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Summary 

Due to the growing awareness of climate change, there is a need to quantify GHGs from different 

sources. The water industry, which provides the water supply, wastewater collection, and 

treatment and discharge, contributes significantly to total energy consumption and 

consequently to GHG emissions in developed countries. In WRRFs, large amounts of organic and 

inorganic matter are transformed and transferred from the water phase to the atmosphere, 

lithosphere, and/or biosphere through emissions from process tanks, and treated effluents and 

biosolids that are disposed in the environment. All three main GHGs (i.e. CO2, CH4, and N2O) are 

emitted from WRRFs. N2O is currently the GHG of major concern with regards to direct 

emissions from WRRFs. N2O has a GWP 265–298 times that of CO2 for a 100-year timescale 

which makes this the single most important ozone depleting compound of our century. 

Anthropogenic activity is responsible for about 40% of the global N2O production and a 15% 

concentration increase has been observed since 1750. To date 3% of the anthropogenic N2O 

production is recognized to be generated by wastewater treatment. WRRFs designed for 

nutrients removal have been observed to emit up to 7% of the influent nitrogen load as gaseous 

N2O. 

In a WRRFs the bioreactor is currently recognized as the most emitting treatment step in these 

terms. In addition to this, the aerated compartment of bioreactors is generally recognized to 

cause between 45 to 75 % of the plant’s energy expenditure. Considering both the contribution 

of N2O emissions and energy expenditure, the biological step of a WRRF represents the large 

majority of the CFP of a WRRF. 

Measuring and accounting for N2O emissions and aeration efficiency requires standard methods 

allowing to obtain comparable measurements among different WRRFs and reproducible within 

the same facility in order to derive solid classifications. However, especially for N2O, there is the 

need of a unified protocol with general standardized guidelines for a sound assessment at 

different WRRFs. Both N2O and aeration efficiency measurements protocols present major lacks 

and assumptions. This thesis puts in evidence major weaknesses of protocols for N2O emission 

and aeration efficiency measurements proposing possible improvements in terms of sampling 

strategy, calculation methods and equipment.  

As measurements of N2O emissions and aeration efficiency are used to understand process 

dynamics and design new CFP minimization scenarios, also modelling WRRFs is very important 

in this view, given the system complexity. Modelling tools allow to design new plant operation 

and control strategies (aimed at minimizing these emissions) and evaluate their long term effect 

on the WRRF limiting trials (and risks). Current N2O kinetic models are highly developed in 

describing the biochemical processes, however, as they are developed in lab-controlled 

conditions, they are yet troublesome when it comes to full-scale applications. This is most 

probably due to a poor representation of local concentrations by the plant’s model layout and 

often to an over-parametrization of the biokinetic model. The modelled description of the 

plant’s layout is nowadays often erroneously underestimated, but its design should be one of 



 

the most important steps in the definition of a plant’s model as it has important effects on the 

calculation effort, the calibration of the kinetic model, and nonetheless, on its predictive power. 

This thesis considers one of the most advanced kinetic models available in the literature and 

shows how, using a better representation of hydrodynamics, this can improve its performances. 

As effective applications, and applicability, of kinetic models for N2O prediction in full scale are 

still limited, possible modelling alternatives are evaluated in this work. The application of a 

qualitative, knowledge-based risk assessment model (N2O risk model) to a full-scale datasets is 

provided to prove the concept of its use. The N2O risk model shows to be effective in helping to 

unravel the dynamics behind N2O production and to be able to give valuable insight in the 

mechanisms of N2O production.  

In addition to this, seen the crescent quantity of data that current WRRFs have available, and the 

fact that the amount of information is too often unused wasting part of the value of sensors and 

SCADA systems. A data mining approach is also presented. In this regard, this thesis gives a 

practical application of a data mining technique to derive potential relations with respect to N2O 

emission among variables that are routinely measured at WRRFs. The testing of different clustering 

algorithms and their critical evaluation is shown in view of an online application. This is furnishing a 

possible new root to the use of SCADA data for understanding and mitigating N2O emissions by 

translating hidden information into clear operational instructions. 

In summary, this thesis raises the main concerns about N2O and aeration efficiency assessment 

analyzing major weaknesses and suggesting possible solutions for developing more robust 

standardized methods. It further provides an overview of different N2O modelling approaches 

proposing possible developments to enhance capabilities to recognize sources of emission and provide 

clues for developing CFP reduction strategies. 



 

Samenvatting 

Wegens de toenemende bewustwording van de klimaatverandering is er een nood om 

broeikasgassen van verschillende bronnen te kwantificeren. De waterindustrie, die instaat voor 

waterbevoorrading, afvalwatercollectie en – behandeling, draagt significant bij tot 

energieverbruik en als dusdanig tot broeikasgasemissies in ontwikkelde landen. In water- en 

grondstofwinnings faciliteiten (WGWF) worden grote hoeveelheden organische en 

anorganische stoffen omgevormd en getransfereerd van de waterige fase naar de atmosfeer, 

litosfeer en/of biosfeer door emissies van procesreactoren en behandelde effluenten en vaste 

stoffen die worden geloosd in het milieu. De drie voornaamste broeikasgassen, zijnde CO2, CH4, 

en N2O, worden door WGWF’s uitgestoten. N2O is momenteel het meest verontrustende 

broeikasgas met betrekking tot directe uitstoot vanuit WGWF’s. N2O heeft een GWP van 265–

298 dan dat van CO2 over een 100 jaar tijdshorizon, wat het tot meest ozon vernietigende gas 

maakt van deze eeuw. Antropogene activiteit is verantwoordelijk voor ca. 40% van de globale 

N2O productie en een concentraitetoename van 15% sinds 1750 werd waargenomen. Bij 

sommige WGWF’s ontworpen voor nutriëntenverwijdering werd een N2O emissie van zoveel als 

7% van de influent stikstofbelasting waargenomen. 

In een WGWF wordt de bioreactor tot op heden aanzien als de grootste emissiebron. Bovendien 

is het beluchte deel daarvan ook nog eens verantwoordelijk voor 45 tot 75% van het 

energieverbruik. Dit in acht nemende, is de biologische trap van een WGWF verantwoordelijk 

voor het leeuwendeel van de koolstofvoetafdruk van een WGWF. 

Het meten en in rekening brengen van N2O emissies en beluchtingsefficiëntie heeft nood aan 

standaardmethodes die toelaten om vergelijkbare metingen tussen verschillende WGWF’s te 

bekomen, die bovendien herhaalbaar moeten zijn tussen verschillende installaties om een 

solide klassificatie toe te laten. Zeker voor N2O is er nood aan een eenduidig protocol met 

algemene gestandardiseerde regels voor een betrouwbare inschatting in een WGWF. Zowel de 

huidige meetprotocols voor N2O en beluchtingsefficiëntie meetprotocols vertonen 

tekortkomingen en veronderstellingen. Dit werk illustreert deze tekortkomingen en stelt 

verbeteringen voor met betrekking tot staalnameprocedure, berekeningsmethoden en 

meettoestellen. 

Aangezien metingen van N2O emissies en beluchtingsefficiëntie worden gebruikt om 

procesdynamica beter te begrijpen en scenario’s voor te stellen voor 

koolstofvoetafdrukreductie, is ook wiskundige modellering van WGWF’s zeer belangrijk gezien 

de systeemcomplexiteit. Modellering laat toe om betere bedrijfsvoering en controlestrategiëen 

te ontwerpen met als doel emissies te minimaliseren, alsook de lange termijn effecten en risico’s 

te evalueren. De huidige kinetische modellen voor N2O zijn sterk ontwikkeld met betrekking tot 

de biochemische processen. Deze werden echter ontwikkeld in een labo omgeving en blijken 

nog problematisch voor toepassing op volle schaal. Dit is wellicht te wijten aan een 

ondermaatse predictie van lokale concentraties en een overparameterisatie van het 



 

biokinetische model. De modellering van de spatiale component gebeurt meestal zeer summier, 

in tegenstelling tot het belang ervan voor berekening en calibratie van het kinetische model en 

aldus de predictieve kracht van het model. Dit werk illustreert hoe een betere spatiale 

representatie in combinatie met de meest geavanceerde kinetische modellen in de literatuur, de 

modelperformantie kan verbeteren. 

Gezien de effectieve toepassing van kinetische modellen voor N2O predicites nog op zich laat 

wachten werden ook alternatieven voor modellering geëvalueerd. De toepassing van 

kwalitatieve kennis-gebaseerde risico inschattingsmodellen (N2O risico model) op volle schaal 

data werd geïllustreerd. Het N2O risico model bleek in staat om mede de dynamica van N2O 

productie te ontrafelen en de productiemechanismen beter te doorgronden. 

Dit soort technieken zijn interessant gezien de steeds toenemende kwantiteit aan data 

beschikbaar in WGWF’s en het feit dat deze informatie vaak ondergebruikt wordt, wat de echte 

kracht van sensoren en SCADA ondermijnt. Mede hiervoor werd een datamining techniek 

toegepast in dit werk om verder de potentiële verbanden tussen N2O emissies en regulier 

gemeten grootheden in een WGWF bloot te leggen. Verschillende clusteralgoritmen werden 

getest en hun prestatie kritisch geëvalueerd met het oog op online toepassing. Dit is een 

mogelijke nieuwe route voor gebruik van SCADA data voor het begrijpen en reduceren van N2O 

emissies door de verborgen informatie om te zetten in duidelijke operationele instructies. 

Samengevat droeg dit werk bij tot het in de verf zetten van het belang van analyse van N2O emissies 

en beluchtingsefficiëntie en de tekortkomingen ervan, alsook voorstellen voor betere oplossingen en 

robustere standaarmethodes. Verder geeft het werk een overzicht van verschillende 

modelleringsmethoden voor N2O waarbij uitbreidingen en nieuwe methoden worden voorgesteld om 

de koolstofvoetafdruk te reduceren. 

 

 

 



 

Abbreviations and acronyms 

𝛼 – correction factor to process conditions for oxygen transfer measurements 

𝛼𝑆𝑂𝑇𝐸 – Standard Oxygen Transfer Efficiency in process conditions 

𝛽 – correction factor to process conditions for DO at saturation 

𝜃 – geometric temperature correction coefficient 

𝑎 – available area for exchange of oxygen 

𝐴𝑀𝑅𝐸 – Absolute Mean Relative Error 

𝐴𝑆𝑀 – Activate Sludge Model 

𝐴𝑆𝑀𝐺1 – Activated Sludge Model for GHG n.1 

𝐴𝑆𝑀𝐺2𝑑 – Activated Sludge Model for GHG n.2d 

𝐴𝐹𝑅 – Air Flow Rate 

𝐴𝑆 – Activated Sludge 

𝐴𝐷 – Anaerobic Digestion 

𝑎𝑠𝑝𝑒𝑐  – specific area of diffusers 

𝑏𝑖𝑜 − 𝑃 – biologically related phosphorous removal 

𝐵𝑂𝐷 – Biochemical Oxygen Demand 

𝐶𝐴𝑆 – Conventional Activated Sludge 

𝐶𝐹 – Carbon Footprint 

𝐶𝐻4 – Methane 

𝐶𝑀 – Compartmental Model 

𝐶𝑂2 – Carbon Dioxide 

𝐶𝑂𝐷 – Chemical Oxygen Demand 



 

𝐶𝑂𝐷/𝑁 – ratio of COD to N 

𝐶𝑆𝑇𝑅 – Completely Stirred Tank Reactor 

𝐸𝐶𝑇 – Equivalent Contact Time 

𝐷 – diffusion coefficient for oxygen 

𝐷𝑂 – Dissolved Oxygen 

𝐷𝑂𝑆20

∗  - saturation of oxygen in clean water at 20°C 

𝐷𝑂𝑆𝑇

∗  - saturation of oxygen in clean water at temperature T 

𝐷𝑂𝑖 – instant concentration of oxygen in the liquid 

𝐸𝐹 - emission factor 

𝐹𝑁𝐴 – Free Nitrous Acid 

𝐹𝐴 – Free Ammonia 

𝐺𝐶 – Gas Chromatography 

𝐺𝐻𝐺 – Greenhouse Gas 

𝐺𝑊𝑅𝐶 – Global Water Research Coalition 

𝐼𝑊𝐴 – International Water Association 

𝑘𝐿 - oxygen mass transfer coefficient 

𝐾𝑀𝑂 – Kayser Meyer-Olkin 

𝐿𝐻 – Latin Hypercube 

𝑀𝐴𝑅𝐸 – Mean Absolute Relative Error 

𝑀𝐸𝐴 – Mean Absolute Error 

𝑀𝐸𝐴𝑃𝐸 – Median of Absolute Prediction Error 

𝑀𝑃𝐶𝐴 - Multi-way PCA 

𝑀𝑅𝑜/𝑖  - molar ratio of oxygen to inerts in ambient air (inlet gas) 

𝑀𝑅𝑜𝑔/𝑖 - molar ratio of oxygen to inerts in the off-gas 

𝑀𝑆𝐸 – Mean Squared Error 

𝑀𝑆𝐿𝐸 – Mean Squared Logarithmic Error 



 

𝑀𝑆𝑅𝐸 – Mean Squared Relative Error 

𝑁𝐻4
+ - ammonia 

𝑁𝑂 – nitric oxide 

𝑁𝑂2
− - nitrite 

𝑁𝑂3
− - nitrate 

𝑁2𝑂 - nitrous oxide 

𝑁𝑂𝐻 – nitrosyl radical 

𝑁𝐻2𝑂𝐻 – hydroxylamine 

𝑁𝑑  – number of diffusers 

𝑂𝐴𝑇 - One sample At Time 

𝑂𝐷 - Oxidation Ditch 

𝑂𝐻𝑂 - Ordinary Heterotrophic Organisms 

𝑂𝑇𝐸 – Oxygen Transfer Efficiency 

𝑃𝐴𝑂 – Phosphorous Accumulating Organisms 

𝑃𝐶𝐴 – Principal Components Analysis 

𝑃𝐶 – Principal Component 

𝑄𝑎𝑖𝑟 – air flow 

𝑅𝐶𝑉 – Relative Cumulative Variance 

𝑅𝑀𝑆𝐸 – Root Mean Squared Error 

𝑅𝑅𝑀𝑆𝐸 – Relative Root Mean Squared Error 

𝑅𝑉 – Relative Variance 

𝑅𝑉𝐸 – Relative Volume Error 

𝑆𝐴𝑅𝐸 – Sum of Absolute Relative Error 

𝑆𝐵𝑅 - sequencing batch reactor 

𝑆𝐶𝐴𝐷𝐴 – Supervisory Control and Data Acquisition 

𝑆𝑅𝑇 - Sludge Retention Time 



 

𝑆𝑆𝐸 – Sum of Squared Errors 

𝑈𝐴𝑆𝐵 – Upflow Anaerobic Sludge Blanket Reactors 

𝑡𝑒 – bubble residence time in the liquid 

𝑊𝑅𝑅𝐹 – Water Resource Recovery Facility 

𝑌𝑟 - mole fractions of water vapor in ambient air (inlet gas) 

𝑌𝑜𝑔 - mole fractions of water vapor in the off-gas 

𝑌𝐶𝑂2𝑟 - mole fractions of CO2 in ambient air (inlet gas) 

𝑌𝐶𝑂2𝑜𝑔 - mole fractions of CO2 in the off-gas 

𝑍 – diffusers submergence 

 

  



 

Chapter 1 

1. Introduction 

  



 

 

 

 



Chapter 1 Introduction 
 

1-1 
 

1.1. Problem statement 

1.1.1. A global view 

It took just 100 years during the 20th century for the world population to increase from 1.6 to 6.1 

billion people (UN Population Fund). There are more than 7.5 billion people on the planet at this 

moment and, with a growth rate of 1.2 %, this is expected to reach 10 billion by 2050 (Figure 1.1) 

(http://www.worldometers.info). All these people need and deserve proper sanitation services and 

access to safe drinking water while maintaining a sustainable water withdrawal (Figure 1.2). 

Currently, only 27% of the global population (1.9 billion people) use private sanitation facilities 

connected to sewers from which wastewater is treated (http://www.who.int). With the expected 

population growth and relative urbanization, the global need for water treatment becomes a 

dramatic emergency becoming part of the Sustainable Development Goals of the United Nations 

(UN) with Goal 6 to “Ensure access to water and sanitation for all” (http://www.un.org). At a global 

level, this is so important to directly connect and relate to a number of other UN targets such as 

“Ensure healthy lives and promote well-being for all at all ages” (Goal 3) in first instance, but also 

“Promote inclusive and sustainable economic growth, employment and decent work for all” (Goal 

8) since without proper water availability and treatment there is no sustainable development, 

“Take urgent action to combat climate change and its impacts” (Goal 13) given that this is a key step 

in the fight against climate change, “Conserve and sustainably use the oceans, seas and marine 

resources” (Goal 14) as a result of proper water treatment and discharge, “Sustainably manage 

forests, combat desertification, halt and reverse land degradation, halt biodiversity loss” (Goal 15), 

and finally “Promote just, peaceful and inclusive societies” (Goal 16) since water scarcity and 

transboundary water disputes are historically known to trigger conflicts worldwide (Kreamer, 

2012). 

 

Figure 1.1 - World population growth projection to 2100 (http://geoffboeing.com/) 

 

http://www.worldometers.info/
http://www.who.int/
http://www.un.org/
http://geoffboeing.com/
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Figure 1.2 – Global population and water withdrawal over time (http://www.fao.org, AQUASTAT 
data) 

Water scarcity is a direct consequence of the overexploitation due to population growth. Earth is 

estimated to contain a total 1.338 billion km3 of water (https://water.usgs.gov) of which barely 

0.007 % is freshwater available for people. This means that, ideally, each individual has about 

12500 m3 of water available on earth. This value is highly volatile depending on the continent and 

local conditions (Figure 1.3). Some regions are relatively rich of water while others, depending on 

geography, climate, availability of technology and local regulations are instead facing draught and 

sever pollution.  

12500 m3 per capita might at first sight seem a big number, but it must be kept in mind that this 

water should serve for both municipal use, agriculture and industry (Figure 1.2). Therefore, 

considering that the fraction remaining for urban use is in average 10% of it, this means that for the 

case of a country currently not experiencing particular scarcity like Italy, each inhabitant has to live 

the whole life with about 300 m3, 100 m3 for Belgium. Hence, there is a globally spread need for 

water reuse, adequate treatment, supply and sanitation. 

http://www.fao.org/
https://water.usgs.gov/
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Figure 1.3 – Renewable internal freshwater resources per capita in m3 in Belgium and Italy compared 
with: a) averages of high income countries and Europe-Central Asia; b) nations with similar figures; 

c) countries with high water availability; d) countries with severe scarcity 
(https://data.worldbank.org). 

Discharging improperly treated water creates severe environmental and health problems among 

which the accumulation of nutrients (nitrogen booms and hypoxia with critical consequences for 

both fauna and flora. Recently, nitrogen has been also observed accumulating in soils of 

anthropogenic landscapes (Van Meter et al., 2016). But nitrogen is relatively abundant in nature, 

even though the vast majority of it is strongly bound as N2 in the atmosphere. On the other hand, 

phosphorous, other than representing an important source of nutrients for plants, is becoming a 

scarce element increasingly interesting for resource recovery for industrial applications (Neset and 

Cordell, 2012; Ulrich and Frossard, 2014). This is due to its (yet) non-renewable character, since 

the only source of phosphorous to overcome our needs is to date (increasingly expensive) mining. 

In the European context, the EU Water Framework Directive (WFD – directive 2000/60/EC) has 

been applied to develop a common framework for waterbodies protection within the European 

Union. Among the primary objectives of the WFD is the protection of the environment against 

uncontrolled (waste)water discharge and, probably the main aim of the agreement is the 

achievement of a degree of "good status" for all European surface waters. The application of the 

directive was supposed to ensure the availability of adequate wastewater treatment, and the 

establishment of concentration limits for target compounds in urban and industrial discharges 

prior to the receiving waters. Despite the fact that the directive failed in reaching some of the key 

targets at the 2015 deadline, and some criticism raised on many organizational and economical 

https://data.worldbank.org/
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aspects of WFD that need improvement (Van Engelen et al., 2008; Voulvoulis et al., 2017), the 

directive significantly boosted the spreading of advanced biological treatment. Also, the application 

of secondary (biological) treatment for all areas was set as a mandatory requisite, thus boosting the 

spread out of adequate water treatment in less developed regions.  

1.1.2. Water treatment 

Since more than a century, the activated sludge (AS) (Ardern and Lockett, 1914) is the most 

widespread advanced biological treatment of wastewater (Kolarik and Priestley, 1995). The need 

for properly removing nitrogen from the water stream and the discovery of some heterotrophic 

bacteria capable of converting nitrate to nitrogen gas (McCarty, 1964) led to the nitrification-

denitrification concept of the AS process. The implementation of the pre-denitrification step 

followed and the combination of the two processes with the introduction of the recycle flow was a 

successful improvement also regarding biological phosphorous removal (Barnard, 1973). The 

strong increase in population of the 1970s was the cause of two main issues for the sanitation field. 

Firstly, the necessity of city areal expansion caused the incorporation of many treatment plants, 

initially built outside the urban area, inside the residential space. Therefore, when the 

consequential need of increasing the treatment capacity of these plants became tangible, space 

efficient technologies such as MBRs successfully entered the market. Secondly, the energy crisis 

pushed the attention of the research towards the development and improvement of anaerobic 

processes (e.g. UASB), and towards the optimization and further understanding of the most energy 

demanding steps such as aeration and pumping. Wastewater treatment plants, were lately 

refreshed in the conceptual name with the more renewable attribute of Water Resource Recovery 

Facilities (WRRFs).  

These technologies are nowadays complex industrial applications in need of adequate control, 

management and maintenance to prevent them from becoming sources of pollution themselves. A 

WRRF can remove important amounts of pollutants from the water and make its discharge safer, 

but they also require a relevant amount of energy to operate (e.g. pumps, aerators, mixers), which 

is yet generated burning fossil fuels in large majority. The vast majority of the energy used in a 

WRRF is used to provide sufficient oxygen to the microorganisms able to degrade the contaminants. 

The aerobic step of a WRRF can account for as much as 60 % of the total plant energy requirement 

(WEF, 2010). WRRFs can also become source of gaseous emissions contributing to the greenhouse 

effect, such as methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). These emissions 

represent a growing concern and a timely issue in WRRF optimization. In particular N2O has a 

global warming potential of 298 times the one of CO2 and its generation can significantly impact the 

carbon footprint of a WRRF becoming in some cases as important as the carbon emission due to its 

energy consumption (Daelman et al., 2013). In the latest years, the persistent and growing concern 

for climate change have placed a considerable amount of focus on measuring and modelling full-

scale WRRF emissions. 
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1.1.3. WRRF emissions 

Due to the growing awareness of climate change, there is a need to quantify GHGs from different 

sources. With regard to this need, some governments have started to implement regulations that 

force water authorities to report their GHG emissions (GWRC, 2011). Indeed, the water industry, 

which provides the water supply, wastewater collection, and treatment and discharge, contributes 

significantly to the total energy consumption and consequently to GHG emissions in developed 

countries, and thus it may play a dominant role in some regions (Olsson, 2011). In water resource 

recovery facilities WRRFs, large amounts of organic and inorganic matter are transformed and 

transferred from the water phase to the atmosphere, lithosphere, and/or biosphere through 

emissions from process tanks, and treated effluents and biosolids that are disposed in the 

environment. WRRFs emit all three main GHGs (i.e. CO2, CH4, and N2O) and are responsible for a 

large portion of the GHG emissions from the water industry (Caniani et al., 2015). 

Focusing on WRRFs, several pathways and processes taking place both within and outside their 

boundaries are responsible for GHG emissions, which can be classified as direct, indirect internal, 

and indirect external (WRI and WBCSD, 2004). These three sources belong to the scopes 

established by the World Resources Institute and the World Business Council for Sustainable 

Development in the GHG Protocol Standard to classify emissions (Scope I, Scope II, and Scope III, 

respectively). 

Direct emissions (also referred to as Scope I emissions) are those produced and discharged into the 

atmosphere within the WRRF boundary, and one of their main contributors are biological processes 

and sections treating by-products of wastewater treatment (e.g. biogas produced from anaerobic 

sludge digestion, AD). 

Indirect internal GHG emissions (also referred to as Scope II emissions) are a consequence of 

activities that take place within the WRRFs’ boundary, but occur at sources owned or controlled by 

another entity. Indirect internal emissions are associated with the consumption of electrical power 

imported to supply electromechanical devices.  

Indirect external emissions (also referred to as Scope III emissions) are those related to sources not 

directly controlled inside the WRRF boundary (e.g. off-site sludge disposal, production of chemicals 

used in the process, third party transportation, etc.) and are typically excluded from carbon 

accounting since they are Scope I emissions for other parties. 

All major GHGs (CO2, CH4 and N2O) can be produced by the biological processes used in WRRFs and 

contribute to its direct emissions. A schematic representation of the locations at a WRRF where 

GHG can be emitted is presented in Figure 1.4. 
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Figure 1.4 – Schematic overview of a WRRF treating urban wastewater and the locations where GHG 
can be emitted (direct emissions) 

CO2 is directly produced in both aerobic and anaerobic biological processes. In the former case, 

organic compounds are oxidized into CO2 and other metabolites and accompanied by cell growth, 

while in the latter, organic matter is transformed into biogas (CO2 and CH4 in proportions of 30-

40% and 60/70% v/v, respectively) (Tchobanoglous et al., 2014). According to the accounting 

protocol of the IPCC (2006), CO2 derived from wastewater treatment is assumed to originate from 

short-lived biogenic material. However, fossil organic carbon was found in the incoming 

wastewater of WRRFs, and related direct fossil CO2 emissions from oxidation by AS may vary with 

the wastewater composition and treatment configuration (Griffith et al., 2009; Law et al., 2013; 

Tseng et al., 2016). 

In WRRFs, N2O is produced by both heterotrophic bacteria and by ammonia oxidizing bacteria 

through different pathways (inter alia: Foley et al., 2010; Kampschreur et al., 2009). Due to the 

complexity of the N2O formation process and to the influence of several operational parameters on 

such processes, N2O emissions from WRRFs vary substantially among plants, ranging from 

negligible to substantial, depending on the different process design and operating conditions 

making this a troublesome emission to assess. 
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Table 1.1 – Examples of N2O emissions from WRRFs reported in literature.  

WRRF configuration 
N2O emission  
(% of influent NH4-N) 

Reference 

Two-step CAS plug flow 
1st step: 0.68% 
2nd step: 3.5% 

Pan et al. (2016) 

SBR 6.8% Rodriguez-Caballero et al. (2015) 

Partial nitratation/anammox 2% Castro-Barros et al. (2015) 

CAS WRRF 0.03% 0.14% Tumendelger et al. (2014) 

nitratation/anammox 
1.7% nitritation 
0.6% ANAMMOX 

Kampschreur et al. (2008) 

 

In WRRFs, CH4 is produced in anaerobic processes, but can also be generated in unwanted 

anaerobic zones due to e.g. bad mixing. Generally the AD process is used to generate all possible 

CH4 to recover energy. However, the AD represents not only a carbon sink, but can also represent a 

source of GHGs under different aspects (e.g., emergency biogas emissions via the pressure relief 

valves due to process malfunctioning, improper biogas combustion, fugitive emissions). Also, 

elevated concentrations of H2 in the biogas are known to be responsible for NOx production during 

biogas combustion (Jeong et al., 2009; Porpatham et al., 2007). Methanogenic activity in aerobic 

tanks is deemed to be insignificant (Gray et al., 2002), but CH4 can enter aerobic AS reactors in 

dissolved form from sewers (Guisasola et al., 2008) or sections of the WRRFs where anaerobic 

conditions occur, then being both stripped and biologically oxidized (Daelman et al., 2013). 

Throughout the last decade, scientific activities aimed at monitoring and accounting for GHG 

emissions from WRRFs have increased considerably (inter alia: Ahn et al., 2010; Caivano et al., 

2017; Daelman et al., 2013; Kampschreur et al., 2009; Law et al., 2012; Monteith et al., 2005), and 

several attempts have been made to establish protocols to quantify GHGs. Due to the relevant 

importance that energy consumption and N2O emissions showed in the recent years with regards to 

WRRFs CFP, efforts of the present work were concentrated on N2O emissions and energy 

consumption from aeration devices. 

In order to understand and minimize emissions from WRRFs and optimize their treatment efficacy, 

research has invested a lot of efforts and resources for defining reliable protocols for assessing 

these emissions. Standardized measurement methods have been developed throughout the years in 

order to generate comparable measures of gaseous emissions by introducing the concept of an EF 

(Chandran, 2011) and efficiency of aerators (ASCE, 1997) that could classify WRRFs and ease the 

development of strategies for minimizing emissions. However, the diversity of methods available, 
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and some major assumptions in the assessment and reporting of EFs (Massara et al., 2017) are 

some of the drivers that motivated this research activity. 

By nature, WRRF design and the water treated are heterogeneous, making it difficult to define a 

general procedural approach applicable to all cases. Hence, the need for new developments. In 

particular, local (e.g. tank geometry) and temporal (e.g. influent variability) differences in a 

biological tank are a reality that significantly affects these measurements and the relative 

development of emission reduction strategies. 

1.1.4. Modelling WRRF 

Mathematical modelling has been used to unravel several complex biological and physical 

mechanisms, among which also those behind both the oxygen transfer and the generation of N2O. 

The activated sludge models (ASM), based on the equation developed by Monod (1950), are a 

representation of microorganisms growth depending on half saturation indices (K-values) and 

substrate availability. These models have been largely used to optimize WRRF operation by 

mimicking biological growth, as well as oxygen and contaminant depletion, in order to boost the 

development of optimal scenarios that could be applied in reality. However, growth and its related 

substrate consumption, largely depends on the local substrate (e.g. ammonium) and electron 

acceptor (e.g. generally oxygen and nitrate) concentrations (Henze et al., 2000), and the 

representation of these biological tanks was also observed to have a relevant importance. 

Mechanistic knowledge of biological processes is nowadays very detailed and more modelling 

efforts have been made for unraveling complex biological functions, too often underestimating the 

hydrodynamic effects of the reactor design on local conditions. The application of mechanistic 

models for describing N2O production has nowadays been proved at laboratory scale. However, 

full-scale applications are still lacking sound validation due to their troublesome nature in the 

calibration step (Ni et al., 2013). The incorrect representation of local conditions and relative 

differences in substrate concentrations are most probably the main reasons for the narrow 

applicability of calibration values. 

The complexity of WRRFs required a crescent amount of controls and monitoring sensors all of 

which are often recorded in a database and un(der)used. These data represent information on the 

plant operation and can be used to understand and develop data powered models. Alternatives to 

the mechanistic approach are also available. Models based on the knowledge built on the literature 

(Knowledge-based) and stochastic models developed on historical data are valid examples of these 

alternatives. There are examples of the application of knowledge-based models for e.g. optimizing 

operation against bulking sludge (Comas et al., 2003) and of the development of promising data 

mining techniques for enhancing control based on historical data (Villez et al., 2008). 

1.2. Objectives 

The worldwide crescent need for treatment of both industrial and civil wastewaters significantly 

contributes to increasing both the global energy demand and the relative greenhouse gas (GHG) 

emissions. In this view, the present work puts focus on: 
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 Assembling an analyzer for aeration efficiency and N2O emission measurements from 

biological tanks of WRRFs; 

 Contributing at improving the assessment and definition of an EF for N2O production in full 

scale plants. Available measurements methods and techniques are critically analyzed and 

improvements are proposed with testing on WRRFs; 

 Refining the measurement and sampling technique for estimating aeration efficiency in 

biological tanks. Measurement methods and concepts of aeration efficiency indicators are 

critically presented proposing possible improvements; 

 Demonstrating the capabilities of kinetic models for N2O production making use of an 

improved representation of hydrodynamics for a real case scenario; 

 Providing practical applications of knowledge based models and data mining tools to full 

scale data for process understanding and development of gaseous emission minimization 

strategies. 

1.3. References 

Ahn, J.H., Kim, S., Park, H., Rahm, B., Pagilla, K., Chandran, K., 2010. N2O Emissions from Activated 
Sludge Processes, 2008−2009: Results of a National Monitoring Survey in the United States. 
Environ. Sci. Technol. 44, 4505–4511. 

Ardern, E., Lockett, W.T., 1914. Experiments on the oxidation of sewage without the aid of filters. J. 
Chem. Technol. Biotechnol. 33, 523–539. 

ASCE, 1997. Standard Guidelines for In-Process Oxygen Transfer Testing (18-96). American Society 
of Civil Engineers, New York, NY. 

Barnard, J.L., 1973. Biological nutrient removal without the addition of chemicals. Water Res. 9, 
485–490. 

Caivano, M., Bellandi, G., Mancini, I.M., Masi, S., Brienza, R., Panariello, S., Gori, R., Caniani, D., 2017. 
Monitoring the aeration efficiency and carbon footprint of a medium-sized WWTP: 
experimental results on oxidation tank and aerobic digester. Environ. Technol. 38, 629–638. 

Caniani, D., Esposito, G., Gori, R., Mannina, G., 2015. Towards a new decision support system for 
design, management and operation of wastewater treatment plants for the reduction of 
greenhouse gases emission. Water (Switzerland) 7, 5599–5616. 

Castro-Barros, C.M., Daelman, M.R.J., Mampaey, K.E., van Loosdrecht, M.C.M., Volcke, E.I.P., 2015. 
Effect of aeration regime on N2O emission frompartial nitritation-anammox in a full-scale 
granular sludge reactor. Water Res. 68, 793–803. 

Chandran, K., 2011. Protocol for the Measurement of Nitrous Oxide Fluxes from Biological 
Wastewater Treatment Plants, in: Methods in Enzymology. Elsevier Inc., pp. 369–385. 

Comas, J., Rodríguez-Roda, I., Sànchez-Marrè, M., Cortés, U., Freixó, A., Arráez, J., Poch, M., 2003. A 
knowledge-based approach to the deflocculation problem: Integrating on-line, off-line, and 
heuristic information. Water Res. 37, 2377–2387. 

Daelman, M.R.J., van Voorthuizen, E.M., van Dongen, L.G.J.M., Volcke, E.I.P., van Loosdrecht, M.C.M., 
2013. Methane and nitrous oxide emissions from municipal wastewater treatment – results 



Chapter 1 Introduction 
 

1-10 
 

from a long-term study. Water Sci. Technol. 67, 2350. 

Foley, J., de Haas, D., Yuan, Z., Lant, P., 2010. Nitrous oxide generation in full-scale biological 
nutrient removal wastewater treatment plants. Water Res. 44, 831–844. 

Gray, N.D., Miskin, I.P., Korniova, O., Curtis, T.P., Head, I.M., 2002. Occurrence and activity of Archaea 
in aerated activated sludge wastewater treatment plants. Environ. Microbiol. 4, 158–168. 

Griffith, D.R., Barnes, R.T., Raymond, P.A., 2009. Inputs of fossil carbon from wastewater treatment 
plants to U.S. Rivers and oceans. Environ. Sci. Technol. 43, 5647–5651. 

Guisasola, A., de Haas, D., Keller, J., Yuan, Z., 2008. Methane formation in sewer systems. Water Res. 
42, 1421–30. 

GWRC - Global Water Research Coalition, 2011. N2O and CH4 emission from wastewater collection 
and treatment systems. London. 

Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M., 2000. Activated Sludge Models ASM1, ASM2, 
ASM2d and ASM3. IWA Publ. 121. 

IPCC, 2006. Guidelines for National Greenhouse Gas Inventories, Prepared by the National 
Greenhouse Gas Inventories Programme. Kanagawa. 

Jeong, C., Kim, T., Lee, K., Song, S., Chun, K.M., 2009. Generating efficiency and emissions of a spark-
ignition gas engine generator fuelled with biogas-hydrogen blends. Int. J. Hydrogen Energy 34, 
9620–9627. 

Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., van Loosdrecht, M.C.M., 2009. 
Nitrous oxide emission during wastewater treatment. Water Res. 43, 4093–4103. 

Kampschreur, M.J., van der Star, W.R.L., Wielders, H. a., Mulder, J.W., Jetten, M.S.M., van Loosdrecht, 
M.C.M., 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject 
water treatment. Water Res. 42, 812–826. 

Kolarik, L.O., Priestley, A.J., 1995. Modern techniques in water and wastewater treatment. CSIRO, 
East Melbourne, Vic., Australia. 

Kreamer, D.K., 2012. The Past, Present, and Future of Water Conflict and International Security. J. 
Contemp. Water Res. Educ. 149, 87–95. 

Law, Y., Jacobsen, G.E., Smith, A.M., Yuan, Z., Lant, P., 2013. Fossil organic carbon in wastewater and 
its fate in treatment plants. Water Res. 47, 5270–5281. 

Law, Y., Ye, L., Pan, Y., Yuan, Z., 2012. Nitrous oxide emissions from wastewater treatment 
processes. Philos. Trans. R. Soc. B Biol. Sci. 367, 1265–1277. 

Massara, T.M., Malamis, S., Guisasola, A., Baeza, J.A., Noutsopoulos, C., Katsou, E., 2017. A review on 
nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater 
and sludge reject water. Sci. Total Environ. 596–597, 106–123. 

McCarty, P.L., 1964. Thermodynamics of biological synthesis and growth, in: Procs. 2nd Int. Conf. on 
Water Pollution Control. pp. 169–199. 

Monod, J., 1950. Technique for continuous culture - theory and application, Ann. Inst. Pasteur. 



Chapter 1 Introduction 
 

1-11 
 

Monteith, H.D., Sahely, H.R., MacLean, H.L., Bagley, D.M., 2005. A rational procedure for estimation 
of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environ. 
Res. a Res. Publ. Water Environ. Fed. 77, 390–403. 

Neset, T.S.S., Cordell, D., 2012. Global phosphorus scarcity: Identifying synergies for a sustainable 
future. J. Sci. Food Agric. 

