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Effect of interactions on the localization of a Bose-Einstein condensate in a quasiperiodic lattice
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�Received 3 November 2006; published 14 June 2007�

The transport properties of a Bose-Einstein condensate in a 1D incommensurate bichromatic lattice are
investigated both theoretically and experimentally. We observe a blockage of the center of mass motion with
low atom number, and a return of motion when the atom number is increased. Solutions of the Gross-Pitaevskii
equation show how the localization due to the quasidisorder introduced by the incommensurate bichromatic
lattice is affected by the interactions.
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The intrinsic perfection of lattices made from a standing
wave of light surprisingly makes them an excellent candidate
for the investigation of disorder in atomic systems. Free from
uncontrollable defects, precise disorder can be added simply
in the form of additional optical lattices �1–6� or with an
optical speckle potential �6–9�. The combination of optical
lattices with a Bose-Einstein condensate �BEC� offers the
complexity of interactions in a setting unimpeded by large
thermal fluctuations. The significant observation of the Mott-
insulator phase was realized utilizing a strongly interacting
BEC produced in a three-dimensional ordered crystal of light
�10�. Extending this work to the strongly disordered regime
with the inclusion of a bichromatic lattice, recently led to
initial experimental evidence of a Bose-glass phase �11�. An-
other open question remains as to the effect of weak interac-
tions on the Anderson localized phase �12�.

To address this regime we have carried out investigations
of the transport of a BEC in a quasiperiodic lattice. The
complexity provided by the interplay of disorder and inter-
actions that makes disordered BECs a stimulating topic, also
can introduce instability inherent in nonlinear transport �13�.
In fact we find that dynamical instability does occur for
transport in a quasiperiodic lattice when the center of mass
motion reaches a critical velocity, and has a nontrivial depen-
dence on the interaction strength.

Anderson’s seminal paper in 1958 showed that the wave
function of a particle placed in a disordered lattice remains
localized when the range of the on-site energies is suffi-
ciently large compared to the hopping energy between neigh-
boring sites �14�. Such a disordered potential can be approxi-
mated using a bichromatic lattice, obtained by
superimposing a primary optical lattice with a weak second-
ary lattice of incommensurate wavelength. The secondary
lattice breaks the discrete translational invariance of the sys-
tem, thus allowing localization of the wave functions. How-
ever, the effect of the quasiorder may be important depend-
ing on the exact parameters of the bichromatic lattice �3,5�.

In our system, the 1D incommensurate bichromatic lattice
is produced combining the primary optical lattice derived
from a Titanium:Sapphire laser operating at a wavelength
�1=830.7�1� nm with a secondary lattice obtained from a
diode laser emitting at �2=1076.8�1� nm. Our 87Rb BEC is

produced in an Ioffe-Pritchard magnetic trap, elongated in
the direction of the lattice. The trapping frequencies are �x
=2��8.7 Hz axially and ��=2��90 Hz radially. The
BEC can be produced in the range of ��1.5�104�– �2
�105� atoms. The resulting potential along the lattice axis is

V�x� = s1ER1 sin2�k1x� + s2ER2 sin2�k2x� +
m

2
�x

2x2, �1�

where s1 and s2 measure the height of the lattice potentials in
units of the respective recoil energies ER1=h2 / �2m�1

2��h
�3.33 kHz and ER2=h2 / �2m�2

2��h�1.98 kHz, k1 and k2

are the wave numbers of the two lasers, h is the Planck
constant, and m is the mass of 87Rb.

