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Abstract

Powerful data reduction and selection processes, such as selective attention mechanisms and space-variant
sensing in humans, can provide great advantages for developing effective real-time robot vision systems. The use of
such processes should be closely coupled with motor capabilities, in order to actively interact with the environment.
In this paper, an anthropomorphic vision system architecture integrating retina-like sensing, hierarchical structures
and selective attention mechanisms is proposed. Direction of gaze is shifted based on both the sensory and semantic
characteristics of the visual input, so that a task-dependent attentive behavior is produced. The sensory features
currently included in the system are related to optical flow invariants, thus providing the system with motion
detection capabilities. A neural network architecture for visual recognition is also included, which produces

semantic-driven gaze shifts.
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1. Introduction

An enormous amount of information falls at
every instant onto the eyes; nevertheless, vision in
humans appears to be effortless. At least two
major factors account for this effectiveness: the
space-variant structure of human retina [1], and
the mechanism of selective attention, that is the
capability of selectively processing simultaneous
sources of visual information [2]. The two factors
cooperate to dramatically reduce the computa-
tional burden at the retina and the visual cortex
levels, respectively. Similar complexity-reduction
mechanisms should be taken into consideration
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when attempting to develop an effective real-time
robot vision system.

Selective attention in humans has been exten-
sively studied in the past decades. Experiments in
psychophysics have proved that selective atten-
tion in visual perception has the characteristic of
a limited extent attentional spotlight [3]. The
spotlight can be voluntarily moved independently
on eye fixations, can vary in size, and is drawn by
significant stimuli in the scene, thus taking part in
the control of rapid shifts of gaze direction, or
foveations. Shifts of attention and eye movements
[4] seem to play an important role for visual
exploration and recognition [5,6]. A major issue
of research on human vision is the understanding
of which factors contribute to shift attention on
specific parts of the visual field. A fundamental
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fact, already pointed out in 1890 by William James
[7], is that visual attention can be drawn both by
the sensory and semantic characteristics of a
stimulus, i.e. both by bottom-up and top-down
visual mechanisms.

In the field of robot vision, several system
architectures have been proposed which use
space-variant sensing strategies in order to re-
duce the raw data being processed. These strate-
gies can be grouped into two categories, namely
artificial retinae [8,9] and hierarchical structures
[10,11]. The space-variant sensing structure of
artificial retinae is a direct consequence of the
retina-like geometry of the sensor, which is com-
posed of a high-resolution, small central fovea
and a periphery whose resolution linearly de-
creases with eccentricity. As for the human visual
system, only one foveation at a time can be car-
ried out with artificial retinae.

A hierarchical structure or pyramid is a repre-
sentation of a rectangular image — e.g. the output
of a traditional high-resolution camera - at in-
creasingly lower resolution levels. Foveations with
hierarchical structures are the result of a coarse-
to-fine search through certain paths of the pyra-
mid; space-variant sensing in pyramids is thus not
accomplished at a ‘hardware’ but at an ‘algorith-

mic’ level, thus allowing in principle more than
one (simulated) foveation to occur in parallel.

With the noticeable exception of the work
done on pyramidal structures (e.g. [12,13]) by
some research groups, few research experiences
exist so far in robot vision on the topic of selec-
tive attention. Moreover, research was mainly
based on traditional high-resolution cameras [14],
thus not fully exploiting the possibilities of
space-variant sensing.

In this paper, we propose an anthropomorphic
architecture for a robot vision system. The archi-
tecture integrates retina-like sensing, hierarchical
image analysis and selective attention mecha-
nisms in order to produce an attentive visual
behavior. Active control of gaze is achieved in the
system by suitably combining both the semantic
and sensory characteristics of the visual scene on
the basis of an attended task. That is, the way the
system interacts with the environment is task-de-
pendent; from this point of view, the architecture
proposed here can be included in the active vi-
sion paradigm [15].

In the present implementation, special interest
has been devoted to motion features at the sen-
sory level and to object recognition at the seman-
tic level, so that the system is able to foveate and
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Fig. 1. The system architecture. The sensory and semantic processing levels operate in parallel on the data produced by the sensor.
Next foveation occurs where the saliency map exhibits a maximum of activation.
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explore moving objects, and to recognize them if
they are already known. Thanks to its intrinsic
modularity, the architecture is suitable to the
expanded so as to include different tasks and also
other sensory modalities, such as touch or hear-
ing.

