to software faults
[18].

An important remark should be done to consider the requirement of having
all target machines synchronized to a global time. Otherwise, it is not possible
to build a reasonable global time base. This affects our ability of merging infor-
mation coming from different target machines ultimately providing polluted
data to the data analysis modules. For example, consider the final report about
a major power blackout occurred in parts of the US and Canada in 2003. Here
the authors declare that i) the Task Force’s investigators labored over thousands
of items to determine the sequence of events, and that ii) the process would
have been faster and easier if there had been wider use of synchronized data
recording devices [60].

approaches in existing frameworks Most of the anomaly detectors
observe performance indicators targeting OS [101], [9] and network [11], [101],
[92], [74] layers. We explain this results as follows: i) these layers are always

89

present in a complex system, and ii) enterprise monitoring tools [3], [2], [5]
offer probes to observe these two layers. Moreover, several indicators regarding
the memory and cache management can be retrieved only at OS-level, because
middleware e.g., JVM, application servers such as Apache Tomcat, act at a higher
stack level.

VP: Detection Algorithm

As highlighted in [25], a key aspect of any anomaly detection technique is the
nature of the input data. Each data instance might consist of only one attribute
(univariate) or multiple attributes (multivariate). In the case of multivariate data
instances, all attributes might be of same type or might be a mixture of different
data types. The nature of attributes determines the applicability of anomaly
detection techniques. For example, for statistical techniques [89] specific statis-
tical models have to be used for continuous and discrete data. Similarly, for
nearest-neighbour-based techniques [79], the nature of attributes would deter-
mine the distance measure to be used. Moreover, when aggregated measures
instead of raw data are provided e.g., distance or similarity matrix, techniques
that require original data instances such as classification-based techniques [35]
are not applicable. Most of the techniques mentioned above need training data
to learn the characteristics of both normal and anomalous instances to classify
probes’ data. Focusing on complex systems, we observe that these systems can
be characterized by intrinsic dynamicity, often changing their behaviour and,
consequently, the characteristics of both normal and anomalous behaviours. This
calls for a new training phase, requiring i) to collect train data and ii) to find the
optimal parameters related to the chosen techniques.

When dynamicity is very high, training can overcome the normal activity of
the system, resulting in large periods of unavailability of the anomaly detector
and slowdowning the usual tasks that run on the Target Machine(s). This means
that anomaly detection techniques that do not need exhaustive sets of training
data i.e., unsupervised detection algorithms, are more suitable because they do not
require periods of unavailability for training [18], [90].

approaches in existing frameworks Different studies adopt different
data analysis approaches: as explored in [25], specific anomaly detection ap-
proaches call for a suitable anomaly detection algorithm or technique. This
results in a widespread use of statistical (3 out of 9 in Table 17) and machine
learning (4 out of 9) algorithms, while [9] and [87] respectively score anoma-
lies using invariants and components selection. As already expanded, despite
the fact that statistical and machine learning worked very well in the studies
reported in Table 17, from the complex-systems perspective the usage of these
algorithms raises important concerns that cannot be ignored.

90

5.1.2 Performance

To guarantee the best support either for dependability or security purposes,
anomaly detectors are intended to analyze monitored data and provide their
results rapidly and with a low number of wrong interpretations. Consequently,
the notification time, or rather the time between the observation of system data
through probes and the evaluation of its anomaly degree, should be minimized.
Moreover, an inaccurate evaluation can result in i) false positives, which can cause
the execution of non-required reaction strategies by the administrator, or ii)
missed detections (false negatives), with possible severe consequences.

Taking into account the following performance targets is mandatory and it
has to be part of the development phase of anomaly detection frameworks.

Detection Performance

Depending on the purposes of the targeted complex system, the reference
metric may change: for example, in systems where false negatives (i.e., missed
detection of an anomaly) can heavily impact the system, recall is more relevant
than precision. Instead, when detection of anomalies (both TP and FP) calls for
expensive reaction strategies, FP must be minimized, thus emphasizing precision
more than recall.

Notification Time

Another performance index that needs to be addressed is the notification time,
that is the time between the observation of a data instance and its evaluation.
This quantity can be considered as a composition of (see Figure 13):

• observation time (ot): the time slot spent from the probing system to get
system data by the probes;

• probe-monitor transmission time (pmtt): the time needed to transmit all
the observed data to the monitor

• data aggregation time (dat): the time used by the monitor to aggregate
and parse the received data

• storing time (st): time spent from the monitor to store the aggregated data
in the chosen data container;

• monitor-detector transmission time (mdtt): the time needed to transmit
the data aggregated from the monitor to the anomaly detector tool;

• detector time (dt): the time used for the anomaly detector to compute its
calculations based also on previously collected historical data;

91

• alert time (at): the time needed to deliver the anomaly alert to the system
administrator.

Figure 13: Time quantities through the workflow

Depending on the chosen monitoring approach, these quantities can be com-
bined to obtain the notification time (nt) as follows.

centralized In this approach, the coordinator i) runs the monitor and the
anomaly detector and ii) hosts the database in which support data (if any) are
stored. Considering the anomaly alert as a simple notification e.g., text message
or email, the quantities mdtt and at may represent negligible instants of time.
Assuming nt as the notification time, in such a context its value is expressed as
the linear combination of the remaining quantities:

nt = ot+ pmtt+ dat+ st+ dt

When collected data do not need to be stored for further analyses, the quantity
st can be considered null, thus resulting in a notification time that is calculated
as

nt = ot+ pmtt+ dat+ dt

distributed Monitoring and data analysis logic are placed on the Target
System(s), while the coordinator supports these activities providing parameters

92

or rules e.g., set of indicators to monitor, rules for anomaly detection. Conse-
quently, each target machine should run dedicated modules that can interfere
with the tasks that are usually executed on its target machine resulting in a
higher intrusiveness level that needs to be taken into account. Nevertheless,
considering that i) data can be stored in the database simultaneously with the
aggregations performed by the monitor, and ii) the possible alert needs to be
forwarded to the coordinator, the nt can be estimated as:

nt = ot+max{dat, st}+ dt+ at

5.2 our framework for anomaly detection in dynamic systems

5.2.1 Multi-Layer Monitoring

Our approach consists in shifting the observation perspective from the applica-
tion layer where the services reside to the underlying layers such as operating
systems, application servers, network protocols [105] or databases [57]. Anoma-
lous behaviors generated by services e.g., due to manifestation of errors or
attacks, can be detected observing exclusively data gathered from the under-
lying system layers. Consequently, we apply a multi-layer monitoring strategy
(CH.3). The system layers that we chose to instrument are the OS, the network,
and the Java-based middleware. We choose to investigate indicators related to
such layers since in a system OS and network are common layers, while Java con-
stitutes the basic virtual machine to execute several applications or middleware
e.g., Apache Tomcat or JBoss.

5.2.2 Detection Algorithm

Monitored data is processed by the selected anomaly detection techniques. To
cope with the dynamicity of the system, adaptive anomaly detection techniques
need to have their parameters adapted to the current context (CH.1). In particular,
we propose to: i) check if the current data instance complies with the expectations
we previously extracted digging historical data, and ii) run a suitable anomaly
detection algorithm such as the Statistical Predictor and Safety Margin (SPS, [14])
algorithm.

In general, this self-adaptive algorithm allows detecting the observations that
do not follow the statistical inertia of a data series with reduced computational
or memory demands (CH.1, CH.4) [14], [18]. However, they are effective in iden-
tifying point anomalies, lacking in identifying groups of subsequent anomalies
(collective anomalies).

93

5.2.3 Context-awareness and Contextual Information

Server-side context awareness and the resulting contextual information can
facilitate the description of the expected behaviour of the services (CH.1, CH.3).
In our approach, contextual information has a key role in defining the boundaries
between expected and anomalous behaviour of the system.

We aim at taking advantage of contextual information to characterize the
expected behaviour of the system during the execution of a service, ultimately
building a fingerprint of its usage. More in detail, we need to describe the
expected trend of monitored indicators while the service is invoked. Observing
the ESB, the fingerprint is created when the addition, update or removal of
a service is detected. Then, this information is aggregated and maintained in
a database, together with statistical indexes e.g., mean or median, whenever
applicable, to support anomaly detection.