The possibility of localization with our bichromatic lattice
in the absence of interactions is demonstrated by numerical
diagonalization of the stationary 1D Schrödinger equation
using the potential defined by Eq. �1�. A strong primary lat-
tice is chosen, s1=10, s1ER1 /h=33 kHz, and a perturbing
secondary lattice of maximum height s2=2, s2ER2 /h
=4 kHz. The ground state resulting from the bichromatic lat-
tice is shown in Fig. 1�a� and is contrasted with the ground
state of a pure random case in Fig. 1�b�. The random poten-
tial is simulated using only the primary lattice, s1=10, with
additional random on-site energies in a box distribution in
the range �0, ��, where � /h�4 kHz. The amount of the
disorder is given by either the height of the secondary lattice
in �a� or by the maximum on-site energy in the random case
�b�, and is denoted by � in both �a� and �b�. We define J as
the tunneling in the primary lattice. The thin line is the
ground state with only the primary lattice, showing the total
length of the system in the harmonic trap. The last graph in
each column is an enlargement of the actual potentials. The
quasiperiodic system mimics true disorder to a certain extent,
showing localized states characterized by an exponential de-
cay in the envelope of the density moving away from the
localization center, ���x��2�exp�−�x−x0 � / l�, where l is the
localization length. The exponential localization occurs only
above a threshold level at approximately � /J�6 in the
bichromatic case. This is in clear contrast with random dis-
order where in a 1D infinite system the localization persists
for any infinitesimal amount of disorder.

In the presence of weak interactions one expects localiza-
tion effects to persist only to a certain extent. In fact, repul-
sive interactions tend to delocalize the atoms competing
against the disorder �12,15�.

*Also at Dipartimento di Matematica Applicata, Università di
Firenze.
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Such behavior can be seen in Fig. 2, showing the ground
states in our bichromatic lattice with interactions calculated
by means of a 1D effective equation, namely the nonpolyno-
mial Schrödinger equation �NPSE� �16�. This model includes
an effective radial-to-axial coupling thus providing a more
realistic description than a strictly 1D GPE, but still avoiding
the complication of the full 3D theory �see �13� and refer-
ences therein�. In the presence of interactions the strongly
localized ground state of �a� transforms into a state with mul-
tiple peaks with partially overlapping tails �b�. Upon increas-
ing the interactions, the overlap between these peaks in-
creases until the state eventually becomes extended �c�.
These results show similar behavior to previous simulations
of a BEC in a three-color lattice �6�. Even with the increased
interactions, a state with multiple peaks can be recovered by
increasing disorder �d�–�f�. The crossover behavior between
an extended superfluid state and a localized state is very
difficult to quantify in this picture. We take a pragmatic ap-
proach and characterize the system by investigating its trans-
port properties.

In the experiment we excite dipole oscillations by
abruptly shifting the center of the magnetic trap. With a

single color lattice, the superfluid BEC oscillates freely at a
frequency modified by the effective mass �17,18� differently
from what has been observed for 1D atomic gases in �19� or
for a 3D BEC in much deeper optical lattices in �20�. Adding
an incommensurate bichromatic lattice, we expect the oscil-
lations to be blocked by localization effects. Figures
3�a�–3�d� show the center of mass motion after a trap shift of
6 	m, with a fixed number of atoms N=1.5�104, a fixed
height of the primary lattice s1=10, and a variable height of
the secondary lattice. At s2=0.1 �� /J=2.6�, the BEC oscil-
lates with some damping. Increasing s2 the motion is
strongly damped, until the BEC stops moving at s2=0.5
�� /J=13�. The height of the secondary lattice at which the
BEC becomes localized is greater than the noninteracting
threshold for localization shown in Fig. 1. This could be due
to the screening effect of interactions shown in Fig. 2.

We extended the investigations to a variable interaction
energy effectuated by changing the BEC number of atoms.
Figure 3�d� shows the measured center of mass motion of the
atoms for two different atom numbers N=1.5�104 and N
=2�105, after an initial trap shift of 6 	m, s1=10 and s2
=0.5 �� /J=13�. Transport is stopped only for the low num-
ber of atoms, although some damping is seen with the higher
atom number. To improve the signal to noise ratio, the ex-
perimental data were taken after abruptly switching off all
the confining potentials allowing 20 ms of time of flight. The
dipole oscillations were simulated using the time-dependent
NPSE followed by a free expansion and are shown by the
dashed and dotted lines in Fig. 3. The experimental behavior
is nicely described by the solutions of the NPSE. We note

FIG. 1. Density profiles in log scale of the noninteracting
ground state with increasing disorder in �a� a bichromatic lattice and
�b� a lattice with random on-site energies. The thin line represents
the ground state with only the primary lattice. The last graph in each
column shows the on-site energies in the respective potentials with
the amount of disorder shown by � /J�26. In all cases the height
of the primary lattice is s1=10 giving a tunneling energy of J /h
=75 Hz.