Ni, B.J., Yuan, Z., Chandran, K., Vanrolleghem, P. a., Murthy, S., 2013. Evaluating four mathematical 
models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria. Biotechnol. 
Bioeng. 110, 153–163. 

Olsson, G., 2011. Water and Energy Nexus, in: Enciclopedia of Sustainability Science and Tehnology. 
Springer Verlag, Germany. 

Pan, Y., van den Akker, B., Ye, L., Ni, B.J., Watts, S., Reid, K., Yuan, Z., 2016. Unravelling the spatial 
variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater 
treatment plant. Sci. Rep. 6, 20792. 

Porpatham, E., Ramesh, A., Nagalingam, B., 2007. Effect of hydrogen addition on the performance of 
a biogas fuelled spark ignition engine. Int. J. Hydrogen Energy 32, 2057–2065. 

Rodriguez-Caballero,  a., Aymerich, I., Marques, R., Poch, M., Pijuan, M., 2015. Minimizing N2O 
emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. 
Water Res. 71, 1–10. 

Tchobanoglous, G., Burton, F.L., H.D., S., 2014. Wastewater Engineering: Treatment and Reuse (5th 
ed), Metcalf and Eddy, McGraw-Hill series in civil and environmental engineering. McGraw-
Hill, New York. 

Tseng, L.Y., Robinson, A.K., Zhang, X., Xu, X., Southon, J., Hamilton, A.J., Sobhani, R., Stenstrom, M.K., 
Rosso, D., 2016. Identification of Preferential Paths of Fossil Carbon within Water Resource 
Recovery Facilities via Radiocarbon Analysis. Environ. Sci. Technol. acs.est.6b02731. 

Tumendelger, A., Toyoda, S., Yoshida, N., 2014. Isotopic analysis of N2O produced in a conventional 
wastewater treatment system operated under different aeration conditions. Rapid Commun. 
Mass Spectrom. 28, 1883–1892. 

Ulrich, A.E., Frossard, E., 2014. On the history of a reoccurring concept: Phosphorus scarcity. Sci. 
Total Environ. 

Van Engelen, D., Seidelin, C., Van Der Veeren, R., Barton, D.N., Queb, K., 2008. Cost-effectiveness 
analysis for the implementation of the EU Water Framework Directive. Water Policy. 

Van Meter, K.J., Basu, N.B., Veenstra, J.J., Burras, C.L., 2016. The nitrogen legacy: emerging evidence 
of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 35014. 

Villez, K., Ruiz, M., Sin, G., Colomer, J., Rosén, C., Vanrolleghem, P.A., 2008. Combining multiway 
Principal Component Analysis (MPCA) and clustering for efficient data mining of historical 
data sets of SBR processes. Water Sci. Technol. 57, 1659–1666. 

Voulvoulis, N., Arpon, K.D., Giakoumis, T., 2017. The EU Water Framework Directive: From great 
expectations to problems with implementation. Sci. Total Environ. 



Chapter 1 Introduction 
 

1-12 
 

Water Environment Federation (WEF), 2010. Energy Conservation in Water and Wastewater 
Facilities - Prepared by The Energy Conservation in Water and Wastewater Treatment 
Facilities Task Force of the Water Environment Federation, MOP No. 32. ed. McGraw Hill, 
Alexandria, Virginia. 

World Resources Institute (WRI), World Business Council for Sustainable Development (WBCSD), 
2004. Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. USA. 

 

1.4. Web references 

http://www.worldometers.info consulted on October 13th 2017 

http://www.who.int consulted on October 13th 2017 

http://geoffboeing.com consulted on October 13th 2017 

http://www.fao.org consulted on October 13th 2017 

https://water.usgs.gov consulted on October 13th 2017 

https://data.worldbank.org/indicator/ER.H2O.INTR.PC consulted on October 13th 2017 

http://www.un.org/sustainabledevelopment/sustainable-development-goals/ consulted on 15th 

November 2017 

 

http://www.worldometers.info/
http://www.who.int/
http://geoffboeing.com/
http://www.fao.org/
https://water.usgs.gov/
https://data.worldbank.org/indicator/ER.H2O.INTR.PC
http://www.un.org/sustainabledevelopment/sustainable-development-goals/


 

2-1 
 

Chapter 2 

2. Literature review 

 

 

 



 

2-1 
 

 

 

 

 



Chapter 2 Literature review 
 

2-1 

Abstract 

Wastewater treatment consists in a sequence of combined treatment steps, that can include 

physical, chemical and biological processes and operations, aimed at removing suspended and 

dissolved contaminants from a water stream before discharge into the environment or direct reuse.  

Among these steps aeration is needed for supplying the necessary O2 to be reduced for the 

oxidation of dissolved organic and inorganic contaminants by means of the microbial community 

composing the AS. O2 must be dissolved from the gas phase to the liquid, but its low solubility in 

water (only about 10 mg O2 /L can be dissolved at atmospheric pressure and ambient temperature) 

makes this one of the most expensive processes in a WRRF (cfr. § 1.1.2). 

Biological activity in AS tanks, and in every step of a WRRF making use of AS technology, is deemed 

to be responsible for most of the N2O direct emissions of the plant. On their turn these emissions 

can represent a large fraction of the CFP of a WRRF, even surpassing the contribution of energy 

usage (cfr. § 1.1.3). The weight of different contributors to CFP can greatly vary from one plant to 

another depending on several factors. 

Hence, the need for reliably monitoring and deeply understanding these processes so important for 

the sustainability and optimization of WRRFs. 

In this chapter, the processes of oxygen transfer and N2O production are described along with 

available measurement protocols discussing possible ways of improvements. The state of the art on 

modelling approaches is also presented with particular attention to available alternatives to the 

case of N2O emissions. Finally, the WRRFs objective of some of the investigations in this work of 

thesis are introduced and described with particular focus on the biological tank. 
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2.5. Aeration efficiency 

2.5.1. Aeration in biological tanks 

For any AS process aeration is a fundamental step since it provides the biomass with the necessary 

oxygen in order to oxidize dissolved contaminants. The oxygen is transferred by shearing the water 

surface or bubbling air through macroscopic pores or porous material, always trying to create the 

maximum oxygen exchange rate between the gas and liquid phase. Obviously this represents a 

major energy demanding process for a WRRF and was estimated to range between 45 to 75 % of 

the plant’s energy expenditure (Reardon, 1995). The increasing cost of energy since 1970 awoke 

the interest of researchers towards a more in depth understanding of aeration design, specification 

and operation. In order to reduce operating costs and CO2 emissions in WRRFs, energy saving is 

generally recognized as one of the most effective methods (Libra et al., 2002).  

At present, fine bubble diffuser is the most widespread technology in European and North 

American WRRFs. Fine bubble diffusers are known to offer numerous advantages as compared to 

coarse bubble aeration including energy savings which commonly fall within the range 30-40% 

(USEPA 1999; Cantwell et al., 2009). However, due to the chemical nature and morphology of the 

materials making up the membrane, they are subject to fouling and scaling, which can affect their 

operation and reduce the benefits of their utilization in the long term (Rosso and Stenstrom, 

2006a). 

2.5.2. Available protocols and instruments 

The energy consumption of the aeration system depends on the efficiency of its components (e.g. 

diffusers and blowers), the tank geometry and the wastewater composition. Therefore, it is difficult 

to make a prediction on the behavior of an aeration system under process conditions as well as of 

the effects of process modifications (e.g. installation of a new aeration controller). In order to assess 

the aeration system performances in process conditions several methods have been developed over 

the years (ASCE, 1997, 1983; Boyle et al., 1989; Stenstrom et al., 2006). However, official standard 

guidelines are missing since 1997, given that the latest release from ASCE’s literature on aeration 

efficiency testing only concerns measurements in clean water (ASCE, 2007). 

The off-gas analysis method (Redmon et al., 1983) was developed for monitoring the aeration 

performance of submerged devices based on a simple mass balance between the inflated and off-

gas oxygen contents.  

When the humidity and CO2 content of the gas stream are removed, assuming all other components 

of the air inflated by the aeration system are not changing their partial pressure during the passage 

into the biological tank volume, it is possible to calculate the actual mass fractions of oxygen to 

inerts (Redmon et al., 1983): 

𝑀𝑅𝑜/𝑖 =
𝑌𝑟

1−𝑌𝑟−𝑌𝐶𝑂2𝑟
          (2.1) 
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𝑀𝑅𝑜𝑔/𝑖 =
𝑌𝑜𝑔

1−𝑌𝑜𝑔−𝑌𝐶𝑂2𝑜𝑔
          (2.2) 

where 𝑀𝑅𝑜/𝑖  and 𝑀𝑅𝑜𝑔/𝑖 represent the molar ratio of oxygen to inerts in the inlet and off-gas 

respectively. 𝑌𝑟 and 𝑌𝑜𝑔 are the mole fractions of oxygen in the inlet and off-gas, while 𝑌𝐶𝑂2𝑟 and 

𝑌𝐶𝑂2𝑜𝑔 are the mole fractions of CO2. In the case of an air sample where moisture and CO2, are 

wither scrubbed or measured, OTE can be calculated with Equation 2.3. 

𝑂𝑇𝐸 =
𝑀𝑅𝑜/𝑖−𝑀𝑅𝑜𝑔/𝑖

𝑀𝑅𝑜/𝑖
          (2.3) 

Most of the research and application of the off-gas method remained within the USA until the 

beginning of the 90s. Seen the increasing interest in this measurement technique, the first 

developers were called by the American Society of Civil Engineer (ASCE) to define the first standard 

guidelines (ASCE, 1983). These standard guidelines presented different methods for aeration 

systems testing, among which the off-gas method appeared as a successful and user-friendly 

method for submerged aeration systems operating at process conditions but, at this stage, still in 

need for further testing. In this early version the guidelines brought up for the first time the 

concern of its application to low efficiency aeration systems. In these systems obtaining the needed 

accuracy might be difficult since the measurement error gains of importance. Since then, significant 

advances have been made in the development of new measuring devices for oxygen in the gas 

phase and this aspect has been mostly ignored in the following updates. Although the first concerns 

about the duration of the test (suggested >3 times HRT), the variability of some aeration 

parameters with the wastewater quality, the influence of mixing properties and of the tank 

geometry were raised, we need to wait for later updates of these guidelines for more precise 

indications on how to perform these tests on different basins (ASCE, 1997; Stenstrom et al., 2006). 

The updated guidelines divide the off-gas method in two principal applications: i) the stationary 

24h testing, with which a single point of the tank is monitored for 24h measuring the effect of 

influent and aeration fluctuation on oxygen transfer; ii) the point(s) test, where the entire area of 

the tank should be covered in space for assessing the quality of the aeration over the whole tank. 

The 24h minimum time has been set in order to cover the daily influent variability normally 

observable in a municipal WRRF. The suggested minimum area to be covered in the points test 

should reach at least 2% of the tank surface. The use of hoods covering 1.2-3 m2 has been 

suggested.  

The standardization of the OTE readings opened to new potentials for the applicability of the off-

gas analysis. Typically, for clean water applications, results are reported as standard oxygen 

transfer efficiency (SOTE, %), referring to zero DO, zero salinity, 20°C as water temperature and 1 

atm.  

The results of about three years of testing in process conditions led to the selection of the most 

influencing parameters affecting oxygen transfer and therefore aeration systems performance, 

combined in the α (-), β (-) and θ (-) factors (Stenstrom and Gilbert, 1981).  
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The α factor, is defined as the ratio between the overall oxygen transfer coefficient in wastewater 

(kLa) and the one in clean water (kLa*) (Equation 2.4). This difference between the two kLa is 

influenced by the presence of surface active agents (surfactants) and others contaminants affecting 

the shape of the bubbles and the turbulence at the interface which affects the overall mass transfer 

rate between gas- and liquid- phase (Hebrard et al., 2000; Rosso and Stenstrom, 2006a; Stenstrom 

and Gilbert, 1981). Ultimately, also the physical properties of the liquid together with its flowing 

regime have been observed to influence the kLa as coalescence or breakage can vary the bubble 

sizes and thus the available area for gas transfer (a coefficient). Viscosity in particular was 

observed to affect the shape of a bubble plume and thus increasing the chances that a bubble has to 

collide with a neighboring one (Fabiyi and Novak, 2008; Ratkovich et al., 2013). 

The factor β, is defined as the ratio between the saturation DO concentration in wastewater (DOs) 

and the saturation concentration in clean water (DOs*) (Equation 2.5). β is affected by several 

environmental and process conditions having an effect on the maximum saturation level of DO, 

among which salinity, temperature, pressure, suspended solids and dissolved matter (Stenstrom 

and Gilbert, 1981; Vogelaar et al., 2000). 

The θ factor, also known as geometric temperature correction coefficient, is used to relate mass 

transfer coefficients to a standard temperature. Generally a value of 1.024 is suggested to be used, 

unless differently specified and strongly supported, but keeping temperature differences below 

10°C for appropriate correction (Redmon et al., 1983). 

For process conditions, efficiency results are normally shown as αSOTE (Equation 2.6). 

𝛼 =
𝑘𝐿𝑎

𝑘𝐿𝑎∗           (2.4) 

𝛽 =
𝐷𝑂𝑠

𝐷𝑂𝑠
∗           

 (2.5) 

𝛼𝑆𝑂𝑇𝐸 = 𝑂𝑇𝐸 ∙
𝐷𝑂𝑆20

∗

(𝛽∙𝐷𝑂𝑆𝑇
∗ −𝐶𝑖)

∙ 𝜃(20−𝑇)        (2.6) 

Applications of the off-gas method can serve to a wide spectrum of purposes (Gori et al., 2014) in 

systems using submerged aeration: 

- increase knowledge of the air distribution system by measuring local air flow around the 

tank; 

- support the design phase of new air distribution systems and new diffusers; 

- monitor the loss of efficiency in process conditions of the aerators; 

- measure the fouling state of diffusers; 

- plan aerators cleaning; 

- evaluate the efficacy of cleaning interventions and measure the recovery of the aeration 

capacity; 

- compare different aerators cleaning methods for minimizing operational costs; 
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- evaluate the aeration control strategy and compare different solutions to minimize energy 

expenditures; 

- evaluate the influence of different operational conditions (e.g. changing the biomass 

concentration in the biological reactor); 

- calibrate the response of an aeration control in order to optimize energy requirements 

during low and high load periods. 

At present, to the author best knowledge, the only commercially available product of the off-gas 

analysis is the ALPHAMETER® (INVENT, Germany) which is claimed to be able to be directly 

implemented in the real time control of the aeration system. This instrument is equipped with a DO 

and temperature sensor along with a gas analyzer for measuring the oxygen content in the off-gas. 

However, given the relatively small size of the hood (apparently ranging on about 1-2 m2) and the 

fact that it is installed on a fixed position, its applicability might arise some concern.  

2.5.3. Pro and cons of current approach 

The off-gas method has been proven to be so far the most straightforward and less intrusive 

method for in-process testing of oxygen transfer efficiency. In fact, the off-gas analysis is an 

effective technique that offers numerous advantages for testing submerged air diffusion systems 

(inter alia Capela et al., 2004; Iranpour et al., 2000; Redmon et al., 1983). It enabled the comparison 

of different types of diffusers (Libra et al., 2002) and their operation in different conditions (Libra 

et al., 2005). It has even been applied for predicting nitrification performances (Leu et al., 2010), to 

evaluate the design of aeration systems (Rosso et al., 2012), and to derive important relations 

between influent dynamics, aeration regimes and aeration efficiency (Rosso et al., 2005).  

The current approach to the off-gas analysis has gained popularity for some main reasons: 

- Flexibility and ease of application  

- Fast results output 

- Relative low cost of basic equipment 

- User friendly character of the application 

- Allows for the comparison of different aeration systems in process condition 

- Does not require process interruptions for the execution of the measurements 

On the other hand the main general limitation of the off-gas method can be summarized as: 

- Not applicable for surface aeration systems; 

- Not all tanks have sufficient accessibility by the personnel to easily and safely deploy 

instrumentation; 

- Scum formation can deviate the gas exit from the surface and bias measurements; 

- Turbulences can create problems in correctly placing the floating hood; 

- It is necessary to entirely remove CO2 and humidity from both the ambient air (for 

reference measurements) and the off-gas. 

In addition to this, main limitations to the current ASCE protocol are represented by the variability 

of the influent relatively to the dimensions of the tank. In fact, fluctuation of influent flow and 
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composition are occurring every day in almost all WRRFs and these fluctuations can influence the 

efficiency measures in each point. Regarding the dimensions of the tank, the ASCE standard 

suggests to cover at least 2% of the tank which has been observed to be not sufficient to reach a 

sufficient level of detail when e.g. nature and location of a damage has to be detected (Iranpour et 

al., 2000).  

Finally, the accuracy of the sensors (i.e. DO and temperature) might have an effect on the 

calculation of the αSOTE. It is true that the technology advances have resulted in very precise and 

reliable instruments, however, in order to be able to fairly compare aeration devices at low 

efficiencies, this error might be considered at least by defining its magnitude and perform an error 

propagation analysis. 

2.5.4. Modelling oxygen transfer 

In 1923 the two-film theory has been firstly proposed starting the process of replacing the sharp 

demarcation of boundary layers that was so far assumed (Whitman, 1962, 1923). Nowadays the 

two-film theory is the most widely used model for representing the passage of a compound from 

one phase to another. It is based on the assumption that two stagnant layers, one at each side, exist 

when gas and liquid phases come to contact. This assumption is valid at steady state, however, in 

reality these layers are renewed by the movement of the bulk liquid, hence the surface renewal 

theory (Higbie, 1935). This resulted in one of the solutions to calculate the oxygen mass transfer 

coefficient kL (m/s) (Equation 2.7) 

𝑘𝐿 = 2 ∙ √
𝐷

𝜋∙𝑡𝑒
           (2.7) 

The oxygen mass transfer coefficient is function of the diffusion coefficient D (m2/s) and the mean 

bubble residence time te (s). Having a certain surface of the gas-liquid interface A (m2) available for 

exchange in a defined liquid volume V (m3), an overall oxygen transfer coefficient can be defined as 

kLa (h-1). 

𝑘𝐿𝑎 = 𝑘𝐿
𝐴

𝑉
           (2.8) 

Therefore, for a gas bubble immersed into a liquid, the exchange of oxygen per unit of time between 

the gas phase and the liquid phase can be described by Equation 2.9. 

𝑑𝐶𝑖

𝑑𝑡
= 𝑘𝐿𝑎(𝐷𝑂𝑠

∗ − 𝐷𝑂𝑖)          (2.9) 

Where DOs* (mg/L) is the DO in clean water at saturation and DOi (mg/L) the DO concentration in 

the bulk liquid at time t. 

The speed with which the oxygen is dissolved in water is function of the difference between the 

actual concentration and the saturation concentration, but is also strongly dependent of the 

physical and geometrical properties of the control volume. 
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Influences on kLa and generally applied aeration modelling 

The various testing and developments of the off-gas method led also to the definition of relations 

for important parameters in aeration efficiency, e.g. the use of the temperature correction factor for 

the mass transfer coefficient (Equation 2.10). 

𝑘𝐿𝑎 (𝑇) = 𝑘𝐿𝑎 (20°) ∙ 𝜃𝑇−20         (2.10) 

The general agreement in the variable nature of the alpha factor pushed towards the use of the off-

gas measurement for understanding its variability. The accumulation on the gas-liquid interface of 

surfactants has been observed to induce two major problems: the increase in rigidity of the 

interface and a decrease in the internal gas circulation of the bubble which have a direct effect on 

the diffusion coefficient and therefore on the kLa (Ferri and Stebe, 2000; Rosso and Stenstrom, 

2006b) 

Figure 2.1 shows values of α factors measured for different aeration devices with regard to the 

respective interfacial flow regimes (expressed by means of the Reynolds (Re) number). In the 

region of fine bubble aerators operation, diffusional transport is the driving force for mass 

exchange and the gas transfer is controlled by surfactant interfacial migration. In this range of flow 

an increase in Re leads to increased surfactants transport to the interface which decreases the α 

factor. With regard to coarse bubble diffusers and high shear aerators (surface aerators and 

turbines), operating in the turbulent flow domain, an increase in Re results in an enhanced surface 

renewal rate and therefore in higher α values (Garner and Hammerton, 1954; Rosso and Stenstrom, 

2006b). However, it must be pointed out that the variability in α factor for a given Re value is 

considerably high, meaning that more mechanisms are in play. 

 

Figure 2.1 - α factors at different flow regimes (defined by the Reynolds (Re) number) for different 
aerator types. Adapted from (Rosso and Stenstrom, 2006a). 

The mean cell retention time, or SRT, has been observed to be related to the evolution of the α 

value. In fact, SRT comprehends in some way the degree of degradation of contaminants in the 

wastewater, and therefore also of surfactants. The increase of α observed with increasing SRT have 

suggested that, a higher contaminants degradation ameliorated the oxygen transfer. However, some 
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discrepancies have been observed between the two parameters for plants working with 

comparable SRTs (Groves et al., 1992; Rieth et al., 1995; Rosso et al., 2005; Wagner, 1999). The 

parameter χ (s2) and the regression coefficients for the α factor and aeration efficiency prediction 

(Equation 2.11, 2.13 and 2.14) have been defined after regression analyses of a large dataset of 

aeration efficiency collected in full-scale with the off-gas technique over a period of fifteen years 

(Rosso et al., 2005). 

𝜒 =
𝑆𝑅𝑇

𝑄𝑎𝑖𝑟
           (2.11) 

𝑄𝑎𝑖𝑟 =
𝐴𝐹𝑅

𝑎𝑠𝑝𝑒𝑐∙𝑁𝑑∙𝑍
          (2.12) 

𝛼 = 0.172 ∙ 𝑙𝑜𝑔𝜒 − 0.131         (2.13) 

𝛼𝑆𝑂𝑇𝐸 = 5.717 ∙ 𝑙𝑜𝑔𝜒 − 6.815        (2.14) 

where AFR (m3/s) is the air flow rate, aspec (m2) is the diffuser specific area, Nd is the total number 

of diffusers, Z (m) is the diffusers submergence and Qair (s-1) is the resulting normalized air flux. 

Figure 2.2 shows the efficiency parameters α and αSOTE (reported per meter of tank depth) in 

function of Qair and SRT (reported as MCRT) for different aerator types, a subset of data used in the 

design of the aeration model just described (Equation 2.11-2.14). 

 

Figure 2.2 - Efficiency parameters in function of the normalized air flow rate and mean cell retention 
time (MCRT or SRT). CDi: ceramic discs; CDo: ceramic domes; CP: ceramic plates; MD: membrane 

discs; Tu: ceramic, plastic and membrane tubes; MP: membrane panels (Rosso et al., 2005). 
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Apparently, up to 30 % of the variability in the α value cannot be explained due to the several 

interactions taking place in the mass transfer process and to the lack of knowledge regarding the 

effect of aerator submergence (Gillot and Héduit, 2008). In order to take into account the effect of 

diffuser submergence the ECT, the residence time of a bubble in the liquid, was included in the 

prediction of α along with SRT and airflow rate (Gillot and Héduit, 2008). Although ECT seems to 

combine most of the generally known factors having an effect on mass transfer, for this method a 

calculation or estimation of the kLa*(20°) is necessary a priori complicating the application in 

predictive aeration models for WRRFs. However, this is one of the most accurate models available 

in literature, and one important advancement in the description of the oxygen transfer in WRRF 

modelling. 

The lack of understanding on the variability of the α factor hampers significantly the applicability of 

aeration models. The assumptions and simplifications that characterize these models, affect the 

calibration of the biokinetic model. The use of in-process measured efficiencies (in different parts of 

the aeration system) as inputs to the WRRF model, has shown to improve the level of detail in the 

different sub-models so that the calibration step might be negligible (Amerlinck et al., 2016). In this 

view, the aid of detailed hydrodynamic studies with Computational Fluid Dynamics in improving 

the design of model layouts of current WRRF model configuration, may profoundly change the 

landscape of process modelling. The increase of detail that can be acquainted for by a better 

description of the hydrodynamic behavior of the tank might be very helpful in increasing the 

needed level of detail (Rehman, 2016). 

The large uncertainties in the prediction of oxygen transfer have led to discuss the description of 

the aeration with a more holistic approach. A selection of the most promising techniques for 

aeration systems modelling has been proposed with the aim of increasing the level of detail 

describing the whole aeration systems (Amaral et al., 2017). Modelling the whole aeration system 

from the generation (i.e. blowers and distribution net), to the point of release of the bubbles (the 

aerator), and finally in the evolution of the bubbles size through the bulk liquid, can represent one 

of the new frontiers in increasing descriptive power of oxygen transfer. 

2.6. N2O production and monitoring 

N2O, at ambient temperature and pressure is a non-flammable gas, colorless, with a slight sugary 

smell, also known as “laughing gas” due to its euphoric effects has analgesic and anesthetic 

applications. Nonetheless, N2O has a GWP 265–298 times that of CO2 for a 100-year timescale 

(IPCC, 2013) which makes this the single most important ozone depleting compound of our century 

(Ravishankara et al., 2009). Anthropogenic activity is responsible for about 40% of the global N2O 

production and a 15% concentration increase has been observed since 1750 (IPCC, 2013). N2O 

emitted today remains in the atmosphere for more than 100 years, on average (http://EPA.gov). 

This makes N2O a concern also in WRRFs. 

2.6.1. N2O production in WRRFs 

Production of N2O in activated sludge is caused by both heterotrophic (OHO) and autotrophic 

bacteria (AOB and NOB). It is influenced by several operational parameters and local conditions: 

http://epa.gov/
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e.g., DO, NO2- concentrations, NH4+ loading rate, pH level and salinity in case of AOB; DO, NO2- 

concentration, and COD/N ratio in case of OHO (Kampschreur et al., 2009). 

During nitrification, AOB (predominantly) convert NH4
+ to NO2

-, and NOB convert NO2
- to NO3

-. 

Although N2O is not an intermediate in this process, AOB can produce N2O during this step via three 

pathways (Law et al., 2012):  

1) NH2OH oxidation: NO reduction produced in NH2OH oxidation during the conversion of 

NH4+ to NO2- (Law et al., 2012; Stein, 2011);  

2) NOH Chemical decomposition: the unstable NOH is chemically decomposed during NH2OH 

oxidation in the conversion of NH4
+ to NO2

- (Chandran et al., 2011; Law et al., 2012); 

3) AOB denitrification: NO reduction from NO2- (Bock et al., 1995; Chandran et al., 2011; 

Kampschreur et al., 2009). 

Production during nitrification 

Accumulation of NO2- during the nitrification process can enable N2O production through AOB 

denitrification when DO is limiting, as AOB can utilize NO2- as the electron acceptor rather than 

oxygen (Bock et al., 1995; Kampschreur et al., 2009). In addition to this, lower DO concentrations 

can also lead to higher NO2- concentrations due to the difference in oxygen half-saturation 

constants between AOB and NOB (Hanaki et al., 1990; Mota et al., 2005). 

A series of batch experiments conducted by Tallec et al. (2008) on AS at different DO levels, 0.0, 0.4, 

0.7, and 1.1 mg O2/L, allowed to track N2O production by both heterotrophic denitrification and 

AOB denitrification by use of inhibitors. At zero oxygen, N2O production was 100% by 

heterotrophic denitrification, and quickly shifted towards mainly AOB denitrification once oxygen 

was introduced into the experiments. 

N2O production in presence of high DO levels, has been linked to higher NH4+ oxidation rates (AOR) 

and higher N2O production by AOB via NH2OH oxidation (Law et al., 2012) due to the chemical 

decomposition of NOH. These two pathways can be fueled in full-scale WRRFs by the action of NH4+ 

controls, which increases DO as NH4+ increases. This can result in conditions of non-limiting DO and 

non-limiting NH4
+, which can lead to higher N2O. 

Production during denitrification 

Denitrification, the reduction of NO3
-, NO2

-, NO, and N2O, is performed by different microorganisms 

coupling it with the oxidation of organic and inorganic compounds used as substrate (Kampschreur 

et al., 2009). Generally, heterotrophs are the primary responsible for completing this reaction, 

however, depending on local conditions the denitrification process can be interrupted by the 

intercurrence of different consortia such as AOB. For completing this reaction, N2O should be finally 

reduced to nitrogen gas (N2) unless low COD:N ratio (Ahn et al., 2010b; Foley et al., 2010; 

Kampschreur et al., 2009), high NO2- concentraties (Ahn et al., 2010; Foley et al., 2010; GWRC, 2011; 

Kampschreur et al., 2009), and high DO concentrations (Kampschreur et al., 2009; Von Schulthess 

et al., 1994) influence this last step accumulating N2O and thus fueling its emission. 

During denitrification it is known, at the biological level, that high NO2- concentrations can provide 

faster renewal for the NO2- reductase and reduction of NO2- to N2O, while the presence of DO can 
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inhibit heterotrophic denitrification (Nos enzyme), also leading to N2O production (Von Schulthess 

et al., 1994). FNA and FA have been observed to inhibit NOB activity already at 0.1–1.0 mg/L and 

0.2– 2.8 mg/L, respectively (Anthonisen et al., 1976). Svehla, Bartacek, et al. (2014), significantly 

exceeding NOB-inhibiting concentrations of FA and FNA, observed adaptation in a CSTR as 

compared to a SBR showing NOB-inhibition. On the other hand, FNA is used for sludge treatment 

and has been reported that the enzymes relevant to nitrifier denitrification were inhibited, 

decreasing the microbial community diversity, but increasing the abundances of AOB and 

denitrifiers, ultimately reducing N2O emissions (Wang et al., 2016). Finally, despite the need for an 

increase in external carbon source, excluding the anaerobic phase of an SBR promoted 

heterotrophic denitrifiers to be responsible for aerobic nitrogen removal instead of AOB, reducing 

N2O production by heterotrophic denitrification (Chen et al., 2014). 

Extent of emission 

Due to the complexity of the N2O formation process and to the influence of several operational 

parameters on such processes, N2O emissions from WRRFs vary substantially among plants, 

ranging from negligible to substantial, depending on the different process design and operating 

conditions (Law et al., 2013). Based on field-scale measurements, continuous flow biological 

nitrogen removal processes could emit up to 7% of the influent nitrogen load as gaseous N2O and 

NO (Guo et al., 2013; Kampschreur et al., 2009, 2008b; Law et al., 2013; Peng et al., 2014), typically 

peaking in the first aerated compartment of the biological process, where the N2O produced during 

nitrification is emitted together with the stripping of the carryover of the N2O produced during 

denitrification.  

Autotrophic nitrogen removal processes from N-rich residual streams have been observed to emit 

up to 6% of the incoming N-load as N2O (Desloover et al., 2012). Domingo-Félez et al. (2014) 

showed that single-stage nitritation/anammox reactors could generate N2O emissions higher than 

6% of incoming TN. Similarly, Li et al. (2017) addressed most of the emission to the denitrification 

step. 

2.6.2. Measurement protocols 

The first protocol for accounting for GHG emissions from WRRFs was proposed by the 

Intergovernmental Panel on Climate Change (IPCC, 1995). At that time, the available knowledge of 

GHG emissions from the processes involved in a WRRF was quite immature, and the protocol, 

which was later adopted by the U.S. Environmental Protection Agency (USEPA, 2001), assumed a 

CH4 EF based on incoming BOD and flow. 

Monteith et al. (2005) set up a rational procedure for estimating carbon-based GHG emissions from 

WRRFs taking into account the treatment train of plants, thus leading to a much more accurate GHG 

emission estimate than the IPCC protocol. 

The first IPCC protocol was then updated in 2006 (IPCC, 2006), although it still neglected or 

underestimated some GHG contributions (e.g., CH4 emissions due to the incomplete combustion of 

digester biogas, CH4 fugitive emissions from settling, thickening or dewatering sections, N2O 

emissions due to nitrification/denitrification, and CO2 emissions from organic matter degradation). 
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In the same year, the California Energy Commission (CEC, 2006) proposed a more refined 

document with the main assumption that all the N2O emissions originate from the discharged 

wastewater. Finally, the protocol adopted by the USEPA (2007), based on the procedure proposed 

by the IPCC, finally takes into account the N2O emission due to the nitrogen content in biosolids. 

The three protocols discussed above proposed an assessment method of GHG production merely 

based on EFs. These EFs were estimated considering a generic WRRF without including important 

characteristics of the plant (e.g., hydraulic retention time or sludge retention time). Over the years, 

several studies have been performed in order to establish EFs based on field data. These EFs, based 

on global averages for consistency and for lack of better published literature, exhibit the limitations 

of being associated with generalizations, such as the amount of biodegradable carbon, expressed as 

BOD generated per capita and per year, without any consideration on the process specific 

information which were emerging as having crucial importance (i.e., process configuration, 

retention time, reactor geometry, existence of tank cover, etc.). With regard to N2O emissions, given 

the high variability observed within the same WRRFs (Aboobakar et al., 2013; Daelman et al., 

2015), the use of fixed EFs is strongly in contrast to current knowledge as it overlooks the 

variability of process conditions.  

Field measurements were indicated as a key element for improved estimations based on site-

specific operating parameters and processes (Chandran, 2011). In 2011, the Global Water Research 

Coalition published two reports (scientific and technical) on N2O and CH4 emissions from WRRFs as 

a result of an extensive monitoring study conducted on real WRRFs in Australia, France, USA, and 

Netherlands, where different protocols for measuring GHG emissions were adopted (GWRC, 2011). 

On the basis of the results obtained in the aforementioned studies, Chandran et al. (2011) proposed 

a protocol for assessing N2O emissions. This protocol has the advantage of combining the 

information obtained from the real-time measurements of hood-headspace N2O concentrations 

with those obtained from discrete measurements of N2O concentrations in the liquid phase. 

Additionally, it also takes into account the direct measurement of the advective flow rate at the 

hood-headspace. The significant amount of data that have to be collected for employing this 

protocol enable an accurate quantification of N2O emissions. However, this protocol requires a 

sweeping gas on site for measurements and relies on the assumption that the sweeping gas flow is 

small in proportion to the surface stripping or volumetric flow. This assumption can be adequate 

for volumetric flows, such as those in aeration tanks, but may be error prone on the surface of non-

aerated tanks. The application on non-aerated tanks, in fact, is possible if the wind profiles are 

taken into account and local ambient air conditions are maintained as close as possible to the 

natural ones (Caivano et al., 2017), implying a different wind-induced surface evaporation 

compared to that of the confined measurement of flux chambers. In Table 2.1, a summary of the 

main existing protocols for GHG emissions from WRRFs is provided with the relative description. 
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Table 2.1 – Overview of the main protocols for assessing GHG emissions from WRRFs 

Reference 
Sample 

type 

Gas flux 

measurement 

Use 

Emission 

Factor 

GHGs Remarks 

IPCC, 

2006 
None No Yes N2O, CH4 

GHG emissions estimated based on EFs 

associated with specific populations and 

type of WRRFs. N2O emissions from 

treated wastewater discharged in 

receiving water body are considered as 

main contribution. 

CEC, 2006 None No Yes N2O, CH4 

Simplified version of the IPCC protocol 

(IPCC, 2006). Assumes that all N2O 

emissions are originated from the 

WRRF effluent neglecting nitrification-

denitrification contributions. 

USEPA, 

2007  
None No Yes N2O, CH4 

Based on IPCC (2006). For N2O 

emissions, also nitrogen content in 

biosolids is considered. 

GWRC, 

2011  
Gas, liquid Yes No N2O, CH4 

Based on full-scale data (measured in 

WRRFs in Australia, France Netherlands 

and USA) to establish new emission 

factors other than the IPCC ones. Gas 

and liquid N2O measurements. 

Chandran, 

2011 
Gas, liquid Yes No N2O 

Combines information of: I) online 

measurement of headspace N2O 

concentrations; II) discrete 

measurements of N2O concentrations in 

the liquid. Considers direct 

measurements of the advective flow 

rate of headspace. 

 

Despite the potential of the existing resources available in literature for accounting for GHG 

emissions from WRRFs, there are still relevant differences among protocols, toolboxes, and 

methods (Caniani et al., 2015). This is also visible in the heterogeneity of calculation methods for 

defining the EF and in the lack of indications on the spatial and temporal sampling strategy 

(Massara et al., 2017). 

Temporal variations have been observed to significantly impact (seasonally and daily) the 

assessment of EFs, and online sampling has been observed as necessary in order to sufficiently 

capture variability (Daelman et al., 2015). However, once this variability is captured, it is not 

reflected in the final EF, mostly resulting in a mere average of large datasets including peaks and 

valleys of emission. In this view, the potential and the meaning of online measurements is in large 

part wasted. Extensions to the concept of the EF are needed in order to make comparable estimates 

among plants (Massara et al., 2017). 
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Spatial variations, are also important and discrepancies in recognizing the highest emitting section 

of a WRRF often occur (Caivano et al., 2017; Chandran, 2011; Marques et al., 2016), due to the fact 

that N2O emissions are very much specific to the treatment technology used, how the process is 

controlled, and of the wastewater composition (Ahn et al., 2010a; Kampschreur et al., 2008a). 

Nonetheless, local differences in substrates concentration within the same tank can lead to 

important variabilities (Rehman, 2016), warranting key considerations for designing an ad-hoc 

sampling strategy for a correct EF assessment. 

Aerated compartments are considered to be the greatest contributors to N2O in a WRRF (Chandran, 

2011); however, although more troublesome to measure, anoxic zones also represent a central 

source (Ahn et al., 2010b). Emissions from non-aerated tanks or tanks using surface aeration are 

often neglected in literature or poorly investigated due to the lack of adequate methodologies for 

assessing emissions from these areas. However, in some cases they have been documented as a 

significant source of N2O emissions (Ahn et al., 2010b; Caivano et al., 2017). The Global Water 

Research Coalition (GWRC) (2011) reported 12 studies revealing an important contribution of 

anoxic zones to both production and emission of N2O. At present, we can affirm that the monitoring 

of both aerobic and anoxic sections is often suggested (Marques et al., 2016) and these locations 

should not be discarded a priori. 

