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Synopsys

The problem of star formation is very complex, as it develops over several
time and length scales. Many physical phenomena contribute to the collapse of
a molecular cloud from the creation of the first initial density perturbation to the
last pre-stellar phase. Up to date there is no complete theoretical framework able
to explain all aspects of the star formation process.

Astrophysical context
Stars are forming in the interstellar medium (ISM) inside complexes of gas

and dust known as molecular clouds, where hydrogen is almost completely in the
form of H2. Their densest parts, called cloud cores, if su�ciently massive can
collapse due to their self-gravity and form single protostars, binaries, or stellar
clusters. This process lasts for a few million years and occurs on a time scale of
the order of the free-fall time (Jeans 1902),

t↵ =
 

3⇡
32G⇢

!1/2

, (1)

where ⇢ is the gas density and G is the gravitational constant. The free-fall time is
very short (⇠ 5 ⇥ 105 yr) compared to the age of the Milky Way, about 1010 yr.

A fundamental open question is the low e�ciency of star formation observed
in the Galaxy, that naturally leads to the problem of what physical processes reg-
ulate the rate at which gas turns to stars.

Similar considerations hold for molecular clouds, characterized by masses that
cannot be supported only by thermal pressure. They should be contracting rapidly
and forming stars at a very high rate. This is not observed, thus the slow rate of star
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ii Synopsys

formation requires other sources of support against gravity. Large-scale magnetic
fields and the turbulence of the interstellar gas are two natural candidates.

The magnetic field of a cloud is di�cult to measure. The line-of-sight strength
of the field can only be directly determined observing the Zeeman splitting of line
transitions, and its plane of the sky direction can be estimated via polarization
measurements of background stars, dust emission, or spectral lines. OH Zeeman
observations of dark clouds suggest typical magnetic field strengths of order of
10 µG or less at the typical densities of molecular clouds, and increasing with
density. This value of the magnetic field is su�cient to support clouds.

Pressure support against gravity comes from thermal and turbulent motions
in addition to magnetic field pressure. Observationally, widths of lines can be
used to probe the thermal and the non-thermal motions. Observations of NH3

lines show that low-mass dense cores have subsonic gas turbulence, with velocitiy
⇠ 0.1 km s�1 (with a sound speed velocity ⇠ 0.2 km s�1), whereas in molecular
clouds turbulent velocity is ⇠ 1 km s�1, thus supersonic.

There are two di↵ering views of the global state of clouds. In the quasi-static
view clouds are close to equilibrium, gravitationally bound, virialised and with
long lifetimes (several 106 yr). The equilibrium against self-gravity is provided
by the magnetic field and molecular clouds evolve under gravity, quasi-statically.
This process is rather ine�cient, in agreement with the low rate of stellar birth.
The dynamic point of view emphasises the role of supersonic turbulence and lack
of equilibrium. In this picture clouds form without reaching an equilibrium in
lifetimes of the order of 106 yr. The formation of structures is therefore relatively
fast and driven by the turbulent enhancement of density perturbations. However,
their distribution leads to a low e�ciency of star formation.

Recent results from the infrared ESA satellites Herschel (André et al. 2014)
and Planck (Planck Collaboration 2016) have revealed that star forming regions
are intricate networks of intertwined filaments extending over parsec scales1(see
fig. 1), while polarimetric measurements have shown that the Galactic magnetic
field has a well-defined mean direction on the scales of molecular clouds. Star
formation takes place when the individual filaments composing a molecular cloud
accumulate enough mass per unit length (by accretion from the ambient medium),
become gravitationally unstable and fragment into cores, that eventually collapse

11 pc = 3.26 light years (l.y.) or 3.086 ⇥ 1016 m.
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into stars and stellar clusters.

Summary of the thesis
After a first part of introduction on the main features of the interstellar medium,

where we focus on the properties of molecular clouds and cores, we present the
main concepts of plasma physics theory, magnetohydrodynamics and turbulence.
We then show original work performed in the analysis of the stability and con-
traction of molecular clouds, underlining partial conclusions for each argument
explored. Finally, we summarise our results in the conclusions of the thesis.

In particular, an overview of the physical characteristics of the interstellar
medium is given in Chapter 1. Chapter 2 introduces the physical theories and
the equations of magnetohydrodynamics and turbulence applied to the interstellar
medium. In the framework of the quasi-static theory is then important to char-
acterise the properties of the stability of filaments in cylindrical symmetry both
in an hydrodynamical (HD) and magnetohydrodynamical (MHD) case. In Chap-
ter 3 we show how an isothermal equilibrium model fails to represent the observed
radial density profiles of filamentary molecular clouds, underlining the need for
other contributions to the stability of the cloud. This support can come from non-
thermal motions (turbulence) or from the magnetic field (Toci & Galli 2015a). In
Chapter 4 we demonstrate that the introduction of an helical magnetic field (as
suggested by observations) can both squeeze or sustain the filament, according to
the ratio between the toroidal and the poloidal component of the magnetic field
(Toci & Galli 2015b).

The quasi-static and the dynamic view predict di↵erent life times for a molec-
ular cloud, thus a study focusing on contractions that occur on di↵erent timescales
could give results to confront with both the above scenarios. The timescales in-
volved in the problem are the contracting time, which induces a growth of fluctua-
tions, the non-linear time, which is related to turbulent damping, and the free-fall
time, which characterise the gravitational instability (also known as Jeans time).
In Chapter 5 we generalise a formalism already known in the literature, the ex-
panding box model (Grappin et al. 1993, Verdini & Grappin 2016), that has been
extended to the case of a generic collapse with a diagonal metric. We implement
the latter metric on the numerical ECHO code to perform 3D numerical simula-
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tions. The metric mimics the contraction due to the self-gravity. However, there
are two main limitation: the absence of a Poisson solver to follow the e↵ect of the
gravitation instability, and of feedback e↵ects due to pressure.

In Chapter 6 we show a first analysis made in the HD case, where we perform
an analytical study of the growth of density fluctuations in a core during a gravita-
tional collapse. We point out that generically, the non-linear time scale associated
with dissipative processes is shorter to the time-scale related to the collapse. This
implies that, even if the density fluctuations are amplified during the collapse, they
are smeared out by the non-linear e↵ects before being gravitationally unstable. We
then verified our theoretical predictions with 3D HD simulations with 5123 grid
points performed using the ECHO code (Toci et al. 2017).

In Chapter 7 we show 3D simulations with 5123 grid points performed using
the ECHO code in MHD cases. We study the collapse along the mean magnetic
field direction of a fluid element. This configuration is useful to understand the
mass accretion on filaments (or an anisotropic collapse) which occur along the
mean magnetic field. Our study focus on the temporal evolution of physical quan-
tities of a fluid element, in particular on the ones that can be observed in molecular
clouds (velocity fluctuations, mean density...). Our results seem to indicate that
the ratio between the non linear time tNL and the gravitational time tc of the system
is the key-parameter that sets the time evolution. Indeed, in contractions where
tc < tNL the behaviour of turbulence is ”frozen” and fluctuations in the system are
amplified without any dissipation e↵ect. If tc ⇠ tNL in a first phase fluctuations
are not amplified but sustained. However, after some time the size of the fluid
element becomes su�ciently small and the e↵ect of contraction dominates. In the
case where tc > tNL dissipation dominates in a first phase and fluctuations decay,
however there is always a time where the contraction e↵ect dominates. We also
note that, during a contraction, the pressure e↵ect associated with non thermal
motions becomes quickly comparable with the thermal pressure. When the two
are similar, our model is no more realistic.

Finally, in Chapter 8 we summarise the results we found in previous Chapters
and we present some overall conclusions. In particular, one result is that the non-
thermal pressure contribution we found in MHD simulations is compatible with
the theoretical expectations of quasi-static models. We also outline some guide-
lines for future improvement.
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Figure 1: (a) Photographic image of the Taurus molecular cloud (Barnard 1919); (b) 13CO (J=1-
0) integrated emission map of the same region obtained using the Five College Radio
Astronomy Observatory (FCRAO). Blue crosses mark the location of known stellar
and prestellar objects and the emission colour scale ranges from0.5 to 10 K km s�1

(Goldsmith et al. 2008). Figure taken from Bergin & Tafalla (2007).



1 Introduction

In our Milky Way and in all galaxies, molecular clouds are the places where stars
form. From the formation of the first bound structures in the Universe to the formation of
planetary systems like our Solar System, all these processes are connected to the process
of star formation. In the last years, the studies of the nearest star forming clouds (i.e Taurus
Palmeirim et al. 2013 or Henshaw et al. 2017) with the Herschel Space Observatory, the
millimetre telescopes like IRAM (30 m) and the interferometers like NOEMA and the
Atacama Large Millimeter Array have provided detailed information on the initial and
boundary conditions of this process in a wide range of size scales (from few hundreds
pc to the milli-pc scales) and wavelength (radio, IR, mm, ..). The all-sky map of the
polarized emission from dust at submm wavelengths made by the Planck satellite (Planck
Collaboration 2016) has provided new insight into the structure of the Galactic magnetic
field and the properties of dust. Significant progress has been made also in the theoretical
interpretation and modelling of the observations thanks to the development of numerical
simulations and analytical tools.

1.1 The interstellar medium
The ISM is an important component of galaxies, and represents ⇠ 5 � 10% of their

masses. It is defined as everything that it is in between the stars (Draine 2011). The
ISM is composed of multiple phases, distinguished by whether matter is ionic, atomic, or
molecular, and the temperature and density of the matter; it contains also dust and cosmic
rays. The most abundant chemical specie is hydrogen, both atomic and molecular, helium
and a few percents of heavier elements.

1



2 Chapter 1. Introduction

Most of the volume of the ISM is filled by ionized gas, but its total mass is ⇠ 25%
of the total gas mass (Klessen & Glover 2016). Most of the mass is in regions of neutral
atomic gas (H, He) or molecular gas (H2), in the form of dense molecular clouds that
occupy only 1-2% of the total volume of the ISM. The thermal and chemical state of
the ISM are described using a number of distinct phases. Field et al. (1969), assuming
thermal equilibrium, found two thermally stable solutions: one corresponding to cold,
dense (⇠ 20�50 cm�3) gas with T ⇠ 100 K, now called Cold Neutral Medium (CNM), and
another corresponding to warm, di↵use gas with density ⇠ 20 � 50 cm�3 and T ⇠ 104 K
that is now called Warm Neutral Medium (WNM). This model was extended by McKee
& Ostriker (1977) who found that supernovae exploding in the ISM would create large,
ionized bubbles with very hot gas (T ⇠ 106 K). This hot gas is known as Hot Ionized
medium (HIM). Observation for another phase, the Warm Ionized Medium, came from
di↵erent phenomena, i.e. optical emission lines produced by ionized species such as
O+ and N+ (Reynolds et al. 1973). This ionised gas has a density of ⇠ 0.2 � 0.5 cm�3

and a temperature of ⇠ 104 K. The last phase is the cold, molecular phase. Its density
is 103 cm�3 and it has a small fractional ionisation ⇠ 10�6 (Caselli et al. 1998). The
distribution of this molecular gas in our Milky Way is of interest, as star formation occurs
in these regions.

The large range of temperatures suggest that heating and cooling are important phys-
ical processes in the ISM. The supernova explosions produce the hottest gas that heats up
the ISM by means of shock waves. A second heating mechanism is the ultraviolet radi-
ation of young stars embedded in their parental clouds. Finally, the ionization losses of
the flux of cosmic rays are important sources of heating and ionisation both for the di↵use
neutral gas and for the gas in molecular clouds. Other dynamical sources of heating are
gravitational collapse, ambipolar di↵usion heating and turbulent heating.

Radiation is the most e�cient way in which the thermal energy of the gas is lost.
For high temperature (104 � 107 K) the emission is due to bound-free transition of hy-
drogen, helium and other elements. Between 103 and 104 K, where hydrogen is ionised
by hot, young stars, the main cooling mechanism is line radiation, the resonance lines of
hydrogen or the forbidden line of the oxygen. Below 103 K, molecules and interstellar
dust play important roles in determining the temperature of the gas. There are two main
mechanisms: the first one is the molecular line emission associated with ro-vibrational
transitions of asymmetric molecules such as CO, the second one is the re-radiation of the
radiation absorbed by the dust grains.

Information on the nature of dust come from the measurements of the spectral shape
of the extinction curve that it produces. As a first approximation, individual dust grains
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absorb only those photons with wavelengths smaller or comparable than the physical size
of the grain but are transparent at longer wavelengths. Measurements of the extinction
curve in the Milky Way show that it extends over a large range of wavelengths (Draine
2011). This implies that there must be a wide range of grains present in the ISM. Mathis
et al. (1977) reproduced the extinction curve with a mixture of spherical graphite and sili-
cate grains with a power law size distribution between 50 nm and 0.25 µm. Recent studies
have improved on this simple description. Another important role of dust grain is to act as
a catalyst for the formation of complex molecules (Caselli & Ceccarelli 2012). At a tem-
perature below 103 K dust grains survive to photoevaporation and can perform di↵erent
functions. First of all they absorb ultraviolet and optical light, shielding molecules from
the interstellar flux of dissociating radiations.

Neutral hydrogen (HI) is observed for its emission at a wavelength � = 21 cm. This
line has a very small transition probability, thus it is very narrow. The measure of its
Doppler shift provides the total column density of the neutral hydrogen along the line
of sight. The HI absorption measurements provide information about the small-scale
structure and the velocity dispersion. Many molecular clouds seem to be embedded into
massive halos of atomic hydrogen. These HI superclouds that surround GMC have mass
ranges ⇠ 106 � 107 M� and a density of ⇠ 10 cm�3 (Elmegreen & Elmegreen 1987).

1.2 Molecular clouds
Molecular clouds are the densest and coldest phase in the Galactic interstellar medium.

Gas in these regions is too cold to radiate at visible wavelengths (T ⇠ 10 K), but may be
detected through its radio emission in trace molecules such as CO. As their name implies,
their masses are mostly made by molecular hydrogen (H2) and He (⇠ 26 %), in a range
between 102 M� for the smaller clouds and 107 M� for the giant molecular clouds (Dobbs
et al. 2014). Molecular hydrogen dominates the masses rather than atomic hydrogen (typ-
ical of the rest of the ISM) due to the fact that they are opaque to the UV radiation that
elsewhere dissociates the molecules. There is also an external envelope made by H which
is warmer and less dense. The first observation has been made with the 12CO (1�0) line at
2.6 mm (Wilson et al. 1970) while subsequent observations at higher angular resolution of
high density tracers such as NH3, CS, and HCN revealed the denser regions in which stars
form (Myers & Benson 1983). Recent observations have shown that the evolution of the
chemical complexity is tangled with all the stages of star formation (Caselli & Ceccarelli
2012).

Continuum emission from dust and emission/absorption lines that are emitted by
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Figure 1.1: Integrated Intensity Images for 12CO (top) and 13CO (bottom). The images are ob-
tained over -5 to 20 km s�1 and 3 to km s�1 for 12CO and 13CO, respectively. The
shading bar on the right shows the integrated intensity scale in K km s�1. The 13CO
figure, (Narayanan et al. 2008) also shows overlay outlines of a few well-known re-
gions in Taurus.

molecules such as C, N and O are the main observational tracers of clouds structure
because cold H2 is di�cult to observe for its lack of observable rotational transitions.
The observations of CO are important also because it can be assumed that wherever CO
molecules exist, H2 molecules should also exist, and hence CO is tracing also the molecu-
lar hydrogen. Indeed the excitation process for the CO molecules is via collision with H2,
thus the density of CO provides a measure of the density of H2 in clouds. CO observations
are sensitive to gas at relatively low density (n < 105 cm�3), since CO freezes out onto
dust grains in dense regions, and has a dynamical range of two decades in column density.
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For higher column densities the gas becomes colder and then lines become optically thick.
The best candidates to map higher density regions of molecular clouds are optically thin
emissions lines of isotopes of more common molecules, like 13CO and C18 O. Fig. 1.1
shows CO and 13CO maps of the Taurus molecular clouds (Narayanan et al. 2008). The
12CO J = 1 � 0 integrated emission is mostly di↵use, while the 13CO J = 1 � 0 emission
is mostly distributed within high-contrast filaments. Regions where the dust e↵ectively
blocks the light from background stars are traditionally known as dark clouds.

1.2.1 Properties of molecular clouds

Figure 1.2: Relation of size (S) and velocity dispersion (�), from the Solomon et al. (1987) study
of 273 molecular clouds in the MilkyWay. This fit has a power index of 0.5, the
original figure from (Larson 1981) has a power index of 0.38.

Molecular clouds and star formation are strongly correlated on di↵erent scales. On
the scale of the galaxy, Schmidt (1959) derived an empirical scaling relation between the
average surface density of star formation, ⌃S FR, and the average surface density of the
gas, ⌃gas. Kennicutt (1989) found, assuming a constant H2/CO ratio, in a wide number
of galaxies a power-law correlation,

⌃S FR(M� yr�1 pc�2) /
⇣
⌃gas(g pc�2)

⌘n
, (1.1)

with an index n ⇠ 1.4 ± 0.15. There is also a correlation between the SFR and the H2

density that is currently under investigation (Dobbs et al. 2014). The cloud mass spectrum
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is well reproduced, for masses M > 104M�, with a power-law dN/dM ⇠ M��; Solomon
et al. (1987) found values for � in the range 1.5 - 1.8, implying that most of the mass
is in large clouds. They also measured the sizes of molecular clouds and evaluated their
surface densities ⌃GMC ⇠ 150 M� pc�2 (assuming a fixed CO to H2 conversion factor).
This value can be function of the environments.

Figure 1.3: The variation of �/R1/2 versus the surface density ⌃GMC for the Milky Way’s GMC
from Dobbs et al. (2014). Open circles are points from Heyer et al. (2009) while
the blue points are massive cores from Gibson et al. (2009). The solid and dotted
black lines are gravitationally bound and marginally bound objects respectively. Red
dashed lines are loci of constant turbulent pressure. The mean thermal pressure of the
ISM is the solid red line.

From a dynamical point of view molecular clouds are characterised by line-widths
wider than the ones resulting from the excitation temperature of the molecules (except on
the scale of isolated proto-stellar cores). In addition, observations of molecular clouds
seem to indicate correlations between various properties such as clump size, velocity dis-
persion and mass. Molecular-line studies revealed non-Gaussian line shapes and velocity
di↵erences across clouds due to supersonic motions. These motions are inferred to be tur-
bulent from the lack of systematic patterns like rotation, expansion, or infall (there are not
P-Cygni line profile observed, Heiles & Katz (1976), and from the existence of a system-
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atic power-law relation between the velocity dispersion inside a cloud � and its physical
size L

�(km s�1) = 1.10 L(pc)0.38 (1.2)

(Larson 1981), which is reminiscent of the classical Kolmogorov law of (incompressible)
turbulence (see Section 1.4 and Section 2.3). Solomon et al. (1987) found for the Larson
law a power index of ⇠ 0.5 (see Fig. 1.2). Larson (1981) also noted, using data from
di↵erent molecular clouds surveys, that the density ⇢ scales with the cloud size L as ⇢ ⇠
L↵, too. The value of the exponent is ↵ ⇡ �1.15 ± 0.15 (Falgarone et al. 1992). A more
recent study (Heyer et al. 2009) found an extension of the Larson law,

�(km s�1) = 0.7(⌃GMC/100M�pc�2)1/2(R/1pc)1/2, (1.3)

where the velocity dispersion depends on the physical radius R and from the surface den-
sity of giant molecular clouds, ⌃GMC (see also Fig. 1.3). The kinematics of clouds has
a dependence on density: models of compressible supersonic turbulence show that the
denser the gas the slower is its velocity. This might arise from the convergence of flows
(Padoan et al. 2001). The densest regime corresponds to the dense cores, which are known
to have subsonic velocity dispersion. Therefore, dense cores seem to stay at the bottom of
the hierarchy of cloud kinematics and to represent structures dominated by dissipation of
turbulence (Goodman et al. 1998)

Molecular clouds are well-shielded from UV radiation and this implies that the tem-
perature remains remarkably constant over several orders of magnitude in density (Glover
et al. 2015). This has as a consequence that a simple isothermal equation of state is a
good approximation for the gas, where pressure P and density ⇢ are linearly related, with
the constant sound speed cs as a factor, P = c2

s⇢. The assumption of isothermality breaks
down when the gas becomes optically thick and cooling is no more e�cient. In the local
ISM, this occurs for values of the density above ⇠ 1010 cm�3 (Klessen & Glover 2016).
The equation of state then changes from isothermal to adiabatic with polytropic exponent
�p = 7/5.

Despite their low temperature, molecular clouds are su�ciently dense to make their
pressure exceed the average ISM pressure by at least an order of magnitude. The typical
ISM pressure is around 10�13 erg cm�3 (Bowyer et al. 1995), while at a temperature of
10 K and a density of ⇠ 103 cm�3, the pressure of a typical molecular cloud is larger than
10�12 erg cm�3. In order to explain the high pressure observed in GMCs gravitational
confinement is traditionally invoked (Williams et al. 2000). However, if only thermal
pressure opposes the gravitational attraction given by their large masses, they should be
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collapsing very e�ciently forming stars in a free-fall time (⇠ 5 ⇥ 105 yr). This is not the
case.

A common feature of dark clouds is that they show a hierarchical structure, with
smaller subunits appearing within large ones when observed with increasing spatial res-
olution. To characterize this structure, two di↵erent approaches have been generally
adopted in the literature, depending on whether the discrete or the continuous nature of
the structure is considered. In the first approach, clouds are composed of subunits, re-
ferred to as clumps and defined as coherent regions in position-velocity space that may
contain significant substructures (Williams et al. 2000). The second one describes clouds
as self-similar, at least over some range of scales, thus fractal geometry can be applied.
However this hypothesis breaks down at large scales, where the presence of well defined
structures like filaments indicates a deviation from self-similarity. Also at small scales,
where gravity dominates, this picture is expected to break down. Williams et al. (2000)
have proposed a characterisation of structure in terms of clouds, clumps and cores, with
clumps defined (as above) by their velocity coherence and cores defined as gravitationally
bound, single-peaked regions out of which stars form.

1.2.2 Shape of molecular clouds

Figure 1.4: Fig. a) Optical and infra-red polarisation vectors tracing the magnetic field orientation
displayed over the Herschel/SPIRE 250 µ m image of B211/B213/L1495 region in
Taurus. Fig. b) Structure of the Herschel/SPIRE 250 µm image of B211/B213/L1495
continuum emission. Note that the faint striations are perpendicular to the main fila-
ment. From André et al. (2014).
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In general, dark clouds have highly irregular edges, and their overall appearance is
filamentary and often wind-blown. The presence of long, well-defined filaments was
emphasized already a century ago by Barnard in his studies in the Taurus nebula (Bergin
& Tafalla 2007). Their importance for star formation has been addressed by many authors
with observations, simulations and theoretical models. The Herschel results (André et al.
2014) have pointed out the key role of these structures in star formation process, revealing
an intricate network of filamentary structures in every clouds over spatial scales from the
entire cloud complexes (� 10 pc) to the size of dense cores ( 0.1 pc). Filaments appear
to be very long, ⇠ 1 pc or more and quite linear.

Some filaments seem to be associated to a distinct population of smaller filaments
(Arzoumanian et al. 2011). The denser, self gravitating filaments tend to be perpendic-
ular to the direction of the local magnetic field (see i.e. Fig. 1.4) while the low-density
filaments (also called striations) tend to be parallel to the local magnetic field and appear
unbounded (Planck Collaboration 2016). Detailed studies , i.e (Arzoumanian et al. 2011),
suggest that radial density profiles of the dense, self-gravitating filaments are well repro-
duced by a flat inner part $ f lat = (0.03 ± 0.02) pc and a power-law envelope extending
⇠ 10$ f lat until they merge with the surrounding material. Filaments intersections can
provide local regions of higher column densities, triggering clustered star formation or
high mass star formation.

Gas in filaments is not static, material is falling on the filaments from the surrounding
medium, as observed with the CO emission i.e in B211/B213 in the Taurus cloud, with
typical velocities of ⇠ 0.5 � 1 km s�1 (Palmeirim et al. 2013). The filaments themselves
appear to feed material into hubs where star formation is ongoing, as observed in the
Serpens South, with infall rates of 10�4 � 10�3M� yr�1 (Schneider et al. 2010).

1.3 Dense cores
Low-mass dense cores are localised density enhancements of cloud material and are

associated with the earliest phases of low-mass star formation. Optically they appear
as small, roundish and dark nebulosities (often named in the literature Bok globules or
Barnard objects, see i.e Barnard 68 in Fig. 1.5). They are called ”protostellar” or ”star-
less”, depending on whether they do or do not contain a protostellar object. Such cores
are dense zones of molecular gas of relatively high density which represent the physical
and chemical conditions of interstellar gas just after or prior to localized gravitational
collapse. (Bergin & Tafalla 2007).

Due to the fact that they are dense objects, they can be identified observationally in
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Figure 1.5: Left) B,V,I band (0.44 µm, 0.55 µm, 0.90 µm, 7’ ⇥ 7’) of the dark molecular cloud
B68 taken with ESO’s Very Large Telescope (VLT). The cloud is seen in projection
against the Galactic bulge. At these optical wavelengths it is completely opaque due
to the extinction of background starlight caused by dust. Right) B,I,K band (2.2 µm)
image. The K band image was obtained with ESO’s New Technology Telescope
(NTT). At near-IR wavelengths the cloud becomes transparent. From Alves et al.
(2001)

molecular clouds as compact opaque objects in optical/infrared light or in sub-millimetre
or millimetre continuum emission. In the literature they have been called dense cores
because they showed emission from NH3, excited at densities of > 104 cm�3 (Myers &
Benson 1983).

Cores can vary widely in morphology or shape. They can be rather elongated or
roundish. Their density structure is typically estimated through the analysis of dust emis-
sion or absorption. Three main techniques have been used in the literature: (a) near-IR
extinction mapping of background starlight, (b) mapping of millimetre and submillimetre
dust continuum emission and (c) mapping of dust absorption against the Galactic mid-IR
background emission. A main characteristic of their density profiles is a central flattening.

A simple theoretical model for their density profile is the Bonnor-Ebert (BE) spherical
profile (Bonnor 1956), a solution of the equation of hydrostatic isothermal equilibrium,
characterised by a ”plateau” of quasi-constant density nc at small radii and a power-law
r�2 decrease at large radii. This approximation often (but not always) provides a good
fit to the data (see i.e Fig. 1.6). This could suggest that cores are isothermal spheres
supported only by thermal pressure and confined by outer medium. However, several ev-
idences show that even if thermal pressure is an important ingredient in core structure,
it is not the only one. Cores are indeed seldom spherical, but they appears in projection
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as elliptical objects. In addition, the observed density contrast between the central and
the edge density exceeds the maximum value of ⇠14 allowed for stable BE profile, thus
other forces are needed. Finally, the pressure required exceeds the observed thermal (plus
subsonic non-thermal) pressure of cores, indicating either the presence of other forces or
the lack of equilibrium. Magnetically-dominated models produce equilibrium configura-
tions with flattened density profiles and an approximate r�2 power-law behaviour at large
radii (Lizano & Shu 1989). However, they seem to require a magnetic field strength of
⇠ 50�150 µG, significantly higher than observed (we will discuss magnetic fields in Sec-
tion 1.5). More than 70% of the pre-stellar cores found by Herschel are inside filaments
and this suggests that dense cores form mainly by fragmentation along filaments (André
et al. 2014).

Figure 1.6: Dust column density of of the core Barnard 68 expressed in terms of magnitudes of
visual extinction, Av. The red circles show the data points for the averaged profile
of a sub-sample of the data that do not include the cloud’s southeast prominence.
The open circles include this prominence. The solid line represents the best fit of a
theoretical Bonnor-Ebert sphere to the data. From Alves et al. (2001)

In the ISM the temperature of the dust component and the gas component are in
general di↵erent. In the case of a core, the kinetic temperature of dust and gas components
is regulated by the equilibrium between heating and cooling. At typical core densities
(> 104 cm�3), gas and dust are coupled thermally via collisions, thus the two temperatures
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are expected to be equal. The dust temperature is evaluated using the balance between the
heating by the interstellar radiation field and the cooling due to thermal radiation in the
far-IR emitted by grains. Recent studies (see, e.g., André et al. 2014) have shown that
the dust temperature Td falls from ⇠ 12 K on the exposed surface to ⇠ 7 K at very
small radii, exhibiting an inverse gradient. Also the gas temperature is determined by the
balance between heating and cooling. For lower densities, heating is mostly due to the
ionisation of cosmic rays, while cooling is due to line radiation from molecules as CO
and fine-structure atomic lines. The value of the kinetic temperature Tk, derived from
NH3 transitions, is ⇠ 10 K. For the higher densities also dust-gas coupling collisions
become important and this process can additionally heat or cool the gas according to the
di↵erence between the component’s temperature (linked to the external UV field). Finally,
in contrast with the supersonic velocity dispersion of MC, dense cores have low-velocity
internal motions.

1.3.1 From clouds to stars

Prestellar cores are the direct precursors of stars. The process that starts with molecu-
lar clouds and ends with stars can be subdivided into observationally di↵erent phases (Shu
et al. 1987, Andre et al. 2000). A schematic view is reported in Fig.1.7. The first stage
is related to the fragmentation of molecular clouds into gravitationally bounded cores,
which are supported against gravity by pressure, magnetic field and turbulence. This pro-
cess possibly involves ambipolar di↵usion, dissipation of turbulence or outside impulse
(Fig.1.7(a)). When a condensation becomes gravitationally unstable it collapse isothermi-
cally forming an opaque, isothermal protostar at the center, with a density of ⇠ 1010 cm�3.
Material becomes optically thick, thus the heat generated by the collapse is no longer e�-
ciently radiated away. The central region begin to eats up and the collapse pauses. When
the temperature reaches ⇠ 2000 K, molecular hydrogen start to dissociate, absorbing en-
ergy. The core becomes unstable again and collapses, building up its mass by accretion
from the infalling surrounding medium. Outside the region where the accretion occurs,
the material is still hydrostatically supported. Since the inflow region expands outwards,
this process is called inside-out collapse (Shu 1977). Most of the released gravitational
energy is used to dissociate H2 molecules, then the temperature rises slowly. When all
the H2 is dissociated, the temperature rises and pressure gradients stops the collapse. This
second hydrostatic object is the true protostar (Fig.1.7(b)). This process lasts ⇠ 106 yr.

The core enters into the class 0 phase, in which the central object increases its mass
by the accretion of infalling material from the outer part. During this phase, material with
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Figure 1.7: View of the star and planet formation process. From Glover et al. (2015)

higher angular momentum starts to form a disk orbiting the protostar. The gas is then
transported inwards by viscous processes. In this phase both stars and disk are embed-
ded into their parental cloud, whose mass exceeds the total mass of protostar and disk
together. The main contribution to the luminosity comes from accretion and this object is
observable at sub-millimetre and millimetre wavelength. This phase lasts for ⇠ 3⇥ 104 yr
(Fig.1.7(c)).

Later on, protostellar jets start to clear up the envelope. These powerful, bipolar out-
flows eject only a small fraction of the accreted material. They are believed to remove the
exceeding angular momentum of the infalling material. This is called class I phase, when
the object becomes observable also into optical wavelength and in which the envelope
mass is smaller than the star/disk mass. It lasts for ⇠ 106 yr.

In the class II phase the envelope is dissipated (accreted or dispersed by the outflows,
Fig.1.7(d)). The protostar no longer accretes but it enters into the pre-main sequence
contraction phase, surrounded by a thin disk (with mass ⇠ 10�3 of the star mass). In this
stage planets are believed to form. This phase is also called T-tauri phase. As the time



14 Chapter 1. Introduction

goes on, the disk is more and more depleted and only a tenuous dusty disk remains (Class
III phase, Fig.1.7(e)). This disk can survive until the stellar main-sequence phase (⇠ 107

yr) (Fig.1.7(f)).