The paper is organized as follows: in Section 2
the architecture is presented and described, then
in Section 3 experimental results are discussed,
and finally in Section 4 conclusions are drawn.

2. Overview of the system

A general scheme of the system architecture is
shown in Fig. 1. The system includes an anthro-
pomorphic sensor, which is given two d.o.f. and
moves so as to explore the environment as the
result of an attentive behavior.

The logical center of the architecture is the
attention control mechanism; based both on the
selected task and on the results of an analysis of
the characteristics of the input, attention control
delivers the proper motion commands to the ac-
tuation subsystem so as to shift gaze to the de-
sired visual location. This is accomplished by let-
ting each sensory (bottom-up) process run in par-
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allel with the others and contribute to activate
corresponding specific locations of a saliency map
[16]. The map can also be activated in a top-down
fashion by the selection of specific semantic cues
stored in memory. The mapping onto the saliency
map is performed by a set of priority-ordered
connections gated by the task at hand - that is,
the relative weight assigned to each map input is
task-dependent. Notice that no distinction is made
between semantic and sensory map inputs, so
that the total saliency map input is simply the
superposition of the weighted inputs from the
bottom-up and top-down processes. Each new
foveation takes place in the direction where
saliency map activation reaches its maximum; as a
result, attentional shifts are always accompanied
in this system by corresponding movements of the
sensor or, in other words, the ‘focus of attention’
is always kept centered on the fovea.

A detailed description of the single elements
of the architecture follows.

2.1. Attention control and the saliency map

Attentional shifts are controlled by communi-
cating to the actuation subsystem the saliency
map location which currently exhibits the maxi-
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Fig. 2. Visual directions and the geometry of the head—eye system. For the sake of simplicity, the head (fixed) and the eye (mobile)
frame origins have been assumed coincident. The field of view is equal to 2 arctan (a™*” /f) (see text).
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mum activation. This location can be varied by
assigning a different priority to the corresponding
sensory /semantic characteristic, thus modifying

the current task.

A saliency map location is simply a visual
direction, parameterized by the angles 6 (colati-
tude) and ¢ (longitude) relative to a head frame
centered on the focus of perspective projection
(see Fig. 2). It can be alternatively represented as
the unit homogeneous vector

g, = (sin @ cos ¢, sin 6 sin ¢, cos 6, 1). (1)

The mapping of a visual direction from its
representation g, in the sensor frame - that
provided by both the input processing levels - to
the corresponding saliency map representation g,
can be written as

gh=7xH:Hgs’ (2)

where the matrices , H and { H are homogeneous
transformations between the eye and head frames,
and the sensor and eye frames, respectively. These
matrices have entries which depend on the focal
length f and on ‘proprioceptive’ data obtained
from the position sensors of the actuation subsys-
tem.

mous Systems 12 (1994) 121-131

The saliency map is non-retinotopic; it follows
that the set of gaze directions explored by the
visual sensor at a given time is a subset of the
map, whose size depends on the field of view. In
principle, also the use of other sensory modalities
(touch, hearing) and/or semantic cues (abstract
representations of the environment and of the
task) can determine a gaze shift to visual direc-
tions which are currently out of sight.

2.2. The sensory processing level

Concerning the sensory characteristics, space-
variant sensing is performed both at the sensor
and at the algorithmic level by means of a hierar-
chical space-variant representation of the scene.

The structure of a retina-like sensor and the
pyramid construction process from a generic level
L are depicted in Figs. 2 and 3, respectively. At
the lowest level of the hierarchy — L =0, or
sensor level — the periphery around the central
fovea is partitioned in M annuli X N angular
sectors. The ratio of the outer and inner radii of
each annulus is equal to a constant a > 1.

In order to build the pyramid, a rectangular
representation of the space-variant sensed image
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Fig. 3. Left: building binary cortical pyramids. As one more level in t
a 5 X 5 Gaussian filter and then subsampled by a factor of two. Right

level L

Retinal plane

he hierarchy is added, cortical images are first smoothened by
: backtransforming a cortical pyramid yields a retinal pyramid:

notice the presence of a hollow inner region corresponding to the fovea.
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is obtained by letting the generical periphery
location at polar coordinates (p, ¢), undergo the
‘log-polar’ transformation [17]

E=log, p—p
Y=an,

3

where p=1log, piva and g =N/2w. Binary
pyramids are built in the cortical plane (¢, )
according to a well-known algorithm [18]; i.e.,
pyramid level L, L > 1, is built by first filtering
and then subsampling by a factor of two in both
visual directions the cortical image at level L — 1.
Notice from Fig. 3 that each level L + 1 of the
cortical pyramid can be interpreted in the retinal
plane as a novel — and coarsely sampled — retina,
with characteristic parameters, M, ,=M,/2,
N =Np/2, a . =a}, P =PL/2, dusi =
q./2.