Unless a fully-covered WRRF is available and a single sampling point can be selected for assessing 

an overall EF (Daelman et al., 2013; Kosonen et al., 2016), conditions are highly variable depending 

on process conditions and hydrodynamics (Amerlinck et al., 2016; Guo et al., 2013). The high 

variability of N2O emissions has provided a fertile ground for the scientific debate on the correct 

definition and use of an EF (Massara et al., 2017), but no common agreement seems to be yet 

achieved, also due to the lack of understanding of emission variability. This is crucial in 

understanding which of the N2O pathways will be dominant and in order to properly tackle its 

emission by developing aimed reduction strategies. 

2.6.3. Instrumentation for online monitoring 

Gas measurements 

N2O emissions from WRRFs are variable over time both on the short (hourly and daily) and long 

term (seasonal). N2O emissions are variable within process tanks as well, due to variability of both 

off-gas flow rate and/or N2O production in the liquid phase. Hence, the importance of having a user 

friendly, flexible and reliable instrumentation. 

In order to appreciate diurnal variations, online and high-frequency devices are normally used in 

the literature. Continuous online monitoring of N2O has been employed in recent years in order to 

quantify the emissions from WRRFs (inter alia: Czepiel et al., 1995; Daelman et al., 2013). Online 

sensors include infrared (IR) analyzer (inter alia: Desloover et al., 2012; Law et al., 2012b), 

chemiluminescence (Kampschreur et al., 2008a), and a Fourier transform IR analyzer (Joss et al., 

2009). The use of the IR analyzer is the most common solution in the literature, due its 

measurement accuracy and the ease of operation. For example, the IR Multi-gas Monitor model 

1312/5 (Innova, Italy) detects the concentration of gas mixtures with a limit of detection of 0.03 
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ppmv for N2O and 0.4 ppmv CO2 at 20°C and 1 atm with a measurement frequency up to 1/80 s. 

Other examples are X-STREAM (Emerson, USA) and Model 46i (ThermoFisher Scientific, USA). The 

robustness and user-friendly character of an IR technology is really advantageous for field 

applications. 

A valid alternative to the IR technology is GC. Micro-GC portable analyzers for field online 

measurements are available on the market. The latter can be equipped with two columns, divided 

into two parallel channels (one using a PoraPlotQ column and the other using a Pulsed Discharge 

Ionization Detector), for having the best resolution over N2O and CO2 readings. The analytical 

performance is ensured by the chromatographic technology allowing for components’ separation 

and, resolution below the ppm. Although it is not yet as popular as IR based tools, the micro-GC is 

characterized by a compact design that makes it as portable as other online monitoring equipment. 

However, the availability onsite of a cylinder having the carrier gas can be a limitation of its 

operation. In addition to this, operating a GC requires technically advanced skills to be properly 

operated and this might be limiting its applicability as compared to IR. On the other hand, the range 

of measurable compounds for a micro-GC is sensibly above the possibilities of the most advanced 

acoustic IR. It is noteworthy that the cost of a micro-GC is generally half of that of an acoustic IR.  

Liquid measurements 

To the best of the author’s knowledge, the only online sensor for liquid measurements of N2O is 

provided by Unisense (Denmark). This instrument allows for high frequency measurements 

adjusted for temperature and provides the possibility to integrate the system in an online control of 

the full-scale plant. The resolution of the sensor is 0.01 mg N-N2O/l which is perfect for WRRF 

applications. Major drawbacks of the instrument are that the sensing part needs to be replaced 

every 8 months and bi-monthly calibration is needed, representing significant operational costs. 

Alternatives to this method are based on the extraction of N2O to the gas phase and subsequently 

quantifying the extracted gas by means of GC (Mampaey et al., 2015; Thaler et al., 2017). These 

methods are obviously more troublesome to use during an online monitoring of a full-scale WRRF 

since a whole set of laboratory equipment is needed on site. However, they can be applied for 

offline measurements after stabilization of the liquid sample with H2SO4. 

2.6.4. Modelling N2O production 

Mechanistic models 

The mathematical representation of biological mechanisms has been largely used in order to 

increase the insight of complex biological processes and interactions. In wastewater treatment, 

these models are integrated in the framework of the ASM concept started in the 80’s under the 

guidance of what currently became the IWA. To date, ASMs have been largely applied to full scale 

cases for a wide variety of purposes, e.g. process and design optimization, scenario analysis, etc. 

(Gernaey et al., 2004). 

ASM1, ASM2, ASM2d and ASM3 (Henze et al., 2000) are the most known and widely applied 

versions of these models and represent the basis for developing new extended versions that include 

e.g. N2O production. ASM1, the first version of its series, was developed primarily for municipal 
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activated sludge WWTPs to describe the removal of organic carbon compounds and nitrogen, with 

simultaneous consumption of oxygen and nitrate as electron acceptors. However, this model 

presented some important limitations that later versions tried to cope with. ASM2 forms a basis for 

modelling bio-P removal by extending ASM1. ASM2d extends ASM2 by including denitrifying 

activity of PAOs for a better description of phosphate and NO3
-. ASM3 includes storage polymers in 

heterotrophic activated sludge conversions. 

These models have been extended for N2O production including one or more of the pathways 

described earlier in this chapter and a detailed review of the available models has been provided by 

Ni and Yuan (2015). Understanding of complex mechanisms of N2O formation has been significantly 

boosted by coupling laboratory experiments with ASMs (Peng et al., 2015). On the other hand, 

mechanistic models have considerably increased the detail of description of these biochemical 

processes thanks to laboratory controlled experiments in which the single pathway of N2O 

production has been isolated (Ni et al., 2014). This synergistic approach has led to an in-depth 

evolution of available models for N2O production. Most advanced N2O models have been developed 

in controlled situations and have been successful for lab scale studies to understand mechanisms in 

small scale, however, they are often not fully operational at full scale due to over-parametrization 

and high parameter correlation (Ni et al., 2013, 2011). 

In the framework of the ASMs, general consensus is found on Hiatt and Grady’s ASMN model (Hiatt 

and Grady, 2008) of four step heterotrophic denitrification which includes N2O as an intermediate. 

More complex mechanisms, such as AOB pathways, have been also integrated to this model 

including N2O and NO production due to AOB (Mampaey et al., 2013). ASMG1 is the result of the 

combination of heterotrophic denitrification and AOB denitrification pathways (Guo and 

Vanrolleghem, 2014) with an updated DO kinetic term for considering that for N2O production by 

AOB denitrification, a maximum rate occurs at relatively low DO conditions (Ni et al., 2013; Yu et al., 

2010). This term is represented by modified Haldane kinetics and is used in AOB denitrification of 

NO2- to NO and finally to N2O. A further extension of the ASMG1 model is the ASMG2d, extended for 

COD/N/P removal. These models count 18 state variables and 15 processes, contains the 

subdivision of autotrophic biomass into AOB and NOB and the distinction between different 

nitrogen species (i.e. NO3-, NO2-, NO, N2O and N2). This increase of detail in the biological 

mechanisms resulted in a total of 62 kinetic parameters. Guo and Vanrolleghem (2014) provide a 

detailed matrix for all the process kinetics and relative parameters values. 

Massara et al., (2017) gives a broad overview of available models and their latest findings, 

suggesting the use of multi-pathway N2O production models but also rises concerns about their 

calibration in full scale. ASMG1 and ASMG2d represent two of the few models available that have 

been calibrated and validated in full-scale (Guo, 2014; Guo and Vanrolleghem, 2014). However, 

concerns about the high variability of some relevant parameter through the literature has been 

raised (Spérandio et al., 2016). This further confirms that the level of detail in the mechanistic 

sense has reached a very high level, but the full-scale application requires process knowledge 

regarding local concentration that is currently lacking (Rehman, 2016). The current Tanks In Series 

(TIS) configuration is yet the most commonly used layout for representing the biological volume of 

a WRRF. However, complete mixing is unlikely to occur in a biological tank of a WRRF and recent 
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research focused on including hydrodynamic information in changing a TIS with a CM 

configuration. A CM is a representation of a biological tank with a conceptual network of spatially 

localized compartments. These compartments, are connected through convective and exchange 

fluxes, all based on preliminary detailed hydrodynamic modelling based on Computational Fluid 

Dynamics (Rehman et al., 2017). The use of a CM can take into account those local conditions and 

recirculation patterns in the AS tank that are important with respect to the modelling objective. 

Knowledge based N2O models 

Alternatives to mechanistic models have been developed in the past for process optimization, 

understanding and even for control of WRRFs. A knowledge-based system has been used to identify 

the most suitable train of treatment of a certain wastewater based on its composition (Krovvidy et 

al., 1991). Integrated supervisory architectures have been presented for the supervision of WRRFs 

to overcome control bottlenecks (Manesis et al., 1998; Sànchez-Marrè et al., 1996). One of the first 

implementations of a knowledge-based system to support the operation of a real WRRF have been 

proposed by Rodríguez-Roda et al. (2002), reporting 3 years of successful support to the operation 

of a WRRF and indications on transferability of the technology. Following this, a knowledge based 

system was applied to a full-scale WRRF to target deflocculation problems (Comas et al., 2003).  

In this view, and for the crescent demand of solutions aimed at reducing N2O emissions, a new 

knowledge-based application integrated with fuzzy logic has been developed (Porro et al., 2014). 

This model, the risk model, was proposed for making use of the available knowledge in the 

literature and interpolate it with plant data for extracting information on the principal pathways 

responsible for N2O formation. The risk model applies fuzzy logic and knowledge-based systems to 

process variables (e.g. DO, NO2-), to mimic the human reasoning process for evaluating the risk of 

producing N2O in WRRFs.  

Data mining 

Data mining solutions have been used in wastewater treatment in particular for process control 

optimization. Given the amount of data generated from today’s WRRFs, the amount of hidden 

information can be relevant and potentially represent a valuable return of material to the capital 

investment of placing a SCADA system.  

Literature shows that aeration system control has been aided by a data-driven approach that 

considered information from both the control system and water quality data (Asadi et al., 2017). 

However, not many practical applications of data mining on full-scale WRRFs are reported in 

literature other than PCA. 

PCA has been often used for process understanding, monitoring (fault detection), and control of 

industrial processes such as wastewater treatment (Gernaey et al., 2004). The principle of PCA is to 

reduce the amount of information available to a smaller number of variables (PCs) capable of 

explaining most of the variance of the dataset. In this way, it is possible to unravel hidden 

dependencies among known key variables. MPCA, a variant of PCA, has been used for process 

monitoring, and interpretation and analysis of sequencing batch reactors process behavior (Lee 

and Vanrolleghem, 2003; Villez et al., 2008).  
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Despite today’s availability of large amounts of WRRF data and of tools for data mining, to the best 

of the author knowledge, documented application of these techniques to WRRF is absent when N2O-

is concerned. 

2.7. Description of the WRRFs objective of the study 

Eindhoven 

The WRRF of Eindhoven (The Netherlands) is the third largest in the country and is operated by 

Waterboard De Dommel. Designed to treat the wastewater of 750,000 (250k m3/d) inhabitant 

equivalents (IE) with a load of 136 gCOD/d/IE, the plant is composed of three parallel treatment 

lines equipped with one primary settler, one bioreactor and four secondary sedimentation tanks 

(Figure 2.3). The treated effluent is then discharged into the relatively small river Dommel. 

 

Figure 2.3 - Aerial view of the WRRF of Eindhoven and its main process units. 

Each bioreactor (Figure 2.4) is designed according to the UCT layout and consists of one anaerobic 

tank (inner ring), one anoxic tank (middle ring) and one aerobic/anoxic tank (outer ring), all 

operating in plug-flow configuration. The pre-settled wastewater enters the inner (anaerobic) ring 

of the bioreactor and is directed around four sub-divisions ensuring its plug-flow operation. After 

the fourth compartment of the inner ring, the mixed liquor is directed to the middle (anoxic) ring 

through an opening at the bottom of the tank. At this point the AS is circulated, with a retention 

time of 3.5 h, by means of impellers. An overflow located at the outer wall of the middle ring is 

feeding the outer (aerobic/anoxic) ring of the bioreactor, while a recirculation pump returns a 

fraction of the mixed liquor (recycle A) to the inner ring for P removal. In the outer ring, alternated 

aerobic and anoxic zones are maintained. Three pairs of impellers located on three bridges around 

the outer ring ensure a minimum of 0.25 m/s mixed liquor flow velocity in order to prevent settling 

of the AS flocs (Bosma et al., 2007). The AS exits the outer ring via an underflow located at its outer 

wall after the summer package (cascade outflow) while a fraction of the mixed liquor is recycled 

back into the middle ring for denitrification. 
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Figure 2.4 - Scheme of a bioreactor. The full black arrows show the mixed liquor direction and the 
dotted arrows show the recirculation flows throughout the different compartments. 

Aeration to the biomass is provided in the outer ring by plate aerators divided in two sections, a 

continuously active summer package and a winter package. The winter package is used only 

occasionally to increase the aerated volume in the tank (e.g. when low temperatures decrease the 

bacterial activity or during rain events when the influent load increases). On the other hand, the 

summer package is always active and its airflow is controlled by an ammonia-DO feedback cascade 

control which reduces the airflow when the effluent ammonia from the bioreactor is below 1 mg/L. 

In addition, a feedforward control takes action when the incoming flow rate to the plant is above 

11,000 m3/h. When this happens, the DO set point is increased to 6 mg/L and both summer and 

winter packages are used in order to ensure nitrification. 

Thanks to the very advanced Supervisory Control and Data Acquisition (SCADA) system the WRRF 

of Eindhoven disposes of high quality dataset of influent, effluent and process data. 

Florence 

The WRRF in Florence (Italy), managed by Publiacqua spa, treats urban wastewater with a capacity 

of 600k IE and a flowrate of approximately 200k m3/d. It treats the wastewater coming from the 

entire municipality of Florence including Campi Bisenzio, Calenzano, Sesto Fiorentino, Signa, Lastra 

a Signa e Scandicci. It is a municipal conventional activated sludge (CAS) WRRF with a modified 

Ludzak-Ettinger denitrification-nitrification configuration. The plant, is composed of three parallel 

treatment lines equipped with one primary settler which is currently bypassed due to the diluted 

character of the influent, four identical bioreactors and three secondary sedimentation tanks 

(Figure 2.5). In principle, the influent should be equally partitioned among all bioreactors. 
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Figure 2.5 – WRRF of Florence and its main treatment units 

Each bioreactor is composed of an anoxic section and an aerobic section. The anoxic section has 7 

compartments divided by a concrete wall, partially submerged (.ca 10 cm) in the center and with a 

vertical opening at one side along the whole depth. The influent enters the biological tank at the 

beginning of the first anoxic compartment already mixed with the internal recirculation of the 

bioreactor. From the first anoxic compartment, the AS can flow over the concrete wall (center) and 

through the side-opening of this (Figure 2.6). The AS exiting the last anoxic compartment, enters 

the aerobic section. 

 

Figure 2.6 – Schematic detail of a bioreactor of the WRRF in Florence 

Aeration is provided by fine-bubble diffusers (ABS, PIK300) with EPDM membranes. The plates are 

disposed 6.5 m deep and divided in three identical zones along the aerated area with decreasing 

density of aerators towards the tank outlet. The inlet of the aerobic section contains 44.0% of the 

aerators, while 30.5% cover the middle part of the aeration and the remaining 25.5% are present in 

the last third just before the outlet to the clarifiers. Aeration is balanced by an NH4+ - DO cascade 

control around a set point of 0.8 – 1.2 mg/L of DO measured at the outlet of the bioreactor. 

Rome East 

The WRRF of Rome East is one of the largest in Italy. It treats 900k IE (280k m3/d) municipal 

wastewater for the section Rome IV and is managed by ACEA. The plant is divided in two main 

treatment trains. The largest train (600k IE) was in maintenance during the time that this plant was 

studied, therefore the smaller train was considered and only these details are reported in this work.  

Similar to the WRRF in Florence, Rome East is operated bypassing the primary sedimentation due 

to the high amount of infiltration diluting the raw wastewater, with the purpose of maintaining 
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sufficient nutrition for the AS biomass. The influent, after a first coarse screening and sand trap, is 

directly split among the three parallel AS tanks (Figure 2.7). 

  

Figure 2.7 – Aerial view of the smaller treatment train of the Rome East WRRF 

There is no pre-denitrification, and the influent directly enters the aerated volume after a small 

mixing section (Figure 2.8). The aerated tank is equipped with EPDM membrane disk diffusers 

(ABS, PIK 300) and installed at 5.5 m depth. The first half of the tank has 56.6% of the diffusers 

while the remaining 40.4% of the diffusers are placed in the second half. Aeration is run with a fixed 

air flow rate and adjusted once per day by the operators according to manual DO measurements 

and AS characteristics, i.e. mixed liquor concentration and retention time.  

 

Figure 2.8 – Schematic overview of one bioreactor in Rome Est WRRF 

The bioreactor is operated with the principle of a plug-flow configuration and its effluent is directed 

to the secondary sedimentation. 
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Abstract 

Given the documented impact of both aeration efficiency and N2O emission on the WRRF’s energy 

requirements and CFP, in order to promote their sound assessments and replicability of their 

measures, there is a crescent need for reliable instrumentations and robust standardized 

measurement methods. Available standardized methods need to be updated and related to 

currently available technologies, suggesting potential configurations that can be used to generate 

widely comparable results or to further inspire possible improvements. In this chapter, the 

development of an off-gas analyzer for off-gas measurements and related extensions for N2O 

emission monitoring are critically presented and evaluated. 

A new instrument based on the standard guidelines and principles of the off-gas measurements was 

designed and developed in tight collaboration with West Systems (Pontedera, Italy) in view of 

including best practice principles and instrumentation for off-gas testing but also provide an 

improved solution with respect to the canonical method. In particular, West Systems experience in 

sensing software and hardware development was used to implement our knowledge in off-gas 

testing. We selected the most appropriate sensing devices and  

The analyzer was designed and assembled with the aim of (I) limiting investment costs maintaining 

good data quality and quantity for wastewater application; (II) maximize instrumentation lifetime, 

(III) minimize maintenance and calibration needs; (IV) maximizing portability and automation; (V) 

emphasize the user-friendly character; (VI) increasing its applicability and replicability. 

The analyzer was designed to provide all necessary features to perform aeration efficiency 

measurements based on the principles of the off-gas method. A dedicated transportable floating 

hood for capturing off-gas from aerated compartments was also developed. 

In view of optimizing measurement campaign efforts including the assessment of N2O emissions, 

the instrumentation was extended with in particular (I) a thermoacoustic IR N2O analyzer for 

measurements of gaseous N2O; (II) two liquid N2O sensors; (III) a floating hood for non-aerated 

surfaces. To the best of the authors knowledge, this is the first time that an integrated system for 

aeration efficiency and N2O emission monitoring is proposed. 

The analyzer and all its components are introduced in this chapter along with laboratory and field 

tests.  

  



Chapter 3 Off-gas analyzer 
 

3-2 

  



Chapter 3 Off-gas analyzer 
 

3-3 

3.1. Instrumentation, testing and field validation 

An off-gas analyzer was designed for assessing the aeration efficiency of submerged aeration 

systems by measuring the concentrations of O2 in the off-gas and comparing that to the ambient 

one. A schematic overview of the analyzer is provided in Figure 3.1.  

 

Figure 3.1 – Conceptual scheme of the off-gas analyzer sample flow and data acquisition. 

The gas stream leaving the aerated tank is captured by a floating hood on which a hot wire 

anemometer is mounted to measure air flow rate. A small fraction (1 l/min) of the gas captured is 

spilled by a vacuum pump and directed to the analyzer. A desiccator unit performs the first 

conditioning of the gas sample in order to remove water vapor. The spilled air flow is then 

circulated inside a sensor cell to measure oxygen partial pressure. Ambient air can be sampled by 

means of a three-way valve as reference for the efficiency evaluation. DO is also measured in the 

mixed liquor. 

3.1.1. The off-gas analyzer 

The off-gas analyzer (Figure 3.2, left) was designed for use in full-scale facilities, thus considering 

the possibility to be left on site even under adverse weather conditions. A waterproof case was used 

to protect all sensitive instrumentation against rain. The case was chosen to minimize dimensions 

in favor of stability under strong wind. An air cooling system was mounted for ensuring safe 

operation during hot weather. 
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Figure 3.2 – The off-gas analyzer and its components (left), and the power supply case (right) 

The power supply was included in view of providing sufficient energy to operate in case of short 

blackouts (about 1 hour of operation) and disconnections from the electrical net (e.g. necessity to 

move the instrumentation avoiding shutdown of the instrument). In order to maximize battery 

lifetime in case of need, the entire instrumentation is operated at the minimum voltage possible (i.e. 

15 VDC), dictated by the minimum requirements of the pressure and temperature sensor. This 

system was embedded in a small water-proof air-cooled case which can stand diverse weather 

conditions similarly to the off-gas analyzer.  

The analyzer is composed of the following components which will be described individually in the 

next sections (I) Gas sampling pump, (II) Peristaltic pump, (III) Pressure and temperature sensor, 

(IV) Four adsorption columns, (V) Sensor for O2, (VI) Sensor for CO2 and CH4, (VII) PC, (VIII) 

Solenoid valves (one direct acting 2/2 -way, and two  3/2 direct acting-way), (IX) Condenser, (X) 

Flow meter. 

Gas sampling pump (KNF NMP 850 KNDC) 

This pump is located at the end of the internal analyzer’s pipeline, in order to guide the gas sample 

through the internal circuit of sensors. The internal membrane can be used with slightly aggressive 

gases, both in vacuum (down to 230 mbar absolute pressure) and pressurized applications (up to 

1.5 bar g). The vibrations induced by the pump are imperceptible by the instrumentation thanks to 

the needle valve positioned upstream, and can work in any position in a temperature range of 5-

40°C. The gas sampling pump can reach a flow of 4.5 l/min but in this circuit is operated at 1 l/min 

due to design requirements of the O2 sensor. The membrane technology allows to separate the 

operating mechanism from the sample side, avoiding contamination of the sample from lubricants 

and ambient gases. 

Peristaltic pump (ESPANGO IPS6) 

A peristaltic pump was included in the circuit in order to protect the instrumentation in case of 

water entering the sampling tube from the hood or rather in high presence of condensed water. The 
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pump has a reversible fixed flow of 6 l/min with 1 bar of pressure (10 m of water column). It is a 

self-priming device, being able to work with up to 2 m of water column in suction. The control 

action starts in presence of an under-pressure in the pipeline of the analyzer, this triggers the 

peristaltic pump to washout the eventual liquid present in the sampling line and causing the 

resistance to sampling. Normally, this problem does not occur and the pump remains mostly 

inactive.  

Pressure and temperature sensor (STS ATM/T series 26) 

This pressure and temperature sensor is used to monitor the status of the gas in the sampling line 

inside the off-gas analyzer. The readings of temperature and pressure can be used to adjust the 

measurements of other sensors on the same line that do not have these corrections. In addition to 

this, pressure and temperature measurements are used to control the status of the sampling line 

and of the whole analyzer against overheating (e.g. during measurements in summer) and changes 

in pressure in the sampling line (e.g. clogging of the sampling line due to condensed water) that 

could bias the measurements or damage the instrumentation (e.g. the membrane of the O2 sensor). 

The pressure sensor ranges between 70 mbar and 500 bar with a precision smaller than ±0.5 % of 

full scale (4 mbar in the measuring range of ambient pressure). Over one year of operation its 

reading can deviate by about 4 mbar. These features make this pressure sensor highly reliable for 

being used in the off-gas analyzer.  

Adsorption columns 

Four adsorption columns (Figure 3.3) are present in the off-gas analyzer in order to provide 

sufficient scrubbing capacity of moisture from the off-gas sample. The removal of humidity from the 

gas sample is necessary prior to entering the train of sensors in order to protect delicate parts of 

the instrumentation (e.g. membrane of O2 sensor). Nonetheless, moisture needs to be removed 

from the off-gas in order to allow a precise and comparable measurement of the volumetric content 

of the different components between the off-gas and ambient air. For this, the columns are filled 

with silica gel containing a colored humidity indicator. The volume of each column is about 1.5 L 

and a system of spigots allows the use of one or multiple columns in parallel or in series. 
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Figure 3.3 – Adsorption columns for moisture trap with silica gel. An empty column (left) and a 
technical drawing of the four columns fixed on their support in the analyzer (right). 

In order to give an idea of the sequestration capacity of each column for humidity, it can be 

considered that the volume of silica contained in the single column generally allows the analyzer to 

sample continuously for more than a week before the last third of the silica starts to show 

variations in the colored indicator. Measurements with a moisture sensor during full-scale 

measurements demonstrated that, as far as the silica gel indicator does not change color, the 

sample exiting the column has an ensured dew point of -13 to -5 °C. This means that in full-scale a 

well dried sample can be ensured for more than a week. The time a silica gel column can last 

depends on ambient conditions and might slightly vary with the season, but no considerable 

variation from an abundant week of duration was observed.  

Oxygen sensor (Alphasense O2-C2) 

The O2 sensor measures the concentration of oxygen in the gas sample and is the primary variable 

needed to calculate the actual efficiency of the aeration system. Therefore, this is a crucial sensor 

for the good performance of the analyzer. 

The selected O2 sensor operates in the range 0-30% of O2 concentration in the gas sample, which is 

optimal for aeration efficiency monitoring as normally concentrations of O2 in the off-gas of an 

aeration tank does not fall below 14%. The O2-C2 sensor is a galvanic sensor using an 

electrochemical cell in which O2 is reduced at the anode, while at the cathode side a balancing 

oxidation of a metal occurs. A current proportional to the O2 consumption is generated and used for 

the measurement. This sensor is preferable over the combustion chamber technology (e.g. 

zirconium cell) in applications where flammable gases can be present.  

Combustion chamber sensors (zirconia cells) are largely used for measuring O2 partial pressure for 

e.g. atmosphere control, internal combustion engines, and breathing gas of divers, thanks to their 

long lifetime and limited calibration needs. However, if flammable gases (e.g. CH4) are present, they 

can be biased from the combustion of more compounds than solely O2 revealing higher 

concentrations than in reality. As CH4 can be generated from anaerobic activity in the sewer or 
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inside the WRRF and be stripped from the aeration tank, even in very small concentrations, 

galvanic cell technology is the most appropriate.  

Electrochemical sensors have a shorter lifetime compared to the combustion chamber technology, 

however, since these sensing devices are claimed to be able to stand 2 years of operation before 

they should be replaced, their duration can be considered as adequate for aeration efficiency 

monitoring (i.e. a measurement campaign lasts in the order of a week/month). In addition to this, 

the reasonably low cost of this kind of sensors (around 20 euros) facilitates the economical aspect 

of its maintenance. The contained price is due to the fact that the sensor needs to be mounted by 

the purchaser on an acquisition board for which the manufacturer gives indications (e.g. 

capacitance of resistor) but not providing the hardware itself. Beside this, the relatively high 

maintenance required as compared to other sensors represents a bottleneck for some applications, 

likely not for wastewater. In fact, regarding their periodic calibration need, this does not represent 

an issue for aeration efficiency monitoring as the reference measurement of ambient air is always 

needed before the actual off-gas measurement (at least just before the start of the measurement 

day). The measurement of the reference (ambient) sample can be considered by itself as a 

calibration against a known concentration value. In the off-gas analyzer, the O2 sensor reading is 

calibrated against ambient air at the beginning of each reference measurement. 

The O2 sensor operates between -30 and 55°C, and between 0.8 and 1.2 bar, which perfectly 

includes the vast majority of operating conditions of temperature and pressure during off-gas tests 

in both summer and winter. Temperature and pressure dependencies are provided by the 

manufacturer and were implemented in the signal processing of the analyzer. The response time is 

below 50s making it a fast responding device without the need of a time constant adjustment for 

use in aeration efficiency monitoring, where variations in the observable dynamics are far slower 

than the probe response time. The sensor accuracy is claimed to be ± 0.25 % of full scale (i.e. at 

ambient concentration of 20.9% there is an uncertainty of ±0.052). 

CO2 and CH4 measurements (Crestline instruments Model 7911) 

Currently, a robust and widely accepted online measurement technology for CO2 and CH4 in the gas 

phase is Non-Dispersive Infrared (NDIR). Instruments using IR technology are normally offering a 

very high precision on many different compounds at a very expensive price. The advantage of NDIR 

is the possibility to measure different gases with a relatively simple spectroscopic sensor. In 

particular, this sensor represents somehow an exception on the market (i.e. 5k euros, one order of 

magnitude less than normal IR sensors), given its relatively low price and good performance, that 

fits perfectly in the aeration monitoring purpose. It is provided, similarly to the O2 sensor discussed, 

without a data acquisition/power board which needs to be assembled by the customer, but which 

allows to sensibly decrease the price and ease its inclusion in a relatively small analyzer. 

Information on CH4 content is given as hydrocarbons concentration (HC) (0 to 4000 ppm 

±120ppm) and CO2 measurements range from 350 to 160k ppm with a precision of ±80 ppm.  

From experience and literature studies, the CO2 concentration in the off-gas of an aerated biological 

tank are known to lay in a rather large domain among different WRRFs (1 to 3%) but staying within 

a narrow deviation within the single facility (±400 ppm, probably due to influent dynamics), unless 
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critical sudden process changes occur (Bellandi et al., 2011; Caivano et al., 2017; Guo et al., 2013; 

Porro et al., 2014). Therefore, we can affirm that the characteristics of the selected instrument are 

fitting very well the purpose of the off-gas analyzer. The same can be stated for the case of the HC 

sensing device, for which HCs normally occur only under the form of CH4 in wastewater systems 

and might follow more closely influent dynamics (Caivano et al., 2017; Daelman et al., 2013, 2012; 

Guo et al., 2013; Porro et al., 2014). However, it must be stated that the assessment of HCs 

emissions are outside the scope of this thesis and measurements are therefore not further 

considered. 

PC controller unit (PPC-L62T) 

A fanless PC contains the software and the user interface needed to control the instrumentation, 

acquire all signals, process data, and write text files in memory (Figure 3.4). The touchscreen 

allows the user to interact with the software. All monitored and controlled variables from the off-

gas analyzer and from the floating hood are managed through an RS-483 port, acquired, processed 

in this controller unit and stored in its memory. 

 

Figure 3.4 – View of the software GUI for initiating an off-gas measurement (left) and of the software 
interface with all measured and calculated variables during an off-gas measurement (right). 

3.1.2. The floating hood 

A floating hood of 2 m2 (2x1x0.6 LxWxH) was designed and realized in collaboration with Bartolini 

Tendaggi (Pescia, Italy) and West Systems. The hood is composed of aluminium profiles making the 

skeleton of the hood light and resistant to both torsion and oxidation. The outer skeleton sustains a 

PVC flexible layer 2 mm thick (Figure 3.5). The profiles were designed to have a maximum length of 

1 m to ease transportation. 

The cover was chosen in order not to have interactions with the liquid in the biological tank and not 

to have interactions with the gas sample in the range of ambient temperatures to be experienced in 

WRRFs at European latitudes. The cover was designed with an inclined upper face in order to ease 

the off-gas exit towards the outlet tube, limit dead volumes, and minimize renewal time of the off-

gas inside the hood (Figure 3.5). 
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Figure 3.5 – Technical design of the hood composed of main structure, cover, off-gas discharge tube 
and the junction box (left). The hood assembled with floats, and the discharge hose with relative 

connections for anemometer and sample spill. 

On the structure a waterproofed case containing a connection board was mounted (junction box, in 

Figure 3.6). In this junction box: 

- the output signals of the anemometer and of the DO are digitalized into one single wire 

going to the off-gas analyzer to facilitate hood maneuvering; 

- the power from the off-gas analyzer is provided to the sensors onboard; 

- the sampling tube from the off-gas discharge is directed to the off-gas analyzer. 

 

Figure 3.6 – Section of the floating hood and schematic overview of the working principle for off-gas 
testing, with data and sample flows towards the off-gas analyzer. 

The design of this floating hood is particularly suitable for off-gas testing since it provides the user 

with a reasonably light, easy to clean and transportable device allowing to cover a large spot 

surface. As most hoods in literature covered about 1 m2, with this hood the minimum amount of 

measurement points to be covered to assess the aeration efficiency (2 % of the tank surface) 

according to ASCE standards is thus halved. Apart from the area to be covered, also the air flow to 

be captured is important to supply the sensors with a sufficient amount of sample as most 

analyzers work at 1 L/min. Submerged fine bubble aeration systems normally supply between 0.3 
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to 2 L/min/m2 of air into the liquid volume, which can be a limiting factor using a floating hood of 1 

m2 and an analyzer sampling at 1 L/min. When the airflow leaving the liquid surface approaches the 

sampling rate of the analyzer, the risk of biasing the off-gas sample with ambient air increases 

significantly. In particular, if operated in windy conditions, ambient air infiltrations are more likely. 

In order to protect the exit hose of the floating hood from wind intrusion, a T shaped connection is 

plugged at the very end of the hose. Positioned in the vertical direction, the connection protects 

from wind from all directions and allows discharge of eventual moisture condensation. 

Anemometer (TSI Air Velocity Transducer 8455 Series) 

The anemometer is needed to measure the amount of off-gas exiting the liquid surface covered by 

the hood. The hot wire anemometer (Figure 3.7) is a well-established technology in this application. 

It is a rather robust measuring technique and requires very limited maintenance and calibration.  

 

Figure 3.7 – TSI hot wire anemometer details 

The instrument is delivered with built-in calibration curves according to the range of measurement 

in which it is expected to operate, making it a very flexible instrument. Ranges are from 0.125-1 

m/s, up to 50 m/s. The anemometer main features are reported in Table 3.1. 

Table 3.1 – Technical specifications of the anemometer 

Measuring 
range 

selected 

Response 
time 

Accuracy Operating 
temperature 

Resolution Power input Output signal 

0.125 – 10 
m/s 

0.2 s 
±0.5 % 

of full scale 
0-93°C 

(sensor) 
0.07 % 

of full scale 

11-30 VDC o 
18-38 VAC, 

350 mA max 

0-5 V, 0-10 V, 
1-5V, 2-10V, 0-
20mA, 4-20mA 

 

Considering that in wastewater treatment systems with submerged aerators the flux exiting the 

tank ranges between 1-3 m3/h/m-2, the range selected for outputting the instrument could ensure a 

resolution below 0.15 m3/h/m-2. 

DO probe (Thermo Scientific AquaSensors RDO Pro-X Dissolved Oxygen Sensor) 

The DO probe selected was found to be the only suitable solution among full scale sensors, using the 

solid optical technology, since data could be acquired without the need of purchasing a transmitter. 
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In fact, most full scale DO sensors require an additional device for data translation and visualization 

in between the probe and the actual data acquisition port. A transmitter is necessary when a sensor 

is embedded in the WRRF SCADA network and, in order to allow for the usual maintenance/checks 

onsite, a transmitter is normally needed for visualization of the probe response by the plant 

personnel.  

For the case of the off-gas analyzer, the presence of a transmitter is considered an additional 

unnecessary weight, as a light, economical and robust solution is required. Therefore, this sensor 

was considered the most suitable solution on the market. 

This luminescent DO sensor uses the phase difference between an excitation light and the return 

light after reflection by O2 molecules. This technology has the main advantage of being solid and in 

need of minimal (or, as stated by the manufacturer, almost none) calibration, also thanks to an 

automated calibration reducing long-term drift. The main specification of this probe are listed in 

Table 3.2. 

Table 3.2 – Technical specifications of the DO probe 

DO range Accuracy Response time Resolution 
0 to 20 mg/L ±0.1 ppm up to 8 ppm 

±0.2 ppm from 8 to 20 ppm 
30 s 0.01 mg/L 

 

Temperature and ambient pressure (pre-set) are used to correct the output signal already at the 

sensor level. As this sensor is appositely designed for wastewater applications, all specifications 

perfectly fit the needs. 

3.1.3. Sensor testing 

Preliminary tests in laboratory controlled conditions were performed for checking all sensors 

response over their measuring range. Given the novelty of the O2-C2 and the CO2 sensors, their 

response validity needed to be tested. These devices, unlike the DO and pressure sensors which 

implementation and validation are rather of the plug-and-play nature, were the less known 

instruments of the whole analyzer and needed additional custom-made hardware to be 

implemented. With the exception of the measurements of HCs, not relevant for the purpose of this 

thesis, the response of each gas sensor was verified in the lab. 

At the West Systems lab different mixture of gases of known composition were prepared in 10 L 

Tedlar® bags from specialized personnel for each test and the response of the sensors were 

monitored using the FluxRevision (West Systems) software. The sample was fed at a 1 L/min flow 

rate as required by the O2-C2. 

CO2 sensor comparison with LI-COR 

In order to verify the reading of the CO2 sensor, a standard gas mixture and of an additional CO2 

sensor (LI-COR, USA) were used for comparison. The LI-COR sensor uses the same NDIR 

measurement principle but with improvements in the application for precision and response 

performances which sensibly increase its value on the market. 
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A first sample of standard gas containing 20100 ppm of CO2, 10200 ppm of CH4 and N2 for the 

remaining part, was fed to the sensors in three times until signal stability. Ambient air was used to 

clean the line in between the measurements (Figure 3.8). The results show that the CO2 sensor 

detected a concentration of 18380 ppm (Figure 3.8, top). On the other hand, also the LI-COR did not 

detect the correct concertation deviating 658 ppm from the real value (Figure 3.8, bottom). This is 

due to the fact that the LI-COR was measuring at its higher limit of the measuring range showing 

some drift in the signal processing. 

 

 

Figure 3.8 – CO2 measurements of the CO2 sensor (top) and of the LI-COR (bottom). Time (s) and 
concentration (ppm) on horizontal and vertical axis respectively (Screenshot of the FluxRevision 

software.). 

This known standard concentration can be used to recalibrate the CO2 sensor according to the 

difference between the actual and the measured concentrations (i.e. 1.094). However, a one point 

calibration might only be representative for the concentration of the standard gas. In order to be 

able to use this value for adjustment of the signal over the whole expectable range of 

concentrations known to occur in WRRF off-gas measurement campaigns, requires the assumption 

of its linearity. 