1.4 Turbulence in molecular clouds
Turbulence is a multiscale phenomenon that transfers energy from large to the smaller

scales, with the bulk of the energy remaining in the large scales. The observed linewidths
in molecular clouds are always wider than the contribution given by the thermal motions
of the molecules, thus another kind of contribution, a non thermal motion, is needed. For
typical values of MCs n ⇠ 100 cm�3, T ⇠ 10 K) , the viscous dissipation scale is ⇠ 0.1 AU
and the Reynolds number is ⇠ 109 . This high value of the Reynolds number implies
that the motion is turbulent. The Larson’s law is another indication for the presence
of turbulent motion in the ISM (see Chapter 1.2.1). Turbulence in the ISM is highly

Figure 1.8: Cartoon picture of the turbulent energy spectrum. This cartoon shows the relation
between the kinetic energy carried by modes of di↵erent wave numbers k and the
size of di↵erent cloud structures. Turbulence is driven on large scales comparable to
the size L of the cloud (not known) and is dissipated on very small scales (not known).
From Glover et al. (2015).

compressible, magnetised and multi-phase. At large scales (⇠ tens of parsecs) molecular
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clouds show motions dominated by supersonic turbulence, with Mach numbers M ⇠
5 � 20 (Ballesteros-Paredes et al. 2007), turbulent velocities ⇠ few km s�1 (the sound
speed in the gas is ⇠ 0.2 km s�1). These motions are comparable to the typical Alfvén
velocities in molecular clouds (Padoan & Nordlund 1999),

vA =

s
B2

4⇡⇢
, (1.4)

where B is the magnetic field strength in the cloud. At small scales dense cores in gen-
eral have a velocity dispersion where non-thermal, turbulent motions are smaller than the
thermal ones (Myers & Benson 1983) and also independent from scales. Goodman et al.
(1998) and Caselli et al. (2002) coined the term coherent core to describe the fact that
non-thermal motions are subsonic and uniform. The cartoon in Fig. 1.8 shows a compari-
son between the turbulent spectrum and the size of molecular clouds and cores. Goodman
et al. (1998) found that the lower density gas around cores, traced using OH and C18O, has
supersonic velocity dispersions that decreases with size as expected in a turbulent flow,
while the denser gas of the cores, studied using the NH3 line emission, shows a thermal,
constant width. This implies that a transition to coherence has to occur at some point.
Pineda et al. (2010) showed, using a NH3 map of B5 in Perseus, that the sonic region is
surrounded by a region of supersonic turbulence (see Fig. 1.9). The transition between the
two regions is sharp and it occurs in less than 0.04 pc. This transition has been observed
also in other cores.

In absence of external energy input, supersonic turbulence should decay in a driving
scale’s sonic time (also called crossing time) L/� ⇠ few Myr (Goldreich & Kwan 1974),
as demonstrated by simulation conducted for ⇠ 15 years, both in the hydrodinamical and
MHD regime (except the case of imbalanced MHD turbulence, unlikely to occur in MCs,
as reported in Ballesteros-Paredes et al. (2007)). Turbulent linewidth are observed in
MCs. Since turbulent energy is dissipated, energy has to be re-injected in the gas if MCs
have lifetimes much longer than their free-fall times, as found by Blitz & Shu (1980), who
estimated a lifetime of ⇠ 10 Myr. Several mechanism have been proposed in the liter-
ature. If their lifetime is shorter or comparable with the free-fall time (Elmegreen 2000)
turbulence doesn’t have the time to decay and it must be produced within the cloud itself.
Strong density perturbations can be created by supersonic flows in a highly compressible
medium.

The strong density inhomogeneities observed in the ISM can be generated also by
thermal phase transition or gravitational collapse. A first attempt to analytically derive
the density spectrum and a resulting gravitational collapse criterion has been made by
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Figure 1.9: Velocity dispersion map derived from fitting all hyperfine components of NH3(1,1)
along a vertical cut marked by the vertical box in the left panel. The protostar position
is shown by the star, and the line shows the contour Tpeak = 0.5 K. The corresponding
spectra is presented in the right panel. The centroid velocity and velocity dispersion
obtained from the fit are displayed for each position. Top spectra in the right panel
display two main hyperfine components clearly separated thanks to their low-velocity
dispersion (the coherent core), while when moving to positions outside the core the
lines get weaker and broader (evident by the disappearance of the gap between hy-
perfine components). From Pineda et al. (2010).

Chandrasekhar (1951). In supersonic turbulence energy can be dissipated also via shock
waves. They can also transfer energy between di↵erent scales, removing the local nature
of the incompressible turbulent cascade.

1.5 Magnetic field in molecular clouds
The presence of magnetic fields in the Universe is not well understood. The current

paradigm is that magnetic fields in Galactic molecular clouds are the frozen-in fields from
the ISM of the Galaxy, which are generated by galactic-scale dynamo amplification of
seed fields (Crutcher 2012). The magnetic field of a cloud is probably its most di�cult
property to measure. The line-of-sight strength of the field can only be directly determined
observing the Zeeman splitting of line transitions, like, e.g., the 21 cm line or the OH
line, and its plane of the sky direction can be estimated via polarization measurements of
background stars, dust emission, or spectral lines. The splitting of the Zeeman component
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Figure 1.10: Magnetic field (contour) and column density (colour) measured by Planck towards
the Taurus molecular cloud.The colours represent column density. The ”drapery”
pattern indicates the orientation of magnetic field lines, orthogonal to the orientation
of the submillimetre polarization (Planck Collaboration 2016).

is proportional to the square of the wavelength and to the strength of the magnetic field.
Unfortunately, the magnetic field strength is generally small, implying that the splitting
of lines is narrow and often masked by thermal broadening despite the low temperature
of molecular clouds and the presence of several transitions in the radio band. Luckily, the
line-of-sight component of the magnetic field can be measured using the di↵erential line
profile between the two di↵erent polarisation of the emitted lines.

Although the magnetic field only acts directly on charged particles (electrons, ions,
and charged dust grains), its presence can be felt by the neutral material through collisions.
Under most dark cloud conditions, this ion-neutral coupling is highly e�cient and, except
for the densest regions, the field is expected to be frozen into the gas (Stahler & Palla
2005).

Several atomic and molecular species are tracers of the magnetic field in di↵erent
regions of the ISM. For the lower density regions, n ⇠ 102�103 cm�3, HI is used, while for
molecular clouds, n ⇠ 103 � 104 cm�3, the tracer is generally OH. For star forming cores
the best tracer is CN. A Bayesian analysis of molecular Zeeman results (Crutcher et al.
2010) suggests that, for any value of the density, the strength of the magnetic field can be
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⇠ 5� 10 µG. For a comparison, the average strength of Galactic magnetic field is ⇠ 5 µG.
In most molecular clouds turbulent and magnetic energies are comparable; in some cases,
magnetic energy dominates turbulent energy (Crutcher 2012). The maximum strength
of the interstellar magnetic field seems to remain approximately constant at ⇠ 10 µG up
to densities ⇠ 300 cm�3. For larger values of the density, the magnetic field strength
increases with expected increasing density with a power-law exponent  ⇠ 2/3, expected
if gravity dominates the magnetic pressure (Mestel 1966).

Elongated dust grains tend to align their short axis along the magnetic field lines.
Their emission is then linearly polarised. When thermal emission from dust grains is ob-
served, the position angle of maximum emission is perpendicular to the magnetic field
direction projected on the plane of the sky. In the recent literature, observation made by
the Planck Satellite measuring polarisation in extinction from background stars and emis-
sion from dust revealed the orientation of the magnetic field averaged along the line of
sight and projected on the plane of the sky. These studies (Planck Collaboration 2016)
found that regions of higher densities, i.e filaments, have their axis predominantly per-
pendicular to the magnetic field while regions with lower densities have a magnetic field
that appears to be parallel (see i.e Fig. 1.10).

1.6 Virial analysis
The e↵ect of self-gravity on a cloud can be evaluated using a virial theorem analy-

sis.The virial theorem states that

1
2
Ï = 2K + B +W, (1.5)

where I is the moment of inertia of the cloud, K is the total kinetic energy of the cloud
(thermal plus turbulent), B is the magnetic energy andW is the gravity term. The ratios
of the various terms considered in the balance are useful to estimate which forces are im-
portant during its evolution. Two important ratios are the virial parameter, that consider
the value of the internal pressure and bulk motion compared to gravity, and the dimen-
sionless mass to flux ratio, which measures the importance of magnetic field relative to
gravity. These ratios are often expressed in terms of masses.

The virial parameter ↵G = Mvirial/MMC is defined as the ratio between the virial
mass of the cloud, Mvirial = 5�2R/G, where � is the observed velocity dispersion, and
the luminous mass of the cloud MMC . For a cloud with uniform density and no surface
pressure and no magnetic field ↵g = 1 correspond to virial equilibrium and ↵G = 2 to a
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cloud that is marginally bound. Solomon et al. (1987) found a correlation between Mvirial

and the CO luminosity, with a coe�cient that implies ↵G ⇠ 1.
The importance of magnetic forces for the cloud structure is determined by the ratio

↵� = MMC/M�, where the critical magnetic mass M� is the mass for which the magnetic
energy equals the gravitational energy, M� = �/(4⇡2G)1/2 and � is the value of the mag-
netic flux threading the cloud (Mouschovias & Spitzer 1976). The magnetic field alone
cannot prevent gravitational collapse if MMC > M� and the cloud is magnetically super-
critical, while gravitational collapse is prevented if the cloud is magnetically subcritical,
MMC < M� (McKee & Ostriker 2007). Lizano & Shu (1989) showed that initially sub-
critical clouds can become supercritical trought ambipolar di↵usion mechanism. Crutcher
(2012) reported a value for ↵� ⇠ 2 � 3, thus observed clouds are almost supercritical.

1.7 Theories of star formation
The equilibrium state of molecular clouds and the way they collapse under gravita-

tional forces to form stars is a controversial issue. The typical time scale governing the
gravitational collapse of a cloud is the free-fall time (or Jeans time), t↵ ⇠

p
G⇢. Associate

quantities are the Jeans lenght �J ⇠
p

c2
s/G⇢ and the Jeans mass MJ ⇠ c3

s/⇢
1/2G3/2. Per-

turbations with a wavelength � > �J or with masses that exceeds MJ become unstable to
gravitational collapse.

The uncertainties on the strength and direction of the magnetic field and the impor-
tance of the turbulent motions, together with the wide range of lifetimes of MCs (1 � 10
Myr) have resulted in two di↵ering views of the global state of clouds. In the quasi-static
view clouds are close to equilibrium, gravitationally bound, virialised and have long life-
times (several free-fall times: at least 10 Myr). The equilibrium against self-gravity is pro-
vided by the magnetic field and molecular clouds evolve under gravity, quasi-statically.
If the magnetic field is strong enough to make the cloud subcritical, the magnetic field
remains frozen into the matter and gravitational collapse cannot occur. This process is
rather ine�cient, in agreement with the low rate of star formation. Ambipolar di↵usion
removes magnetic support against gravity in cores and triggers collapse when they have
accumulated enough mass (Shu et al. 1987). Evidence that some molecular clouds are
magnetically supercritical goes against this theory.

The dynamic point of view emphasises the role of supersonic turbulence and lack of
equilibrium. Numerical simulations have shown that turbulence decays in about a dy-
namical time, so, without continuous energy injection, it cannot provide support. In this
picture clouds form from convergent flows and evolve without reaching an equilibrium in
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lifetimes of the order of the free-fall time (1 Myr). The formation of structures is therefore
driven by the turbulent enhancement of density perturbations. Compressible turbulence
forms self-gravitating clumps that collapse as soon as the turbulent cascade produces in-
su�cient support. Once the stars are formed, the molecular cloud is disrupted by feedback
processes. The mechanism for this feedback are photoionisation and supernovae. Some
simulations suggest that these mechanism can enforce low star formation rates (Vázquez-
Semadeni et al. 2010). In remains unclear what mechanism might disrupt GMCs.

Turbulence can also prevent large-scale collapse. Supersonic motions can behave like
pressure for structures that have sizes larger than the largest scale of the turbulent motion.
It can also induce local compression at scales smaller than that. Mac Low & Klessen
(2004) showed using an analytical argument that, regardless of the driving turbulence (in-
ternal or external), its e↵ect is to increase the e↵ective Jeans mass as MJ,turb _ v2

turb. Tur-
bulence can be parametrised as an additional ”pressure” component (Vázquez-Semadeni
et al. 1998), a concept that we will address in Chapter 7. However, this is true only if
the turbulence is sustained. If it is allowed to decay, the star formation is more e�cient
because turbulence creates initially dense region and then it decays. Magnetic fields can
decrease the star formation e�ciency.



2 Physical description of the
interstellar medium

Almost all the interstellar medium is in gaseous form, and can be treated as a fluid
(Shu 1992). A fluid is an idealized continuous medium with certain macroscopic prop-
erties such as density, pressure and velocity. The structure of matter at the atomic or
molecular level is important only in fixing relations between macroscopic fluid properties
such as density and pressure, and in specifying others such as viscosity. The observational
evidence of magnetic fields and the ionisation degree already introduced in Chapter 1 al-
lows us to consider the ISM a multicomponent, partially ionised plasma.

A plasma is any state of the matter which has enough free, charged particles to have
its dynamical behaviour dominated by electromagnetic forces: it is the ensemble of the
charged particles and the fields they generate. Note that very low degrees of ionisation
are su�cient to make a gas exhibit electromagnetic properties: with a 0.1% ionisation the
electrical conductivity of a gas is half of its maximum value and with a 8% ionisation the
conductivity is almost equal to the fully ionised value.

Characteristics of a plasma are the quasi neutrality, related to the Debye length �D,
the collision frequency ⌫c, the plasma frequency !p and the Larmor frequency !L. A
definition and description of all these quantities is given in Appendix A.

2.1 MHD approximation
Describing a medium as a fluid or a plasma implies the definition of physical quanti-

ties such as:

⇢(r, t) = mass density, u(r, t) = velocity, P(r, t) = pressure (2.1)

21
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at a particular place with position r at time t. In the fluid description of a plasma ap-
proximations are necessary to reduce the range of possible parameters. Choosing the
plasma regime allows to neglect terms that are negligible in the scales considered. A very
important regime derived from the collisional one-fluid model is the (classical) magneto-
hydrodynamic regime. In order to discuss its validity it is necessary to define a length L
and a time ⌧ characteristic for electric and magnetic field dynamics. If U is the plasma
fluid velocity’s scale value, the MHD regime is defined by the following conditions:

U ⇠ L
⌧

; U << c, (2.2)

where c is the speed of light. The first requirement states that the speed of hydrodynami-
cal and electromagnetic processes have the same order of magnitude, corresponding to a
maximum of the mutual interactions. The second one implies that the macroscopic plasma
motions are non-relativistic.

The starting point are Maxwell’s equations for the electromagnetic field. The first
equations are the conservation ones, both of which are divergence conditions for the fields.
Conservation of magnetic flux, B, given by:

r · B = 0, (2.3)

is given by the fact that there are no charge-like sources for the magnetic field (or, in other
words, there are no magnetic monopoles). The electric field, has a source term, instead.
Its strength, E, follows the conservation law

r · E = 4⇡⇢e, (2.4)

where ⇢e is the charge density. The other two equations are the time-dependent equation
for the evolution of the field components, first for the induction field:

r ⇥ E = �1
c
@B
@t
, (2.5)

and Maxwell-Ampère’s law:

r ⇥ B = 1
c
@E
@t
+

4⇡
c

J, (2.6)

where 1
c
@E
@t is the displacement current and J is the charge current. The displacement

current can be neglected in the MHD regime (it implies also that MHD is a low frequency
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regime, due to the fact that the displacement current becomes important only when the
electric field varies rapidly with time). Because plasma cannot support any internal fields,
the charges cannot separate and the current is determined only by the magnetic field.

Our purpose is to study equilibrium states and the dynamics of self-gravitating ob-
jects, so we need to introduce and define also the gravitational potential V, in order to
consider the gravitational force in the force balance. The gravitational potential is related
to the density through Poisson’s equation,

r2V = 4⇡G⇢. (2.7)

where G is the gravitational constant. The equations of MHD then become:

@⇢

@t
+ r · (⇢u) = 0 mass continuity, (2.8)

⇢
du
dt
=

1
4⇡

(r ⇥ B)⇥B�rP�⇢rV+⇣
"
r2u + r(r · u)

3

#
, Navier-Stokes equation, (2.9)

r ⇥ E = �@B
@t

Faraday’s law, (2.10)

r ⇥ B = 4⇡
c

J Ampère’s law, (2.11)

r · B = 0, no magnetic monopoles (2.12)

E + u
c
⇥ B = ⌘J resistive Ohm’s law, (2.13)

where ⇣ = ⌫/⇢ is the kinetic viscosity and ⌘ is the electrical resistivity of the plasma and
d/dt the convective derivative. If the plasma is su�ciently collision dominated for the
fluid picture to apply, but the resistivity appearing in equation (2.13) is negligible, the
right-hand side of eq.(2.13) may be neglected:

E + u
c
⇥ B = 0 ideal Ohm’s law. (2.14)

This equation means that there is no electric field in the rest frame of the fluid. These
equations, with the ideal Ohm’s law and ⇣ = 0 in eq. (2.9), constitute the ideal MHD
equations, which is usually contracted to MHD. The inclusion of eq. (2.13) and ⇣ , 0
is called resistive MHD. Note that an energy equation or an equation of state (EOS) is
needed to close the system. In this work we will use two di↵erent equations of state, the
isothermal EOS

P = c2
s⇢, (2.15)



24 Chapter 2. Physical description of the interstellar medium

and a polytropic EOS. In particular, we will assume that the relation between the pressure
and the density has a simple power-law form:

P = K̂⇢1+1/n (2.16)

where n̂ is called the polytropic index. It is one of the most generally used forms for the
(EOS), expecially in thermodynamics1. In this work we will use a di↵erent notation for
the polytropic equation, in order to follow the definitions of Li & Shu (1996) and Galli
et al. (1999).

dP
d⇢
= K⇢�(1��p), (2.17)

where �p is the polytropic esponent, �p = 1 + 1/n . In the limit of �p ! 0 (or n ! �1),
the EOS becomes logatropic, P ⇠ ln ⇢, a form first used by Lizano & Shu (1989) to
mimic the non-thermal support in molecular clouds associated with the observed super-
sonic line widths. The MHD equations have to be solved given some initial and boundary
conditions.

The ideal Ohm’s law couples the fluid to the fields. In this case, the Alfvèn theorem
proves that the magnetic flux is conserved2. This means that the field lines are frozen into
the fluid, thus that the magnetic field topology is an invariant. Using the resistive Ohm’s
law even a small value of resistivity will allow the field lines to di↵use and its topology
will be not conserved.

It can be shown that ideal MHD possesses the following conservation properties3:

• conservation of mass;

• conservation of momentum;

• conservation of energy (both mechanical and electromagnetic);

• conservation of magnetic flux.

A very important parameter is �, the relative importance of plasma kinetic to magnetic

1The polytropic index is usually indicated as � and is equal to the ratio of the specific heats.
For a perfect gas, one composed of identical particles with only translational degrees of freedom
and no additional correlations in the distribution function, this ratio is 5/3. In our study, we denote
the polytropic exponent as �p to indicate a generic index in the pressure-density relation applicable
to a variety of situations relevant for molecular clouds and cores.

2See, e.g., Stahler & Palla (2005) or Chiuderi & Velli (2015) for a demonstration.
3For a complete study see i.e Stahler & Palla (2005) or Chiuderi & Velli (2015).
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pressures, defined as

� =
P

(B2/8⇡)
=

2
3

Eth

Emag
. (2.18)

The thermal energy density is Eth = 3/2P and the magnetic energy density is Emag =

B2/8⇡. If � � 1 the system is dominated by hydrodynamical e↵ects, while when � ⌧ 1
magnetic e↵ects are dominant.

2.1.1 Force-free fields
If the Lorentz force dominates the pressure gradient and the gravitational force in eq.

(2.9), the force balance reduces to

1
c

J ⇥ B = 0. (2.19)

The electric current flows along magnetic field lines and, since it is given by Ampere’s
Law (2.11), eq. (2.19) can be written as

r ⇥ B = B (2.20)

where  is some function of position and it is required to be constant along each field line.
Indeed, taking the divergence of eq. (2.20) the left-hand side vanishes identically and the
right-hand side reduces to B · r = 0, which implies that B lies on surface of constant 
(as does also j).

2.2 Ambipolar di↵usion and magnetic reconnection
In the quasi-static scenario (See Section 1.7) MCs resist self-gravity through both

thermal pressure and magnetic forces. There are two ways by which an initially stable
cloud, like a starless dense core, can dissipate magnetic field and evolve to the point of
collapse: ambipolar di↵usion and magnetic reconnection. However, only the charged
species sense the magnetic field. Electrons and ions, gyrating around B, collide with the
neutrals, and the drag resulting on the latter helps to counteract gravity. The drag force
per unit volume between the neutral and the charged components is related the product
of the density and relative velocity of that species. If the cloud’s level of ionization is
su�ciently low, these relative speeds become appreciable. The neutrals then gradually
drift across magnetic field lines in response to gravity. As a consequence there is a loss
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of magnetic flux, the contribution of the cloud’s magnetic field to the stability decreases,
and then the cloud contracts until it eventually becomes unstable to collapse.

Electrons and ions must be moving at very nearly the same velocity. For a cloud of
size L, then L/|ui � ue| is much longer than the time over which the cloud evolves. For
a dense core with L = 0.1 pc, B = 30µ G, nH2 = 104 cm�3, and ne = 5 ⇥ 10�8nH2, this
time is of order 1010 yr. Electrons and ions can be considered as a single plasma drifting
relative to the neutrals. the drift velocity vdrift = ui � u resulting in a modification of the
Ohm’s equation,

@B
@t
= r ⇥ (ui ⇥ B) = r ⇥ (u ⇥ B) + r ⇥ (vdrift ⇥ B). (2.21)

This equation shows that flux freezing still holds if the conductivity is large enough, but
implies that the electrons and ions are tied to B, while the neutral atoms and molecules in
the cloud slip past.

The drift velocity introduces also a relevant time scale, ⌧ad ⇠ L/|vdrift|,

⌧ad ⇠ 3 ⇥ 106 yr
✓ nH2

104 cm�3

◆3/2
 

B
30 µG

!�2  
L

0.1 pc

!2

. (2.22)

Comparing this result to the estimate for cloud lifetimes (106 � 107 yr), we see that vdrift

is indeed significant. In the quasi-static view ambipolar di↵usion is the main process
setting the rate at which dense cores evolve prior to their collapse. Fig. 2.1 shows the
comparison between the relevant dynamical timescales, that is the free-fall and ambipolar
di↵usion times, with the chemical timescales, depending on cosmic rays and freeze-out of
molecules. The free-fall timescale is given by Eq. (1), the ambipolar di↵usion timescale
assumes a degree of ionisation = 2 ⇥ 10�8(nH2/105 cm�3)�1/2, the cosmic-ray timescale
has a constant dependence on the density while freeze-out has linear dependence on the
density. The ampipolar di↵usion time is the longest time-scale while the free-fall time is
the shortest. The chemical time-scales are important to estimate the degree of ionisation,
which is related to the flux of cosmic rays, and the density of molecular clouds.

The assumption that the ion-electron plasma acts like a perfectly conducting fluid can
break down. At su�ciently high densities, the field being dragged undergoes magnetic
reconnection. This process e↵ectively destroys magnetic flux before it can be transported
onto the star and its disk. Reconnection usually occurs whenever field lines of opposite
direction are pressed together, but it is su�cient that the component of B along some given
direction changes sign when moving across the associated current sheet. Magnetic energy
is dissipated as heat within a restricted region. Here, antiparallel lines annihilate one
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Figure 2.1: Plot of various chemical and dynamical timescales shown as a function of the H2
volume density. In this plot, the cosmic-ray timescale is set by the time for any change
from an equilibrium state to be reset by cosmic-ray powered chemistry. Figure taken
from Bergin & Tafalla (2007).

another, changing the field topology. From a mathematical perspective, the last, Ohmic
term in the MHD equation (2.13) increases until it becomes dominant, regardless of the
specific conductivity value. This process occurs on time-scales shorter than the ambipolar
di↵usion, thus the associated time-scale for molecular clouds evolution is comparable
with the one given by the dynamic theory of MCs formation.

2.3 Basics of Turbulence
In the theory of star formation turbulence is an important ingredient, as already de-

scribed in the previous Chapter. Thanks to theoretical e↵orts and numerical simulations
significant progress has been made in understanding the e↵ects of turbulence in MC, cores
and SF. The classical picture of incompressible turbulence (Kolmogorov 1941) is a good
description for turbulent flows with velocity fluctuations that are smaller than the speed
of sound. For subsonic turbulent flows density fluctuations are negligible.

The key-assumption made by Richardson (1920) is that the kinetic energy is injected
into the system on some well-defined, large scale L, and that it cascades through a se-
quence of eddies of decreasing size until the size of the eddies becomes comparable to
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the mean free path. The kinetic energy associated with eddy motion is converted into heat
(random thermal motion) and dissipated away (see e.g the review by Glover et al. 2015).

In the hydrodynamical case, one need to consider the continuity and Navier-Stokes
equations,

@⇢

@t
+ u · r⇢ = �⇢r · u, (2.23)

@u
@t
+ u · ru = �rP

⇢
� rV + ⇣

"
r2u + r(r · u)

3

#
, (2.24)

coupled with Poisson’s eq. (2.7) and the EOS (i.e. 2.15 or 2.17); ⇣ = ⌫/⇢ is the kinetic
viscosity over density in the units cm2 s�1. In the Navier Stokes equation, the second term
on the left is called the advective term, and represents the transport of momentum by the
component of the velocity and it is responsible for non linear interactions. The pressure
gradient term counteracts pressure and density gradients across the flow while the viscous,
di↵usive term, tends to smear out velocity gradients in order to produce a uniform flow
(see e.g the review by Vazquez-Semadeni 2012).

At any spatial scale ` the spatial derivative r can be approximated as ⇠ `�1, thus
advection and viscous terms can be compared. If u` is the typical velocity fluctuation on
scale `

(u · r)u ⇡
u2
`

`
and ⇣r2u ⇡ ⇣ u`

`2 . (2.25)

This ratio defines the dimensionless Reynolds number on that scale,

R = u``
⇣
. (2.26)

A flow becomes unstable and changes from being laminar to turbulent if the Reynolds
number exceeds a critical value Re,cr ⇡ few 103. In the ISM, the Reynolds number can
easily exceed this values of several order of magnitude, as reported into the Introduction,
indicating that the ISM is highly turbulent.

Turbulence is an unsolved problem. In Kolmogorov’s picture turbulence forms eddies
on a wide range of di↵erent length scales after some driving mechanism injects energy on
some larger injection scale L. The energy contained in large eddies is transported down to
smaller and smaller ones in an inviscid way until it reaches scales that are small enough
so that molecular di↵usion becomes important. Kinetic energy turns into random thermal
motion and may be radiated away. An estimate of the energy cascade rate through eddies
of size ` is

✏ ⇡
u2
`

t`
⇡

u3
`

`
(2.27)



Chapter 2. Physical description of the interstellar medium 29

where ✏` is the flux of energy flowing from the scale ` to smaller scale in an eddy turnover
time. When ✏ is constant, energy is transferred to smaller scales without being dissipated.
This defines the inertial range of the turbulent cascade. It ends when the local Reynolds
number approaches unity at a dissipation scale `d. The inertial range covers the scale
between L > ` > `d. An estimate of the size of the inertial range can be obtained using the
requirement that R ⇠ 1 on the dissipation scale, thus L/`d ⇠ R3/4. A constant cascade rate
implies that the typical eddy velocity changes with eddy scale as u` = ✏`1/3, which leads
to the Komogorov spectrum for isotropic incompressible turbulence E1D (Kolmogorov
1941),

E1D ⇠ ✏2/3k�5/3. (2.28)

Observations of nearby molecular clouds are in agreement with this picture of the turbu-
lent cascade. The energy seems to be carried by large-scale modes, indicating that the
turbulent velocity field in these clouds is driven by external sources (see e.g the review by
Glover et al. (2015)).

However, observed turbulent velocities in molecular clouds are in general not small
compared to cs (as pointed out in the Introduction, molecular clouds have sonic Mach
numbers ofMs ⇠ 5, while cores are transonic or subsonic, with 0.5 < Ms < 1). There-
fore Kolmogorov theory cannot be strictly applied. The gas is compressible and energy at
a given scale can be also dissipated via shocks, rather than be conserved through interme-
diate scales until it reaches the dissipation scale.

2.3.1 Compressible turbulence and Burgers equation

In the limit of highly compressible turbulence the flow can be described as a network
of interacting shock fronts. If pressure gradients can be neglected (u > cs) we obtain the
Burgers turbulence (Frisch & Bec 2001). Burgers (1948) simplified the Navier-Stokes
eq. (2.24) by dropping the pressure term and studied the non-linear partial equation in one
spatial dimension,

@u
@t
+ u

@u
@x
= ⇣

@2u
@x2 . (2.29)

This simplification makes possible to study the transition between the linear and the non
linear phase. However, it has been shown that the homogeneous Burger’s equation does
not exhibit chaotic features like sensitivity to initial conditions (Hopf 1950), which are
characteristic of turbulence.
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2.3.2 Magnetohydrodynamical turbulence
Molecular clouds are magnetised, being embedded in the Galactic magnetic field.

Turbulence in a magnetised system is di↵erent from the unmagnetised case because there
are additional wave families and non-linear couplings involved. The energy spectrum of
MHD turbulence is not well constrained. The presence of a strong magnetic field B makes
the system anisotropic.

The classical theory has been made by Iroshnikov (1963) and Kraichnan & Nagarajan
(1967). In this theory eddies can travel along field lines and then the interaction time
is reduced, weakening the cascade. The time between two interactions is tA ⇠ (kvA)�1,
while the change in velocity is estimated from the non-linear advection term �u`/u` /
u`/vA. Assuming a constant energy flux at all scale it can be found that u` / `1/4 and
that the energy spectrum E(k) / k�3/2 (see e.g the rieview of Hennebelle & Falgarone
2012). This is the spectra for MHD turbulence under the assumption that the eddies are
isotropic, i.e. have the same spatial extension in the parallel and perpendicular directions.
However, numerical results and observational data indicate that in MHD turbulence the
energy transfer occurs predominantly in the direction perpendicular to the field (see e.g
Biskamp 2003).

Goldreich & Sridhar (1995) introduced for incompressible MHD turbulence the idea
of a critically balanced anisotropic cascade (i.e kkvA ⇠ uk?). They suggested that as the
energy cascades to smaller scales, turbulent eddies progressively become elongated along
field lines. The energy transfer time is di↵erent from the Iroshnikov-Kraichnan estimate,
and equal to the Kolmogorov one. The field-perpendicular energy spectrum is predicted
to be E(k?) / k�5/3

? .
The above phenomenologies help to understand the main feature of the turbulent dy-

namics. However, the research field is still active with new emerging phenomenology
that need to be verified. Unfortunately, for the case compressible gas and moderate or
strong magnetic fields, that describe molecular clouds state, there is no conceptual theory
as above to characterize the energy transfer between scales.
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2.4 Outline
In the next Chapters we will describe our original work. This thesis focus on the

study of the stability and contraction of molecular clouds. In particular, Chapter 3 and
Chapter 4 focus on the stability of molecular clouds. In both Chapters we suppose that
the evolution of filamentary molecular clouds can be described as a series of hydrostatic
(Chapter 3 Toci & Galli 2015a) or magnetostatic (Chapter 4 Toci & Galli 2015b) models,
and we studied their radial density profiles and stability properties. Beside the quasi-
static evolution, molecular clouds start to contract. We are interested in understanding the
phase of dynamical collapse and, in particular, the evolution of the physical properties of a
fluid element during this process. In Chapter 5 we describe the theoretical and numerical
framework needed to describe the contraction of a cloud and the implementations we
made. In Chapter 6 we applied our scheme to study the growth of density perturbations
and the formation of sub-structures and fragment in pre-stellar cores (Toci et al. 2017).
In Chapter 7 we show the analysis performed for the case of a contraction of a fluid
element along a mean magnetic field, in order to study the mass accretion of filaments, and
we compute numerically the time-evolution of the relevant physical quantities (density
contrast, velocity fluctuations..). Conclusions and future improvements are described in
Chapter 8.





3 Equilibrium of hydrostatic
filamentary structures

The filamentary structure of molecular clouds has recently received considerable at-
tention, as shown in the Introduction. From a theoretical point of view origin, the physical
state (whether they are or are not into some kind of equilibrium) and evolution of inter-
stellar filaments still have to be fully understood. However, observationally, star forming
cores are found in filaments that are predicted to be gravitationally unstable on the basis of
equilibrium models, thus some kind of equilibrium theory could be a reliable description
for these clouds. In this Chapter we will analyse the radial density profiles of filamentary
clouds and their stability with respect to collapse. We will also use the observed proper-
ties (from Arzoumanian et al. 2011) to draw some conclusions on the relative importance
of various mechanisms of radial support (or confinement) of these clouds.

Theoretical studies focused on di↵erent kinds of possible physical states for filaments,
as reported in Andre et al. (2000), i.e. a) structure in a HD or MHD somehow stable
equilibrium, b) equilibria with a considerable amount of radial accretion, c) collapsing and
fragmenting systems that are the product of unstable equilibria, and d) highly dynamical
systems that are not reproducible with equilibrium models. A parametrisation of the radial
density profile that reproduces the basic observed features is a softened power-law profile

⇢($) =
⇢c

[1 + ($/$flat)2]↵/2
, (3.1)

where ⇢c is the central density, $ is the radial distance from the cylinder axis and ↵ is a
parameter. For ↵ = 4, Stodólkiewicz (1963) and Ostriker (1964b) found that eq. (3.1) is
an exact solution of the equation of hydrostatic equilibrium for a self-gravitating isother-
mal cylinder, hereafter referred to as the isothermal density profile. In this case $flat =

(2c2
s/⇡G⇢c), where cs is the isothermal sound speed.