FIG. 2. Density profile in log scale of the ground state with
interactions for �a�–�c� increasing atom number and fixed � /J
=6.5, and for �d�–�f� increasing � /J and fixed atom number N
=1.5�104. In all cases the height of the primary lattice is s1=10.
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that for intermediate values of � /J the dynamics are criti-
cally sensitive to the actual experimental parameters hamper-
ing a quantitative comparison with the simulations. Further-
more, in this regime dynamical instability strongly modifies
the dynamics, the details depending on the initial populations
of the unstable modes. This could explain the larger discrep-
ancy between experimental data and simulations in this re-
gime �Figs. 3�b� and 3�c��.

Localization due to disorder is not the only physical effect
which can block the motion of the atoms. In the case of an
incommensurate bichromatic lattice the Bloch theorem can-
not be applied, nevertheless the energy spectrum still shows
energy bands. The band structure for the single lattice is
complicated by the emergence of “minigaps” opening up al-
most everywhere across the spectrum �5�. However, the

dominant modification to the first Brillouin zone of the pri-
mary lattice, for a weak addition of the secondary lattice, are
the extra energy gaps at kb and k1−kb, where k1=2� /�1
gives the boundary of the first Brillouin zone of the primary
lattice, and kb=2� /�b corresponds to the quasiperiodicity
introduced on the larger length scale �b=�1�2 / ��2−�1�
=4.38�1 from the beating between the two colors. This sim-
plification to the energy spectrum is particularly true when
interactions are introduced, since they can effectively screen
the potential varying on length scales larger than the healing
length, washing away the energy gaps at smaller k. As a
consequence, in the presence of interactions one should care-
fully investigate the possible contribution of dynamical in-
stability that in a single lattice has been observed to block
dipole oscillations �13,18� when the quasimomentum be-
comes greater than �0.5k1. In the bichromatic lattice dy-
namical instability may occur at a small quasimomentum

0.5kb corresponding to the beat periodicity, much smaller
than the onset of instability with only the primary lattice.

To understand the contribution of the various effects in-
stigating localization, the center of mass motion can be com-
pared to the momentum spectrum taken from the NPSE. Fig-
ure 4�a� shows the center of mass motion using the same
parameters as the measurements taken in Fig. 3�d�; an initial
magnetic trap shift of 6 	m, s1=10, s2=0.5, and for both
N=1.5�104 and N=2.0�105. Note that the simulations are
the same as shown in Fig. 3�d�; however, Fig. 4�a� shows the
motion in the trap without expansion for the first 100 ms.

From the momentum spectrum it is possible to distinguish
when dynamical instability is present. Figure 4�b� shows the
progression of the momentum spectra with N=1.5�104, and
Fig. 4�c� shows the momentum spectra with N=2�105. At
t=25 ms, the main components of the momentum spectra
correspond to the peaks of the primary lattice at integer mul-
tiples of ±2�k1, and peaks of the beat periodicity at integer
multiples of ±2�kb around the primary peaks. For both high
and low atom number, at t=50 ms extra momentum compo-
nents begin to rapidly grow signifying the onset of dynami-
cal instability �13�. We observe that the instability occurs
when the quasimomentum becomes greater than 0.5kb. By
75 ms there is a marked difference between the cases of high
and low atom number. With N=1.5�104 atoms, the initial
spectrum has been obscured by the additional momentum
components. In contrast, with N=2�105 atoms, the spec-
trum retains much of its original structure. Interestingly, the
increased nonlinearities inhibit the growth of the instability.

