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Objectives: Pseudomonas aeruginosa is a major cause of severe healthcare-associated infections and
often shows MDR phenotypes. Ceftolozane/tazobactam is a new cephalosporin/b-lactamase inhibitor combina-
tion with potent activity against P. aeruginosa. This survey was carried out to evaluate the susceptibility of
P. aeruginosa, circulating in Italy, to ceftolozane/tazobactam and comparators and to investigate the molecular
epidemiology of carbapenemase-producing strains.

Methods: Consecutive non-replicate P. aeruginosa clinical isolates (935) from bloodstream infections and lower
respiratory tract infections were collected from 20 centres distributed across Italy from September 2013 to
November 2014. Antimicrobial susceptibility testing was performed by broth microdilution and results were
interpreted according to the EUCAST breakpoints. Isolates resistant to ceftolozane/tazobactam were investi-
gated for carbapenemase genes by PCR, and for carbapenemase activity by spectrophotometric assay. WGS
using an Illumina platform was performed on carbapenemase-producing isolates.

Results: Ceftolozane/tazobactam was the most active molecule, retaining activity against 90.9% of
P. aeruginosa isolates, followed by amikacin (88.0% susceptibility) and colistin (84.7% susceptibility). Overall,
48 isolates (5.1%) were positive for carbapenemase genes, including blaVIM (n"32), blaIMP (n"12) and blaGES-5

(n"4), while the remaining ceftolozane/tazobactam-resistant isolates tested negative for carbapenemase pro-
duction. Carbapenemase producers belonged to 10 different STs, with ST175 (n"12) and ST621 (n"11) being
the most common lineages. Genome analysis revealed different trajectories of spread for the different carbape-
nemase genes.

Conclusions: Ceftolozane/tazobactam exhibited potent in vitro activity against P. aeruginosa causing invasive
infections in Italy. Carbapenemase production was the most common mechanism of resistance to ceftolozane/
tazobactam.

Introduction
Pseudomonas aeruginosa is a common cause of severe
healthcare-associated infections, including pneumonia and blood-
stream infections (BSIs).1 P. aeruginosa is intrinsically resistant to a
variety of antibiotics, and is prone to acquire multiple resistance
mechanisms to anti-Pseudomonas agents owing to chromosomal
mutations or horizontal transfer of exogenous resistance genes.1,2

Acquisition of multiple resistance mechanisms is common, leading
to MDR and even XDR phenotypes, drastically reducing the number
of antimicrobial agents available for clinical use.3–6

Concerning b-lactams, acquired resistance can be due to several
mechanisms, including upregulation of the MexAB-OprM and MexXY
efflux systems, reduced outer membrane permeability due to loss
of OprD porin, penicillin-binding protein alterations, overproduction
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of the endogenous AmpC-type b-lactamase, and production of
acquired b-lactamases.2,6–13 Indeed, several acquired b-lactamases
of different classes have been reported in clinical isolates of
P. aeruginosa, including class A serine-b-lactamases of narrow
(e.g. PSE and TEM-1) or extended spectrum (e.g. PER, VEB, CTX-M,
GES, KPC), class B metallo-b-lactamases (e.g. IMP, VIM, AIM, FIM,
NDM and SPM), and class D serine-b-lactamases of narrow
(e.g. OXA-3) or extended spectrum (e.g. OXA-10, OXA-11, OXA-28),
or even with weak carbapenemase activity.2,3,14,15

Ceftolozane is a new cephalosporin with potent in vitro activity
against P. aeruginosa that is not affected by most of the b-lactam
resistance mechanisms present in this species, including produc-
tion of the endogenous AmpC-type b-lactamase, upregulation of
the MexAB and MexXY efflux systems and reduction of outer mem-
brane permeability by OprD loss, which variably affect all other
anti-Pseudomonas b-lactams.16 The combination with the b-lacta-
mase inhibitor tazobactam extends ceftolozane’s spectrum of
activity against many Enterobacteriaceae producing ESBLs.17,18

In this study we carried out a nationwide Italian survey on
P. aeruginosa causing invasive bloodstream and lower respiratory
tract infections, to investigate the antimicrobial susceptibility pro-
files for ceftolozane/tazobactam and comparators, and the molec-
ular epidemiology of carbapenemase producers.