33
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Arzoumanian et al. (2011), in her study with the Herschel satellite mapped di↵er-
ent clouds, IC5146, Aquila and Polaris, found that the power-law slope ↵ is significantly
di↵erent from ↵ = 4: on average, ↵ = 1.6 ± 0.3. This implies that the gas in these fila-
ments obeys a non-isothermal equation of state, and then a case relaxing the hypothesis of
thermal support should be explored. We will show in Sect. 3.2.1 that filamentary clouds’
radial density profiles are well reproduced by assuming an equations of state “softer” than
isothermal. This means that they are unlikely to be thermally supported, in agreement with
recent observations. In this case, as shown by Viala & Horedt (1974b) the behaviour of
cylindrical clouds with respect to gravitational instability becomes essentially analogous
to that of spherical clouds (see Sect. 3.3).

In order to obtain some properties of basic hydrostatic equilibrium theory that are
relevant in real molecular clouds we multiply Poisson’s eq. (2.7) written for a cylinder of
infinite length by $, then we integrate from the center to the outer radius $̂, obtaining the
self-gravitational force per unit mass Fg,cyl,

Fg,cyl =
dV
d$

����
$=$̂
= 2

Gµline

$̂
/ 1
$̂
, (3.2)

where µline is the mass per unit length. The pressure gradient force per unit mass, Fp,
using a polytropic EOS p / ⇢�p (See also eq. (2.16)), is

Fp =
1
⇢

@P
@$
/ $̂1�2�p , (3.3)

showing that the ratio between the two forces depends on �p, as Fp/ fg,cyl / $̂2�2�p . This
implies that, if �p > 1, pressure forces will give support against self gravity at some radius
$̂, while if �p < 1 filaments will undergo radial collapse indefinitely once started. The
critical case �p = 1 represents hydrostatic equilibrium if the two forces are equal. Then
we can find for an isothermal cylinder of infinite radius a finite mass per unit length,

µiso =

Z
2⇡⇢iso$d$ =

2c2
s

G
= 16.5

✓ T
10 K

◆
M� pc�1. (3.4)

In this case the critical mass per unit length depends only on the gas temperature. With
similar considerations, for a spherical cloud �p,crit = 4/3 while for a sheet �p,crit = 0.
Sheet-like clouds always have an equilibrium configuration because the internal pressure
gradient can always be su�ciently strong to stop the gravitational collapse independently
from the initial configuration, as shown by Miyama et al. (1987).

The radial collapse of isothermal cylinders cannot be halted for µline > µiso, thus equi-
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librium states are never possible, while if µline < µiso gravity will never dominate and
collapse will halt at some finite radius. This has been pointed out by McCrea (1957). In
his work he found a fundamental di↵erence between the behaviour of isothermal spher-
ical and cylindrical interstellar clouds with respect to gravitational collapse: while for a
spherical cloud of given mass and temperature there is a maximum value of the external
pressure for which an equilibrium state is possible (the Bonnor-Ebert criterion), a cylin-
drical cloud can be in equilibrium for any value of the external pressure, provided its
mass per unit length is smaller than a maximum value. Thus filamentary (or sheet-like)
clouds must first break up into fragments of roughly the same size in all directions before
gravitational collapse (and therefore star formation) can take place.

In particular, we will perform an analysis of the stability of filamentary clouds in anal-
ogy with the theoretical studies of spherical clouds made by McKee & Holliman (1999),
underlying the need for non-isentropic models in order to reproduce the observed large
density contrasts. The stability properties of polytropic cylinders can be characterised, as
in the case of spherical polytropes, with the polytropic exponent �p, that determines the
spatial properties of the filament, and with the adiabatic exponent �, that characterises the
temporal response of the cloud to adiabatic perturbations.

3.1 Radial density profiles of filamentary clouds

3.1.1 Basic equations

Neglecting magnetic fields, the structure and evolution of a self-gravitating filament
is governed by the force equation

(u · r)u = �rV � 1
⇢
rp, (3.5)

and Poisson’s equation
r2V = 4⇡G⇢. (3.6)

The left-hand side term in eq. (3.5) represents the contribution of dynamical motions on
the momentum balance. These are the laminar and turbulent flows related to the forma-
tion of the filament and/or produced by the gravitational field of the filament itself. In a
cylindrical coordinate system with the z axis along the filament’s axis and the $ axis in
the radial direction, assuming azimuthal symmetry (@/@' = 0), and neglecting rotation,
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the component of the left-hand side of eq. (3.5), that is only radial, reads

(u · r)u =
 
u$

@u$
@$
+ uz

@u$
@z

!
ê$. (3.7)

The first term in eq. (3.7) represents an external ram-pressure compressing the filament.
For a filament that is building its mass by accretion from the surrounding medium, then
u$ is negative and decreases inward (u$ = 0 by symmetry on the filament’s axis). The
internal pressure dominates over the accretion ram pressure if u$ becomes subsonic in-
side the filament, where u is expected to be mostly parallel to the filament’s axis (as e.g.
the simulations of Gómez & Vázquez-Semadeni 2014). Accretion ram-pressure can be
neglected in the central parts of a filament, even if it may be important in the envelope1.
For those reasons, a picture of the structure of filamentary clouds in terms of hydrostatic
equilibrium models does not necessarily require that the velocity field is zero everywhere.
During the growth of the varicose (or sausage) gravitational instability, when significant
radial and longitudinal gas flows can occur (see e.g. Gehman et al. 1996), the velocity
term in eq. (3.5) cannot be neglected. These motions may trigger the formation of dense
prestellar cores as observed e.g. in the SDC13 infrared dark cloud by Peretto et al. (2014).

3.1.2 Isothermal parametrisations

Isothermal cylinders have been used to successfully model observations of limited
spatial extent of intensity radial profiles. As an example, the Stodółkiewicz-Ostriker den-
sity profile is compatible with observations of molecular line emission in L1517 (Hacar &
Tafalla 2011), and from the 850 µm emission in the filamentary dark cloud G11.1 1-0.12
(Johnstone et al. 2003) up to ⇠ 0.2 pc. Fischera & Martin (2012) have modelled the sur-
face brightness profiles of 4 filaments observed by Herschel in the IC5146 region using
truncated isothermal cylinders. Their analysis has been done in the range to ⇠ 10 radial
distance from the emission peak on both sides of the filament (corresponding to 0.13 pc
at the distance of 460 pc). In this range, the column density profiles obtained by eq. (3.1)
with ↵ = 2 or ↵ = 4, or by a gaussian profile, are all indistinguishable (see e.g. Fig. 4 of
Arzoumanian et al. 2011). The sub-millimetre emission of interstellar filaments has been
mapped up to the radial distances from the filament’s axis where the structures merge with

1However, for a Larson-Penson type of accretion, u$ approaches a constant value at large radii
and the accretion ram-pressure drops to zero. The second term in eq. (3.7) is negligible if the
accretion velocity u$ does not change significantly along the filament, and vanishes in cylindrical
symmetry (@/@z = 0).
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the ambient medium thanks to the large dynamical range allowed by the Herschel Space
Observatory (⇠ 0.4 pc for B211/213, Palmeirim et al. 2013; ⇠ 1 pc for IC5112, Arzou-
manian et al. 2011). At large radii the observations are generally not well reproduced
by isothermal cylinders. The Stódołkiewicz-Ostriker profile is no longer a good model
because deviations from the observed density profiles become evident. In fact, as already
mentioned before, a first reason for this deviation is that the density profiles at large radii
are characterised by power-law exponents ↵ close to ⇠ 2, rather than 4. A second one
is that the mass per unit length can be in some cases larger than the maximum value al-
lowed for an isothermal cylinder (eq. 3.4). We will examine these aspects in the following
sections.

3.1.3 Polytropic models
As already introduced in Chap. 2, a more general class of hydrostatic models for

filamentary clouds is represented by polytropic cylinders (Ostriker 1964b, Viala & Horedt
1974b), in which the gas pressure (from thermal or non-thermal motions) is parametrised
by a polytropic EOS, as shown in eq. (2.16)

p = K⇢�p . (3.8)

The constant K is a measure of the cloud’s entropy (a limit case for a polytropic EOS is an
isothermal gas, in which K = c2

s). Usually, the polytropic exponent is �p = 1+ 1/n, where
the polytropic index n can have values in the range n  �1 or n > 0 (the range �1 < n < 0
corresponds to negative values of �p and is therefore unphysical). For 0  �p  1 (n 
�1) polytropic cylinders have infinite radii and infinite mass per unit length, whereas for
�p > 1 (n > 0) the density and pressure become zero at some finite radius and therefore
have finite masses per unit length. For �p = 1 (n ! �1) the gas is isothermal, whereas
for �p ! 0 (n = �1) the equation of state becomes “logatropic”, p / ln ⇢ (Lizano &
Shu 1989). This latter form has been used to model the non-thermal support in molecular
clouds in which supersonic line widths are observed. Logatropic cylinders have infinite
radius and infinite mass per unit length (Fiege & Pudritz 2000). Negative index polytropes
(0  �p < 1) were first used as models for thermally-supported interstellar clouds heated
by an external flux of photons or cosmic rays Shu et al. (1972). On the other hand, the
polytropic temperature T / (p/⇢)1/2 can be considered a measure of the contribution of
non-thermal (turbulent) motions to the support of the cloud. In this case negative index
polytropes reproduce the observed increase of non-thermal line width with size observed
in molecular clouds. The critical mass per unit length of eq. (3.4) can be generalised to
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include the presence of non thermal gas motions. Then µline,vir = 2�2
tot/G, also known as

virial mass per unit length, and �tot =
p

c2
s + �2 is the total velocity dispersion (thermal

plus non thermal motions).
Using the polytropic EOS (3.8), the equation of hydrostatic equilibrium eq. (3.5) with

the advective term set equal to 0 reduces to the standard cylindrical Lane-Emden equation

1
⇠

d
d⇠

 
⇠

d✓
d⇠

!
= ±✓n, (3.9)

for the non-dimensional density ✓ and radius ⇠ defined by

$ = $0⇠ =

2
66664
⌥(1 + n)K
4⇡G⇢1�1/n

c

3
77775
1/2

⇠, ⇢ = ⇢c✓
n. (3.10)

In eq. (3.9) and (3.10) the upper (lower) sign is for 0  �p < 1 (�p > 1), and the subscripts
“c” and “s” label values at the center (axis of the cylinder) and at the surface of the
filament, respectively. Special cases have already been solved in numerical and analytical
models. In fact, solutions of eq. (3.9) with boundary conditions ✓ = 1 and d✓/d⇠ = 0
at ⇠ = 0 have already been obtained by Viala & Horedt (1974a) for 0 < �p < 1, by
Stodólkiewicz (1963) and Ostriker (1964b) for �p = 1, and by Ostriker (1964b) for �p > 1.
The mass per unit length µ is defined as

µ = 2⇡
Z $s

0
⇢$ d$ = ⌥ (1 + n)K⇢1/n

c

2G
⇠s✓
0
s, (3.11)

where eq. (3.9) has been used to simplify the integral.
Di↵erent models can have di↵erent units of measure, thus for a comparison between

di↵erent models for the radial density profiles, a normalisation of the radial coordinate $
to the same length scale is necessary. To the lowest order in a series expansion for small
radii, the density profile of polytropic filaments is ⇢($) ⇡ ⇢c(1 � $2/$2

core + . . .). The
“core radius” $core is then

$core =
2$0p⌥n

=

 
1 + n

n

!1/2 �c

(⇡G⇢c)1/2 , (3.12)

where �c = (pc/⇢c)1/2 is the velocity dispersion on the filament’s axis2. An observational
value is �c ⇡ 0.26 km s�1 (Arzoumanian et al. 2013) and then using the fiducial value

2A comparison with an analogous series expansion of the softened power-law profile (eq. 3.1)
leads to the identification $core = (2/↵)1/2$flat. Since ↵ ⇡ 2, $core ⇡ $flat.
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Figure 3.1: density profiles (normalised to the central density ⇢c) of polytropic cylinders with
�p = 2, 3/2, 4/3 (n = 1, 2 and 3, short-dashed lines, from left to right) and �p = 1/3,
1/2, 2/3 and 3/4 (n = �3/2, �2, �3 and �4, long-dashed lines, from right to left). The
thick solid lines show the density profiles of an isothermal (�p = 1, or n = ±1) and a
logatropic (�p = 0, or n = �1) cylinder. Dotted lines are the singular solutions given
by eq. (3.14). The radius is normalised to the core radius $core defined by eq. (3.12).
The hatched area corresponds to the observed mean density profile of filaments in
IC5146, given by eq. (3.1) with ↵ = 1.6 ± 0.3. From Toci & Galli (2015a).

nc ⇡ 2 ⇥ 104 cm�3 and setting n = �2 the core radius is

$core ⇡ 0.047
✓ �c

0.26 km s�1

◆ ✓ nc

2 ⇥ 104 cm�3

◆�1/2
pc. (3.13)

Fig. 3.1 shows a comparison between the density profiles of various cylindrical poly-
tropes of positive and negative index, as function of radius normalised to $core. The
longitudinally averaged density profiles of the filaments in IC5146, given by eq. (3.1)
with ↵ = 1.6 ± 0.3 (Arzoumanian et al. 2011), are well reproduced by cylindrical poly-
tropes with 1/3 . �p . 2/3 (�3 . n . �3/2) at least over the observed radial extent of
the filaments (from $ ⇡ 0.1$core to $ ⇡ 10$core). Overall, the single value �p ⇡ 1/2
(n = �2) provides a good fit to the data, at least for this sample of filaments. We will
discuss the implications of these results in Sect. 3.2.2.



40 Chapter 3. Equilibrium of hydrostatic filamentary structures

3.1.4 Power-law behaviour at large radius

Other kind of solutions can be obtained from eq. (3.9) in addition to the regular one.
These solutions are singular (or scale-free) solutions for 0  �p < 1 (n < �1), and have
a power-law behaviour intermediate between ⇢ / $�1 (for �p = 0) and ⇢ / $�2 (for
�p ! 1), given by

⇢($) =
"
(1 � n)2⇡G
�(1 + n)K

#n/(1�n)

$2n/(1�n), (3.14)

as found by Viala & Horedt (1974b). The mass per unit length of these models is

µ($) = (1 � n)⇡
"
(1 � n)2⇡G
�(1 + n)K

#n/(1�n)

$2/(1�n) (3.15)

= (1 � n)⇡$2⇢($),

that reaches the constant value µ! a2/G if �p ! 1.

The scale-free solutions are reported in Fig. 3.1 along with the regular solutions. As
shown by Fig. 3.1, these solutions are the asymptotic behaviour around which the regular
solutions oscillate with decreasing amplitude for $ ! 1. This asymptotic behaviour is
followed by both polytropic spheres and cylinders.

However, a spherical singular solution exists also for �p = 1 (the singular isothermal
sphere), while this is not true in cylindrical geometry3. In fact, while for spheres the
amplitude of the oscillatory component decreases as $�1/2 for �p = 1, for cylinders it
reaches a constant value for �p ! 1, and the period of oscillation becomes infinite: the
isothermal cylinder converges to the singular solution eq. (3.14) only at infinite radius.

For these reasons, if a quasi-isothermal filamentary clouds goes trough an evolution-
ary stage independent of the initial and boundary conditions, but still far from the ultimate
equilibrium state, a radial density profile closer to ⇢ / $�2 rather than ⇢ / $�4 should
be expected. An example of this behaviour is in the self-similar collapse solutions of
quasi-isothermal filaments by Kawachi & Hanawa (1998).

3For a logatropic equation of state, a singular solution exist in cylindrical geometry but not in
spherical geometry, instead.
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3.2 Support against gravity

3.2.1 Thermal support
The isothermal Stódołkiewicz-Ostriker profile can be used as a reference to probe if

the gas is not isothermal, and to give an estimate of the non isothermal pressure contribu-
tion. If a deviation from the isothermal density profile is observed, it is an indication of
temperature gradients increasing outwards that produce a larger thermal pressure gradient
than an isothermal gas. Models of radiative transfer of the infrared emission support this
hypothesis. For example, Stepnik et al. (2003) found significant radial gradients in the
dust density profiles . Whereas Palmeirim et al. (2013) found that the dust temperature
Td increases outward from ⇠ 10–12 K on the axis to ⇠ 14 K at $ ⇡ 0.5 pc in the B211
filament. Ysard et al. (2013) found the same behaviour to ⇠ 18 K in the L1506 filament.

The gas temperature Tg should have gradients as well, and they could be also larger.
As already reported in the Introduction, the temperature of gas and dust can be di↵erent,
depending on the coupling of the dust and gas temperatures. At the typical densities on
the filament’s axis (⇠ 104 cm�3) a small coupling is expected, and then the gas should
be significantly hotter than the dust in the outer regions (see e.g. Galli et al. 2002). The
magnitude of the gradient observed in the gas temperature can be measured using the
polytropic models of Sect. 3.1.3 to reproduce observational data. Fig. 3.2 shows the radial
behaviour of polytropic temperature T / (p/⇢)1/2 for the same models shown in Fig. 3.1.
In the range of polytropic exponents that fit the density profiles of observed filaments in
IC5146, the polytropic temperature increases by a factor ⇠ 5–12 from the filament’s axis
to the boundary, fixed at ⇢s ⇡ 10�2⇢c or $s ⇡ 10$core (that leads to a radius of about
1 pc, where the filaments merge with the ambient medium).

The polytropic temperature can also give an estimate of the gas temperature. With this
identification the expected filament’s surface temperature is Ts ⇠ 70–170 K, assuming a
central temperature Tc = 14 K as observed from Herschel data. Such high temperature
are not observed, in fact gradients of gas temperature in prestellar cores, as reported in the
Introduction, are much shallower in agreement with the predictions of theoretical models.
Therefore, thermal pressure cannot be the only support and other contribution are needed.

3.2.2 Non-thermal support
Other contributions to the stability of the cloud can come from pressure due to tur-

bulence and magnetic field (large-scale or wave-like). Again, we can use polytropic EOS
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Figure 3.2: Radial profiles of the polytropic temperature T (normalised to the central temperature
value Tc) of polytropic cylinders with values of �p (or n) as in Fig. 3.1. The thick
solid lines show the temperature profiles of an isothermal (�p = 1, or n = ±1) and
a logatropic (�p = 0, or n = �1) cylinder. Dotted lines correspond to the singular
solutions given by eq. (3.14). The radius is normalised to the core radius $core as in
Fig. 3.1. From Toci & Galli (2015a).

to model their e↵ects under the hypothesis that their contributions can be modelled as
isotropic pressure components.

As an example, a work made by Walén (1944) showed that in the limit of small am-
plitude and small wavelength, and adding the hypothesis of negligible damping, Alfvén
waves behave as a polytropic gas with �p = 1/2, a value that can be consistent with the
observations, as shown in Sect. 3.1.3. This may imply that the filaments observed by
Herschel are radially supported against gravitational collapse by non-thermal motions as-
sociated to Alfvénic “turbulence”. This contribution can be modelled as a superposition
of hydromagnetic (magnetosonic) waves (Fatuzzo & Adams 1993).

Supposing that small-amplitude Alfvén waves (�p = 1/2 polytropic law) are a major
contribution to the the pressure, observationally molecular transitions should have a non-
thermal line width increasing by a factor ⇠ 3 from the axis to the filament boundary,
and a behaviour at large radii ⇠ ⇢�1/4 (or $1/3). At the state of the art the available
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date cannot allow any conclusion on the strength and spatial distribution of non-thermal
motions within filamentary clouds. Hacar & Tafalla (2011) found that in L1517 the non-
thermal line width of molecular transitions like C18O and SO is everywhere subsonic
(�nt < a) and almost uniform, with velocity dispersion �nt = 0.1± 0.04 km s�1 across the
sampled region. In the B213 filament Qian et al. (2012) found that the velocity dispersion
on the axis of is slightly supersonic (�nt ⇡ 0.3 km s�1), while millimetre line observations
showed that self-gravitating filaments have intrinsic, suprathermal linewidths �nt & a
(Arzoumanian et al. 2013). In a case slightly di↵erent as massive filament like DR21
(Nc ⇡ 1023 cm�2, µ ⇡ 4 ⇥ 103 M� pc�1) Schneider et al. (2010) found that the velocity
dispersion increases towards the filament’s axis, where it reaches �nt ⇡ 1 km s�1, while
condensations in the filaments showed a lower velocity dispersions.

Numerical simulations and analytic considerations have found that the polytropic ex-
ponent of MHD turbulence depends on the dominant wave mode via the Alfvén Mach
numberMA, going from �p ⇡ 1/2 at lowMA, where the slow mode dominates, to �p ⇡ 2
at large MA, where the slow and fast mode are comparable. For all these reasons, the
representation of magnetohydrodynamic turbulence in terms of small-amplitude Alfvén
waves is an oversimplification, even if useful to have an idea of the strength of this kind
of contribution.

As shown in Sect. 3.1, negative-index cylindrical polytropes with appropriate values
of �p are able to reproduce the observed radial density profiles of filaments and predict a
core radius $core / �c/⇢

1/2
c . This result is in agreement with the observed uniformity of

filament widths if �c scales as the square root of the central density, �c / ⇢1/2
c . Due to the

fact that the central column density is Nc / ⇢c$core, we have that �c / N1/2
c , since$core is

constant. Observations (Arzoumanian et al. 2013) of filaments with central column den-
sities above ⇠ 1022 cm�2 are in agreement with this trend. Theoretical studies found that
the relation � / ⇢1/2 is a good characterisation for the behaviour of the turbulent pres-
sure during the relaxation processes leading to virialization in a strongly self-gravitating
collapse flow, according to the numerical simulations of Vázquez-Semadeni et al. (1998).
This could imply that, at least in the more massive filaments, the gas in the central parts is
still undergoing turbulent dissipation (perhaps following accretion, as suggested by Hen-
nebelle & André 2013).

3.3 Radial stability of polytropic filaments
Polytropic solutions in cylindrical symmetry are unstable to longitudinal perturbations

of wavelength larger than some critical value. This perturbation is known as varicose (or
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sausage) gravitational instability (Ostriker 1964a); This perturbation (and also its mag-
netic variant) can lead to the fragmentation of a filamentary cloud to a necklace of equally
spaced dense cores, as observed i.e in high mass star formation by Fontani et al. (2016),
and therefore it could be a promising mechanism for star formation. However, in analogy
with the Bonnor-Ebert stability criterion in the case of spherical symmetry, it is important
to determine the conditions for radial stability with respect to collapse to a line mass.

From the observations, stability considerations are usually derived using a compari-
son with the mass per unit length of the isothermal cylinder, µiso (eq. 3.4). However, as
reported before, the stability properties of an isothermal cylinder are di↵erent from those
of polytropic cylinders with �p < 1, because its mass per unit length reaches the finite
value µiso as the radius of the cylinder increases to infinity, while for �p < 1 the mass
increases with radius.

As a consequence, an isothermal filament is always radially stable: if a pressure ps

applied over an isothermal cylinder with fixed µ < µiso increases, it induces in the filament
a contraction, reducing its radius $s and core radius $core as p�1/2

s , while its central
density ⇢c grows as p�1

s , but otherwise maintaining the same shape of the density profile.
Conversely, for 0  �p < 1, also cylindrical polytropes become unstable if the external
pressure becomes larger than some critical value. The instability extends to �p = 4/3 for
spheres (the classical Bonnor-Ebert instability) but not for cylinders.

In analogy with the spherical case, the stability of polytropic cylindrical clouds to
radial perturbations can be studied by solving the equation of radial motion for small
perturbations. This equation becomes (Breysse et al. 2014)

d2h
d$2 +

3 � 4q
$

dh
d$
+

"
!2

f 2 + 8
 

1
�
� 1

!
q
#

h
$2 = 0, (3.16)

where h = �$/$ is the relative amplitude of the perturbation, ! is the frequency of the
oscillations, � is the adiabatic exponent, and we have defined
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= � (1 + n)⇠✓0

4✓
, (3.17)

and
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(4⇡G⇢c)1/2

⇠

✓ ⌥�✓
1 + n

◆1/2
. (3.18)

In order to obtain eq. (3.16) we assumed for simplicity that the perturbations occur adi-
abatically, �p/p = � �⇢/⇢. It is important to notice that the adiabatic exponent � that is
related to the response of the cloud to small perturbations is not necessarily equal to the
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polytropic exponent characterising the equilibrium structure discussed in Sec. 3.1. Only
if the perturbation occurs on a time much longer than the characteristic time for inter-
nal redistribution of entropy, the adiabatic exponent � is equal to �p (see examples and
discussion in Sect. 3.3.2).

3.3.1 Isentropic filaments

Figure 3.3: Mass per unit length µ (thick curves) and radius $s (thin curves) of cylindrical poly-
tropes bounded a fixed external pressure as function of the density contrast ⇢c/⇢s. The
cases shown are, from bottom to top, �p = 1/3, 1/2, 2/3, 3/4 and 1 (n = �1.5, �2,
�3, �4 and 1). Dots on each curve indicate critical points. The stable and unstable
parts of each sequence are shown by solid and dashed curves, respectively. The ra-
dius $s is in units of [ps/(4⇡G⇢2

s)]1/2, the mass per unit length µ in units of 2ps/G⇢s.
From Toci & Galli (2015a).

The first case we analyse is an isentropic clouds, in which the entropy is both spatially
uniform and constant during an adiabatic perturbation, and then we set � = �p. Our goal
is to obtain the condition of marginal stability, we set ! = 0 and we solve eq. (3.16)
imposing the boundary condition dh/d⇠ = 0 at ⇠ = 0 to obtain the condition for h to
remain finite on the axis (since eq. 3.16 is linear and homogeneous, the value of h at ⇠ = 0
is arbitrary). For any fixed value of the polytropic exponent �p, the critical point ⇠cr can
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be determined setting the radius at which the Lagrangian variation in the pressure at the
boundary is equal to zero,

 
�p
p

!

⇠=⇠cr

= ��
 
2h +$

dh
d$

!

⇠=⇠cr

= 0. (3.19)

If ⇠ > ⇠cr, the filament is unstable to radial collapse. At the critical point the density
contrast is (⇢c/⇢s)cr = ✓�n

cr and the mass per unit length is

µcr = qcr

 
2ps

G⇢s

!
, (3.20)

where
qcr = �

(1 + n)⇠cr✓0cr
4✓cr

. (3.21)

The values of ⇠cr, (⇢c/⇢s)cr, and qcr for di↵erent polytropes are listed in Table 3.1. Using
the same value of the ratio ps/⇢s, the marginally stable configuration with the largest mass
per unit length is the isothermal filament with �p = 1, for which qcr = 1 and µcr = µiso.
At the opposite end, the logatropic filament with �p = 0 has qcr = 0. Thus, if we fix the
values of the surface pressure and density, filaments with increasingly “softer” equations
of state can support less and less mass per unit length, as found in the case of spherical
polytropes (McKee & Holliman 1999).

Fig. 3.3 shows the radius and the mass per unit length of cylindrical polytropes with
various values of �p between �p = 1/3 and 1 (from n = �3/2 to �1) as function of ⇢c/⇢s

and the position of the critical point on both sets of curves. The stability properties of
polytropic filaments with 0  �p < 1 for the same value of the entropy parameter K and
the ratio ps/⇢s are qualitatively similar: increasing ⇢c/⇢s the filament first expands then
contracts, until the filament becomes unstable when ⇢c/⇢s becomes larger than the critical
value listed in Table 3.1. Equilibria can be found above this critical value, but they are
unstable to radial collapse. The instability occurs for increasingly larger values of ⇢c/⇢s

when �p increases (for �p = 1, the critical point is at ⇠cr = 1). Using Herschel data of
several filamentary clouds is possible to have an estimation of the central temperature,
which is ⇠ 10 K. Computing the correspondent sound speed c2

s , the estimated mass per
unit length is larger than µiso. Even if prestellar cores are mostly found in filaments that
have µ > µiso, and that is considered a marker of the presence of gravitational instability
(André et al. 2014), the fact that isothermal filaments have mass per unit line larger than
µiso makes di�cult to justify their formation by accretion (or by other processes).

Let us consider as an example the evolution of an isothermal filament with µ < µiso,
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that is confined by an external constant pressure ps = c2
s⇢s. It increases its mass per unit

length and, for our hypothesis, its temperature is uniform and constant with time. As the
mass µ increases, the filament becomes more and more condensed at the centre, due to
the fact that its density contrast ⇢c/⇢s increases as (1 � µ/µiso)�2. At the same time, the
flat core region shrinks as (1� µ/µiso), and the outer radius first expands then contracts as
[(1�µ/µiso)(µ/µiso)]1/2 (Fischera & Martin 2012). As µ! µiso, the filament approaches a
delta-like line mass of zero radius and infinite density on the axis. At the same time, while
the filament evolves, it is subject to the varicose instability and can fragment into a chain
of cores, but can never reach a stage with µ > µcr. This is di↵erent for non-isothermal
filaments. In fact, for actual filaments the ratio ps/⇢s in eq. (3.20) is much larger than c2

s ,
the value expected for isothermal gas. If filamentary clouds are pressure bounded, ps must
be equal to the pressure exerted on the filament by the surrounding intercloud medium,
where the dominant component of the pressure is due to turbulent motions.

Table 3.1: Critical points for isentropic cylindrical polytropes. Fixing the the values of the surface
pressure and density, the marginally stable configuration with the largest mass per unit
length is the isothermal filament, with qcr = 1, while the logatropic filament with has
qcr = 0. This implies that filaments with increasingly “softer” equations of state can
support less and less mass per unit length. From Toci & Galli (2015a).

n �p ⇠cr (⇢c/⇢s)cr qcr

�1 0 6.62 6.05 0
�1.01 0.0099 6.59 6.10 0.0272
�1.5 1/3 5.52 8.61 0.115
�2 1/2 4.93 11.4 0.199
�3 2/3 4.28 17.6 0.317
�4 3/4 3.92 23.9 0.399
�5 0.8 3.68 32.8 0.459
�10 0.9 3.13 80.0 0.626
�20 0.95 2.76 228 0.752
�30 0.967 2.60 441 0.812
�40 0.975 2.50 701 0.846
�1 1 1 1

3.3.2 Non-isentropic filaments
In Sect. 3.1 we showed that filamentary clouds are well reproduced by cylindrical

polytropes with 1/3 . �p . 2/3. For this reason their density contrast cannot exceed the
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value ⇢c/⇢s = 8.61–17.6 (see Table 3.1) or they would collapse to a line mass. However,
observational results reported in Sect. 3.1 show that the density contrasts measured by
Herschel are of the order of ⇠ 100. In analogy with the case of spherical clouds, this
limitation can be overcome if the cloud is non-isentropic (� , �p).

McKee & Holliman (1999) found that the assumption of isentropy (adopted in most
studies of polytropes) is in general not valid for molecular clouds. This comes from the
fact that a contribution to the pressure supporting the cloud against its self-gravity may
be provided by non-thermal components whose behaviour is not isentropic: for example,
small-amplitude Alfvén waves have �p = 1/2 and � = 3/2. Non-isentropic polytropes
can be stable for larger density contrasts than isentropic clouds. We can reduce the range
in analysis because polytropes with � < �p are convectively unstable according to the
Schwarzschild criterion, and then we will study only values of � > �p. In order to find the
critical point ⇠cr of non-isentropic cylindrical polytropes, eq. (3.16) is solved for a fixed �p

and arbitrary � > �p. The results are shown in Table 3.2, listing the values of ⇠cr, (⇢c/⇢s)cr

and qcr for polytropes with �p = 1/3, 1/2 and 2/3 for various values of �. Like the case
of spherical polytropes, the critical points goes to larger and larger values of the density
contrast ⇢c/⇢s as � increases. At a threshold value �1, the critical point reaches ⇠cr = 1
and the density profile approaches that of a singular polytropic cylinder. The value of
qcr = q1 at this point can be easily determined substituting eq. (3.14) into eq. (3.16),

q1 =
�p

2(2 � �p)
. (3.22)

The threshold value of the adiabatic exponent, �1 can also be obtained in an analytical
way. For a singular polytropic cylinder, eq. (3.16) with ! = 0 has constant coe�cients,
and the characteristic equation has two real and negative roots if � is larger than

�1 = �p(2 � �p), (3.23)

corresponding to h exponentially decreasing with ⇠. The values of q1 and �1 for �p =

1/3, 1/2 and 2/3 are also listed in Table 3.2. Non-isentropic polytropes are more sta-
ble than their isentropic counterparts as they can support larger centre-to-surface density
contrasts. For � > �1, polytropic filaments are unconditionally stable for any ⇢c/⇢s.