5.2.4 Composed data series

Relations between different indicators are often difficult to catch. A possible
approach based on invariant properties was proposed in [9] to detect anomalies.
Briefly, invariants are stable relations among system indicators that are expected
to hold during normal operating conditions: a broken invariant reflects an
anomalous state of the system. Unfortunately, considering an invariant as a
stable relation is not valid, therefore the usage of invariants calls for dedicated
selection strategies that are difficult to define and update, and heavy to execute.
Therefore, we choose to model relations between indicators by interpreting data
series as sequences of data points obtained through the combination of two or
more data series (CH.2). The result is a composed data series, which can be
analysed as any other data series related to a single indicator. Consequently, in
the rest of the paper we distinguish between simple data series and composed
data series.

Further, initial training allows selecting the indicators that are relevant to
detect anomalies; online training (performed when new fingerprints are defined)
allows updating such list of indicators according to the current context (CH.5).

5.2.5 Facing Point, Contextual and Collective Anomalies

We explore how the considered techniques cooperate to detect point, contextual,
and collective anomalies (CH.4). According to this classification, in Table 18

we reported the techniques that we adopted in our approach together with
the anomalies they can detect. In particular, unsupervised anomaly detection
algorithms such as SPS are meant to identify values that do not follow the

94

statistical inertia of the data series under study, and consequently is suitable for
detecting point anomalies.

Anomaly
Type

Technique Requirements

Point Unsupervised
Detection Algorithm

(SPS)

Training of SPS

Contextual Contextual Check Gathering data about expected
behavior of services

Collective Unsupervised
Detection Algorithm

(SPS), Contextual
Check involving

Complex Data Series

Training of SPS, Gathering data
about expected behavior of

services, Definition of relations
among simple data series

Table 18: Techniques for detecting categories [25] of anomalies.

Contextual information makes us able to check if the observed behaviour
is compliant with the expected behaviour i.e., perform a contextual check.
Consequently, this makes it possible to identify several contextual anomalies.

Dealing with collective anomalies is generally more difficult. In some cases,
the checks that label a single data instance as either point or contextual anomaly
can also successfully identify collective anomalies, or rather multiple anomalous
data instances. However, collective anomalies may not differ significantly from
the expected trend in a given context, or they can be erroneously evaluated as a
new trend resulting from system dynamics. To cope with this specific category
of anomalies, we adopt composed data series. This allows describing complex
relations between indicators, possibly leading to identify collective anomalies.

5.2.6 Online Training

When dealing with dynamic systems, frequent training phases are needed to
keep the parameters and the anomaly checkers compliant with the current
notion of expected and anomalous behavior. Several authors [63], [45], [86], [83]
working on detector or predictors in the context of complex systems proposed
an online training approach.

A strong support to the design of online training techniques comes from
systems that continuously monitor trajectories. Often, these systems try to adapt
detector’s parameters as they evolve to understand if they are following expected
or anomalous paths (see conformal anomaly detection [63]). In [45], authors

95

tackle online training for failure prediction purposes i) continuously increasing
the training set during the system operation, and ii) dynamically modifying the
rules of failure patterns by tracing prediction accuracy at runtime. A similar
approach is also adopted to model up-to-date Finite State Automata tailored on
sequences of system calls for anomaly-based intrusion detection purposes [86]
or Hidden Semi Markov Models targeting online failure prediction [83].

When the target system is dynamic, it may change its behavior in different
ways, triggering new training phases aimed at defining the “new” expected
behavior. Moreover, according to [45], the training set is continuously enriched
by the data collected during the executions of services, providing wide and
updated datasets that can be used for training purposes. This training phase
starts once one of the triggers is activated. We are currently using three triggers
that can be detected looking at the SOA and system setups: i) update of the
workload, ii) addition or update of a web service in the platform, iii) hardware
update.

5.3 instantiation of madness

Here we describe the MADneSs framework, that implements the design choices
described and motivated before.

5.3.1 High-Level View

In Figure 14 we depict a high level view of MADneSs; from left to right, the
framework can be described as follows. The users execute a workload, which
is a sequence of invocations of services hosted on several physical or virtual
machines. One or more host machines can be monitored, thus becoming the
Target Machines, as shown in the bottom left of the figure. In each target machine,
probes observe the performance indicators related to 3 different system layers: i)
OS, ii) middleware (Java Virtual Machine, JVM) and iii) network. These probes
repeatedly collect data at specific time instants, which is then aggregated in a
snapshot of the system hosted on the Target Machine, which therefore contains
the observation of indicators retrieved at a defined time instant. The probes
forward the snapshot to the communication handler, which encapsulates and
sends the snapshot to the communication handler of the Detector Machine. Here,
the anomaly detection module analyzes such monitored data.

Performing data analysis on a separate machine allows i) reducing intrusive-
ness on the Target Machine (CH.2), and ii) connecting more Target Machines to
the same Detector Machine. The Target Machines are instrumented with custom
probes, which have only basic functionalities to minimize the disturbance of
target system (CH.3). The communication handler of the Detector Machine
collects and sends the snapshots to the monitor aggregator, which merges them

96

Figure 14: High-Level view of MADneSs

with a fingerprint of each service that is obtained through tests and stored in
the database (see the bottom-right of Figure 14) for further comparisons. More in
details, once changes in the services are detected, tests are run (test invocation)
to gather a novel or updated fingerprint of the services. In our implementation,
the fingerprint is composed from contextual information extracted from the
integration layer of the complex system (i.e., the Enterprise Service Bus, ESB in
SOAs). When a snapshot is sent to the Anomaly Detection module, it queries
the database for services fingerprints, which are used to analyze the snapshot.
If the snapshot is evaluated as anomalous, an alert is raised, e.g., the system
administrator is notified. Possible countermeasures or reaction strategies are
outside from the scope of this work and will not be elaborated further.

Insights on Monitor Aggregator

Periodically, e.g., once per second, the Monitor Aggregator of the Detector Machine
in Figure 14 provides to the anomaly detection module a snapshot of the
observed system, composed of the quantities retrieved from the probes installed
on the Target Machine(s). For each indicator, two quantities are provided: i)
PLAIN: the current observation read by the probes, and ii) DIFF: the difference
among the current PLAIN value and the previous one.

The aggregation of data coming from probes is managed by a CEP. Such
module has been developed specifically to process huge amounts of data in
near real-time, ultimately facilitating collection and aggregation of data from

97

different Target Machines, managing the different data flows in parallel. Further,
it facilitates the combination of snapshots and fingerprints performed by the
Monitor Aggregator, and their usage by the Anomaly Detection module.

Insights on Anomaly Detector

The Anomaly Detection module includes a set of anomaly checkers. An anomaly
checker is assigned to a given data series, and evaluates if the current value
of the selected data series is anomalous or expected following a set of given
rules. More anomaly checkers can be created for the same data series: given
a snapshot as input, each anomaly checker produces an anomaly score. Some
of them are selected according to a given metric e.g., F-Score(2), building the
selected anomaly checker set. The individual outcomes of each selected anomaly
checker is then combined to decide if an anomaly is suspected for the current
snapshot. Consequently, an anomaly is raised only if this combined score mets
or exceeds a given anomaly treshold.

5.3.2 Methodology to Execute the Framework

The methodology to exercise MADneSs is composed of two steps that can
be repeated when major reconfigurations occur: Training Phase and Runtime
Execution.

Training Phase

This phase is organized in two steps. In the first step, fingerprints of the services
are obtained through the test invocation in Figure 15. Then, preliminary runs
exercising the expected workload are executed, storing the retrieved data in the
database. Preliminary runs are conducted by either i) observing the behavior of
the system through functional tests, or ii) injecting anomalies in one of the SOA
services, and observing the effects they generate on the monitored indicators.
The service in which anomalies are injected may be a custom service devoted
exclusively to testing, allowing to modify its source code. This strategy results
particularly useful when it is not feasible to perform injections into the services
exposed by the target system.

During this step, the services are not opened to users, which consequently are
waiting until the SOA is available again. If the SOA is deployed for its first time,
the deploy is completed only after step i) and ii) are completed. Once the SOA is
available to users, it is expected that only few services will be updated each time,
requiring only specific tests and consequently only short periods of unavailability.
Moreover, to avoid bothering the user, preliminary runs can be exercised in low
peak load periods such as at night or on mirror systems. Scalability and possible

98

Figure 15: Methodology to exercise MADneSs

solutions to reduce training times are respectively explored in Section 5.5 and
Section 5.2.6.

In the second step, services information and data extracted from preliminary
runs are used by the anomaly detection module to train its parameters (CH.1),
automatically choosing the more profitable selected anomaly checkers and the
anomaly threshold.