Sensory pyramids are obtained from a further
processing of this cortical image brightness pyra-
mid. Data in sensory pyramids are explored in a
top-down fashion, i.e., Winner-Takes-All pro-
cesses operate at each level of the pyramid so
that only one ‘winner’ is propagated, while
‘loosers’ are inhibited [13]. In such a way compu-
tations are greatly reduced, as only small parts of
the visual data are processed at higher resolu-
tions, the rest being explored only at the lowest
resolution.

The problem of computing motion sensory fea-
tures — specifically, the invariants of the optical
flow [19] — at the generical cortical pyramid level
is now discussed. (The .,. is omitted from the
retina parameters for simplicity.)

Although all relative to the retinal plane, mo-
tion features are computable by means of a trans-
formed optical flow field computed in the cortical
plane, which is referred to as cortical flow. The
cortical flow is defined as the solution (¢, ) of
the equation

oE . OF oF " z
—&+ —7y+—=0,

T ¢ 7w (4)
where E(&, vy, t) is the cortical image brightness,
and can be obtained by a least squares technique
over a neighborhood of each cortical pixel, under
the assumption of a uniform speed in it [20].

Optical flow invariants — i.e. magnitude and
the ‘differential invariants’ divergence, curl, and
shear — are scalar quantities which locally charac-
terize a linear optical flow field, and remain
unchanged after a rotation of the image coordi-
nate system [21]. Specifically, optical flow magni-
tude gives the local intensity of an object dis-
placement, while divergence indicates a change in
area, curl accounts for rotational flow, and shear
indicates a deformation (an expansion plus a con-
traction) along perpendicular directions of the
retinal plane so that the area is unchanged.

Differential invariants are functions of the spa-
tial derivatives of the optical flow — see for exam-
ple [22] - and are related in a simple way to the
3D spatio-temporal evolution of the imaged scene
as well as to viewer motion [23]. As an example,
the divergence of the optical flow can be put in
correspondence with a motion towards (expan-
sion) or away from (contraction) the retinal plane,
while curl can be related to eye cyclotorsions
about a focal axis.

Using the log-polar transformation 3 it can be
easily shown that optical flow invariants can be
expressed in terms of cortical flow and its spatial
derivatives as

1 2 1/2
lv| =a§+p[(ln a§)2+ —)") ‘ s (5)
q
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. 271/2
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where v = —d—t(p cos ¢, p sin ¢) is the optical
flow vector.
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Another useful motion-related sensory feature
is time to impact T, that is the time for an object
imaged at a certain retinal location to reach the
observer. For a sufficiently small field of view, the
time to impact is shown to be independent on
eye /object rotations, and bounded by linear com-
binations of divergence and shear [24]:

2
= div(v) + shear(v)

(7)

The motion sensory features described above
can be effectively used as attentional features for
robots. In Section 3, some experiments are de-
scribed involving the optical flow magnitude and
the time to impact sensory pyramids. Although a
bit noisy, such sensory features are robust enough
for drawing attention, which is mostly a qualita-
tive problem, in that the relative intensity of a
feature at different locations is more important
than its absolute value.

2.3. The semantic processing level

The semantic processing level of the architec-
ture contributes to controlling attention, during
recognition, by providing salient spatial locations
of the visual field which are relevant from a
‘cognitive’ point of view. Stored knowledge of the
world is crucial for orienting attention in many
cases. As psychophysical studies on humans have
elucidated, attention plays a major role in opera-
tions such as visual exploration and recognition,
where hypotheses formulated on the basis of the
incoming visual data produce expectations on
where salient cues are supposed to be found.