In Fig.3.4 are summarised the stability properties of cylindrical polytropes in the �p–
� plane. In cylindrical geometry the polytropic exponent �p = 1 is a critical value that
has the same role of �p = 4/3 for spherical polytropes: while spheres with �p > 4/3 are
unconditionally stable to small perturbations, cylinders become stable already for �p > 1
(McCrea 1957). In the case �p = 1/2, a value in agreement with the observed radial
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Table 3.2: Stability of non-isentropic cylindrical polytropes. The critical points goes to larger
and larger values of the density contrast ⇢c/⇢s as � increases. The density profile
approaches the one of a singular polytropic cylinder at a threshold value �1, where the
critical point reaches ⇠cr = 1. From Toci & Galli (2015a).

�p = 1/3
� ⇠cr (⇢c/⇢s)cr qcr

1/3 5.52 8.61 0.115
0.4 10.3 20.2 0.111
�1 = 5/9 1 1 q1 = 1/10

�p = 1/2
� ⇠cr (⇢c/⇢s)cr qcr

1/2 4.93 11.4 0.199
0.6 10.7 38.0 0.188
0.7 124 1096 0.163
�1 = 3/4 1 1 q1 = 1/6

�p = 2/3
� ⇠cr (⇢c/⇢s)cr qcr

2/3 4.28 17.6 0.317
0.7 5.18 25.2 0.316
0.8 14.1 153 0.282
�1 = 8/9 1 1 q1 = 1/4

density profiles of filamentary clouds, the threshold value for stability (from eq. 3.23)
is �1 = 3/4. In the case of a “soft” equation of state the stability condition is almost
the same for cylinders and spheres: for �p ⌧ 1, a first-order approximation gives �1 ⇡
2�p for cylinders and �1 ⇡ (16/9)�p for spheres. For larger values of �p, cylinders are
intrinsically more stable than spheres in the �p–� plane. A pressure-bounded isothermal
cylinder, for example, is always stable with respect to an arbitrary increase in the external
pressure, whereas an isothermal sphere is not. For the range of polytropic exponents
allowed by the observations of the radial density profiles (1/3 . �p . 2/3, see Sect. 2),
the stability properties of cylindrical and spherical clouds are very similar.

3.4 Summary
In this Chapter we presented an analysis of filamentary clouds’ stability in analogy

with the theoretical studies of spherical clouds made by McKee & Holliman (1999) but
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Figure 3.4: Stability properties of cylindrical and spherical polytropes in the �p–� plane. Poly-
tropes in the � < �p region (shaded) are convectively unstable. On the line � = �p,
polytropic cylinders (spheres) are isentropic, and become unstable at some finite
(⇢c/⇢s)cr if � < 1 (� < 4/3). Above the curve labelled �1 (dashed for spheres)
cylindrical polytropes are unconditionally stable even for ⇢c/⇢s = 1. Cylindrical
(spherical) polytropes have finite radii for �p > 1 (�p > 6/5) as indicated by the ver-
tical dotted lines. The stability properties of spherical polytropes are from McKee &
Holliman (1999). From Toci & Galli (2015a).

in cylindrical symmetry, underlying the request for non-isentropic models to reproduce
observational results that suggest large density contrasts. The stability properties of poly-
tropic cylinders can be characterised, like in the case of spherical polytropes, using the
polytropic exponent �p, related to the spatial properties of the filament, and using the
adiabatic exponent �, that characterises the temporal response of the cloud to adiabatic
perturbations.

The typical core-envelope structure and the uniformity of the observed properties of
filamentary molecular clouds, like the flat-density inner part of size and the power-law en-
velope and the uniform width (André et al. 2014), indicate polytropic cylinders as a good
model to study their main physical characteristics. The observed power-law behaviour of
the density at radii larger than the core radius can not be reproduced by isothermal models,
nor they can explain the existence of filaments with mass per unit length larger than the
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limiting value for an isothermal cylinder. Conversely, the observed radial density profiles
of filamentary clouds (Arzoumanian et al. 2011) are well reproduced by negative-index
cylindrical polytropes with 1/3 . �p . 2/3 (�3 . n . �3/2). This result indicates ei-
ther outward-increasing temperature gradients, or the presence of a dominant non-thermal
contribution to the pressure. The first case predicts a gas temperature at the filament’s
surface unrealistically high (⇠ 100 K). Non-thermal support, perhaps in the form of a su-
perposition of small-amplitude Alfvén waves (for which �p = 1/2) can provide a possible
mechanism of support. Also, the mass per unit length of negative-index polytropes is not
limited, but shows a dependence on the pressure and density at the surface, if the filaments
are pressure confined by the ambient medium.

Cylindrical polytropes that have negative-index present a uniform width, as observed
(André et al. 2014), if the central velocity dispersion �c is proportional to the square root
of the central density ⇢c (or the central column density Nc). This relation seems to be
satisfied at least by the most dense filaments observed i.e in Arzoumanian et al. (2013)
and has been found in numerical simulations of self-gravitating collapse flows Vázquez-
Semadeni et al. (1998). The density profile of polytropic filaments, once outside the
core radius, has often a power-law behaviour. This implies considerations on the cloud’s
thermodynamics and equation of state: independently on geometry, both spherical and
cylindrical polytropes approach at large radii the same power-law behaviour in radius
with a slope equal to �2/(2��p), that reaches �2 for a quasi isothermal gas. However, for
cylinders, this power-law behaviour is recovered at increasingly larger radii for �p ! 1
(at infinite radius for �p = 1).

Pressure-bounded polytropic cylinders with 1/3 . �p . 2/3 can support a mass per
unit length as large as observed depending on the conditions at the surface. However,
if we suppose also that they are isentropic, their density contrast cannot be larger than
about a factor of 10–20. At the same time, as the spherical case (McKee & Holliman
1999), non-isentropic cylinders are stable also at larger density contrasts (in principle
even infinite) with respect to adiabatic pressure perturbations. Since magnetic fields and
turbulence (that in this Chapter we parametrised as a superposition of Alfvén waves)
behave as non-isentropic pressure components, this stresses that isentropic (and, in par-
ticular, isothermal) models are inadequate to represent and characterise the structure and
the stability properties of filamentary clouds.





4 Equilibrium of
magnetohydrostatic

filamentary structures

In the previous Chapter we studied the structure and stability of hydrostatic cylindrical
polytropes, which is a rough approximation for a model of interstellar filaments. This
approximation allowed us to interpret the observational results obtained by the Herschel
Space Observatory. In analogy with previous studies of spherical clouds and cores, we
derived for the observed radial density profiles of filaments a narrow range of �p (1/3 .
�p . 2/3) that fit the observed data. These values correspond to negative values of the
polytropic index n. In particular, a good fit is obtained with �p ⇡ 1/2 (n ⇡ �2), the
polytropic exponent that characterises the pressure of a superposition of low-amplitude
undamped Alfvén waves. Magnetic fields are present in molecular clouds, and as showed
in the Introduction, their contributions to the stability of filaments cannot be neglected.
Therefore, it is necessary to study also the properties of magnetised filaments.

Much of what is known of magnetostatic (MS) equilibria in plasma physics and
astrophysics comes from studying systems with one ignorable coordinate, i.e axisym-
metric systems. In the three-dimensional case, no one has ever been able to find non-
axisymmetric solutions of the MS equations for a self-gravitating fluid, and their actual
existence has remained dubious (Galli 2005).

The first work in this field was done by Chandrasekhar & Fermi (1953), in order to
study the stability of galactic spiral arms. After that, models of filamentary clouds made
with magnetic configurations possessing helical symmetry have also been explored. (i.e
Nakamura et al. 1995 or Fiege & Pudritz 2000)

As already reported in the Introduction, observations of the polarisation of back-
ground stars in the optical and near infrared found that the field is generally uniform
and perpendicular to the filament (For example in the B211/B213/L1495 region in Taurus
Palmeirim et al. 2013). Studies of molecular clouds found that the plane of the sky ori-
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entation of their elongation and the same projection of magnetic field is bimodal: clouds
either tend to be parallel or perpendicular to the magnetic field. This trend has been con-
fermed by the Planck collaboration. Soler et al. (2016) analysed the relative orientation
between density structures and polarization, finding that most of the filaments are mostly
aligned with their magnetic field. Planck Collaboration (2016) found that filaments at high
column density tends to be perpendicular to the magnetic field, whereas at low column
density they tend to be aligned.

For all these reasons, the magnetic field should play an important role in determining
the observable properties of filamentary clouds. In this Chapter we will study the proper-
ties of magnetised polytropes in cylindrical geometry. In particular, we will underline the
conditions for force balance in the radial direction. Our hypothesis is that the evolution
of real filaments can be approximated as a series of magnetostatic solutions as filaments
accrete more material from the surrounding environment. The models developed are then
magnetostatic by design. As in the previous Chapter, this does not necessarily imply zero
a velocity field everywhere, as long as the accretion speed becomes either subsonic or
directed mostly parallel to the filament’s axis in the central parts of the filament.

4.1 Magnetized envelopes
In a cylindrical system of coordinates, any solenoidal vector field B can be expressed

as a linear combination of a certain basic toroidal B' and poloidal (Bp) fields (Chan-
drasekhar 1961), given by

Bp = r ⇥
 
�

2⇡$
ê'

!
, B' =

 

2⇡$
. (4.1)

defined in terms of the scalar functions �($, z) and  ($, z) In addition, to have zero di-
vergence, the toroidal and poloidal fields are characterized by vanishing radial component
and vanishing radial component of the curl, respectively1.

Following the previous Chapter, we assume again the polytropic EOS,

p = K⇢�p . (4.2)

We consider a self-gravitating magnetized fluid body, satisfying the ideal magnetostatic

1Notice that this terminology, Stratton-Chandrasekhar’s, is di↵erent from the one commonly
adopted in astrophysics, where is customary to call poloidal a field with components only along r
and ✓, and toroidal a field with only a component along '.
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equilibrium equations and the Poisson’s equation for the gravity potential. The MHD
equations from Section 2.1 become

� rV + 1
⇢
rp + FL = 0, (4.3)

r2V = 4⇡G⇢, (4.4)

where
FL ⌘

1
4⇡⇢

(r ⇥ B) ⇥ B (4.5)

is the Lorentz force per unit mass. Using the definitions (4.1), the Lorentz force becomes

FL = �
1

16⇡3⇢$2 [S(�)r� +  r + r� ⇥ r ] (4.6)

where S is the Stokesian operator

S(�) =
@2�

@$2 +
@2�

@z2 �
1
$

@�

@$
. (4.7)

If the condition of no Lorentz force in the azimuthal direction is required r� ⇥ r = 0,
which implies  =  (�). The Lorentz force then reduces to

FL = �
1

16⇡3⇢$2

"
S(�) +  

d 
d�

#
r�, (4.8)

This is a generalisation of the expression derived by Lizano & Shu (1989) in the case
of a poloidal field (see also Li & Shu 1996 and Galli et al. 1999). In a magnetostatic
configuration of equilibrium all the contributions from the Lorentz force have to be coun-
terbalanced by the pressure or the gravity. The behaviour of the Lorentz force strictly
depends from the intrinsic shape of the magnetic field. The hypothesis of a toroidal mag-
netic field added to the the poloidal one, previously been examined by Galli et al. (1999),
changes the physics of the problem. Taking the dot product of the force equation (3.5)
with B it can be obtained the condition of force balance along field lines

V + (1 + n)K⇢1/n = H(�), (4.9)

where H(�) is the Bernoulli constant. The condition of force balance across field lines
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(along r�) is

� 1
16⇡3⇢$2

"
S(�) +  

d 
d�

#
=

dH
d�
, (4.10)

and Poisson’s equation (3.6) then becomes

1
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@$
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dH
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� 1 + n

n
K⇢�1+1/n @⇢
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!#
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dH
d�
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� 1 + n

n
K⇢�1+1/n @⇢

@z

!
= 4⇡G⇢. (4.11)

Eq. (4.8) and (4.10) show that H(�) is a potential for the Lorentz force, FL = rH(�).

The two coupled PDEs (4.10) and (4.11) are the two equations governing the prob-
lem. In order to find a solution, one must specify the two functions H(�) and  (�), and
appropriate boundary conditions have to be applied. The hypothesis of neglecting the dy-
namical evolution of the cloud implies that the functional dependence of H and  on the
flux function � is an arbitrary choice. Even if in principle H and  are arbitrary functions
(due to the loss of information on the previous history of the filaments, Shu (1992)), not
all the solutions would be physically meaningful for modelling molecular clouds. As dis-
cussed in the Introduction, the paths that lead to the formations of filamentary molecular
clouds are not completely understood, then any requirements to reduce the arbitrariness
in eq. (4.10) and (4.11) must be necessarily ad hoc.

4.1.1 Non-dimensional equations

Both the Eqs. (4.10) and (4.11) are valid under general azimuthal symmetry. In order
to simplify the problem, we also assume cylindrical symmetry (@/@z = 0), reducing the
problem to solve a system of two coupled ordinary di↵erential equations. We define a
non-dimensional radius ⇠ and density ✓ as in the previous Chapter.

$ = $0⇠, ⇢ = ⇢c✓
n, (4.12)

where

$0 =

2
66664
⌥(1 + n)K
4⇡G⇢1�1/n

c

3
77775
1/2

(4.13)

is the radial scale length. Here, as before, the subscripts “c” and “s” indicate quantities
evaluated at the center and the surface of the filament, respectively. We also define the
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non-dimensional magnetic flux �, enthalpy h and toroidal flux function  as

� =

2
66664
⌥⇡(1 + n)3K3

G2⇢1�3/n
c

3
77775
1/2

�, (4.14)

dH
d�
=

2
66664
⌥G2⇢1�1/n

c

⇡(1 + n)K

3
77775
1/2

dh
d�
, (4.15)

 =

2
66664
⌥2⇡(1 + n)K⇢1/n

c

G1/2

3
77775 , (4.16)

Again, the upper (lower) sign is for n  �1 (n > �1), where n is the polytropic index.

In a nondimensional form, the components of the magnetic field are

Bz = B0bz, B' = B0b', (4.17)

where the scale factor B0 is
B0 = [⌥4⇡(1 + n)pc]1/2. (4.18)

The field components are then

bz =
1
⇠

d�
d⇠
, b' =

 

⇠
. (4.19)

In the same way, the forces per unit volume acting on the system are: the pressure gradient,

� 1
⇢
rP = ±F0

d✓
d⇠

ê$, (4.20)

the Lorentz force
FL = F0

dh
d⇠

ê$, (4.21)

and the gravitational force

� rV = �F0

 
dh
d⇠
± d✓

d⇠

!
ê$, (4.22)

where the scale factor F0 is

F0 ⌘ [⌥4⇡(1 + n)Gpc]1/2 = G1/2B0. (4.23)

Eq. (4.10) and (4.11) can be re-written in non-dimensional form using the definitions
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(4.12)–(4.16),

� 1
⇠2✓n

" 
d2�

d⇠2 �
1
⇠

d�
d⇠

!
d�
d⇠
+  

d 
d⇠

#
=

dh
d⇠
, (4.24)

and
1
⇠

d
d⇠

"
⇠

 
dh
d⇠
± d✓

d⇠

!#
= ✓n. (4.25)

In order for the magnetic field to be well-behaved near the axis of the cylinder, we must
impose to eq. (4.24)–(4.25) the boundary conditions ✓(0) = 1 and d✓/d⇠(0) = 0, as in the
previous Chapter, plus the conditions ⇠�1d�/d⇠ ! const. and ⇠�1 ! 0 for ⇠ ! 0, that
lead to to Bz(0) = const. and B'(0) = 0.

The possibility of a magnetic field to support (or to compress) a filamentary cloud de-
pends from the strength of the radial profile and on the relative importance of the poloidal
and toroidal components. This sentence can be justified using eq. (4.21) and (4.24), that
show that in order to give support to the cloud an axial field must decrease with radius,
whereas a toroidal field must decrease with radius more rapidly than $�1.

4.2 Special solutions

4.2.1 Force-free fields
Force free solution are important for their peculiar properties (see 2.1.1). In the lit-

erature, magnetic force-free configurations have been used to model solar prominences,
where the Lorentz force is the dominant contribution. In the ISM these configurations can
be used to model twisted filamentary clouds that cannot survive to disruptive magnetic
e↵ects if the configuration is not force-free (Carlqvist et al. 1998).

IF h = 0 the magnetic configuration is force-free, the equations for the density and
the magnetic field are decoupled. Eq. (4.24) becomes an equation only for the field,

 
d2�

d⇠2 �
1
⇠

d�
d⇠

!
d�
d⇠
+  

d 
d⇠
= 0, (4.26)

and eq. (4.25) becomes the ordinary Lane-Emden equation. There are solutions of eq. (4.26)
that are known. For example, if  = 0 (poloidal field) the only regular solution is � = A⇠2,
with A arbitrary constant, and that correspond to the trivial case of an uniform axial field.
If  = k�, with k constant, eq. (4.26) is linear and reduces to Bessell’s equation with
solution � = C⇠J1(k⇠), where J1(k⇠) is the Bessel function of the first kind of order 1 and
C is a constant. In this case bz = CkJ0(k⇠) and b' = CkJ1(k⇠). This is the solution found
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by Lundquist in 1950. The field lines are helices that reverse direction and handedness
because Bessell’s functions are oscillatory. The Lundquist solution is one of a class of
solutions that have oscillatory behaviour and that can be generated assuming a power-law
dependence of  on �.

In the next part, we limit our analysis to the case � > 0. Even if in general the flux
function � can change sign at one or more radii, thus the field reverses, the large-scale
magnetic field inside a molecular cloud core should be the result of a smooth distortion
of the relatively uniform field characteristic of giant molecular clouds and galactic disks,
thus field reversal are not expected.

4.2.2 Constant-� solutions

The hypothesis that the plasma �z = (8⇡p/B2
z )1/2 is spatially constant, implies that

the total pressure is a scaled-up version of the total pressure. In this case, eq. (4.24) and
eq. (4.25) become

1 + ��1
z

⇠

d
d⇠

 
⇠

d✓
d⇠

!
= ±✓n. (4.27)

Using the scaling transformation ⇠ ! (1 + 1/�z)�1/2⇠, this equation can be recognised
as the ordinary Lane-Emden equation for unmagnetized polytropic cylinders. Thus, the
analysis of the previous Chapter remains valid, with the spatial length scale $0 (and
the core radius $core) increased by the factor (1 + 1/�z)1/2. In particular, for all values
of the polytropic index n, the mass per unit length and its critical or maximum value
determined for unmagnetised filaments are increased by the factor 1+1/�z. This is not true
in general for a purely toroidal field: only for an isothermal equation of state a toroidal
field with uniform �' = (8⇡p/B2

')1/2 produces a simple rescaling of the Lane-Emden
equation (Stodólkiewicz 1963). Then, if �p = 1 the Stódołkiewicz-Ostriker density profile
remains a good solution even in the presence of a helical magnetic field with constant �z

and ��.

4.2.3 Fiege & Pudritz’s models
Fiege & Pudritz (2000) solved the equations of magnetostatic equilibrium for cylin-

drical clouds with an isothermal (�p = 1) or logatropic (�p = 0) equation of state. They
chose a specific functional dependence of the magnetic field strength on density and ra-
dius, defined as

Bz = �z⇢, B' = �'$⇢, (4.28)
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with �z, �' being constants with arbitrary values. This choice is equivalent to the assump-
tion that the ratio of magnetic flux to mass per unit length is the same in all cylindrical
shells of the filament and that the toroidal component of the field is generated by a uniform
twisting of the filament through a fixed angle. In our formalism, eq. (4.28) is rewritten as

d�
d$
= 2⇡�z$⇢,  = 2⇡�'$2⇢. (4.29)

Substituting these expressions in eq. (4.10) and (4.11), we find that

� 1
4⇡

"
�2

z
d⇢
d$
+ �2

'
d

d$
($2⇢)

#
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dH
d$
, (4.30)
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!#
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Eq. (4.30) can be integrated:

H = � 1
4⇡

⇣
�2

z⇢ + �
2
'$

2⇢
⌘
+ const., (4.32)

and eq. (4.31) can be written as

1
$

d
d$

(
$

d
d$

h
H � (1 + n)K⇢1/n

i)
= 4⇡G⇢. (4.33)

Eq. (4.32) and (4.33) are the generalisation of eq. (D5) and (D7) of Fiege & Pudritz
(2000). The problem reduces to the solution of the second order ordinary di↵erential
equation (4.33) for ⇢($), with H given by eq. (4.32). These generalised Fiege & Pudritz
(2000) models have an asymptotic power-law behaviour at large radii depending on the
polytropic index n,

Bz / ⇢ / $
2n

1�n , B' / $⇢ / $
1+n
1�n . (4.34)

Then, the magnetic field becomes asymptotically dominated by the toroidal component
decreasing as a power-law with exponent between �1 and 0. The toroidal field has the
e↵ect of compressing the cloud.
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4.3 Cores and envelopes of magnetised filaments

4.3.1 Series expansion for small radii

For symmetry requirements, on the filament’s axis the toroidal component of the elec-
tric current needs to vanish and the axial current has to be finite. This leads to the fact
that, to the lowest order for ⇠ ! 0, both � and  have to decrease at least like ⇠2. A series
expansion

� ⇡ �2⇠
2 + �4⇠

4 + . . . ,  ⇡  2⇠
2 + . . . , (4.35)

gives
bz ⇡ b0z + b2z⇠

2 + . . . , b' ⇡ b1'⇠ + . . . (4.36)

with b0z = 2�2, b2z = 4�4, b1' =  2. Substituting in eq. (4.24) and (4.25) the expansions
(4.35) and the expansion for ✓

✓ ⇡ 1 ± 1
4
⇠2 + . . . (4.37)

we find the Lorentz force per unit mass near the axis,

FL = �4F0(b0zb2z + b2
1')⇠ + . . . (4.38)

where F0 > 0 is given by eq. (4.23). Every realistic model for filamentary clouds where
the axial magnetic field decreases with radius following the density has the product b0zb2z

negative, and the Lorentz force related to the poloidal field is directed outward, providing
support to the cloud. At the same time, the Lorentz force associated to the toroidal field
is directed inward, squeezing the cloud. The behaviour of the density near the axis is
⇢/⇢c ⇡ 1 � ($/$core)2 + . . ., where

$core ⇡
2$0

[⌥n(1 + 4b0zb2z + 4b2
1')]1/2

. (4.39)

The core radius is then increased by the poloidal field (b0zb2z < 0) and decreased by the
toroidal field (b2

1' > 0). This result can be a constraint for the strength and the morphology
of the magnetic field near the filament’s axis. As shown in the previous Chapter, the core
radius that is expected for unmagnetised polytropic models is

$core ⇡ 0.047
✓ �c

0.26 km s�1

◆ ✓ nc

2 ⇥ 104 cm�3

◆�1/2
pc. (4.40)
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As an example, a toroidal field in the core region that has b2
1' ⇡ 1 (corresponding to

B',c ⇡ ⇡G1/2$⇢c in physical units) would reduce the core radius by a factor of ⇠ 2. Field
strengths of this order are needed also in the models of Fiege & Pudritz (2000).

4.3.2 Scale-free solutions for large radii

In order to study the characteristics of polytropic magnetised filaments at large radii
(to be more precise, at radii much larger than the core radius given by eq. 4.39), we looks
for asymptotic solutions of eq. (4.10) and (4.11) without making specific requirements on
the magnetic field profile, imposing just a power-law behaviour. A power-law behaviour
of the density in cylindrical polytropes is only allowed for n  �1, then we will restrict
our analysis to this range of n.

For scale-free solutions, dimensional analysis implies that |B| / G1/2⇢$. In addition,
the enthalpy H and the toroidal field function  must have a power-law dependence on �
of the form:

dH
d�
= H0

"
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⇡|1 + n|nKn

# 1
3�n
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1�n
3�n , (4.41)
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1+n
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where H0 is a dimensionless constant that measures the deviation of the poloidal field
from force-free, ↵2 is a constant measuring the strength of the toroidal field with respect
to the poloidal field. In non-dimensional form, using the definitions (4.12)–(4.16), these
expressions are

dh
d�
= H0�

� 1�n
3�n , (4.43)

and
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d�
= ↵2�

1�n
3�n , (4.44)

Eq. (4.43) and (4.44) can be integrated, obtaining

h(�) = H0

 
3 � n

2
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2
3�n , (4.45)

and

 (�) = ±↵
 
3 � n

2

!1/2

�
2

3�n , (4.46)
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Figure 4.1: Scale-free solutions in the �0–✓n
0 plane for n = 1.01 (panel a), n = �2 (panel b) and

n = �5 (panel c). The curves are for chosen values of the pitch angle � from 0� to 90�
in steps of 10�. There are no solutions above the � = 0� curve, that represent models
with a pure poloidal field. No solutions are expected in the shaded area above this
curve. The dashed line is for the pitch angle �↵ , when the field becomes force-free.
Above this line, the magnetic field provides support to the cloud (H0 > 0); below the
dashed line, the magnetic field compresses the cloud (H0 < 0). From Toci & Galli
(2015b).
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The system (4.24)–(4.25) allows power-law solutions,

� = �0 ⇠
3�n
1�n , ✓n = ✓n

0 ⇠
2n

1�n , (4.47)

with the scale factors �0 > 0 and ✓0 > 0 given by

(3 � n)(1 + n)
(1 � n)2 �

2(2�n)
3�n

0 + ↵2�
2

3�n
0 = �H0✓

n
0, (4.48)
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4
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n
0. (4.49)

In these scale-free models, all forces (gravity, pressure gradient, and Lorentz force) de-
crease with radius with the same power-law slope. The Lorentz force is

FL = H0

 
3 � n
1 � n

!
�

2
3�n
0 ⇠

1+n
1�n ê$. (4.50)

and is directed inward for H0 < 0 and outward for H0 > 0. For H0 = 0, the magnetic field
is force-free. In this case, the density is given by the unmagnetised scale-free solution

✓n =

"
(1 � n)2

4

#n/(1�n)

⇠2n/(1�n), (4.51)

(see the previous Chapter), and the components of the field are

bz = �0

 
3 � n
1 � n

!
⇠

1+n
1�n , (4.52)

b' = ±↵�
2

3�n
0

 
3 � n

2

!1/2

⇠
1+n
1�n . (4.53)

Then, the magnetic field lines are helices twisted over cylindrical flux tubes. The mag-
netic field decreases with radius with a behaviour that is in between ⇠�1 for an isothermal
equation of state, and ⇠0 for a logatropic equation of state. For the values of the poly-
tropic index derived in the previous Chapter from the fit of the radial density profiles,
�3 . n . �3/2, the slope of the magnetic field is expected to be in the range �0.2 to
�0.5. Thus, as the discussion of Sect. 4.1 implies, for all values of n  �1 the axial field
always supports the cloud and the toroidal field always compresses it. The net e↵ect then
depends on the relative strength of the two components, determined by the value of the
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pitch angle � (the angle between Bz and B')

tan � =
|B'|
|Bz|
=

↵(1 � n)
[2(3 � n)]1/2�

� 1�n
3�n

0 . (4.54)

For small values of �, the field is almost axial, and supports the envelope with a Lorentz
force directed outward. Increasing � the toroidal component increases, squeezing the
cloud with a Lorentz force directed inward. At some particular �↵ the two e↵ects cancel
out, and the field is force-free (H0 = 0). This happens when

↵ = ↵↵ =
[�(3 � n)(1 + n)]1/2

1 � n
�

1�n
1+n
0 , (4.55)

as can be found from eq. (4.48) setting H0 = 0. Thus, for each n, the field becomes
force-free when the pitch angle is

tan �↵ =
 
�1 + n

2

!1/2

, (4.56)

a value that is related only to the polytropic index. For n = �1 (logatropic case) the force-
free field is a poloidal field with uniform strength, while for n ! �1 (isothermal case)
the force-free field is toroidal and decreases as $�1. For the values of n derived in the
hydrostatic case, for filamentary cloud �↵ varies between 26� and 45�.

Fig. 4.1 shows the loci of solutions in the �0–✓n
0 plane (field strength vs. density

in non-dimensional units), for three values of the polytropic index: n = �1.01 (quasi-
logatropic equation of state), n = �2 (best-fit value for the observed filaments, see in the
previous Chapter) and n = �5 (quasi-isothermal equation of state). Every line is a locus
of solutions that has a fixed value of the pitch angle �. The parameter space is split in two
regions by the H0 = 0 line of force-free configurations: for H0 > 0 the Lorentz force is
directed outward and supports the cloud; for H0 < 0 the Lorentz force is directed inward
and has the opposite e↵ect. If H0 = 0 the field is force-free, the pitch angle has the value
�↵ given by eq. (4.56) and the density the value obtained by eq. (4.51) independently
on the field strength �0 (dashed lines in Fig. 4.1). The line � = 0 shows the locus of
solutions with a purely poloidal field. This line comes from the unmagnetised solution
✓n

0 = [(1 � n)2/4]n/(1�n), �0 = 0, and can be found always in the H0 > 0 region of the
diagram, indicating that a pure poloidal magnetic field can only support, not compress, a
cloud. The solutions with � = 0 are defined by a density scale ✓n

0 larger than the density
scale of the unmagnetised model, due to the extra support provided by the field. No
solutions are allowed above the � = 0 line.
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The curves in Fig. 4.1 show that for a field strength that increases �0, configurations
with a chosen pitch angle lower than the critical value �↵ support increasingly larger den-
sities; while if the pitch angle is larger than �↵ , any increase in the field strength reduces
the density that can be supported. However, in the second case, equilibrium configuration
only exists below a maximum value of �0. Thus, for a fixed field strength, there is always
at least one solution with density larger than the unmagnetised one, a pitch angle � < �↵
and magnetic e↵ects that are dominated by the poloidal component (“magnetic support”),
and one (or two, or zero) solutions with density lower than the unmagnetised solution,
pitch angle � > �↵ , and magnetic e↵ects dominated by the toroidal component (“mag-
netic compression”). As plotted in Fig. 4.1, if the equation of state is soft (upper panel)
in the parameter space “magnetic compression” solutions are more likely, whereas for
a quasi-isothermal equation of state (lower panel) “magnetic support” solutions become
dominant. This implies that the role of the magnetic field depends sensitively not only on
the pitch angle but also on its dependence on radius via the polytropic exponent �p.

The two cases n = 1.01 and n = �5 in Fig. 4.1 show the behaviour of the solutions
when they approach the logatropic and the isothermal limit, respectively. In the former
case, solutions in which the magnetic field provides support progressively disappear. As
an example, for a pitch angle � larger than about 4�, the hoop stresses of the toroidal field
dominate over the support of the dominant poloidal field, squeezing the cloud. Accord-
ingly, the density is lower than in the case of the unmagnetised solution. Increasing �n,
the region with H0 < 0 shrinks, and the transition from support to compression occurs at
larger pitch angle (about 35� for n = �2). For n = �5 the permitted parameter space is
largely populated by solutions where the field gives support to the filament (H0 > 0), but
in the limit n! �1 the region of no solutions covers all the �0–✓n

0 plane. The unmagne-
tised solution tends to ✓n

0 = 0 in this limit. To be precise, even in the unmagnetised case,
no scale-free solution exists for an isothermal equation of state.

4.3.3 Force between magnetised filaments

The magnetic field we used in the previous sections is generated by electric currents
flowing in the filaments. A toroidal field B'($), for instance, is generated by an electric
current I($)êz flowing along the filament given by

I($) =
c
2

Z $

0
[r ⇥ (B'ê')]$ d$ =

c
2
$B'($). (4.57)
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For this reason, two parallel filaments, at a distance d larger than their radii $s, behave as
two electric wires and exert on each other an electromagnetic force (per unit length) Fem,
repulsive if the currents are aligned, attractive if they are anti-aligned, given by

Fem =
2I1I2

c2d
ê$. (4.58)

This electromagnetic force scales as the gravitational force (per unit length) Fg between
the two filaments,

Fg =
2Gµ1µ2

d
ê$, (4.59)

where µ is the mass per unit length. Therefore their ratio is independent on the filaments
separation

R ⌘ |Fem|
|Fg|

=
I1I2

c2Gµ1µ2
⇠

 
I

cG1/2µ

!2

. (4.60)

In this last approximation we assume that the two filaments have similar properties. Fol-
lowing eq. (4.57), the electric current is zero on the axis and equal to c$sB',s/2 on the
surface (in the scale-free models we developed for the filaments’ envelopes, in which$B'
increases outwards, the electric current is maximum at the surface). Taking the average,
we can set I ⇡ c$sB',s/4, to have

R ⇡ 1
16

 
$sB',s
G1/2µ

!2

. (4.61)

substituting numerical values,

R ⇡ 22
 
$s

1pc

!2  
B',s

10 µG

!2  
µ

10 M� pc�1

!�2

. (4.62)

This picture is extremely idealised, and also have a large uncertainty on the results be-
cause is di�cult to estimate the filament’s outer radius $s and the related value of the
(toroidal) magnetic field. However, the non-negligible numerical value of R implies that
the electromagnetic forces may play a role as important as gravity in the interaction be-
tween magnetised filaments.
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4.4 Summary

Magnetic field seems to play an important role in determining the observable prop-
erties of filamentary clouds. In this Chapter we analysed the properties of magnetised
polytropes in cylindrical geometry, extending the study we made in Chapter 3.