Runtime Execution

The Monitor Aggregator merges each snapshot with the fingerprints represent-
ing contextual information, sending them to the anomaly detection module.
Depending on the results of the analysis performed by the anomaly detection
module, an anomaly alert is raised; for example, a mail notification is issued
to an administrator. If a service update is detected during this phase, a new
training phase is scheduled. The scheduling policy is strictly dependent on the
characteristics of the system, and it is outside of the scope of the MADneSs
engine.

5.3.3 Implementation Details and Requirements

The framework is meant to work with the aim of identifying any of the 6

anomalies we described in our model of anomalies in Section 4.2. However,
different model of anomalies can be adopted, calling for novel studies on the
effectiveness of MADneSs in identifying such specific kinds of anomalies.

99

To run the framework, it is required to work with two machines, that we
labeled as Target and Detector Machines. Target Machine(s) identify virtual or
physical machines which host a part of a complex system, or the complex system
as a whole. We assume that the Target Machine(s) have a Linux OS and use
a Java-based application server to deploy (web)services to allow our probing
system to perform effectively. The architecture of MADneSs is meant to scale
when monitoring more than a Target Machine, keeping the monitored data
flows separate. The Detector Machine must be able to run a Java software based
on the Complex Event Processor Esper, that is an open-source software based
on Event Stream Processing techniques. In particular, the Anomaly Detection
module is realized in a multithreading code that fetches the data from a MySQL
database and instantiates the anomaly checkers on the data series provided by
the Monitor Aggregator. The test invocations are generated through a sequence of
SOAP services calls, which are executed through Apache AXIS primitives.

5.4 complexity analysis

The time needed to select the best parameters’ setup for each algorithm is linear
to the number of runs used for training. Let us consider te as the number of
training runs, while O(SPS) and O(HIST) represent the computational complexity
to train a given checker respectively for SPS and HIST using data from a single
run. It follows that the worst-case complexity to select the best configuration of
a generic checker on a single experiment can be approximated as

O(te) ∗max{O(SPS),O(HIST)}

In other words, the complexity of the training phase is strictly related to the
complexity of the heaviest anomaly detection algorithm implemented (SPS in
our case).

5.5 scalability

Here we argument how our framework can scale when varying the resources
of the Detector Machine, the number of connected Target Machines, and the
monitored data.

5.5.1 Impact of Training

Once preliminary runs are executed, collected data is aggregated by the monitor
and sent to the anomaly detector, who chooses the selected anomaly checkers
and the most profitable anomaly treshold. This requires testing combinations of
data series and detection algorithms. The cost of this operation has a linear

100

growth with respect to the number of data series and detection algorithms. In
general, the higher is the number of data series to test, the higher is the time
needed to complete the training. However, some algorithms may require short
periods of training, since they either have a limited set of parameters to select or
simpler strategies: this is the case of the historical checker (HIST). Instead, other
algorithms, such as SPS, have more parameters that need to be instantiated.

5.5.2 Impacts on Runtime Execution

In Section 3.5.2 we analyzed the intrusiveness of system probes for OS and JVM,
and the network load required to transfer monitored data to a remote Detector
Machine. Although the analysis did not consider network probes and the data
processing was much simpler than ours, main results are still valid. Moreover,
in [21] we empirically demonstrated that we were able to aggregate, process
and analyze data coming from 5 different Target Machines at the same time.
This is adequate for the Secure! system as it is composed of four machines,
while jSeduite can be distributed on a number of machines that can be defined
depending on the specific installation.

Further, in Section 4.8.2 we computed the time elapsed from the observation
of a snapshot on the Target Machine until its evaluation. This time is 32.10± 5.99
ms in our experiments. It is considered fully adequate for the Secure! and
jSeduite systems, because it is significantly lower than the reaction time of the
administrator that receives notifications.

6
B E Y O N D M A D N E S S

After presenting and discussing MADneSs, we expand here possible future
implications of the strategies we listed in this Thesis.

6.1 moving to systems of systems

As remarked in [23], several definitions of Systems-of-Systems (SoS) have been
proposed in the literature according to real-world applications in different areas,
including dependability [73] and security [87]. According to [53], we consider
that an SoS is an integration of a finite number of Constituent Systems which are
independent and operable, and which are networked together for a period of time to
achieve a certain higher goal. Constituent Systems (CSs) can either be existing
legacy systems or newly developed components and they may include physical
objects and humans: a CS is an autonomous subsystem of an SoS, consisting of
computer systems and possibly of controlled objects and/or human role players
that interact to provide a given service [70].

An SoS may have different degrees of control and coordination [39], iden-
tifying four categories, namely directed, acknowledged, collaborative and virtual.
A directed SoS is managed by a central authority providing a clear objective
to which each CS is subordinate; the CSs that form the SoS may operate inde-
pendently, but they are subordinated to the central purpose. An acknowledged
SoS has a clear objective but the CSs might be under their own control thus
funding an authority in parallel with the SoS. In a collaborative SoS, the central
management organization does not have coercive power and CSs act together to
address shared common interests. Finally, a virtual SoS has no clear objective and
its CSs do not even know one another. The degree of control and coordinated
management of the CSs that form the SoS is relatively tight in a directed SoS,
but it gets looser as we move to the acknowledged, collaborative and finally
virtual category.

6.2 characteristics of soss

The challenges posed to design, develop and maintain dependable and/or secure
SoSs can be summarized as characteristics, or rather dimensions of analysis
for such SoSs. In particular, we will expand here architecture, dynamicity and
evolution, emergence, governance, time, dependability and security.

101

102

6.2.1 Architecture

The architecture of an SoS can be defined in terms of heterogeneous CSs inter-
acting through cyber or physical channels. In [39], authors define an interface
of a CS as the module where the services of a CS are offered to other CSs. This
is called Relied Upon Interface (RUI). In particular, this interface among CSs is
“relied upon” with respect to the SoS, since the service of the SoS as a whole
(the macro-level) relies on the services provided by the respective CSs across
the RUIs. Different instantiations of this RUI may exist [61], [39], depending i)
on the kind of data exchanged, and ii) on the way the services are provided
to other CSs. More in detail, Relied Upon Message Interfaces (RUMIs) establish
the cyber data that are exchanged and the timing of message exchange, while
Relied Upon Physical Interfaces (RUPIs) enable the physical exchange of things
or energy among CSs. Lastly, Relied upon Services (RUSs) define how (part of) a
CS is offered as a service through a RUI providing itself under a given Service
Level Agreement (SLA).

Architectures of dependable and secure applications can be characterized as
mixed-criticality architectures, where different parts of the system have different
dependability and security requirements. To cope with this issue, in [16] authors
propose architectural hybridization [97], where different subsets of requirements
are satisfied in different parts of the target system.

6.2.2 Evolution and Dynamicity

Dynamicity and evolution are two important challenges of SoS and they have
effects on security and dependability requirements. Dynamicity refers to short-
term changes of the SoS e.g., in response to environmental variations or compo-
nents failures. Evolution, instead, refers to long-term changes that are required
to accomplish variations of the requirements in face of an ever-changing envi-
ronment [53], [16].

6.2.3 Emergence

An emergent phenomenon manifests when CSs act together, and the emergent
phenomenon is not observable by looking at single CSs separately. For instance,
if a crowd enters a narrow alley then it alters its movements, individuals reduce
their pace in order to avoid hitting or getting too close to others in front. This
collaborative behavior does not emerge if we consider individuals separately:
this means that an SoS is not just the sum of its CSs. Emergence can be expected
or unexpected, detrimental or non-detrimental [62]. Non-detrimental are for
example self-organization and evolution of biological systems, while detrimental
are for example traffic jams due to the interaction of single cars. Moreover,

103

emergence can be expected or unexpected. In particular, detrimental unexpected
emergent phenomena may expose vulnerabilities or lead to novel faults that are
consequently difficult to tolerate [67].

6.2.4 Governance

Distributed ownership of individual components is a challenge for any complex
system [71], which is usually an ensemble of existing systems, including third-
party, OTS or more in general non-proprietary components. SoS governance is
significantly more complicated and must change to accommodate the business
requirements of an SoS.

6.2.5 Time

In a recent report from the GAO to the US Congress it is noted that a global
notion of time is required in nearly all infrastructure SoSs, such as telecommuni-
cation, transportation, energy, etc. In large cyber-physical SoSs the availability
of a global sparse time is fundamental to reduce the cognitive complexity to un-
derstand, design and implement SoS [62]. However, CSs typically use unreliable
clocks. With respect to monitoring, this may result in inconsistent timestamps in
observed data, leading to misunderstandings or wrong interpretations. It is thus
relevant that CSs share a global view of time.