To build a calibration curve and check the CO2 sensor for its linear response, a series of known 

dilutions were performed on the standard gas progressively adding known amounts of N2 (Figure 
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3.9). In this case the LI-COR measurements reflected very accurately the expected concentrations 

while the CO2 sensor showed a need for recalibration of the signal. 

 

 

Figure 3.9 – Gas sample measurements of incremental dilutions with N2. CO2 measurements of the 
CO2 sensor (top) and of the LI-COR (bottom). Time (s) and concentration (ppm) on horizontal and 

vertical axis respectively (Screenshot of the FluxRevision software.). 

Comparing the measurements of the CO2 sensor with the actual concentration of the different 

samples analyzed, the linear fit of the points returns an R2 of 0.9999 and a slope of 1.145 (Figure 

3.10). This can be used in the software as a calibration equation to adjust the CO2 sensor readings in 

this range of concentrations. 
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Figure 3.10 – Scatter plot of the measured and the actual CO2 content of the standard gas 
progressively diluted. 

In order to check for eventual sensor drifts from this linear relation due to sensor aging, the 

periodic repetition of this exercise is suggested. To date, no significant deviation of this value was 

observed. 

At startup, the CO2 sensor needs to be exposed to ambient air so that a one point calibration can be 

performed. For off-gas measurements this is advantageous, since reference measurements in 

ambient air are needed at least before the start of the measurement day. This can be considered as 

a zero point calibration, since in full-scale measurements there will be no case under this 

concentration. 

Cross validation O2-C2 and CO2 sensors, and evaluation of a CO2 scrubber 

The O2-C2 sensor is provided with very precise information on calibration curves and relations to 

be used over the whole range of the sensor’s applicability (for temperature, pressure and 

humidity). These relations were implemented in the software of the off-gas analyzer. The linearity 

of the signal is ensured within the measuring range. However, a small verification of signal quality 

and sensor sensitivity in presence of different compounds concentrations was required. In this test 

the raw signal of the O2-C2 sensor in lab controlled environment (ambient pressure, 20°C) is 

shown. 

In presence of only N2 gas the sensor response was 4.38 mA which can be considered to be the zero 

point calibration. The small deviation from the theoretical zero of 4 mA is due to the excitation of 

the sensor parts by the power supplied, normally observed in every device. Thus the importance of 

a zero calibration. 

The O2-C2 sensor was tested in parallel with the CO2 sensor in ambient air (Figure 3.11) and with a 

gas mixture of 10500 ppm of O2 10200 ppm of CO2, 5000 ppm of CH4 and N2 for the remaining part 

(Figure 3.12). In order to crosscheck the quality of the CO2 reading and the variations in O2 reading 

due to the presence or absence of CO2 (causing a change in O2 partial pressure), an absorption 

column (1 L) with sodium hydroxide (NaOH) was used along with silica gel to trap the generated 

moisture. This solution of CO2 trapping is largely used in off-gas measurements when a CO2 sensor 

is not available (Caretti et al., 2014; Gori et al., 2014; Leu et al., 2009; Rosso et al., 2005) by filling 
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one third of a stripping column (generally of 0.5 L) with NaOH pellets. However, to the author’s best 

knowledge, its grade of efficacy has not been reported. 

In ambient air the response of the O2-C2 sensor (Figure 3.11, top) remains between 17.34 and 

17.39 mA with small oscillations, both with and without the CO2 absorption column (Figure 3.11, 

orange and yellow rectangles respectively). This is because the small amount of CO2 removed 

(about 200 ppm, roughly 0.02% of the air composition) does not significantly impact the ambient 

concentration of O2 to make visible variations in the O2-C2 sensor signal. Interestingly, the CO2 

absorption trap cannot remove all the CO2 after 300 seconds, however, these are very small 

concentrations that are more than negligible for the purpose of off-gas testing.  

 

 

Figure 3.11 – Response of O2-C2 (top, in mA) and of CO2 (bottom, in ppm) sensors in ambient air. The 
yellow and orange rectangles define the test without and with CO2 scrubber respectively. Time (s) on 

the horizontal axis. 

Before feeding the sensors with the gas mixture, the whole apparatus was restarted and initiated 

the measurement with ambient air in absence of a CO2 scrubber (Figure 3.12, yellow rectangle) 

giving confirmation of the previous measurements. When the gas mixture was fed to the sensors 

passing through the CO2 scrubber the O2–C2 sensor took about 20 s to arrive at equilibrium and 
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return 10.7 mA. This data confirms the linearity of the O2–C2 sensor behavior as it aligns with a 

0.9998 R2. 

 

 

Figure 3.12 - Response of O2-C2 (top, in mA) and of CO2 (bottom, in ppm) sensors in ambient air 
(yellow rectangle), and in the test sample with (orange rectangle) and without (red rectangle) the 

CO2 scrubber. Time (s) on the horizontal axis. 

Interestingly, the CO2 scrubber could not capture all the CO2, but only about 7000 pmm. When the 

CO2 scrubber was excluded from the sampling line, the signal of the O2-C2 sensor was not sensibly 

affected and recovered its original equilibrium value. The expected increase of the O2 percentage in 

the sample should have been of 0.12, which is within the accuracy of the sensor (±0.05). However, 

in full-scale measurements the CO2 concentrations in the off-gas can reach 4% and leaks of CO2 can 

be more relevant. 

These measurements confirmed the linearity assumption of the O2-C2 sensor and the good 

performances of the CO2 sensor. In addition to this, the tests revealed that CO2 scrubbers might not 

be able to remove all the CO2 and ultimately interfere with the aeration efficiency assessment. Thus, 

the importance of the presence of a CO2 sensor in the off-gas analyzer or of a properly designed 

absorption column. 
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3.2. Calculation methods and results interpretation 

Data acquired from the different sensors composing the off-gas analyzer and its floating hood are 

processed inside the controller of the off-gas analyzer. A software was designed and structured 

(then, hard coded in C++ with the help of West Systems) to include the various features of off-gas 

testing and sequence of operations for aeration efficiency in accordance with available testing 

guidelines but also integrating ameliorations where possible. In order to ease the operation of the 

analyzer, automation of both hardware (e.g. valves, pumps) and software (e.g. data acquisition and 

processing) was maximized as much as possible. 

The data acquired by the off-gas analyzer are processed and recorded according to the different 

purposes of each measurement step of a complete aeration efficiency assessment. The data 

acquisition process, data flow and the calculation of the variables used for the final aim of 

calculating the efficiency of oxygen transfer are shown. The automated features of the off-gas 

analyzer are described in the next sections for each step of the aeration efficiency assessment. 

3.2.1. Data acquisition and processing 

The software of the off-gas analyzer needs a series of input values in order to be able to start the 

data acquisition and processing, and to safely operate the instrumentation. Some operational 

parameters of the off-gas analyzer are not directly changeable by a normal user but need to be 

modified by specialized programmers (Table 3.3). This is in order to reduce the amount of inputs 

needed at the GUI and discourage changes of control parameters important for the safety of the 

instrumentation. 

Table 3.3 – Fixed parameters of the off-gas analyzer 

Parameter Description Default value 

𝑃𝑙𝑖𝑚  Limit of depression 200 mbar 

𝑡𝑝2 Time of action of the peristaltic pump 3 min 

𝑄𝑎𝑖𝑟 𝑙𝑖𝑚 Lower limit of airflow  2 L/min 

𝐶 Maximum number of consecutive drainage cycles  5 

𝑡𝑚𝑎𝑥  Max temperature of gas sample 55 °C 

 

The off-gas analyzer allows the user to define some input parameters and information regarding 

environmental conditions, hood dimensions, and tank geometry, in order to be able to derive the 

necessary aeration efficiency measures, properly store output data, and define optimal alarm 

thresholds (Table 3.4). 
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Table 3.4 – User-defined parameters for initialization of the off-gas analyzer and their default value 

Parameter Description Default value 

𝛽 
DO saturation correction factor for process water 

conditions 
0.99 * 

𝜃 Geometric temperature correction coefficient 1.024 * 

𝐶𝐹 Dimensional pressure correction factor 92.92 mbar/m * 

ℎ Diffuser depth 6 m 

𝑃0 Atmospheric pressure 1000 mbar 

𝐸𝑙 Elevation 0 m 

𝐷𝑂𝑠20
∗  Saturation concentration of DO in clean water in standard 

conditions 
9.08 mg/L * 

𝑆ℎ𝑜𝑜𝑑  Hood surface 2 m2 

𝐿𝑡𝑢𝑏𝑒  Length of sampling tube 30 m 

𝐷𝑡𝑢𝑏𝑒  Diameter of sampling tube 6 mm 

𝐷𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  Diameter of off-gas discharge tube 60 mm 

𝐿𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒  Level of hood immersion 30 cm 

Logging Time Time frequency of logged data 10 s 

𝑡𝑝 Point-by-point test duration 7 min 

𝑡𝑅𝑒𝑓  Reference test duration 5 min 

𝑡𝑠 Stationary test duration 7 days 

* from Techobanoglous et al. (2014) 

 

During the off-gas tests, the variables in Table 3.5 are measured and written in a text file as raw 

signals in order to allow the user to go back to the original mA signal and adjust for possible errors 

during the processing. These variables are used to derive all relevant relations for aeration 

efficiency assessment. 
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Table 3.5 – Measured variables during off-gas tests 

Variable Description Unit 

𝑂2 𝑅𝑒𝑓  O2 concentration in ambient air % (*) 

𝑂2 𝑂𝑓𝑓  O2 concentration in the off-gas % 

𝐶𝑂2 𝑅𝑒𝑓  CO2 concentration in ambient air % (*) 

𝐶𝑂2 𝑂𝑓𝑓 CO2 concentration in the off-gas % 

𝐶𝐻4 𝑅𝑒𝑓 CH4 concentration in ambient air % (*) 

𝐶𝐻4 𝑂𝑓𝑓  CH4 concentration in the off-gas % 

𝐷𝑂 O2 in the liquid phase mg/L 

𝑉𝑎𝑛𝑒𝑚𝑜𝑚𝑒𝑡𝑒𝑟  Gas speed at the anemometer m/s 

𝑃 Pressure in the pipeline of the analyzer mbar 

𝑇 Temperature in the pipeline of the analyzer °C 

𝑇𝑤 = 𝑇𝑎𝑖𝑟  
Water temperature (same as the temperature of the gas 

exiting the tank) 
°C 

* measured during the reference test and fixed for the rest 

 

In the signal processing of the off-gas analyzer, the MR of O2 to inerts is calculated for both ambient 

air and off-gas (cfr. §2, Equation 2.1 and 2.2). By definition, inerts are all components that do not 

sensibly change in their concentration between the inlet and outlet of the air inflated in the AS tank. 

These components, can be considered to remain a constant fraction of the air for both ambient and 

off-gas. With this assumption, the only fractions that do change are the ones of O2, CO2 and water 

vapor, the latter being sequestered by the adsorption column. 

Knowing the actual MR value of O2 in the reference gas and the off-gas, the amount of O2 transferred 

from the ambient air to the liquid phase is calculated as OTE (cfr. § 2, Equation 2.3) (Redmon et al., 

1983).  

The OTE is adjusted to standard conditions (of 0 mg/L DO, 1 atm pressure and 20°C temperature) 

according to Equation (3.1). 

𝛼𝑆𝑂𝑇𝐸 =
𝑂𝑇𝐸 𝐷𝑂𝑠20

∗

𝛽𝐷𝑂𝑠𝑡
∗ −𝐷𝑂

𝜃(20−𝑇)100       Equation (3.1) 

Where the DO saturation concentrations at process temperature and at half depth, are reported to 

process water with Equation 3.2 and 3.3 respectively (Tchobanoglous et al., 2014). 

𝐷𝑂𝑠 = (14.62 − 0.398𝑇𝑤 + 0.006969𝑇𝑤
2 − 0.00005897𝑇𝑤

3) ∙ (1 − 6.910−6𝐸𝑙)5.167 Equation (3.2) 
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𝐷𝑂𝑠𝑡
∗ = 𝐷𝑂𝑠 ∙

𝑃0+𝐶𝐹
ℎ

2

𝑃0
         Equation (3.3) 

The off-gas analyzer software converts the anemometer speed to flow rate with Equation 3.4. 

𝑄𝐴𝑖𝑟 =
𝑉𝑎𝑛𝑒𝑚𝑜𝑚𝑒𝑡𝑒𝑟∙(

𝐷𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2∙𝜋

4
)∙3600∙273.15

273.15+𝑇𝐴𝑖𝑟
      Equation (3.4) 

The off-gas analyzer also calculates the time needed to renew the volume inside the hood and in the 

sampling line (Equation 3.5) so to be used to ensure the measurement on the correct sample. 

𝑡𝑒𝑚𝑝𝑡𝑦 =
𝑉ℎ𝑜𝑜𝑑

𝑄𝐴𝑖𝑟
+ 𝐷𝑡𝑢𝑏𝑒

2 ∙
𝜋

4
∙ 𝐿𝑡𝑢𝑏𝑒 ∙ 1 𝐿/𝑚𝑖𝑛      Equation (3.5) 

Where 𝑉ℎ𝑜𝑜𝑑  is calculated as the difference between the hood volume and its submerged part 

(𝐿𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒) and 1 L/min is the fixed sampling speed of the sampling pump. This, retrieves an 

indicative time information on how much time is needed before a representative sample of a 

certain location can be measured. 

3.2.2. Off-gas analysis 

As the assessment of an aeration system can be divided in two types of tests, namely stationary 

measurements and point-by-point measurements, the software was structured accordingly. In 

addition to this, as a first step before the actual measurements, a reference test in ambient air is 

also considered in the software. The sequence of operations in each test is described. 

Reference test 

The reference measurement is needed in particular for O2 and CO2 sensors to be initialized and 

referenced to ambient air concentrations. A schematic flow diagram of the reference measurement 

is provided in Figure 3.13. 
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Figure 3.13 – Reference measurement flow diagram of the operations of the off-gas analyzer 

As soon as the test is started, the valves are actuated in order to make the sample line take ambient 

air. The sampling pump is activated for a time (user-defined, default is 2min) necessary to renew 

the volume inside the sensors pipeline plus the actual measurement time (user-defined, default is 

3min). During the measurement time, data of air temperature, O2 and CO2 concentrations are 

recorded. A temperature control on the equipment ensures safe operation below 55C. As reference 

for the actual aeration efficiency assessment the mass ratio of O2 is calculated and stored in 

memory. Averages of acquired and calculated variables are stored in a text file including the raw 

signal. 

Point-by-point and stationary tests 

Off-gas measurement can be performed for assessing spatial or temporal dynamics of an aeration 

system efficiency. Both are important parts of the characterization of an aeration system and 

dedicated measurements have been developed over the years. The off-gas analyzer, offers the user 

the possibility of performing both a point-by-point test or a stationary test.  

In the point-by-point test, in order to assess the efficiency of the aeration system over its area, spot 

measurements in different points of the aerated tank are performed. The hood is placed on pre-

defined points on the tank surface and the point-by-point test is run on each of these locations. 

In the stationary test, the aeration efficiency is monitored over one single location on the aerated 

surface. This allows to observe the effect of influent dynamics from a fixed point of view.  

In terms of operation of the off-gas analyzer, the sequence of commands used for both the point-by-

point and the stationary case differ only in the duration of the logging time. A schematic diagram of 

the operations actuated for each test is provided in Figure 3.14. 
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At the start of an off-gas test the valves are actuated to connect the hood with the sensor pipeline 

and the sampling pump is started. At this point, the data acquisition starts, but the analyzer holds-

on the data logging for a time 𝑡𝑒𝑚𝑝𝑡𝑦 in order to allow the renewal of the hood and the sampling 

tube volumes. After this, online and calculated variables are logged for a specified time, i.e. 𝑡𝑝 in 

case of a point-by-pint test or 𝑡𝑠 in case of a stationary test. 

 

Figure 3.14 - Flow diagram of the operations of the off-gas analyzer during the point-by-point test 

Pressure and temperature measurements inside the off-gas analyzer are used to ensure the good 

operation of the sensing devices. In particular, the pressure in the analyzer is monitored not to go 

below 200 mbar from the ambient pressure, and the temperature not to exceed 55°C (both values 

are actually dictated by the most sensitive device in the sensing pipeline, i.e. the O2-C2 sensor).  

An additional control is set on a minimum flow rate leaving the monitored liquid surface, for which 

a comment is written on the output text file to label those measurements that are at risk of ambient 

air contamination. As the analyzer itself needs 1 L/min, in the waste hose of the hood there should 

pass at least 2 L/min for ensuring an unbiased sample. 
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3.2.3. Post-processing and interpretation of results 

Results are stored by the off-gas analyzer in a raw data and a summary text file both of which in tab 

separated format. The header of each file returns the eventual description of the user, data 

frequency, duration, type of test, and time and date information of the test. 

The raw data file contains the raw signals of all instruments inside the off-gas analyzer and the 

calculated variables. Therefore, all information of the relative measurement are stored in this file. 

Separately from the raw files, and stored in separate dedicated folders depending on the type of 

test, are the summary files of reference, point-by-point and stationary tests. The summary files 

contain meaningful statistics of the single test. In specific, for reference measurements, average, 

standard deviation, minimum, and maximum of CO2 and O2 measurements are reported. For 

stationary and point-by-point tests, the same statistics are reported for αSOTE, OTE, QAir, O2 and 

CO2. 

Effects of O2 measurement error on calculated variables (error propagation) 

Comparability of efficiency results among different tests and different WRRFs can be significantly 

affected by the accuracy of the O2 sensor. In this regard, the measurement error of an O2 probe is 

propagated to the final aeration efficiency measure.  

The error of an O2 sensor is propagated by the calculation of the MR (cfr. § 2, Equation 2.1, 2.2 and 

ultimately 2.3) to the OTE value. This effect is not linear as the error on the reading gains 

importance for low O2 values. Defining a domain of O2 measurements and a domain of possible 

sensor errors (sensor specific) enables to calculate the uncertainty around the MR values (Equation 

3.6). 

𝑀𝑅 =
𝑂2 ± ∆𝑂2

1−𝐶𝑂2−(𝑂2 ± ∆𝑂2)
         (Equation 3.6) 

From here, the reflection of the measurement error on the final OTE value can be calculated (Figure 

3.15). The surface can be divided in isolines of OTE, defining different regions of uncertainty around 

a given O2 value of a probe characterized by a given error. Since the measurement error becomes 

more important when O2 values are low, its effect on the resulting OTE is more prominent with 

decreasing O2 concentrations. Two sensors having different precision but operated at different O2 

levels, may have the same accuracy on the final OTE. On the other hand, the same sensor, does not 

have the same accuracy with respect to OTE, over the entire range of O2 values. 
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Figure 3.15 – Isoclines of OTE (%) for possible O2 concentrations in off-gas samples and specific 
probe errors 

The O2-C2 sensor, being characterized by a ± 0.052 error on its O2 % reading (± 0.25% of full-

scale), has a relative range of error on the OTE. For each value of OTE, the accuracy of the O2 sensor 

causes the error in Figure 3.16. Given the low magnitude of the sensor error, its reflection on the 

OTE error is almost linear. Nonetheless, considering that normally the O2 concentration in off-gas 

measurements does not go below 12%, the error on the final OTE reading for the O2-C2 sensor 

does not exceed 0.15 %. 

 

Figure 3.16 – Effect of the error of the O2-C2 sensor on the calculated OTE for the entire range of O2 
values 
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In full-scale measurements, this reflects in a varying uncertainty depending on OTE levels. Applying 

the results in Figure 3.16 to a time series of OTE measurements performed on a full-scale WRRF, it 

is possible to see how the measurement error of the O2 probe reflects in terms of uncertainty on the 

final OTE readings (Figure 3.17). At each value of OTE (Figure 3.17, top) corresponds an 

uncertainty around it (Figure 3.17, bottom). However, the maximum OTE uncertainty that can be 

observed in the case reported does not exceed 0.14 %. This value was plotted as a ± 0.07 % shaded 

area around the OTE time series (Figure 3.17, top), but it is not even visible as compared to the 

normal variations observed in the biological tank dynamics.  

 

Figure 3.17 – Full-scale measurements of OTE (top) showing the uncertainty caused by the probe’s 
error on the calculated OTE values (gray shadow at the top graph). Absolute values of uncertainty for 

each OTE reading (bottom graph) 

For the case of the O2-C2 sensor, it can be stated that the accuracy of the probe does not 

significantly influence OTE calculation resulting in high accuracy in terms of efficiency 

measurements. The effect of the O2-C2 sensor error can be considered as negligible for the range of 

OTE considered. Unless OTE values increase significantly above 40 % (unfortunately almost 

unfeasible for current aeration devices using ambient air), the error of the O2-C2 sensor can be 

considered as non-influential. However, in case that comparisons, e.g. among different points of an 

aerated tank rather than among different tanks, concern differences in OTE similar to the observed 

uncertainty, the corresponding error cannot be ignored and should be considered. 

Effect of errors of other sensors  

The accuracy of the pressure and temperature sensor is much higher as compared to that of the O2-

C2 sensor that its effect on the O2-C2 reading (and reflection on OTE) can be neglected. A similar 

conclusion can be stated for the CO2 sensor, for which the accuracy can affect OTE for a maximum of 

0.0063 %, even far below what was observed for the O2-C2 sensor. Therefore, the reflection of the 

other sensors used in the off-gas analyzer on the calculation of OTE can be considered as negligible. 
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Although the measurement accuracy of optical DO probes is nowadays extremely high as well as the 

one of temperature sensors, further research should focus on assessing the effect of DO and 

temperature error on the calculation of αSOTE. 

3.3. Extensions for N2O monitoring 

The off-gas analyzer can be extended for measurements of N2O emissions from the aerated 

compartments by coupling it with available N2O sensors for gas and liquid phase as discussed 

earlier in this work (cfr. § 2.3.2). 

To the best of the author’s knowledge, yet there are no sufficiently small (and economically 

interesting) sensors for N2O measurement in the gas phase that can be embedded in the off-gas 

analyzer sensors pipeline. Therefore, the use of a parallel N2O analyzer is suggested along with the 

off-gas analyzer when N2O emissions have to be monitored. As described earlier, current 

alternatives for measuring gaseous N2O are IR and micro-GC technologies. These devices can be 

used in field applications and a selection over costs, benefits, and ease of use, can determine the 

most suitable choice for a specific user.  

In the present work, the Model 46i (ThermoFisher Scientific, USA) N2O analyzer was preferred over 

the micro-GC due to its reasonable measurement accuracy (0.02 ppm resolution), low calibration 

requirements, ease of use, no requirements for extra equipment onsite (e.g. gas cylinders), and 

automatic correction for temperature and pressure. 

As stripping capabilities of aeration devices in WRRFs can substantially differ due to design 

features and tank geometry among the rest, it is also advisable to monitor dissolved N2O 

measurements. As a matter of fact, the liquid measurements give a more precise indication of what 

is the actual production of N2O for a certain location in the bioreactor while gas measurements 

quantify the actual emission, which is dependent on stripping by aeration devices and the degree of 

fluid surface motion. For this purpose, two full-scale N2O sensors from Unisense Environment 

(Denmark) were used in the present work. The probes were calibrated before each measurement 

campaign. 

3.3.1. Monitoring anoxic zones 

The contribution of anoxic zones has been observed to be relevant in the assessment of the 

biological tank contribution to N2O emissions in WRRFs (GWRC, 2011; Marques et al., 2016). 

Therefore, solutions for monitoring these environments are needed. In the present work, a floating 

hood was designed and tested in a full-scale measurement campaign (cfr § 4.2) with the aim of 

facilitating the assessment of N2O emissions in non-aerated surfaces.  

The floating hood developed for anoxic zones, here named FhAx for the ease of reading, is based on 

the principle of the Lindvall gas hood system (Lindvall et al., 1974). This method was firstly 

implemented for this purpose by Desloover et al. (2011), where they created a confined channel, 

opened at the bottom to allow exchange with the bulk liquid. The working principle wanted an air 

flow blown from one side to the other where a measuring device was placed. In this way, the air 
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sample along the length of the exchange chamber was enriched for diffusion at the liquid surface as 

it would naturally happen but causing high sample dilutions and wastage making the system 

applicable only for extremely high-emitting surfaces. 

The FhAx (Figure 3.18) is designed to be used along with an auto-sampling analyzer so that the 

ambient air entering the channel can be minimized to minimize dilutions of the gas sample and 

maximize the capabilities of detection of the analyzer. This allows to extend its applicability to 

measure very low emissions from non-aerated surfaces minimizing the air travelling inside the 

channel and maximizing accumulation. The IR used in this work requires a flow of 1 L/min which 

leaves 1.7 minutes for the accumulation inside the FhAx (considering the floating line at half of the 

channel). The suction induced by the analyzer on one side of the channel, allows a clean sample of 

ambient air to travel in a confined space at the surface of the tank. 

 

Figure 3.18 – Floating hood for anoxic zones (FhAx), schematic overview of the working principle and 
major quotes. 

As the emissions from the tank surface can alter the baseline N2O concentration of the air entering 

the FhAx, the inlet of the exchange channel should be connected to a sufficiently long tube to make 

sure the incoming air comes from unbiased ambient air. Also, the inlet air should be monitored to 

know the baseline concentration and accurately assess only the N2O release from the tank surface. 

Knowing the ambient N2O concentration, the size of the channel and the sampling airflow, it is 

possible to calculate the exchanged N2O at the interface of non-aerated areas. 

The quotes indicated in Figure 3.18, represent the apparatus developed in the present work, 

however, different dimensions can be used as far as the following points are satisfied. 

- Ensure N2O gas sample concentrations far below 900 ppm in order not to limit diffusion 

from the liquid; indicative value obtained assuming an oversaturation of 1.5 mg/L in the 

liquid and Henry’s constant of 2.5 molm-3Pa-1 (Sander, 2015) 

- Ensure sufficient gas residence in order to allow exchange of a measurable amount of N2O 

for the analyzer in use. 

3.3.2. Calculating emissions 

Once the concentration of the ambient sample and of the off-gas sample are known (for 

measurements on both aerated and non-aerated surfaces), the following equation can be used to 

calculate the EF. 
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𝐸𝐹 = (∑
𝑄∙(𝐶𝑜𝑢𝑡−𝐶𝑖𝑛)

𝐴ℎ𝑜𝑜𝑑 𝑗
∙ 𝐴𝑗

𝑗
1 ) ∙

1

𝑁𝐻4−𝑁𝑟 
      (Equation 3.7) 

Where: 

 𝑗 – the number of the area measured 

 𝑄 – the local airflow measured over the monitoring area or its best approximation. For the 

case of anoxic zones this is the sampling flow of the N2O analyzer. 

 𝐶𝑖𝑛 the N2O-N concentration in the environment adjusted for temperature and pressure. 

 𝐶𝑜𝑢𝑡 – the N2O-N concentration in the sample adjusted for temperature and pressure. 

 𝐴𝑗 – area jth location. 

 𝐴ℎ𝑜𝑜𝑑,𝑗  – the area of the jth hood. 

 𝑁𝐻4 − 𝑁𝑟  – removal of NH4
+-N per unit time as the difference between the incoming NH4

+-

N to the bioreactor and the concentration exiting the plant. 

Where available, online NH4+-N measurements (either from SCADA or manual sampling) should be 

used. As alternative, a known removal efficiency can be a valid substitute. The EF has the dimension 

of N2O-N emitted per NH4+-N removed. 

3.4. Conclusions 

An off-gas analyzer was designed and assembled considering the most important requirements for 

off-gas testing and providing features crucial to be considered when assessing aeration efficiency in 

WRRFs. Its components were described in detail, tested and the most important results were 

shown proving the suitability of sensing devices on OTE assessment.  

The off-gas analyzer contains automated features that are aimed at assuring a good implementation 

of the off-gas tests. The software considers the volume of sample to waste in order to renew both 

the internal analyzer volume and the hood volume based on the airflow from the liquid surface. All 

internal equipment is monitored for operating in optimal conditions. All the main aeration 

efficiency variables are calculated online and stored in the output files along with raw data. 

The possibility to extend off-gas measurement to N2O emission monitoring for full-scale application 

was provided for both gas and liquid phases. Most importantly, an additional floating hood was 

designed for assessing N2O emissions from non-aerated surfaces. 
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Abstract 

Monitoring aeration efficiency and N2O emissions from biological tanks requires adequate 

technology and methodologies in order to produce reliable and comparable results. Ideally, 

measurements performed in view of describing a certain process of a WRRF should be reproducible 

within the same facility and, at the same time, to be easily compared with other plants. This is 

particularly important for aeration efficiency and N2O emission assessment.  

Available standard guidelines for oxygen transfer testing and N2O emission assessment have guided 

users towards obtaining reproducible measurements, reasonably comparable with results 

produced elsewhere by other groups. However, the variety of plant layouts, tank geometries and 

different aeration technologies used often induce variability in the results hindering their 

comparability. Hence, the continuous need of methods refinements suggesting best practice 

modalities and robust measuring equipment. 

In this chapter some of the methodical bottlenecks in aeration efficiency testing and in N2O 

emission assessment are discussed. For aeration efficiency, two critical points in performing spot 

measurements (point-by-point tests) are discussed, in particular the ASCE standard limit of 2% on 

the area to be covered, and the time issue linked to influent variability when monitoring a series of 

points in time. On the other hand, regarding N2O emissions, as monitoring guidelines are fewer in 

this case, a monitoring technique is proposed. 
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4.1. Aeration efficiency 

Methodological guidelines are of importance for every standard procedure. In full-scale aeration 

efficiency assessment there are well known difficulties for performing reliable unbiased 

measurements. In particular, according to ASCE standards, the amount of point-by point 

measurements is suggested to be set to a minimum of 2% of the basin’s total surface area (ASCE, 

1997). However, the background leading to this threshold is not explained and motivations remain 

vague. 

Depending on the area of the hood, the number of points to be assessed can significantly impact the 

duration of the test. The total duration of a series of point-by-point measurements has currently no 

specific indication and the advantage of adding one spot measurement is not clear, while efforts can 

be substantial. Hence, the effort of this section is exploring the added value of increasing tank 

surface coverage. 

In addition to this, as the number of point-by-point measurements increases, differences between 

the first and last points assessed can become considerable depending on influent dynamics. The 

extent of the effect of influent variability on the aeration efficiency of one location, can be noticed 

when stationary off-gas measurements are performed at a fixed airflow. The variability that can be 

observed during these measurements is still present when performing point-by-point tests, 

however, in this case difficult to isolate, making differences between points the lumped result of 

both the interaction between local influent characteristics and effective local efficiency. Therefore, 

the time issue on surface coverage is treated in this section. 

4.1.1. Tank surface coverage 

At the WRRF of Florence, aeration efficiency measurements were performed with the off-gas 

analyzer and the floating hood described in this work (cfr § 3). In order to cover 2 % of the total 

aerated surface with the floating hood of 2 m2, 7 points-by-point measurement are sufficient. An 

additional 5 points were monitored for a total of 12 locations representing 3.40 % of the aerated 

surface (Figure 4.1), in order to largely exceed the minimum required monitored surface and 

evaluate the added value of including additional locations. The distribution of the points was 

defined in view of evenly covering the three zones in which the aeration tank is divided. The WRRF 

of Florence was chosen for this exercise as influent dynamics are much smoother compared to 

other plants given the diluted characteristics of the influent due to groundwater infiltration. This, 

minimizes the effect of influent load on aeration efficiency measurements as influent dynamics can 

potentially become important when a large amount of point-by-point measurements have to be 

performed. 
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Figure 4.1 – Top view of the sequence of point-by-point measurements performed at the WRRF in 
Florence 

In the literature, the efficiencies measured from different locations are often used to have both a 

more detailed average value of the overall efficiency of the system and an overview of the efficiency 

distribution of the aerated area (Amerlinck et al., 2016; Caivano et al., 2017; Gori et al., 2014). 

As efficiency may substantially vary among different points due to hydrodynamics, contaminants 

concentration, and air distribution, the addition of a measurement spot can more or less contribute 

to the final aeration efficiency assessment. The decision of the amount of points to be monitored is 

often a trade-off between accuracy and the time needed for one single measurement. However, an a 

priori rule to be applied in the definition of the number and distribution of measurement locations 

is difficult to define. 

Using the 12 measured efficiencies over the tank area and recursively discarding, at first one and 

then more and more locations, a recombination game of all possible configurations at decreasing 

number of available points could be performed. In particular, considering the availability of 12 

measurements as a reference, a “true mean” of the efficiency over the tank area can be assumed. 

Initially, one of the 12 samples can be recursively discarded resulting in 12 possible combinations 

of groups. In a second instance, dropping all possible combinations of two samples from the 12 

points, results in 66 possible combinations. This can be repeated until hypothetically all 

measurements except one can be dropped thus resulting in the 12 points measured. The 

recombination game was performed using the Itertools and Combinations modules of Python 

(Python Software Foundation, https://www.python.org). 

The recombination game proposed, provides an overview of the degree of dispersion of the results 

with respect to a maximum number of measurements. To quantify this, in view of defining a 

possible threshold criterion for the definition of the minimum required measurement, the RMSE 

was used as indication of the deviation from the true mean. 

The recombination game 

The 12 locations were monitored for aeration efficiency between 12:00 and 15:00 with the 

modalities of the proposed off-gas analyzer and results are reported in Figure 4.2 in terms of 

αSOTE. The boxplot reports the efficiencies in the 12 locations and relative statistics. Also, the 

minimum required amount of points to cover the 2 % of the area is reported as a general indication. 

Each of the point-by-point measurement has a different mean value and range of efficiencies as 

local conditions vary around the tank. Overall, the efficiency varies between 15.1 and 29.2 % with 

average αSOTE at 22.6 %. 

https://www.python.org/
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Figure 4.2 – Box plots of the OTE measured in the 12 locations and the indication of the ASCE 
recommended minimum for the hood used 

The most efficient location in terms of oxygen transfer appears to be location 4, while location 11 

reports the lowest efficiency. Locations closer to the inlet (i.e. 1, 2 and 3), and thus experiencing 

higher influent loadings and airflow (due to higher diffuser density), report a slightly higher 

efficiency as compared with locations close to the outlet (i.e. 10, 11 and 12) but only because 

location 3 is sensibly higher than 1 and 2, and location 11 is the lowest registered. The variability 

observed is the combined result of local differences in the air distribution, local concentrations, and 

different local diffuser aging. In order to properly assess the overall aeration efficiency, it is 

important to choose a sufficient amount of monitoring points that would give a proper 

representation. 

A recombination game of the 12 locations can be performed dropping recursively 1 to 11 locations 

and performing all combinations of aeration efficiency for each possible combination of groups 

(Figure 4.3). The average αSOTE resulting from all the data contained in the 12 samples is the 

hypothetical true mean (black dot in Figure 4.3 left). This is used for evaluating the deviation 

resulting from a lack of a number of samples, increasing towards the right of Figure 4.3. In specific, 

if we would have chosen to work with 11 available samples (or point-by-point measurements), the 

12 possible groups of samples return a cluster of mean values that deviates from the true mean 

with an RMSE of 0.316. As we decrease the number of samples available, the cloud enlarges and the 

RMSE as well. In final instance, having the availability of only one measured location among the 12 

(1 available sample, Figure 4.3, right), we would have the largest cloud (and RMSE) possible. This 

means that measuring from only one location on the whole tank surface would bring a very high 

uncertainty as compared to the true mean. 
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Figure 4.3 – Recombination game of the 12 locations. Each graph reports all possible hypothetical 
combinations of αSOTE that can be obtained discarding one part of the available samples. Mean and 

standard deviation of the samples are reported with black dots and gray lines respectively. 

The overview provided in Figure 4.3 gives information on the number of effectively necessary 

point-by-point measurements. Interestingly, reaching the number of 7 available samples, the RMSE 

drops below 1 (Figure 4.3). In this sense, for an indication of the gain in accuracy of the aeration 

efficiency assessment at each additional sample, the shape of the RMSE curve provides better 

insight (Figure 4.4, left). For each additional point-by-point measurement on the tank surface, the 

RMSE decreases with a varying slope, meaning that the informative gain decreases as well. The 

slope of the RMSE curve (Figure 4.4, right) reaches its minimum with 9 available points, meaning 

that the 9th additional location returned very few information as compared with the others. 

  

Figure 4.4 – RMSE deviation of the average OTE obtained using a number of samples from the 
average obtained with 12 samples (left). Slope of the RMSE curve showing the variation in RMSE at 

varying samples number (right) 

For the case studied, in terms of % of aerated surface covered, reaching 2.27 % (8 points) reported 

an increment RMSE, while reaching 2.55 % (9 points) provided the minimum gain observed in 

RMSE (Figure 4.4, left). From these results it appears that measuring from 2.27 % of the tank area 

provides the most informative contribution to the real representation of the tank. Also, decreasing 
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the tank coverage below 1.7 % (6 points) reduces more importantly the precision of the aeration 

efficiency assessment.  

In terms of deviation from the true mean (Figure 4.5), all points between 4 and 9 result in the same 

reduction of standard deviation (slope of the curve) confirming the observations above. 

 

Figure 4.5 – Standard deviation of the means. Calculated for each cluster resulting from the 
recombination. 

Increasing the number of point-by-point measurements reduces the standard deviation of the 

means more sensibly for the first 5 samples, after which a less steep decrement can be noticed 

confirming that the gain of overall information decreases for each additional point. The inclusion of 

the 11th point, and thus crossing the 3 % of area coverage, appear to increase again the informative 

gain (Figure 4.5), however, this might be an artifact of closely approaching what we have defined as 

true mean. In fact, it must be reminded that this involves the assumption that the 12 samples 

include all the information possible. Also, these 12 samples, and thus their 3.40 % coverage of the 

tank, can be considered as representative of this specific case study, but values may vary for other 

WRRFs. It must also be considered that, as hydrodynamics play an important role in the final local 

aeration efficiency, the distribution of the 12 points can have an impact on the results. With regards 

to this, the recombination game by itself uses all possible combinations of available samples, thus 

covering all possible cases that could be chosen among the 12 initially available locations. However, 

basing the initial choice of the 12 locations on a CFD study might provide more clues on the most 

appropriate strategy to cover the aerated area. 