Materials and methods

Bacterial isolates

Twenty different centres distributed across Italy (Figure S1, available as
Supplementary data at JAC Online) were asked to collect, during the period
from September 2013 to November 2014, consecutive non-duplicate clini-
cal isolates of P. aeruginosa from cases of BSIs and hospital-acquired (HAP)
or ventilator-associated pneumonia (VAP).19 For HAP/VAP, only broncho-
alveolar lavage samples with a colony count !1%104 cfu/mL were consid-
ered significant.20 Isolates from cystic fibrosis patients were excluded.

Identification of all collected isolates referred by the participating
centres was confirmed using MALDI-TOF (Vitek-MS, bioMérieux, Marcy
L’Etoile France).

Susceptibility testing
The activity of ceftolozane/tazobactam and comparators (cefepime, cefta-
zidime, piperacillin/tazobactam, meropenem, imipenem, ciprofloxacin,
amikacin and colistin) was tested against the collection of isolates by broth
microdilution21 using lyophilized custom plates (Thermofisher Scientific).
Results were interpreted as susceptible, intermediate or resistant according
to the EUCAST breakpoints (EUCAST breakpoint tables version 7.1, 2017,
www.eucast.org).

Analysis of carbapenemase genes and
carbapenemase production
All isolates resistant to ceftolozane/tazobactam were screened by PCR,
using protocols and conditions previously described22 for the most com-
mon carbapenemase genes reported in P. aeruginosa (blaVIM and blaIMP).
Carbapenemase activity was tested by spectrophotometry, using imipe-
nem as substrate as described previously,23 on crude extracts of
ceftolozane/tazobactam-resistant isolates that tested negative for carba-
penemase genes, and of ceftolozane/tazobactam-susceptible isolates with
a carbapenem (imipenem or meropenem) MIC!64 mg/L.

WGS of carbapenemase-positive isolates and
resistome analysis
Bacterial DNA of all isolates positive for carbapenemase genes or carbape-
nemase production was extracted using the phenol:chloroform method.24

Genomic DNA was subjected to WGS with a MiSeq platform (Illumina, Inc.,
San Diego, CA), using a 2%250 bp or 2%300 bp paired-end approach, and
reads were assembled using SPAdes.25 Raw coverage of the assembled
genomes, calculated using a total genome length of 6.3 Mbp corresponding
to that of P. aeruginosa reference strain PAO1 (Accession: NC_002516),26

ranged between 40% and 272%, with an average value of 114%. A mean
of 155 contigs per strain was obtained, with an average N50 of 326 Kbp.
Resistance gene content was investigated using the ResFinder tool avail-
able at the Center for Genomic Epidemiology at https://cge.cbs.dtu.dk/serv
ices/ResFinder/. Comparative analysis of the blaAmpC sequences was
carried out using the BLASTN Tool, available at https://blast.ncbi.nlm.nih.
gov/Blast.cgi.

Clonal relatedness of carbapenemase-positive
P. aeruginosa
Clonal relatedness was investigated by determination of the MLST profile
obtained by the MLST 1.8 software (available at https://cge.cbs.dtu.dk/serv
ices/MLST/) using the assembled whole genome sequences as input data.
Fine-tuning analysis of clonal relatedness was obtained with the CSI phy-
logeny 1.4 tool, available at https://cge.cbs.dtu.dk/services/CSIPhylogeny/,
using default parameters except for the minimum distance between SNPs
option, which was disabled. The phylogeny was inferred based on the con-
catenated alignment of the high-quality SNPs,27 which were used to gener-
ate a phylogenetic tree. The overall phylogenetic tree was constructed
using P. aeruginosa PAO1 genome (Accession: NC_002516) as reference,
and draft assembled genomes as input data, after removing contigs
,300 bp. The mean percentage of reference genome covered by all isolates
was 89.9%. Genetic distance within strains belonging in the same sequence
type was computed using as reference the internal strain with the oldest
collection date, and as input data the raw reads of related strains.
Phylogenetic trees were visualized and modified by FigTree 1.4.3 (http://
tree.bio.ed.ac.uk/software/figtree/).