6.2.6 Dependability and Security

SoSs are composable systems, with a high degree of uncertainty on their bound-
aries. Since the environment may unpredictably change, or it may be so various
becoming hard to model, the whole monitoring and assessment process can be
negatively affected. Monitoring an SoS means to devise adaptive monitors that
are able to cope with several environments and a variable number of interacting
CSs.

6.3 a possible contribution to sos literature

Summarizing, an SoS is not simply an ensemble of CSs: instead, CSs individually
operating at a micro-level cooperate to provide new functionalities that emerge at
a macro-level [62]. Critical SoS should avoid or mitigate detrimental emerging
phenomena which can damage the whole system and the connected critical
components. However, if unexpected, emerging phenomena cannot be easily
avoided or mitigated through the rules that we set using our knowledge of the
SoS. Considering the structure of the CSs, which includes physical objects and

104

humans, it appears that observing all the internals of CSs to check their behavior
may be not possible. Thus, the monitoring effort should be directed to Relied
Upon Message Interfaces (RUMIs) and Relied Upon Physical Interfaces (RUPIs).

All the issues above call for a monitoring solution that i) continuously observes
the SoS to avoid or mitigate detrimental phenomena, ii) gathers data of RUMIs
and RUPIs or internal data of CSs where possible, and iii) is able to infer the
status of the properties of the macro-level looking only at data collected at
micro-level. As the reader can notice, these aspects are mostly shared with the
challenges and motivations behind MADneSs (see Section 3.9): consequently, we
strongly believe that the main aspects discussed in this Thesis will be useful also
to design anomaly detection solutions for SoSes.

6.4 bringing anomaly detection into sos design

According to the description of the viewpoints in Section 5.1.1, here we list
potential design approaches that can bring SoS and anomaly detection together.
In Table 19, for each viewpoint, we summarize the approaches for constructing
an anomaly detection framework that can help adhering with the guidelines of
a given viewpoint.

purpose of the framework Building a framework that effectively uses
anomaly detection for both dependability and security purposes can be a chal-
lenging goal. In fact, frameworks designed for intrusion detection are strongly
dependent on the observation of network usage indicators. Further, malware
oriented detection strategies should monitor OS attributes to understand if
something is already damaging the system and maybe trying to steal or corrupt
critical data from the hard drive. Regarding dependability monitoring, perfor-
mance indicators observed in middleware e.g., thread number, cache usage
and memory management, can reveal the manifestation of errors at application
level that may escalate into failures in the near future. Regardless the chosen
target, governance aspects play a decisive role in defining i) which CSs can be
instrumented with probes, ii) the communication channels among them and iii)
other general rules that could limit or support the effectiveness of the anomaly
detection technique under consideration.

anomalies Being at a high abstraction level when describing SoSs, it is
difficult to define specific kinds of anomalies that could be targeted in such
systems. Each CS acts indipendently, and may have its internal checks directed
to either dependability or security properties. Possible internal errors in CSs
may impact at the macro-level, resulting in more damaging failures at the higher
abstraction level. However, interconnections among CSs except for RUMIs and
RUPIs are not usually well-defined, and several relations may not be known
unless they become evident after the manifestation of either positive or negative
properties. It follows that anomaly detection turns out to be useful in checking

105

the so called unknowns, or the boundaries of the known system itself. Anomaly
detection algorithms may analyze data related to interconnections and requests
among CSs while they cooperate to reach the scope defined at the macro-level,
potentially identifying anomalous behaviors that could impede to hit the target.

monitoring and data analysis approaches Another key point is re-
lated to the architecture of the SoS, and mainly the characteristics, the roles
and the ownerships of each CS and their interconnections. Monitored data
must be labelled consistently in the whole SoS, since data acquisition through
probes and monitors constitutes the basis for the anomaly detection process. This
should include handling time issues that can lead to missed synchronizations
or wrong timestamps assigned to each observation. As example, if the targeted
SoS is under a (Distributed) Denial of Service attack, having an unsynchro-
nized assignment of timestamps could lead to wrongly interpret anomalies in
each threatened CS, without understanding the shared cause generating the
anomalies.

In general, CSs can perform tasks with heterogeneous levels of criticality. It
follows that depending on the criticality of each CS the monitoring and data
analysis approach must change, adopting an architectural hybridization [97] that
allows checking more carefully the CSs that are responsible for the most critical
tasks. In particular, we can envision an hybrid monitoring approach which i) runs
a centralized coordinator that collects and analyzes data coming from critical
CSs, and ii) provides a set of parameters or rules for the anomaly detection
algorithms that will be executed directly in the CSs that do not execute critical
tasks. This allows monitoring critical CSs without burdening the centralized
coordinator, since it does not need to analyze data observed on less critical CSs.
This choice also impacts notification time (see Section 4.8.2).

We remark that this hybridization might be tailored depending on the category
of the SoS. In directed and acknowledged SoSs, it is easier to identify common
thresholds or trends because the objective is mostly shared among CSs. Instead,
when CSs act together (collaborative SoS) and have limited knowledge of the
other components of the SoS (virtual SoS), identifying shared rules for anomaly
detection becomes very hard. In this context, the monitoring strategy must be
distributed and customized as much as possible to suit the characteristics of
CSs.

monitored indicators As in MADneSs, the adoption of a multi-layer
monitoring approach allows obtaining information about the state of the services
(the macro-level from an SoS perspective) or the applications observing the
underlying layers (SoS micro-level), without instrumenting the application or the
service layer. The general idea is that when an application encounters a problem
e.g., a crash in one of its functionalities, it generates an anomalous activity that
can be observed looking at specific indicators of the underlying layers e.g., the
number of active threads is abruptly decreasing. This solution is suitable even

106

when services changes frequently. The result is a monitoring solution coping
with evolution and dynamicity of the targeted SoS, giving a widespread and
adaptive support to the modules responsible for the dependability and security
assessment.

anomaly detection technique While a plethora of techniques for per-
forming anomaly detection exist [25] in the literature, only a few of them can
be considered suitable for anomaly detection in SoS. This is mainly due to i)
evolution and dynamicity properties, which call for adaptive algorithms that can
quickly reconfigure its parameters without needing of time-consuming testing
phases, and ii) emergence, which can be unexpected, making techniques based
on rules or on static pattern recognition less effective i.e., no rules or faulty
patterns for unexpected phenomena are known. Consequently, the most suitable
algorithms belong to the statistical and the online machine learning groups. In
particular, statistical algorithms such as SPS work with a sliding window of
past observations that are used to build a prediction. If the monitored value
is not compliant with the predicted value, an anomaly is raised. Similarly, on-
line machine learning techniques e.g., gradient-descend based [72], can build
classifiers that change their behavior according to the evolution of the observed
system, automatically tuning their main parameters. Emerging phenomena can
be therefore detected because we assume that they cause the generation of values
for specific parameters that are far from the nominal behavior.

107

SoS
Viewpoint

Description of the Technique Frameworks

Architecture Consider Architectural Hybridization, i.e.,
link different CSs or blocks of CSs with a

given level of safety that needs to be
accomplished

CASPER [11]
(Black Box)

Evolution
and

Dynamicity

Make Anomaly Detection able to tune its
parameters when an evolution or a

configuration change is detected.
Algorithms and strategies for the detection

of anomalies should work with poor
knowledge of the history of the system e.g.,
online machine learning techniques, since

this can change very often. Monitoring
support needs to be adaptive as well.

[21], SEAD [73],
SSC [87]

Emergence Adopt models and libraries of anomalies
targeting emerging behaviours, e.g.,

deadlock, livelock, unwanted
synchronization

[22], ALERT
[92], SSC [87]

Governance Difficult to generalize. Communications
must be fast enough to provide data

observed by the probes to the monitor and
to the anomaly detector, either if the

approach is distributed or centralized.

-

Handling
Time

Synchronize the clocks with an NTP server.
The resulting clock precision is enough to
label timestamps if real-time requirements

are not intrinsic of the SoS.