4.1.2. The time issue on coverage 

When performing a series of point-by point tests, besides assessing an overall average efficiency 

over the tank surface, a parallel purpose is to compare the performance of the single points and 

compare them in relation with the rest of the locations. This is useful to eventually identify low 

efficiency zones in the tank area and define strategic actions on e.g. cleaning rather than adjusting 

the air distribution. 

As influent dynamics are influencing the overall efficiency in time, it becomes difficult to properly 

define actual differences between different points. Each point-by-point measurement is performed 
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at different times and a reference for a fair comparison is missing with the current assessment 

method. 

At the WRRF in Rome, a series of off-gas point-by-point measurements was performed moving the 

hood around 8 locations while keeping an additional hood and its dedicated analyzer (here named 

old analyzer), at a fixed location (Figure 4.6). The old analyzer measures O2 partial pressure in the 

gas phase and airflow and its hood has a surface of 0.7 m2 (Gori et al., 2014). It uses a Zirconium cell 

for measuring oxygen and an absorption column with NaOH pellets for CO2, both having limitations 

as explained earlier (cfr. §3.1.1 and 3.1.3 respectively). 

 

Figure 4.6 – Schematic of the hood positions over the tank surface and the fixed position of the old 
analyzer. 

Keeping the old analyzer in a fixed position, i.e. performing a stationary test, allows to monitor 

aeration efficiency dynamics at location 8 while performing a point-by-point test. As aeration is 

kept constant within the day in this WRRF, the variability observed from a fixed position can be 

addressed to the influence of influent fluctuations only. 

Referenced off-gas measurements 

The αSOTE measured in the 8 points of the aerated tank with the analyzer developed in this work, 

is reported along with the stationary measurement performed with the old analyzer (Figure 4.7). 

Location 1 appears to be the most efficient in oxygen transfer, while αSOTE decreases as the hood 

approaches location 8. Even though location 8 shows a rather constant αSOTE, fluctuations from 14 

to 20 % are visible within the time that the 8 point-by-point measurements were performed 

(Figure 4.7). 
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Figure 4.7 – αSOTE measurements with the developed analyzer (1-8) in grayscale and with the old 
analyzer (only 8) in lightest gray. Location number is reported close to the max of each point-by-
point measurement, while for the old analyzer it is reported below the time series. 

The stationary measurement in location 8 in fact, shows an αSOTE of about 16 % at the beginning of 

the measurements, then decreases around noon reaching its maximum of 20 % at 13:00, and 

stabilizing at 18 % for the rest of the time. As expected, the αSOTE profiles registered when both 

analyzers were in position 8 (8 and 8 (Old analyzer) series in Figure 4.7) nicely coincide. Small 

differences are to be addressed to the different sampling methods of the two analyzers (e.g. the old 

analyzer uses a long flexible hose of 60 mm ø to connect to the hood) making the old analyzer less 

responsive to changes as compared to the analyzer describe in this work. In addition to this, it must 

be considered that the old analyzer has a lower precision in measuring O2 content in the off-gas as 

compared to the developed analyzer. This is due to the O2 sensor itself and the CO2 scrubbing 

column. Despite this, the parallel measurements in location 8 are generally deviating only up to 2 % 

at maximum.  

In Figure 4.8 point-by-point measurement deviations relative to the average αSOTE in location 8 

measured with the developed analyzer are shown. These measurements are only from the analyzer 

developed in this work, resembling what would normally be done if only one analyzer would be 

available. In fact, for comparing different locations, the general assumption of constant conditions 

during point-by-point measurements is necessary. However, this might not be the most sound 

comparison for measurements performed at different times. Location 1 shows up to 10 % 

difference in αSOTE as compared to the average of location 8 and seems to have the highest 

difference among all locations tested. Deviations at locations 2, 3 and 4 range between 6 to 10 % of 

difference as compared to location 8. Also, location 5 shows a rather large deviation between 3 and 

8 % difference from location 8. Locations 6 and 7 do not report sensible differences from location 8. 

However, as these results are based on an average reference value, αSOTE fluctuations in time are 

not considered, which might bias the interpretation of the differences between locations.  
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Figure 4.8 – Difference in αSOTE, using only data from the developed analyzer, between the average 
αSOTE of location 8 and the rest of the measurement points. 

Using the real-time measurements of the old analyzer as the reference αSOTE from location 8, the 

difference with the rest of the locations is sensibly changing (Figure 4.9). Efficiency values from the 

different point-by-point measurements were subtracted at each measurement instant (i.e. not using 

the average but the actual instant value) from the αSOTE in location 8. As a result, location 1 

reports a difference from location 8 of up to 12 %, and locations 2, 3 and 4 reach similar values. 

Location 5 still shows a variation of 5 % within its data points but the deviation with respect to 

location 8 is sensibly higher than in the former case. In addition to this, a difference between 

location 6 and 7 as compared to 8 is now visible in Figure 4.9. 

 

Figure 4.9 – Difference in αSOTE between the point-by-point measurements performed with the 
analyzer developed in this work and the stationary measurement with the old analyzer. All data 
points are the result of the difference between real-time data. 

Actual differences as compared to location 8 are therefore better highlighted in the case that 

parallel off-gas measurements are used. Doing so, it is possible to compare the different efficiencies 
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of the different points at the net of αSOTE fluctuations due to influent dynamics. However, this 

statement has the major assumption that local fluctuations related to influent dynamics are the 

same at all locations. This is obviously not the case, but it is surely an improvement from the initial 

assumption of no αSOTE fluctuation during point-by-point tests. 

4.2. N2O emissions 

In full-scale plants, local conditions are highly variable depending on process conditions and 

hydrodynamics, which will dictate which of the N2O pathways will be dominant. The high variability 

of N2O emissions has provided a fertile ground for the scientific debate on the correct definition and 

use of an EF. Temporal (seasonally and daily) variations are known to significantly impact the 

assessment of EFs (Bollon et al., 2016; Daelman et al., 2015; Masuda et al., 2015) and also local 

differences lead to important variabilities (cfr. §2.2.2) (Rehman, 2016). 

N2O is generally considered to be emitted in vast majority in aerated compartments of WRRFs 

where the enormous surface for exchange provided by aeration aid the passage from the liquid to 

the gas phase (Chandran, 2011). On the other hand, anoxic zones represent a central source of 

generation of N2O (Ahn et al., 2010; Gabarró et al., 2014; Garrido et al., 1998). Although in anoxic 

zones the available gas-liquid surface for exchange is severely lower than in aerated compartments 

and emissions are more troublesome to measure, they are often reported in literature as emitting a 

non-negligible amount of N2O (Marques et al., 2016). 

As specific guidelines on how to define a sampling strategy in N2O monitoring are currently lacking, 

also due to the elevated variability observed in literature, a parallel sampling approach was 

adopted. In order to contribute to the critical topic of the production dynamics and discrepancies 

among WRRFs, the biological tanks of three WRRFs (in Italy and The Netherlands) having similar 

configurations, but different hydrodynamics were monitored for N2O emissions from different 

points simultaneously. 

The multi-point simultaneous monitoring allowed to capture N2O emission dynamics in both time 

and space domains. Spatial heterogeneities were highlighted for the three plants over time, helping 

to understand which location is more responsible for N2O production at a given moment.  

Spatial and temporal shifts in N2O production were investigated to gain insight in the design of 

sampling strategies and to tackle the most timely issues in the assessment of the extent of N2O 

emissions from WRRFs using AS biological nitrogen removal. Having a better understanding of this 

will facilitate strategies to ultimately reduce N2O production and emissions. 

4.2.1. Materials and methods 

Three WRRFs were investigated, in Florence, Rome and Eindhoven. A schematic representation of 

each biological reactor is reported in Figure 4.10. For the case of Florence and Rome, the floating 

hood for aerated zones described in this work (cfr. § 3.1.2) was used in one of the locations. In 

particular, the hood was placed in location 5 in Florence, and in location 3 in Rome, with the 
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purpose of leaving the zone with fewer aeration per unit area to the biggest hood. For the rest of the 

aerated zones, simpler and smaller hoods were built. 

 

Figure 4.10 - Schematic overview of the biological tanks outline of the three plants. Locations of 
hoods are numbered in the direction of the flow according to the following graphs. The circle with the 

dotted line is the anoxic hood. Dimensions of tanks are only indicative. 

N2O measurements and emissions calculation 

All hoods were connected via a Teflon tube (4 mm in diameter) to a multiplex sampler allowing to 

automatically switch among the different locations and control the monitoring time to spend on 

each hood. Two NDIR gas analyzers were used at the WRRFs of Rome (Thermo ScientificTM, Model 

46i) and Eindhoven (Teledyne APITM, Model T320), while a photoacoustic IR (LumaSense, Inc., 

INNOVA 1412i) was used at Florence WRRF. For all WRRFs, due to the difference in diffusers 

distribution along the length of the aeration tanks, N2O readings were corrected according to the 

locally supplied airflow. 
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Emissions from anoxic zones 

Gaseous emissions of N2O from the anoxic compartment were monitored with FhAx (cfr. §3.3) in 

the WRRFs of San Colombano and Eindhoven. In this way, the air sample along the length of the 

exchange chamber is enriched with the compounds that are released from the water surface as it 

would naturally happen. The inlet of the exchange channel was connected to a long tube to make 

sure the incoming air was unbiased ambient air. Knowing the ambient N2O concentration, the size 

of the channel and the sampling airflow, it is possible to calculate the exchanged N2O at the 

interface of non-aerated areas.  

Emission Factor calculation 

The N2O EF was calculated as the N2O emitted per unit NH4+-N removed (SM), which not only can 

account for N2O production from AOB, but also from heterotrophic denitrification. 

4.2.2. Results of the multipoint measurements 

Florence 

It must be pointed out that the diluted character of the influent of the WRRF in Florence shows very 

limited NH4+-N concentrations already at the entrance of the plant (Figure 4.11, bottom) due to a 

constant infiltration of groundwater in the sewer, which is most probably the reason why influent 

peaks are known to be uncommon for this WRRF. Due to sensor failure, only 6 of the 24h of gas 

sampling are shown in (Figure 4.11). NO2
--N measurements in the bioreactor had no significant 

variation during the 24h (0.04 ±0.02 mg/L). 

 

Figure 4.11 - N2O emissions (top), total air flow and concentrations of DO from SCADA in the 
bioreactor and NH4+-N from automatic sampler before the AS tank (bottom) at the WRRF of San 

Colombano (Florence, Italy). 

In terms of temporal variation, the data from the off-gas measurements show that at the beginning 

of the measurements, N2O emissions were higher, as were the DO concentration peaks. This is most 
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likely the result of the slight increase in aeration and higher amount of stripping. However, this 

could also be from higher N2O production. As the DO concentrations were generally low, it is 

unlikely that N2O production was due to incomplete hydroxylamine oxidation based upon the DO 

concentrations reported by Peng et al. (2014). This means that N2O production may have been via 

AOB denitrification in addition to heterotrophic denitrification, given that NO2
--N and DO were 

consistently low and NH4
+-N was relatively constant until the end of the campaign. Moreover, due 

to the difference in oxygen half-saturation indices between AOB and NOB (Mota et al., 2005), which 

results in higher NO2- with lower DO, the peaks in N2O corresponding to peaks in air flow and DO 

are likely not due to peaks in NO2- at those moments, but rather due to more stripping of N2O 

resulting from the baseline NO2- concentrations and related AOB denitrification prompted by low 

DO conditions. DO has been seen to inhibit heterotrophic denitrification at 0.21 mg O2/L (Kester et 

al., 1997), and particularly the Nos enzyme responsible for reducing N2O to N2, which would result 

in incomplete heterotrophic denitrification and accumulation of N2O (Von Schulthess et al., 1994). 

Since there is removal of ammonia, it is most likely that N2O is being produced from both AOB 

denitrification and heterotrophic denitrification given the low DO conditions. Therefore, the 

temporal variation is most likely due to diurnal variation of DO, substrate, and corresponding 

variation in the degrees of AOB denitrification and heterotrophic denitrification N2O production.  

As far as spatial variation, locations 1 and 2 generally appear to be emitting more as compared to 

the other locations. Seeing that location 1 and 2 are at the beginning of the aeration tank, which 

would be the locations with a higher expected substrate availability, it makes sense that generally 

this area of the tank emits more than the rest. However, this seems to be valid for only low emission 

periods. When emissions are higher (Figure 4.11, top between 10:00 and 12:00), location 3, 4 and 5 

gain importance, even emitting more than location 1. One possibility can simply be different local 

mixing conditions leading to significantly different DO concentrations at the different locations, 

keeping in mind that the DO data is from a sensor located at the end of the aeration tank (more 

representative of locations 4 and 5). Another possibility is different DO concentrations due to the 

diffuser grid layout. The normally very low DO conditions (at the limit of anoxia) of the locations 

close to the outlet of the aeration tank are likely prompting both AOB and heterotrophic 

denitrification N2O production and overall greater N2O production, which is not fully stripped at the 

downstream locations until the aeration increases. Airflow, as well as local DO and liquid N2O data 

at each location could confirm which of these possibilities is most likely; however, the objective of 

the study was identifying the temporal and spatial variations and understanding possible factors 

for each. 

Assessing the EF for each location separately using the respective average value results in very 

different estimations. In particular, as compared to location 1, estimating the EF in location 5 would 

result in an underestimation of about 37.5%. EFs estimated in Locations 3 and 4 show both 28.1% 

deviation from the EF calculated in location 1. On the other hand, location 2 has a similar EF as 

compared to location 1, showing only a 0.8% increase. 

Rome 

During low loading periods of the plant, there seems to be no relevant difference among the three 

locations in terms of N2O emissions (Figure 4.12, top). However, discrepancies among hoods start 
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to increase when a peak load enters the AS tank and location 2 and 3 gain more importance 

compared to location 1 (the one closer to the inlet). This observation was confirmed by the liquid 

N2O measurements (Figure 4.12, bottom). The two probes, located close to the entrance (N2O liquid 

sensor 1) and close to the outlet (N2O liquid sensor 2) of the aeration zone, detected very low or 

zero N2O concentration in the liquid during periods of low gaseous N2O emissions. Interestingly, the 

N2O liquid sensor 2 was always detecting higher concentrations than sensor 1 and this difference 

increased during the peak of N2O emissions in the gas, confirming that the production in the second 

half of the tank was more proficient. 

 

Figure 4.12 - N2O gas emissions (top graph) and liquid measurements of DO, NH4+, and N2O (bottom 
graph) at the WRRF in Rome (Italy) 

The constant aeration flow rate characterizing this plant facilitates the understanding of DO 

fluctuations, allowing to directly connect them to influent load dynamics. The DO concentrations in 

Figure 4.12 (bottom), recorded at hood 1, show that increasing DO concentrations (around 4:00) 

did not influence N2O emissions and neither its production in the liquid phase. However, as soon as 

the decrease in DO occurs (after 9:00), probably due to an increased biological activity resulting 

from the higher incoming load, N2O production in the liquid and relative gaseous emissions start to 

increase. Interestingly, the DO concentration at which the N2O production has its maximum rate is 

when it reaches below 1 mg/L, in accordance with literature results (Tallec et al., 2008). As DO 

approaches limiting conditions during the highest N2O concentrations, N2O is most likely produced 

via the AOB denitrification pathway. The daily composite sample of NO2
--N (i.e. 0.21 mg/L) may 

indeed suggest that NOB-inhibition concentration can be reached. The maximum emissions are 

registered from hood 2 and 3, which are located further downstream towards the outlet, further 

confirming this last observation as NO2--N concentration may increase and DO is likely to maintain 

limiting values. In addition to this, since the diffuser density is lower in this area than in location 1, 

DO is likely lower, potentially resulting in greater N2O production from AOB denitrification.  
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Eindhoven 

NH4+-N loads (Figure 4.13, bottom) and relative fluctuations are more prominent for this plant as 

compared to the other cases since the sewer experiences sensibly lower infiltrations of 

groundwater. The temporal variation in N2O emissions (Figure 4.13 top) appear to be mainly due to 

the diurnal effect of varying ammonia and corresponding DO concentrations. From the control, as 

NH4
+-N increases, DO is increased until NH4

+ -N is lowered, after which DO is lowered again. This 

pattern repeats throughout the day. The highest N2O emissions occur when the daily ammonia peak 

arrives. NO2--N at the three locations showed similar values throughout the day (0.25±0.03 mg/L) 

and, although, it cannot provide specific information for the single location, may suggest the NOB-

inhibitory effect in favor of the AOB denitrification pathway where DO is limiting. 

 

Figure 4.13 - N2O gas emissions and air flow (top) compared with liquid concentrations of DO, NH4+-
N NOx–N and N2O-N (bottom) at the WRRF of Eindhoven (The Netherlands). Due to unavailability of 

influent data, measurements of NH4
+ are from the SCADA sensor in the bioreactor. 

In terms of spatial variation, measurements from hood 1 (Figure 4.13, top) were generally lower 

than the ones observed in location 2, but higher than the ones registered from location 3. However, 

in the last part of the time series, there are missing data points from location 1. The N2O emission 

from the anoxic zone appears to be more fluctuating (within the same group of measurement 

samples) than from other locations. This can be due to the fact that, unlike in the aerated zone, 

there is no constant stripping in the anoxic, and the occurrence of recirculations from deeper zones 

and eddies at the surface provide more variable instantaneous emissions. These variations from the 

anoxic zone are consistent but do not repeat similar patterns within the same cloud of data, 

reinforcing the previous observation.  
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Emissions from hood 1 were of the same magnitude as the ones registered from the other hoods 

even though location 1 was in the anoxic zone. Therefore, only diffusion at the surface could 

account for comparable emissions to the ones occurring for active stripping.  

Peaks in N2O emission from location 1 seemed to occur when relatively high NH4
+ peaks appeared 

and DO values were close or even below 1 mg/L (17:00 and 5:00). The highest N2O emission 

recorded from hood 1 occurred at 17:00 when DO was below 0.5 mg/L. These observations are 

suggesting that emissions from location 1, and thus production from the anoxic zone, are most 

likely to happen either due to the AOB denitrification pathway, or from incomplete heterotrophic 

denitrification. 

Emissions from location 2 registered the highest peaks in correspondence of important NH4+ peaks. 

Interestingly, the first peak in N2O emission from location 2 corresponds with a first peak of 

location 3 (Figure 4.13, bottom at 20:00) and, since at the same time N2O emission from location 1 

seems too decrease, it is likely that an important part of this production takes place in the aerobic 

compartment. This is also confirmed directly by the increase in liquid N2O concentration. The rising 

DO in correspondence of these peaks (at 20:00 and 8:00), indicates that the dominating pathway in 

this particular moment can be the hydroxylamine oxidation, especially considering DO is non-

limiting, approximately 3 mg O2/L.  

N2O measurements in the liquid (sensor placed at location 2) (Figure 4.13, bottom), seem to 

corroborate this hypothesis. The highest rate of N2O emission (steepness of the N2O curves) for 

location 2 and 3 occurs in those moments when both increasing NH4+-N availability and increasing 

DO values above 1 mg/L occurred. The differences in emissions between location 2 and 3, both 

within the aerobic zone, but at the beginning and end, respectively, are most likely attributed to 

different local NH4+-N and DO concentrations. 

Literature studies on the same WRRF confirm our observations. A qualitative comparison with the 

findings of the modelling work of Rehman (2016), performed on the same plant, corroborates with 

the distribution of emissions measured in this work. Although measured N2O concentrations in this 

work are 3 orders of magnitude higher than the values observed by Rehman (2016), the qualitative 

pattern of liquid concentrations before and within the aerobic zone (Figure 4.14), interestingly 

matches the patterns observed in our gas measurements (Figure 4.13). In particular, in the work of 

Rehman (2016), the anoxic zone (location 1 in this work), has been shown to have higher N2O 

concentration in the liquid as compared to the aerated zone in general (relative to location 2 and 3 

of this work) (Figure 4.14, left). Only the very beginning of the aerated zone has shown the highest 

concentrations especially in the outer part of the ring, however, this is likely to be the result of the 

clockwise liquid flow dragging the concentrations of the anoxic part in the initial region where the 

aerators are installed. On the other hand, the actual aerated conditions occur few meters 

downstream from the first plate aerators (Figure 4.14, right). The beginning of the aerated zone 

shows significantly higher N2O concentration as compared to the end (Guo et al., 2013; Rehman, 

2016) further confirming our results. 



Chapter 4 Field measurements and sampling strategy 
 

4-18 
 

 

Figure 4.14 – Redrafted from Rehman (2016). Overlap of the locations monitored in this work with 
the horizontal section of Rehman (2016) for DO (a) and N2O (left) concentrations in the liquid in the 

outer ring of the WRRF of Eindhoven. 

Interestingly, given the good qualitative resemblance of the measurements performed in this work 

with the results of Rehman (2016), we could think that placing the hood few meters closer to the 

outer wall of the tank, would have likely resulted in even higher N2O emission measured from 

location 1. Hence the relevance of the choice of measurement locations. This is an important point 

in view of defining a reliable monitoring strategy for N2O emission assessment and providing 

guidelines on tank coverage. 

Estimation of an EF 

In order to further illustrate how the use of a single EF for describing the extent of emissions of 

different (although similar in AS technology used) WRRFs is not valid, an overview of EF from all 

the different locations in the three WRRFs studied is provided (Figure 4.15). 

The case of the WRRF in Florence is reported in the top graphs of Figure 4.15. Selecting only the 

peak of N2O emission (Figure 4.15, top, graph A) the average values of location 3 and 4 gain 

importance over the rest of the hoods. However, deviation bars around the data in location 1 and 2 

hamper the strength of this observation.  

Considering only the period outside the peak of N2O emission for the case in Florence (Figure 4.15, 

top, graph B), emissions seem to be consistently low with location 1 showing a slightly higher EF 

than the rest.  

A boxplot of the entire dataset from Florence (Figure 4.15, top, graph C) shows the higher emission 

of location 1 and 2, but also considerable overlapping variations from the rest of the hoods. 

However, this overall statistical description is hiding the importance that location 3, 4 and 5 gain 

when DO and ammonia increase. Location 1 and 2 show a tendency to be the highest emitting 

locations in comparison with 3, 4 and 5, from their mean values and their general behavior in the 

dataset. However, these initial locations also show the highest variability (up to 0.0002 N2O-N / 

NH4+-N) and the unsuitability for the assessment of an EF from a sampling campaign shorter than a 

full day. 
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Isolating the N2O emission peak from the WRRF in Rome (Figure 4.15, mid, graph A) it is noticeable 

how the highest emission values reached by hood 2 is not able to drag its mean value higher than 

hood 1, thus remaining the location of hood 1 emitting the most. Therefore, for the case of Rome 

location 1 remains the highest emitter of the AS tank. 

During low emissions (Figure 4.15, mid, graph B), all locations appear to contribute to the same 

extent to the release of gaseous N2O. Similarly, looking at the boxplot over the whole dataset from 

Rome (Figure 4.15, mid, graph C), differences among locations do not stand out. 

For the case of Eindhoven (Figure 4.15, bottom) the picture is rather different. Location 2 and 3, 

have very different extent of emissions in all cases. During N2O emission peak events (Figure 4.15, 

bottom, graph A), location 2 has EF values of more than one order of magnitude higher than 

location 3. When low emission of N2O occurs (Figure 4.15, bottom, graph B), the contribution of 

location 3 practically disappears. In the overall picture (Figure 4.15, bottom, graph C), even 

considering the whole data set, the contribution of location 3 is sensibly lower than the rest, and 

hood 2 provided the highest emissions. Spatial differences along the aeration package are therefore 

very important.  

In addition to this, also the contribution of the anoxic compartment resulted very relevant, 

comparable to location 2. This is due to the big surface available for exchange in the anoxic part of 

the outer ring of the WRRF in Eindhoven. As a matter of fact, overall hood 1 maintains EF values 

and deviations close to what occurs at hood 2. 
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Figure 4.15 - Box plots of peak emission periods (A), low emission periods (B), and overall emission 
(C) for the case of Florence (top), Rome (middle), and Eindhoven (bottom) 

Comparing the different WRRFs, the EFs of the WRRF in Florence are in general one order of 

magnitude lower than for the other plants. This fact can be mainly attributed to its highly diluted 

influent, preventing to have sudden N peak loads to be converted. Interestingly, despite the known 

diluted influent character also for the case in Rome, higher EFs than the one in Eindhoven were 

observed. 

One important detail to notice is that all EFs provided in Figure 4.15 represent the EF of the plant 

that one would have calculated only measuring from a specific hood. In this view, variations among 

the locations represent the error that would have been made in judging EF by an operator 

measuring N2O emissions from only one single location. 

Adding the contribution of each location 

Clearly, single point calculation measurements of EFs are usually not representative of the different 

contributions from all locations of a bioreactor. Given the availability of parallel measurements, it is 

possible to add up the contributions from each of the hoods and calculate a more refined EF for the 

three cases studied. In particular, this is possible addressing a specific portion of the surface area of 
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the tank to each hood based on their location. The main assumption is that the given surface area 

behaves in a similar fashion, which is still a better approach than assuming it for the whole reactor. 

For the WRRF in Florence the overall EF calculated with the contributions from all hoods becomes 

0.012 % (±0.007 %), which is not far from what was already observed in the boxplots. However, 

the sole average might not be exhaustive in this case as a consistent standard deviation is present.  

For the case of Rome the three hoods contributed to give an average of 0.064 % (±0.078 %) which 

is also in the range observed in the box plots. A relevant deviation is observable also in this case. 

For the WRRF in Eindhoven the overall EF accounting for both contributions of aerobic and anoxic 

zones is 0.110 % (±0.047 %). Interestingly, if one would have neglected the contribution of anoxic 

zones the estimated mean EF would have been 0.035% (±0.031 %). Therefore, neglecting the 

contribution of anoxic zones in the case of the WRRF in Eindhoven leads to an underestimation of 

the EF of 68.18 %. However, as reported by Rehman (2016) location 1 might be one of the most 

emitting parts of the whole AS tank, therefore, leading to an overestimation of the anoxic 

contribution of the EF. Nonetheless, this confirms the necessity of different sampling locations to 

reasonably represent the behavior of a tank and the need of a solid strategy for designing their 

distribution. 

Since the purpose of these assessment is the classification of WRRFs, based on the evaluation of the 

extent of their emission of N2O, using the average value of a 24h monitoring of the plant’s dynamics 

could diminish or neglect important contributions to the assessment of an EF and a statistical 

representation of the emissions is surely more valuable than the use of a single number. However, 

in those cases in which a unique representative number has to be used (e.g. for policy makers and 

regulatory purposes), the EF should represent by definition the amount of N2O typically emitted 

from a WRRF. In this view, the 24h measurements, inclusive of the contribution of all the different 

locations as described, were integrated over time. Equation 4.1 can be used for this purpose once 

the EF time series from n different locations are available. 

𝐸𝐹 = ∑∫𝐸𝐹𝑖  𝑑𝑡

𝑛

1

 (4.1) 

 

Doing so, the integral calculated for the WRRFs of Florence and Rome resulted in the same EF as for 

the case of the average, i.e. 0.012 % and 0.064 % respectively. The EF calculated for the case of 

Eindhoven resulted 0.129 %, slightly higher than the average calculated earlier. Therefore, in cases 

in which seldom and sharp peaks are occurring, the average EF practically coincides with the 

integral. On the other hand, in cases in which different and extended peaks are occurring 

throughout the monitoring time, averaging the EF can result in an underestimation. Hence, the use 

of a cumulative daily EF, integrating over time the 24h multi-point measurements, is suggested. 

Finally, considering the findings of Daelman et al. (2013) for a sound assessment of the EF, a single 

24h campaign is likely to be poorly representative, and repetitions of the 24h assessment in 

different periods of the year are suggestable. 



Chapter 4 Field measurements and sampling strategy 
 

4-22 
 

4.3. Conclusions 

With the results evidenced in this work, the general rule of thumb of the 2 % area suggested by 

ASCE standards can now be assumed as a reasonable indication for off-gas testing. However, from 

these results it can be stated that increasing the number of point-by-point measurements so to 

cover up to 2.27 % can significantly contribute to the precision of the assessment. On the other 

hand, as measurements can be time consuming, a reduction below the 2 % can be also pondered. 

From our results, a lower limit in surface coverage of 1.7 % was suggestible. Below this lower limit, 

a considerable amount of information starts to be missing for each point not assessed. 

For a fair comparison between the different locations of a point-by-point off-gas test, one should 

ideally perform all parallel measurements. This is unfortunately not feasible. The results show that 

differences among locations can be better quantified if a parallel stationary off-gas measurement is 

performed. However, as equipment is expensive, it is difficult to have the availability of two 

analyzers on the same plant. On the other hand, the advantage of making more robust and reliable 

observations should be considered when organizing an aeration efficiency assessment. Using an 

older and cheaper version of the analyzer proposed in this work, provided interesting clues on the 

effect of influent fluctuations on the tank αSOTE. Even though less precise as compared with the 

analyzer developed, its information could be used to refine actual local efficiencies and improve 

comparability among points. A simple method was proposed to refer local efficiencies to a 

reference location, however, further improvements will be needed. Hopefully, these considerations 

will rise attention when evaluating differences among locations. To the best of the author’s 

knowledge this is the first time that this level of attention is provided to local aeration efficiency 

assessment. This in view of bringing more precision and confidence in the output that the analyst 

provides to the client in off-gas testing. 

The assessment of the contribution of anoxic zones to N2O emissions should be a normal procedural 

approach. A method for accounting for the contribution of anoxic zones via direct gas emission 

measurements was proven. The anoxic hood effectively allowed the detection of N2O emissions 

from non-aerated surfaces of an AS tank with an economic, practical and user friendly approach. 

Both the temporal domain, relative to influent dynamics, and spatial domain, relative to 

hydrodynamics, are crucial to understand N2O emission dynamics. More than one measurement 

location should be foreseen for assessing anoxic zones contribution. However, the exact number 

with respect to the tank surface, cannot be provided from the available data. The spatial 

distribution of measurement location should be planned considering hydrodynamic studies when 

available, or related concepts to gain insights on liquid flow patterns. 

For the case of the WRRF in Florence the diluted influent (groundwater infiltration) is the most 

probable reason for which the EFs are so low. The plant in Rome showed higher N2O emissions in 

the locations closer to the outlet of the AS tank when a peak load was experienced. Higher DO levels 

may be maintained to mitigate N2O production. The carousel configuration of the AS tank of the 

WRRF in Eindhoven seems to result in anoxic N2O emissions comparable to the ones from the 

aeration compartment. This validates with literature studies on hydrodynamics on the same plant. 

Tuning the DO control to lower DO levels during peak loads may reduce production from both 
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anoxic (removing limiting DO conditions that favor AOB denitrification) and aerobic zones 

(removing high DO levels that may favor hydroxylamine oxidation). 

From the N2O measurements performed in the three plants, results show that the aerated area 

should be monitored in at least two points, one at the beginning of the aerated zone and one at the 

end. However, this is valid for tanks resembling plug-flow behavior. Recommendations on the % of 

area to be covered as for the case of off-gas measurements, are not possible at this stage, but 

information on hydrodynamics were indicating important clues in this regard. 

The experimental method used for assessing N2O emissions allowed to simultaneously monitor 

different locations in full-scale AS tanks and highlighted the wide range in EF values from plant to 

plant and within the same facility. Spatial variabilities are heavily influencing emission results and 

the use of a single EF describing the entire WRRF operation or classifying a treatment technology is 

once more discouraged. The EF measurements performed in WRRFs using similar AS tanks differed 

more than one order of magnitude. Therefore, when a WRRF needs to be evaluated in terms of its 

environmental impact, the use of an EF should be accompanied with information regarding its 

variability and potential extents of emissions to better understand the WRRF potential and refine 

its classification. However, in e.g. the definition of regulatory thresholds and eventually legislation, 

a single number has to be used for classifying WRRFs or set emission reduction targets. In this case, 

given that an EF should represent the amount of N2O typically emitted from a plant, the 

recommendation is the use the result of an integration of the EF measurements over a significant 

period of time that should include representative plant dynamics. As municipal WRRFs are 

characterized by observable daily patterns, this means that the assessment of an EF for a municipal 

WRRF should at least be calculated over an observation of 24h. In addition to this, for a fully sound 

assessment of an EF, keeping in mind the observations of Daelman et al. (2013) on the effect of 

sampling strategies for N2O emission assessment, the 24h multi-point monitoring should be 

repeated different times over the year. 

To our knowledge, this is the first time that spatial N2O emissions are made visible at this resolution 

comparing similar configurations of AS tanks from different WRRFs.  
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Abstract 

Given its high global warming potential, N2O can represent the majority of the carbon footprint in 

WRRFs. N2O is produced from the biological nitrogen removal processes of WRRFs via different 

pathways, which have been seen to vary among different plants and different conditions. Detailed 

mechanistic or physical-based mathematical models have been developed to represent the different 

pathways, however, as different pathways can alternate or coexist in AS tanks, appropriate 

methods for selecting the correct pathway models are still lacking. To facilitate this, in this chapter, 

the application of a qualitative knowledge-based risk assessment model (N2O risk model, cfr. § 

2.2.4.) to infer risk of WRRF N2O production is presented. The N2O risk model was applied to lab-

scale literature studies and full-scale datasets to prove the concept of its use for mathematical 

model selection. Results show that the N2O risk model was effective in helping to unravel the 

dynamics behind N2O production, was able to give valuable insights in the mechanisms of N2O 

generation, and proved to be useful for guiding the selection of N2O mathematical models 

representing different N2O production pathways. 
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5.1. Introduction 

Wastewater treatment processes can be considered to contribute to global warming in different 

ways, one of which is through the emission of N2O. The latter can be produced during biological 

nitrogen removal in WRRFs using AS technology. Therefore, there has been increasing concern 

regarding N2O in the water sector over the past few years. Efforts were concentrated in 

understanding the specific bio-chemical processes responsible for N2O production (Schreiber et al., 

2012) and the WRRF design and operational factors impacting its emission (Daelman et al., 2013; 

Kampschreur et al., 2009; Monteith et al., 2005). 

The different biological mechanisms responsible for the production of N2O (i.e. heterotrophic 

denitrification, nitrifier denitrification, and the incomplete NH2OH oxidation pathway) are favoured 

by different operational conditions, which strongly depend on the technology used, the wastewater 

treated and the control strategy of the WRRF. DO and NO2- concentrations along with COD/N ratio 

appear to be the key influencing factors for N2O production pathways (Kampschreur et al., 2009). 

Field measurements showed that N2O emissions can represent more than 78% of the WWTP 

carbon footprint (Daelman et al., 2015) and as much as 7% of the influent nitrogen load can be 

emitted as N2O (Kampschreur et al., 2008b). However, N2O emission data show important 

variations in the fraction of influent N that is emitted as N2O (Kampschreur, 2008; Mampaey, 2011). 

In this view, site-specific emission assessments are more and more needed and, in order to 

quantitatively determine the contribution of N2O emission on the WWTP carbon footprint, as well 

as its reduction from mitigation, the California Wastewater Climate Change Group recommended 

modeling rather than the use of emission factors (CH2MHILL, 2008). 

Considerable efforts have been put into modeling the AOB pathways either with a single-pathway 

solution (inter alia: Law et al., 2012; Mampaey et al., 2013) or considering both AOB pathways 

(inter alia: Ni et al., 2014). Recently, Peng et al. (2015) suggested a selection of AOB single-pathway 

models according to DO and NO2- concentrations and their performance measured against a 

validated two-pathway model (Ni et al., 2014) to arrive at recommendations for use of the different 

models under different process regimes. Regarding the N2O heterotrophic pathway, the model from 

Hiatt and Grady (2008) is generally accepted as common base. However, given the heterogeneity of 

WRRF process conditions, the potential variability of N2O emissions, and the diversity of available 

models, consensus on model selection, dominant pathways and on how to implement these 

pathways is yet to be reached. In this chapter we present a practical application of the knowledge-

based N2O risk assessment model (N2O risk model) (Porro et al., 2014b) to full-scale data to prove 

its applicability for selecting appropriate N2O production pathways, and thus, relative mechanistic 

models. To the best of our knowledge, this is the first time model selection has been made based on 

full-scale data. 
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5.2. Materials and methods 

5.2.1. The N2O risk model principle 

The construction of the N2O risk model was inspired by a similar AI-based risk model developed to 

diagnose the risk of WRRF settling problems from filamentous bacteria (Comas et al., 2008) where 

knowledge of AS bulking, foaming and rising sludge, was applied to diagnose the risk of settling 

problems by processing ASM output data.  

The N2O risk model has been applied for demonstrating the implication of specific N2O production 

pathways in the risk diagnosis of WRRF simulation data (Porro et al., 2014a). The N2O risk model, is 

based on the selection of variables thresholds known to affect N2O production (e.g. DO, nitrite, pH, 

COD:N, etc.) in the different process steps (i.e. denitrification, nitrification, and transition zones 

where rapid changes occur). These variables are then classified in terms of low, medium, and high 

risk according to values found in the literature correlating to lower, medium, and higher N2O 

production, respectively. This knowledge base system gathers information from either full-scale or 

lab-scale studies.  

The representation of this knowledge is summarized in Table 5.1, with the risk parameters 

categorized by process step, the low, medium, and high risk classification for different values of 

each variable’s threshold, the pathway implicated by the risk parameter, and the relative references 

for linking operational control and threshold values (Porro et al., 2014a). For the purpose of the 

risk model, variables’ thresholds are applied independently since risk for N2O production can be 

signaled with just one of the factors present, regardless of whether they are linked to other factors. 

Overall risk is defined as the maximum risk value of all risk parameters evaluated for each time 

step. 
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Table 5.1 - N2O Risk Model knowledge base - adapted from Porro et al. (2014). 