The main hypothesis is that the evolution of real filaments can be approximated as a
series of magnetostatic solutions as filaments accrete more material from the surround-
ing environment, thus the models we developed are magnetostatic by design. However,
this does not necessarily imply zero a velocity field everywhere, if the accretion speed
becomes either subsonic or directed mostly parallel to the filament’s axis in the central
parts of the filament. We solved general equations for magnetised filamentary clouds im-
posing a polytropic equation of state, and assuming cylindrical symmetry together with
magnetostatic equilibrium. We formulated the problem in terms of two partial di↵erential
equations for four unknowns: the density ⇢, the flux function � for the poloidal field,
and two functions of �, namely the enthalpy H(�) and the toroidal field function  (�).
Generally, to obtain solutions additional assumptions are needed, because the previous
evolution of the system is not known. In the literature, these additional assumptions im-
ply specific choices of the dependence of the two component of the field on density and/or
radius (e.g. Fiege & Pudritz 2000). In this work, we did not adopt these assumptions. In
fact, we analysed the properties of the models in the region near the axis (the filament’s
core) where the boundary conditions given by symmetry requirements determine the be-
haviour of the solutions, and at large radii, where the solutions are expected to reach a
scale-free form for n  1.

The of equation of state explored in this work range from a “logatropic” (n = �1,
or �p = 0) to an “isothermal” (n ! �1, or �p = 1). In all these cases, variables have
a power-law behaviour with profiles that become flatter as the equation of state becomes
softer. As the polytropic exponent �p decreases from 1 to 0, the power-law exponents
range from �2 to �1 for the density and from �1 to 0 for the magnetic field.

According to the power-law slope, the magnetic field a↵ects the radial density profile
of the cloud in opposite ways. In the range n  �1, the magnetic field can either support
or compress the cloud (or be force-free) depending on the relative strength of the toroidal
and poloidal components. Pure poloidal fields, or with small toroidal components (small
pitch angle �) give support to the cloud (H0 > 0). This allows higher values of the en-
velope density ✓n

0 than those resulting from thermal support alone. While the strength of
the toroidal component increases (↵2 > 0), the e↵ect of the field becomes very sensitive
to the field strength �0: a small change in �0 changes the sign of the Lorentz force, from
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supporting to squeezing the cloud. In the latter case, the density of the envelope is lower
than the expected value in a non magnetised filament. For softer equation of state, the
confining e↵ect of the field is enhanced because the poloidal component becomes more
uniform. In particular, for a logatropic equation of states, all scale-free solutions have a
Lorentz force directed inward, and their density is lower than in the non magnetic case.
Conversely, all scale-free solutions converge to zero density in the limit of an isothermal
equation of state, because, as shown in Chapter 3, the typical asymptotic power-law be-
haviour of an isothermal cylinder is reached only at infinite radius, where the density is
zero.

Within the limits of the idealised scale-free models for magnetised filaments pre-
sented in Chapter 4, our results seems to point out that a measure of the pitch angle of
the magnetic field associated to filaments can give a way to discriminate filaments that are
compressed by the field from those that are supported by the magnetic field itself. High-
resolution observations of polarised dust emission inside the filaments (e.g. with ALMA)
will be very useful to understand the role of large- and small-scale magnetic fields in their
formation and evolution.

The magnetisation of interstellar filaments implies also the presence of electric cur-
rents flowing along and/or around them, producing attractive (or repulsive) electromag-
netic forces that enhance (or dilute) their gravitational field and may a↵ect their interac-
tions.





5 Theoretical and numerical
modelling of MHD collapse

As shown in the previous Chapters, the magnetic field influences the stability and
the evolution of molecular clouds. However, turbulence is also an important ingredient
due to the fact that it can provide a non-thermal pressure contribution. In the literature,
as already reported in the Introduction, turbulence has been studied in great details with
numerical simulations. Almost all these numerical studies are concerned with gas in static
volumes. During the process of star formation, however, a cloud undergoes expansions
and contractions (induced by gravitational or pressure e↵ects), and therefore its volume
changes in time.

Little work has been done to characterise the evolution of turbulent motions physics
in expanding or contracting gases in this field. In a recent study, Robertson & Goldreich
(2012) simulated the behaviour of isotropic hydrodynamic turbulence during an isotropic
contraction, finding an adiabatic heating mechanism capable to amplify turbulence by
compression in cases where the contraction is more e�cient than the dissipation of the
random bulk energies. It should be noted, however, that Davidovits & Fisch (2017) found
a lower bound for this enhancement of fluctuations, suggesting that some numerical mod-
els could be too much dissipative.

Related problems are the evolution of the observed oscillations in cores that are under-
going a contraction (Keto & Caselli 2010), and the inverse Hubble flow model developed
by Toalá et al. (2015), studying the problem of the growth of density perturbations during
the gravitational collapse of a spherical pressureless cloud in analogy with the cosmolog-
ical model of the expanding Universe. For all these reasons, it is interesting to study the
temporal evolution of a magnetised and turbulent element of fluid in a contracting cloud.

In order to study homogeneous turbulence taking into account the e↵ect of contrac-
tion, it is more convenient, from a numerical point of view, to use a local simulation

71
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box in Cartesian-like coordinates and periodic boundary conditions. Within such settings
the physical processes under investigation can be more easily modelled employing high-
accuracy numerical methods. The expanding box model (EBM) (Grappin et al. 1993)
allows to study the evolution of compressible MHD turbulence in expanding/contracting
volumes in Cartesian coordinates (see also Grappin et al. (1991) and Grappin & Velli
(1996)), due to the fact that the e↵ect of expansion/contraction is taken into account by a
stretching local frame comoving with the mean velocity. This scheme was originally de-
vised to study turbulence in the expanding solar wind. The model is based on a separation
of scales, a large scale characteristic of the mean flow and a small scale describing turbu-
lent fluctuations. The feedback of turbulent fluctuations on the mean flow is neglected.

If the mean flow is radially symmetric it cannot be eliminated by a Galilean trans-
formation. In fact, when following a plasma volume transported by the wind, the e↵ect
of the radial flow is equivalent to external forces stretching the volume in directions per-
pendicular to the radial direction. It is then convenient to use a domain that is expanding
at a constant rate in these directions so that the volume stretching reduces to a time-
dependent rescaling of transverse gradients and the external forces become, to first order,
additional time-dependent linear terms in the original MHD equations. EBM equations do
not conserve quadratic invariants, like the energy, due to the external forces that cause the
stretching, but linear invariants as angular momentum and magnetic flux are conserved. In
a more general context, expansion or contraction can be prescribed by assigning a metric
tensor. It is thus convenient to write the equations of the EBM in a covariant formalism
more appropriate for multi-purpose conservative schemes working in any system of co-
ordinates. The ECHO code equations are written in this form. In the following Section
we will briefly describe how to obtain the EBM equations and the equivalent metric in the
covariant formalism.

5.1 The expanding box model for the solar wind
Consider a parcel of plasma at initial position R0, travelling a constant speed u, so

that its position at any time is R(t) = R0 + ut. It is convenient to introduce the expansion
scale factor,

a(t) =
R(t)
R0
,

ȧ
a
=

u(R)
R

(5.1)

where R0 = R(t = 0) is the initial parcel position and the dot indicates time derivation.
The quantity ȧ/a in (5.1) is the inverse of the expansion characteristic time, the analogous
of the Hubble time in cosmology. MHD equations may be integrated within |�|  ↵, |✓| 
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Figure 5.1: Original figure of the evolution of a plasma volume that flows in a spherical wind
with constant speed (Grappin et al. 1993). In fig. (a) is showed the exact evolution, in
fig. (b) the approximate evolution in the limit of small angular size ↵

⇡/2 � ↵, where ↵ is the angular size of the box. If the box is small enough, ↵ ⌧ 1 and
L0 ⌧ R(t), where L0 is the dimension of the box. We now choose a locally Cartesian-like
coordinate system with x = r�R(t) and stretched transverse coordinates y and z, expanding
at the rate a(t) due to the radial diverging flow. Provided the box is taken su�ciently small
such that the expansion/contraction speed inside the box can be considered uniform, after
a Galilean transformation in the new comoving frame x1 = x, x2 = y/a, x3 = z/a the
residual velocity is, to the first order,

u0 = ȧ(0, x2, x3) =
ȧ
a

(0, y, z) (5.2)

which is not vanishing in the transverse direction. In the evolution equations, time deriva-
tives and transverse spatial gradients are di↵erent. They become:

@t ! @t � (u0 · r), r = (@1,
1
a
@2,

1
a
@3) = (@x, @y, @z) (5.3)

and new source terms as eq. (5.2) appear in MHD equations (see Grappin et al. 1993 or
Grappin & Velli 1996, Grappin et al. 1991, Tenerani & Velli 2013). The EBM trans-
formation (comoving plus expanding domain) is equivalent to introducing a change of
coordinates x0(x,t):

x0(x, t) = M(t) · x, (5.4)

where M(t) = diag(1, 1/a, 1/a). The metric formalism allows us to generalise the EBM
equations to non-constant speed of expansion/contraction that is required to describe free-
fall motion of gas toward the center of molecular clouds or the homologous collapse of
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an interstellar cloud1. It also allows to choose di↵erent cases of expansion/contraction,
like the contraction along one axis or a more general anisotropic contraction, that can be
useful to represent the collapse of a molecular cloud filament or core. The isotropic case
M(t) = diag(1/a, 1/a, 1/a) corresponds to the expanding Universe or the inverse Hubble
flow.

5.2 Contracting box model

Figure 5.2: Homogeneous (blue box) and free-fall (orange box) contraction.

We generalised the formalism of EBM for a generic anisotropic metric stretched in
all the directions. The ECHO code simulates the e↵ect of the background gravity with
the comoving coordinates. The metric of the contraction is induced by the self-gravity of
external background, that forces the cloud contract, and is superimposed and fixed as an
external parameter of the problem.

1In the case of the solar wind, the accelerated case has been studied by Tenerani & Velli (2013).
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Di↵erent is the case in which the focus is on the growth of small perturbation in a
fluid. In that case the self-gravity of each fluid element can become important (if the Jeans
length related to the element becomes comparable or larger than its size). The ECHO code
does not take into account self-gravity, but in Chapter 6 we will give an analytical estimate
of its e↵ect in the hydrodynamical case.

Let us now choose again a locally Cartesian-like coordinate system, and assume that
the velocity field is given by the overall contraction/expansion with velocity u0(x, t) plus a
residual component u(x, t). Provided the box is taken su�ciently small such that the speed
can be considered as uniform, the former can be removed with a Galilean transformation.
In analogy with the EBM model, the contraction/expansion velocity is given by

u0(x, t) =
 
ȧ
a

x,
ḃ
b

y,
ċ
c

z
!
⌘ H(t) · x, (5.5)

where H(t) = diag(ȧ/a, ḃ/b, ċ/c). The terms containing u0 · r can be eliminated by
introducing comoving coordinates x0(x,t):

x0(x, t) = M(t) · x, (5.6)

whereM(t) = diag(1/a, 1/b, 1/c). Notice that

@M

@t
= �M · H. (5.7)

The transformation of time and space derivatives is

@

@t
=
@

@t
+
@x0

@t
· r0 = @

@t
� u0 · r, (5.8)

and
r = M · r0, (5.9)

where we have used
@x0

@t
=
@M

@t
· x = �M · H · x = �M · u0. (5.10)

In this coordinate system the standard ideal MHD equations (see Section 2.1) become

@⇢

@t
+M · r0 · (⇢u) = �⇢ trH, (5.11)

@u
@t
+ (u ·M · r0)u + 1

⇢
M · r0

 
P +

B2

2

!
+

B
4⇡⇢
⇥ (M · r0 ⇥ B) = �H · u, (5.12)
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@P
@t
+ (u ·M · r0)P + �PM · r0 · u0 = ��P trH, (5.13)

and
@B
@t
+M · r0 ⇥ (B ⇥ u) = B · (H � I trH), (5.14)

Note that we added in the momentum equation �⇢W ·x, the force per unit volume respon-
sible for the acceleration of the contraction.

Assume now that the physical quantities are given by the overall mean value plus a
fluctuating component,

⇢(x, t) = ⇢0(t) + ⇢1(x, t), P = P0(t) + P1(x, t), B = b0(x, t) + B1(x, t), (5.15)

where ⇢0(t), P0(t) and B0(t) = B0 êz are uniform.

Substituting these expansions in the MHD equations we obtain the MHD equations
for the background quantities

@⇢0

@t
= �⇢0r · u0 = �⇢0 trH, (5.16)

@u0
@t
+ (u0 · r)u0 �W · x = 0, (5.17)

@P0

@t
= ��P0r · u0 = ��P0 trH, (5.18)

@B0

@t
= �r ⇥ (B0 ⇥ u0) = �B0

 
ȧ
a
+

ḃ
b

!
. (5.19)

The solutions of the equation of continuity, pressure and induction are

⇢0(t) =
C1

abc
, (5.20)

P0(t) =
C2

(abc)�
(5.21)

and
B0(t) =

C3

ab
, (5.22)

where C1, C2 and C3 are constants, while the momentum equation is correct if the box is
su�ciently small compared to the scale in which the mean velocity u0 varies.



Chapter 5. Theoretical and numerical modelling of MHD collapse 77

In this coordinate system the linearized MHD equations for the fluctuations become

@⇢1

@t
+ ⇢0M · r0 · u1 = �⇢1 trH, (5.23)

@u1

@t
+

c2
s

⇢0
M · r0⇢1 +

B0

4⇡⇢0
⇥ (M · r0 ⇥ B1) = �H · u1, (5.24)

@P1

@t
+ �P0M · r0 · u01 = ��P1 trH, (5.25)

and
@B1

@t
+M · r0 ⇥ (B0 ⇥ u1) = B1 · (H � I trH), (5.26)

where the terms on the right side of the equations arise from the compression of the fluid
element due to the mean flow. Classic EBM model can be obtained setting a ! 1 and
b = c, the free-fall with b = c, and Hubble-like case with a = b = c.

5.3 The ECHO Code
Our goal is to study the evolution of turbulence in a molecular cloud that is contract-

ing following a generic metric both in analytical and numerical way. In order to perform
numerical simulations we used the ECHO code, that solves numerically the 3D MHD sys-
tem of equations, based on an Eulerial conservative high-order scheme (see i.e Londrillo
& Del Zanna 2000, Londrillo & del Zanna 2004, Del Zanna et al. 2007, Landi et al. 2008).
For a short description of the code see Appendix A.2.

When the aim of a simulation is to study not only shocks or discontinuities, but also
small-scale structures, like turbulent flows and waves, high numerical accuracy in conser-
vative schemes is required. In fact, if the numerical di↵usion of the scheme is too high,
these structures tend to be smeared out. However, higher than second order accuracy is
needed also because, for 3D simulations, numerical grids are limited in size.

High-order numerical methods have been implemented in ECHO to solve MHD equa-
tions by Londrillo & Del Zanna (2000), where the request for the magnetic field to be
solenoidal was used as a built-in condition (upwind constrained transport method, UCT,
see Appendix A.4). In general ECHO allows to solve di↵erent sets of equations (from
classic to general relativistic MHD) and includes di↵erent algorithm is in a single frame-
work. ECHO is written in Fortran90, composed by modules and parallelised with MPI
directives. In particular the code implies a finite di↵erence discretisation, high order
component-wise reconstruction methods, a two-wave approximate Riemann solver, and
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multi-stage Runge-Kutta for time integration (See A.2 in the Appendix). Di↵erent bound-
ary conditions are implemented in the code (See A.2 in the Appendix). In this thesis we
used periodic boundary conditions.

5.3.1 Conservative form of MHD equations and code imple-
mentations

The standard ECHO code solves ideal classical and relativistic MHD equations in the
general, conservative form (Del Zanna et al. 2015)

@tU + @iF i = S, (5.27)

where U is a generic vector of conservative variables, F i are the corresponding fluxes (i
is the index of the 3 spatial coordinates xi and is assumed the Einstein convention of sum
over repeated indexes) and S is the vector that contains the source terms. Using a generic
metric tensor gi j, with determinant g, the MHD system in a conservative form is

U = pg

0
BBBBBBBBBBBBBBB@

⇢

⇢v j

Et

Bj

1
CCCCCCCCCCCCCCCA
, F i =

p
g

0
BBBBBBBBBBBBBBBB@

⇢vi

⇢viv j � BiBj + pt�i
j

(Et + pt)vi � (vkBk)Bi

viBj � v jBi

1
CCCCCCCCCCCCCCCCA

(5.28)

where the total kinetic plus magnetic pressure and energy are:

pt = p +
1
2

B2, Et =
1
2
⇢v2 +

1
� � 1

p +
1
2

B2. (5.29)

The source terms needed are

S = pg

0
BBBBBBBBBBBBBBB@

0
1
2 (⇢vivk � BiBk + ptgik)@ jgik

� 1
2 (⇢viv j � BiBj + ptgi j)@tgi j

0

1
CCCCCCCCCCCCCCCA
. (5.30)

We must remember that covariant and contravariant components are related by vi =

gi jv j. In fact, starting from MHD equation in a conservative form in contravariant formal-
ism, covariant form of MHD equation can be obtained using the latter equation. As an
example, let’s introduce the EBM model within such framework. Given the scale factor
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a = a(t) of (5.1), the metric tensor must be defined as

gi j = diag[1, a2(t), a2(t)],
p

g = a2(t) (5.31)

which is almost Cartesian (diagonal and spatially uniform), but time-dependent. If we
want to use usual Cartesian orthonormal coordinates we find that v1 = v1 = vx, v2 =

a2v2 = avy, v3 = a2v3 = avz. Thus, starting from the contravariant formalism we obtain
the covariant form of continuity equation:

@t(a2⇢) + @i(a2⇢vi) = 0, (5.32)

thus if i = 1 then v1 = v1 = vx, either if i = 2 or i = 3 then v2 = a2v2 = avy and
v3 = a2v3 = avz.

@t⇢+ 2
ȧ
a
⇢+ @x(⇢vx)+ a@y(⇢

vy

a
)+ a@z(⇢

vz

a
) = @t⇢+ 2

ȧ
a
⇢+ @x(⇢vx)+ @y(⇢vy)+ @z(⇢vz) = 0

(5.33)
Then we obtain again

@⇢

@t
+ r · (⇢v) = �2

ȧ
a
⇢. (5.34)

With the same considerations we can obtain also the other equations.

Note that if we assume that our metric is only time dependent the source term propor-
tional to @ jgik vanishes while @tgik is di↵erent from zero, and in particular the term into
the energy equation is

� 1
2

(⇢viv j � BiB j + ptgi j)dtgi j = �
ȧ
a

(⇢v2
? � B2

? + 2pt) (5.35)

where v? = v2
y + v2

z and similarly for the magnetic field.

Implementation to the standard ECHO code

We have generalised the ECHO code, allowing the use of a generic diagonal metric.
The related contraction/expansion can be also accelerated (in the regime in which the
model can be applied). The source contribution in the energy equation eq. (5.35) becomes

� 1
2

(⇢viv j � BiB j + ptgi j)dtgi j = �⌃ j
ġ j j

g j j
(⇢v2

j � B2
j + pt), (5.36)
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that for an inverse Hubble flow is

� 1
2

(⇢viv j � BiB j + ptgi j)dtgi j = �
ȧ
a

(⇢v2 � B2 + 3pt). (5.37)

Since the ECHO code solves the EBM equations with a conservative numerical scheme,
viscosity and resistivity are ignored and we need to introduce them explicitly so as to be
able to control the conversion of turbulent motions into internal energy. We thus intro-
duced explicitly the viscosity and resistivity and tested the code by checking the known
time-scale associated to the steepening of a sound wave into a shock in the static case.
We then studied the contracting and expanding EBM and Hubble-like cases, to under-
stand how the characteristic time of shock formation changes when the rate of contrac-
tion/expansion is varied.

In the Navier-Stokes and in the Ohm equations and eq. (2.9) eq. (2.13) explicit con-
tributes related to the divergence of the Laplacian terms arises. In particular, the flux of
the viscosity stress tensor gives

Fi = ⌃ j⇣vi

 
@vi

@x j
+
@v j

@xi
� @vl

@xl
�i, j

!
= ⇣⌃ jv j

@v j

@xi
, (5.38)

and similarly for the resistive term into the Ohm equation (Landi et al. 2008).

Tests

We would like to test the ECHO code with a simple, known case: the sinusoidal 1D
sound wave. The governing equations are the continuity equation and the Navier-Stokes
equation (see Section 2.1), and, in the absence of dissipation, the exact solution for a
monochromatic wave with k0 wave vector is

u1 = û1exp(ik0x � i!t) (5.39)

with dispersion relation !2 = c2
sk2

0. Including the e↵ect of the viscosity (⇣ , 0), the last
equation becomes !2 = c2

sk2
0 � i⇣!k2

0. The frequency is in general complex, we can then
write !c = � 1

2⇣k2
0 and !2

r = c2
sk2

0 � 1
4⇣

2k4
0. Thus the monochromatic wave is

u1 = û1 exp(ikx � i!rt) exp(�1/2⇣k2t) (5.40)

and as !i < 0, this wave is decaying in time ⇠ exp(!ct). In presence of viscosity a
sound wave is then damped, in particular waves with large wave numbers k, i.e. small
wavelengths are dissipated faster (!ck2 is larger). We then expect in the linear regime a
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Figure 5.3: E↵ects of explicit viscosity during the propagation of sound waves in the linear
regime: the wave is damped and the kinetic energy exponentially decrease. The
initial condition is a monochromatic sound wave propagating along the x axis with
k0 = 1, � = 5/3 and a value for the velocity fluctuation of 0.1 in the code units. The
domain is periodic and the initial crossing time is 1 in code units. The numerical
simulations and the theoretical expectations from eq. (5.41) are in good agreement.

behaviour of the kinetic energy

Ek ⇠ |u2
1,k0
| exp(�⇣k2

0t). (5.41)

In Fig. (5.3) is shown the good agreement between the simulations and the theoretical
results.

The e↵ects of viscosity are also shown in Fig. (5.4). This figure shows the evolution
of a plane sound wave with an initial mode k0 in an ideal HD case and in a viscous HD
case. Due to nonlinear e↵ects the profile of the wave steepens as it propagates, forming a
shock. An intuitive way to explain the steepening is that the peak of the wave (with higher
velocity) catches the trough of the wave (with lower velocity) as an e↵ect of the advection
term in momentum equation. The steepening time is then given by the distance between
the two parts (l ⇠ 1/k0) divided by the velocity u, that is the nonlinear time, t⇤ ⇠ 1/k0u. As
Fig. (5.4) shows, if the main interest of the physical case under consideration are shocks,
there is no need for implementing the viscosity and resistivity e↵ects. In fact, the position
of the shocks is well captured in both cases, and does not depend on dissipative e↵ects.
The introduction of explicit viscous and resistive terms is crucial in order to stabilise the
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Figure 5.4: A comparison between velocity fluctuations in ideal MHD (coloured) and viscous
MHD (dashed lines) at the same times. The initial condition is a monochromatic
sound wave propagating along the x axis with k0 = 1, � = 5/3 and a value for the
velocity fluctuation of 0.1 in the code units. The resolution implied is n = 512 grid
points and the value of the viscosity ⇣ = 5 ⇥ 10�4. The domain is periodic and the
initial crossing time is 1 in code units. The wave propagates and forms a shock at
the time t⇤ ⇠ 1/k0u1, in this case ⇠ 1.6 in normalised time t. Introducing viscosity
in the code the amplitude of the wave is damped due to dissipation. The ECHO code
is shock-capturing, thus the shock forms at the same time and in the same position
in both the ideal and the viscous case. As a consequence, the front waves velocity
increases.

code in simulations where the focus is on turbulence and vortexes circulation, allowing
energy to be dissipated at the small scales. This prevent the accumulation of energy at
small scales.

After the generalisation of the metric in the code we tested the consistency of the
simulations. The prototype case we studied is a Hubble-like MHD contraction (a = b =
c = 1� t/tc) with constant value for the thermodynamical quantities and tc = 1 in the code
units (see Section 6.5 for the code normalisation in the HD case). Values for unperturbed
quantities are: ⇢0 = 1, vx,0 = 1, By,0 = 1 in the normalised code units, � = 1. Using
equations (5.16), (5.18) and (5.19) in the linear phase we expected that ⇢0 ⇠ a�3, vx,0 ⇠
a�1,P0 ⇠ a�3�, By,0 ⇠ a�2.



6 Hydrodynamics in contracting
volumes

As a first analysis, due to the complexity of the MHD problem, we simplify the MHD
equations in contracting volumes of Sect. 5.2, studying first a non-magnetic contraction
(thus, in all this Chapter, B = 0).

To address the problem of sub-structure formation in cloud cores, we investigate the
evolution of density and velocity perturbations embedded in a contracting medium (the
“background”, or “parent cloud”) undergoing isotropic or anisotropic collapse. We use the
theoretical framework we developed to study contracting flows, that allows us to follow
analytically the linear and nonlinear evolution of perturbations in the two simple cases
of contracting backgrounds we introduced: a spherical cloud undergoing homologous
pressureless collapse, and the spherical accretion flow on a point mass1.

We formulate the equations of hydrodynamics in comoving coordinates. Our goal
is to apply the study of the dynamics of hydrodynamical waves to contracting interstel-
lar clouds, analytically analysing the evolution of linear perturbations in anisotropic and
isotropic contractions. Thus, we investigate the homologous collapse of a cloud with uni-
form density and the spherical accretion flow on a point mass, comparing our analytical
results to hydrodynamical simulations in contracting box performed on the CINECA su-
percluster MARCONI. We also evaluated analytically the non-linear time tNL, when the
linear approximation breaks up and the perturbations enter into the non-linear stage. To
estimate this time we adopt the Burger’s equation already introduced in Sec. 2.29, using
comoving coordinates. We verify numerically that our estimate corresponds to the begin-
ning of the non-linear dissipation of kinetic energy’s phase. Finally, we apply our results
to an astrophysical case: the growth of small-scale density perturbations during the col-

1See Appendix for details of the calculations.
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lapse of molecular cores. This process is important because it is related to the theory of
molecular cloud’s fragmentation.

6.1 Sub-structure formation in starless cores
The growth of small-scale density perturbations during the collapse of an interstellar

cloud has been studied by many authors trying to understand the formation of stellar
clusters and multiple stellar system by the process of fragmentation.

The concept of fragmentation is the breakup of large, self-gravitating clouds into
smaller sub-unities (clumps, cores and stellar clusters). The earliest study in this field
has been made by Hoyle (1953), and at that time the works were focused on the growth of
initially Jeans-unstable perturbations. Tohline (1980) introduced the concept of “delayed
fragmentation”, because the beginning of gravitational instability can occur only after the
mean density of the cloud (that is assumed to be in free-fall collapse) has grown signifi-
cantly, and the instantaneous value of the Jeans length has become smaller than the scale
of the perturbed region. He proposed that in this case the time that a perturbation needs for
a significant amplification of its amplitude would be larger than the time the parent cloud
has left in its evolution, an then proposed a converging motion of the gas in alternative
to self-gravity, as a way to amplify small-scale density perturbations which are initially
Jeans-stable.

The fate of these initially Jeans-stable perturbations was investigated numerically in
collapse simulations made by Rozyczka (1983), who found that the latter are e�ciently
damped well before reaching the threshold for gravitational instability. Thus, they are
unable to form well-defined fragments. Furthermore, in those simulations has been found
the formation of local concentrations of angular momentum (possibly as the result of tidal
interactions) even in the collapse of clouds with no initial rotation.

The model described in this Chapter can be applied to molecular cloud cores con-
taining only a few Jeans masses. We focus then on the evolution of Jeans-stable density
perturbations, that initially oscillate as a collection of sound waves of small amplitude.
This is justified by the observational result that non-thermal motions in dense cores are
generally subsonic (Myers & Benson 1983). In the case of starless cores, it has been sug-
gested that subsonic motions (“turbulence”) may be forming the seeds of multiple sites
of star formation (Goodwin et al. 2004), but scarce evidence has been found yet for sub-
structure formation in these objects (see i.e Dunham et al. 2016). Only recently some
evidence of compact substructure has been found in one starless core in Ophiuchus (Kirk
et al. 2017) and in the Orion Molecular Cloud 1 South (Palau et al. 2017). However, the
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processes determining the formation of multiple protostellar seeds at these scales remain
unclear.

The analysis we made in this Chapter can be considered a generalisation of the orig-
inal approach to this problem made by Toalá et al. (2015), who formulated the problem
in the framework of an inverse Hubble flow, i.e. the gravitational collapse of a spherical
pressureless clouds2. They found that the gravitational instability occurs faster in inverse
Hubble flows than in a static cloud, and postulated that growing, unstable perturbations
on scales larger than the Jeans length �J collapse when they reach the non-linear stage, i.e.
at a time tnl identified by the condition �⇢/⇢ ⇡ 1. In inverse Hubble flows, tnl is always
smaller than the free-fall time t↵ of the cloud, and approaches the latter in the limit of
initially small amplitude of the perturbations. Their analysis has been made for of Jeans-
unstable perturbations in a cloud containing a large number of Jeans masses, while the
model we made is more suitable for low mass star formation, as already reported.

6.2 Hydrodynamics in comoving coordinates
To study the dynamics of a gas in collapsing cloud cores we apply the theoretical

framework derived in Sec. 5.2, neglecting the magnetic field. This is necessary, for ex-
ample, to follow the evolution of a fluid accreting onto a central mass point. We want
to investigate the evolution of density and velocity perturbations embedded in a back-
ground medium that is undergoing a collapse. The background medium evolves with
some metric-related laws (see Sec. 5.2) and the growth of perturbations is described in a
local system of Cartesian coordinates comoving with the background flow.

Consider a small Cartesian line element �x = (�x, �y, �z) advected by the flow, evolv-
ing as

�x(t) = S(t) · �x0, (6.1)

where S(t) = diag[a(t), b(t), c(t)] is the scale factor, normalized such that S(t0) = I and
�x(t0) = �x0. As in Section 5.2, all hydrodynamical quantities can be split into the sum of
background and local components (hereafter called fluctuations), as

u = ub + u1, ⇢ = ⇢b + ⇢1, (6.2)

where u(x, t) is the velocity field, ⇢(x, t) is the gas density, and x = (x, y, z). In the fol-
lowing we will assume an isothermal equation of state, p = c2

s⇢. We then assume for the
2In cosmology, this solution corresponds to the Lemaitre-Tolman elliptic (k = +1) solution of

Einstein’s equations for a “dust” Universe
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background density a spatial uniformity and for the background velocity a general metric
law as 5.2,

ub(x, t) = H(t) · x, (6.3)

where H(t) = diag(ȧ/a, ḃ/b, ċ/c). Note that the dot means time derivative. Then, in the
comoving coordinates defined by the transformation

x0 = S�1(t) · x, (6.4)

the hydrodynamical equations become

@⇢1

@t
+ r̃ · (⇢u1) = �⇢1 trH, (6.5)

and
@u1

@t
+ (u1 · r̃)u1 +

c2
s

⇢
r̃⇢1 + g1 = �H · u1, (6.6)

where the spatial gradient r0 is defined as

r̃ = 1
a
@

@x0
êx +

1
b
@

@y0
êy +

1
c
@

@z0
êz = S

�1 · r0, (6.7)

and the gravitational field g1 satisfies Poisson’s equation

r̃ · g1 = 4⇡G⇢1. (6.8)

As already introduced in Chapter 2, in this case the self-gravity of fluctuations cannot be
neglected, and the it has to be included into the HD equations.

6.3 Linear evolution of fluctuations
Linearizing the equations we obtain

@�

@t
+ r̃ · u1 = 0, (6.9)

@u1

@t
+ c2

sr̃� + g1 = �H · u1. (6.10)

where �(x0, t) = ⇢1(x0, t)/⇢b(t) is the density contrast.
An important quantity to consider is the vorticity of the fluid, !1 = r ⇥ u1 , linked to
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the tendency of a fluid particle to rotate or circulate at a particular point. Taking the curl
of eq. (6.10) we can analyse its evolution in time,

@!1

@t
= �trH!1 + H · !1. (6.11)

showing that any initial vorticity is enhanced by the contraction of the cloud and be-
comes is progressively aligned to the direction of fastest contraction. If the contraction is
isotropic, eq. (6.11) reduces to

@!1

@t
= �2

ȧ
a
!1, (6.12)

implying that the the vorticity increases as a(t)�2, the reverse of the so-called natural de-
cay of vorticity in the expanding Universe. A more general solution of eq. (6.11) for the
mean vorticity h!2i1/2 has been found by Olson & Sachs (1973). They added a nonlinear
term representing the breakup of larger eddies into smaller ones in the case of incom-
pressible turbulence (a process that usually increase the mean vorticity). While in the
expanding Universe this last process competes with the natural decay made by the global
expansion, in a contracting cloud both e↵ects tend to an unbounded increase of the mean
vorticity (Olson & Sachs 1973).