CASPER [11]
(Generic clock
synchroniza-

tion), [21]
(NTP)

Dependability
and Security

Build a Multi-Layer monitoring structure
connected to adaptive Anomaly Detection

modules

[21], SEAD [73],
SSC [87]

Table 19: Tailoring Anomaly Detection on SoS Characteristics

7
C O N C L U S I O N S

Nowadays the society is characterized by an increasing dependency on critical
computing systems whose failures can heavily impact the safety of human
beings. Unfortunately, no existing technique is able to avoid a failure scenario:
faults, which manifest as errors that may escalate into failures, are inevitable in
larger and especially dynamic complex systems. The occurrence of such faults
may stop or halt the execution of the whole system or even turn the system
execution in the wrong direction. As a consequence, the past years have seen a
growing interest in methods for designing, monitoring, controlling and assessing
safety and security of such systems. These topics are becoming increasingly chal-
lenging as their size, complexity and interactions are steadily growing. For these
reasons, the performance objectives are expanding from the traditional goal
of achieving smooth network operation to having high levels of dependability,
especially security, accuracy, quality, efficiency, reliability, and fault tolerance.

This thesis proposed design solutions to improve the dependability of highly
dynamic complex systems and infrastructures. Anomaly Detection techniques are
presented here as a way to ensure that the system behaviour complies with its
functional specification in their final environment. Our approach to anomaly
detection in complex dynamic systems was developed starting from the study
in [18], where authors showed that their solution was very effective in detecting
anomalies due to software faults in an Air Traffic Management (ATM) system. We
then applied such promising approach to a prototype of the Secure! system, a
Crisis Management System which is structured as a Service Oriented Architecture
(SOA). We first observed that applying such strategy as it was described for
non-dynamic systems does not provide comparable detection scores, meaning
that some changes needed to be implemented to improve the performance of the
strategy for dynamic systems. Changing the monitoring approach by adopting
a multi-layer strategy did not help solving the problem, altrough it improved
our partial scores. Then, we took advantage of Context-awareness to train the
parameters of the SPS algorithm, tailoring them on the current context. Lastly,
we performed dedicated tuning of parameters of the whole strategy, selecting
i) adequate indicators sets, and ii) appropriate tresholds. Such experimental
process ended up by listing some research challenges related to dynamic systems
which negatively affect the efficacy of tradictional anomaly detection techniques.
In a nutshell, we discussed i) an adaptive notion of expected behavior, ii) avoiding
interferences and minimizing detection overheads, iii) the monitoring strategy, iv) the

109

110

suitablity of anomaly detection algorithms and, finally, v) the selection of the indicators.

After defining this stable version of our framework for experimental evalu-
ations, we conducted an extensive experimental campaign on two SOAs: the
Secure! Crisis Management System (CMS) and jSeduite, which are composed of
multiple interacting services owned by different entities. The analysis included
metric scores, performance, and sensitivity analyses, showing that our approach
has potential for the considered target systems. Noticeably, such discussion
escalated in some design guidelines to be followed in order to build an effective
anomaly detection system for complex and dynamic systems.

The key aspects of our proposal were integrated in MADneSs, a novel frame-
work for anomaly detection that copes with anomalies defined by a large
anomaly model, includes an automatic tuning of its parameters, and manages
complex relations among system indicators. MADneSs integrates a multilayer
monitor, which allows shifting the observation perspective from the applica-
tion layer - where services operate - to the underlying layers, and specifically
we selected the operating system (OS), the middleware (JVM), and the net-
work. In complex systems, the application or service layer is dynamic and may
change frequently; instead, the underlying layers are subject to smaller updates,
therefore a monitor can be instrumented there without requiring substantial
maintenance. The detection algorithm was chosen accordingly, resulting in the
adaptive SPS algorithm, which calculates an acceptability interval for a data
instance depending on a sliding window od previous observations. Impor-
tantly, we showed how context-awareness helps clarify the boundaries between
expected and anomalous behaviors, ultimately improving the detection accuracy.

In the last chapter of the Thesis, instead, we explored how our approach can
contribute to create a mindset to error, malware or intrusion detection when
dealing with Systems-of-Systems, a novel architectural paradigm which is gaining
relevance in the recent years.With the support of a state of the art review, we first
identify the design principles and the performance targets of a monitoring and
anomaly detection framework. Then, we noticed that these aspects are mostly
shared with the challenges and motivations behind MADneSs: consequently, we
strongly believe that the main aspects discussed in this Thesis will be useful also
to design anomaly detection solutions for SoSes.

B I B L I O G R A P H Y

[1] Archive of support files. https://github.com/tommyippoz/

Miscellaneous-Files/blob/master/20171026_Zoppi_Thesis_Archive.

rar. Accessed: 2017-10-31. (Cited on pages 63, 67, 70, 71, 72, and 73.)

[2] Ganglia project. ganglia.sourceforge.net. Accessed: 2017-10-31. (Cited
on page 89.)

[3] Nagios project. www.nagios.org. Accessed: 2017-10-31. (Cited on page 89.)

[4] Secure! project. http://secure.eng.it/. Accessed: 2017-10-31. (Cited on
pages 18, 43, and 50.)

[5] Zenoss - own it. www.zenoss.com. Accessed: 2017-10-31. (Cited on page 89.)

[6] Russell J Abbott. Resourceful systems for fault tolerance, reliability, and
safety. ACM Computing Surveys (CSUR), 22(1):35–68, 1990. (Cited on
page 32.)

[7] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by
active learning. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 504–509. ACM,
2006. (Cited on page 33.)

[8] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhancing
one-class support vector machines for unsupervised anomaly detection.
In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and De-
scription, pages 8–15. ACM, 2013. (Cited on page 37.)

[9] Leonardo Aniello, Claudio Ciccotelli, Marcello Cinque, Flavio Frattini,
Leonardo Querzoni, and Stefano Russo. Automatic invariant selection for
online anomaly detection. In International Conference on Computer Safety,
Reliability, and Security, pages 172–183. Springer, 2016. (Cited on pages 41,
42, 59, 60, 61, 64, 84, 85, 86, 88, 89, and 93.)

[10] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1):11–33, 2004. (Cited on
pages 15, 21, and 25.)

[11] Roberto Baldoni, Luca Montanari, and Marco Rizzuto. On-line failure
prediction in safety-critical systems. Future Generation Computer Systems,

111

https://github.com/tommyippoz/Miscellaneous-Files/blob/master/20171026_Zoppi_Thesis_Archive.rar
https://github.com/tommyippoz/Miscellaneous-Files/blob/master/20171026_Zoppi_Thesis_Archive.rar
https://github.com/tommyippoz/Miscellaneous-Files/blob/master/20171026_Zoppi_Thesis_Archive.rar
ganglia.sourceforge.net
www.nagios.org
http://secure.eng.it/
www.zenoss.com

112

45:123–132, 2015. (Cited on pages 39, 41, 42, 59, 60, 61, 64, 84, 86, 88,
and 107.)

[12] Yaneer Bar-Yam. General features of complex systems. (Cited on page 27.)

[13] Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes:
theory and application, volume 104. Prentice Hall Englewood Cliffs, 1993.
(Cited on page 44.)

[14] Andrea Bondavalli, Francesco Brancati, and Andrea Ceccarelli. Safe esti-
mation of time uncertainty of local clocks. In Precision Clock Synchronization
for Measurement, Control and Communication, 2009. ISPCS 2009. International
Symposium on, pages 1–6. IEEE, 2009. (Cited on pages 18, 36, 42, 43, 56,
and 92.)

[15] Andrea Bondavalli, Andrea Ceccarelli, Lorenzo Falai, and Michele Vadursi.
Foundations of measurement theory applied to the evaluation of depend-
ability attributes. In Dependable Systems and Networks, 2007. DSN’07. 37th
Annual IEEE/IFIP International Conference on, pages 522–533. IEEE, 2007.
(Cited on page 49.)

[16] Andrea Bondavalli, Andrea Ceccarelli, Paolo Lollini, Leonardo Montecchi,
and Marco Mori. System-of-systems to support mobile safety critical
applications: Open challenges and viable solutions. IEEE Systems Journal,
2016. (Cited on page 102.)

[17] Antonio Bovenzi, Francesco Brancati, Stefano Russo, and Andrea Bon-
davalli. A statistical anomaly-based algorithm for on-line fault detection in
complex software critical systems. Computer Safety, Reliability, and Security,
pages 128–142, 2011. (Cited on pages 35, 42, 43, and 56.)

[18] Antonio Bovenzi, Francesco Brancati, Stefano Russo, and Andrea Bon-
davalli. An os-level framework for anomaly detection in complex software
systems. IEEE Transactions on Dependable and Secure Computing, 12(3):366–
372, 2015. (Cited on pages 18, 40, 42, 43, 45, 46, 47, 49, 51, 54, 56, 57, 58, 59,
60, 61, 77, 88, 89, 92, and 109.)