Process step 
Operational 
conditions 

Variable Type 
(Inversely) 

Proportional  
to Risk 

Main 
pathway 

Reference linking 
operation to N2O risk 

Reference for 
thresholds 

Nitrification 

High NO2
- NO2

- Conc. Prop. AOB denit. 

(Ahn et al., 2010; Foley et 
al., 2010; GWRC, 2011; 

Kampschreur et al., 
2009) 

(GWRC, 2011) 

Low DO DO Conc. Inv. AOB denit. 
(Kampschreur et al., 

2009, 2008a) 
(Tallec et al., 

2008) 

High DO DO Conc. Prop. 
Inc. NH2OH 

oxid. 

(Ahn et al., 2010; 
Chandran, 2011; Law et 

al., 2012b) 

(Law et al., 
2012b) 

Denitrification 

High NO2 NO2
- Conc. Prop. 

Het. denit. 
AOB denit. 

(Ahn et al., 2010; Foley et 
al., 2010; GWRC, 2011; 

Kampschreur et al., 
2009) 

(GWRC, 2011) 

pH pH Conc. Inv. Het. denit. (Pan et al., 2012) (Pan et al., 2012) 

Low COD/N COD/N Value Inv. Het. denit. 
(Ahn et al., 2010; Foley et 
al., 2010; Kampschreur et 

al., 2009) 

(Itokawa et al., 
2001) 

High DO DO Conc. Prop. 
Het. denit. 
AOB denit. 

(Kampschreur et al., 
2009) 

(Tallec et al., 
2008) 

Internal 
recycle 

Internal 
recycle rate 

xQ Value Inv. AOB denit. (Foley et al., 2010) 
(Foley et al., 

2010) 

Anoxic/ 
oxic 
transitions 

Transition 
zones 

Delta DO 
between 
reactors 

Value Inv. AOB denit. 
(Chandran, 2011; Yu et 

al., 2010) 
(Yu et al., 2010) 

Rapid process 
changes 

Spikes in 
NH4, flow, 

COD/N 
Delta Value Inv. 

AOB denit. 
Het. denit 

Inc. NH2OH 
oxid. 

(Foley et al., 2010; 
Kampschreur et al., 

2009) 
Arbitrary 

 

Therefore, the N2O risk model uses known relations between operational variables/parameters and 

N2O emissions to qualitatively classify risk of WRRF N2O production. In order to process this 

knowledge and produce a qualitative classification response, fuzzy logic and rule-based systems are 

applied. More specifically, fuzzy logic assigns degrees of truth (i.e. between 0 and 1), by assigning 

numerical values to membership functions. Specific values are used to define membership 

functions (degree of low, medium, and high risk) for the qualitative risk classification of each 

parameter based upon the input value (i.e. online DO concentration), which are then converted to a 

numerical output on a scale of 0 (low risk) to 1 (high risk) for the ultimate risk outcome in the 

fuzzy logic process. As the operational variables implicate different pathways, the scores give direct 
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indications about which pathways are relevant and, as a result, which model would be useful to 

select.  

5.2.2. Case applications 

To prove the concept of using the N2O risk model for N2O model selection, it was first applied to two 

lab scale cases (Case 1 and Case 2) used in Ni et al. (2013b) to compare the N2O risk model pathway 

selection versus the model performance. The DO data for Case 1 were taken from Yang et al. (2009) 

while for Case 2 they were taken from Kim et al. (2010), as referenced by Ni et al. (2013b). For Case 

1, five batch laboratory experiments for nitritation were carried out at different controlled DO 

levels, varying from 0.5 to 2.5 mg DO/L starting with not limiting NH4 concentrations 35 mg/L. In 

Case 2, Kim et al. (2010) examined N2O production by AOB in two nitrification batch experiments 

with enriched nitrifying AS treating piggery wastewater using both NH4 and NH2OH as substrates 

without allowing N-limiting conditions. 

The N2O risk model was then applied to two full-scale modelling cases from Ni et al. (2013a), i.e. an 

OD and a SBR, Cases 3 and 4, respectively. DO data for these two full scale plants were available 

from Ni et al. (2013a) along with plant descriptions. Finally, the N2O risk model was applied to data 

from measurement campaigns performed at the WRRFs in Florence and Eindhoven. These plants 

are known to have different influent and operating conditions (cfr. § 2.3). The WRRF in Florence is 

a CAS system characterized by 12 tanks loaded by very low-strength wastewater due to water 

infiltrations in the sewer. The WRRF in Eindhoven is a modified-UCT layout for nitrogen and 

phosphorous removal, employing a carrousel type bioreactor with concentric rings for alternating 

anaerobic, anoxic and aerobic conditions. 

5.3. Results and discussion 

Table 5.2 shows that the N2O risk model’s inference of pathways corresponds with the performance 

of the mathematical models in Cases 1 and 2 treated in Ni et al. (2013b); thereby, proving the 

concept at least for known laboratory conditions created so as to favor AOB denitrification. The N2O 

risk model inferred the AOB denitrification pathway as being more relevant where the AOB 

denitrification pathway mathematical models have been reported to perform better. At the same 

instance, the incomplete (or partial) NH2OH oxidation pathway models performed not as well. 
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Table 5.2 - N2O risk model pathway selection versus N2O model performance on two lab scale studies 
of Ni et al. (2013b). Models are labelled according to Ni et al. (2013b). 

 

Figure 5.1 (left) reports the N2O risk model (nitrification rules) results applied to Case 1 data from 

Yang et al. (2009). The increase in DO values decreases the Low DO risk, but this transition appears 

to increase the liquid N2O concentration which start to decrease in the middle of the phase of no 

Low DO risk. However, as DO decreases again at limiting conditions, N2O liquid concentration 

remains constant for the rest of the experiment along with the Low DO risk at its maximum. This 

confirms the presence of a predominant activity of the AOB denitrification pathway in the 

production of N2O and corroborates with the findings of Ni et al. (2013b) and Yang et al. (2009) 

who demonstrated that nitrifier denitrification was mainly responsible for N2O production by AOB. 

In Figure 5.1 (left) data of N2O production and DO from the laboratory experiment of Kim et al. 

(2010) are reported along with the results of this work from the application of the N2O risk model. 

The Low DO risk stays at its maximum level for the first three hours indicating that the conditions 

of the reactor are likely to favor the AOB denitrification pathway. N2O production sensibly increases 

from 0.5 hours and reaches until its maximum at 1.5 hours. At this point, DO is increased to non-

limiting conditions and, as a consequence, Low DO risk drops to zero. Interestingly, also N2O 

production decreases to zero, confirming that AOB denitrification can be addressed as the most 

responsible pathway for N2O production in this laboratory experiment. This nicely corroborates 

with the findings of the laboratory tests of Kim et al. (2010) and of the modelling work of Ni et al. 

(2013b). 

  Mechanistic model performance 

“+” indicates good and “-” poor performance 

 
N2O Risk Model 

pathway selection 

Model I (AOB 

denitrification) 

Model II (AOB 

denitrification) 

Model III (Partial 

NH2OH/NOH 

oxidation) 

Model IV 

(Partial 

NH2OH/NO 

oxidation) 

Case 1 
AOB 

denitrification 
+ - * - - 

Case 2 
AOB 

denitrification 
+ - ** - - 

*Did not perform as well as Model I because model does not include oxygen inhibition term. 

**Did not perform as well as Model I because model does not include NH2OH, the true electron donor for AOB 

denitrification (Ni et al., 2013b). 
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Figure 5.1 - N2O risk model results (this study) for Case 1 (left) and Case 2 (right). Empty squares 
(DO) and yellow diamonds (measured N2O) are adapted from Yang et al. (2009) and Kim et al. 

(2010) respectively. 

Table 5.3 reports the model selections based on the N2O risk model using the data from the OD 

(Case 3) and from the SBR (Case 4) full scale installations, as compared with the results of three 

models implemented by Spérandio et al. (2016) on the same datasets. Both model B and C were 

able to reasonably reproduce the N2O production, but clearly showing the likelihood of the 

presence of both N2O pathways. It must be pointed out that model C required important adjustment 

of the NO and NH2OH affinity indices (Spérandio et al., 2016). However, the fact that both models 

were able to reproduce the datasets can be considered as a proof of concept that both pathways 

take place, corroborating with the findings of Ni et al. (2013b). The risk model in fact validates the 

possibility that both processes can occur. 

Table 5.3 - N2O risk model pathway selection versus N2O model performance on two full scale 
studies in Spérandio et al. (2016). Models are labeled according to Spérandio et al. (2016). 

 

Figure 5.2 (left) reports the N2O risk model results for OD Case 3 (WWTP A location d5 from Ni et 

al. (2013a)), demonstrating the model selection approach with full-scale WRRF data. In Case 3, 

peaks in Low DO risk immediately precede the peaks in N2O concentration alternating with peaks in 

High DO risk. This could express the presence of both AOB denitrification and NH2OH oxidation 

  Mechanistic model performance 

“+” indicates good and “-” poor performance 

 
N2O Risk Model pathway 

selection 

Model A (AOB 

denitrification + 

DO inhibition) 

Model B (AOB 

denitrification) 

Model C (NH2OH 

oxidation) 

Case 3 

AOB denitrification and 

NH2OH oxidation 

pathways 

- + + 

Case 4 

AOB denitrification and 

NH2OH oxidation 

pathways 

- + + 
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pathways for N2O production. Starting at time zero, and going from left to right, we can see a large 

peak in Low DO risk followed by a large peak of N2O when DO is raised. This first large peak in N2O 

seems to be initially generated under Low DO risk conditions and then co-produced by the 

alternation of both Low and High DO risk again suggesting the concomitance of AOB denitrification 

and NH2OH oxidation pathways. Around the 12th hour, N2O comes down until there is a new peak of 

Low DO risk, and at the same time N2O starts to go up again and peaks immediately after High DO 

risk appears to kick in. Finally, N2O reaches its minimum while the second small peak in High DO 

risk appears, following more closely the shape of the Low DO risk profile. Finally N2O goes up again 

as Low DO risk goes up again. As High DO risk is marginally present during this whole period and 

there is an obvious link between the measured N2O and the Low DO risk, which supports the strong 

likelihood that the N2O production is largely due to AOB denitrification, the logical N2O 

mathematical model selection would be an AOB denitrification pathway model based on this 

location (d5 from Ni et al. (2013a)). Interestingly, the other location (d4) from Ni et al. (2013a) 

exhibited high DO concentrations (> 4 mg O2/L), which would obviously lead to High DO risk (> 

1.8 mg/L) and N2O production via NH2OH oxidation as suggested by Ni et al. (2013a) since the DO 

is above 2 mg/L. This rises considerations on the effect of sensor location and on the different 

conditions occurring in AS tanks. The use of a dual-AOB pathway model for N2O production might 

be considered as appropriate in this case for representing the entire OD. However, seen the 

difficulties reported by Spérandio et al. (2016) in finding a consistent set of calibration parameters, the 

use of a CM approach should also be evaluated in those cases where a number of different 

conditions occur and a finer spatial understanding of the biokinetics is required (Rehman et al., 

2017). As seen in Figure 5.2 (left) the data confirm that the risk model can be applied to identify the 

likely mechanisms and help select the most appropriate mechanistic model(s). 

In the SBR case (Case 4) (Figure 5.2, right), DO during the SBR aeration cycles varies and results in 

cycles with both Low DO and High DO risk, indicating the likelihood of both AOB denitrification and 

NH2OH oxidation N2O pathways occurring. Therefore, a dual-pathway model for AOB N2O 

production is suggested for representing Case 4, since we know the SBR can operate with varying 

DO regimes. 
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Figure 5.2 – N2O risk model results for Case 3 (left) and Case 4 (right). Empty squares (DO), black 
diamonds (NH4), and shaded yellow diamonds (measured N2O) and lines (modelled N2O) are adapted 

from Ni et al. (2013a). 

Moving to the full-scale WRRFs investigated in this study, Figure 5.3 shows the case of Florence and 

the N2O risk model’s use as it is intended for model selection, and as if we knew nothing else other 

than the DO to run the risk model. This is to give a glimpse of how model selection would look like 

using this approach in practice or research. As shown in Figure 5.3, the N2O production pathway 

suggested by the N2O risk model in this case is AOB denitrification due to a consistently high Low 

DO risk and zero High DO risk. Since the actual N2O emissions are known for this case from the 

measurements, in Figure 5.4 the risk is shown again, but with measured N2O and DO to validate the 

model selection. 

 

Figure 5.3 – Risk model results for the case of the WRRF of Florence 

Figure 5.4 shows dips in Low DO risk (due to a rise in DO) corresponding with N2O peaks. Similar to 

Case 3 in Figure 1, the Low DO risk indicates that the increase in DO likely results mainly in 

stripping rather than the production of the N2O. Furthermore, the actual DO concentrations confirm 

that the DO is mostly very low, favoring AOB denitrification N2O production due to oxygen limited 
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conditions (Kampschreur et al., 2009). Therefore, the risk model selection of an AOB denitrification 

single-pathway model appears to be valid based upon the field measurements. 

 

Figure 5.4 - Concentrations of N2O in the gas phase, DO and ammonia (NH4) in the liquid for the 
WRRF in Florence 

Again, showing how the N2O risk model is intended to be used for model selection, Figure 5.5 shows 

just the N2O risk results for the WRRF of Eindhoven included in this study. The N2O risk results in 

this case indicate that both AOB N2O pathways can take place and interchange dynamically with 

process conditions, as there are clear predominant periods of Low DO risk (implicating AOB 

denitrification) with alternations of High DO risk (implicating NH2OH oxidation pathway). 

Therefore, the risk model could indicate that ideally a dual-AOB pathway model could be selected. 

However, there is a large predominance of the Low DO risk suggesting the AOB denitrification 

pathway as the main contribution.  

 

Figure 5.5 – N2O Risk levels for the WRRF of Eindhoven during the measurement campaign 

To test this selection, Figure 5.6 shows the risk with the measured data. Starting at the beginning of 

the period on the left side and going from left to right, N2O emissions were seen to decrease and 

increase during Low DO risk conditions, were subsequently seen to decrease and then increase 
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with small peaks of High DO risk, then decrease with decreasing High DO risk, then increase with an 

increase in Low DO risk, then decrease and finally peak with High DO risk. This confirms that 

increases in N2O production are related to conditions favoring N2O production by both AOB 

denitrification (low DO conditions) and incomplete NH2OH oxidation (higher DO and higher 

ammonia conditions) pathways. However, the large predominance of Low DO risk zones suggests a 

major responsibility of the AOB denitrification pathway. It must also be noticed that the peaks in 

N2O concentration occur where a transition between the two risk levels can be observed. In 

particular, peaks in N2O concentration appear when the Low DO risk reaches half of its range in its 

way up or down. This would most likely address N2O production responsibilities to the AOB 

denitrification pathway. In this view, the use of the sole single pathway AOB denitrification model 

could be a suitable solution, however, we cannot say the same for a single pathway NH2OH 

oxidation model. The selection of a dual-AOB pathway mathematical model would most probably 

be the best accurate choice based on the N2O risk model. 

 

Figure 5.6 – Concentrations of N2O in the gas phase, ammonia (NH4-) in the liquid and the resulting 
N2O risk for the WRRF of Eindhoven. Dashed line is the upper risk limit. 

5.4. Conclusions 

A N2O risk modelling tool was tested for its capability in selecting mathematical N2O AOB pathway 

models based on our knowledge of conditions leading to N2O production by AOB. Using lab-scale 

data and corresponding mathematical modelling results based on the same lab-scale data from 

literature (Kim et al., 2010; Ni et al., 2013a; Yang et al., 2009), the concept was proven by the risk 

model’s selection of single-pathway models that best described the measured N2O data. This 

approach was then validated using full-scale data from previous experimental campaigns available 

in the literature (Ni et al., 2013a) and found to be valid by the risk model’s selection of single or 

dual pathway models that correspond with measured data and observed dynamic production of 

N2O. Finally, confronting the N2O risk model with two full-scale measurements collected as part of 

this study, the single-pathway mathematical model selections (AOB denitrification pathway for the 

Florence case study, and dual-AOB pathway model for the Eindhoven case study) using the risk 
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model were seen to be valid after examining the dynamic risk results with the corresponding 

process and N2O data. 

More generally, the results indicate that the N2O risk model can essentially be applied for selecting 

mathematical models to describe N2O emissions from a wide range of WRRFs, as the configurations 

tested were quite different from each other and we know the conditions leading to N2O production 

can vary significantly, even between WRRFs of the same configuration. Furthermore, we see that 

although looking at just the risk results can properly indicate which pathways are relevant for the 

WRRF, we also see the added value of aligning the risk with the process data, which can only help 

give a more informed decision. Therefore, it is recommended to align the risk results with process 

or measured data when selecting models, even if there is no N2O data. Overall, the use of the N2O 

risk model to apply our real knowledge of N2O production in WRRFs has been demonstrated 

successfully for selecting N2O pathway mathematical models. However, as these results clearly 

highlight the capability of the N2O risk model to identify the mechanisms and conditions leading to 

higher N2O emissions for model selection, they also reinforce its utility in identifying possible 

mitigation strategies. This is important to keep in mind for instances where it is not feasible to 

implement mathematical models due to various practical reasons. 

The current unavoidable limitation of a user’s observation to local measurements should however 

be kept in mind as sensors location drive our conclusions. Results based on local sensor readings 

reflect only local conditions and not the ones of an entire AS tank where different processes are 

likely to take place simultaneously. This is not only valid for the risk model used in this section, but 

for all applications of similar tools and interpretations of local data.  
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Abstract 

The choice of the spatial submodel of a WRRF model should be one of the primary concerns in 

WRRF modelling. However, currently used mechanistic models are too often limited by a too 

simplified representation of local conditions. This is illustrated by the general difficulties in 

calibrating the latest N2O models and the large variability in parameter values reported in the 

literature. The use of CM developed on the basis of accurate hydrodynamic studies using CFD can 

much better take into account local conditions and recirculation patterns in the AS tanks that are 

important with respect to the modelling objective. The conventional TIS configuration does not 

allow this. The aim of the present work is to compare the capabilities of two model layouts (CM and 

TIS) in defining a realistic domain of parameter values representing the same full-scale plant. A 

model performance evaluation method is proposed to identify the good operational domain of each 

parameter in the two layouts. Already at the steady state phase, the CM was found to provide better 

defined parameter ranges than TIS. Dynamic simulations further confirmed the CM capability to 

work in a more realistic parameter domain, avoiding unnecessary calibration to compensate for 

flaws in the spatial submodel. 
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6.1. Introduction 

N2O emissions are of great concern in WRRFs and modelling tools have been largely used to date in 

order to understand its production and define possible reduction strategies. The heterotrophic 

denitrification pathway model from Hiatt and Grady (2008) is currently the only generally accepted 

model. However, the pathways responsible for N2O production are different and contributing to 

different extents to the emission depending on wastewater characteristics, plant dynamics and 

environmental conditions (cfr. § 2.2.1). Especially in full-scale applications, modelling is a 

fundamental tool for understanding N2O production and emission dynamics. Mechanistic models 

have been applied to define general operational recommendations aimed at N2O reduction (Ni and 

Yuan, 2015) but still case-specific recommendations are necessary and more in depth process 

understanding is needed for an effective minimization of emissions.  

A number of kinetic N2O models describing very detailed biological processes have recently been 

developed (Mannina et al., 2016; Ni and Yuan, 2015; Pocquet et al., 2015). In particular, models 

describing both AOB pathways (i.e. AOB denitrification and incomplete NH2OH oxidation) have 

shown important advances in describing the contribution to N2O production of the different 

consortia in laboratory controlled conditions (Ni et al., 2014; Pocquet et al., 2015; Spérandio et al., 

2016). These mechanistic models are highly descriptive of the known biological processes 

responsible for N2O production and have been calibrated and validated in laboratory controlled 

conditions. However, despite the suggestion of Ni et al. (2013b) for using the dual pathway AOB 

models, Ni et al. (2013a) discouraged this implementation due to the risk of over-parametrization 

of the model and the possible creation of strong parameter correlations. In addition to this, the 

application of both dual pathway and single pathway models in full-scale is still troublesome due to 

recognized difficulties in identifying proper parameter sets (Ni et al., 2013b; Spérandio et al., 2016). 

In particular, Spérandio et al. (2016) observed high variability of different parameters, among the 

different case studies and the different models applied, with related high influence on N2O and NO 

emission results. In one case, the ƞAOB has been set to a high value making KFNA poorly identifiable, 

while the opposite has been observed for another full-scale application. These large variations of 

parameters from one system to another are likely the result of concurring reasons e.g. micro- 

organisms history and adaptation, defaults in the structure of the models, undescribed local 

heterogeneities in reactor (Spérandio et al., 2016). 

The large variations of parameters values among different full-scale case studies considerably limit 

the predictive power of the models, as parameters cannot be extrapolated to other plants, and 

probably not even for different periods in the same plant. This reduced predictive power will also 

hamper the usage of such models in search for mitigation strategies. Given the detailed structure of 

available models with regards to the conversion processes involved, the considerable differences in 

parameters values among different (full-scale) applications are likely due to an unrealistic 

representation of local conditions in AS tanks, to which these conversion processes are highly 

sensitive (much more than the traditional ASM processes).  

The design of proper WRRF layouts (with respect to spatial submodel) is an important step in 

plant-wide modelling and for understanding complex process dynamics such as the ones 
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responsible for N2O production (Rehman et al., 2014a). In current TIS configurations, recirculation 

and more detailed local concentrations were assumed to be negligible, and the use of plug-flow-

CSTR configurations was preferred to reduce overall model complexity and computational demand. 

In view of the latest issues in N2O modelling in WRRFs, it is to date necessary to analyze the 

possibility and effect of the inclusion of more detailed descriptions of local concentrations in AS 

tanks by means of more detailed spatial submodels. The development of layouts designed for 

resembling more accurately hydrodynamic behavior of the internal volume layout, is currently 

bringing an additional level of detail that can reflect in improved predictive power of available 

mechanistic models, which is key in optimization and control. Currently, the use of CMs developed 

upon detailed CFD studies is gaining interest from the modelling community (Le Moullec et al., 

2010; Rehman et al., 2017, 2015, 2014b). 

In this chapter, a comparison of the performance of a CM and a TIS spatial submodel of the same 

full-scale WRRF on identifying a domain of good parameters values for the most sensitive 

parameters using the ASMG2d model (Guo, 2014; Guo and Vanrolleghem, 2014) is provided. Based 

on literature, each model parameter was sampled in a specific range for generating a number of 

simulation scenarios. Each simulation scenario was ranked for its performance in predicting 

measured variables based on different criteria suggested by Van Hoey (2016). The latter returns 

the good performing scenarios in the form of a distribution of parameter values for both the CM and 

TIS.  

6.2. Materials and methods 

6.2.1. Model layouts 

Two model layouts of the WRRF of Eindhoven were used, differing in terms of spatial submodel 

(Figure 6.1). The TIS layout of the Eindhoven WRRF (Figure 6.1, top) is a well consolidated model 

obtained after years of research of the facility (Amerlinck, 2015; Cierkens et al., 2012; De Keyser et 

al., 2014) (See Annex I). On the other hand, the CM version (Figure 6.1, bottom) is a recent 

development of the WRRF model layout resulting from a thorough hydrodynamic study based on 

CFD simulations in a three-phase (i.e. gas, solid, liquid) model integrated with an ASM for 

resembling the biological activity (Rehman, 2016) (See Annex I). In particular, the volumes in 

which the biological tank was initially divided for the case of the TIS, were further partitioned by 

means of the cumulative species distribution concept that led to the development of the 

compartmental network currently in use. 
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Figure 6.1 – Schematic representation of the partitioning of the AS tank volume according to the TIS 
(top) and CM (bottom) layouts. The planar representation of the AS tank (top left) is divided for the 
TIS (top right) in pre-winter (PW), winter package (WP), pre-summer (PS), summer package (SP), 

effluent (E1 and E2) zones. The CM follows the same concept of TIS in the general division of the 
volumes, but includes a and b recirculation zones according to Rehman (2016). 

For comparing the two model layouts, a common mechanistic model was chosen with which 

comparison of the results was performed. Seen the results from § 5 an AOB dual-pathway model 

can result problematic for its application on this plant. Also, seen the efforts on calibrating the 

ASMG1 and ASMG2d on the same plant, the biokinetic model chosen for this work was the ASMG2d 

(Guo, 2014). This model is one of the most popular in full-scale applications and is also 

implemented in the WEST® platform. In addition to this, the ASMG2d has been considered in other 

studies in literature, representing an added value for further comparison of the results (Spérandio 

et al., 2016). It must be specified that, as other N2O mechanistic models, the ASMG2d is far from 

being widely applicable to full-scale WRRFs due to the discussed difficulties that these models show 

in the calibration step. However, for the purpose of this study and for the application to this plant, 

the ASMG2d represents the most suitable choice. 

As input to both the TIS and CM models, a dataset of validated SCADA data from May 2016 was used 

during which also N2O measurements in the liquid (Unisense Environment, Denmark) were 

available. For the steady state simulations a period of 100 days was simulated and the last 30 days 

were used for averaging output variables. For the dynamic simulations, a 24h dataset of validated 

input data was used. In order to compare simulation output with measured values, dissolved N2O 

measurements and SCADA data from the sensors present on the AS tank were used. The output 

data of the simulations were taken from the (CSTR) model block resembling most closely the 

location of the relative sensor in reality (Figure 6.2).  
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Figure 6.2 – SCADA sensors location in the outer ring of the biological tank of Eindhoven. 

For the comparison of the two model layouts, three fundamental steps were followed: I) parameter 

selection and definition of parameters ranges, and ranking; II) steady state simulation of n-sampled 

parameters sets to confirm or redefine current parameter ranges; III) dynamic simulations of n-

sampled parameters sets to evaluate whether CM can better define the parameter domain than TIS. 

Throughout steady state and dynamic simulations, 12 model fit metrics were assessed to evaluate 

the quality of the model output. 

6.2.2. Parameter selection and sensitivity ranking (Step I) 

A literature selection of the most influencing parameters for N2O production contained in ASMG2d 

was performed. Screening the literature, a first set of 25 most uncertain parameters was selected 

(Gernaey and Jørgensen, 2004; Guo, 2014; Hiatt, 2006; Mampaey et al., 2013; Ni et al., 2013b; 

Spérandio et al., 2016; Van Hulle et al., 2012) and is reported in Table 6.1. Some of the parameters 

show up to 140% deviation from different calibration exercises (Spérandio et al., 2016).  

Table 6.1 – Initial parameter selection showing extreme values of the domain used in literature. 

Parameter Description Minimum value Maximum value 

KO_A1Lysis [g/m3] Sat/inhibition coefficient for O2 in lysis, AOB 0.2 1.6 

KO_A2Lysis [g/m3] Sat/inhibition coefficient for O2 in lysis, NOB 0.2 0.69 

bA1 [1/d] Rate constant for lysis of X_BA1 0.028 0.28 

bA2 [1/d] Rate constant for lysis of X_BA2 0.028 0.28 

nNOx_A1_d Anoxic reduction factor for decay, AOB 0.006 0.72 

KFA [g/m3] Half-saturation index for Free Ammonia 0.001 0.005 

KFNA [g/m3] Half-saturation index for FNA 5.00E-07 5.00E-06 

KI10FA [g/m3] FA inhibition coefficient, NO2 oxidation by NOB 0.5 1 

KI10FNA [g/m3] FNA inhibition coefficient, NO2 oxidation by NOB 0.036 0.1 
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KI9FA [g/m3] FA inhibition coefficient, NH4 oxidation by AOB 0.1 1 

KI9FNA [g/m3] FNA inhibition coefficient, NH4 oxidation by AOB 0.001 0.1 

KOA1 [g/m3] O2 half-saturation index for AOB 0.4 0.6 

KOA2 [g/m3] O2 half-saturation index for NOB 1 1.2 

YA1 [g COD/g N] Yield for AOB 0.15 0.24 

YA2 [g COD/g N] Yield for NOB 0.06 0.24 

KFA_AOBden [g/m3] NH half-saturation for AOB denit 0.001 1 

KFNA_AOBden [g/m3] FNA half-saturation for AOB denit 1.00E-06 0.002 

KIO_AOBden [g/m3] Inhibition coefficient for O2 in AOB denit 0 10 

KSNO_AOBden [g/m3] NO saturation coefficient for AOB denit 0.1 3.91 

KSO_AOBden [g/m3] O2 sat coefficient for AOB denit 0.13 12 

n1AOB [-] Growth factor for AOB in denitr step 1 0.08 0.63 

n2AOB [-] Growth factor for AOB in denitr step 2 0.08 0.63 

KA1 [g/m3] SA sat coefficient for heterotrophs aerobic growth 4 20 

KF1 [g/m3] SF sat coefficient for heterotrophs aerobic growth 4 20 

KO1_BH [g/m3] Sat/inhibition coefficient for heterotroph growth 0.2 1 

 

In order to ensure a sampling of the entire domain without excluding the maximum and minimum 

limits of each parameter, the domains reported in Table 6.1 were enlarged by 10% of the difference 

between the relative maximum and minimum values. 

A GSA was performed on this set of parameters using the LH-OAT approach (van Griensven et al., 

2006) with different perturbation factors. As the choice of the perturbation factor can have an 

important effect on the numerical stability and thus on the sensitivity results, different magnitudes 

were investigated (De Pauw and Vanrolleghem, 2006). Also, the impact of the number of samples 

was observed in order to check whether the increase of one or two orders of magnitude impacted 

the final ranking. These tests resulted in consistent ranking of the outputs, with the only exception 
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of the tests with the perturbation factors smaller than 10-5, which resulted in numerical 

instabilities. 

6.2.3. Simulations process 

By means of a LH-OAT sampling approach on the most sensitive parameters resulting from Step I, 

the scenarios for the analysis in Step II and III were created. For each case 2k points on the domain 

of each parameter were uniformly sampled. 

Step II 

Steady state simulations were used to compare the model output concentrations with known 

normal operation conditions in the biological tank. This allowed to make a first ranking of the 

scenarios based on the proximity of the model output and the known measured values of NH4, DO 

and TSS. As a result, this allowed to evaluate the domain of each parameter considered and 

eventually provide adjustments repeating the steady state simulations. This iterative approach 

allowed to define a domain for each parameter with “good” parameter values, so that no possibly 

good parameters values were left out and, at the same time, excluding zones of undoubtedly bad 

parameter values in order to proceed with Step III. 

Step III 

Once the last parameter domains after the steady state were defined, the LH-OAT sampling on 2k 

points was repeated for creating the scenarios for the dynamic simulations. Parameters were 

uniformly sampled on the eventually reduced domain after the steady state analysis. In this case, 

the outputs of the model were compared with a day of measured SCADA data (i.e. DO, NO3, NH4) 

and liquid N2O measurements. 

6.2.4. Scenario ranking using 12 different metrics 

Different metrics can be used to score a model fit according to a variety of methods to describe the 

similarity between a modelled and an objective function, therefore, different are the criterion with 

which scores are assigned. Dissimilarity between metrics depends not only on their mathematical 

structure but also on the system behavior and objective. Hence, the need of an assortment of 

criteria to evaluate the performance of a model from different perspectives. For instance, RMSE is a 

commonly chosen metric to evaluate a model fit, however, it gives emphasis to the fit of peaks and 

high values. Therefore, its combination with RVE, from the total relative error category, is advisable 

when variables with a wide range of values are compared (Hauduc et al., 2015).  

In this view, for both the steady state and the dynamic simulation step, the outputs were evaluated 

by means of 12 metrics (Table 6.2). These metrics were selected based on the classification of 

Hauduc et al. (2015) as the combination of different metrics from different classes have been 

observed to be more effective than choosing metrics from one class only (Van Hoey, 2016a). All 

metrics were chosen also based on their response range of values, all metrics (including RVE) 

indicate the best fit possible with 0. The metrics were selected based on their input requirements so 

that only values of observed and modelled results could be used as input. In this way, the response 
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value of each metric chosen, can be rescaled based on its output from a minimum of 0 (best fit) to a 

maximum of 1 (worst fit). 

Table 6.2 – Summary table of the metrics considered for scenario ranking (Hauduc et al., 2015; Van 
Hoey, 2016a). 

Metric Category Output range Main feature 

MAE Absolute [0, inf] Indicates the average magnitude of the model error 

RMSE Absolute [0, inf] Emphasizes large errors 

MSE Absolute [0, inf] Emphasizes high errors 

MSLE Absolute [0, inf] Emphasizes low magnitude errors 

RRMSE Absolute [0, inf] Low values suggest good agreement 

SSE Absolute [0, inf] Low values suggest good agreement 

AMRE Relative [0, inf] Low values suggest good agreement 

MARE Relative [0, inf] Low values suggest good agreement 

SARE Relative [0, inf] Low values suggest good agreement 

MeAPE Relative [0, inf] Less affected by outliers and errors distribution 

MSRE Relative [0, inf] Emphasizes larger relative errors 

RVE Total Relative error [-inf, inf] Measures an overall adequacy 

 

Finally, the different scenarios were ranked based on the 0 to 1 value of each metric separately. 

Subsequently, an overall ranking can be derived based on the score that each scenario has in each 

of the metrics. In this way, each metric is scalable within its own domain to a 0 to 1 domain, and 

addressing to each scenario a value from 0 to 1 allows the ranking of the scenarios according to the 

single metric (Figure 6.3, left). The value that each scenario collects from each metric, can then be 

summed up with the rest of the scores obtained from the rest of the metrics to obtain a final overall 

score used for the final ranking of a given scenario (Figure 6.3, right). The scenarios performing the 

best for all metrics, i.e. scoring nearly 0 for each different metric, result in the lowest overall score. 

The best one third of all the scenarios was selected as the good scenarios. 
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Figure 6.3 – Schematic representation of the scenario ranking method used in Step II and Step III. The 
initial ranking according to the single metric (left) allows to sum the scores of all metrics for each 

scenario and have a final score that is used for the overall ranking (right). 

For the steady state case, the average output of the last part of the 100 days simulation (about 100 

data points), were compared against an objective value. Therefore, for the evaluation of the steady 

state simulation outputs, the metric evaluation is only based on the proximity of two single values, 

i.e. the modelled mean and the relative reference value for NH4, DO and TSS. 

For the case of dynamic simulations, the model output of NH4, NO3, N2O, and DO, were compared 

against measured values. In this case, the metric evaluation becomes more complex due to the 

different nature of the metrics involved. Each metric will return an estimation of the performance 

of the model output giving more emphasis to different aspects of a model fit. Hence, the necessity of 

using a ranking strategy summarizing the different aspects of the evaluation of a fit. 

6.3. Results and discussion 

6.3.1. Parameter ranking (Step I) 

After the selection of the parameters and the definition of the respective range from the literature, a 

ranking exercise was done. A GSA was performed on this set of parameters using the LH-OAT 

approach with different perturbation factors. As the choice of the perturbation factor can have an 

important effect on the numerical stability and thus on the sensitivity results, different magnitudes 

were investigated (De Pauw and Vanrolleghem, 2006) resulting in a good performance of a 

perturbation factor of 10-3 for all the parameters (see Annex 1 for the test examples run with higher 

or lower perturbation factors). The suggested minimum sample size in the parameter space is in 

the range of 10k samples which sensibly impacts the practical possibility of repeating the GSA test 

due to the high computational effort making the experiment highly time demanding (Van Hoey, 

2016b). 
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The GSA results provided a ranking of the most influential parameters for N2O, O2, NO3, NH4, TSS, 

XBA1, XBA2 and XH. For the case of the TIS layout (Figure 6.4), the influential parameters seemed to be 

the same among the different variables tested overall showing similar importance with few 

variations in the ranking. 

 

Figure 6.4 – Tornado plots resulting from the GSA (LH-OAT sampling with 10k samples) ranking the 
most influencing parameters for the case of TIS. 

The GSA exercise was repeated in the same fashion for the case of the CM layout (Figure 6.5). 

Interestingly, the relevant parameters were very similar to the case of the TIS showing very few 

variations and negligible differences from the previous ranking exercise. In particular, the TIS 

model seems to address less importance than the CM to KA1_lysis in terms of N2O, but in general there 

is agreement between the two layouts. KFA is reputed more sensitive than bA1 in the TIS layout in 

N2O NH4 

NO3 
O2 

TSS XBA1 

XBA2 XH 
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terms of NO3, but in both cases they are ranked in the top 5. The CM attributes a relevant position in 

the ranking for DO to the nNOx_A1_d, while this is ranked lower in the case of the TIS configuration. 

 

Figure 6.5 - Tornado plots resulting from the GSA (LH-OAT sampling with 10k samples) ranking the 
most influencing parameters for the case of CM. 

In order to define an overall set of parameters suitable for both the TIS and the CM cases, it was 

decided to give a score to each parameter according to its position in the tornado plot of each 

variable (i.e. position 1 scores 1, position 2 scores 2, etc.). In this way, the parameters could be 

ranked from the lowest score to the highest resulting in the order in Table 6.3.  
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Table 6.3 – Final ranking of the parameters. Shaded are the most sensitive parameters selected by 
GSA ranking from both TIS and CM configurations. 