Consider now compressible modes with k(t) ⇥ u1(x, t) = 0, that couple to gravity.
Taking the divergence r̃ on both sides of eq. (6.10) and using eq. (6.9), we obtain

@2�

@t2 � c2
sr̃2� � 4⇡G⇢0

abc
� = 2r̃ · (H · u1). (6.13)

We focus our attention on a single Fourier mode with amplitude

�(x0, t) = F(t)eik0·x0 , (6.14)

where k0 is the (constant) comoving wavevector, related to the proper (time-dependent)
wavevector k(t) by

k(t) = S�1(t)k0. (6.15)

so that k0 · x0 = k(t) · x.

Inserting this expression in eq. (6.13), we obtain

d2F
dt2 + 2H

dF
dt
+ c2

s

0
BBBBB@k

2 �
k2

J,0

abc

1
CCCCCA F = 0, (6.16)
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where k = |k|,

H =
(ȧ/a)k2

x + (ḃ/b)k2
y + (ċ/c)k2

z

k2 = �1
k

dk
dt
, (6.17)

is the contraction rate. The initial Jeans wavenumber is

kJ,0 =

p
4⇡G⇢0

cs
, (6.18)

but during the collapse it increases as

kJ(t) =
kJ,0p
abc
. (6.19)

The contraction has an e↵ect on both the the wavelength �(t) = 2⇡/k(t) and on the ampli-
tude of perturbations,decreasing the former and increasing the latter (see the second term
on the RHS of eq. (6.16) for H < 0).

If the compression rate along one direction is much stronger than in the other two,
fluctuations grow faster on that direction and become asymptotically two-dimensional.
The wavevector of the fluctuations, that is fixed in the stretching coordinates, once evalu-
ated in physical space becomes progressively aligned with the direction of stronger com-
pression. An example of this in given in Sect. 6.3.2 ( See i.e Fig. 6.2 and Fig. 6.1)

Introducing the variable ⇠ as
d⇠
dt
= cs

k2(t)
k2

J,0
(6.20)

eq. (6.16) can be rewritten in compact form as

d2F
d⇠2 +

 
kJ,0

k

!4

(k2 � k2
J )F = 0, (6.21)

which generalises the “basic equation of fragmentation theory” by Lynden-Bell (1973).

6.3.1 WKB approximation
For fluctuations on scales smaller than the Jeans length (that correspond to k > kJ,0,

the e↵ect of gravity can be neglected and perturbations oscillate. If the oscillation period
of the fluctuations is much smaller than the contraction time, a WKB analysis can give an
estimate of their amplitude. Let’s assume

F(⇠) = f (⇠)e�i�(⇠) (6.22)
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with �(⇠) oscillating on a timescale that is much smaller than the variation of f (⇠). In
order to eliminate the dominant terms in eq. (6.16) we can choose

d�
d⇠
=

 
kJ,0

k

!2

(k2 � k2
J )1/2, (6.23)

while the other largest terms give a condition that is

f
d2�

d⇠2 + 2
d f
d⇠

d�
d⇠
= 0, (6.24)

and implies f 2 d�/d⇠ = constant. From eq. (6.23), substituting the last equation, one then
obtains

f / k
(k2 � k2

J )1/4
. (6.25)

If k � kJ, eq. (6.25) represents oscillations with amplitude that increases as k(t)1/2 and an
instantaneous frequency

!(t) =
d'
dt
⇡ csk(t). (6.26)

For isotropic contraction with scale factor a(t) the period of the oscillations (k�1 / a)
becomes progressively shorter than the timescale of variation of the amplitude (k1/2 /
a�1/2). This implies that the WKB approximation becomes valid at any time, if it is
satisfied initially, while in cosmology the WKB approximation is satisfied only at early
times (see, e.g. Peebles 1980). At the same time, a WKB analysis of eq. (6.9) shows that

|u1| = cs� / a�1/2. (6.27)

With this approximation, the action density is conserved by the compressible modes. In
fact,

E(t)
!(t)

= const., (6.28)

where
E(t) =

1
2

c2
s�

2 +
1
2
|u1|2 = c2

s�
2 (6.29)

is the energy density of the perturbations and ! is given by eq. (6.26).

Note that, in a contracting clouds, rotational modes increase faster than the com-
pressible (wave) ones. Turbulent flows in compressible media are statistically composed
of compressive (curl-free) and rotational (divergence-free) modes. In fully developed
isothermal turbulence in three dimensions, the statistical ratio of compressive to solenoidal
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modes is 1:2 (see e.g. Federrath et al. 2008). It could be interesting to see, given the pre-
vious results, how this ratio changes in a contracting cloud.

6.3.2 Special case: free-fall on a point mass

As an example, we find the amplification of small scale (k � kJ) fluctuations during
spherical free-fall on a point mass M?. In this application, the fluid element is compressed
in the transverse directions (say x and y), and stretched in the radial direction (say z),

a(t) = b(t) = cos2 µ(t) c(t) = 1 +
sin2 µ + 3µ tan µ

2
, (6.30)

where µ is called “development angle” and it goes from 0 to ⇡/2. It is linked to time by
the parametric solution

t =
2
⇡

(µ + sin µ cos µ) t↵ . (6.31)

t↵ = (⇡r3
0/8GM?)1/2 is the free-fall time of a fluid element that at the initial time is at

a distance r0 from the star (see Appendix A.5 for details). While the fluid element is
falling onto the central point mass, the transversal contraction and the radial stretching
asymptotically become

a(t) = b(t)!
 
1 � t

t↵

!2/3

, c(t)!
 
1 � t

t↵

!�1/3

. (6.32)

According to eq. (6.15), the proper wavevector k of a fluctuation becomes asymptotically
oriented in the transverse direction, parallel to the direction of compression.

As already stated in Sect. 6.3.1, cases in which an anisotropic contraction can amplify
some components while damping some others can exist. In this case we know from the
kinematics of sound waves that k ⇥ v = 0 and, because the wave action is conserved
in the linear regime, we have E(t) = const. Thus, if we identify with ”t” the transverse
components and ”r” the radial one,

k =

s 
k2

r

k2
t
+ 1

!
k2

t ; v2 =

 
k2

r

k2
t
+ 1

!
v2

t . (6.33)

That allows us to find an analytical expression for both the velocity components of the
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Figure 6.1: Behaviour of transverse and radial components of velocity fluctuations in the case
of a free fall collapse with t f f = 2tnl,0. The initial condition is a perturbation with
kp,0 = kt,0 = k0 = 1 and a given tnl,0 = 10 in code units (see Sect. 6.5). The continuous
lines are from the simulation and the diamonds are the analytical expectations. As we
can see, while the kinematic relation is always valid, the conservation of the wave
action breaks up in the non-linear regime. From Toci et al. (2017).

wave (and then, also for the density contrast). For a wave with kr,0 = kt,0 = k0 we have

vt = Q
0 a�1/3

�
a2 + 1

�1/4 , (6.34)

where Q
0
=
pE0csk0 = 21/4vt,0. Fig. 6.1 shows the behaviour of the velocity fluctuation

components for a perturbation, while Fig. 6.2 shows their evolution as function of time.

In fact, considering eq. (6.25), the amplitude of a density perturbation that is prop-
agating at an angle ✓ (fixed in the comoving frame) with respect to the radial direction
increases as

� = �0

 
sin2 ✓

a2 +
cos2 ✓

c2

!1/4

, (6.35)

where the scale factors a(t) and c(t) are given by eq. (6.32). Fig. 6.3 shows the evolu-
tion of � for perturbations with wavenumber radial (✓ = 0) or transversal (✓ = 90�). The
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Figure 6.2: Surface plot per the transverse components of the velocity at di↵erent time for the
same case of Fig. 6.1. At the initial time the oblique wave has kt = kr. During
the evolution, the ratio between the wavevectors components changes, and the wave
progressively aligns with the direction of compression (the transverse). During the
propagation the wave-front steeps until it forms a shock. From Toci et al. (2017).
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Figure 6.3: Amplitude of density perturbations during spherical free-fall on a point mass, for
perturbations with wavenumber radial (✓ = 0) and transversal (✓ = 90�). The dashed
line shows the evolution of the amplitude for a random distribution of wavenumbers.
From Toci et al. (2017).

dashed line shows the evolution of the amplitude for a random distribution of wavenum-
bers obtained averaging eq. (6.35) over ✓. Thus, a collection of fluctuations with randomly
oriented wavevectors grows preferentially in the direction transverse to the accretion flow.
However, a fluid element contracts in two directions and is stretched in the third, then the
increase of perturbations is relatively slow: the average amplitude doubles only after 95%
of the free-fall collapse of the fluid element has been completed. An even smaller ampli-
fication is expected in the case of accretion flows on a filament, if we can approximate
the filament as an infinite cylinder, because contraction in this case can only occur in the
direction perpendicular to the filament.

Generally, we can state that anisotropic collapse and stretching of fluid elements in
this kind of flows driven by the gravitational field of mass concentrations like stars or
filaments dilute and retard the growth of any small-scale density/velocity perturbation
initially present in the gas. In the next Section we will focus on the homologous collapse
of a starless, self-gravitating cloud core in which the amplification of perturbations is
expected to occur at the highest possible rate.
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6.4 Application to homologous collapse

Starless cores seem to have a dynamics characterised by an overall slow contraction
rather than free-fall collapse in their central parts Keto et al. (2015). However, even if the
model of the homologous collapse of a uniform density pressureless sphere is an ideali-
sation, it contains all the essential characteristics of flows driven by the self-gravity of the
gas (Whitworth & Ward-Thompson 2001). In addition, it easy allows us to derive ana-
lytically the time evolution of the scale factors needed to apply the formalism of inverse
Hubble flows.

In this framework, the acceleration of the background comes from the self-gravity of
the core,

r0 · gb = 4⇡G⇢b, (6.36)

where ⇢b = ⇢0/a3, and the scale factor is

a(t) = cos2 µ(t), (6.37)

where µ is taken again from eq. (6.31) and t↵ = (3⇡/32G⇢0)1/2 is the free-fall time (see
Appendix A.5 for details). Whit these definitions eq. (6.16) becomes

d2F
dµ2 � 2 tan µ

dF
dµ
+ 6

0
BBBBB@

k02

k2
J,0
� 1

cos2 µ

1
CCCCCA F = 0. (6.38)

How a density perturbation evolves depends on its initial spatial scale. Consider the
evolution of small-scale, Jeans-stable perturbations with k0 � kJ,0. In a static cloud, such
kind of fluctuations behave as as sound waves, oscillating with frequency ! = csk. If
the cloud contracts isotropically with scale factor a, the dimension of the perturbation de-
creases as a (and its oscillation frequency increases as a�1) but the Jeans length decreases
faster because cs/

p
⇢ ⇠ a3/2. Then, any small-scale perturbation that starts linearly stable

and propagates as sound waves becomes gravitationally unstable at some time tgr(k0), that
tends to t↵ as k0 ! 1. Using eq. (6.38), this time corresponds to cos2 µgr = k2

J,0/k
02. In

this limit, the solution of eq. (6.38) is

F(µ) =
1

cos µ
[c1 sin(pµ) + c2 cos(pµ)], (6.39)

where p =
p

6k0/kJ,0 � 1. This represents two oscillating modes (with F(0) = 0 and
dF/dµ(0) = 0, respectively). As anticipated by the WKB analysis, the amplitude of the
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perturbations increase as 1/ cos µ / a�1/2.
While the cloud undergoes a contraction, a decreases, and eventually perturbations

on scales progressively small become gravitationally unstable. When k0 ⌧ kJ,0, eq. (6.38)
becomes

d2F
dµ2 � 2 tan µ

dF
dµ
� 6

cos2 µ
F = 0. (6.40)

General solutions of this equation are well known from cosmology (see i.e Narlikar 2002).
With the initial conditions appropriate for cloud collapse the solution is (Toalá et al.

2015),

F(µ) = c1
tan µ

cos2 µ
+ c2

2 + sin2 µ + 3µ tan µ
cos2 µ

. (6.41)

This solution represents two growing modes (with F(0) = 0 and dF/dµ(0) = 0, respec-
tively). When the time asymptotically goes to t ! t↵ both modes grow like a�3/2 /
(1�t/t↵)�1. Fluctuations become gravitationally unstable at a time tJ(�0), that corresponds
to the evolutionary angle

cos µJ =
�0

�J,0
. (6.42)

This implies that, in a free-falling background, small-scale, Jeans-stable perturbations are
amplified as a�1/2 until they become gravitationally unstable and then grow as a�3/2, the
same rate characterising the evolution of the parent cloud, which is itself gravitationally
unstable (H / (1 � t/t↵)�1).

6.4.1 Onset of nonlinearity

The linear approximation breaks down at some point because the amplitude of the
waves increases with time. Linear growth ends when perturbations become Jeans-unstable
and collapse, or when they become nonlinear, at a time tnl, and start to dissipate their
energy by shocks. After tnl the energy dissipation is extremely e�cient, because shocks
convert wave energy into heat.

To evaluate tnl, we reduce for simplicity our analysis to a one-dimensional flow. Ne-
glecting pressure and gravity, the momentum equation (5.24) reduces to a modified Burg-
ers’ equation (See Section 2.3.1)

@u1

@t
+

u1

a
@u1

@x0
= �Hu1. (6.43)

Making a coordinate transformation 31 = au1 and d⌧ = a�2dt, eq. (6.43) can be rewritten
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in the new variables 31(x0, ⌧) and ⌧ as the standard (inviscid) Burgers’ equation for the
static case,

@31
@⌧
+ 31

@31
@x0
= 0. (6.44)

The general (implicit) solution of eq. (6.44) can be found with the method of character-
istics: starting with a velocity perturbation with initial amplitude 31(x0, 0) = u1(x0, 0), it
will steepen with time and form a shock at a time

⌧ = �{min
"
du1(x0, 0)

dx0

#
}�1 ⌘ tnl,0, (6.45)

where tnl,0 is the time for reaching the nonlinear stage in the static case. In the presence
of contraction, nonlinearity therefore occurs at a time tnl such that

Z tnl

0

d⌧
a2 = tnl,0. (6.46)

Obviously, in the case of contraction tnl < tnl,0, meaning that perturbations enter the
nonlinear phase earlier than in the static case, and this time is the one that has to be
compared with the other time scales of the problem.

We now will evaluate tnl in the case of the homologous collapse of a pressureless
sphere. A sinusoidal velocity perturbation with wavelength �0 = 2⇡/k0 and initial ampli-
tude u0 becomes nonlinear and forms a shock at t = tnl, corresponding to the evolutionary
angle µnl obtained integrating eq. (6.46),

tnl,0 =
4t↵
⇡

Z µnl

0

dµ
cos2 µ

= tan µnl. (6.47)

For tnl,0 = 1/(k0u0), this implies

tan µnl =
�0

8t↵u0
. (6.48)

Our goal is to compare tnl and tgr. It is convenient to parametrize the amplitude of the
perturbations as u0 = M0cs, whereM0 is the initial value of the rms Mach number, and
rewrite eq. (6.48) as

tan µnl =

 
1p

6M0

!
�0

�J,0
. (6.49)

Fig. 6.4 shows the time tnl and tG at which initially Jeans-stable perturbations become
nonlinear and gravitationally unstable, respectively, for various values of the rms Mach
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Figure 6.4: During the collapse of a pressureless cloud, a linear perturbation with comoving
wavelength �0 becomes nonlinear at a time tnl (curves labelled “shock”) and grav-
itationally unstable at a time tG (curve labelled “grav. inst.”). Wavelength is in units
of the Jeans wavelength �J,0 and time is in units of the cloud’s free-fall time t↵ . The
non-linear time is shown for three values of the initial Mach number of the pertur-
bations, M0 = 1, M0 = 0.5 and M0 = 0.1. The case of �0 = 0.5 �J,0 is shown as
an example: the nonlinear phase is reached before the gravitational instability, unless
the perturbations have Mach number below ⇠ 0.1. From Toci et al. (2017).

number representative of the level of non-thermal motions observed in dense cores, where
typicallyM0 ⇡ 0.1–1 (see Chapter 1). Both tnl and tgr are bounded from above by t↵ , but
they are related to the (comoving) scale of the perturbation �0 in opposite ways: while tg
increases if �0 decreases, tnl becomes smaller. This allows perturbations on su�ciently
small scales to enter the nonlinear phase when they are still gravitationally stable. As
an example, if �0 = 0.5�J,0, the nonlinear stage and the formation of shocks is reached
at tnl = 0.26 t↵ and tnl = 0.47 t↵ for M0 = 1 and 0.5, respectively, well before the
perturbation becomes gravitationally unstable at tG = 0.94 t↵ .
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6.5 Numerical simulations
According to the results of Sect. 6.3, initially small-scale low-amplitude density per-

turbations are amplified adiabatically during the contraction of a cloud, until they become
nonlinear and start to dissipate their energy by shocks. After tnl the energy dissipation is
extremely rapid, as shocks e�ciently convert wave energy into heat.

In order to follow the behaviour of small-scale non-self gravitating perturbations be-
yond the linear stage in a contracting background we use the ECHO code (already intro-
duced in Chapter 5), performing 3D hydrodynamical numerical simulations. Physical
quantities are normalised using the sound speed, a characteristic length and a characteris-
tic density. In this (isothermal) case the adiabatic index � = 1. The time is expressed in
terms of sound crossing time.

In these simulations we assumed an isotropic contraction from t = 0 to t = tc with
scale factor

a(t) =
 
1 � t

tc

!↵
, (6.50)

and contraction rate

H(t) =
ȧ
a
= �↵

tc

 
1 � t

tc

!�1

. (6.51)

The range of ↵ of physical interest is 0 < ↵ < 2/3. Special cases are the static
background (↵ = 0), a quasi-static collapse (0 < ↵ < 2/3), and a dynamical collapse
(↵ = 2/3). We also studied the case ↵ = 1.

Fig. 6.5 and 6.6 shows the evolution of the density contrast, normalised to the initial
value, for the cases ↵ = 2/3 and ↵ = 1, respectively, obtained with a Cartesian grid
[0, Lx]⇥ [0, Ly]⇥ [0, Lz] of 5123 points, Lx = Ly = Lz = 2⇡. In the simulations, for a given
↵ we fix the initial amplitude of the perturbations to �0 = 0.1 and take as reference time
the nonlinear time tnl,0 for the static case. We then vary the contraction time, increasing it
progressively, tc/tnl,0 = 20, 10, 2, 1.25 and we analyse the evolution of perturbations with
time. We have run the same simulations with increasing spatial resolutions, checking that
for 5123 grid points convergence was achieved. Using the scale factor given by eq. (6.50),
the perturbations are expected to become nonlinear at a time tnl given by eq. (6.46),

tnl

tnl,0
=

tc
tnl,0

8>><
>>:1 �

"
1 � (1 � 2↵)

tnl,0

tc

#1/(1�2↵)
9>>=
>>; . (6.52)

Fig. 6.5, shows that the evolution of a perturbation depends on the time scale of the
contraction of the box. The growth phase follows strictly the adiabatic (conserving wave
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Figure 6.5: Time evolution of the rms amplitude of density perturbations in a isothermal gas
contracting isotropically with the scale factor of eq. (6.50) with ↵ = 2/3 (case of
dynamical contraction) for various values of tc (thick lines). Ttime is in units of
tnl,0, the nonlinear time for the static model. A diamond marks the position of tnl
given by eq. (6.52), and thin lines show the evolution of the amplitude in the WKB
approximation. For t > tnl shocks are formed and the waves dissipate. From Toci
et al. (2017).

energy) approximation � / a(t)�1/2 until nonlinear e↵ects occur. Their e↵ect is to steepen
the waves and form shocks. The analytical expression eq. (6.52), that comes from the
one-dimensional inviscid Burgers’ equation predicts the end of the adiabatic phase and
the beginning of the dissipative phase, and it is in good agreement with the numerical
results. The figure shows that tnl is considerably reduced compared with the static case if
the contraction occurs on a time scale of the order of a few tnl,0. If tc ⇡ tnl the amplification
due to contraction roughly balances the decay due to dissipation, maintaining an almost
constant value of the rms of density (and velocity) perturbations.

6.6 Summary
In this Chapter we studied the evolution of small-scale hydrodynamic perturbations

during the contraction of a core, generalising the analytical approach already developed
for cosmology (expanding Universe) to the case of arbitrary anisotropic inverse Hubble



100 Chapter 6. Hydrodynamics in contracting volumes

Figure 6.6: Same as Fig. 6.5 for ↵ = 1. From Toci et al. (2017).

flows. Generally, gravity-driven anisotropic flows, like those characterising the accretion
onto point-like or filament-like mass concentrations, have less e↵ects than isotropic flows
generated by the self-gravity of a cloud core in the amplification of density and veloc-
ity perturbations, because the e↵ect of the stretching of fluid elements are diluted in the
direction of the flow.

There are di↵erences also between the isotropic case and the expanding Universe,
where both solenoidal and compressible modes decay due to the expansion of the Uni-
verse. Only the gravitational instability can promote the formation of substructures. In
a contracting cloud, solenoidal and compressible perturbations grow with time, the for-
mer faster than the latter (as a�2 or faster, in the isotropic case). Thus vortex structures
are promoted to form preferentially aligned to the direction of faster contraction. This
process may create local enhancements of angular momentum even in the absence of any
bulk rotation of the core, and core fragmentation may be generated from the break-up of
rotationally supported substructures, as found e.g. in the simulations by Goodwin et al.
(2004). Conversely, the amplitude of compressible modes in the WKB approximation
grows as a�1/2 in the isotropic case and conserves the wave action density. These modes
couple to the gravitational field, and become gravitationally unstable as the Jeans length
progressively shrinks (as long as the collapse is isothermal), leading to fragmentation.
However, the actual fate of compressible perturbations depends in general on their wave-
length and amplitude, and is controlled by the comparison between several timescales:
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the time to reach the nonlinear stage tnl, the time at which perturbations become gravita-
tionally unstable tgr, and the global collapse time scale of the background. The nonlinear
time in a collapsing cloud, bounded from above by the free-fall time t↵ , is shorter than in
a static background, and can be estimated analytically using a one-dimensional Burgers’
equation in contracting coordinates. For the typical amplitudes of velocity perturbations
observed in cloud cores (�u/cs ⇡ 0.5–1), in general tnl < tgr, according to their wave-
length. Only perturbations on scales larger than ⇠ 80–90% of the initial Jeans length (of
the same order of the size of the core), become Jeans-unstable in the linear phase. The
others start to dissipate their energy forming shocks, establishing a competition with the
“adiabatic heating” resulting from contraction.

Our analytical expectations are supported by fully three-dimensional numerical cal-
culations performed with the hydrodynamical code ECHO. These simulations confirm that
initially linear perturbations in a box that contracts isotropically increase their amplitude
as predicted by the WKB analysis up to the time tnl. As shown by the simulations, tnl

marks the onset of a phase of decay of the perturbations’ amplitude due to strong energy
dissipation by shocks. If the rapid amplitude decay following tnl suggested by the nu-
merical calculations is representative of the dissipation in cloud core, it is unlikely that
small-scale perturbations can survive to the point of becoming self-gravitating and unsta-
ble. In this scenario, multiple fragmentation in cores is likely achieved by the growth and
subsequent breakup of solenoidal, rather than compressible, small-scale perturbations, ei-
ther through the fragmentation of disk-like structures (Goodwin et al. 2004), or by the
accumulation of mass at the boundary between nearby anti-parallel vortices. However,
vortices are easily disrupted by any large-scale magnetic field due to magnetic stresses
associated to current sheets at their edges, an aspect that should be addressed in future
works.





7 Magnetohydrodynamics in
contracting volumes

As shown in Chapter 1, turbulence is expected to play an important role in star for-
mation, as suggested by the Larson’s laws (Larson 1981), that establishes a power-law
relation among velocity dispersion, size, and mass in molecular clouds (see i.e Elmegreen
& Scalo 2004). More recent observations of size-dispersion relations found in the litera-
ture are in agreement with an interpretation in terms of compressible turbulence (see i.e
Heyer et al. 2009, or the review Dobbs et al. 2014).

Molecular clouds appear to be in an approximate virial equilibrium (Larson 1981,
Solomon et al. 1987 ), thus turbulent pressure can either balance the self-gravity of the
cloud or the confining pressure given by the interclump medium (Bertoldi & McKee
1992). The concept of a turbulent pressure being still not well understood (Vázquez-
Semadeni et al. 1998), is then important to understand the origin and the evolution of
turbulence in molecular clouds. We recall that, if not sustained, turbulence dissipates in
a crossing time (Goldreich & Kwan 1974), which is shorter than the cloud lifetime (Blitz
& Shu 1980). To provide support against gravitational collapse, turbulence needs some
“driving”, or it will quickly dissipates (Mac Low & Klessen 2004). However, the cloud
lifetime in uncertain and still debated, as pointed out in Chapter 1, due to the fact that
molecular clouds are not generally gravitationally bound nor perfectly balanced.

Numerical simulations have studied in detail supersonic turbulence. The power spec-
trum of isothermal supersonic turbulence seems to have a lognormal density distribution
that increases with the Mach number (Federrath et al. 2010), independent of the numeri-
cal methods implied. As pointed out by Robertson & Goldreich (2012), numerical simu-
lations of turbulence usually consider a gas cloud in a fixed volume, while astrophysical
clouds expand or contract. Robertson & Goldreich (2012) studied the behaviour of hydro-
dynamical turbulence during an isotropic collapse (inverse Hubble flow as in Toalá et al.

103
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2015), given by an external pressure or self-gravity, finding that turbulence is sustained
by contraction and adiabatically heats up if the time-scale of the contraction is longer
than the eddy turnover time (see below). They also suggested that the relation between
velocity dispersion and size may be linked to the competition between the enhancement
of fluctuations and dissipation. The main goal of this Chapter is to study numerically the

Figure 7.1: Contraction along a mean magnetic field.

temporal evolution of a magnetised and turbulent element of fluid in a contracting cloud
(or a contracting core). The fluid element is contracting along the direction of the mean
magnetic field (see Fig. 7.1), a scenario that mimics the accretion of mass on a filament.
In particular, we will follow the evolution of the properties of turbulence (fluctuations of
velocities and densities, spectral shape, dissipation times, etc.) in a gas parcel contracting
along the magnetic field lines with di↵erent contracting time-scales in order to determine
the conditions for amplification or quenching of the turbulent fluctuations. Our interest
focus onto fluctuations due to the fact that they are directly linked to the observable quan-
tities in molecular clouds and cores.

To achieve this goal we adopt the magnetohydrodynamical code ECHO (Del Zanna
et al. 2007), already described in Chapter 5 (we already used this code in Chapter 6 for
HD 3D simulations). If we choose a direction for the ambient magnetic field (say the z
direction), we can represent the e↵ects of self-gravity of the cloud with a non-isotropic
metric tensor

gi j = diag[1, 1, a2(t)],
p

g = a(t). (7.1)

In this thesis we choose the contraction to be linear, then

a(t) = a0

"
1 � t � t0

tc

#
, (7.2)
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where t0 is the time when the contraction starts, tc is the contraction time at the initial
time t0, a0 is the initial scale factor (a0 = L/L0 = 1, with L0 the initial size). Our choice
implies a decreasing contraction rate,

H =
�����
ȧ
a

����� = [tc � (t � t0)]�1 , (7.3)

defined in analogy with cosmology and the previous work (see Chapter 6). We are inter-
ested in studying the behaviour of a turbulent fluid during contractions with di↵erent tc in
order to understand whether, also in this anisotropic MHD case, turbulent motions could
be amplified or quenched during the collapse. This depends on the ratio of the contraction
time scale 1/H and the eddy turnover time (we will use this definition to estimate the
non-linear time associated with the scale of dissipation),

teddy =
1

kin jurms
, (7.4)

where kin j is the wavenumber corresponding to the larger scale in our domain and urms

is the root-mean square amplitude of velocity fluctuation. While the behaviour of H is
imposed in our simulations, the eddy turnover time is determined during simulations as
a balance between amplification of urms due to contraction and damping due to turbulent
dissipation.

In Section 7.1 and 7.2 we introduce the numerical setup for the simulations while in
Section 7.3 we describe how we prepare the initial condition for runs with contraction
switched on. The initial condition for all contracting simulations is a snapshot of fully
developed turbulence taken from a simulation of decaying turbulence initialised with a
superposition of random-phase Alfvènic fluctuations. In Section 7.4 we turn on the con-
traction with di↵erent values of tc and we study the behaviour of the simulations. Finally,
in Section 7.5 we summarise the characteristics of this physical case.

7.1 Numerical setup
We integrate numerically the resistive MHD equations in contracting volumes, with

the hypothesis that the gas is isothermal (� = 1). Physical quantities are normalised using
a characteristic length-scale, a characteristic density and a characteristic magnetic field
strength B0/

p
4⇡ (where B0 is the background value measured for the molecular cloud).

The reference velocity is the Alfvèn velocity and time is expressed in terms of the Alfvènic
crossing time. As a consequence, the fluid pressure is in unit of B2

0/4⇡.
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From Section 5.2, MHD equations in comoving coordinates are

@⇢

@t
+ ⇢M · r0 · u = �⇢ trH, (7.5)

@u
@t
+

1
⇢
M · r0P + B

4⇡⇢
⇥ (M · r0 ⇥ B) � ⇣(M · r0)2u = �H · u, (7.6)

and
@B
@t
+M · r0 ⇥ (B ⇥ u) � ⌘(M · r0)2B = B · (H � I trH), (7.7)

where H = diag(0, 0, ȧ/a) and M · r0 is the spatial gradient in the comoving reference
system. The equation for the pressure (or the temperature) can be omitted due to the fact
that we choose an isothermal equation of state. Note also that we choose a linear rate of
contraction H, thus the term �W · x0 in eq. (7.6) is equal to zero1. Viscosity (⇣=0.001 in
code units) and resistivity (⌘=0.001 in code units) di↵erent from zero have been fixed for
all the simulations, in order to guarantee the stability of the code. We are not trying to
model any realistic physical process whit this choice: a proper resistivity and viscosity is
required to prevent the accumulation of energy in fluctuations at small scales.

We solve this system of equations in a cubic domain [0, Lx] ⇥ [0, Ly] ⇥ [0, Lz] with
Lx = Ly = Lz = 2⇡ and resolution Nx = Ny = Nz = 512 points with periodic boundary
conditions.

In order to start contraction with a fully-developed turbulence we first run a static
simulation, i.e. with H = 0 andM = I in eqs. (7.5)-(7.7). We initialise the static case with
a superposition of shear of Alfvèn waves with random phases exiting modes 1 < kx,y,z < 4
with equal energy. This corresponds to an isotropic initial spectrum and fluctuation with
only components perpendicular to the ambient magnetic field B0 = B0êz. We anticipate
that the contraction axis coincides with the mean field direction, thus we will use the
subscripts (k, ?) to denote directions along z and lying on the (x, y) plane.

The initial conditions for the velocity fluctuations read:

u?(x, y, z) =
1
2

X

kx,ky,kz

[u?(kx, ky, kz) exp[i(kxx + kyy + kzz + �u(kx, ky, kz))]], (7.8)

and, in the same way, the initial magnetic fluctuations

b?(x, y, z) =
1
2

X

kx,ky,kz

[b?(kx, ky, kz) exp[i(kxx + kyy + kzz + �b(kx, ky, kz))]], (7.9)

1See eq. (2.9) in Section 5.2.
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with di↵erent random phases �. These initial conditions have been used in di↵erent works
as initial conditions for the solar wind turbulence (see, i.e Franci et al. 2015).

The value of the initial mean density and magnetic field is 1 in the code unit, while the
pressure is dependent from the value of the plasma � (P = 1/2�B2

0). The initial condition
has no mean velocity. The values of the amplitude of fluctuations and the plasma � are
parameters to be chosen to set proper initial conditions for the ISM.

Di↵erent physical parameters characterise di↵erent phases of the ISM (see Chapter 1).
Table 7.1 shows the values for three phases: the di↵use ISM, molecular clouds and dense
cores.