[19] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In ACM sigmod record, vol-
ume 29, pages 93–104. ACM, 2000. (Cited on page 35.)

[20] Jean Paul Calvez and Olivier Pasquier. Performance assessment of embed-
ded hw/sw systems. In Computer Design: VLSI in Computers and Processors,
1995. ICCD’95. Proceedings., 1995 IEEE International Conference on, pages
52–57. IEEE, 1995. (Cited on page 30.)

113

[21] A. Ceccarelli, T. Zoppi, A. Bondavalli, F. Duchi, and G. Vella. A testbed
for evaluating anomaly detection monitors through fault injection. In
Proceedings - IEEE 17th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, ISORC 2014, pages 358–365, 2014.
cited By 3. (Cited on pages 5, 51, 100, and 107.)

[22] A. Ceccarelli, T. Zoppi, M. Itria, and A. Bondavalli. A multi-layer anomaly
detector for dynamic service-based systems. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9337:166–180, 2015. cited By 3. (Cited on pages 5,
51, 54, 58, and 107.)

[23] Andrea Ceccarelli, Andrea Bondavalli, Bernhard Froemel, Oliver Hoeft-
berger, and Hermann Kopetz. Basic concepts on systems of systems. In
Cyber-Physical Systems of Systems, pages 1–39. Springer, 2016. (Cited on
pages 17, 26, and 101.)

[24] Andrea Ceccarelli, Marco Vieira, and Andrea Bondavalli. A testing service
for lifelong validation of dynamic soa. In High-Assurance Systems Engineer-
ing (HASE), 2011 IEEE 13th International Symposium on, pages 1–8. IEEE,
2011. (Cited on page 63.)

[25] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):15, 2009. (Cited on
pages 13, 17, 18, 32, 33, 37, 40, 60, 89, 94, and 106.)

[26] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and
Evgenia Smirni. Anomaly? application change? or workload change?
towards automated detection of application performance anomaly and
change. In Dependable Systems and Networks With FTCS and DCC, 2008.
DSN 2008. IEEE International Conference on, pages 452–461. IEEE, 2008.
(Cited on pages 17 and 27.)

[27] Alessandro Daidone. Critical infrastructures: a conceptual framework for
diagnosis, some applications and their quantitative analysis. PhD thesis, PhD
thesis, Università degli studi di Firenze (December 2009), 2010. (Cited on
page 31.)

[28] Dipankar Dasgupta and Nivedita Sumi Majumdar. Anomaly detection in
multidimensional data using negative selection algorithm. In Evolutionary
Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2,
pages 1039–1044. IEEE, 2002. (Cited on page 33.)

[29] Sidney Dekker. Drift into failure: From hunting broken components to under-
standing complex systems. CRC Press, 2016. (Cited on pages 17 and 27.)

114

[30] C Delerce Mauris, L Palacin, S Martarello, S Mosser, and M Blay Fornarino.
Plateforme seduite: une approche soa de la diffusion d’informations.
University of Nice, I3S CNRS, Sophia Antipolis, France, 2009. (Cited on
pages 18 and 63.)

[31] WR Deniston. Sipe: A tss/360 software measurement technique. In
Proceedings of the 1969 24th national conference, pages 229–245. ACM, 1969.
(Cited on page 30.)

[32] Elias P Duarte Jr, Roverli P Ziwich, and Luiz CP Albini. A survey
of comparison-based system-level diagnosis. ACM Computing Surveys
(CSUR), 43(3):22, 2011. (Cited on pages 28 and 31.)

[33] William R Duncan. A guide to the project management body of knowledge.
1996. (Cited on page 22.)

[34] Thomas Erl. Service-oriented architecture: concepts, technology, and design.
Pearson Education India, 2005. (Cited on page 43.)

[35] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal
Stolfo. A geometric framework for unsupervised anomaly detection. In
Applications of data mining in computer security, pages 77–101. Springer, 2002.
(Cited on pages 40 and 89.)

[36] Lorenzo Falai and Andrea Bondavalli. Experimental evaluation of the
qos of failure detectors on wide area network. In Dependable Systems and
Networks, 2005. DSN 2005. Proceedings. International Conference on, pages
624–633. IEEE, 2005. (Cited on page 32.)

[37] Massimo Ficco and Luigi Romano. A generic intrusion detection and
diagnoser system based on complex event processing. In Data Compression,
Communications and Processing (CCP), 2011 First International Conference on,
pages 275–284. IEEE, 2011. (Cited on page 29.)

[38] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A
Longstaff. A sense of self for unix processes. In Security and Privacy, 1996.
Proceedings., 1996 IEEE Symposium on, pages 120–128. IEEE, 1996. (Cited
on page 33.)

[39] Bernhard Frömel and Hermann Kopetz. Interfaces in evolving cyber-
physical systems-of-systems. In Cyber-Physical Systems of Systems, pages
40–72. Springer, 2016. (Cited on pages 101 and 102.)

[40] R Fryer. Low and non-intrusive software instrumentation: a survey of
requirements and methods. In Digital Avionics Systems Conference, 1998.
Proceedings., 17th DASC. The AIAA/IEEE/SAE, volume 1, pages C22–1. IEEE,
1998. (Cited on pages 28 and 29.)

115

[41] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly
detection in distributed systems through unstructured log analysis. In
Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pages
149–158. IEEE, 2009. (Cited on pages 41, 64, 84, 86, and 88.)

[42] Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. An approach to
spacecraft anomaly detection problem using kernel feature space. In Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 401–410. ACM, 2005. (Cited on page 33.)

[43] Ann Q Gates, Steve Roach, Oscar Mondragon, and Nelly Delgado. Dy-
namics: Comprehensive support for run-time monitoring. Electronic Notes
in Theoretical Computer Science, 55(2):164–180, 2001. (Cited on pages 28

and 30.)

[44] Markus Goldstein and Seiichi Uchida. A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data. PloS one,
11(4):e0152173, 2016. (Cited on page 35.)

[45] Jiexing Gu, Ziming Zheng, Zhiling Lan, John White, Eva Hocks, and
Byung-Hoon Park. Dynamic meta-learning for failure prediction in large-
scale systems: A case study. In Parallel Processing, 2008. ICPP’08. 37th
International Conference on, pages 157–164. IEEE, 2008. (Cited on pages 94

and 95.)

[46] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and
Dongyan Xu. Leaps: Detecting camouflaged attacks with statistical learn-
ing guided by program analysis. In Dependable Systems and Networks (DSN),
2015 45th Annual IEEE/IFIP International Conference on, pages 57–68. IEEE,
2015. (Cited on pages 40, 42, and 61.)

[47] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011. (Cited on page 36.)

[48] Stephen E Hansen and E Todd Atkins. Automated system monitoring and
notification with swatch. In LISA, volume 93, pages 145–152, 1993. (Cited
on page 31.)

[49] M Harelick and A Stoyen. Concepts from deadline non-intrusive monitor-
ing. In 24th IFIP Workshop on Real-Time Programming, Saarland, Germany,
1999. (Cited on pages 28, 29, and 30.)

[50] Guenther Hoffman and Miroslaw Malek. Call availability prediction in a
telecommunication system: A data driven empirical approach. In Reliable
Distributed Systems, 2006. SRDS’06. 25th IEEE Symposium on, pages 83–95.
IEEE, 2006. (Cited on page 88.)

116

[51] Michael N Huhns and Munindar P Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet computing, 9(1):75–81, 2005.
(Cited on page 52.)

[52] Ivano Irrera, Joao Duraes, Marco Vieira, and Henrique Madeira. Towards
identifying the best variables for failure prediction using injection of
realistic software faults. In Dependable Computing (PRDC), 2010 IEEE 16th
Pacific Rim International Symposium on, pages 3–10. IEEE, 2010. (Cited on
page 88.)

[53] Mohammad Jamshidi. System of systems engineering: innovations for the
twenty-first century, volume 58. John Wiley & Sons, 2011. (Cited on
pages 101 and 102.)

[54] Mahesh V Joshi, Ramesh C Agarwal, and Vipin Kumar. Mining needle
in a haystack: classifying rare classes via two-phase rule induction. ACM
SIGMOD Record, 30(2):91–102, 2001. (Cited on page 33.)