Rank 
 

1 bA1 

2 bA2 

3 KOA1 

4 KFA 

5 KFNA 

6 KF1 

7 KOA2 

8 KO1_BH 

9 YA1 

10 nNOx_A1_d 

11 KO_A1Lysis 

12 KI9FA 

13 YA2 

14 KO_A2Lysis 

15 KI9FNA 

16 KA1 

17 KI10FA 

18 KSO_AOBden 

19 KI10FNA 

20 KFA_AOBden 

21 n1AOB 

22 KFNA_AOBden 

23 KIO_AOBden 

24 n2AOB 

25 KSNO_AOBden 

 

Initially, 10 parameters were selected according to the score and visual analysis of the tornado 

plots (i.e. bA1, bA2, KOA1, KFA, KFNA, KF1, KOA2, KO1_BH, YA1, nNOx_A1_d). Given the presence of YA1, the 

proximity in the ranking of YA2, and the attention that this parameter received in literature, it was 

chosen to include also YA2. In a similar fashion, given the importance given to KO_A1Lysis and the 

respective KO_A2Lysis in the literature and their proximity to the cut-off threshold, it was decided to 

include also these parameters. Finally, given that KI9FA was not the worst positioned in this new GSA 

ranking, it was also included. This selection resulted in a total of 14 parameters (highlighted in grey 

in Table 6.3) to be passed to step II and III. 
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In general, it is interesting that decay parameters for autotrophs are the most sensitive, and that a 

relevant quantity of half-saturation indexes (K-values) are present in relevant positions of the 

ranking. This highlights the importance of the correct definition of half-saturation indexes 

(Arnaldos et al., 2015). 

6.3.2. Steady state simulations (Step II) 

The aim of Step II was to define the best scenario (i.e. set of parameters) for initializing the model 

for dynamic simulation (Step III) and verify that the domain chosen for the different parameters 

was still valid, i.e. not indicating clear clues of a need for a modification of the domain.  

With the selected set of parameters 5k scenarios were generated with the LHS method in both 

cases, i.e. the TIS and CM layout, and steady state simulations of 100 days were run. The output of 

the simulations was compared against average typical concentrations of NH4, DO and TSS at the end 

of the summer package aeration compartment (1.01 mg N/L, 1.02 mg/L and 3200 g/m3 

respectively) obtained from averaging measured data of known good plant operation in dry 

conditions during summer 2012. Model outputs were scored from 0 (best) to 1 (worst) using the 

12 metrics described and ranked accordingly in order to isolate the best performing scenarios. Each 

metric returns an internal ranking according to the score given to each scenario. An overall ranking 

among the scenarios is possible summing up the contribution of all metrics for each scenario (cfr. § 

6.2.4 in this chapter). 

TIS 

The steady state simulations performed with the TIS model were ranked for the average output of 

NH4, DO and TSS against an objective value. The ranking strategy used places the scenario with the 

lowest score overall (best performing) at the bottom of the graph (near value 0) in Figure 6.6, while 

the worst performing are ranked towards the top (near value 1). This visualization allows to 

qualitatively check both the overall ranking and the contribution of each metric. In particular, 

Figure 6.6 indicates that, for the scenario tested, the variation of the output TSS (Figure 6.6, right) 

as compared to the objective value is more pronounced than for DO or NH4 (Figure 6.6, center and 

left respectively), the latter showing the smallest variations. Therefore, TSS seems particularly 

sensitive to variations in the selected parameters values as compared to DO and at last to NH4, i.e. a 

deviation in color to the darker tones is visible already close to the bottom of Figure 6.6 (right). It 

must be also pointed out that, among the scenarios, the magnitude of variation between NH4, DO 

and TSS values is largely different due to the different units. Therefore, the transition in color must 

be considered only as an indication of how fast the outputs of the different scenarios go far from the 

objective values and what is the contribution of each metric chosen. As an example, from the 

ranking graph relative to NH4 (Figure 6.6, left), given the small absolute differences between the 

model output and the objective value, it can be noticed that the most sensitive metric is MSLE. 

MSLE is very sensitive to smaller differences as compared to the rest of the metrics due to the fact 

that it treats both modelled and objective values with a logarithm, thus emphasizing small 

differences and particularly values smaller than 1. On the other hand, the rest of the metrics need 

bigger absolute differences between modelled and objective values. Hence, the need of a variety of 

metrics evaluating a model fit from different points of view. In particular, for the case of NH4, MSLE 
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provides most of the input for the final ranking as the rest of the metrics are showing very little 

variation.  

 

Figure 6.6 – Ranking of the scenarios (rows) according to the 12 metrics (columns) from the best 
performing (bottom) to the worst (top) (for NH4, DO and TSS respectively from left to right). Each 

metric is colored according to its internal ranking from 0 (bright) to 1 (dark). 

At this point the best performing scenarios (Figure 6.6, light colors) were selected from each of the 

cases, i.e. NH4, DO and TSS. All the distributions for all the parameters resulting from the selection 

of the best performing scenarios are reported in Annex I, here only the most relevant results are 

summarized and discussed. 

Distribution plots of the parameter values relative to the best performing scenarios, selected 

according to NH4 ranking, showed that bA1 and KFA appear to perform the best in the higher range of 

the respective domains (Figure 6.7). The rest of the parameters did not return a particular shape 

suggesting that there is not a preferred subrange in the tested range. This is an indication for 

possible reduction or modification to the conservative parameter ranges adopted for these 

simulations before moving to Step III. 

 

Figure 6.7 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios for NH4 in the TIS layout. 

For the case of DO there is a confirmation of the good performance returning from the use of the 

higher range of bA1, once again suggesting that for Step III a reconsideration of the sampling range 
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for this parameter is useful (Figure 6.8, upper left). Interestingly, the range of bA1 is also 

corroborating with the one observed for NH4. Also bA2 shows a defined tendency in its distribution, 

showing a relevant preference for values in the lowest range of its domain (Figure 6.8, upper right). 

In addition to this, KF1 and KFNA show a higher density of good performing scenarios close to zero 

(Figure 6.8, bottom left and right graphs). This reflects the general tendency of abating KFNA to very 

low values (normally in the order of 10-6) and confirms the reported difficulties in the calibration of 

this parameter (Spérandio et al., 2016). Similarly, KFA shows a perceivable preference towards 

lower values in its range, although less pronounced than for the previous cases (Figure 6.8, bottom 

center) and with opposite tendency. 

 

 

Figure 6.8 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios for DO in the TIS layout. 

From the isolation of the best performing scenarios according to the analysis of the modeled TSS, 

the distributions of parameters values show interesting shapes for bA1, bA2, KFA and KFNA (Figure 

6.9). In contrast to the previous results, parameter bA1 shows the highest frequency peak in the 

lowest range of its domain (Figure 6.9, upper left). However, this distribution appears to be 

approaching a bimodal case as a noticeable peak in frequency is also visible in the highest part of 

the bA1 domain. This is particularly interesting as the peak on the right occurs very similar to the 

cases observed for NH4 and DO. This confirms the necessity of shifting the parameter range towards 

bigger values for bA1 for the model to both comply for DO and NH4. 
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For the first time bA2 shows a noticeable shape of its distribution pronounced towards the lower 

values of its domain (Figure 6.9, upper right). A similar shape is returned by the distributions of KFA 

and KFNA (Figure 6.9, bottom graphs) corroborating with the observations reported for the case of 

DO. The rest of the parameters selected using the metric ranking with the TSS modeled output, do 

not show other relevant distributions. They are summarized in Annex I. 

 

 

Figure 6.9 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios for TSS in the TIS layout. 

By merging the three groups of best performing scenarios (i.e. for NH4, DO, and TSS) it was possible 

to obtain an overall group containing all selected best performing scenarios. This overall group was 

used as ultimate check on whether the working domain of the parameters needed to be modified 

before passing to Step III or not. Using an overall dataset including the parameter domains isolated 

for NH4, DO, and TSS, helps in defining whether the information gathered from the singular cases 

still holds when considering multiple parameters simultaneously. 

As bA1 demonstrated a remarkable tendency for NH4, DO, and TSS selections to have higher density 

of best performing scenarios in the higher range of its domain, this is obviously reflected in the 

overall distribution of best performing scenarios (Figure 6.10, top left). A similar observation is 

made for KFNA which confirms a strong preference for the very low range of its domain (Figure 6.10, 

bottom right) while YA1 suggest the same but with a mild tendency of its frequency distribution 

(Figure 6.10, top right). 
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Although bA2 was not providing a definite shape for the case of NH4, its preference for the lower 

range of its domain in the cases of DO and TSS remains consistent and is reflected in its overall view 

(Figure 6.10, top center). In the case of KF1, even though it only showed a defined shape of its best 

performing values for the case of DO, this strong preference still holds in the overall picture (Figure 

6.10, bottom left). Finally, KFA seems to maintain a higher frequency of best performing values close 

to the lower range of its domain (Figure 6.10, bottom center), although this being the result of 

opposite behaviors observed among NH4, DO and TSS. 

 

 

Figure 6.10 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios overall in the TIS layout. 

As a result of these observations, the range of the parameters to be used for Step III (i.e. dynamic 

simulations) could be modified. However, as the first target of this work is the comparison of the 

TIS layout with the CM, for a fair comparison the two case studies should use the same parameter 

range. In this view, the CM output was examined in the same fashion.  

CM 

The visual ranking of the scenarios for the steady state simulations with the CM layout (Annex I) 

resembles very closely the one observed for the case of the TIS layout (Figure 6.6). This means that 

the absolute variation of the model output for the different scenarios from the objective value, are 

similar for the two layouts for NH4, DO and TSS.  
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Similarly to what was observed in the results of the TIS layout, distribution plots of the parameter 

values relative to the best performing scenarios for NH4 ranking, showed that bA1 and KFA perform 

the best in the higher range of their domains (Figure 6.11). This is an important aspect in view of 

identifying which parameter’s domain needs adjustment before passing to the dynamic simulations 

(Step III).  

 

Figure 6.11 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios for NH4 in the CM layout. 

Plotting the best performing scenarios relative to DO ranking (Figure 6.12), there is again full 

agreement with what already observed in the case of the TIS layout. The frequency of the best 

performing scenarios is highest in the higher range of bA1’s domain, while bA2, KF1 and KFNA, show a 

clear preference for their lowest limit. A similar pattern can be observed for KFNA (Figure 6.12, 

bottom center) although with less definite shape than for the other parameters, and very similar to 

what observed in the TIS results. In the same way, KFA shows a perceivable preference towards 

lower values in its range, although opposite and less definite than was observed for NH4, matching 

the results of the TIS layout. 

Again these are important clues for the modification of the domain of certain parameters before 

passing to Step III. At the moment all results between TIS and CM seem to corroborate rather 

closely and no clear difference can be noticed.  
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Figure 6.12 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios for DO in the CM layout. 

The best performing scenarios ranked according to TSS returned a well-defined shape of the bA1 

distribution with high frequency value at the highest edge of its domain (Figure 6.13, top left). In 

the case of the TIS layout, i.e. where two peaks were observed in correspondence of both the 

highest and the lowest edges of the domain, this was less clear than for the CM. This is an important 

point in the evaluation of the performances of the two layouts as the case of bA1 for the TSS ranking 

is the first clue of the gain in definition of the CM as compared to the TIS layout. In addition to this, 

regarding the modification of the parameter’s domain for Step III, this is confirming what was 

observed in the previous results and corroborating the observation of the TIS case. 

As for the rest of the parameters, bA2, KFA, and KFNA, are showing a higher frequency of best 

performing scenarios in the lowest range of their domain (Figure 6.13). These observations are 

resembling the results of the TIS layout confirming a potential for modifying the domain of some 

parameters for Step III. 
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Figure 6.13 - Distribution of the parameter values resulting from the selection of the best performing 
scenarios for TSS in the CM layout. 

In the overall view, merging the three groups of best performing scenarios resulting from the 

ranking for NH4, DO, and TSS, a clear tendency of bA1 to show higher frequency in the highest part of 

its domain can be noticed until the distribution gets truncated (Figure 6.14, top left). This is a clear 

indication of the need for a redefined domain for bA1 before passing to Step III, given also the 

corroborating results of the TIS case. As compared to the case of TIS, the results of the CM layout for 

bA1 show a more defined shape suggesting the presence of a normal distribution with the highest 

frequency at the maximum edge of its domain. This is obviously the effect of grouping the NH4, DO, 

and TSS results, which, for the CM, yielded more defined shapes of the distributions. 

Similarly, bA2, KF1, and KFNA, return a clear preference of the highest frequency of their distribution 

plot for the lower edge of their domain (Figure 6.14). On the other hand, KFA shows also a tendency 

to prefer lower values of its domain but with a less clear intensity (Figure 6.14, bottom center) as 

well as YA1 (Figure 6.14, top right). However, in both the cases of KFA and YA1, there is absence of an 

outspoken maximum over the range of the parameter to clearly define a definite tendency. These 

observations agree with what was already observed for the TIS case for the same parameters.  
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Figure 6.14 – Distribution of the parameter values resulting from the selection of the best performing 
scenarios overall in the CM layout. 

Redefinition of parameter domains 

According to the results of Step II for the cases of the TIS and CM layouts, some of the parameters 

show a clear potential for the modification of their sampling domain before passing to Step III. For 

those parameters showing truncated distributions and high frequency of best performing values 

close to an edge of their domain, the modification was considered. This will reduce the number of 

experiments that likely result in a less goof prediction and are not very useful in the analysis 

anyway. 

In particular, the domains of bA1 , YA1 , KFA, and KF1, were modified as indicated in Table 6.4. bA1 

needed a sensible shift towards higher values and its domain was modified considering a normal 

distribution with mean value in correspondence of 0.26 and reducing part of the tail that was 

showing very little frequencies of good performing values (Figure 6.15). In order to ensure that no 

important information was lost in this passage, a double check plotting the distribution of the top 

100 scenarios (Figure 6.15, dark distribution) was done for each parameter with the domain to be 

redefined. For YA1, KFA, and KF1, the domains were modified especially at the lowest edge allowing to 

reach smaller values than what was originally set.  
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Figure 6.15 – Distribution of the parameter values of the overall best performing scenarios for the 
case of the TIS (left) and CM (right) layouts. In dark, the bA1 distribution of the top 100 best 

performing scenarios for checking that important information was not lost in the definition of new 
domain. 

In addition to this, the domain of YA1 was also modified given that small but consistent indications 

of the tendency of higher frequency of best performing scenarios at its lower limit of the domain for 

both the TIS and CM layouts was observed. 

Table 6.4 – New domains for the selected parameters derived from the results of both the TIS and CM 
layouts results. 

Parameter Minimum value Maximum value 

bA1 0.15 0.40 

YA1 0.04 0.20 

KFA 0.001 0.005 

KF1 2.4 21.6 

 

Given the known tendency reported in literature for abating KFNA values close to zero in order to 

accomplish a model fit, and given that those values are recognized to be unrealistic, the domain of 

KFNA was not modified. In addition to this, the modification of four parameters domains could 

already have a positive effect on KFNA. 

6.3.3. Dynamic simulations (Step III) 

The model was initialized with a steady state simulation of 100 days for performing the dynamic 

simulations. For doing this, the choice of a scenario for initialization was needed. Using the 

intersection of the three groups of best performing scenarios, i.e. the scenarios considered the best 
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at the same time for NH4, DO, and TSS cases, the best scenario according to all three cases could be 

identified. 

Step III was targeted at defining the best performing scenarios analyzing the dynamic simulations 

output against measured data in specific locations on the bioreactor. The aim of this phase was to 

compare the capabilities of the TIS and CM layouts in defining a good set of scenarios best 

resembling the full-scale measured data. In this view, the scenarios were ranked according to the 

12 metrics and compared, as in Step II, in terms of the capability of providing a realistic and 

observable parameters range of best performing values. Therefore, the ranking used the same 

method as for Step II, but using online measured data as objective functions of the metric 

comparison (i.e. NH4, DO, N2O and NO3). 

It must be pointed out that for the case of N2O it was not possible to use all 12 metrics. This is due to 

the fact that some metrics use the value of the objective function at the denominator of a fraction, 

which returns an infinite solution if a variable can report zero concentration which is the case for 

N2O. Therefore, of the original set or metrics AMRE, MARE, MSLE, MSRE, and SSE were not 

considered for ranking the scenarios according to the N2O output. 

The scenarios were ranked in the same fashion as for Step II but using different variables of 

comparison depending on the availability of the online datasets.  

For the TIS layout, the ranking according to the measured NH4 (Figure 6.16) showed an interesting 

behavior of the MSLE metric which at first sight seems to rank the scenarios inversely to the rest of 

the metrics. This is true for some of the worst performing scenarios for MSLE (darker color), which 

are not considered as bad by the rest of the metrics. The reason lays in the high sensitivity of the 

MSLE to small differences between modelled and measured values. In particular, when both 

measured and modelled variables are smaller than 1, the discrepancy is enhanced by the effect of 

the logarithm and the quadratic term in the MSLE. Thus, the importance of using multiple metrics is 

illustrated once more. Using multiple metrics of different nature allows to analyze and rank the 

scenarios from different points of view, but also to compensate for particular behavior of a single 

metric. Nonetheless, the visualization proposed in this work highlights the contribution of the 

single metric and relative potential limits. 

Concerning the ranking according to DO, all metrics resulted behaving similarly and overall 

agreeing in a common final ranking. 

Although the ranking according to N2O was forced to have fewer metrics, those metrics used were 

still coming from different categories, thus ensuring a ranking according to different approaches. All 

metrics appear to rank accordingly, although the fast transition towards the darkest colors suggests 

the presence of few scenarios performing significantly better than the rest. In a similar picture the 

ranking according to NO3 can be observed, where, for most of the metrics, a fast transition to darker 

colors indicates a fast deviation of the modelled results away from the objective measured dataset. 
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Figure 6.16 - Ranking of the scenarios (rows) according to the metrics (columns) from the best 
performing (bottom) to the worst (top). Each metric is colored according to its relative ranking from 

0 to 1. Results of the TIS layout. 

Figure 6.17 shows the ranking for the scenarios of the CM layout. Small differences can be observed 

among the metrics for the ranking according to NH4 in which MSLE seems to behave slightly 

different from the rest of the metrics, although generally agreeing with the rest of the metrics for 

the best performing scenarios (lighter colors). 

For the case of DO there is faster transition to the darker tones of the ranking for all metrics, 

indicating probably that few scenarios are providing an output close to the measured dataset while 

the rest is fastly deviating away of it. 
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Figure 6.17 – Ranking of the scenarios (rows) according to the metrics (columns) from the best 
performing (bottom) to the worst (top). Each metric is colored according to its relative ranking from 

0 to 1. Results of the CM layout. 

Differently from the case of DO, the case of N2O and NO3 present a very gradual shift away from the 

objective function making all metrics generally providing the same ranking (for N2O fewer metrics 

are considered). 

Comparison between TIS and CM 

The overall distributions of the parameter values for the best performing scenarios derived from 

the ranking for NH4, DO, N2O, and NO3 are reported to make a global comparison of the 

performances of both model layouts in defining ranges of parameter values that are best 

performing. Specific distribution of parameters according to NH4, DO, N2O, and NO3 rankings can be 

found in Annex I. 

For the case of YA1 (Figure 6.18), the CM configuration (right) returned a clearly defined range of 

acceptable parameter values as compared to the case of the TIS layout. The YA1 distribution of the 

CM appears to define a normally shaped curve which encounters a maximum frequency around the 

value of 0.1 g COD/g N. The TIS model (Figure 6.18, left) identifies the best performing scenarios in 

the lowest range of YA1, which are less realistic values as compared to the case of the CM.  
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Figure 6.18 – Distributions of overall best performing scenarios for the case of the parameter values 
of YA1 in the dynamic simulations with the TIS (left) and CM (left) layouts. 

KFNA (Figure 6.19), is a known difficult parameter to calibrate which is often abated to values very 

close to zero to force calibration fit (Spérandio et al., 2016). The CM results (Figure 6.19, right) 

show a more pronounced shape of a distribution as compared to the TIS, peaking in frequency 

around the value of 3E-4 g/m3. This is an important indication finally proposing more realistic 

values for this parameter and to revert the general tendency of abating this parameter down to 1E-

6. On the other hand, the TIS layout does not show a definite distribution having almost everywhere 

the same frequency. However, it must be pointed out how the far right edge of the distribution for 

the TIS is slightly increasing in frequency suggesting the possibility of a need for a modification of 

the KFNA domain.  

In this view, it is interesting to consider that, despite the literature studies generally reporting very 

low values of KFNA, the TIS layout reverts this tendency showing this time a propensity for more 

realistic values. Furthermore, it is interesting to point out how the CM model confirms the same 

tendency but with a more pronounced shape of the distribution. This is another confirmation that 

the higher hydrodynamic accuracy of the CM significantly increases the identifiability of some 

parameters. 
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Figure 6.19 – Distributions of overall best performing scenarios for the case of the parameter values 
of KFNA in the dynamic simulations with the TIS (left) and CM (left) layouts 

Finally, looking at KF1, it is interesting how both distributions have a similar shape (Figure 6.20), 

though more pronounced for the case of the CM layout. The distribution of KF1 returned by the TIS 

layout is noticeably flatter than the one returned by the CM. This can be considered another 

indication of the increased identifiability of the KF1 by means of the CM layout. 

 

Figure 6.20 – Distributions of overall best performing scenarios for the case of the parameter values 
of KF1 in the dynamic simulations with the TIS (left) and CM (left) layouts 

Model fits 

The fitting of a model against measured values is the primary target of every calibration and 

modelling exercise. However, before that, the modeler should consider to be working as close as 

possible to an accurate representation of the reality, regarding both physical and biological aspects. 

Thus, firstly aiming to working with realistic parameter values. 

It must be pointed out that the present work does not represent a calibration exercise and model 

fits against measured data were yet not shown with the purpose of focusing the reader’s attention 

in evaluating the ability of a model layout to select its suitable parameter domains. However, for 

completeness, model fits using the best performing scenario are shown in this section for a 

qualitative assessment of the model performances. 
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For the TIS and the CM both layouts the best performing scenario was selected. The best 

performing scenario was chosen according to all variables considered in Step III (NH4, DO, N2O, and 

NO3) using the intersection of the four groups of best performing scenarios. Therefore, this results 

in a trade-off in precision among the different variables used for comparison. In the end, the 

scenario selected for a layout is not the best fitting according to the single variable, but the best 

performing overall.  

For the case of TIS, the intersection group resulted empty, meaning that there is no scenario putting 

in accordance the four groups of best performing scenarios. In particular, the group relative to the 

best performing scenarios for NO3, appears not to have a common scenario with the rest of the 

groups. Enlarging the size of the best performing scenarios for NH4, DO, N2O and NO3, and repeating 

the intersection, a common scenario for all can be found, however, results are reasonably better for 

NO3 but sensibly worst for the rest of the measured variables (not shown). Excluding the NO3 from 

the intersection of the four groups, results in few scenarios of reasonably good performance. The 

best scenario of this selection, was used to show the results of the TIS (Figure 6.21, left). 

For the case of CM, the selection of an overall best performing scenario was less problematic. The 

different groups of best performing scenarios from for NH4, DO, N2O and NO3, were in accordance 

for 39 scenarios. The overall best performing scenario (i.e. scoring the minimum for all the 

variables of comparison) was selected for the simulation results in Figure 6.21 (right). 

Table 6.1 reports the parameter values for the scenario selected for the TIS and CM layouts 

respectively. It is interesting to notice that the difference in YA1 corroborating with what observed 

earlier in the parameter distribution. The same seems to be shown for the KFNA parameter. The 

parameter bA1 is also reported in both the CM and TIS cases as in the range of highest frequency of 

best performing parameters. On the other hand, bA2 assumes in this scenario for the case of the TIS 

layout, higher values than what was observed to be the range of highest frequency of best 

performing scenarios. 
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Table 6.5 – Parameter values for the scenario performing the best according to all variables of 
comparison for the TIS and for the CM layout. 

Parameter TIS CM 

KO_A1Lysis 0.116767 0.103970 

KO_A2Lysis 0.319499 0.623322 

bA1 0.254775 0.177371 

bA2 0.211606 0.031296 

YA1 0.06097 0.103379 

YA2 0.2377 0.126444 

nNOx_A1_d 0.498316 0.565986 

KFA 0.005617 0.003866 

KFNA 0.000292 0.000206 

KI9FA 0.660808 0.703306 

KOA1 0.394944 0.550270 

KOA2 1.217972 1.145907 

KF1 2.230151 6.928328 

KO1_BH 0.758667 0.505318 

 

In Figure 6.21 are reported the model results of the TIS (left) and CM (right) in comparison with 

the measured time series. The TIS model initially accumulates NH4 until DO reaches a reasonably 

high concentration, not matching the measured values. In its final part the modelled NH4 seems to 

approach better the measured profile in its last small peak, however, as soon as DO decreases 

sensibly below 1 mg / L, the modelled NH4 gives a final spike. On the other hand, although the CM 

over predicts DO while the TIS gives its best fit with it, the CM maintains NH4 levels closer to what 

are the measured values. 

In terms of N2O, the CM misses the first peak but maintains a concentration that seems to resemble 

the measured one with reasonable accuracy. On the other hand, the TIS results are showing a 

slightly better detection of the highest N2O peak, while in the second part the modelled profile fades 

away from the second peak. 

The TIS model layout gives the worst performance in terms of NO3, where modelled concentrations 

remain at very low values as compared to the measured profile. The CM layout appears to provide 

modelled NO3 results closer to the reality. Despite the fact that NO3 levels are resulting pretty 

constant from the CM and the peak in the measured NO3 is not detected, the NO3 concentration 

appears closer to the measured NO3 than for the case of the TIS layout. 
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Figure 6.21 – Model outputs of the TIS (left) and CM (right) layouts in comparison with the full-scale 
measurements. 

As specified earlier, this work does not want to be a calibration exercise, and model fits are 

reported for a more complete view. However, the benefits of the use of the CM layout have been 

evidenced once more. 

Considering that the CM is a recent development of the more exploited TIS layout, the performances 

of the CM are showing an important potential and the advantage of increasing the level of accuracy 

of local recirculation and concentrations with respect to the reality. 

The actual calibration exercise targeting a good model fit should require more iterative work. In a 

calibration exercise, the same procedure shown in this work can be used for evaluating the 

performances of each scenarios and refining the parameter ranges. 

6.4. Conclusions 

In the present work, a ranking method and a visualization were proposed for selecting the best 

performing scenarios and providing a qualitative indication of the performance and contribution of 

each metric used. The advantage of the use of different metrics coming from different categories 

was visually proven corroborating the indications from the literature. 

The visual representation of the ranking of the different scenarios in both steady state and dynamic 

simulations, returned interesting clues on the necessity of considering multiple metrics of different 
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nature. Also, the performance of each metric was highlighted in its ranking and the relative effect 

on the overall arrangement of the scenarios providing information on the contribution of the single 

metric and as a whole. 

Plotting the parameter values obtained through the selection of the best performing scenarios, it 

was possible to directly compare the performance of the CM and TIS layouts. The two layouts were 

compared in terms of capability of distinguishing a good operational range for specific parameters. 

In this way the ability of a model layout to resemble the reality by a more detailed description of 

recirculation patterns and hydrodynamics in general is compared in terms of ability for parameter 

identification.  

The use of the CM increases the level of detail in the representation of local concentrations. The 

volume containing the sensors (and therefore providing local concentrations) is much better 

represented in the case of the CM. This improves results significantly. This implies a relevant gain in 

accuracy that allowed to redefine some of the key parameters to acceptable values and obtain more 

defined distributions. 

The CM generally returned a more narrow parameter domain of good values with respect to the TIS 

layout. This indicates that the more detailed description of local concentrations helps in defining a 

narrower domain of key parameters, which will upon calibration improve the model predictive 

power. 

For reaching more precision in the identification of important parameters, more iterative work is 

needed. Nonetheless, important clues were already provided regarding the informative gain from 

the use of CM layout as compared to the canonical TIS configuration. Improvements from the use of 

the CM configuration are already visible at this stage and the potential gain with increasing 

hydraulic details is a tangible result. 

Further developments of the CM will consider the possibility of varying the volumes of the different 

compartments according to the influent flow. This will sensibly increase the level of detail in 

representing local concentrations enhancing the descriptive power of the model. Using variable 

volumes is per se an improved representation of what is the real behavior of the different small 

volumes.  
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Abstract 

The emission of N2O is a relevant issue in wastewater treatment in particular for its large 

contribution to the plant’s CFP. In view of the potential introduction of more stringent regulations 

regarding wastewater treatment plants’ CFP, the availability of a tool allowing the development of 

mitigation strategies for N2O emissions is required. Mechanistic kinetic modelling in full-scale 

applications often appears to be still not mature as some dynamics are not sufficiently understood 

and emissions are strongly plant specific. In particular plant-wide modelling is too often 

represented by a very detailed representation of the biological mechanisms but, at the same time, 

limited by both a poor representation of hydrodynamics and model calibrations on tens of global 

parameters based on few local process variables. This is particularly true for current N2O kinetic 

models. In this chapter, an alternative approach for understanding N2O production related to 

process dynamics is proposed. For the first time a data mining approach was tested on full-scale 

data along with different clustering techniques to identify eventual process criticalities in view of 

developing a tool for N2O emission control. 
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7.1. Introduction 

Wastewater treatment processes can be considered to contribute to global warming in different 

ways, one of which is through the emission of N2O (cfr. 2.2.1). At a global level, N2O is a greenhouse 

and ozone depleting gas of major concern (IPCC, 2013; Ravishankara et al., 2009). Efforts were 

concentrated in understanding the specific bio-chemical processes responsible for N2O production 

(Schreiber et al., 2012) and the WRRF design and operational factors impacting its emission 

(Daelman et al., 2013; Kampschreur et al., 2009; Monteith et al., 2005). 

Measurements on full-scale WRRFs showed that N2O emissions can represent more than 78% of a 

wastewater resource recovery facility (WRRF) CFP (Daelman et al., 2015). In addition to this, 

literature studies show the emission of up to 7% of the influent nitrogen load in the form N2O 

(Kampschreur et al., 2008). However, the fraction of influent N that is emitted as N2O show 

important variations among plants (Kampschreur et al., 2008; Mampaey et al., 2013). 

Considerable efforts have been put into modeling the AOB pathways known to be responsible for 

N2O production (i.e. AOB denitrification and NH2OH) either with a single-pathway solution (Law et 

al., 2012; Mampaey et al., 2013) or considering both AOB pathways (Ni et al., 2014). However, given 

the heterogeneity of WRRF process conditions, the potential variability of N2O emissions, and the 

diversity of available models, consensus on model selection, dominant pathways and on how to 

implement these pathways is yet to be reached.  

At present, most advanced WRRFs have the availability of a large amount of data from sensors 

scattered over the plant, which is largely underexploited. Modern small WRRFs generate up to 500 

signals, whereas larger ones typically register over 30k (Olsson et al., 2014). These data are in some 

sense lost in most of the cases, as they are stored in databases and not transformed into actionable 

knowledge for system optimization. As a result, the investments made for these sensors is only 

marginally payed back. Resources are thus dissipated on installing and maintaining on-line sensors 

without making proper use of potentially hidden information. Sub-optimal operation of WRRFs is 

still the norm rather than the exception (Villez et al., 2016). 

In the literature several applications of data mining tools to wastewater treatment for process 

understanding, monitoring (fault detection), and control of industrial processes such as wastewater 

treatment are reported (Gernaey et al., 2004). Clustering techniques have been applied to 

characterize industrial wastewaters (Dürrenmatt and Gujer, 2011), while Pareto efficiency 

algorithms have been proven to be effective in defining the optimal sensor placement (Villez et al., 

2016). Several variants of PCA have been proven to be effective in the control of different aspects of 

SBRs (Villez et al., 2008). However, to the best of the author’s knowledge, there is neither research 

nor applications of a data mining technique for N2O production monitoring in WRRFs yet. 

In this work, we present a practical application of PCA applied with different clustering techniques 

with the aim of deriving possible relations relatively to N2O production among the variables that 

are normally measured on a full-scale WRRF. 
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7.2. Materials and methods 

7.2.1. Full-scale data 

A dataset of one moth of data from one of the biological reactors of the plant of Eindhoven (The 

Netherlands) (cfr. § 2.3) was used to identify potential clues related to the emissions of N2O from 

this treatment step. The dataset, with a frequency ranging from 1 to 15 minutes, was collected 

during an extensive field measurement campaign. SCADA data available from database of the WRRF 

of Eindhoven and measured N2O concentrations in the liquid, were used to unravel possible 

relations between variables that are normally measured in WRRFs and N2O concentrations 

measured in the liquid phase. The variables monitored from the SCADA system were NH4, NOx, DO 

and Qair, while concentrations of N2O in the liquid phase were measured by means of two full-scale 

probes (Unisense Environment, Denmark) located at the beginning and the end of the summer 

aeration package (Figure 7.1). 

 

Figure 7.1 – Sensors location in the outer ring of the bioreactor of Eindhoven 

The sensors of NH4, NOx, DO and the N2O sensor 2, were located reasonably close to one another, 

whereas N2O sensor 1 was located about 70 m upstream, at the beginning of the aeration 

compartment. This ensured a high resolution of information at the end of the aeration 

compartment, and at the same time a monitoring location for the N2O concentration entering the 

aerated zone. 

7.2.2. Data reduction 

PCA is one of the most flexible and widely accepted multivariate statistical methods for data mining 

and is often used for process understanding, monitoring (fault detection), and control of industrial 

processes such as wastewater treatment (Gernaey et al., 2004; Villez et al., 2008). The principle of 

PCA is to reduce the amount of information available to a smaller number of variables (PCs) 

capable of explaining most of the variance of the dataset. In this way, it is possible to unravel hidden 

dependencies among known key variables. 

A set of variables describing a certain process can be represented by a two dimensional matrix Z 

composed of N samples and M variables (NxM) (Equation (7.1).  
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𝑿 =

[
 
 
 
 
 
𝑥1,1 𝑥1,2 … 𝑧1,𝑗 … 𝑥1,𝑀

𝑥2,1 𝑥2,2 … 𝑥2,𝑗 … 𝑥2,𝑀

⋮ ⋮ ⋮ ⋮
𝑥𝑖,1 𝑥𝑖,2 … 𝑥𝑖,𝑗 … 𝑥𝑖,𝑀

⋮ ⋮ ⋮ ⋮
𝑥𝑁,1 𝑥𝑁,2 … 𝑥.𝑁,𝑗 … 𝑥𝑁,𝑀]

 
 
 
 
 

 (7.1) 

By calculating the scatter matrix (Equation (7.2) of this dataset, or the covariance matrix (Equation 

(7.3) of the standardized data �̃�, it is possible to generate a newly referred dataset expressed by a 

new set of variables which are linear combinations of the original variables (Equation (7.4). 

𝑆 =  ∑(𝑥𝑗 − �̅�)(𝑥𝑗 − �̅�)𝑇

𝑁

1

 (7.2) 

∑ = 𝑐𝑜𝑣(�̃�) =
�̃�𝑇 ∙ �̃�

𝑁
 (7.3) 

Of this new set of variables, the coefficients are the principal components, i.e. the new reference 

system is defined.  

𝑡𝑖,1 = �̃�𝑖,. ∙ 𝒑.,1 = �̃�𝑖,1 ∙ 𝑝1,1 + �̃�𝑖,2 ∙ 𝑝2,1 + ⋯+ �̃�𝑖,2 ∙ 𝑝𝑀,1 

𝑡𝑖,2 = �̃�𝑖,. ∙ 𝒑.,2 = �̃�𝑖,1 ∙ 𝑝1,2 + �̃�𝑖,2 ∙ 𝑝2,2 + ⋯+ �̃�𝑖,2 ∙ 𝑝𝑀,2 
⋮ 

𝑡𝑖,𝐶 = �̃�𝑖,. ∙ 𝒑.,𝐶 = �̃�𝑖,1 ∙ 𝑝1,𝐶 + �̃�𝑖,2 ∙ 𝑝2,𝐶 + ⋯+ �̃�𝑖,2 ∙ 𝑝𝑀,𝐶  

(7.4) 

An interesting property of the 𝒑.,𝑐 vectors is that they are the eigenvectors of the covariance matrix 

𝑆 and the corresponding eigenvalues λc  (Equation (7.5) are equal to the variance of the 

corresponding linear combinations (Johnson and Wichern, 1992). 

𝜆𝑐 = 𝑣𝑎𝑟(𝒕.,𝒄) = 𝑣𝑎𝑟(𝒑.,𝑐 ∙ �̃�)  (7.5) 

Thus, by sorting the eigenvectors according to their eigenvalues and selecting the first 𝑐 of them, 

one has exactly determined the order of the PCs. Another important characteristic of the 

eigenvalues is that the RV captured by the 𝑐𝑡ℎ component can be expressed as in (Equation (7.6): 

𝑅𝑉 =
𝑣𝑎𝑟(𝒕.,𝑐)

𝑡𝑟(𝑺)
=

𝜆𝑐

∑ 𝜆𝑏
max (𝑀,𝑁)
𝑏=1

  (7.6) 

The equation can be explained as the proportional amount of variance captured by the cth PC, and 

is equal to the ratio of its corresponding eigenvalue to the sum of all eigenvalues (Johnson and 

Wichern, 1992). The RCV of all components is the sum of the relative variances of each component 

(Equation (7.7). 
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𝑅𝐶𝑉 =
∑ 𝑣𝑎𝑟(𝒕.,𝑐)

𝐶
𝑐=1

𝑡𝑟(𝑺)
=

𝜆𝑏

∑ 𝜆𝑏
max (𝑀,𝑁)
𝑏=1

  (7.7) 

Once the PCs are identified there are different methods used for data reduction, but the common 

target is to capture a maximal amount of variance with a minimum number of dimensions. For this 

reason a scree plot of the eigenvalues is normally an accepted solution. By plotting the eigenvalues 

corresponding to the PCs in decreasing order, similarly to plotting RV values, the PCs that together 

explain at least 70 % of the variance of the original dataset (Villez et al., 2008) are selected, which is 

a general recommendation as no definite threshold exists to the best of author’s knowledge. 

7.2.3. Clustering 

Most commonly applied clustering techniques are based on two popular methods, i.e. the iterative 

square-error partitional clustering and the agglomerative hierarchical clustering. Clustering 

algorithms in literature can generally be classified into two types: hierarchical clustering and 

partitional clustering. Hierarchical clustering methods include agglomerative algorithms and are 

more efficient in handling noise and outliers than partitional algorithms. On the other hand, 

partitional clustering admit relocation of points from a different cluster thus allowing to correct 

initial partitions in later stages. 