Nucleotide sequence accession numbers
Draft genome sequences were deposited in the INSDC databases under
accession numbers from NFFC00000000 to NFGX00000000.

Results

Antimicrobial susceptibility of P. aeruginosa
clinical isolates

A total of 935 non-replicate P. aeruginosa clinical isolates
(382 from BSI and 553 from HAP/VAP) were collected from
20 centres distributed across Italy (Figure S1) in the period
September 2013–November 2014. The number of collected iso-
lates ranged from 16 to 138 between different centres (Table 1).

Overall, 60% of the isolates were resistant to at least one anti-
pseudomonal agent among b-lactams (ceftolozane/tazobactam,
cefepime, ceftazidime, piperacillin/tazobactam, meropenem and
imipenem), ciprofloxacin, colistin and amikacin, whereas 37.2%
exhibited an MDR phenotype (i.e. resistant to at least one tested
antibiotic in three or more antimicrobial classes).28 Six isolates
were resistant to all tested drugs.
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Ceftolozane/tazobactam was the most active agent (90.9%
susceptibility), followed by amikacin (88.0% susceptibility) and col-
istin (84.7% susceptibility, considering the most recent EUCAST
susceptibility breakpoint of 2 mg/L). Lower susceptibility rates were
observed with the other agents (Table 2).

The ceftolozane/tazobactam MIC50 and MIC90 values (1 and
4 mg/L, respectively) were overall lower than those of other anti-
pseudomonal b-lactams, with median and modal MIC values of
1 mg/L (Tables 2 and 3). Ceftolozane/tazobactam retained activity
against the majority (59.6%) of the 183 isolates that were non-
susceptible to all other b-lactams (19.6% of the total collection),
and against almost half (46.8%) of the 64 isolates that were resist-
ant to all other agents except colistin (6.8% of the total collection)
(Table 3). Ceftolozane/tazobactam was also active against 9/15

isolates that were non-susceptible to all other tested agents.
Among the ceftolozane/tazobactam-resistant isolates, 82.3%,
44.7%, 15.3% and 8.2% were susceptible to colistin, amikacin,
ciprofloxacin and carbapenems, respectively.

Some differences were observed in the antimicrobial suscepti-
bility pattern comparing isolates from BSI and from HAP/VAP, with
the former overall less resistant to antibiotics (Table S1).

Carbapenemase determinants among the
P. aeruginosa isolates and molecular epidemiology of
carbapenemase producers
Since carbapenemase production is known to be one of the resist-
ance mechanisms to ceftolozane/tazobactam, we considered
ceftolozane/tazobactam resistance as a marker of possible carba-
penemase production, and first screened all the ceftolozane/
tazobactam-resistant isolates for the presence of blaIMP and blaVIM

genes, which are the most common carbapenemase determi-
nants in P. aeruginosa.8,29 Overall, 32 and 12 isolates were positive
for blaVIM or blaIMP genes, respectively. The remaining 41 isolates
were screened for carbapenemase activity by reference spectro-
photometric assay, and four of them exhibited weak but measura-
ble carbapenemase activity (specific activity ranged from 6.5 to
8.4 nmol/min/mg), while 37 did not express any detectable carba-
penemase activity. No carbapenemase activity was detected in
the few strains (n"9) susceptible to ceftolozane/tazobactam that
exhibited high carbapenem MICs (!64 mg/L).