Di↵use ISM Molecular cloud Low mass dense core
Size L (pc) 10 5 0.1
Density n cm�3 30 200 103

Temperature T (K) 100 10 5
Magnetic field (µG) 5 10 100
Velocity dispersion � :
Line of sight component (km/s) 4 1 0.2
Total 3D velocity (km/s) 7 2 0.3
Sound speed cs 0.6 0.2 0.2
Alfvèn speed vA 1 1 1
Plasma � = 2c2

s/v2
A 0.7 0.08 0.08

Turbulent MachMs = �/cs 12 10 1
Alfvènic MachMA = �/vA 1 2 0.3

Table 7.1: Physical parameters for the ISM

We impose energy equipartition and vanishing correlations between magnetic and
velocity fluctuations by choosing u? = b? = 0.5 and � = 0.5. These values are appropriate
for a fluid element of a core resulting in Ms = urms/cs = 1 and MA = urms/vA = 0.5.
We let the static simulation evolve and we describe its properties in Sect. 7.3. The initial
condition for runs with contraction is a snapshot of fully-developed turbulence, taken after
the peak of turbulent dissipation.

7.2 Basic quantities
We will analyse quantities that can be directly compared with observables in the ISM,

such as the density contrast, which is the ratio between the density fluctuation and the
mean value of the density � = ⇢ f luct/⇢mean, the rms of velocity and magnetic field (related
to the large scale motions), the Mach numbers of the fluctuations (MA andMs) and and
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parameters that depend on mean quantities like the plasma �. For example, the rms of
velocity can be associated with non thermal motions observed in the emission lines (see
Chapter 1).We define the 1D isotropised velocity spectrum as

Ek(k) =
Z
|û|2 sin ✓d✓d�dk, (7.10)

where û =
P

i=x,y,z |ûi|2 is the sum of the 3D Fourier coe�cients of the 3 components of
velocity fluctuations, k is the wavenumber and the value of the spectra is built by averaging
the spectral density within spherical shells of radius k. A further integration in k yields
the root mean square amplitude (rms):

urms =

Z
Ekdk =

p
hu2i � hui2, (7.11)

where h...i is the space average over the full 3D domain. Replacing û with b̂ we obtain
the same quantities for the magnetic fluctuations. Similar definitions hold for the density
fluctuations. Other important quantities are the kinetic and magnetic enstrophy, integrals
of vorticity and current in the domain,

⌦k =

Z
|r ⇥ u|2d3x, ⌦m =

Z
|r ⇥ B|2d3x. (7.12)

These quantities are directly related to the dissipation of the incompressible part of the
kinetic energy and of magnetic energy. They can be used to estimate the time at which the
turbulence is fully developed. In fact, the maximum of the enstrophy corresponds to the
time of maximum turbulent activity for incompressible flows2 (Mininni & Pouquet 2009).

From a numerical point of view, the time evolution of enstrophy emphasises the prop-
erties of the numerical scheme and the inaccuracy of discretisation. For this reason, it
can be used to understand whether the resolution can resolve the small scales, a crucial
point for turbulent simulations. The nonlinearity of MHD equations leads to a transfer of
energy and enstrophy between scales, in particular for a given simulation energy reach the
discretisation at a scale which is an intrinsic limitation. A well resolved simulation of de-
caying turbulence does not show an accumulation of enstrophy in time: the enstrophy first
increases and then decreases due to the e↵ects of viscosity (and resistivity). In a decaying
simulation in which not all the scales are resolved, the enstrophy increase monotonically

2This time can be also used as an estimate of the ”e↵ective” non-linear time tnl, the estimate
tnl ⇠ 1/k0urms can underestimate the time associated with the conversion between kinetic and
internal energy.
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and eventually saturates (Orlandi 2000).

7.3 Static case

Figure 7.2: a) Evolution of the rms of density contrast � and b)Ms,MA and � evolution as a
function of normalised time (t/⌧nl). c) Values of the velocity rms’ components. d)
Behaviour of rms of magnetic fluctuations normalised with the initial amplitude of
fluctuations. As expected, after a first readjustment and relaxation of the initial con-
figuration, fluctuations are dissipated because vortexes circulate and nonlinear inter-
actions transfer energy to the smaller scales where dissipation dominates.

In this Section, we will focus on the properties of turbulence in our static simulations
that will be used to prepare the initial condition at t = t0 for contracting cases and to
highlight di↵erences between static and contracting turbulence for t > t0. We recall the
initial values of fluctuations, urms = brms = 0.5 and the for Ms = 1, MA = 0.5 and



110 Chapter 7. Magnetohydrodynamics in contracting volumes

� = 1/2 as described in the previous Section. Our initial condition returns a 1D spectra
E ⇠ k2 for k  kmax, with kmax=4. This implies that most of the energy is in the last excited
mode kmax and a better estimation of the non-linear time is

teddy(kmax) = ⌧nl =
1

kmaxurms
⇠ 0.5 (7.13)

in the code units. This will be our normalisation for the time in all our simulations (also for
the contracting cases). In order to make comparisons between the amplitude of velocity
and magnetic fluctuations, hereafter we will renormalise the magnetic field fluctuations in
Alfvènic units3,

b! bp
⇢mean

. (7.14)

Fig. 7.2 shows the behaviour of mean quantities and fluctuations as a function of time (nor-
malised to the non-linear time). After being generated from the initial conditions, density
fluctuations start to decay after ⇠ 2⌧nl. The value of the two Mach number decreases
because the amplitude of fluctuations decreases. The velocity fluctuations in the perpen-
dicular plane (ux, uy) exhibit a small increase and then, after ⇠ 2⌧nl, start to decrease,
while k-components are generated with time due to pressure gradients and compressible
e↵ects (related to the r · u term), but remain smaller then the perpendicular components
at all times. The compressible velocity is also shown in panel c) and it is of the same
order of magnitude of uk. Magnetic fluctuations evolve as the velocity fluctuations, but
they have larger amplitude. In fact, 3D MHD turbulent simulations with initially magnetic
and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual
energy) (Grappin et al. 2016) due to dynamo e↵ects that stretch out magnetic field’s lines.
The level of residual energy is given by the balance between the stretching and the e↵ects
of Alfvènic coupling.

Values for ⌦k and ⌦m are shown in Fig. 7.3. The turbulence is well developed after
⇠ 4⌧nl, corresponding to the time in which the turbulent activity reaches its maximum.
Magnetic enstrophy is larger than kinetic one, reflecting the di↵erent rms’s value. Note
that the enstrophies are relatively large at the initial time and comparable to the final time.
This is due to our initial condition E / k2 for k  kmax = 4.

Fig. 7.4 shows the isotropised spectra of density, kinetic and magnetic energy at di↵er-
ent times, compensated by the Kolmogorov scaling k5/3. In both the magnetic and kinetic
energy, most of the contribution comes from the perpendicular component (not shown).
The density spectrum is initially generated by pressure gradients and compressible fluctu-

3In Alfvènic units velocity and magnetic field have the same units.
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Figure 7.3: Behaviour of ⌦k and ⌦m as a function of the normalised time t/⌧nl. The vorticity and
the current increase quickly in the fluid, reach their maximum value after ⇠ 4⌧nl and
then start to decrease. The maximum value represents a good indicator for the level
of turbulence development.

ations that develop from the relaxation of our out-of-equilibrium initial conditions. At the
time of maximum activity (t = 4⌧nl), the density spectrum has a small inertial range (1/4
of a decade) with slope �5/3, which is maintained at later time. The velocity spectrum has
no clear power-law behaviour and is the steepest spectrum, possibly reflecting compress-
ible e↵ects. Finally, the magnetic field spectrum has a larger inertial range, about half a
decade at t = 4⌧nl, which is maintained at later times. From the magnetic spectra we can
infer the value of the injection scale, which is moving to larger scale. At the final time
kin j ⇠ 2. We will use this value to evaluate the non-linear time at time t0 = 10⌧nl when
contraction is switched on. Since the fluctuations’ energy is decaying due to turbulent
dissipation, the cascade rate decreases with time and leads to shorter and shorter spectra.
We can estimate the value of the dissipative wavenumber, kd, which is an estimate of the
dissipative scale 1/kd where the transition between turbulent and viscous motion occurs,
as the maximum of k2Ek. This is shown in panel (d).

The time evolution of the above quantities can be divided in 3 phases:

• t < ⌧nl: a short phase of relaxation of initial conditions. Compressive e↵ects gener-
ate parallel components of fluctuations. This process generates a spectrum for the
density fluctuations.

• t ⇠ 2⌧nl: initialisation of turbulent cascade, triggered by the perpendicular fluctua-
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Figure 7.4: Power spectra of density E⇢ (a), velocity Ek (b) and magnetic Em (c) fluctuations in
di↵erent t/⌧nl, compensated by k5/3. The horizontal line is the reference for a k5/3

spectrum. Fig. d) shows the values of the dissipative wavenumber kd as a function
of the normalised time. The estimate of kd is given taking the k correspondent to the
maximum value of k2Ek for each time.

tions.

• t > ⌧nl: phase of decay characterised by a decrease of all the quantities, in which
the turbulence is developed and energy is dissipated. The spectra decrease but the
Reynlods number is ⇠ constant (as we can estimate from kd).

7.4 Contracting clouds simulations
We now consider the behaviour of turbulent fluctuations in a contracting background.

As already introduced in this Chapter, the contraction changes the physical size of the
cloud L(t). This is modelled with a rescaling of coordinates along the magnetic field
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direction with a scale factor a = L(t)/L0, with a(t) shown in eq. (7.2) and with an Hubble-
like parameter H = ȧ/a that depends on time t.

Linearising the equations from Section 7.1, the unperturbed quantities evolve follow-
ing

⇢0(t) =
⇢0,0

a
P0(t) =

P0,0

a
. (7.15)

This behaviour is a consequence of mass conservation and the hypothesis of an isothermal
EOS4. The equations for the perturbed quantities become

@�

@t
+M · r0 · u1 = 0, (7.16)

@u1

@t
+ c2

sM · r0� +
B0a

4⇡⇢0,0
⇥ (M · r0 ⇥ b1) = � ȧ

a
L · u1 + ⇣(M · r0)2u1, (7.17)

where L = diag(0, 0, 1), and

@b1

@t
+M · r0 ⇥ (B0 ⇥ u1) = � ȧ

a
b1 · T + ⌘(M · r0)2b1, (7.18)

where T = diag(1, 1, 0).
Due to the intrinsic anisotropy of the problem, fluctuations and wavenumbers in the

direction parallel or perpendicular to the direction of contraction are expected to fol-
low di↵erent evolutions. In particular, while the parallel component of the wavenum-
ber remains constant in time (k? = k0), its parallel component progressively increases as
kk = k0/a, implying that |k| = k(t). Considering separately the perpendicular and parallel
directions, the equations for fluctuations in the case where contraction dominates (thus
neglecting e↵ects from sonic and Alfvènic coupling and non linear e↵ects) become

@�

@t
= 0! � ⇠ const; (7.19)

@u?
@t
= 0! u? ⇠ const;

@uk
@t
= � ȧ

a
uk ! uk ⇠ a�1 (7.20)

@b?
@t
= � ȧ

a
b? ! b? ⇠ a�1;

@bk
@t
= 0! bk ⇠ const (7.21)

The behaviour of fluctuations depends also from the presence of dissipation terms
(either physical or related to the numerical discretisation). We will use simulations to
understand whether this e↵ect is negligible or not compared to the e↵ects of contraction.

4For a generic value of the adiabatic index � the pressure scales as P0(t) = P0,0/a�.
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The initial condition is a snapshot of well-developed turbulence that is decaying in a
static volume, with properties that have been described in Section 7.3. In particular, we
switch on the contraction of the box at t = t0 = 10⌧nl, allowing eddies to circulate and
energy to be transferred to the small scales before the contraction begins.

Two time-scales characterise the evolution: the non-linear time tnl related to the phys-
ical state of the turbulence (its initial value depends from the value of the turbulent fluctu-
ations of the snapshot at t = 10⌧nl) and the contraction time tc. An estimate for the value
of tnl at the initial snapshot can be given by using eq. (7.4), considering the value of the
rms of velocity fluctuations at t = 10⌧nl and the estimate for kin j = 2 given by the spectra
of Fig. 7.4, we have that

tnl = teddy(t0) ⇠ 2⌧nl. (7.22)

In this thesis we explore di↵erent values of tc, either smaller or larger than tnl:

• Simulation I: tc/tnl = 0.5,

• Simulation II: tc/tnl = 5,

• Simulation III: tc/tnl = 50.

During the contraction these time-scales change. In particular, the non-linear time evolves
as tnl(t) = 1/kin j(t)urms(t).

We study these simulations in two di↵erent ways. First, we make a comparison be-
tween the static case and a contracting case (simulation II), then we compare the results
from simulations I, II and III. Our aim is to compare the evolution of the three di↵erent
cases in a contraction that squeezes the initial box from the initial value L to 1/10L. As
a function of scale factor, this implies a ! [1, 0.1]. During a contraction the scale factor
goes to zero, and that leads to a progressively increasing energy accumulation at the small
scales given by the circulations of swirling structures created during the evolution of the
system. For these reasons, our simulations fail to reach a reduction of a decade in the box
size. However, information on the di↵erent behaviour in di↵erent physical situations can
be found and used to elaborate some conclusions.

7.4.1 Comparison with a static case
We compare the evolution in time of our static case already introduced in Sect. 7.3

with a contracting prototype case, having tc/tnl = 5 (Simulation II). This simulation has
been chosen because in its time evolution it displays the properties of simulation I and III.
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Figure 7.5: Comparison between the static case (line) and the contracting case (dashed line) with
tc/tnl = 5 as a function of normalised time t/⌧nl. Left) Evolution of the rms of density
contrast �. Once the contraction is turned on (t0 = 10⌧nl), showed as a black star) in
a first phase the e↵ect of dissipation is balanced by the e↵ect of contraction. After
t0 plus a few ⌧nl fluctuations are enhanced. Right) Ms (magenta) and MA (green)
evolution as a function of normalised time.

Fig. 7.5 and show the behaviour of the rms of density contrast, of the sonic Mach
Ms and of the Alfvènic MachMA as a function of time normalised with the non-linear
time ⌧nl. As soon as the contraction is turned on, the behaviour between the static and
the contracting case is di↵erent. In particular, while the amplitudes of the density contrast
and Ms decrease in the static case, in the contracting case there is a first region where
they remain about constant. This region can be compared with observations of molecular
clouds. The gas is isothermal, thus the value of cs is constant and the evolution ofMs is
given by the evolution of the velocity’s fluctuations, that are amplified during the collapse,
while forMA both the velocity fluctuations and the Alfvèn velocity change in time. The
value of �, while in the static case is constant, increases proportionally to ⇢0, thus �(t) =
�(t0)a�1 (not shown).

Values for ⌦k and ⌦m are shown in Fig. 7.6, together with the rms of velocity and
magnetic fluctuations. Both the fluctuations have a region in which their rms module is
constant in time, shorter for the magnetic fluctuations, then they start to be amplified.
Both the quantities present again a first phase in which they are almost constant when
the contraction is turned on. They then increase fast after ⇠ 14⌧nl (4⌧nl after t0). This
implies that eddies’ circulation increases due to the vortexes stretching. Note that the
kinetic enstrophy grows faster than the magnetic one.
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Figure 7.6: Comparison between the static case (line) and the contracting case (dashed line) with
tc/tnl = 5 as a function of the normalised time t/⌧nl. The time where the contraction
starts is shown with a black star. Left) Rms’ behaviour of velocity (magenta) and
magnetic field (green) amplitude. Both are enhanced during the contraction after a
first phase where they are constant in time. Right) Behaviour of ⌦k (magenta) and
⌦m (green). The vorticity and the current increase quickly in the fluid when the
contraction is turned on, after a first phase in which they are almost constant. This
implies that the vorticity and the current in the system rapidly grow.

In fig. 7.7 we show the rms amplitude decomposed in k and ? components. The per-
pendicular component dominates the module of the rms of magnetic fluctuations, while in
the velocity fluctuations the parallel component is amplified more than the perpendicular
one, the magnetic fluctuations have the opposite behaviour.

Summarising, the time evolution of fluctuations in a contracting volume, when the
non-linear time tnl is comparable with the contracting time tc have two di↵erent regimes:

• A phase in which velocity and density contrast fluctuations remains almost con-
stant, indicating that the amplification due to contraction is balanced by the turbu-
lent dissipation. The expected values of this phase can be tested with observational
results.

• A phase in which all the fluctuations grow (See Section 7.4.2), indicating that the
dissipation contributions can be neglected and the contribution of contraction dom-
inates. As the amplitude of fluctuations increases, the pressure contribution can
become comparable with the thermal pressure (we will come back to this in the
discussion).
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Figure 7.7: Comparison between the static case (line) and the contracting case (dashed line) with
tc/tnl = 5 as a function of normalised time t/⌧nl. The time where the contraction starts
is shown with a black star. Left) Evolution of the rms of the perpendicular (magenta)
and parallel (green) component of velocity. Also in this case, once the contraction
is turned on in a first phase the e↵ect of dissipation is balanced by the e↵ect of con-
traction. After t0 plus a few ⌧nl fluctuations are enhanced. Right) Evolution of the
rms of the perpendicular (magenta) and the parallel (green) component of magnetic
field as a function of normalised time. Both the components start to grow when the
contraction begins.

7.4.2 Comparison between di↵erent tc/tnl

We now compare results from simulations I, II and III in order to understand how the
same physical system behaves under di↵erent time-scales of contractions. In fact, in the
case of simulation I, where tc < tnl, we expect the contribution due to turbulent and dis-
sipating processes to be negligible compared with the one given by compression (the gas
undergoes an adiabatic heating as in Robertson & Goldreich 2012), while in the case of
simulation III, where tc > tnl, large-scale eddies have time to circulate and then dissipation
terms should be dominant in the first phase of the temporal evolution. However, due to
the di↵erent values of tc, the three simulations last di↵erent times, then it is useful to com-
pare results at the same scale-factor a. Our goal is to analyse the properties of contracting
turbulence, its evolution with the scale factor a and its dependence upon the ratio between
the contraction time-scale and the dissipation time-scale, thus we compare results from
simulations I, II and III as function of the scale factor a in logarithmic plots. During the
evolution in time, the value of the scale factor decreases from 1 to 0.1, according to the
linear law of eq. (7.2), a(t) = 1 � (t � t0)/tc. It is convenient, then, to show all plots with
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Figure 7.8: Plot of the density contrast’s rms � (left) and of the rms’ behaviour of velocity and
magnetic field amplitude (right) as a function of the scale factor a(t) for simulations
I, II and III. As a comparison for the density contrast, the value of ⇢0(t) is shown as a
reference. In simulation I (tc < tnl ) dissipative e↵ects seem to be almost negligible,
while in simulation II (tc ⇠ tnl ) some viscous e↵ects are not negligible. Simulation
III shows a first phase in which dissipation dominates on contraction.

an inverted scale for a, from 1 to 0.1, to follow the temporal evolution of the physical
quantities. The evolution of the plasma � value, as in Section 7.4.1, is governed by the
mean density (� = �(t0)a�1), and is then the same for all the simulations (not shown).

Fig. 7.8 shows the plot of the density contrast’s rms �, the rms’ behaviour of velocity
and magnetic field amplitude as a function of the scale factor a(t) for simulation I, II and
III. Considering eq. (7.19), the behaviour of � in the first phases of the contraction (until
a(t) ⇠ 0.5), in the case tc/tnl = 0.5 and tc/tnl = 5 is consistent with a constant time
derivative (even if, in the case tc/tnl = 5 some dissipative e↵ects can be noticed), while
in the case tc/tnl = 50 dissipative e↵ects dominates. However, in all the simulations there
is a second phase where �(t) grows with a fitted dependence ⇠ a(t)�2/3. The transition
between the two phases occurs at smaller scales for larger tc/tnl.

The behaviour of urms is very similar to that of �, including the asymptotic regime
with power law a�2/3: in the case tc/tnl = 5 some dissipative e↵ects can be noticed also
in the first phase, while the case tc/tnl = 50 dissipative e↵ects dominate until a(t) ⇠ 0.5.
The behaviour of rms b is di↵erent from the other quantities. In fact, it grows ⇠ a�1 for
tc/tnl = 0.5 and tc/tnl = 5, but also in the case of tc/tnl = 50 the dissipation dominates in a
shorter regime. This implies, considering also eq. (7.21), that the amplification terms due
to contraction dominates.

Fig. 7.9 shows the plot of the rms of parallel and perpendicular components of ve-
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Figure 7.9: Plot of the rms of parallel (left) and perpendicular (right) components of velocity and
magnetic field fluctuations as a function of the scale factor a(t) for simulation I, II and
III. In general, simulation I (tc < tnl ) dissipative e↵ects seem to be almost negligible,
while in simulation II (tc ⇠ tnl ) some viscous e↵ects are not negligible. Simulation
III (tc > tnl ) shows a first phase in which dissipation dominates on contraction.

Figure 7.10: Plot of ⌦k (left) and ⌦m (right) as a function of the scale factor a(t) for simulation I,
II and III.

locity and magnetic field fluctuations as a function of the scale factor a(t) for simulation
I, II and III. Most of the contribution to the total module of the fluctuations comes from
the perpendicular terms for all the values tc/tnl. An exception is the case of fast con-
traction, where the parallel component of velocity fluctuations grows faster (⇠ a�0.9) and
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become dominant over the perpendicular one (which is constant for a first phase until
a ⇠ 0.5 and then grows as ⇠ a�1/3). We recall that contraction occurs along the z axis:
the parallel component is made of compressible fluctuations induced by the external com-
pression. Considering eq. (7.20), in simulation I, where tc < tnl non-linear terms seem to
be negligible compared with the ȧ/a term, while in simulation II and III dissipation e↵ects
can be noticed. In the amplitude of magnetic fluctuations the perpendicular component
dominates. From eq. (7.21), in simulation I and II, spatial terms seem to be negligible
compared with the ȧ/a term, while in simulation III in a first short phase dissipation can
not be neglected.

Figure 7.11: Magnetic field spectra (left) and dissipative scale (right) for the case of fast con-
traction tc/tnl = 0.5. The spectrum maintains a power-law slope of �5/3 while its
module increases due to the amplification of fluctuations.

Fig. 7.10 shows the plot of ⌦k and ⌦m as a function of the scale factor a(t) for sim-
ulation I, II and III. In simulation I (tc < tnl) there are two di↵erent regimes, a first one
(until a ⇠ 0.5), in which both enstrophies seem grow as a�1, and a second one, where they
grow as a�3. In simulation II and III there is a first phase (until a ⇠ 0.5) where dissipative
e↵ects are comparable with (or larger than) gravitational ones, then both ⌦k and ⌦m start
to grow.

In Fig. 7.11 we show the magnetic field spectra and the dissipative scale (again es-
timated as the max of k2Em) for the case of fast contraction. The spectrum evolves in a
self-similar way, that means that energy increases maintaining a �5/3 power-law. The
dissipative scale,1/kd, is also about constant. This phase is termed ”adiabatic heating”
(Robertson & Goldreich 2012) since the turbulent dissipation is driven by the ”adiabatic”
amplification of fluctuations caused by the fast contraction. Indeed, using the scaling
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b ⇠ a�1 (see Fig 7.9) one obtains a cascade rate ✏ = kin jb3
rms ⇠ a�3, where we have used

kin j ⇠ const as can be inferred from the spectra shown in Fig. 7.11. Only at the last time
the spectrum flattens and kd diverges, since turbulence is not able to counteract the growth
of fluctuation due to the adiabatic compression and energy is accumulated at small scales
due to finite numerical resolution.

7.5 Summary and discussion
Summarising, from our results the dependence from the ratio tc/tnl seems to be a key

parameter to understand whether if the contraction is or is not able to amplify turbulent
fluctuations. Starting from the comparison between the static and the contracting case
(simulation II) shown in Section 7.4.1 (where tc ⇠ tnl), the evolution of a turbulent fluid
undergoing a contraction along the mean magnetic field’s axis can be divided into two
di↵erent regimes: a phase where the dissipation is balanced by the contraction, and the
fluctuations are supported but not enhanced, and a phase where the e↵ect of the collapse
dominates and fluctuations increase following power-laws of the scale factor. This case,
(tc/tnl = 5) has also a region in which the value of the density contrast and the Mach
numbers are almost constant. This region can be used to make comparisons between our
theoretical expectations and observations.

The comparison between simulations performed in Section 7.4.2 shows that, if the
contraction is slow (tc > tnl) turbulent and dissipative e↵ects dominate and the turbulent
velocity and magnetic field decay whereas if the contraction is fast (tc < tnl) the turbulent
velocity and magnetic field are amplified and dissipation increases as a plain consequence
of this amplification (adiabatic heating). This suggests that in a slow contraction vortexes
have time to circulate and non-linear interactions can transfer energy to the small scales
where it is dissipated until the dimension of the box is su�ciently small. On the other
hand, in a fast contraction, the eddies are adiabatically compressed, turbulence ”heats up”
and turbulent quantities increase.

Fig. 7.12 shows the evolution of the rms of density contrast, magnetic and velocity
fluctuations as a function of normalised time for a wide range of tc/tnl. The behaviour
of all the quantities is in agreement with our deductions: for tc ⌧ tnl dissipative e↵ects
are negligible and fluctuations are adiabatically heated , while, as tc approaches tnl, fluc-
tuations are sustained and not enhanced for longer times. For tc � tnl fluctuations are
hardly sustained. For su�ciently large times also in this case fluctuations start to be am-
plified, implying that any contraction has an e↵ect on the fluctuations if the size of the
box becomes su�ciently small (or the mean density su�ciently high). The prototype
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Figure 7.12: Comparison between the rms of density contrast � (top left), magnetic b (top right)
and velocity fluctuations u (bottom left) as a function of the normalised time t/⌧nl
for di↵erent values of tc/tnl.

case tc/tnl = 5 represents the transition point where the contribution of contraction and
dissipative e↵ects are comparable.

A limit of our simulation is that feedback e↵ects on the background system result-
ing from the enhancement of fluctuations is neglected. This e↵ect could counteract the
compression and stop the collapse. A way to estimate the magnitude of the turbulent
contributions is to define an empirical relation between the mean density and the velocity
fluctuations, that are both measurable quantities in molecular clouds. A turbulent pressure
can be defined as (Lizano & Shu 1989) by Pu = u2

rms⇢0.
Fig. 7.13 shows the behaviour of thermal pressure, Pth = c2

s⇢0 and the turbulent pres-
sure related to kinetic e magnetic fluctuations, Pu = u2

rms⇢0 and Pb = b2
rms⇢0

5, for the

5b is in Alfvènic units.
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Figure 7.13: Comparison between turbulent pressure Pu (top left), Pm (top right) and thermal
pressure Pth (bottom left) as a function of the scale factor. The fourth panel (bottom
right) shows velocity fluctuations as a function of the mean density ⇢(t)0/⇢0(t0)

cases we examined in the previous Sections. As in the static case, there is a magnetic
energy excess compared to the kinetic energy, and their ratio is approximately preserved
during the contraction. In the case tc/tnl = 0.5, once the three pressure become compa-
rable, turbulence becomes dynamically significant for the evolution of the fluid element.
The case tc/tnl = 5 lasts until the value of the three pressures becomes of the same order,
thus all the simulation is physically plausible. In the case tc/tnl = 50 our informations are
not su�ciently complete to draw firm conclusion.

Fig. 7.13 also shows the behaviour of the velocity fluctuations as a function of the
mean density ⇢0(t)/⇢0(t0). The velocity fluctuations increase with density as urms ⇠ ⇢0.5,
a implying a polytropic equation of state for the turbulent pressure as in the case of
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Vázquez-Semadeni et al. (1998).
A polytropic equation of state for turbulent fluctuations is also suggested in the anal-

ysis of Chapter 3, thus our simulations confirm our theoretical expectations.



8 Conclusions

In this thesis we studied the stability and contraction of molecular clouds both in
the hydrodynamical and magnetohydrodynamical case, in the quasi-static and dynamical
phase of evolution.

After a general introduction to the problem of star formation, in Chapter 2 we sum-
marised the basic physics of the hydrodynamics and magnetohydrodynamics in order to
provide a general background for our models. In Chapter 3 and Chapter 4 we analysed
the stability of molecular clouds. Under the hypothesis that the observed filaments and
cores can be represented by a sequence of hydrostatic or magnetostatic models, we stud-
ied their radial density profiles and stability properties. However, molecular clouds must
contract and fragment in order to form stars. We then focused on the phase of dynamical
collapse and, in particular, on the evolution of the physical properties of a fluid element
that collapses in a hydrodynamic or magnetohydrodynamic regime. To achieve this, we
developed a theoretical and numerical tool (see Chapter 5). In Chapter 6 we studied the
growth of hydrodynamical density perturbations and the formation of sub-structures and
fragments in pre-stellar cores. Finally, in Chapter 7 we analysed a magnetohydrodinam-
ical case of the contraction of a fluid element along the direction of the mean magnetic
field of the cloud.

The main conclusion obtained in this thesis are the following:

• In Chapter 3 we characterised the stability properties of filamentary clouds with
a polytropic equation of state, using the polytropic exponent �p, related to the
spatial properties of the filament. The observed radial density profiles of fila-
mentary clouds are well reproduced by negative-index cylindrical polytropes with
1/3 . �p . 2/3, indicating either external heating or non-thermal pressure compo-
nents. The first case predicts a gas temperature at the filament’s surface unrealisti-
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cally high (⇠ 100 K). Non-thermal support, perhaps in the form of a superposition
of small-amplitude Alfvén waves (for which �p = 1/2) provides a plausible mech-
anism of support. Also, the mass per unit length of negative-index polytropes is
not limited, but shows a dependence on the pressure and density at the surface, if
the filaments are pressure-confined by the ambient medium.

• In Chapter 4 we extended the study made in Chapter 3 to the MHD case. In fact,
magnetic field seems to play an important role in determining the observable prop-
erties of filamentary clouds. We solved general equations for magnetised filamen-
tary clouds imposing a polytropic equation of state, and assuming cylindrical sym-
metry together with magnetostatic equilibrium. We found that magnetic field can
either support or compress the cloud (or be force-free) depending on the relative
strength of the toroidal and poloidal components. Pure poloidal fields, or with small
toroidal components (small pitch angle �) give support to the cloud. This allows
higher values of the envelope density than those resulting from thermal support
alone. If the strength of the toroidal component increases, the e↵ect of the field
becomes very sensitive to the field strength: a small change inverts the the Lorentz
force, from supporting to squeezing the cloud. In the latter case, the density of the
envelope is lower than the expected value in a non magnetised filament.

• In Chapter 6 we focused on the evolution of small-scale hydrodynamic perturba-
tions in a contracting core, using the model described in Chapter 5, in order to
constraint the process of fragmentation. We showed that in a contracting cloud,
solenoidal and compressible perturbations grow with time, but the former faster
than the latter. However, the evolution of compressible perturbations depends on
their wavelength and amplitude and is controlled by the competition between sev-
eral timescales: the time to reach the nonlinear stage tnl, the time at which perturba-
tions become gravitationally unstable tgr, and the global collapse time scale of the
background. We estimated analytically the non-linear time during a collapse, find-
ing that, for amplitudes of velocity perturbations observed in cloud cores tnl < tgr,
depending on their wavelength. Only perturbations that have initial scales compa-
rable with the size of the core can become gravitationally unstable. The others form
shock and start to dissipate their energy, establishing a competition with the “adi-
abatic heating” resulting from contraction. We verified our analytical results with
fully three-dimensional numerical calculations performed with the hydrodynamical
code ECHO. If the amplitude decay following tnl suggested by the numerical calcula-
tions is representative of the dissipation in cloud core, it is unlikely that small-scale
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perturbations can survive to the point of becoming self-gravitating and unstable.
We suggested that fragmentation in cores is likely achieved by the growth and sub-
sequent breakup of solenoidal, rather than compressible, small-scale perturbations.
However, vortices are easily disrupted by any large-scale magnetic field.

• In Chapter 7 we performed 3D MHD simulations with 5123 grid points, with the
aim of studying numerically the temporal evolution of a magnetised and turbulent
element of fluid in a contracting cloud (or a contracting core). The fluid element is
contracting along the direction of the mean magnetic field, a scenario that mimics
the accretion of mass on a filament. From our results the dependence from the ratio
between the contraction time and the non-linear time of the system, tc/tnl, seems
to be a key parameter to understand whether if the contraction is or is not able to
amplify turbulent fluctuations. In fact, if the contraction is slow (tc > tnl) turbulent
and dissipative e↵ects dominate and the turbulent velocity and magnetic field decay
whereas if the contraction is fast (tc < tnl) the turbulent velocity and magnetic field
are amplified and dissipation increases as a plain consequence of this amplification
(adiabatic heating). Defining in a phenomenological way the turbulent ”pressure”,
we showed that, during a contraction, it quickly becomes comparable with the gas
thermal pressure.

