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Pluripotential theory
and Monge-Ampère foliations

G. Patrizio and A. Spiro

Abstract A regular, rank one solution u of the complex homogeneous Monge-
Ampère equation (∂∂u)n = 0 on a complex manifold is associated with the Monge-
Ampère foliation, given by the complex curves along which u is harmonic. Monge-
Ampère foliations find many applications in complex geometry and the selection
of a good candidate for the associated Monge-Ampère foliation is always the first
step in the construction of well behaved solutions of the complex homogeneous
Monge-Ampère equation. Here, after reviewing some basic notions on Monge-
Ampère foliations, we concentrate on two main topics. We discuss the construction
of (complete) modular data for a large family of complex manifolds, which carry
regular pluricomplex Green functions. This class of manifolds naturally includes
all smoothly bounded, strictly linearly convex domains and all smoothly bounded,
strongly pseudoconvex circular domains of Cn. We then report on the problem of
defining pluricomplex Green functions in the almost complex setting, providing suf-
ficient conditions on almost complex structures, which ensure existence of almost
complex Green pluripotentials and equality between the notions of stationary disks
and of Kobayashi extremal disks, and allow extensions of known results to the case
of non integrable complex structures.

1 Introduction

Pluripotential theory might be considered as the analogue in several complex vari-
ables of the potential theory associated with the Laplace operator. Indeed, it can be
regarded as the potential theory in higher dimensions associated with the complex
homogeneous Monge-Ampère equation.

For a function u of class C 2 on an open set U of a complex manifold, the complex
(homogeneous) Monge-Ampère equation is the equation on u of the form
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2 G. Patrizio and A. Spiro

(ddcu)n = (2i∂∂u)n = (2i)n
∂∂u∧ . . .∧∂∂u︸ ︷︷ ︸

n times

= 0 , (1.1)

which, in local coordinates, is equivalent to

det(uik̄)dz1∧ . . .∧dzn∧dz1∧ . . .∧dzn = 0 ⇐⇒ det(u jk̄) = 0 .

It is immediate to realize that, in complex dimension one, this equation reduces to
the Laplace equation and it is well known that the Monge-Ampère operator may
be meaningfully extended to much larger classes of functions. As (1.1) is invariant
under biholomorphic maps, it is natural to expect that its solutions play a role of
great importance in several complex variables as much as harmonic functions do in
complex dimension one.

A distinctive feature of classical potential theory is the fact that harmonic func-
tions, which are very regular, may be constructed maximizing families of (non reg-
ular) subharmonic functions. In fact, on one hand subharmonic functions are abun-
dant and easy to construct since they do not need be very regular, on the other hand
envelopes of suitable families of subharmonic functions are very regular and in fact
harmonic. This construction scheme, systematized as Perron method, is based on
maximum principle and it is both a basic tool and a key aspect of classical potential
theory.

In higher dimension the peculiar role of subharmonic functions is played by the
class of plurisubharmonic functions. As the suitable maximum principle holds also
for the complex Monge-Ampère operator, Perron method has been successfully ap-
plied to construct solutions for the complex homogeneous Monge-Ampère equation
satisfying boundary conditions. It turns out that the appropriate notion of maximal-
ity among plurisubharmonic functions is equivalent to be solution of (1.1) at least
in a generalized sense. Here the analogy with the complex one dimensional case
breaks down. The highly non linearity and the non ellipticity nature of equation
(1.1) forces its solutions to be not regular even for very regular initial data. For in-
stance, while positive results regarding the existence of solutions to the Dirichlet
problem for (1.1) have been known since long time (see [6] for instance) it has been
soon realized that it has at most C 1,1 solutions even for the unit ball in Cn with real
analytic datum on the boundary (see [4, 19]).

Potential theory in one complex variable plays a fundamental role in many areas
of function theory, in particular in the uniformization theory of Riemann surfaces.
For instance one singles out hyperbolic surfaces by the existence of Green func-
tions, which are bounded above harmonic functions with a logarithmic singularity
at one point and may be constructed by Perron method. It is natural to try and repeat
the scheme in higher dimension replacing subharmonic functions with plurisubhar-
monic functions, their natural counterpart in higher dimension in order to define a
natural generalization of Green function: the pluricomplex Green function. For in-
stance for a domain D⊂Cn, the pluricomplex Green function with logarithmic pole
z0 ∈ D is defined by
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GD(z0,z) =

sup{u(z) | u ∈ PSH(D),u < 0, limsup
z→z0

[u(z)− log‖z− z0‖]<+∞}.

This is in complete analogy with the definition of Green function in complex di-
mension one and in fact GD(z0,z) satisfies (1.1) on D\{z0} (in the weak sense). It
is known that pluricomplex Green functions exist for any hyperconvex domain in
Cn (see [17]). On the other hand pluricomplex Green function does not satisfy basic
properties which one may expect (and desire) to hold. For instance, even for a real
analytic bounded strongly pseudoconvex domain D, the pluricomplex Green func-
tion GD(z0,z) need not be of class C 2 on D\{z0}, in general it fails to be symmetric,
i.e., GD(w,z) 6= GD(z,w), and one cannot even expect that GD(z0,z) is subharmonic
in z0 ([3]).

There are several layers of understanding for the lack of regularity of solutions
of complex homogeneous Monge-Ampère equation. The first is the most obvious
one: non regularity as “defect of differentiability” and this motivates the need of
understanding the equation in the weak sense. A second aspect is that non regularity
is coupled with – and in many cases caused by – an excess or, rather, non constancy
of degeneracy. More precisely, for a function u being solution of (1.1) is equivalent
to the degeneracy of the form ddcu, which is the same to ask that ddcu has non
trivial annihilator. In general the rank of the annihilator of ddcu for a solution of
(1.1) need not be the smallest possible (i.e., one) or constant. In some sense, this is
a geometric aspect of the non regular behavior of (1.1).

The existence of regular solutions for the complex homogeneous Monge-Ampère
equation with the least possible degeneracy defines a reach geometry: There exists a
foliation in complex curves of the domain of existence of the solution such that the
restriction of the solution to one of the leaf is harmonic. This geometric byproduct
of existence of well behaved solutions, known as Monge-Ampère foliation, was ex-
plicitly studied for the first time by Bedford and Kalka [5]. Starting with the work
of Stoll [52] (see [13] and [56] for alternative proofs), many of these ideas were ex-
ploited in questions of classification and characterization of special complex man-
ifolds: See, for instance, [39, 40, 57, 28] for applications to the classification of
circular domains and their generalizations and [47, 33, 53, 24, 14, 45] for the study
of complexifications of Riemannian manifolds.

In fact, whenever such regular solutions exist, its construction starts with the de-
termination of a suitable foliations. This is a well known fact, used also to provide
examples of solutions with bad behaviors. In this regard, we mention the early ex-
ample [2] and the most recent work by Lempert and Vivas [34] on the non-existence
of regular geodesics joining points in the space of Kähler metrics (see also [10], in
this volume).

On the other hand, in the seminal work of Lempert on convex domains ([31]), the
existence of regular pluricomplex Green functions is related to a very good behav-
ior of the Kobayashi metric for such domains, namely to the existence of a smooth
foliation by Kobayashi extremal disks through any given point (see also for similar
construction for pluri-Poisson kernels [11, 12]). In this case, the existence of a foli-
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ation by extremal disks is based on the equivalence between the notions of extremal
and stationary disks, the latter being characterized as solution of manageable differ-
ential problem. Such link between Monge-Ampère equation, Kobayashi metric and
stationary disks determines connections between many different problems and ways
to approach them from various points of view.