In addition to hierarchical and partitional clustering, a large number of methods are available from 

the literature (Han and Kamber, 2001). One example among the most implemented solutions 

alternative to hierarchical and partitional clustering, is the density-based clustering. This method 

groups a dataset based on specific criterion of the density functions, defining density as the number 

of objects in a particular neighborhood of a dataset. 

Three of the most spread clustering techniques were applied (Pedregosa et al., 2011) in order to 

evaluate the capabilities of grouping relevant information selected by the PCs. In particular, K-

means and the agglomerative clustering are two well-known algorithms already tested in 

wastewater treatment (Dürrenmatt and Gujer, 2011; López Garcı́a and Machón González, 2004), 

while HDBSCAN is a recent improvement of a density based method which, to the author’s best 

knowledge, has never been used in wastewater treatment applications. 

K-means 

The K-means algorithm normally divides the dataset in a number of pre-defined clusters (K) and 

iteratively minimizes the sum of squared errors within the cluster. For doing so, at the ith iteration 

each point 𝑥 is assigned to a cluster based on the following relation. 

𝑥 ∈ 𝑐𝑗(𝑘) 𝑖𝑓 𝑥 − 𝑧𝑗(𝑘) <  𝑥 − 𝑧𝑖(𝑘) (7.8) 

With 𝑐𝑗(𝑘) the set of samples with center 𝑧𝑗(𝑘). At this point, the sum of squared distances for all 

points belonging to the new cluster center is minimized with the sample mean of 𝑐𝑗(𝑘) (Han and 

Kamber, 2001; López Garcı́a and Machón González, 2004).  
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Agglomerative 

This algorithm uses a bottom-up approach, therefore starting with each sample being a separate 

cluster itself. Successively, groups are merged according to a distance measure, similarly to the K-

means case, this is done minimizing the sum of squared differences between two clusters (Ward’s 

method) or using the maximum distances between all observations of the different sets (maximum 

linkage method), but tackling the objective with a hierarchical approach. This recursively merges 

the pair of clusters that minimally increase a given linkage distance (Murtagh and Legendre, 2014). 

The clustering may stop when all samples are in a single group or when the required number of 

clusters is reached. 

HDBSCAN 

Campello et al. (2013), demonstrated that extending the original density based method (DBSCAN) 

(Tan et al., 2005) with a hierarchical clustering algorithm, it was possible to achieve an improved 

application of the DBSCAN. This is one of the latest developments in clustering algorithms 

providing improvements in the results of a wide variety of data (McInnes et al., 2017; Melvin et al., 

2016). HDBSCAN has been observed to be useful for determining a system’s stability by grouping 

stable systems in few bins (Melvin et al., 2016). In this work, HDBSCAN is considered for 

classification of the PCA output given its exceptional results reported in the literature. 

7.3. Results and discussion 

Figure 7.2 shows the time series of the variables acquired from the WRRF of Eindhoven for this 

study. It is noticeable how the peaks in N2O concentration in the liquid phase (and therefore its 

actual production) correspond to peaks in NH4, however, the contrary cannot be stated. The 

production of N2O is in fact related to multiple interchanging factors (cfr. §2.2.1) and therefore 

qualifies as a multivariate problem.  

The N2O sensor 1 (Figure 7.2, top graph), located at the beginning of the aerated compartment and 

the first sensor according to the flow direction, always shows a higher concentrations compared to 

the N2O sensor 2. This is mostly due to the stripping effect of the aeration package, but the high 

concentration of N2O at the end of the anoxic zone confirms its production prior to entering the 

aerobic zone. 

Given the known high volatility of N2O (Weiss and Price, 1980) and the relevant concentrations 

observed by the N2O sensor 2 about 70 m downstream at the end of the aerated compartment, it 

can be stated that the production also occurs within the aerated zone. 

In this view, this is an additional confirmation that multiple pathways of N2O production occur in 

the different zones of a biological tank. The concentrations recorded by the N2O sensor 1 are most 

likely caused by the activity of AOB in DO limiting conditions, while the signal recorded by the N2O 

sensor 2, given the non-limiting levels of DO also during N2O peaks, are most likely to be caused by 

autotrophic NH2OH oxidation. In this picture, another relevant element is the NO2 concentration, 

reported here together with NO3 as NOx, which is strongly influencing the N2O production (cfr § 

2.2.1).  
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Also included in this dataset is Qair supplied as m3/h over the aeration package surface (Figure 7.2, 

bottom). Qair is obviously strongly linked primarily with DO, and then with NH4, given that the 

aeration control is primarily based on the NH4 concentration in the tank. 

These variables are potentially containing most of the information required to develop a 

monitoring tool for N2O aimed at minimizing its emission.  

 

Figure 7.2 – Dataset of an entire month for a bioreactor of the WRRF of Eindhoven. 

The dataset reported in Figure 7.2 contains data of high quality in terms of time frequency and 

sensor status. This is not common for a general WRRFs data stream since periods of missing data 

for maintenance or failures of probes are rather frequent. The dataset shows a period of regular 

operation of the plant, good data quality of the sensors without major failures (only exception 

between 24 and 25th September), and was acquired during a month of good dry weather. This 

represents a good example of training dataset for the application of a data mining technique. 

7.3.1. Data preparation 

Preliminary evaluation 

Pre-processing of the dataset is important in order to clean the time series from outliers, known to 

potentially bias the PCA step, and thus ensure good quality input data for training the model. 

However, in view of a realistic full-scale application, data preparation should be minimized to ease 

automation and generalization of the algorithm in future practice. However, despite the regular 



Chapter 7 Towards N2O emissions mitigation through PCA 
 

7-9 
 

operation of the plant under dry weather over the whole month, feeding the entire dataset to the 

PCA did not return a meaningful output. This means that at least a minimal data preparation is 

needed before implementing the PCA. Therefore, it was decided to use the information contained in 

the entire dataset to build a representative daily pattern for each of the variables.  

Definition of a typical daily pattern 

In order to work with the same time frequency for all variables, seen that the lowest frequency was 

given by the 15 minutes of the SCADA system, a moving window was used to average the N2O 

measurements and report all variables at the same time frequency. In this way, the problem of how 

to fill missing data points from the removal of outliers could also be easily solved.  

Each quarter of an hour contained in a day was grouped in a distribution over the whole month 

from which the 70th percentile was extracted. The 70th percentile of each quarter of an hour of each 

day in the month considered, was observed to return a close representation of a typical daily 

pattern for every variable. Thus, the resulting dataset was composed of representative data points 

describing a characteristic day for each of the variables (Figure 7.3).  

It must be mentioned that a higher percentile, although maintaining the general daily pattern of a 

variable, was observed to discard too much information resulting in less suitable input for the PCA 

step due to the fact that it would return smoother time series limiting the intrinsic variability of 

each variable. Basically, this makes all variables look very similar after passing to the correlation 

matrix, resulting in a PC with very little information.  

On the other hand, using smaller percentiles than the 70th favoured the appearance of less frequent 

daily dynamics and emphasised the noise component of the datasets. After different trials, the 70th 

percentile was observed to be the most realistic representation of what is a typical daily pattern. 

Finally, running a KMO test on the resulting daily pattern, returned a score of 0.53, which confirms 

the suitability of this dataset for the application of the PCA. The same cannot be confirmed for the 

raw data as the KMO scored 0.41. 
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Figure 7.3 – 15 minutes 70th percentile of the raw dataset. This represents a typical daily 24h pattern 
of the WRRF dynamics, and is the input of the PCA. 

By definition, the 70th percentile of a distribution returns the value below which can be found 70 % 

of the observations. This eliminates the most infrequent absolute daily peaks and valleys, but leaves 

the general daily pattern of the dataset and its internal variability. This is the reason why the 

relative concentrations of NH4, NOx and DO in Figure 7.3 are somewhat higher than one would 

normally expect in a correctly managed bioreactor, i.e. concentrations of NOx and NH4 peak above 8 

and 2 mg/L. In this way, treating all variables the same means maintaining the intrinsic information 

of a daily pattern for all variables even though relative values are slightly higher that in reality. 

However, this rises no concern in terms of the application of the PCA since this technique uses the 

correlation matrix (or the scatter matrix) to derive relations between standardized variables and 

therefore is not affected by the relative value of a variable (otherwise Qair would be the most 

influencing seen that its values are in the order of magnitude of 103). 

7.3.2. Application of the Principal Component Analysis 

All variables were fed to the PCA with the exception of the N2O measurements in order to create a 

model composed exclusively of variables that are normally measured in a WRRF and increase its 

applicability on full-scale. In this way, the information contained in those variables can be 

effectively tested for its capability of predicting N2O production.  
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Prior to analysing the PCA response, the contribution to the explained variance for each PC needs to 

be evaluated. The contribution of each PC is reported in the bar chart in Figure 7.4 along with the 

cumulative step curve. From this plot it can be noticed that two PCs are explaining together more 

than 90 % of the variance of the entire dataset, with the first PC containing about 70 % and 20 % 

for the second PC, while the variance explained by the third PC is below 10 %. Therefore, two PCs 

can be considered to describe most of the variability of the four original variables. 

 

Figure 7.4 – Explained variance of the PCA 

The results of the first two PCs are reported in Figure 7.5. It is interesting to notice that two main 

groups of data points can be already distinguished at the positive and negative sides of the x axis. 

The measurements of the liquid concentrations of N2O were used to color the data points according 

to the concentration measured, so to ease the visualization of highly emitting clusters. The left 

graph reports the values of the PCs colored according to the N2O sensor 1, while the data points in 

the right graph were colored according to the concentration measured by the N2O sensor 2. 

The red vectors reported on the scatterplot indicate the degree of correlation (variance explained) 

by a certain PC with respect to each original variable. PC1 is more correlated with Qair and DO while 

PC2 describes the behavior of the nitrogen species. A small correlation of PC1 with NH4 and NOx 

was expectable, given the effect of DO on the nitrogen transformation, as well as the small 

correlation between Qair and PC2 in the direction of NH4, as a result of the NH4 based control. 

Finally, it is important to mention that in the direction of each vector the values of the respective 

variable increase, hence, the expectable opposite directions of NH4 and NOx. The vicinity of the 

vectors relative to Qair and DO suggests that they bring very similar information to the results. 

Both N2O sensors’ highest concentrations are mostly clustered on the positive side of PC1, 

indicating that Qair, and ultimately DO, has a high impact on N2O production. However, the cluster 

forming for both graphs in Figure 7.5 at the negative side of PC2 indicates that NOx has also a strong 

importance on N2O formation. These two groups of data are already suggesting two main types of 

pathways possible for N2O production. Interestingly, the N2O sensor 2, being physically closer to the 
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rest of the sensors in the tank considered for the PCA, is returning a better defined separation 

between high and low N2O concentrations (Figure 7.5, right). 

 

Figure 7.5 – Scatterplot of the first two PCs labeled according to the N2O concentrations in the liquid 
of sensor 1 (left) located at the beginning of the aeration compartment and sensor 2 (right) located at 

the end of the aeration compartment. 

The two groups of data points identifiable for high N2O concentrations, can be interpreted as the 

interchange of the two main pathways already observed to be occurring in this plant (cfr. § 5), i.e. 

AOB denitrification and NH2OH oxidation pathways. The data grouping close to the tip of the DO 

and Qair vectors are related to the highest DO concentrations observed in the time series, and 

therefore most likely to be linked to the NH2OH oxidation pathway.  

The data grouping close to the tip of the NOx axis and closer to the zero of PC1, are more likely to 

correspond to high NO2 concentrations as NO2 is also inherently linked to DO (Peng et al., 2015) 

since lower DO concentrations can lead to higher NO2 concentrations due to the difference in 

oxygen half-saturation index between AOB and NOB (Hanaki et al., 1990; Mota et al., 2005) (cfr. § 

2.2.1). This suggests a possible AOB preference of NO2
 
as the electron acceptor over DO (Bock et 

al., 1995; Kampschreur et al., 2009) and the production of N2O due to AOB denitrification. In 

addition to this, since red dots of N2O sensor 2 reach to the negative side of PC2, this can 

correspond to more limiting DO concentrations associated with the AOB denitrification pathway. 

7.3.3. Clustering 

In view of applying the PCA results on a full-scale control, a clustering technique is necessary for 

automating the recognition of the different N2O production pathways. The three clustering methods 

introduced were applied to the PCA results with the aim of recognizing the different clusters in 

terms of N2O formation and possibly extract more information. 

The different clusters are colored differently to distinguish the different groups. Colors are not 

specific of a single cluster. 
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K-means 

The main input of the K-means clustering method is the number of clusters. The minimum number 

of interesting groups for the purpose of this study is 3 if we focus on the recognition of the two 

main N2O production pathways (i.e. AOB denitrification and NH2OH oxidation) and the zone of low 

N2O production. A number of 4 clusters was also used to further test the algorithm. 

Initializing K-means with 3 clusters (Figure 7.6, left), it is interesting to see how the resulting 

clusters at equilibrium are already nicely divided among the groups previously indicated, 

corroborating with the initial interpretation of the raw PCA results. However, the points closer to 

the NH4 vector should not belong to the cluster of high emissions for NH2OH oxidation. The cluster 

relative to AOB denitrification is instead rather well defined, including also one of the points in the 

negative side of PC1 known to have elevated N2O concentration. 

When 4 clusters were used for initialization (Figure 7.6, right), the resulting cluster responsible for 

N2O formation due to NH2OH oxidation was defined better than in the previous case, although some 

of the points close to the NH4 vector are still included. The cluster attributable to AOB 

denitrification remains the same, while the low emission cluster, closer to the PC2 axis is divided in 

two as expected from the need of dividing the space in 4. 

 

Figure 7.6 – K-Means with 3 clusters (left) and 4 clusters (right). Colors are randomly assigned only 
to distinguish clusters. 

Agglomerative 

Using the Ward’s method, four clusters were needed for initialization in order for the algorithm to 

distinguish the two groups of data known to describe the two main N2O production pathways, i.e. 

AOB denitrification and NH2OH oxidation (Figure 7.7, right). Without the initialization of the 

algorithm to target four final clusters, it was not possible to achieve this distinction. This resulted 

also in the division in two clusters of the group of data linked to small N2O concentrations in the 

same fashion as for the K-means method. 

Initializing the agglomerative clustering to target 3 clusters with the maximum linkage method for 

the iterated merging of initial clusters, the algorithm isolated all three main groups of data, i.e. the 

AOB denitrification, the NH2OH oxidation and the area of low N2O production (Figure 7.7, right). 
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The Ward’s algorithm performed better in terms of time, taking only 1/3 of the time needed for the 

maximum linkage method. The difference in time is probably due to the fact that the Ward’s method 

was able stop one iteration earlier (ending with 4 clusters instead of 3). However, although each 

algorithm performs in the order of few milliseconds, in terms of efficiency for future 

implementation this can be a useful selection criterion to choose between the algorithms. 

 

Figure 7.7 – Agglomerative clustering with Ward’s (left) and maximum linkage (right) methods. 
Colors are randomly assigned only to distinguish clusters. 

Interestingly, for both merging algorithms, the data points close to the NH4 vector are correctly 

grouped with the cluster of data relative to low N2O concentration, corroborating with the results 

discussed in the PCA section. However, few data points corresponding to the negative part of PCs 

and characterized with a rather high N2O concentration by the N2O sensors, were included in the 

low N2O concentration cluster by both algorithms. Finally, the two clusters relative to high N2O 

concentrations coincide for the two methods. 

HDBSCAN 

This clustering method, diversely from the former ones, requires as input the minimum number of 

points to be considered as a cluster. With this feature, the HDBSCAN output can also consider the 

existence of data points not belonging to any of the clusters (reported in black). 

With a minimum cluster size of 4 data points (Figure 7.8, left) the HDBSCAN distinguishes between 

the two clusters of known high N2O concentration. Interestingly, between these two clusters there 

are two black data points not belonging to either of the clusters. This is an interesting result since it 

allows for the existence of points of transition between one cluster and another. However, the data 

points close to the NH4 vector, known to belong to low N2O concentrations or at least expected to be 

classified in a transition zone, are instead grouped with the high N2O concentration due to the 

NH2OH oxidation pathway. 

In the negative part of both PC1 and PC2, the high N2O concentration cluster linked to AOB 

denitrification, and the rest of the clusters close to the PC2 axis, are divided by three black data 

points that the previous clustering methods grouped uncertainly. In fact, these three data points 

seem to lay in a transition zone that only the HDBSCAN is able to detect. 
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The low N2O concentration zone, in the negative side of PC1, is divided into four clusters (Figure 

7.8, left). Although this subdivision is allowed by the minimum cluster size, no physical meaning 

could be found for these different clusters. This granularity of clusters in this part of the graph 

disappears when increasing the minimum cluster size to 9 (Figure 7.8, right). 

 

Figure 7.8 – HDBSCAN with minimum clusters size 4 (left) and minimum clusters size 9 (right). 
Colors are randomly assigned only to distinguish clusters. In black the data points not attributed to 

any cluster. 

Increasing the minimum cluster size to 9 (Figure 7.8, right), sensibly decreases the number of 

clusters on the left part of the plot (corresponding to the lowest concentrations of N2O) while 

maintaining the two clusters relative to high N2O concentration (center and right of PC1). 

Interestingly, the points close to the NH4 vector are still classified within the cluster of high N2O 

concentration for NH2OH oxidation, but more data points were addressed (in black) to the 

transitional points. Therefore, this initialization performed slightly better than the minimum cluster 

size of 4. 

Overall evaluation 

All clustering methods were able to recognize differences among those clusters generated by the 

two PCs resulting from the application of the PCA. The K-means method could sufficiently isolate 

the correct main clusters, however, some imprecisions in the classification of data points close to 

the edge of two neighboring clusters were observed. In this view, the agglomerative method was 

able to identify with more precision those data points that were erroneously addressed by K-means 

to the clusters of higher emission. On the other hand, the HDBSCAN method does not coerce the 

attribution of boundary data points to a cluster and allows to consider the existence of transitional 

zones. This is an important point in monitoring full-scale WRRFs as conditions in AS tanks are 

highly dynamic and transitions from one state to another are continuously happening. 

For an online application, based on their good performances, at the moment both the agglomerative 

method and the HDBSCAN are equally applicable. For discriminating between one method or the 

other would need more testing.  
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For a practical online application, the clustering method chosen, could be initially integrated in a 

supervisory system to alert operators on the possibility of an important N2O production. Based on 

the PCA model built with the training dataset, the online data stream can be projected on the PCs 

space, thus, potentially revealing in which of the clusters related to N2O production the system is. 

Based on the cluster, specific instructions can be proposed. For instance, in the case that the system 

would be directing to the cluster responsible for N2O production due to NH2OH oxidation, the 

operator could evaluate the option of reducing the DO, thus limiting this reaction. On the other 

hand, if the system would reveal to be shifting towards the cluster responsible for N2O production 

due to AOB denitrification, the operator could be prompted to evaluate the possibility of increasing 

the DO concentration. Simple instructions or suggestions deriving from a thorough analysis of 

WRRF data. 

7.4. Conclusions 

PCA was applied to a dataset of the WRRF of Eindhoven for detecting a possible relation between 

variables known to be highly related to N2O production. A PCA model was defined after a small pre-

processing step defining the most typical behavior observed in one entire month for all variables. 

The PCA model could separate the two main N2O production pathways by using two PCs. The 

results show that the two PCs could isolate the main known relations between N2O production and 

plant operation. Both the AOB denitrification and NH2OH oxidation N2O production pathways were 

nicely identifiable. 

In view of applying these results to full-scale, three clustering methods were tested for automating 

the identification of the different regions of the PCA scatterplot. The K-means method could 

sufficiently separate between the two main N2O production pathways, although some of the edges 

of the clusters included data points that could be questionable. Both the HDBSCAN and the 

agglomerative methods successfully differentiated between the two N2O production pathways 

excluding irrelevant points that were difficult to detect.  

Results confirm the potential for defining a new monitoring system for N2O emissions based on 

historical plant data. Operators could be provided with important information deriving from a 

thorough analysis of the AS tank, this in view of a full integration in a SCADA system. Future 

implementations should consider the introduction of MPCA to increase the informative content of 

the original dataset and limit the loss of information in the pre-processing step. 

7.5. References 

Bock, E., Schmidt, I., Stuven, R., Zart, D., 1995. Nitrogen loss caused by denitrifying Nitrosomonas 
cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. 
Microbiol. 163, 16–20. 

Campello, R.J.G.B., Moulavi, D., Sander, J., 2013. Density-Based Clustering Based on Hierarchical 
Density Estimates. pp. 160–172. 

Daelman, M.R.J., De Baets, B., van Loosdrecht, M.C.M., Volcke, E.I.P., 2013. Influence of sampling 
strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water 



Chapter 7 Towards N2O emissions mitigation through PCA 
 

7-17 
 

Res. 47, 3120–3130. 

Daelman, M.R.J., van Voorthuizen, E.M., van Dongen, U.G.J.M., Volcke, E.I.P., van Loosdrecht, M.C.M., 
2015. Seasonal and diurnal variability of N2O emissions from a full-scale municipal 
wastewater treatment plant. Sci. Total Environ. 536, 1–11. 

Dürrenmatt, D.J., Gujer, W., 2011. Identification of industrial wastewater by clustering wastewater 
treatment plant influent ultraviolet visible spectra. Water Sci. Technol. 63, 1153. 

Gernaey, K. V., Van Loosdrecht, M.C.M., Henze, M., Lind, M., Jørgensen, S.B., 2004. Activated sludge 
wastewater treatment plant modelling and simulation: State of the art. Environ. Model. Softw. 
19, 763–783. 

Han, J., Kamber, M., 2001. Data Mining: concepts and techniques. Los Atos, CA. 

Hanaki, K., Chalermraj, W., Shinichiro, O., 1990. Nitrification at low levels of dissolved oxygen with 
and without organic loading in a suspended-growth reactor. Water Res. 24, 297–302. 

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. 

Johnson, R.A., Wichern, D.W., 1992. Applied Multivariate Statistical Analysis, New York. 

Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., van Loosdrecht, M.C.M., 2009. 
Nitrous oxide emission during wastewater treatment. Water Res. 43, 4093–4103. 

Kampschreur, M.J., van der Star, W.R.L., Wielders, H. a., Mulder, J.W., Jetten, M.S.M., van Loosdrecht, 
M.C.M., 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject 
water treatment. Water Res. 42, 812–826. 

Law, Y., Ni, B.J., Lant, P., Yuan, Z., 2012. N2O production rate of an enriched ammonia-oxidising 
bacteria culture exponentially correlates to its ammonia oxidation rate. Water Res. 46, 3409–
3419. 

López Garcı́a, H., Machón González, I., 2004. Self-organizing map and clustering for wastewater 
treatment monitoring. Eng. Appl. Artif. Intell. 17, 215–225. 

Mampaey, K.E., Beuckels, B., Kampschreur, M.J., Kleerebezem, R., van Loosdrecht, M.C.M., Volcke, 
E.I.P., 2013. Modelling nitrous and nitric oxide emissions by autotrophic ammonium oxidizing 
bacteria. Environ. Technol. 34, 1555–66. 

McInnes, L., Healy, J., Astels, S., 2017. HDBSCAN: Hierarchical density based clustering. J. Open 
Source Softw. 2, 205. 

Melvin, R.L., Godwin, R.C., Xiao, J., Thompson, W.G., Berenhaut, K.S., Salsbury, F.R., 2016. Uncovering 
Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge. J. Chem. 
Theory Comput. 12, 6130–6146. 

Monteith, H.D., Sahely, H.R., MacLean, H.L., Bagley, D.M., 2005. A rational procedure for estimation 
of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environ. 
Res. a Res. Publ. Water Environ. Fed. 77, 390–403. 

Mota, C., Head, M., Ridenoure, J., Cheng, J., de los Reyes, F., 2005. Effects of Aeration Cycles on 



Chapter 7 Towards N2O emissions mitigation through PCA 
 

7-18 
 

Nitrifying Bacterial Populations and Nitrogen Removal in Intermittently Aerated Reactors. 
Appl. Environ. Microbiol. 71, 8565–8572. 

Murtagh, F., Legendre, P., 2014. Ward’s Hierarchical Agglomerative Clustering Method: Which 
Algorithms Implement Ward’s Criterion? J. Classif. 31, 274–295. 

Ni, B.J., Peng, L., Law, Y., Guo, J., Yuan, Z., 2014. Modeling of Nitrous Oxide Production by Autotrophic 
Ammonia-Oxidizing Bacteria with Multiple Production Pathways. Env. Sci Technol 48, 3916–
3924. 

Olsson, G., Carlsson, B., Comas, J., Copp, J., Gernaey, K. V., Ingildsen, P., Jeppsson, U., Kim, C., Rieger, 
L., Rodríguez-Roda, I., Steyer, J.-P., Takács, I., Vanrolleghem, P.A., Vargas, A., Yuan, Z., Åmand, L., 
2014. Instrumentation, control and automation in wastewater – from London 1973 to 
Narbonne 2013. Water Sci. Technol. 69, 1373. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., 
Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–
2830. 

Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous Oxide (N2O): The Dominant Ozone-
Depleting Substance Emitted in the 21st Century. Science (80-. ). 326, 123–125. 

Schreiber, F., Wunderlin, P., Udert, K.M., Wells, G.F., 2012. Nitric oxide and nitrous oxide turnover in 
natural and engineered microbial communities: biological pathways, chemical reactions, and 
novel technologies. Front. Microbiol. 3. 

Tan, P.., Steinbach, M., Kumar, V., 2005. Introduction to data mining. Addison-Wesley. 

Villez, K., Ruiz, M., Sin, G., Colomer, J., Rosén, C., Vanrolleghem, P.A., 2008. Combining multiway 
Principal Component Analysis (MPCA) and clustering for efficient data mining of historical 
data sets of SBR processes. Water Sci. Technol. 57, 1659–1666. 

Villez, K., Vanrolleghem, P.A., Corominas, L., 2016. Optimal flow sensor placement on wastewater 
treatment plants. Water Res. 101, 75–83. 

Weiss, R.F., Price, B.A., 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359. 

 



 

 

Chapter 8 

8. General conclusive remarks and future work 

  



 

 

 

  

 



Chapter 8 Conclusive remarks and future work 
 

8-1 
 

The importance of preserving natural resources is (one of) the main challenge(s) of this century as 

global warming and (related) economic/population growth are threatening our renewable, but 

limited, most important resources, i.e. water and air. Preserving the environment is ensuring the 

safety of our water reserves and thus of our health. Surface and groundwater stocks as well as 

atmosphere quality need to be guarded and protected from an uncontrolled and indiscriminate 

economic growth. 

Research efforts and resources are nowadays largely focused on understanding complex human-

environment interactions for providing the most suitable approaches/methods/tools in view of 

limiting the effects of anthropogenic pollution. Environmental awareness has in fact changed the 

human perception of economic growth, driving the new targets of current community evolution to 

ensure the continuation of all human activities but abating their environmental costs at the same 

time. More and more human activities are developed and ameliorated for an improved integration 

in the surrounding environment aiming at very limited or no impact.  

WRRFs are the last point in which we can significantly tackle our environmental impact, the last 

step with which the environment can be preserved from anthropogenic pollution. With improved 

WRRFs our society can gain sustainability and be integrated in the surrounding nature by 

preserving both water and air. 

The research presented in this manuscript, focused on two timely issues that are currently 

important for improved WRRFs, i.e. aeration efficiency and N2O emission. These aspects of water 

treatment have severe effects on both liquid effluent and air qualities. Limiting N2O emission and 

maximizing aeration efficiency means significantly reducing WRRFs CFP while coping with high 

standards of effluent quality limits and improve WRRFs’ sustainability.  

In order to develop proper strategies for optimizing aeration devices use and reducing N2O 

emission, current monitoring methods showed major lacks and the need to be updated and 

improved. As a matter of fact, as it is very challenging to control something that is not fully 

understood ([…] like the sailor who boards ship without a rudder and compass […], if I may 

paraphrase da Vinci), improved methods are needed to comprehend the most effective strategies. 

In processes such as AS tanks, in which the complexity of several concurrent biological activities is 

joined nonetheless by the intricate hydrodynamic behavior of large liquid volumes, suitable 

monitoring strategies are particularly important for understanding spatial and temporal 

heterogeneities and develop insights for targeting appropriate solutions. At the same time, for 

developing appropriate solutions, improved modelling tools are essential.  

In this work, the complexity of aeration efficiency and of the several N2O production processes 

responsible for its emission in the intricacy of biological tanks were investigated. The current work 

focused on improving practical field-monitoring methods, and, regarding N2O emissions, on the 

application of knowledge-base, stochastic and kinetic modelling tools. Nonetheless, the need of 

improved modelling methods for hydrodynamic patterns and gas-liquid oxygen transfer in AS 

sludge tanks is a clear evidence of this work from which N2O mechanistic modelling can 

significantly benefit. 
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Sound measurements can provide fertile ground for solid modelling and further improved 

understanding. At the same time, as modelling is improved, more clues on relevant monitoring 

strategies for limiting human efforts and maximizing the informative input can be produced. A 

synergistic approach between modelling and monitoring represents the most valuable and effective 

strategy for improved understanding and effective control. 
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8.1. Conclusions 

8.1.1. Field measurements  

Instrumentation 

The first part of this work focused on improving the applicability, replicability and reliability of off-

gas measurements. The design, assembling and testing phases of an improved off-gas analyzer were 

reported in consideration of the most important requirements for off-gas testing and providing 

crucial features to be considered when assessing aeration efficiency in WRRFs. Suitability and 

reliability of the new instrument were assessed through deep testing carried out at both lab and 

field scale. 

The off-gas analyzer was provided with the possibility to extend off-gas measurement to N2O 

emission monitoring, examining the most suitable tools for N2O measurements in full-scale 

application in both gas and liquid phases. Nonetheless, a first implementation of an additional 

floating hood was proposed for assessing N2O emissions from non-aerated surfaces. 

Off-gas analysis and N2O emission monitoring methodologies 

Possible improvements to current methods used in off-gas testing and N2O emission assessment 

were provided. As for aeration efficiency measurements, indications on the surface coverage of the 

aerated tank of a point-by-point test were provided with a confidence deviation from the generally 

accepted 2 % rule. A user is provided with an evaluation case of the significance of missing rather 

than additional points. To the user remains the final decision of the most suitable set of 

measurements depending on a trade-off between accuracy and time limitation/costs. 

The effect of plant dynamics on the variability of αSOTE in time and its effect on the assessment of 

local efficiencies was discussed. The time needed for performing a set of off-gas measurements has 

an effect on the local efficiency and a method to consider this variability for a more solid 

comparison of the αSOTE among the different locations was provided as a first step towards a more 

conscious and reproducible assessment of point-by-point off-gas tests. 

A multi-point method for N2O emission assessment was proposed for understanding the dynamics 

of emissions and responsible patterns. This is important especially considering that heterogeneity 

of N2O emissions is a known issue in the determination of a representative EF. Given the 

heterogeneity of AS tanks conditions and the need for validation of current CFD models, a 

synergistic approach between field measurements and advanced modelling can be very useful in 

defining suitable monitoring strategies in both temporal and spatial domain.  

A user friendly method for assessing the contribution of non-aerated zones to N2O emission, was 

provided. Considerations and proposals on the modalities of EF assessment, calculation and 

analysis, were given as a proposal for a proper WRRF classification. The proposed approach allows 

to provide a better understanding of the responsible pathways for N2O production and address the 

most suitable reduction strategies. Reduction strategies need to be plant specific. 
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8.1.2. Modelling emissions from WRRFs 

Different types of modelling strategies were proven to be suitable to the purpose of understanding 

and developing reduction strategies for WRRFs. In this work, the availability of different solutions 

to modelling N2O was highlighted, showing advantages and limitation of different approaches. The 

differentiation of modelling tools is an important aspect of process analysis given the diversity of 

WRRF technologies. 

The large literature knowledge available on N2O production dynamics was proven to be applicable 

to full-scale plants by means of a knowledge-based model. The N2O risk model effectively helped in 

unraveling the dynamics behind N2O production and to identify responsible pathways. The risk 

model was shown to effectively indicate the most probable N2O production pathway based on few 

measurements that are normally available on most WRRFs and difficult to interpret from a naked 

eye. This facilitates the selection of the most appropriate mechanistic model for a given facility and 

helps in defining N2O reduction strategies.  

The level of detail of available mechanistic models has reached a very valuable level. The 

application of this level of kinetic detail to over-simplified spatial representation risks to dissipate 

the informative potential of mechanistic models. The significant discrepancy between biological 

and physical representation of AS tanks is currently the most limiting factor in N2O emission 

modelling. 

Finally, given the large availability of extensive quantities of information from the most advanced 

WRRFs, data mining was proven to be a suitable tool for understating N2O emissions. A large 

amount of information can be condensed in fewer, most informative, variables which can help to 

unravel responsible pathways and possible reduction strategies.  

8.2. Perspectives 

As instrumentation continuously experiences improvements, currently available monitoring 

devices can be periodically updated aiming at reducing capital investments, maintenance, space 

requirements and maximizing automation. In this view, the recent start of the LESSWATT EU-

founded project (LIFE16 ENV/IT/000486), of which the University of Florence is leading and Ghent 

University supports with an important partnership, gives the possibility of continuing the 

improvement of the current off-gas analyzer. In particular, major advancements are regarding the 

fully-automated aspect of the device with an integrated referenced GPS system, reduced 

dimensions of the equipment, full integration of all measuring devices on board, and the availability 

of recent small solutions for integrating on-board the IR technology for N2O measurements in the 

off-gas. 

In the short term, focus should be put on improving the methods provided for both aeration 

efficiency and N2O emission assessment. In particular, as for aeration efficiency, an embedded 

system for defining the accuracy gain in the addition of a new point measurement should be 

included in a new version of the software of the analyzer. Also, improved referencing strategies are 

needed for addressing differences among point-by-point measurements. Regarding N2O emissions, 
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additional multi-point measurements are needed in order to define a suitable number of surveyed 

locations especially for anoxic zones. In this view, the development of advanced models can be a 

very valuable aid. 

Further research in the development of field monitoring strategies for aeration efficiency will 

consider the evaluation of the impact of off-gas sampling locations in case of uneven distribution of 

aerators. In this view, the optimization of off-gas testing methods should involve the use of 

calibrated CFD models to understand the most suitable distribution of point-by-point 

measurements over a tank’s surface. Also, seen the diversity of DO levels in depth, the methodology 

for aeration efficiency assessment should consider to exploit the impact of the DO sensor depth in 

the calculation of αSOTE. Also this investigation could be boosted by hydrodynamic insights as 

completely mixed conditions are nowadays to be considered non existing. On the other hand, as 

CFD models often need robust validations, they could benefit of information coming from off-gas 

testing to consolidate results. 

In addition to this, the αSOTE equation currently in use should be further discussed as the β factor 

is known to be variable and the applicability of this equation to very low DO can be problematic. 

Furthermost, as in conditions of standard temperature, pressure, and zero DO, OTE should equal 

αSOTE, the choice of an appropriate formula for calculating DO at saturation can significantly 

impact reproducibility. 

There are evidences that mechanistic modelling requires more detailed descriptions of 

hydrodynamics. In addition to this, also the oxygen transfer process needs a more refined 

description. These are currently the most limiting features of current physic-chemical modelling of 

WRRFs. Future work should focus on developing better representation of the physical aspects 

which are most influencing the correct biological and chemical representation. In this view, near-

future work should focus on using aeration efficiency measurements as model input in order to 

increase the predictive power of mechanistic models, in view of the availability of more refined 

aeration models.  

The informative potential of WRRFs’ data flow should be further exploited since promising results 

were shown also in case of very complex phenomena such as N2O production and emission. Given 

that the promising results of the data mining application shown in this work were dug out of locally 

measured variables, the possibility of integrating data mining of full-scale measurements with a 

better representation of local conditions might be a new target for future projects.  
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 Annex .I  
This annex reports complementary information concerning the modelling part of §6 on the 

comparison of the TIS and CM spatial model layouts. 

Step I 

 

Annex I. 1 – GSA for the TIS layout with perturbation factor of 10-6. 
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Annex I. 2 - GSA for the CM layout with perturbation factor of 10-6. 
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Annex I. 3 – GSA for the TIS layout with perturbation factor of 10-3. 
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Annex I. 4 - GSA for the CM layout with perturbation factor of 10-3. 
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Step II 

 

 

Annex I. 5 – Check of the correctness of the uniform LH sampling method over the different 
parameters ranges 
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TIS 

 

 

Annex I. 6 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NH4 with the TIS layout 
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Annex I. 7 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of DO with the TIS layout. 
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Annex I. 8 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of TSS with the TIS layout. 
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Annex I. 9 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the overall case with the TIS layout. 
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CM  

 

 

Annex I. 10 – Steady state simulations with the CM layout. Ranking of the scenarios (rows) according 
to the 12 metrics (columns) from the best performing (bottom) to the worst (top) (for NH4, DO and 
TSS respectively from left to right). Each metric is colored according to its internal ranking from 0 to 
1. 
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Annex I. 11 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NH4 with the CM layout 
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Annex I. 12 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of DO with the CM layout 

  



 Annex I 
 

13 
 

 

Annex I. 13 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of TSS with the CM layout 
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Annex I. 14 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the overall case with the CM layout 
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Step III 

 

TIS 

 

 

Annex I. 15 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NH4 with the TIS layout 
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Annex I. 16- Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of DO with the TIS layout 
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Annex I. 17 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of N2O with the TIS layout 
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Annex I. 18 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NO3 with the TIS layout 
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Annex I. 19 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the overall case with the TIS layout 
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CM 

 

 

Annex I. 20 – Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NH4 with the CM layout. 
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Annex I. 21 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of DO with the CM layout. 
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Annex I. 22 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of N2O with the CM layout. 
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Annex I. 23 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the case of NO3 with the CM layout. 

  



 Annex I 
 

24 
 

 

Annex I. 24 - Scatterplot of the parameters reporting both the best (light) and the worst performing 
scenarios (dark) for the overall case with the CM layout 
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