The semantic processing level incorporates a
fragmentary representation of the objects to rec-
ognize including spatial relationships among the
object parts. An example of object representation
is shown in Fig. 4: several different feature units,
each representing a part of the object, are linked
to a single object unit which represents the object
itself. The spatial relationships specify how the
parts are located one with respect to others, and
their relative dimensions. Each feature unit acts
as a cumulator, by storing and cumulating the
activation provided by a matching network, which

Fig. 4. The internal ionic representation of objects in the
long-term memory. A feature unit sensitive to each icon is
present in the system. Solid lines indicate the geometrical
relationships among the various parts of the representation.

analyzes the data gathered from the scene through
a limited extent attentional spotlight. All the ob-
ject units inhibit each other in a Winner-Takes-All
fashion, so that only one of them has a positive
value of activation at a given time, while all the
others are inhibited.

The spatial relationships are given in the reti-
nal space, and they are normalized with respect
to the object size, that is the dimension of the
attentional spotlight when a feature unit is acti-
vated. In this way, the actual gaze shift to be
performed to foveate to any other part of the
object and the required spotlight size are evalu-
ated by multiplying the stored normalized dis-
placements and size by the current spotlight di-
mension. In the current implementation of the
system, all the spatial relationships are specified
with respect to the feature unit which is activated
when the spotlight of attention includes the whole
object. Thus, starting from each feature the pa-
rameters for the examination of each other part
of the object are determined by passing through
this unit.

The spatial parameters are estimated by a
four-layer feed-forward net trained with the
backpropagation algorithm [25]. The input to the
network are the feature unit number and the
position of the winning unit in a self-organizing
map included in the matching network (see be-
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Fig. 5. The edge pyramid and the recognition task. This
architecture takes inspiration on Nakayama’s speculative
framework of the overall structure of the human visual system

[6].

low), and it produces as output, with a sparse
coding, the coordinates of the spatial location of
the feature and the spotlight dimension required
for its examination.

The architecture of the semantic processing
level is illustrated in Fig. 5 [26]. Image data are
organized into a multi-resolution edge pyramid,
which represents image edges at different levels
of resolution. The pyramid is built on both data
coming from the fovea and the periphery of the
sensor. The edges are extracted at the lowest
pyramid level by a gradient operator and data are
then propagated at successive stages by means of
Gaussian filtering. As shown in Fig. 5, the pyra-
mid is scanned by an attentional spotlight cen-
tered on the fovea which, by moving through a
fovea-centered cylinder, samples a fixed amount
of information at different levels of resolution. As
a result, a trade-off is built between the resolu-
tion level and the spatial extension of the consid-
ered area, and an increment of the width of the
area implies a corresponding decrement of the
level of resolution at which data are examined.
The spotlight performs an expansion of the gray-
level dynamics and produces a fixed dimension
attentional icon. By means of the expansion, parts
of the examined area with stronger edges and /or
higher edge concentration are emphasized with
respect to the others. When it is not involved in a
recognition sequence, the spotlight scans the
cylinder from the bottom to the top of the pyra-
mid. This is equivalent to perform a radial expan-

sion of the considered region starting from the
fovea towards the periphery.

At any time, the resulting attentional icon is
accepted as input by the matching net, which
produces activation for the corresponding feature
units. The matching net is a counterpropagation
neural network [27] with as many output units as
the feature unit number. Each output is linked
with the corresponding feature unit in the object
representation. The topological self-organizing
map ([28]) at the second layer of the net stores all
the icons used for the object representations.

The system performs recognition by serially
looking at different parts and features of the
examined object on the basis of the decision
taken by a planning module. Recognition is
achieved if the global input to the object unit is
larger than a predetermined threshold. If a
‘semantic match’ is found ! - that is, a hypothesis
on the object identity is formulated by means of
the activation of an object unit — the pyramid
scanning process stops and the spotlight dimen-
sion is stored into a short-term memory so as to
be used later for evaluating the spatial parame-
ters of subsequent fixations.

In order to accept the hypothesis, the system
begins a serial examination of the object features
looking for other matches. If the hypothesis fails
to be confirmed by successive attentional fixa-
tions, the planning module resets all the feature
units in the representation of the rejected object.
In this way, the second most probable hypothesis
wins the competition and its features are then
analyzed. The cycle is repeated until recognition
is achieved or all the possibilities are sequentially
examined.