Within this framework, we will report on two lines of research.
Following and simplifying ideas that go back to papers of Lempert for strictly

convex domains ([32]) and of Bland-Duchamp for domains that are small deforma-
tions of the unit ball ([7, 8, 9]), we discuss the construction of (complete) modular
data for a large family of complex manifolds, which carry regular pluricomplex
Green functions. This class of manifolds naturally includes all smoothly bounded,
strictly linearly convex domains and all smoothly bounded, strongly pseudoconvex
circular domains of Cn.

The modular data for this class of manifolds and, even more, the methods used,
naturally suggest to ask similar questions for almost complex manifolds and to in-
vestigate the possibility of defining a useful notion of almost complex pluricomplex
Green function. The generality of this setting poses new difficulties. The abundance
of J-holomorphic curves, which is an advantage in many geometrical considera-
tions, turns into a drawback when considering objects such as the Kobayashi met-
ric. In particular, the notions of stationary and extremal disks are in general different
([21]). As for the construction of Green pluripotentials, it is necessary to cope with
the behavior of plurisubharmonic functions in the non-integrable case, which may
be is rather unexpected even for arbitrarily small deformations of the standard com-
plex structure. Finally, the kernel distribution of (the natural candidate of) almost-
complex Monge-Ampère operator, even if appropriate non-degenericity conditions
are assumed, in principle are neither integrable, nor J-invariant. All this is in clear
contrast with the classical setting and hence it cannot be expected that, for com-
pletely arbitrary non-integrable structures, one can reproduce the whole pattern of
fruitful properties relating regular solutions of complex Monge-Ampère equations,
foliations in disks and Kobayashi metric.

Nevertheless it is possible to determine sufficient conditions on the almost com-
plex structure, which ensure the existence of almost complex Green pluripotential
and the equality between the two notions of stationary disks and of extremal disks.
The class of such structures is very large in many regards, in fact determined by a
finite set of conditions (it is finite-codimensional) in an infinite dimensional space.

2 Domains of circular type and Monge-Ampère foliations

2.1 Circular domains and domains of circular type

Let D⊂Cn be a complete circular domain, i.e., such that z∈D if and only if λ z∈D
for any λ ∈C with |λ | ≤ 1. For simplicity, let us assume that it is smoothly bounded
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and strictly pseudoconvex. It is well known that any such domain D is completely
determined by its Minkowski functional µD, which is the real-valued function

µD : Cn −→ R≥0 , µD(z) =


0 if z = 0

1
tz

if z 6= 0 ,

where tz = sup{ t ∈ R : tz ∈ D }. The square of the Minkowski functional

ρD : D−→ R≥0 , ρD(z) = µD(z)2

is called Monge-Ampère exhaustion of D and satisfies some crucial properties. It
can be considered as the modeling example of the Monge-Ampère exhaustions of
the class of domains that we are going to analyze in the sequel.

One of the very first properties that can be inferred just from the definitions is the
fact that ρD is always a map of the form

ρD(z) = GD(z)‖z‖2 ,

where GD : D \ {0} −→ R is a bounded function of class C ∞, which is constant
on each complex line through the origin and hence identifiable with a C ∞ map
GD : CPn−1 −→ R, defined on the complex projective space CPn−1. It turns out
that the exhaustion ρD provides full biholomorphic data for the moduli space of
complete circular domains in the sense described in the following theorem.

Theorem 2.1 [46] Two bounded circular domains D1, D2 ⊂Cn are biholomorphic
if and only if their Monge-Ampère exhaustions are such that

ρD1 = ρD2 ◦A

for some A∈GLn(C). Moreover, if we denote by D the set of biholomorphic classes
of smoothly bounded complete circular domains, D+ ⊂D the subset of biholomor-
phic classes of strictly pseudoconvex domains, by ωFS the Fubini-Study 2-form of
CPn−1, then

D ' [ωFS]/Aut(CPn−1) and D+ ' [ωFS]
+/Aut(CPn−1) ,

where we denote by [ωFS] the cohomology class of ωFS in H1,1(CPn−1) and
[ωFS]

+ = {1-forms ω ∈ [ωFS] that are positive definite}.

The description of the moduli spaces D and D+, given in this theorem, can be
considered as a consequence of the following observation. Consider the unit ball
Bn = { ‖z‖2 < 1 } and a complete circular domain D = { ρD(z) = µ2

D(z)< 1} with
Monge-Ampère exhaustion ρD(z) = GD(z)‖z‖2. Both domains are blow downs of
diffeomorphic disk bundles over CPn−1 (Figure 1), which have

· “same” complex structure along fibers,
· “same” holomorphic bundle H normal to the fibers;
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· “different” complex structures along H .
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Figure 1

The differences between the complex structures on the normal holomorphic bundles
H of Bn and D can be completely recovered from the map GD : CPn−1 −→ R.
This fact can be used to prove that the biholomorphic class of [D] is completely
determined (modulo actions of elements in Aut(CPn−1)) by the (1,1)-form ω =
ωFS +∂ ∂̄GD and

[D] = [Bn] if and only if ω = ωFS

of course, up to actions of elements in Aut(CPn−1).

Let us now consider the so-called domains of circular type, which are our main
object of study for the first segment of these notes.

Before going into details, let us say a few words about notation. Since later we
will have to deal with generalizations concerning almost complex manifolds it is
useful to adopt notations that can be easily extended to the cases of non-integrable
almost complex structures. With this purpose in mind, we recall that the familiar
∂ - and ∂ -operators are related with the differential geometric operators d and dc =
−J∗ ◦d ◦ J∗ by the identities

d = ∂ +∂ , dc = i(∂ −∂ ) .

and that ddc =−dcd and ddcu = 2i∂∂u for any C 2 function u : U ⊂M −→ R.

Let us now begin introducing the notion of manifolds of circular type. Here we
give a definition which is slightly different from the original one, but nonetheless
equivalent, as it follows from the results in [40].
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Definition 2.2 ([40]) A pair (M,τ), formed by a complex manifold (M,J) of di-
mension n and a real valued function τ : M −→ [0,1) , is called (bounded) manifold
of circular type with center xo if

i) τ : M −→ [0,1) is an exhaustion of M with {τ = 0} = {xo} and satisfies the
regularity conditions:

a) τ ∈ C 0(M)∩C ∞({τ > 0});
b) τ|{τ>0} extends smoothly over the blow up M̃ at xo of M;

ii)


2i∂∂τ = ddcτ > 0 ,

2i∂∂ logτ = ddc logτ ≥ 0 ,

(ddc logτ)n ≡ 0 (Monge-Ampère Equation) ;

iii)in some (hence any) system of complex coordinates z = (zi) centered at xo, the
function τ has a logarithmic singularity at xo, i.e.

logτ(z) = log‖z‖+O(1) .

A domain of circular type with center xo is a pair (D,τ), given a relatively com-
pact domain D ⊂ M of a complex manifold M with smooth boundary, and an ex-
haustion τ : D −→ [0,1] smooth up to the boundary, such that (D,τ) is a manifold
of circular type, i.e., satisfying the above conditions (i), (ii), (iii).

The simplest example of a domain of circular type is the unit ball Bn ⊂ Cn, en-
dowed with the standard exhaustion τo(z) = ‖z‖2. In fact, any pair (D,ρD), formed
by a strictly pseudoconvex, smoothly bounded, complete circular domain D ⊂ Cn

and its Monge-Ampère exhaustion ρD, is a domain of circular type. To see this, it is
enough to observe that ρD is strictly plurisubharmonic and that logρD is plurisub-
harmonic, with harmonic restrictions on each (punctured) disk through the origin.
The conditions (i) and (iii) are easily seen to be satisfied.

A much larger and interesting class of examples is given by the strictly (linearly)
convex domains, whose properties, determined by the seminal work of Lempert, can
be summarized as follows.