We can discuss also some general conclusion of this work. In particular, an interesting
result from the MHD simulations is that the ”pressure” contributions arising from the tur-
bulent velocity can be parametrised with a polytropic equation of state, i.e. p ⇠ ⇢0.5. This
contribution is also in agreement with the one needed to support the stability of filaments
according to our quasi-static analytical models (Toci & Galli 2015a,b). Focusing on the
physical properties of a fluid element in a cloud that is contracting due to its self-gravity,
we can make a comparison between the hydrodynamical and magnetohydrodynamical
case. Considering the behaviour of the density contrast, the velocity fluctuations and the
kinetic enstrophy in contracting MHD simulations in the most representative case, there is
a first phase where both these quantities remains constant in time, suggesting the lack of
a preferential mechanism of structure formation. Kinetic enstrophy starts to grow earlier
and faster than density and velocity fluctuations, suggesting that, as in the hydrodynamical
case (Toci et al. 2017), solenoidal modes grow at a faster rate than compressible modes,
and may eventually promote fragmentation through the formation of vortical structures.
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8.1 Future perspectives
Part of the research showed in this thesis has not been published. With a view to

a future paper, there are several improvement that we can make in order to extend our
analysis.

As regard the analytical models, in the hydrodynamical case we can extend our anal-
ysis also to values of the polytropic index that we first excluded. They represent particular
solutions (i.e. magnetic dominated configurations) that can represent observational cases.
We would also like to compare out theoretical expectations with the new ALMA observa-
tions of density profiles. An analytical analysis of the temperature profile would allow us
to make comparison also with observed temperature profiles. The new ALMA polarimet-
ric observations will give new constrain to the direction and strength of magnetic fields
in molecular clouds and cores, and will allow us to improve our magnetohydrodynamical
models.

The study on the growth of hydrodynamical gravitational collapse showed that the
growth and subsequent breakup of solenoidal, rather than compressible perturbations
could lead to multiple fragmentations. This aspect should be explored in future works,
considering the di↵erent mechanism of structure’s fragmentation but also that vortices are
easily disrupted by large-scale magnetic field. It would be also desirable to improve the
capabilities of submillimetre interferometers like ALMA to constrain the level of frag-
mentation in starless cores.

Finally, considering the MHD simulations we performed, our model is highly ide-
alised both in the geometry of the system both in the superimposed contraction. Despite
this, we are not able to cover contractions of 1/10 L0 and a first improvement should be
in this direction. Two important physical limits of our simulations are the absence of a
feedback e↵ect due to fluctuations on the contraction, and the absence of a Poisson solver
in order to follow the evolution of fluctuations once they become gravitationally unstable.
An analytical analysis, as in the HD case, will help us to understand the di↵erent regions
where these contribution are important. An extension of this work could be the study
of di↵erent metrics, related to di↵erent scale-law, and di↵erent magnetic configurations.
Another important parameter that characterize turbulence in MC is the fluctuations’ Mach
number, thus new simulations with supersonic Mach numbers will improve our analysis.
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A.1 Appendix A: physical characteristics of a plasma

A characteristic of a plasma is the quasi neutrality. Charged particles have long-range
electromagnetic interactions that are dominant versus the Coulomb interactions between
neighbours, the kinetic energy being greater than the potential energy between two neigh-
bouring particles. The electrostatic interaction between two charged particles is shielded
due to the presence of other particles with opposite charge. A negative charge will attract
positive charges and that will lead to a screening at great distances, making the electro-
static potential in a plasma with the same number of protons and electrons ni = ne = n
and the same temperatures Ti = Te = T equal to:

�(r) =
e
r

exp
 
� r
�D

!
, (A.1)

where e is the electric charge of the particle. The e↵ective potential reduces to the
Coulomb form � ! e/r for r ! 0 and it becomes negligible when r ! 1. The charac-
teristic length where a particle is fully shielded is given by the Debye length �D,

�D =

 
kbT

4⇡ne2

! 1
2

⇠ 6.9 T 1/2n�1/2, (A.2)

where kb is the Boltzmann constant. The Debye length also defines an e↵ective range
for collisions, due to the fact that interactions between particles occur with a shielded
Coulomb potential. The hypothesis of charge screening can be applied only if the density
is su�ciently large so that there are many particles in a volume defined by the Debye
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length (or, equivalent, if the mean distance between particles, < d >⇠ n�1/3 is much
smaller than the Debye length). Mathematically, if the number of particles is ⇠ n�3

D, for a
charged fluid being a plasma (thus quasi-neutral)

n�3
D � 1 (A.3)

and
�D ⌧ L, (A.4)

where L is the characteristic scale of the plasma over with macroscopic quantities such as
⇢ or T vary. These two conditions are usually incorporated into the plasma definition.

An important characteristic frequency in a plasma is the collision frequency. In fluids
collisions are strong and binary. A binary collision between particles is an interaction
occurring when the distance between particles decreases below a certain characteristic
scale b, given for example by the distance at which the kinetic energy of relative motion
equals the electrostatic Coulomb potential energy. The collisional cross-section is �c =

⇡b2 and the and the collision frequency is ⌫c = n�cvT . This is an important di↵erence
between plasmas and fluids: in plasma collisions are weak, many-body interactions. The
cumulative e↵ect of all the weak interactions is to reduce the collision time by a factor
⇠ 8ln(�D/b0) (also known as the Coulomb logarithm), where b0 is the interaction distance
corresponding to a ⇡/2 deflection, with respect to the one of neutral gas.

Collisions are the way through which a plasma thermalizes (particle populations with
di↵erent temperatures reach thermal equilibrium). In a collision, energy may be trans-
ferred from the particle of higher energy to the lower energy one. Consider a plasma
of electrons and ions both out of thermodynamic equilibrium but with similar energies.
Collisions that lead to equilibrium among particles of the same species are on a di↵er-
ent time-scale compared to that required for thermal equilibrium across species. For
an electron-proton plasma electron-proton thermalization requires longer times than both
electron-electron and proton-proton thermalization, thus this plasma may have electrons
and protons at di↵erent temperatures. Collision frequencies are associated with disor-
dered motions in a plasma.

Another fundamental plasma frequency is associated with the plasma shielding. The
root mean square (rms) or thermal speed of particles with mass m is vT =

p
3kbT/m.

Using also the Debye length this sets a characteristic timescale ⌧p = �D/vT . The plasma
frequency is proportional to 1/⌧p, and defined as

!p =

r
4⇡ne2

m
. (A.5)
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In a plasma composed of ions and electrons, there will be a plasma frequency associated
with electrons, !pe, and one with the protons !pi. For electrons, in cgs-Gaussian units
!pe ⇠ 5.6 ⇥ 104n1/2

e . In this plasma, if the electrons are displaced by a general amount x
the resulting electric field is E = 4⇡nee0x and the equation of motion for a displaced elec-
tron corresponds to the dynamics of an harmonic oscillator with frequency !pe. Charge
separation in a plasma then leads to restoring forces that tend to produce oscillations
in electrons. This is an ordered motion (as opposed to random thermal motions). The
plasma frequency therefore poses an upper limit to the frequencies of dynamic motions
in the plasma satisfying quasi-neutrality because only disturbance with frequency compa-
rable or larger than such value will produce an appreciable charge separation in plasma,
otherwise fast electric oscillations will cancel the e↵ect.

The neutrality condition does not imply that local material sources for electromagnetic
fields could be ignored. A plasma may be electrically neutral on average, yet still have
electric currents due to electrons drift relative to ions. Such currents can generate magnetic
fields B. Particles of charge q and mass m in a magnetic field do not follow straight line
trajectories but gyrate around the field lines with a non-relativistic gyro-frequency called
cyclotron or Larmor frequency,

!L =
qB
mc
. (A.6)

For a proton the gyro-frequency is ⇠ 0.1s�1 in a magnetic field with strength B = 10�5

Gauss, a typical value for interstellar clouds. The gyro-radius rL = v?/!L is small com-
pared to macroscopic scales for almost all the values of the velocity. In presence of a
magnetic field charged particles cling to the field lines until they are knocked o↵ by col-
lisions. This makes the motion of charged particles more coherent. This leads to the fact
that even in a dilute plasma, the macroscopic behaviour of the particle is more similar to
a fluid than to a collection of independent moving particles if the plasma is su�ciently
magnetised. The ISM is a classical plasma. Relativistic e↵ects become important if the
thermal energy is kbT � mc2, then for an electron T > 6 ⇥ 109K.

A.2 Appendix B: ECHO code numerical scheme

As already anticipated in Chapter 5.3, the numerical solution of the MHD equations
system requires a particular numerical scheme. The one used in the code is based on the
Gudonov scheme (Godunov 1959), projected for fluid dynamics and extended for MHD
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using the UCT method1. The code ECHO can solve any MHD-like set of equations that
can be represented as a duple of coupled sub-systems, the former containing the fluid
part in which the spatial operator are in the form of divergence (an application of Gauss
theorem) plus source terms and the latter, specific for the magnetic field, that contains the
induction equation in curl form, with the condition of divergence-free (an application of
Stokes theorem),

@u(w)
@t
+ r · f(w) = 0, (A.7)

where f is the fluid flux, w = [u,B]T is the set of conserved variables and

@B(w)
@t

+ r ⇥ E(w) = 0, (A.8)

where E is the magnetic flux. In Appendix A.3 is described the Gudonov explicit scheme
and in Appendix A.4 its extension, the UCT (Upwind Constrained Transport) method
(Londrillo & del Zanna 2004).

The ECHO scheme

The steps needed to evolve the system are described in Del Zanna et al. (2007) and
Landi et al. (2008). Here we will give a brief summary of the procedures.

• In order to evaluate the spatial derivatives of the fluxes along all the directions, we
refer as ui to indicate any scalar component of the discretised variables (u,B) along
a general direction xi, with �x the grid dimension and by fi = f (ui) a corresponding
flux component.

• Every primitive (or conservative) variable ui in eq. (A.28) is reconstructed (apply-
ing the 1D reconstruction procedure, REC in the code) in the correspondent cell
interface xi+1/2 using a left-biased (L) or right-biased (R) interpolation, i.e

ui ! [uL, uR]i+1/2. (A.9)

As a consequence, any flux component f (u) is a two-sided interpolated function,

fi = f (ui+1/2)! [ f L, f R]i+1/2. (A.10)

1Upwind schemes are a class of methods that solve partial hyperbolic equations using finite
di↵erences. For any grid point i in the numeric domain there are only two directions associated
with it, left and right. An asymmetry of points on the left part compared to the right part is an
upwind method, the opposite is downwind.
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The shock-capturing feature requires in one-sided interpolation schemes non oscil-
latory properties for allowing the monotonicity of functions. In the ECHO code a
compact upwind REC has been implemented that avoids Gibbs oscillations and
guarantees monotonicity (see Del Zanna et al. 2007 for details). Di↵erent or-
ders of explicit WENO (Weighted Essentially Non-Oscillatory) schemes are im-
plemented, too. Simulations in this work are performed by employing WENO5
(Weighted-ENO) fifth order scheme for the spatial derivatives coupled with a third
order Runge-Kutta time integration. The solenoidal constraint for the magnetic
field is enforced through the Upwind Constrained Transport (UCT) method (See
Appendix A.4).

• After the reconstruction phase, the two values function [ f L, f R] are combined in an
unique continue value of the upwind flux with an approximate Riemann solver:

f (uL, uR) =
1

↵+ + ↵�
[↵+ f L + ↵� f R � ↵+↵�(↵+uR � ↵�uL)], (A.11)

where ↵+ = max[↵R
+,↵

L
+], ↵� = max[↵R

�,↵
L
�], ↵ = |vp|+�, vp is the plasma velocity

and � is the local mean of the maximum eigenvalue (wave characteristic velocity)
of the Jacobian flux and ± is the sign of ↵. In MHD cases � = V f , where V f is the
fast magnetosonic speed.

• The formal order of approximation r requires that the term (uR � uL) in the calcula-
tion of the flux is a di↵usive or dispersive term oder O(�x)r in the smooth region.
In almost all the current simulations the REC order is r=5. The order r for the
interpolation of u is related to the approximation order for the flux function on the
cell interfaces,

fi+1/2 = f (xi+1/2) + O(�x)r, (A.12)

but the di↵erence between the two fluxes is only a second-order approximation of
the flux derivative, independently on the chosen r,

fi+1/2 � fi�1/2

�x
= f 0i + O(�x)2. (A.13)

To obtain high-order precision for the fluxes derivative an additional high order
reconstruction procedure, named DER, is required. It allows to reach a high or-
der approximation from the point value quantities calculated at the same intercell
locations, recovering a numerical derivative function fi+1/2 ! f̂i+1/2 having the
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requested properties,

f̂i+1/2 � f̂i�1/2

�x
= f 0i + O(�x)r+1. (A.14)

Simulations in this work are performed by employing a sixth order DER procedure.

• The same procedure can be applied to the induction eq. (A.8), where a staggered
discretisation will be used, with a specific 2D Riemann solver is needed in order to
take into account the specific curl form of the di↵erential operator and the conserva-
tion laws (see Appendix A.4). Values at the interface of bi+1/2 ! [bL, bR]i+1/2,k+1/2

and its relative flux f̂ (bi+1/2) = Êi+1/2,k ! [ÊL, ÊR]i+1/2,k+1/2 are reconstructed
at the interface. The two-value flux function is then combined, using a Riemann
solver as in eq. (A.11), to have a unique value. A sixth-order interpolation proce-
dure (INT) is required to approximate magnetic field components, defined at the
interfaces of cells S (again, see Del Zanna et al. 2007).

• Runge-Kutta time-stepping can be finally applied, and the whole procedure for up-
dating the set of conservative variables w has to be repeated for each sub-cycle. As
in all explicit schemes, the timestep �t is limited by the CFL (Courant-Friedrichs-
Lewy) condition, 0 < CFL < 1 (see eq A.27),

�t =
CFL

min
h
�
↵

i , (A.15)

where � = min[�x,�y,�z] and ↵ is the maximum of the eigenvalues in the j
direction ↵ j ( j = x, y, z).

Temporal integration: The Runge-Kutta method

Third order Runge-Kutta (R–K) method for integrating in time allows to find for a
generic time function u(t), known at t, the temporal evolution u(t + �t) with a preci-
sion equal to a third order Taylor-expansion using only the first order derivative of u(t).
Three steps are in use, with slightly di↵erent coe�cients compared with the standard R-K
method,2

u1 = u0 +
8
15
�t f (u0); u0 = u(t), (A.16)

u2 = u1 �
17
60
�t f (u0) +

5
12
�t f (u1); (A.17)

2Those value are chosen to simplify the code algorithm.
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u3 = u2 �
5
12
�t f (u1) +

3
4
�t f (u2); u3 = u(t + �t). (A.18)

As in all the explicit integration methods, R-K method uses a variable �t, in order to have
a more stable code. The choice of the integration step depends on the field propagation
velocity in the numerical grid, in particular it has to be shorter than the time required for
the field propagation. If ↵ is the maximum velocity propagation and �s is the smaller grid
step, then the latter condition is

|↵|�t
�s
< 1, (A.19)

corresponding to the Courant-Friedrichs-Lewy criterion. In the case of this thesis, the
plasma is viscous and resistive, thus both the related di↵usion coe�cients have to be
considered. Condition for �t is then

�t < �tmin = min
"
�s
|↵| ,

�s2

⌘
,
�s2

⇣

#
, (A.20)

where ⇣ and ⌘ are the kinematic and magnetic viscosity. For increasing the stability of the
code, again �t = CFL ⇤ �tmin.

Boundary Conditions

ECHO code allows the following boundary conditions:

• Open boundary conditions

• Periodic boundary conditions g(x ± L) = g(x); if nGC are the points requested, out
of the numerical domain, for the evaluation of REC, DER and INT at the required
order (called Ghost Cells), the periodic boundary condition is

gi0�1 = gn0�1; gn0�1 = gi0+1; i = 1, .., nGC . (A.21)

i0 = 1/2, or i0 = 1 and n0 = n + 1/2 or n0 = n (n is the total nuber of points in a
direction) according to the procedure. This condition is the one used in this work.

• boundary conditions with reflection

• Third order extrapolation: fields are reconstructed out of the numerical domain
with a one-side third order scheme.
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MPI parallelisation and optimisations

For any temporal step ECHO code have to evaluate first, second, mixed derivatives
for all the physical fields (u,B, ⇢,T ). Most of the computational time is employed for the
spatial derivatives, that require many operations. To decrease the duration of simulations
processes can be parallelised: the process that works on all the numerical grid is splitted
in np processes working on a grid slice (or cube). The processes have to share common
informations like the integration time step. A physical CPU (with its own RAM memory)
corresponds to any process. The number of processes np can be chosen by the user.

The ECHO code has been parallelised using the MPI protocol (Message Passing In-
terface) and has been used on local clusters in Arcetri and on the CINECA supercom-
puter MARCONI. We will shortly describe the parallelisation algorithm. Only the spatial
derivatives have to take into account also informations from neighbour points, while other
parts of the code are local (only the variables values in the points are required). In addition,
the evaluation of a derivative along a general i direction requires only the i�neighbours
informations3, thus the spatial derivative in a direction is local in the other two.

Figure A.1: Parallelisation strategy: (a) grid division along the x axis, (b) swap procedure.

The numerical grid has been divided into np slices along a direction (hereafter, the x
direction, see Fig. (A.1)). The y and the z derivatives can be evaluated locally, while for
the paralelisation direction a swap procedure is needed (see Fig. (A.1)). For simplicity
let us consider the 2-D case as example: the grid is divided also on the y direction, thus
there are np vectors vxy with dimension mx ⇥ ny, where mx = nx/np. A new storage vector
vyx is generated, with dimension nx ⇥ my, where my = ny/np and the derivatives along

3This is a consequence of the finite explicit method of derivatives implied in the code. For
other kinds of schemes it could be required the knowledge of the fields in all the points



Appendix A. Appendix 137

the x direction are calculated. During the construction of the storage vector all the CPUs
communicate, and this process require time (the more CPUs, the longer the process). A
limitation on the CPUs number comes from the grid point numbers for each process. In
general, npoints/np = 4 is a good compromise.

A.3 Appendix C: Gudonov explicit scheme
The starting point is to discretise the equations. An explicit Godunov scheme is a con-

servative numerical scheme that solves partial di↵erential equations. It is a conservative
finite-volume method that solves exact (or approximate) Riemann problems at any inter-
cell boundary. The original form is first order accurate in both space and time. Defining a
fixed volume V̄ and beeing S̄ its surface, eq. (A.7) for the fluid part can be written as

d
dt

Z

V̄
udV +

I

S̄
finidS = 0, (A.22)

where ni is the normal versor to the generic surface S. The value of the conserved variables
u is supposed to be known in the cell center i in the discretisation grid. Considering a 1-D
domain of integration divided in n equal cells, spaced with �x, as reported in Fig A.2, the
volume V̂ corresponds to the interval x which goes between xi�1/2 and xi+1/2. Eq. (A.22)
becomes

d
dt

Z xi+1/2

xi�1/2

ud⇠ + f̂xi+1/2 � f̂xi�1/2 = 0. (A.23)

If we define the mean value of u in the interval x as ui
4, the temporal integration in an

interval �t = tn+1 � tn of the last equation is

un+1
i = un

i
1
�x

Z tn+1

tn
(f̂xi+1/2 � f̂xi�1/2 )d⌧. (A.24)

If the time integral is approximated as ⇠ �t(f̂n
xi+1/2
� f̂n

xi�1/2
), then we have

un+1
i � un

i
�t

+
f̂xn

i+1/2
� f̂n

xi�1/2

�x
= 0, (A.25)

where i is the index for the spatial level and n is the temporal level. f̂xn
i±1/2

represent the
flux numerical vector of the conserved variables, evaluated in the interfaces between i and

4The mean value is defined as û = 1
�x

R xi+1/2

xi�1/2
ud⇠
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i± 1 or i� 1 and i at the temporal level n (see Fig. (A.3)). How to evaluate the numerical

Figure A.2: Numerical grid.

Figure A.3: Flux representation on the discretisation grid.

flux vector depends from the numerical scheme in use. Godunov proposed a method that
uses the Riemann’s problem solution5. If the mean values of the primitive variables are
known in every spatial cells (un

i , with n = 1, ...ncells) at a certain time n, it is possible to
construct a function that is constant in steps uk(x, tn) that contains the former values. This
solution is discontinue in the interfaces between two close cells.

Let us consider this solution as an initial condition for the problem. After some time,
there will be ncells Riemann problems. In any interface a set of waves will be generated
(as many as the equations). The solution of the Riemann problem is to find an unique
set for the conserved values at any interface. This values will be conserved until the
waves generated in an interface reach the next one. In order to avoid this phenomenon
the integration time interval has to be, if ↵max(i) is the largest among all the propagation

5 The Riemann problem studies the temporal evolution of a discontinuity that is in between
two di↵erent fluids. Those fluids have, in general, di↵erent thermodynamic and kinematic values.
The initial discontinuity generates, in the Eulerian case, two families of waves that propagates in
opposite directions and a contact discontinuity.
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velocities for every i-Riemann problem,

�t(i)  �x
↵max(i)

. (A.26)

This condition gives a constrain on the temporal interval,

�t  min[�x]
max[↵max(i)]

. (A.27)

Thus, defining CFL = ↵max�t/�x, it has to be  1. The primitive variables will have
the values evaluated in the interfaces i ± 1/2, and they will be used to estimate the values
of the vectors f̂n

xi±1/2
. Using eq. (A.25) the value of the conserved variables in the new

time un+1
i for all the integration cells can be obtained. The numerical scheme has to take

into account that the step-defined solution uk(x, tn) cannot be unique. In that case, the
chosen solution is the one that solves simultaneously all the Riemann problems of the
Euler system for entropy.

We can then define the solving algorithm, that is applied until the last integration time:

• Reconstruction: in each cell, starting from the un
i , the step defined function uk(x, tn)

is built.

• Evolution: Riemann problems are solved in the interfaces, imposing the condition
from eq (A.27). The function uk(x, tn+1) is obtained; from that the values in the
interfaces.

• Mean values: Using eq. (A.25) the values in the centres of the cells are obtained,
un+1

i in the new temporal instant.

A method that allows to evaluate the value of solutions in the new time starting from the
known solution at the previous time is called explicit method.

A.4 Appendix D: Upwind Constrained Transport method
An extension of conservative schemes like Godunov for applying to MHD equations

requires a modification in order to represent and solve Riemann’s problems for the mag-
netic field’s solenoidal structure. The Constrained Transport (CT) method allows to stag-
gered discretize vectorial magnetic and electric fields in the induction equation, with the
constrain [r · B]num = 0 for the initial condition that is conserved in time. A method
Godunov-like with the CT extension is called UCT method (Londrillo & del Zanna 2004).
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This is known to be more e�cient than finite volume methods for high order treatments
of multi-dimensional problems because only 1D reconstruction algorithms are used.

Let r be the order of spatial accuracy requested for the scheme. In this method the
finite 3-D computing domain ⌦ is divided in Cartesian cells C, that have volume V , size
hi, i = x, y, z and faces made by oriented surface elements S ±i , where ± indicates the
direction of the surface’s versors (normal to direction i). For each face S i, its oriented side
L±j , L

±
k with j, k , i. The code implies semi-finite volumes only for the spatial integration,

the temporal dependence will be evaluated using Runge-Kutta integration schemes.
A conservative discretisation of eq. (A.7) can be realised integrating any scalar equa-

tion on the volume element V of any cell C and using Gauss theorem,

d
dt

û(t) + ⌃i
1
hi

(f̂+i � f̂�i ) = 0, (A.28)

where
û(t) =

1
|V |

Z

V
u(x, t)dV and f̂±i =

1
|S ±i |

Z

S ±i

fidS (A.29)

are the mean on the volume of each scalar component ul on the cell C and the mean of
the flux on the faces of the cell S ±i . Note that the fluxes are exact values of the parallel
coordinate i, and their di↵erences are the mean flux derivatives.

For the system (A.8), the CT method that preserves the original property, that is the
asymmetry of the vector, is realised with a surface integration on a cell face followed by
the use of Stokes theorem. It gives

d
dt

b̂i(t) + ⌃ j,k✏i, j,k
1
h j

(Ê+k � Ê�k ) = 0, (A.30)

where ✏i, j,k is the Levi-Civita tensor and ± is the versor of the j-direction faces and

b̂i(t) =
1
|S i|

Z

S i

Bi(x, t)dS and Ê±k =
1
|L±k |

Z

L±k

EkdL (A.31)

are the magnetic field staggered discretised variables, defined as integrals on the face of
cell S i, while Ê±k are the magnetic flux components averaged on the oriented boundaries
L±k (the orientation depends from the versor of the face, see Fig. (A.4)). Here the magnetic
field components are exactly evaluated in the parallel coordinate i (like in the case of f̂i),
while Êk are point values in the orthogonal coordinate (i, j) , k. This form is known as
semi-analytical because the time derivatives are left analytical. This staggered discretisa-
tion produces a couple of normalised fluxes b±i , defined on the faces S ±i for all direction
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Figure A.4: Staggered vectorial fields in the CT scheme. Only S +x , S +y , S +z faces are shown. The
black arrows in the centers of the interfaces, where the bi components of the magnetic
field are defined, indicate the faces versors and their relative oriented boundaries. The
electric field vectors are defined in the centers of the boundaries.

i. Using those components it is possible to represent the mean volume of the (parallel)
prime derivative @iBi(x), and then the non-evolutionary solenoidal constraint becomes

⌃i
1
hi

(b̂+i � b̂�i ) = 0. (A.32)

The numerical form of induction equation eq. (A.22) will preserve this condition during
the integration. At this level, everything is an exact solution. Spatial approximations are
necessary when all the MHD variables have to be reconstructed at the cell faces, where
the fluxes are defined as local values.

Let us define the center point of a cell as (i, j, k) and all the magnetic and electric fields
on a cube surface (and then, recursively, on all the others):

• the 5-components vector ui, j,k is defined in the center of the cell,

• the associated fluxes are defined on the interface of the cell, f̂x,i+1/2, j,k,

• the magnetic field is defined on the interface of the cell too, b̂x,i+1/2, j,k,

• the magnetic field’s fluxes are defined as 4-states functions on the sides of the cells:
Êy,i�1/2, j±1/2,k and Êz,i+1/2, j±1/2,k.
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A.5 Appendix E: free-fall on a star

In this Appendix we derive the metric coe�cients for a case of astrophysical interest:
the free-fall motion. In this case the metric equations have a fully analytical (although
parametric) solution. Consider a fluid element that is free-falling on a star of mass M?.
If r0 is the position of the fluid element at the starting time t = 0 and u = 0 is the initial
velocity, its velocity in a general position r is

u(r) = �u↵
✓r0

r
� 1

◆1/2
, (A.33)

where u↵ = (2GM/r0)1/2. The radius of the fluid element in function of time is given by
the parametric solution

t =
2
⇡

(µ + sin µ cos µ) t↵ , (A.34)

r = r0 cos2 µ, (A.35)

u = �u↵ tan µ, (A.36)

where t↵ = ⇡r0/2u↵ and µ is a parameter (called developed angle running from 0 to ⇡/2.
The fluid element reaches the origin at a time t↵ that depends on its initial radius r0.

We take a shell that at the initial time t = 0 (µ = 0) has an outer radius r0 and an inner
radius r0 � �r0, where �r0 ⌧ r0. Let us suppose that the outer radius of the shell reaches
the star in a time t↵ , the inner radius reaches the star at a time t↵ � �t, that is the time
when �t/t↵ ⇡ �3/2(�r0/r0). At any time t(µ), the value of the parameter of the inner side
is µ + �µ, where

r0 �µ =
3
2

 
µ + sin µ cos µ

1 + cos 2µ

!
�r0. (A.37)

Thus, while the outer radius of the shell is r0 cos2 µ, the inner radius is (r0 � �r0) cos2(µ +
�µ), and the thickness of the shell during collapse is

�r = cos µ
 
cos µ + 3 sin µ

µ + sin µ cos µ
1 + cos 2µ

!
�r0 =

 
1 +

sin2 µ + 3µ tan µ
2

!
�r0. (A.38)

We can also give an expression for the radial scale factor c(t) = �r(t)/�r0, that is then
given by

c(t) = 1 +
sin2 µ + 3µ tan µ

2
. (A.39)

Due to the fact that the collapse is radial, the transverse scale factor is simply a(t) =
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r(t)/r0, or
a(t) = cos2 µ(t). (A.40)

In either case, time t is given by eq. (A.34). These scale factors are shown in Fig. A.5.
Thus, a fluid element that is free-falling on a star is stretched in the longitudinal direction
and squeezed in the transverse direction.

After some calculation, the rate of radial stretching can be obtained, and it is

ċ
c
=

3µ + (3 + 2 cos2 µ) sin µ cos µ
t0 cos3 µ[cos µ(4 + sin2 µ) + sin µ(6µ + sin µ cos µ)]

, (A.41)

while the transverse compression rate is

ȧ
a
=

 
u↵
r0

!
sin µ

cos3 µ
. (A.42)

These rates are shown in Fig. A.6. When t ! t↵ , expanding to the first order the factors

Figure A.5: Longitudinal and transverse
scale factors c(t) and a(t) as
function of time t.

Figure A.6: Longitudinal and transverse contrac-
tion/expansion rates ċ/c and ȧ/a and
TrH = ċ/c + 2ȧ/a.

and the rates it can be found that

r(t)! r0

 
3⇡
4

!2/3  
1 � t

t↵

!2/3

, (A.43)
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a(t) = b(t) =
 
1 � t

t↵

!2/3

, c(t) =
 
1 � t

t↵

!�1/3

, (A.44)

and
ȧ
a
! �u↵

r0

 
1 � t

t↵

!�1

,
ċ
c
! u↵

2r0

 
1 � t

t↵

!�1

. (A.45)

The rate of longitudinal expansion is asymptotically 1/2 of the rate of transversal contrac-
tion. Notice that the radial stretching rate ċ/c is asymptotically equal to the radial velocity
gradient du/dr.

A.6 Appendix F: Homologous collapse of a pressure-
less sphere

Let us consider a cloud of mass M and an uniform density ⇢0 that is undergoing a
free-fall (pressureless) collapse. The mass M(r0) contained in a radius r0 is M(r0) =
(4⇡/3)⇢0r3

0, while the free-fall velocity at the same radius r0 is u↵ = (8⇡G⇢0/3)1/2r0. The
free-fall time is t↵ = (3⇡/32G⇢0)1/2, that is not depending on the initial radius r0.For this
reason, all the shells arrive at the origin at the same time. The radius of each shell follows
the parametric solution eq. (A.34)–(A.35) and the density increases in an uniform way as
⇢ = ⇢0/ cos6 µ. We than have that

�r = �r0 cos2 µ, (A.46)

and the contraction is isotropic with scale factors

a(t) = b(t) = c(t) = 1 � sin2 µ(t). (A.47)

We can find an expression for H(t) = ȧ/a = � tan µ/(t0 cos2 µ), where t0 = 2t↵/⇡.
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Hubble flows in molecular clouds’. MNRAS, February 2015, volume 446, 3725–3730,
doi:10.1093/mnras/stu2368, arXiv:1411.1640.

[Toci & Galli 2015a] C. Toci & D. Galli, ‘Polytropic models of filamentary interstellar
clouds - I. Structure and stability’. MNRAS, January 2015a, volume 446, 2110–2117,
doi:10.1093/mnras/stu2168, arXiv:1410.6091.

http://dx.doi.org/10.1051/0004-6361/201014481
https://arxiv.org/abs/1003.4198
http://dx.doi.org/10.1086/155274
http://dx.doi.org/10.1146/annurev.aa.25.090187.000323
http://dx.doi.org/10.1086/151444
http://dx.doi.org/10.1051/0004-6361/201628996
https://arxiv.org/abs/1605.09371
http://dx.doi.org/10.1086/165493
http://dx.doi.org/10.1051/0004-6361:20021309
http://dx.doi.org/10.1002/2013JA019293
http://dx.doi.org/10.1093/mnras/stu2368
https://arxiv.org/abs/1411.1640
http://dx.doi.org/10.1093/mnras/stu2168
https://arxiv.org/abs/1410.6091


References 155

[Toci & Galli 2015b] C. Toci & D. Galli, ‘Polytropic models of filamentary interstellar
clouds - II. Helical magnetic fields’. MNRAS, January 2015b, volume 446, 2118–2124,
doi:10.1093/mnras/stu2194, arXiv:1410.6092.

[Toci et al. 2017] C. Toci, D. Galli, A. Verdini, L. Del Zanna & S. Landi, ‘Sub-structure forma-
tion in starless cores’. ArXiv e-prints, October 2017, arXiv:1710.09124.

[Tohline 1980] J. E. Tohline, ‘The gravitational fragmentation of primordial gas clouds’. ApJ,
July 1980, volume 239, 417–427, doi:10.1086/158125.

[Vazquez-Semadeni 2012] E. Vazquez-Semadeni, ‘Physical Processes of Interstellar Turbu-
lence’. ArXiv e-prints, February 2012, arXiv:1202.4498.

[Vázquez-Semadeni et al. 1998] E. Vázquez-Semadeni, J. Cantó & S. Lizano, ‘Does Tur-
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