The genomes of the 48 carbapenemase-producing isolates
were completely sequenced. Among isolates carrying a blaVIM

gene, blaVIM-2 was the most frequent variant (n"17, 53% of
the 32 isolates) followed by blaVIM-1 (n"15). blaIMP genes were the
second most common carbapenemase determinant (n"12,
25%), with 11 blaIMP-13 and one blaIMP-19. The four blaIMP and
blaVIM-negative isolates showing weak carbapenemase activity
carried a blaGES-5 gene. No other known carbapenemase genes
were detected in these isolates.

All the metallo-b-lactamase producers (of either IMP- or VIM-
type) exhibited ceftolozane/tazobactam MICs !64 mg/L and, in
most cases, MICs were .128 mg/L. All of the GES-5 producers
showed ceftolozane/tazobactam MICs of 8 mg/L (Table 3).

Carbapenemase producers were isolated in 11 of 20 centres,
with proportions ranging from 2.9% to 18% in those centres
(Table 1).

Analysis of the blaAmpC genes in the sequenced isolates
revealed none of the mutations previously associated with
increased ceftolozane/tazobactam MICs.30–32 All blaAmpC genes

Table 1. Numbers and proportion of ceftolozane/tazobactam-resistant
(CTZ-R) strains and of carbapenemase producers at different centres

Centre
code

Total
isolates

collected

No. of
CTZ-R isolates

(%)

No. of
carbapenemase
producers (%)

Proportion of
carbapenemase

producers
among CTZ-R (%)

1 89 7 (7.9) 5 (5.6) 71.4
2 49 4 (8.2) 3 (6.1) 75.0
3 28 0 0 —
4 16 2 (12.5) 0 —
5 21 0 0 —
6 80 4 (5.0) 4 (5.0) 100.0
7 48 4 (8.3) 0 —
8 50 1 (2) 0 —
9 50 12 (24) 9 (18.0) 75.0
10 138 13 (9.4) 4 (2.9) 30.8
11 24 4 (16.7) 0 —
12 34 0 0 —
13 50 8 (16.0) 6 (12.0) 75.0
14 48 6 (12.5) 4 (8.3) 66.7
15 54 4 (7.4) 2 (3.7) 50.0
16 22 5 (22.7) 3 (13.6) 66.7
17 50 7 (14) 7 (14.0) 100
18 18 2 (11.1) 1 (5.6) 50
19 26 0 0 —
20 40 2 (7.5) 0 —
Total 935 85 (9.1) 48 (5.1) 56.5

Table 2. MIC50 and MIC90 (mg/L) of ceftolozane/tazobactam and comparators for the collected isolates (935 in total)

CTZ FEP CAZ TZP MEM IPM CIP CST AMK

MIC50 1 4 4 16 1 2 0.25 2 4
MIC90 4 32 64 .128 32 32 .16 4 16
%S 90.9 71.1 70.4 59.9 65.3 65.7 65.1 84.7 88.0

CTZ, ceftolozane/tazobactam (tazobactam at fixed concentration of 4 mg/L); FEP, cefepime; CAZ, ceftazidime; TZP, piperacillin/tazobactam (tazobac-
tam at fixed concentration of 4 mg/L); MEM, meropenem; IPM, imipenem; CIP, ciprofloxacin; CST, colistin; AMK, amikacin; %S, percentage of suscepti-
ble isolates.
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corresponded to previously described variants, and their distribu-
tion was overall associated with the clonal lineage (Table S2).

Population structure of carbapenemase producers
Genome sequence data were used to investigate the population
structure of carbapenemase producers circulating in Italy. Overall,
10 different STs were represented among carbapenemase pro-
ducers, including ST111, ST175, ST179, ST233, ST235, ST260,
ST308, ST395, ST532 and ST621 (Figure 1). ST175 and ST621 were
the most prevalent (n"12 and n"11 isolates, respectively), fol-
lowed by ST235 and ST111 (n"7 and n"6 isolates, respectively).