Theorem 2.3 ([31]) Let D ⊂⊂ Cn be a smooth, bounded strictly (linearly) convex
domain and denote by δD its Kobayashi distance and, for any given xo ∈ D, by δxo

the function δxo = δD(xo, ·). Then

– δD ∈ C ∞(D×D\Diag), where we denoted by Diag = {(z,z) | z ∈ D};
– the function u = 2log(tanhδxo) is in C ∞(D \ {xo}) and it is the unique solution

of the problem
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det(uµν̄) = 0 on D\{xo},

u|∂D = 0 and u(z) = 2log‖z− xo‖+O(1) near D\{xo}.

In fact, the pair (D,τ), with τ = (tanhδxo)
2, is a domain of circular type with center

xo.

This theorem is indeed the result of a deep proof of geometric nature, which can
be outlined as follows. Let xo be a point of a smoothly bounded, strictly (linearly)
convex domain D⊂M and v a tangent vector in TxoD of unit length w.r.t. to the in-
finitesimal Kobayashi metric κD. Lempert proved that there exists a unique complex
geodesic

fv : ∆ −→ D , ∆ = { |ζ |< 1 } ⊂ C ,

(i.e., a holomorphic map which is also an isometry between ∆ , with its standard
hyperbolic metric, and ∆ (v) = fv(∆) ⊂ D, endowed with metric induced by the
Kobayashi metric of D) such that

fv(0) = xo , f ′v(0) = v .

He also shows that the complex geodesic fv depends smoothly on the vector v and
that the images of the punctured disk ∆ \{0},

fv(∆ \{0}) , v ∈ TxoM ,

determine a smooth foliation of the punctured domain D\{xo}.
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Using this and the fact that a holomorphic disc fv is an isometry between (∆ \
{0},δ∆ ) and ( fv(∆ \{0}),δD)⊂ (D,δD), one gets that the map

u = 2log(tanhδxo) : D\{xo} −→ R

satisfies the equality
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u( fv(ζ )) = log |ζ |

for any complex geodesic fv. In particular, τ( fv) = |ζ |2. From these information,
all other claims of the statement can be derived.

We remark that Lempert’s result on existence of the foliation by extremal disks
through a given point is based on the equivalence (for strictly convex domains)
between the notions of extremal disks and of stationary disks, these being precisely
the disks that realize the stationarity condition for the appropriate functional on
holomorphic disks. We will come back to this point later on.

The problem of determining moduli for (pointed) strictly convex domains was
addressed – and to a large extent solved – by Lempert, Bland and Duchamp in
[32, 8, 7, 9].

The results in [32] can be summarized as follows. In that paper, it is proved
that, for a given strictly convex domain D ⊂ Cn with a distinguished point xo ∈
D and for any given Kobayashi extremal disk fv : ∆ −→ D with fv(0) = xo and
f ′v(0) = v, there exists a special set of coordinates, defined on a neighborhood U of
fv(∂∆) ⊂ ∂D, in which the boundary ∂D admits a defining function r : U −→ R
of a special kind, called “normal form”. The lower order terms of such defining
functions in normal form (which can be considered as functions of the vectors v =
f ′v(0) ∈ T 10

xo D) determine biholomorphic invariants, which completely characterize
the pointed domain (D,xo) up to biholomorphic equivalences.

Bland and Duchamp’s approach is quite different. Roughly speaking, they suc-
ceeded in constructing a complete class of invariants for any pointed, strictly con-
vex domain (D,xo) (and also for any pointed domain which is a sufficiently small
deformation of the unit ball) using the Kobayashi indicatrix at xo and a suitable “de-
formation tensor”, defined on the holomorphic tangent spaces, which are normal to
the extremal disks through xo.

Lempert, Bland and Duchamp’s results provide an excellent description of the
moduli space of strictly convex domains, but they also motivate the following prob-
lems.

Problem 1. The moduli space of pointed convex domains appears to be naturally
sitting inside a larger space. Find the “right” family of domains corresponding to
such larger space.

Problem 2. The singular foliation of a circular domain by its stationary disks
through the origin is very similar to the singular foliation of a strictly convex do-
main by stationary disks through a fixed point xo. But there are also some crucial
differences between such two situation: In the latter case, any point is center of a
singular foliation, while in the former there apparently is only one natural choice for
the center, the origin. Determine an appropriate framework for “understanding” the
possible differences between the “sets of centers” of the domains admitting (singu-
lar) stationary foliations.



10 G. Patrizio and A. Spiro

In the following two sections, we are going to discuss a simplification and a
generalization of Bland and Duchamp’s invariants, which brings to the following:

a) the manifolds of circular type determine a moduli space, which naturally includes
the moduli of strictly convex domains and on which Bland and Duchamp’s invari-
ants are in bijective correspondence;

b) this new construction of Bland and Duchamp’s invariants determine a new set-
ting, in which the sets of special points can be studied in a systematic way.

2.2 Homogeneous complex Monge-Ampère equation and
Monge-Ampère foliations

Let M be a complex manifold of dimension n and u : M −→R be a function of class
C ∞. In complex coordinates (z1, . . . ,zn), we have that ddcu = 2i∂∂u = 2i∑u jkdz j∧
dzk and the plurisubharmonicity of a function u is equivalent to require that ddcu =
2i∂∂u≥ 0 or, in local coordinates, that (u jk̄)≥ 0.

The complex (homogeneous) Monge-Ampère equation is the equation on u of the
form

(ddcu)n = (2i∂∂u)n = (2i)n
∂∂u∧ . . .∧∂∂u︸ ︷︷ ︸

n times

= 0 ,

i.e., in local coordinates,

det(uik̄)dz1∧ . . .∧dzn∧dz1∧ . . .∧dzn = 0
(
⇐⇒ det(u jk̄) = 0

)
.

Assume now that:

a) u is a smooth solution of a Monge-Ampère equation (that is (ddcu)n = 0);
b) u is plurisubharmonic (that is ddcu≥ 0);
c) τ = eu is strictly plurisubharmonic (that is ddcτ > 0).

We claim that (a), (b), (c) imply

(ddcu)n = 0 (by Monge-Ampère equation) and (ddcu)n−1 6= 0 , (2.1)

i.e., the rank of ddcu is exactly n− 1 at all points. In fact, at every point p, the 2-
form ddcu|p is positive along directions in the holomorphic tangent space to level
sets of u through p and ddcu|p has exactly n−1 positive eigenvalues and only one
zero eigenvalue.

Since it is useful for future developments, we give here some details of the proof.
First of all, we observe that, by definitions,

e2uddcu = τ
2ddc logτ = τddc

τ−dτ ∧dc
τ (2.2)
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and hence

(e2u)n(ddcu)n = τ
2n(ddc logτ)n = τ

n(ddc
τ)n−nτ

n−1(ddc
τ)n−1∧dτ ∧dc

τ .