3. Results

In the implementation described in this paper
the system includes two pyramids at the sensory

' A ‘Weak perspective’ projection model [29] is assumed
here, thus avoiding significant deformations of the peripheral
parts of the foveated objects; such deformations could seri-
ously complicate the ionic representation.
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Fig. 6. Left: A frame as sensed by a retina-like sensor with M = 64 annuli and N = 128 angular sectors. The radii-ratio is
a = 1.04621, and p = 43.32067. The field of view is approximately 45 deg. Only the periphery is shown. Right: The same frame,
after cortical pyramidalization (level 1). Notice that image degradation is increasingly higher moving outwards from the fovea.

processing level and the representations of two
objects in the semantic stage. The two pyramids
represent the magnitude of the optical flow and
the time to impact so that at any time the two
locations with the highest values of these parame-
ters are activated in the saliency map and can be
selected by the system as possible directions of
gaze.

The two objects known by the system are the
dog and the train toys shown in Fig. 6. Both the
objects have been represented with four feature
units and a single object unit. The representa-

tions have been built by manually selecting the
parts chosen in a number of images reproducing
the objects with different orientations. The result-
ing icons were used for training the matching
network and they were stored into the self-
organizing map. The spatial relationships among
the parts were used as the training set for the
backpropagation-trained network. The output of
an artificial retina has been simulated by resam-
pling high-resolution 256 X 256 b /w images, upon
which one pyramid level has been built.

An example showing the system at work is

Fig. 7. Left: The lower bound on the time to impact as obtained from the differential invariants computed at the 1st level of the
pyramid (darker areas correspond to closer surfaces). A 3 X 3 neighborhood was used to compute the cortical flow, and a 3 X3
Gaussian filter was used to smoothen it. Right: The time to impact as it would look if the whole Oth level of the pyramid was
processed. In practice, cortical flow — and consequently time to impact — is computed only at a few points at this level, specifically
those corrensponding to the 1st level cortical pixel with lowest time to impact.
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Fig. 8. The scene (sensor level) after foveation. Gaze has
shifted on the muzzle of the dog, so the train is imaged now in
the periphery of the retina.

illustrated in Figs. 6 through 8. The system is
tuned so as to maximally attend to approaching
motion — that is, time to impact pyramid has the
maximum priority — followed by object recogni-
tion and by speed magnitude. Fig. 6 is the first
frame of a ‘stop-and-go’ sequence involving the
two toy-objects. At the beginning the system is
looking at the train and it is involved in its
recognition sequence. Then, the dog, which is
imaged in the periphery of the visual field, takes
a leap in the direction of the sensor. Finally, the
train starts moving. As the dog moves, its ap-
proaching is detected by the time to impact pyra-
mid, thus forcing the system to foveate in its

Fig. 9. The robotic head developed at the ARTS Lab. The
system features a mechanical unit which includes two retina-
like sensors, each actuated with two d.o.f. through DC servo-
motors, and a transputer-based control architecture [30].

direction. Due to the fact that a higher priority
was assigned to the possibility of collisions with
moving objects than to recognizing a still object, a
nonzero entry is produced in the saliency map,
and attention is drawn on the dog. Fig. 7 shows
how a dog motion towards the retinal plane is
perceived by the time to impact pyramid (notice
that the train, which is still, is totally ignored by
this pyramid). A first foveation (Fig. 8) occurs on
the muzzle of the dog; it being the most promi-
nent part of its body, it has produced the lowest
time to impact. As the system ‘knows’ the dog,
the recognition process starts, and a sequence of
foveations takes place on the dog, so as to exam-
ine its different parts. Although the subsequent
‘departure’ of the train produces a cue in the
magnitude speed pyramid (but not in the time to
impact pyramid), the system is not ‘distracted’
from its recognition sequence, due to the higher
priority of recognition.

4. Conclusions

Mechanisms for data reduction and selection
are crucial for the development of effective
robotic vision systems. Thanks to an attentive
behavior, the computational resources of a sys-
tem can be focused on the process of the relevant
data, thus contributing to significantly improve
the system performance. Experiments similar to
the one described in the previous section show
that the architecture could be effective as a part
of a real-time vision system interacting with real-
world environments. The integration of sensory
and semantic characteristics of the visual data
have produced an adaptive behavior which can
change on the basis of the task at hand.

At present, the system architecture is being
implemented on a binocular vision system re-
cently developed at the ARTS Lab (Fig. 9). Due
to the availability of two sensors, binocular sen-
sory cues such as disparity are also being consid-
ered, together with light intensity, density of con-
tours, and other features provided by different
sensory modalities, such as hearing and touch.
Also the learning capabilities of the system can
be improved by means of on-line learning to-
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wards the autonomous development of new ob-
ject representations.
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