The ST621 isolates were closely related to each other (SNP varia-
tion: 36–643, mean 197, median 134) and were invariably associ-
ated with the blaIMP-13 gene and detected in five different centres
(Figure 2a). In contrast, isolates of ST175 exhibited a somewhat
higher diversity (SNP variation: 0–1265, mean 315, median 212).
The blaVIM-2-positive isolates were all highly related to each other
and from a single centre, whereas the blaIMP-19-positive isolate was
the most divergent (Figure 2b). An even higher diversity was
observed among isolates of ST235 (SNP variation: 10–2242, mean
1162, median 1196), with two different clusters of which one
included the blaGES-5-positive isolates and the other the blaVIM-1-pos-
itive isolates (Figure 2c). ST111 also exhibited a higher diversity (SNP
variation: 41–2501, mean 927, median 889), with at least two clus-
ters associated with different blaVIM-type alleles (Figure 2d).

Discussion
P. aeruginosa remains a major cause of severe healthcare-
associated infections worldwide and, among Gram-negative noso-
comial pathogens, has been among the first to exhibit MDR and
XDR phenotypes, owing to its ability to accumulate different resist-
ance mechanisms.

In this survey, we investigated the antimicrobial susceptibility
profiles of P. aeruginosa causing BSI and HAP/VAP in Italy, a country
among the most affected in Europe by the problem of antibiotic
resistance.33 Resistance rates .28% were observed with most

anti-Pseudomonas agents, including cefepime, ceftazidime,
piperacillin/tazobactam and carbapenems, while resistance rates
,12% were only observed with amikacin and ceftolozane/tazo-
bactam, a new b-lactam/b-lactamase inhibitor combination with
potent anti-Pseudomonas activity. Even colistin showed a notable
rate of resistance according to the recently updated EUCAST break-
points (susceptibility breakpoint lowered from 4 to 2 mg/L). These
data represent a step-change from the current clinical scenario.
In fact, colistin is usually considered the prototype last-resort anti-
pseudomonal agent, as it is active against almost 100% of isolates.

Compared with data from the European Antimicrobial
Resistance Surveillance Network (EARS-Net) reported for the same
period,34 we found an overall higher level of resistance to the
tested molecules, except aminoglycosides (Table 2). These differ-
ences could be partially explained by the fact that the EARS-Net
system only reports data for bloodstream isolates, which also in
our study showed lower resistance rates when compared with iso-
lates from respiratory samples (Table S1). Moreover, the EARS-Net
system reports data for aminoglycosides in an aggregated form
(gentamicin and/or tobramycin and/or amikacin), which could
explain the lower aminoglycoside resistance rates observed in our
study, where only amikacin (i.e. the most active anti-Pseudomonas
aminoglycoside) was tested.2

In this scenario ceftolozane/tazobactam could play a central
role. In fact, in our surveillance, it was the most active anti-
Pseudomonas agent, with MIC50/90 values lower than those of all
other b-lactams and with higher activity than colistin and amikacin.
Moreover, ceftolozane/tazobactam was active against approxi-
mately half of the isolates resistant to all other b-lactams or resist-
ant to all other agents except colistin. Our susceptibility results are
concordant with results from other recent surveys, where ceftolo-
zane/tazobactam susceptibility rates ranging from 84%–99% were
reported for P. aeruginosa clinical isolates.17,18,35–44

In this study, ceftolozane/tazobactam resistance was used as
a marker of potential carbapenemase production. In fact,
more than half of the ceftolozane/tazobactam-resistant isolates
were carbapenemase producers, confirming that acquisition of

Table 3. Distribution of ceftolozane/tazobactam MICs against P. aeruginosa from Italy. P. aeruginosa isolates have been sorted based on different
resistance patterns and carbapenemase types

P. aeruginosa (no. of tested isolates)

Number of isolates (%) with an MIC (mg/L) of ceftolozane/tazobactam:

0.25 0.5 1 2 4 8 16 32 64 128 .128

All P. aeruginosa (n"935) 6 (0.6) 245 (26.2) 383 (41.0) 158 (16.9) 58 (6.2) 14 (1.5) 4 (0.4) 7 (0.7) 8 (0.9) 19 (2.0) 33 (3.5)
Sorted by phenotype