This implies that

(ddcu)n = 0 if and only if τ(ddc
τ)n = n(ddc

τ)n−1∧dτ ∧dc
τ

or, equivalently,

det(uik) = 0 if and only if τ =−∑
ν ,µ

τν τ
νµ

τµ , (τνµ)
def
=(τρσ )

−1 . (2.3)

Assume now that u satisfies the Monge-Ampère equation and consider the vector
field Z in T 1,0(M \{xo}), determined by the condition

− i
2

ddc
τ(Z, ·) = ∂∂τ(Z, ·) = ∂τ . (2.4)

Such vector field necessarily exists and is unique, because by assumptions the 2-
form ddcτ is non-degenerate (in fact, a Kähler metric). In coordinates, the vector
fields Z is of the form

Z = ∑
µ,ν

τν τ
νµ ∂

∂ zµ
. (2.5)

From (2.5), (2.4) and (2.3), it follows that

∂∂τ(Z,Z) = ∂τ(Z) = τ ( and hence also ∂τ(Z) = τ ) . (2.6)

Moreover, decomposing an arbitrary (1,0)-vector field V into a sum of the form

V = λZ +W ,

where W is a (1,0)-vector field W tangent to the level sets {τ = const.} (and hence
such that dτ(W ) = 0), using (2.2) and (2.6), we get

e2uddcu(V,V ) = |λ |2τddcτ(Z,Z)+2Re(λτddcτ(Z,W ))+ τddcτ(W,W )

− (dτ ∧dcτ)(λZ +W,λZ +W )

= 2i|λ |2τ2 +2Re(τdτ(W ))+ τddcτ(W,W )−2i|λ |2τ2

= τddcτ(W,W )≥ 0 ,

because the level sets of u coincide with the level sets of τ and these are strictly
pseudoconvex. It follows that ddcu ≥ 0 is positively semi-definite and Annddcu =
CZ on M \{xo}.
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From these observations, we have that, for any u : M −→ R satisfying the above
conditions (a), (b) and (c), the family of complex lines

Z = { Zx ⊂ TxM , x 6= xo : Zx is the kernel of ddcu|x } (2.7)

is actually a complex distribution of rank 1 with the following crucial properties:

– it is integrable (in fact, it coincides with Annddcu and ddcu is a closed 2-form);
– its integral leaves are holomorphic curves (in fact, ddcu is a (1,1)-form).

The foliation F of the integral leaves of Z is called Monge-Ampère foliation asso-
ciated with u (or τ = eu).

We point out that there exists a very simple criterion for determining whether a
holomorphic curve is part of a leaf of F : It suffices to observe that the image L(∆)
of a holomorphic curve L : ∆ −→M is contained in an integral leaf of Z if and only
if u◦L : ∆ −→ R is a harmonic function.

Various properties of the domains of circular type follows from the above condi-
tions (a), (b), (c). We summarize them in the next theorem and we refer to [40, 41]
for details and proofs.

Theorem 2.4 Let (M,τ) be a manifold of circular type with center xo and denote
by πxo : M̃−→M and π0 : B̃n −→Bn the blow-ups of M and of the unit ball Bn ⊂Cn

at xo and 0, respectively.
There exists a diffeomorphism Ψ : B̃n −→ M̃ such that, for any v∈ S2n−1 ⊂ T0Cn,

the map
fv : ∆ −→M , fv(ζ ) = πxo

(
Ψ(π−1

0 (ζ v))
)

is such that

a) it is proper, one-to-one and holomorphic;
b) its image fv(∆) is (the closure of) a leaf of the Monge-Ampère foliation on M \
{xo} determined by τ;

c) it is the unique complex geodesic for the Kobayashi metric of M, passing through
xo and tangent to the vector v ∈ TxoM ' Cn.

Moreover, the map Ψ satisfies the additional property

(τ ◦Ψ)|B̃n\π−1
0 (0) = ‖ · ‖

2 ( ‖ · ‖= Euclidean norm of Cn ) .

In Figure 3, we try to schematize the properties of the map Ψ : B̃n −→ M̃ de-
scribed in the above theorem
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Rather than provide a complete argument, we sketch here the circle of ideas
underlying these results. Under the assumptions of the theorem, there exist complex
coordinates on a neighborhood U ⊂M of xo and centered at xo ' 0Cn , in which τ

assumes of the form
τ(z) = h(z)‖z‖2 +o(‖z‖2) (2.8)

for some h : S2n−1 ⊂ TxoM ' Cn −→ R∗ of class C ∞ and such that

h(λ z) = h(z) for any λ ∈ C with |λ |= 1 .

Given the complex gradient Z = ∑µ,ν τν τνµ ∂

∂ zµ of τ on U \{0}, consider the real
vector fields

Y =
1√
τ

(
Z +Z

)
, W = i

(
Z−Z

)
,

which determine the real and imaginary parts of the flow of of Z. By construction,
Y and W are generators over R for the distribution (2.7), which we know it is inte-
grable. Actually, using the Monge-Ampère equation satisfied by u = logτ , one can
directly check that [Y,W ] = 0.

Now, using (2.8) and once again the Monge-Ampère equation, one can show that
near xo the vector field Z is of the form

Z = ∑
µ,ν

[zµ +Gµ(z)]
∂

∂ zµ
for some Gµ(z) = O(‖z‖2) , (2.9)

so that the vector field Z̃ on (∆ε \{0})× (Bn
r \{0}) with ∆ε = { ζ ∈ C : |ζ |< ε },

for a fixed r > 1 and ε > 0 sufficiently small, defined by
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Z̃(λ ,z) = ∑
µ,ν

τν(λ z)τνµ(λ z)
∂

∂ zµ
,

extends in fact of class C ∞ on the whole open set Ṽ = ∆ε ×Bn
r .

From previous remarks, the C ∞ vector fields

Ỹ =
1√
τ

(
Z̃ + Z̃

)
, W̃ = i

(
Z̃− Z̃

)
satisfy

[Ỹ ,W̃ ] = 0

at all points of
Ṽ \ ({0}×Bn

r ∪∆ε ×{0Cn})

and hence, by continuity, on the entire Ṽ .
Due to this, one can integrate such vector fields and, for any v ∈ Bn

r , construct a
holomorphic map f̃v : ∆ε −→ Ṽ with f̃v(0) = (0,v) and such that

f̃v∗

(
∂

∂x

∣∣∣∣
ζ

)
= Ỹ

∣∣∣
f̃v(ζ )

for any ζ ∈ ∆ε . The collection of such holomorphic maps determine a map of class
C ∞

F̃ : ∆ε ×S2n−1 −→ Ṽ , F̃(ζ ,v) = f̃v(ζ ) .

By restriction on ∆ε ×S2n−1, where S2n−1 = { z ∈ Cn : ‖z‖= 1 } ⊂ Bn
r , and com-

posing with the natural projection onto the blow up of U ' Bn
r ,

π̃ : Ṽ = ∆ε ×Bn
r −→ B̃n

r ' Ũ , π̃(ζ ,v) = ([v],ζ v) ,

we get a smooth map

F : ∆ε ×S2n−1 −→U ⊂M , F = π ◦ F̃ |∆ε×S2n−1 .

This map extends uniquely to a smooth map F : ∆ × S2n−1 −→ M onto the whole
complex manifold M, with the following properties:

– τ(F(ζ ,v)) = |ζ |2 for any ζ 6= 0, so that F(0,v) coincides with the corresponding
point ([v],ζ v) of the singular set E = π

−1
0 (xo)' CPn−1 for any v ∈ S2n−1;

– F(λζ ,v) = F(ζ ,λ v) for any λ with |λ |= 1;
– fv = F(·,v) : ∆ −→ M̃ is a biholomorphism between ∆ and a (closure of) a leaf

of the Monge-Ampère foliation determined by u = logτ on M \{xo};
– Z̃

∣∣∣
F(ζ ,v)

= ζ f ′v(ζ ) for any v ∈ S2n−1;

– f ′v(0) =
√

h(v)v, where h denotes the function in (2.8).

The map of Theorem 2.4 is precisely the map Ψ : B̃n −→ M̃ defined by
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Ψ |E = IdE and Ψ([v],ζ v) = F (ζ ,v) = fv(ζ )

for any ([v],ζ v) ∈ B̃n \E with v ∈ S2n−1. Using the above construction, one can
directly check that Ψ is smooth.

It also turns out that the subset of TxoM defined by

Ixo = { v ∈ TxoM ' Cn : h(v)‖v‖2 < 1 }

coincides with the Kobayashi indicatrix of M at xo. In fact, this is a consequence of
the following proposition ([41]).

Proposition 2.5 For any v ∈ S2n−1 ⊂ Cn ' TxoM, the holomorphic disk fv : ∆ −→
M is a Kobayashi extremal disk of M in the direction of v. This extremal disk is
unique.