Augmenting the interactions reduces the healing length of
the condensate. In previous experiments, with a single lattice
of spacing 0.4 	m and typically a healing length of
�0.3 	m, the lattice spacing is not significantly greater than
the healing length, and therefore measurements are largely
indifferent to the atom number �13,18�. However, in the case
of the bichromatic lattice the large spacing of the beating
�1.8 	m� allows interactions to effectively smooth over the
large scale beat periodicity. The growth of dynamical insta-
bility in our bichromatic lattice is governed by the competi-
tion between augmentation by increased nonlinearity and
diminution by screening of the beat periodicity �21�.

Considering the center of mass motion shown in Fig. 4�a�
together with the momentum spectrum we note that the con-

FIG. 3. �Color online� �a�–�c� Measured dipole oscillations with
increasing intensity of the secondary lattice. For s1=10 and N
=1.5�104. �d� Measured oscillations with s1=10, � /J=13 and two
atom number, N=1.5�104 and N=2�105. The motion of the at-
oms was measured after 20 ms of expansion, taking the position of
the central peak. The origin of the x axis is set to the initial position
after expansion. The dotted and dashed lines show NPSE
simulations.

EFFECT OF INTERACTIONS ON THE LOCALIZATION OF … PHYSICAL REVIEW A 75, 061603�R� �2007�

RAPID COMMUNICATIONS

061603-3



taminated momenta at 75 ms for low atom number, shown in
Fig. 4�b�, is reflected in the complete blockage of the center
of mass motion. However, most importantly, in the absence
of dynamical instability, which is macroscopically observed

only after 50 ms, the movement of the atoms is strongly
damped with respect to the superfluid case �see dotted line in
Fig. 4�a��, suggesting that strong damping of the oscillations
is not only due to dynamical instability originating from the
beat periodicity of the bichromatic lattice. The presence of
interactions and the screening of the minigaps at small k
from the incommensurate lattice renders interpretation of the
blocked motion at short times difficult. As already pointed
out, with sufficiently strong interactions the energy spectrum
could be dominated by the periodicity at �b, and correspond-
ingly the strongly damped motion at short times could be
described by a highly effective mass. A further increase of
the interactions produces a screening up to larger k, thus
reducing the effective mass down to that of the primary lat-
tice �21,22�. Similarly to the screening behavior seen in Fig.
2, the contribution of the disorder will depend on the relative
strength of interactions and the intensity of the disordering
potential.

In conclusion, maintaining a minimal number of atoms
we have observed a transition from oscillations to blocked
motion with increasing intensity of the incommensurate lat-
tice. Simulations for our experimental parameters using the
NPSE show that the quasiorder inherent in the bichromatic
lattice leads to dynamical instability that contributes to the
blocked motion only after a critical time. Screening of both
localization due to the disorder and dynamical instability due
to the beat periodicity was observed with strengthened inter-
actions in the simulations. Increasing the number of atoms in
the experiment, we observed a return of oscillating motion.

This work shows that the exact choice of parameters is
crucial to separate and isolate the effect of disorder-induced
localization, or the nontrivial onset of dynamical instability
in a bichromatic lattice. In the noninteracting limit, the
bichromatic lattice is also a very promising tool to investi-
gate Anderson-like localization that could be accessed utiliz-
ing fermions or Feshbach resonances, which also provide the
important possibility of tuning the interactions.
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FIG. 4. �Color online� �a� The center of mass motion from
NPSE simulations for s1=10, � /J=13, and two different N. The
dotted line shows the expected superfluid oscillation in a one color
lattice with s1=10. �b� The corresponding momentum spectra in log
scale at different times for N=1.5�104. The vertical arrows show
the time at which each momentum spectrum is taken. �c� The mo-
mentum spectra at different times for N=2�105.
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