CST-susceptible only (64) 0 (–) 0 (–) 1 (1.6) 24 (37.5) 5 (7.8) 3 (4.7) 1 (1.6) 3 (4.7) 4 (6.3) 9 (14.1) 14 (21.9)
CST and AMK susceptible only (70) 0 (–) 0 (–) 3 (4.3) 28 (40.0) 18 (25.7) 4 (5.7) 1 (1.4) 2 (2.9) 0 (–) 5 (7.1) 9 (12.9)
CST-resistant isolates (143) 3 (2.1) 34 (23.8) 53 (37.0) 28 (19.6) 10 (7.0) 1 (0.7) 1 (0.7) 0 (–) 2 (1.4) 3 (2.1) 8 (5.6)
resistant to other b-lactams (183) 0 (–) 0 (–) 6 (3.3) 71 (38.8) 32 (17.5) 7 (3.8) 3 (1.6) 6 (3.3) 6 (3.3) 19 (10.4) 33 (18.0)

Sorted by resistance mechanism
no carbapenemase expression (887) 6 (0.7) 245 (27.6) 383 (43.2) 158 (17.8) 58 (6.5) 10 (1.2) 4 (0.4) 7 (0.8) 7 (0.8) 8 (0.9) 1 (0.1)
VIM- or IMP-type (44) 1 (2.3) 11 (25) 32 (72.7)
GES-5 (4) 4 (100)

AMK, amikacin; CST, colistin.
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carbapenemase genes is a relevant mechanism of resistance to
ceftolozane/tazobactam. However, the presence of other ceftolo-
zane/tazobactam resistance mechanisms was detected in a sub-
stantial number of isolates, and will be the subject of future
investigation. Since most isolates (96.9%) with a ceftolozane/tazo-
bactam MIC .128 mg/L were carbapenemase producers (Table 3),
an MIC value .128 mg/L was highly predictive of carbapenemase
production. Interestingly, 8.3% of the carbapenemase producers
were positive for a blaGES-5 gene (to the best of our knowledge, this
is the first description of GES-5-producing P. aeruginosa isolates
from Italy). GES-5 b-lactamase production was not previously
associated with ceftolozane/tazobactam resistance, but a paper
by Giske et al.45 described GES-2 producers as resistant to ceftolo-
zane/tazobactam. This information could be relevant to the design
of panels for molecular detection of resistance genes for rapid pre-
diction of b-lactam resistance among Gram-negative pathogens.

Italy was among the first European countries to report
carbapenemase-producing P. aeruginosa strains, as early as 1997.23

In a survey on metallo-b-lactamase-producing Gram-negative

organisms, carried out in 2004, the overall proportion of metallo-
b-lactamase-positive P. aeruginosa was 1.3%.46 In this study,
the overall proportion of carbapenemase-producing P. aeruginosa
was 5.1%, with almost 90% accounted for by metallo-b-lactamase
producers, suggesting an increasing trend for metallo-b-lactamase
producers in Italy. Since in this study ceftolozane/tazobactam
resistance was used as a criterion to suspect potential carbapene-
mase production, some carbapenemase producers might
have been missed if they remained susceptible to ceftolozane/tazo-
bactam (owing to very low-level carbapenemase expression or
to the production of an as yet unknown carbapenemase that does
not hydrolyse ceftolozane/tazobactam). Therefore, the observed
prevalence may even be an underestimate. In surveys carried out
in Spain and Russia in the 2008–10 period, the proportion of
carbapenemase producers varied between 6.9% and 28.7%,
respectively.47,48

In this study, VIM-type enzymes were the most common
carbapenemase, followed by IMP-types. These data are in
accordance with the 2004 survey, even if in that survey VIM-1
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Figure 1. Phylogenetic tree of all carbapenemase-producing P. aeruginosa (n"48). For each isolate, the sample code (S), the centre code (C) and the
source (BS, blood sample; RS, respiratory sample) are reported. Filled circles of different colours identify the different types of carbapenemase.
Sequence type (ST) is also shown, and branches including the most-represented STs are shown in different colours. This figure appears in colour in
the online version of JAC and in black and white in the print version of JAC.
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enzymes were detected more frequently than VIM-2 enzymes.46

The dissemination of such enzymes was mainly related to expan-
sion of successful clones in single-centre outbreaks (e.g. ST175-
VIM-2), although a multicentre spread of some resistant clones
(e.g. ST235-GES-5) was also observed.