Proof. To prove the first claim, we need to show that for any holomorphic map
g : ∆ −→M with g(0) = xo and g′(0) = t v for some t ∈ R>0, we have that

t = ‖g′(0)‖ ≤ ‖ f ′v(0)‖=
√

h(v) .

For any such disk, consider the function

` : ∆ −→ R , `(ζ ) = logτ(g(ζ )) .

It is subharmonic with |`(ζ )| ≤ 0 at all points and

|`(ζ )− log(|ζ |)2|= o(|z|) .

This means that log(|ζ |2) is a harmonic majorant for `(ζ ) and that

τ(g(ζ ))≤ |ζ |2 = τ ( fv(ζ )) . (2.10)

One can also check that the map

τ̃ = τ ◦πxo : M̃ \π
−1
xo (xo)−→ R

extends smoothly to a function τ̃ : M̃ −→ R defined over the whole blow up M̃ and
that the limit of τµν̄(g(ζ )), for ζ tending to 0, exists and its value

lim
ζ→0

τ(g(ζ ))
ζ ζ̄

= τ̃µν([g′(0)],0)vµ vν = τ̃µν([v],0)vµ vν

depends only on the element [v] ∈ E = CPn−1.
From (2.10), we have that τ(g(ζ )) = r(ζ )|ζ |2 for some smooth function 0≤ r≤

1 and that

τ(g(ζ ))
ζ ζ̄

= τµν̄(g(ζ ))g′µ(ζ )g′ν(ζ ) = r
ζ ζ̄
(ζ )|ζ |2 + rζ (ζ )ζ + r

ζ̄
(ζ )ζ + r(ζ ) .
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All this implies that

t2
τ̃µν([v],0)vµ vν = lim

ζ→0
τµν̄(g(ζ ))g′µ(ζ )g′ν(ζ ) = r(0)≤ 1 .

On the other hand, recalling that τ( fv(ζ )) = |ζ |2 and that f ′v(0) =
√

h(v)v, we have

1 = τ( fv(0))ζ ζ̄
= lim

ζ→0
τµν̄( fv(ζ )) f ′v

µ(ζ ) f ′vν(ζ ) = h(v)τ̃µν([v],0)vµ vν ,

from which it follows that

τ̃µν([v],0)vµ vν =
1

h(v)
=

1

‖ f ′v(0)‖
2 so that ‖g′(0)‖= t ≤

∥∥ f ′v(0)
∥∥ .

It now remains to check the uniqueness of such extremal disk. First of all, notice
that if g : ∆ −→M is a holomorphic disk with g(0) = xo and g′(0) = v = f ′v(0), and
r(ζ )≤ 1 is the function defined above, such that τ(g(ζ )) = r(ζ )|ζ |2, then r(0) = 1.
Moreover:

a) The function logr is subharmonic. In fact

∆ logr = ∆ logτ ◦g−∆ log |ζ |2 = ∆ logτ ◦g≥ 0 .

b) The function logr is always less or equal to 0.

By Maximum Principle, conditions (a), (b) and the equality r(0) = 1 imply that
r(ζ ) = 1 and τ(g(ζ )) = |ζ |2 at all points. A little additional computation shows that
g(∆) is necessarily included in a leaf of the Monge-Ampère foliation determined by
u = logτ . Using the fact that logτ|g(∆) is harmonic, one concludes that there is only
one possibility for g, namely g = fv.

This proposition concludes our outline of the ideas behind the proof of Theorem 2.4
and the various properties of the diffeomorphism Ψ : B̃n −→ M̃. There is however
another very important information on the diffeomorphism Ψ which we want to
point out.

Assume that M is a smoothly bounded, relatively compact domain in a larger
complex manifold N and that the exhaustion τ extends smoothly up to the boundary
∂M in such a way that ddcτ > 0 also at the boundary points of M. In this case, one
can check that the map Ψ extends smoothly up to the closures of the blow-ups

Ψ : B̃n −→ M̃

and, consequently, all holomorphic disk fv : ∆ −→ M extend to smooth maps
fv : ∆ −→M. This extendability property will turn out to be important for the con-
struction of the normal forms and Bland and Duchamp’s invariants that we are going
to present in the next section.
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Furthermore, the fact that such extremal disks are smoothly attached to the
boundary determine a crucial relation between these disks and the geometry of the
boundary. It turns out that for any v ∈ S2n−1 ⊂ TxoM, the corresponding holomor-
phic disk fv : ∆ −→M is stationary, i.e., (see [31] for the original definition) there
exists a holomorphic map

f̃v : ∆ −→ T ∗M

such that

i) π̂ ◦ f̂v(ζ )= fv(ζ ) for any ζ ∈∆ , where π̂ : T ∗M−→M is the standard projection;
ii) for any ζ ∈ ∂∆ , the 1-form ζ−1 · f̂v(ζ ) ∈ (T ∗fv(z)M)10 is non-zero and belongs to

the conormal bundle of ∂M (i.e., vanishes on the tangent of ∂M).

In fact, since the restrictions of u on the leaves of the Monge-Ampère equation are
harmonic, one can immediately check that, for any given disk fv : ∆ −→ M, the
required map f̃v : ∆ −→ (T ∗fv(z)M)10 is given by

f̃v(ζ ) = ζ ∂u| fv(ζ ) .

We conclude this section with the following result by W. Stoll ([52]; see also the
alternative proofs in [13, 56]), which was essentially one of the starting points of
the geometrical applications of the theory of Monge-Ampère foliation theory.

Theorem 2.6 (Stoll) Let M be a complex manifold complex manifold of dimension
n. Then there exists a C ∞ exhaustion τ : M→ [0,1) such that

(1) ddc
τ > 0 on M (2) (ddc logτ)n = 0 on M \{τ = 0}

if and only if there exists a biholomorphic map F : M→ Bn = {Z ∈ Cn | ‖Z‖2 < 1}
with τ(F(z)) = ‖z‖2

Two key remarks allow to prove Stoll’s theorem using Theorem 2.4:

i) the minimal set {τ = 0} of τ reduces to a singleton {xo} so that (M,τ) is a
manifold of circular type with center xo;

ii) the map Φ :Bn−→M, defined by requiring that the following diagram commutes
(here π0, πxo are blow down maps and Ψ : B̃n −→ M̃ is the map given in Theorem
2.4),

B̃n M̃

Bn M

Ψ

Φ

π0 πxo

-

? ?
-

(2.11)

is a smooth diffeomorphism (even at the origin!).
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To prove (i), one has first to observe that, as consequence of a result of Harvey
and Wells [26], the level set {τ = 0} is totally real, compact and discrete (and hence
finite). Then the conclusion follows by an argument of Morse theory: M is connected
and retracts onto {τ = 0} along the flow of the vector field Y , which turns out to be
the gradient of

√
τ with respect to the Kähler metric g determined by the Kähler

form ddcτ .
Property (ii) follows from the fact that it is possible to show that Φ is a

reparametrization of the exponential map at xo of the metric g and it is therefore
smooth at xo.

By a classical result of Hartogs on series of homogeneous polynomials, from the
fact that Φ is smooth and holomorphic along each disk through the origin, it follows
that Φ is holomorphic. The fact that τ(Φ(z)) = ‖z‖2 is a consequence of Theorem
2.4 and the commutativity of the diagram (2.11).

3 Normal forms and deformations of CR structures

3.1 The normal forms of domains of circular type

In this section we constantly use the following notation:

– Bn is the unit ball of Cn, centered at the origin;
– Jst is the standard complex structure of Cn;
– π : B̃n −→ Bn is the blow up of Bn at the origin;
– τo : Bn −→R≥0 is the standard Monge-Ampère exhaustion of Bn, i.e., τo = ‖·‖2;
– uo : Bn −→ R≥0 is the function uo = logτ2

o .