[55] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger. Monitor-
ing distributed systems. ACM Transactions on Computer Systems (TOCS),
5(2):121–150, 1987. (Cited on page 87.)

[56] O. Jung, S. Bessler, A. Ceccarelli, T. Zoppi, A. Vasenev, L. Montoya,
T. Clarke, and K. Chappell. Towards a collaborative framework to im-
prove urban grid resilience. In 2016 IEEE International Energy Conference,
ENERGYCON 2016, 2016. cited By 3. (Cited on page 6.)

[57] Ashish Kamra, Evimaria Terzi, and Elisa Bertino. Detecting anomalous
access patterns in relational databases. The VLDB Journal The International
Journal on Very Large Data Bases, 17(5):1063–1077, 2008. (Cited on page 92.)

[58] Gunjan Khanna, Padma Varadharajan, and Saurabh Bagchi. Automated
online monitoring of distributed applications through external monitors.
IEEE Transactions on Dependable and Secure Computing, 3(2):115–129, 2006.
(Cited on page 61.)

[59] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and
Ted Marz. Comparing operating systems using robustness benchmarks.
In Reliable Distributed Systems, 1997. Proceedings., The Sixteenth Symposium
on, pages 72–79. IEEE, 1997. (Cited on page 24.)

[60] Hermann Kopetz. Real-time systems: design principles for distributed embedded
applications. Springer Science & Business Media, 2011. (Cited on page 88.)

[61] Hermann Kopetz, Bernhard Frömel, and Oliver Höftberger. Direct versus
stigmergic information flow in systems-of-systems. In System of Systems

117

Engineering Conference (SoSE), 2015 10th, pages 36–41. IEEE, 2015. (Cited
on page 102.)

[62] Hermann Kopetz, Oliver Höftberger, Bernhard Frömel, Francesco Brancati,
and Andrea Bondavalli. Towards an understanding of emergence in
systems-of-systems. In System of Systems Engineering Conference (SoSE),
2015 10th, pages 214–219. IEEE, 2015. (Cited on pages 17, 102, and 103.)

[63] Rikard Laxhammar and Göran Falkman. Online learning and sequential
anomaly detection in trajectories. IEEE transactions on pattern analysis and
machine intelligence, 36(6):1158–1173, 2014. (Cited on page 94.)

[64] Joseph Lee Rodgers and W Alan Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1):59–66, 1988. (Cited
on page 58.)

[65] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia
distributed monitoring system: design, implementation, and experience.
Parallel Computing, 30(7):817–840, 2004. (Cited on pages 28, 29, and 87.)

[66] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel,
and Muttukrishnan Rajarajan. A survey of intrusion detection techniques
in cloud. Journal of Network and Computer Applications, 36(1):42–57, 2013.
(Cited on pages 27, 39, and 43.)

[67] Jeffrey C Mogul. Emergent (mis) behavior vs. complex software systems.
In ACM SIGOPS Operating Systems Review, volume 40, pages 293–304.
ACM, 2006. (Cited on pages 64, 85, and 103.)

[68] Aloysius K Mok and Guangtian Liu. Efficient run-time monitoring of
timing constraints. In IEEE Real Time Technology and Applications Symposium,
pages 252–262, 1997. (Cited on pages 28 and 30.)

[69] M. Mori, A. Ceccarelli, T. Zoppi, and A. Bondavalli. On the impact of
emergent properties on sos security. In 2016 11th Systems of Systems
Engineering Conference, SoSE 2016, 2016. cited By 2. (Cited on page 5.)

[70] Marco Mori, Andrea Ceccarelli, Paolo Lollini, Bernhard Frömel, Francesco
Brancati, and Andrea Bondavalli. Systems-of-systems modeling using a
comprehensive viewpoint-based sysml profile. Journal of Software: Evolution
and Process, 2017. (Cited on page 101.)

[71] Ed Morris, Pat Place, and Dennis Smith. System-of-systems governance:
New patterns of thought. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 2006. (Cited on
page 103.)

118

[72] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion
detection using neural networks and support vector machines. In Neural
Networks, 2002. IJCNN’02. Proceedings of the 2002 International Joint Confer-
ence on, volume 2, pages 1702–1707. IEEE, 2002. (Cited on page 106.)

[73] Husanbir S Pannu, Jianguo Liu, and Song Fu. A self-evolving anomaly
detection framework for developing highly dependable utility clouds. In
Global Communications Conference (GLOBECOM), 2012 IEEE, pages 1605–
1610. IEEE, 2012. (Cited on pages 41, 42, 59, 60, 61, 64, 84, 86, 101, and 107.)

[74] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke
Lee. Mcpad: A multiple classifier system for accurate payload-based
anomaly detection. Computer networks, 53(6):864–881, 2009. (Cited on
pages 41, 84, 86, and 88.)

[75] Bernhard Plattner and Juerg Nievergelt. Special feature: Monitoring pro-
gram execution: A survey. Computer, 14(11):76–93, 1981. (Cited on page 28.)

[76] Stanislav Ponomarev and Travis Atkison. Industrial control system net-
work intrusion detection by telemetry analysis. IEEE Transactions on
Dependable and Secure Computing, 13(2):252–260, 2016. (Cited on pages 40,
42, and 61.)

[77] David Powell. Failure mode assumptions and assumption coverage. In
FTCS, volume 92, pages 386–395, 1992. (Cited on page 24.)

[78] James E Prewett. Analyzing cluster log files using logsurfer. In Proceedings
of the 4th Annual Conference on Linux Clusters. Citeseer, 2003. (Cited on
page 31.)

[79] Sutharshan Rajasegarar, Christopher Leckie, Marimuthu Palaniswami,
and James C Bezdek. Distributed anomaly detection in wireless sensor
networks. In Communication systems, 2006. ICCS 2006. 10th IEEE Singapore
International Conference on, pages 1–5. IEEE, 2006. (Cited on page 89.)

[80] Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-
physical systems: the next computing revolution. In Proceedings of the
47th Design Automation Conference, pages 731–736. ACM, 2010. (Cited on
page 17.)

[81] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-
rithms for mining outliers from large data sets. In ACM Sigmod Record,
volume 29, pages 427–438. ACM, 2000. (Cited on page 35.)

[82] John P Rouillard. Real-time log file analysis using the simple event
correlator (sec). In LISA, volume 4, pages 133–150, 2004. (Cited on
page 31.)

119

[83] Felix Salfner and Miroslaw Malek. Using hidden semi-markov models
for effective online failure prediction. In Reliable Distributed Systems, 2007.
SRDS 2007. 26th IEEE International Symposium on, pages 161–174. IEEE,
2007. (Cited on pages 94 and 95.)

[84] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and
Robert C Williamson. Estimating the support of a high-dimensional
distribution. Neural computation, 13(7):1443–1471, 2001. (Cited on page 37.)

[85] Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle,
Klaus Arthur Schmid, and Arthur Zimek. A framework for clustering
uncertain data. Proceedings of the VLDB Endowment, 8(12):1976–1979, 2015.
(Cited on page 34.)

[86] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In
Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 144–155. IEEE, 2001. (Cited on pages 94 and 95.)

[87] Nathan Shone, Qi Shi, Madjid Merabti, and Kashif Kifayat. Misbehaviour
monitoring on system-of-systems components. In Risks and Security of
Internet and Systems (CRiSIS), 2013 International Conference on, pages 1–6.
IEEE, 2013. (Cited on pages 41, 84, 86, 88, 89, 101, and 107.)

[88] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accu-
racy, f-score and roc: a family of discriminant measures for performance
evaluation. In Australasian Joint Conference on Artificial Intelligence, pages
1015–1021. Springer, 2006. (Cited on page 44.)

[89] Vasilis A Sotiris, W Tse Peter, and Michael G Pecht. Anomaly detection
through a bayesian support vector machine. IEEE Transactions on Reliability,
59(2):277–286, 2010. (Cited on page 89.)

[90] Hui Su and J David Neelin. Teleconnection mechanisms for tropical
pacific descent anomalies during el nino. Journal of the atmospheric sciences,
59(18):2694–2712, 2002. (Cited on page 89.)

[91] Mark Sullivan and Ram Chillarege. Software defects and their impact
on system availability: A study of field failures in operating systems. In
FTCS, volume 21, pages 2–9, 1991. (Cited on page 47.)

[92] Yongmin Tan, Xiaohui Gu, and Haixun Wang. Adaptive system anomaly
prediction for large-scale hosting infrastructures. In Proceedings of the
29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing,
pages 173–182. ACM, 2010. (Cited on pages 41, 42, 47, 51, 59, 60, 64, 84,
86, 88, and 107.)