A limitation of this study was that the isolate collection was not
very recent (2013–14). However, the present data could be consid-
ered as a baseline for later surveillance studies on the activity of
anti-Pseudomonas molecules and carbapenemase production in
P. aeruginosa from Italy.
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38 Juan C, Zamorano L, Pérez JL et al. Activity of a new antipseudomonal
cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and
multidrug-resistant Pseudomonas aeruginosa clinical strains. Antimicrob
Agents Chemother 2010; 54: 846–51.

39 Walkty A, Karlowsky JA, Adam H et al. In vitro activity of ceftolozane-
tazobactam against Pseudomonas aeruginosa isolates obtained from
patients in Canadian hospitals in the CANWARD Study, 2007 to 2012.
Antimicrob Agents Chemother 2013; 57: 5707–9.

40 van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazo-
bactam: second-generation b-lactam/b-lactamase combinations. Clin Infect
Dis 2016; 243–8.

41 Pfaller MA, Shortridge D, Sader HS et al. Ceftolozane-tazobactam activity
against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa
causing healthcare-associated infections in Latin America: report from an
antimicrobial surveillance program (2013-2015). Braz J Infect Dis 2017; doi:
10.1016/j.bjid.2017.06.008.

42 Pfaller MA, Shortridge D, Sader HS et al. Ceftolozane-tazobactam activity
against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa
causing health care-associated infections in the Asia-pacific region (APAC;
minus China, Australia and New Zealand): report from an antimicrobial sur-
veillance program (2013-2015). Int J Antimicrob Agents 2017; doi:10.1016/j.
ijantimicag.2017.09.016.

43 Shortridge D, Castanheira M, Pfaller MA et al. Ceftolozane-tazobactam
activity against Pseudomonas aeruginosa clinical isolates from U.S. hospitals:
report from the PACTS Antimicrobial Surveillance Program, 2012 to 2015.
Antimicrob Agents Chemother 2017; 61: pii=e00465-17.

44 Seifert H, Körber-Irrgang B, Kresken M; German Ceftolozane/Tazobactam
Study Group. In-vitro activity of ceftolozane/tazobactam against
Pseudomonas aeruginosa and Enterobacteriaceae isolates recovered from
hospitalized patients in Germany. Int J Antimicrob Agents 2017; doi:10.1016/
j.ijantimicag.2017.06.024.

45 Giske CG, Ge J, Nordmann P. Activity of cephalosporin CXA-101
(FR264205) and comparators against extended-spectrum-b-lactamase-pro-
ducing Pseudomonas aeruginosa. J Antimicrob Chemother 2009; 64: 430–1.

46 Rossolini GM, Luzzaro F, Migliavacca R et al. First countrywide survey of
acquired metallo-b-lactamases in gram-negative pathogens in Italy.
Antimicrob Agents Chemother 2008; 52: 4023–9.

47 Edelstein MV, Skleenova EN, Shevchenko OV et al. Spread of extensively
resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus,
Kazakhstan, and Russia: a longitudinal epidemiological and clinical study.
Lancet Infect Dis 2013; 13: 867–76.

48 Riera E, Cabot G, Mulet X et al. Pseudomonas aeruginosa carbapenem
resistance mechanisms in Spain: impact on the activity of imipenem, mero-
penem and doripenem. J Antimicrob Chemother 2011; 66: 2022–7.

Carbapenemase-producing P. aeruginosa from Italy JAC

671
Downloaded from https://academic.oup.com/jac/article-abstract/73/3/664/4693735
by Universita di Firenze - Biblioteca di Scienze Tecnologiche. Agraria user
on 28 March 2018