We will also denote by Z =
⋃

x∈Bn\{0}Zx and H =
⋃

x∈Bn\{0}Ux the distribu-
tions on Bn \{0}, determined by the following subspaces of tangent spaces:

Zx = 0-eigenspace of the matrix (uo jk)
∣∣∣
x
⊂ TxBn , (3.1)

Hx = orthogonal complement of Zx in TxBn ( w.r.t Euclidean metric ) . (3.2)

Notice that, for any point x ∈ Bn \{0}, the space Zx is nothing else but the tangent
space of the straight complex lines of Cn, passing through x and 0 and that the
(closures of) integral leaves of Z are the straight disks through the origin. The
distributions Z and H will be called radial and normal distributions, respectively.
They are both smoothly extendible at all points of the blow up B̃n.

The main ingredients of this section consist of the objects introduced in the fol-
lowing definition.
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Definition 3.1 A complex structure J on B̃n is called L-complex structure if and
only if

i) the distributions Z and H are both J-invariant;
ii) J|Z = Jst|Z (i.e., J and Jst differ only for their actions on H !);
iii) there exists a smooth homotopy J(t) of complex structures, all of them satisfying

(i) and (ii), with J(0) = Jst and J(1) = J.

A complex manifold M = (Bn,J), which is the blow-down at 0 of a complex man-
ifold of the form (B̃n, J̃), for some L-complex structure J̃, is called manifold of
circular type in normal form.

The crucial property of this class of manifolds is the following:

Proposition 3.2 If M = (Bn,J) is a complex manifold, which is blow-down at 0 of
a complex manifold of the form (B̃n, J̃), for some L-complex structure J̃, the pair
(M = (Bn,J),τo) is a manifold of circular type with center xo = 0.

The proof essentially consists of checking that the exhaustion τo : Bn −→ R≥0
is strictly plurisubharmonic w. r. t. the (non-standard) complex structure J, i.e.,
ddc

Jτo > 0. Here, “dc
J” is the operator dc

J = −J ◦ d ◦ J and is in general different
from the usual operator dc =−Jst ◦d ◦ Jst = i(∂ −∂ ) determined by Jst.

Due to J-invariance, the radial and normal distributions Z , H are not only or-
thogonal w.r.t. the Euclidean metric but also w.r.t. the J-invariant 2-form ddc

Jτo.
Moreover, since J|Z = Jst|Z , we have that

ddc
Jτo|Z ×Z = ddc

τo|Z ×Z > 0 .

Therefore, what one really needs to check is that ddc
Jτo|H ×H > 0. By construction,

for any x ∈ Bn \ {0}, the subspace Hx ⊂ TxBn coincides with the J-holomorphic
tangent space of the sphere Sc = { τo = c } with c = τo(x). Indeed, it is also the J(t)-
holomorphic tangent space of S2n−1 for any complex structure J(t) of the isotopy
between Jst and J. It follows that the restriction

ddc
J(t)τo

∣∣∣
Hx×Hx

is the Levi forms of Sc at x for any complex structure J(t). On the other hand, the
distribution H |Sc ⊂ T Sc is a contact distribution (it is the standard contact dis-
tribution of Sc) and, consequently, all such Levi forms are non-degenerate. Since
ddc

J(t)τo|Hx×Hx is positively when t = 0 and the complex structure is J(0) = Jst, by

continuity, the Levi forms ddc
J(t)τo

∣∣∣
Hx×Hx

are positively defined for any t and in par-

ticular when the complex structure is J = J(1). This shows that ddc
Jτo|Hx×Hx

> 0
at all points as we needed.

By previous proposition, the manifolds “in normal form” constitute a very large
family of examples manifolds of circular type, with an exhaustion τo = ‖ · ‖ which
is particularly simple. Moreover, the key result on such manifolds is the following.
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Theorem 3.3 (Existence and uniqueness of normalizing maps) For each mani-
fold of circular type (M,J), with exhaustion τ and center xo, there exists a biholo-
morphism Φ : (M,J)−→ (Bn,J′) to a manifold in normal form (Bn,J′) with

a) Φ(xo) = 0 and τ = τo ◦Φ;
b) Φ maps the leaves of the Monge-Ampère foliation of M into the straight disks

through the origin of Bn.

Idea of how to construct normal forms
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Figure 4

Any biholomorphism Φ : (M,J) −→ (Bn,J′), satisfying the conditions (a) and
(b), is called normalizing map for the manifold M. The lifted map Φ̃ : M̃ −→ B̃n

between the blow ups at xo and Φ(xo) = 0 is nothing but the inverse

Φ̃ =Ψ
−1

of the diffeomorphism Ψ : B̃n −→ M̃, described in Theorem 2.4. The L-complex
structure J′ on Bn is constructed in such a way that the corresponding complex
structure J̃′ on the blow-up B̃n coincides with the complex structure on B̃n, obtained
by push-forwarding the complex structure J̃ of M̃ onto B̃n, i.e.,

J̃′def
=Φ∗(J̃) .

Notice also that two normalizing maps, related with the same exhaustion τ and
same center xo, differ only by their action on the leaf space of the Monge-Ampère fo-
liation. In fact, it turns out that the class N (M) of all normalizing maps, determined
by all its exhaustions of M (which might correspond to distinct centers), is naturally
parameterized by a suitable subset of Aut(Bn), which includes Aut(Bn)0 = Un. We
will discuss this point in more details in §3.3.
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3.2 Normal forms and deformations of CR structures

Let (Bn,J) be a manifold of circular type in normal form, which is blow down
of (B̃n,J) for an L-complex structure J (for simplicity, we will use the same symbol
for the two complex structures). By definitions, J is completely determined by the
restriction J|H and such restriction is uniquely determined by the corresponding J-
anti-holomorphic subbundle H 01

J ⊂H C, formed by the (−i)-eigenspaces H 01
Jx ⊂

H C
x , x ∈ B̃n of the C-linear maps Jx : H C

x −→H C
x .

If we denote by H 01 ⊂H C the Jst-anti-holomorphic subbundle, given by the
standard complex structure Jst, in almost all cases the L-complex structure J can be
recovered by the tensor field

φJ ∈ (H 01)∗⊗H 10 =
⋃

x∈B̃n

Hom(H 01
x ,H 10

x ) ,

defined by the condition

H 01
Jx = { v = w+φJ(w) , w ∈H 01 } . (3.3)

This tensor field φJ is called deformation tensor of J.
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Figure 5

We however point out that the existence of a deformation tensor φJ , associated
with a complex structure J, which satisfies only (i) and (ii) of Definition 3.1, is a
priori not always granted: It exists whenever, at any x ∈ B̃n, the natural projection

p : H C
x = H 10

x +H 01
x −→H 01

x
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determines a linear isomorphism p|H 01
Jx

: H 01
Jx

∼−→H 01
x . This is an “open” condi-

tion, meaning that if J can be represented by a deformation tensor φJ , then also the
sufficiently close complex structures J′, satisfying (i) and (ii), are representable by
deformation tensors.

However, as we will shortly see, the existence of a deformation tensor for L-
complex structures is also a “closed” condition and hence any L-complex structure
is represented by a deformation tensor.

By these remarks, we have that the biholomorphic classes of domains of circular
type are in natural correspondence with the deformation tensors of L-complex struc-
tures on B̃n. It is therefore very important to find an efficient characterization of the
tensor fields φ = (H 01)∗⊗H 10 that correspond to L-complex structures, by a suit-
able set of intrinsic properties. This problem was solved by Bland and Duchamp in
[7, 8, 9] via a suitable adaptation of the theory of deformations of complex structures
(see [30] for a classical introduction).

In those papers, Bland and Duchamp were concerned with strictly linearly con-
vex domains in Cn that are small deformations of the unit ball Bn. To any such
domain D, they associated a deformation tensor field φD on ∂Bn, which, in our
terminology, is the restriction to ∂Bn of the deformation tensor of the L-complex
structure J of a normal form.