120

[93] Henrik Thane, Daniel Sundmark, Joel Huselius, and Anders Pettersson.
Replay debugging of real-time systems using time machines. In Parallel
and Distributed Processing Symposium, 2003. Proceedings. International, pages
8–pp. IEEE, 2003. (Cited on pages 29 and 30.)

[94] James P Theiler and D Michael Cai. Resampling approach for anomaly
detection in multispectral images. In AeroSense 2003, pages 230–240.
International Society for Optics and Photonics, 2003. (Cited on page 33.)

[95] Hong-Linh Truong and Schahram Dustdar. A survey on context-aware
web service systems. International Journal of Web Information Systems, 5(1):5–
31, 2009. (Cited on page 52.)

[96] A. Vasenev, D. Ionita, T. Zoppi, A. Ceccarelli, and R. Wieringa. Towards
security requirements: Iconicity as a feature of an informal modeling
language. In CEUR Workshop Proceedings, volume 1796, 2017. cited By 0.
(Cited on page 6.)

[97] Paulo E Veríssimo. Travelling through wormholes: a new look at dis-
tributed systems models. ACM SIGACT News, 37(1):66–81, 2006. (Cited
on pages 102 and 105.)

[98] Valerio Vianello, Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patiño-
Martínez, Rubén Torres, Rodrigo Díaz, and Elsa Prieto. A scalable siem
correlation engine and its application to the olympic games it infrastruc-
ture. In Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pages 625–629. IEEE, 2013. (Cited on page 29.)

[99] Michael R Watson, Angelos K Marnerides, Andreas Mauthe, David Hutchi-
son, et al. Malware detection in cloud computing infrastructures. IEEE
Transactions on Dependable and Secure Computing, 13(2):192–205, 2016. (Cited
on pages 42 and 61.)

[100] Conal Watterson and Donal Heffernan. Runtime verification and moni-
toring of embedded systems. IET software, 1(5):172–179, 2007. (Cited on
pages 28, 29, and 30.)

[101] Andrew W Williams, Soila M Pertet, and Priya Narasimhan. Tiresias: Black-
box failure prediction in distributed systems. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8.
IEEE, 2007. (Cited on pages 41, 42, 47, 51, 59, 60, 64, 84, 86, and 88.)

[102] Anthony D Wood, John A Stankovic, Gilles Virone, Leo Selavo, Zhimin
He, Qiuhua Cao, Thao Doan, Yafeng Wu, Lei Fang, and Radu Stoleru.
Context-aware wireless sensor networks for assisted living and residential
monitoring. IEEE network, 22(4), 2008. (Cited on page 40.)

121

[103] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid monitoring
systems. Future Generation Computer Systems, 21(1):163–188, 2005. (Cited
on page 87.)

[104] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge,
Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting system
environment and correlation information for misconfiguration detection.
ACM SIGPLAN Notices, 49(4):687–700, 2014. (Cited on pages 17 and 27.)

[105] Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc
networks. In Proceedings of the 6th annual international conference on Mobile
computing and networking, pages 275–283. ACM, 2000. (Cited on page 92.)

[106] Yu Zheng, Huichu Zhang, and Yong Yu. Detecting collective anomalies
from multiple spatio-temporal datasets across different domains. In Pro-
ceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems, page 2. ACM, 2015. (Cited on page 40.)

[107] T. Zoppi, A. Ceccarelli, and A. Bondavalli. Challenging anomaly detection
in complex dynamic systems. In Proceedings of the IEEE Symposium on
Reliable Distributed Systems, pages 213–214, 2016. cited By 0. (Cited on
page 5.)

[108] T. Zoppi, A. Ceccarelli, and A. Bondavalli. Context-awareness to improve
anomaly detection in dynamic service oriented architectures. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 9922 LNCS:145–158, 2016. cited By 0.
(Cited on pages 5, 54, and 58.)

[109] T. Zoppi, A. Ceccarelli, P. Lollini, A. Bondavalli, F. Lo Piccolo, G. Giunta,
and V. Morreale. Presenting the proper data to the crisis management
operator: A relevance labelling strategy. In Proceedings of IEEE International
Symposium on High Assurance Systems Engineering, volume 2016-March,
pages 228–235, 2016. cited By 0. (Cited on page 6.)

[110] Tommaso Zoppi, Sandford Bessler, Andrea Ceccarelli, Edward Lambert,
Eng Tseng Lau, and Alexandr Vasenev. A modeling framework to support
resilient evolution planning of smart grids. In Smart Grid Inspired Future
Technologies, pages 233–242. Springer, 2017. (Cited on page 7.)

[111] Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli. Exploring
anomaly detection in systems of systems. In Proceedings of the Symposium
on Applied Computing, pages 1139–1146. ACM, 2017. (Cited on page 5.)

[112] Tommaso Zoppi, Andrea Ceccarelli, Francesco Lo Piccolo, Paolo Lollini,
Gabriele Giunta, Vito Morreale, and Andrea Bondavalli. Labelling relevant

122

events to support the crisis management operator. Journal of Software:
Evolution and Process, 2017. (Cited on page 6.)

[113] Tommaso Zoppi, Andrea Ceccarelli, and Marco Mori. A tool for evolution-
ary threat analysis of smart grids. In Smart Grid Inspired Future Technologies,
pages 205–211. Springer, 2017. (Cited on page 6.)

	Abstract
	Acknowledgements
	Relevant Publications
	Introduction
	Basics and Related Works
	Dependability: Threats, Attributes, Means
	Basic Definitions
	Threats to Dependability: Faults, Errors, Failures
	Dependability Attributes
	Means to Attain Dependability

	Dynamic and Evolving Complex Systems
	Monitoring Evolving Systems
	Basic Definitions
	Classification of Monitoring Systems
	On-line Monitoring

	Anomaly Detection
	Definitions
	Algorithms for Anomaly Detection

	Anomaly Detection in Complex Dynamic Systems
	Motivation and Open Challenges
	Anomaly Detection in Complex Dynamic Systems
	Detecting Specific Anomalies
	Frameworks for Anomaly Detection in Complex Systems

	Our Approach to Anomaly Detection in Complex Dynamic Systems
	Case Study for Evaluation
	Metrics for Evaluation

	Executing SPS on a Service Oriented Architecture
	A First Experimental Setup
	Analysis of the Results

	Adapting the Underlying Monitoring Strategy
	A Multi-Layer Monitoring Solution
	Intrusiveness of Probes
	Analysis of the Results

	Context-Awareness
	Collect Services Information
	Integrate Information in the Anomaly Detector
	The Resulting Architecture
	Analysis of the Results

	Refining the Framework
	Data Series
	Anomaly Checkers
	Selected Anomaly Checkers and Anomaly Threshold
	Setup of the Probes and Data Series
	Analysis of the Results

	Comparison with respect to Surveyed Studies
	Summarizing: Lessons Learned and Open Challenges

	Experimental Evaluation
	SOA Case Studies
	Model of Anomalies
	Injection Approach
	Experimental Campaign
	Results: Secure!
	Detection Efficiency
	Choice of Anomaly Checkers
	Sensitivity Analysis

	Results: jSeduite
	Detection Efficiency
	Choice of Anomaly Checkers
	Sensitivity Analysis

	Discussion of the Results
	Detection Scores
	Choice of the Indicators
	Contribution of the Algorithms
	Sensitivity Analysis
	Summary of the Incremental Improvements

	Performance
	Training Time
	Notification Time

	MADneSs: a Multi-layer Anomaly DetectioN framEwork for dynamic complex SystemS
	Designing a Framework for Anomaly Detection
	Viewpoints
	Performance

	Our Framework for Anomaly Detection in Dynamic Systems
	Multi-Layer Monitoring
	Detection Algorithm
	Context-awareness and Contextual Information
	Composed data series
	Facing Point, Contextual and Collective Anomalies
	Online Training

	Instantiation of MADneSs
	High-Level View
	Methodology to Execute the Framework
	Implementation Details and Requirements

	Complexity Analysis
	Scalability
	Impact of Training
	Impacts on Runtime Execution

	Beyond MADneSs
	Moving to Systems of Systems
	Characteristics of SoSs
	Architecture
	Evolution and Dynamicity
	Emergence
	Governance
	Time
	Dependability and Security

	A Possible Contribution to SoS Literature
	Bringing Anomaly Detection into SoS Design

	Conclusions