The arguments of Bland and Duchamp extend very naturally to all cases of our
more general context and bring to the characterization of L-complex structures,
which we are now going to describe.

First of all, notice that the holomorphic and anti-holomorphic distributions H 10,
H 01 can be (locally) generated by vector fields X1,0 ∈ H1,0, Y 0,1 ∈H 0,1 such that

π̂∗
(
[X1,0,Y 0,1]

)
= [π̂∗(X1,0), π̂∗(Y 0,1)] = 0 ,

where π̂ : B̃n −→ Cn−1 is the natural fibering over the exceptional set CPn−1 of
the blow up B̃n. Let us call the vector fields of this kind holomorphic (resp. anti-
holomorphic) vector fields of H C.

Now, consider the following operators (see e.g. [30]) (here, we denote by (·)H C :
TCB̃n −→H C the natural projection, determined by the decomposition TCB̃n =
Z C+H C):

∂̄b : H0,1∗⊗H1,0→Λ
2H0,1∗⊗H1,0 ,

∂̄bα(X ,Y )def
=[X ,α(Y )]H C − [Y,α(X)]H C −α([X ,Y ]) , (3.4)

and
[·, ·] :

(
H0,1∗⊗H1,0)× (H0,1∗⊗H1,0)−→Λ

2H0,1∗⊗H1,0 ,

[α,β ](X ,Y )def
=

1
2
([α(X),β (Y )]− [α(Y ),β (X)]) (3.5)

for any pair of holomorphic and anti-holomorphic vector fields X , Y of H . We then
have the following:
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Theorem 3.4 ([42]) Let J be an L-complex structure on B̃n that admits a deforma-
tion tensor φ (in fact, J is an arbitrary L-complex structure). Then:

i) ddcτo(φ(X),Y )+ddcτo(X ,φ(Y )) = 0 for any pair X, Y of vector fields in H 0,1;
ii) ∂̄bφ + 1

2 [φ ,φ ] = 0;
iii)LZ0,1(φ) = 0.

Conversely, any tensor field φ ∈ H0,1∗⊗H1,0 that satisfies (i) - (iii) is the deforma-
tion tensor of an L-complex structure.

In addition, an L-complex structure J, associated with a deformation tensor φ , is
so that (Bn,J,τo) is a manifold of circular type if and only if

iv) ddcτo(φ(X),φ(X))< ddcτo(X̄ ,X) for any 0 6= X ∈ H0,1.

For the proof we refer directly to [42]. Here, we only point out that the conditions (i)
- (iii) comes out from the request of integrability for the almost complex structure J,
coinciding with Jst on Z and with anti-holomorphic distribution H 01

J determined
by (3.3).

Remark 3.5 Condition (iv) of previous theorem can be interpreted as an a-priori
estimate for the deformation tensor φ : It gives an “upper bound” for the norm of φ

w.r.t. to the Kähler metric ddcτo. It is this property that makes the representability
of an L-complex structure by a deformation tensor a “closed” condition and that
it implies the existence of a deformation tensor for any L-complex structure, as
previously pointed out.

Consider now a local trivialization of the line bundle π̃ : B̃n −→ CPn−1, which rep-
resents the points z = ([v],v) ∈ π̃−1(U ) of some open subset U ⊂ CPn−1 by pairs
(w,ζ ) ∈ S2n−1×∆ with

w =
v
‖v‖

∈ S2n−1 and v = ζ w .

Condition (iii) of Theorem 3.4 implies that the restriction φJ |π−1(U ) of the deforma-
tion tensor of J is of the form

φJ =
∞

∑
k=0

φ
(k)
J (w,ζ ) =

∞

∑
k=0

φ
k
J (w)ζ k ,

where each φ
(k)
J (w,ζ )

def
=φ k

J (w)ζ k is a tensor in (H 01∗⊗H 10)
∣∣
([w],ζ w)

.

One can check that the tensor fields φ (k) do not depend on the trivializations and
are well defined over B̃n. Indeed, one has a sequence {φ (k)

J } of deformation tensors
over B̃n such that the series ∑

∞
k=0 φ

(k)
J converges uniformly on compact sets to φJ .

These observations bring directly to the following corollary.

Corollary 3.6 A manifold (Bn,J) of circular type in normal form, given by the blow
down at 0 of (B̃n,J), is uniquely associated with a sequence of tensor fields φ

(k)
J in

(H 01)∗⊗H 10, 0≤ k < ∞, each of them (locally) of the form
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φ
(k)
J ([w],ζ w) = φ

k
J ([w])ζ k , w ∈ S2n−1 , ζ ∈ ∆ ,

such that the series
φJ = ∑

k≥0
φ
(k)
J (3.6)

converges uniformly on compacta and satisfies the following conditions:

i) ddcτo(φJ(X),Y )+ddcτo(X ,φJ(Y )) = 0 for anti-holomorphic X ,Y ∈ H0,1;
ii) ∂̄bφJ +

1
2 [φJ ,φJ ] = 0;

iii)ddcτo(φJ(X),φJ(X))< ddcτo(X̄ ,X) for any 0 6= X ∈ H0,1.

Conversely, any sequence of tensor fields φ
(k)
J ∈ (H 01)∗⊗H 10, 0 ≤ k < ∞, such

that (3.6)converges uniformly on compacta and satisfies (i) - (iii), determines a man-
ifold of circular type in normal form

It is important to observe that the restriction φ̃J = φJ |S2n−1(r) of a deformation tensor
φJ to a sphere

S2n−1(r) = { ([v],v) , ‖v‖= r } ⊂ B̃n , 0 < r < 1

is the deformation tensor of the CR structure (H |S2n−1(r) ,J), induced on S2n−1(r)

by the complex structure J. Vice versa, any deformation tensor φ̃J of a CR structure
of the form (H |S2n−1(r) ,J) on a sphere S2n−1(r) can be written as a Fourier series

φ̃J = ∑
k≥0

φ̃
(k) , (3.7)

whose terms are of the form

φ̃
(k)
J ([w],reiϑ ) = φ̃

k
J ([w])rkeikϑ , w ∈ S2n−1 .

From this, one can see that all deformation tensors φ̃J of such CR structures are
exactly the restrictions of the deformation tensors φJ as in (3.6). If such deformation
tensor φJ satisfies conditions (i) - (iii) of Corollary 3.6, it uniquely determines a
complex structure J which makes (B̃n,J) the blow up of a manifold of circular type
in normal form.

Summing up all these observations, we see that there exists a natural bijection
between the following two classes:

{Manifolds of circular type in normal formal
with the point 0 as distinguished center}

m{
Deformation tensors of CR-structures on S2n−1(r)

satisfying suitable (explicit) conditions}



3 Normal forms and deformations of CR structures 25

As we already mentioned, the Fourier developments of the tensors φ̃J , which char-
acterize the CR structures of the form (H |S2n−1(r) ,J) on S2n−1 were first considered
by Bland and Duchamp in [8, 9] in case of small deformations of the standard CR
structure. They managed to prove that they can be always realized as the CR struc-
tures of boundaries of bounded domains in Cn.

3.3 Parameterizations of normalizing maps

For a given manifold of circular type (M,J) (considered without a distinguished
exhaustion τ), there are in general many distinct normalizing map

Φ : M −→ Bn .

The class N (M) of all such normalizing maps is an important biholomorphic in-
variant of the manifolds of circular type. Let us see in more details how such class
N (M) can be studied.

Let us first try to understand the structure of the subclass N (M)xo ⊂ N (M),
consisting of the normalizing maps that send a fixed center xo into the center 0 of its
normal form (Bn,J′). For this we need to introduced the notion of “special frames”.
Let xo ∈ M be the fixed center determined by a given Monge-Ampère exhaustion
τ : M−→R≥0 and κ = κxo : TxoM =Cn −→R≥0 the infinitesimal Kobayashi metric
of M at xo. Let also I ⊂ TxoM be the Kobayashi indicatrix at xo, that is

I = { v ∈ TxoM ' Cn : κxo(v)< 1 } .

Recall that I is a circular domain of TxoM ' Cn and that κ coincides with the
Minkowski functional of I. We call special frame at xo any linear frame (e0,e1, . . . ,
en−1) for TxoM such that:

i) e0 ∈ ∂ I;
ii) (e1, . . . ,en−1) is a collection of vectors in the tangent space

Te0(∂ I)⊂ Te0(TxoM) = TxoM ' Cn ,

that constitutes a linear frame for the holomorphic tangent space of ∂ I at e0,
which is unitary w.r.t. the Levi form determined by the defining function ρ =
κ2−1 of I.

In [42], we proved the existence of a natural one-to-one correspondence between
N (M)xo and the set Pxo of all special frames at xo. More precisely, given a fixed
frame uo = (eo

0, . . .e
o
n−1) ∈ Pxo and a normalizing map Φo ∈N (M)xo , the new basis

of TxoM defined by

uΦ =
(
e0, . . . ,en−1) with ei = (Φ−1 ◦Φo)∗(eo

i
)
, Φ ∈N (M)xo ,
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is also a special frame and the correspondence

ıxo : Nxo(M)−→ Pxo , ı(Φ) = uφ

is a bijection.

Therefore, for studying the whole class N (M) of normalizing maps, it is conve-
nient to consider the collection of special frames

P(M) =
⋃

x ∈M that
are centers w.r.t some τ

Px ,

which we call pseudo-bundle of special frames. We stress the fact that P(M) is
not expected to be a manifold – its geometric properties strongly depend on the
geometry of the set of centers of M. However, it turns out that when M is a strictly
linearly convex domain of Cn, the pseudo-bundle P(M) coincides with the unitary
frame bundle of the complex Finsler metric, given by the infinitesimal Kobayashi
metric κ (for definitions and properties of unitary frame bundles of complex Finsler
manifolds, see e.g. [50]).

The previously defined correspondence between normalizing maps and special
frames determines a natural bijection

N (M)
∼−→ P(M) .

Notice also that, if we identify M with one of its normal form (Bn,J), one can
construct a diffeomorphism between the collection Pxo of all special frames at a
fixed center xo ∈ Bn and the subgroup Un = Aut0(Bn,Jst) of the automorphisms of
(Bn,Jst) fixing the origin. Such correspondence brings to an identification between
P(M) and a suitable subset of Aut(Bn,Jst), which reveals to be a true diffeomor-
phism

N (M)
∼−→ Aut(Bn,Jst)

when M is a strictly linearly convex domain of Cn.

3.4 Some geometrical interpretations and applications

Let M = (Bn,J,τo) be a manifold of circular type in normal form, endowed with
the standard exhaustion τo = ‖ · ‖2. Let also φJ = ∑

∞
k=0 φ

(k)
J be the corresponding

deformation tensor and I ⊂ T0Bn = Cn the Kobayashi indicatrix at the center xo =
0. Notice that, if we denote by µ = κ2 given by the square of the infinitesimal
Kobayashi metric κ of (Bn,J) at 0, the pair (I,µ) is a domain of circular type in
T0Bn = Cn – in fact, I is a circular domain and its Minkowski functional is κ!
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One can prove the following.

Theorem 3.7

i) The 0-th order component φ
(0)
J of φJ coincides with the deformation tensor of the

normal form of (I,µ).
ii) The difference φJ−φ

(0)
J vanishes identically if and only if M is biholomorphic to

the circular domain I.

An application of this and all previous discussion is given by the following general-
izations of results of Leung, Patrizio and P. M. Wong and for strictly convex domains
and of Abate and Patrizio for Kähler-Finsler manifolds ([35, 1]). In the next state-
ment, given a manifold of circular type (M,τ) with center xo and a real number
0 < r < 1, we use the notation Mxo,r = { x ∈M : τ(x)< r } for any 0 < r < 1.

Theorem 3.8

1) A manifold of circular type (M,τ) is biholomorphic to a circular domain if and
only if the following condition holds:

(?) there exists two distinct values r1,r2 ∈ (0,1) such that Mxo,r1 is biholomorphic
to Mxo,r2 .

2) A complex manifold (M,J) is biholomorphic to the standard unit ball (Bn,Jst) if
and only if it admits at least two distinct structures of manifold of circular type
(M,τ), (M,τ ′), relative to two distinct centers xo 6= x′o, for which condition (?)
holds.

3.5 Remarks and Questions

Here are some open question, which we consider interesting and worth of inves-
tigations.

i) Find geometric interpretations of (possibly all) terms of the expansion in Fourier
series φJ = ∑

∞
k=0 φ

(k)
J of the deformation tensor of a manifold of circular type in

normal form.
ii) Using modular data (in practice, using possible expression for the deformation

tensors in normal forms), construct explicit examples of manifolds of circular
type with prescribed properties, e.g.,

– with exactly one center or with a discrete set of centers (if there are any);
– with an open set of centers:
– not embeddable in Cn (if there exist)



28 G. Patrizio and A. Spiro

iii) Find conditions on the deformation tensor that characterize the domains of cir-
cular type, for which any point is a center.

We recall that P. M. Wong proved in [58] that any manifold of circular type admits
non constant bounded holomorphic functions. In fact, such manifolds are hyperbolic
and he proved that the Caratheodory metric of such manifolds is bounded below by
a multiple of the Kobayashi metric. This stimulates further research towards the
solution to the following basic question:

iv) Find conditions on modular data that characterize the manifolds of circular type
biholomorphic to some strictly linearly convex domain or just to a bounded do-
main in Cn.

4 The definition of “stationary disk” in the almost complex
setting

4.1 First definitions

From now on, our discussion will focus on the wider class of almost complex
manifolds and we will be mainly concerned with generalizations of previous results
in this larger context.

In what follows, M is always a 2n-dimensional real manifold with an almost
complex structure J, which is a tensor field of type (1,1) that gives a linear map at
any x ∈M

Jx : TxM −→ TxM such that J2
x =− IdTxM .

We recall that an almost complex structure J is called integrable if the associated
Nijenhuis tensor NJ vanishes identically. The definition of NJ is the following: It is
the tensor field of type (1,2) defined by the relation

N(X ,Y ) =
1
4
([X ,Y ]− [JX ,JY ]+ J[JX ,Y ]+ J[X ,JY ])

for any pair of vector fields X ,Y of M.
By the celebrated Newlander-Nirenberg theorem, an almost complex structure J

is integrable if and only if M admits a structure of complex manifold, i.e., if and
only if there exists an atlas of complex charts for M

ξ = (z1 = x1 + iy1, . . . ,zn = xn + iyn) : U ⊂M −→ Cn ,

such that
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J
(

∂

∂xi

)
=

∂

∂yi , J
(

∂

∂yi

)
=− ∂

∂xi

and the changes of coordinates ξ ◦η−1, η ◦ξ−1 between any two overlapping charts
of the atlas are holomorphic. In the following, the charts of such atlas will be called
systems of holomorphic coordinates.

Given a pair of almost complex manifold (M,J), (M′,J′), a map f : M −→M′ is
called (J,J′)-holomorphic (or, simply, holomorphic) if

∂ J,J′ f (v) = 0 for any v ∈ T M ,

where ∂ J,J′ f is the map

∂ J,J′ f : T M −→ T M′ , ∂ J,J′ f (v) = f∗(J v)− J′( f∗(v)) . (4.1)

Notice that ∂ J,J′ is a natural generalization of the usual ∂ -operator. In fact, when
(M,J) and (M′,J′) are complex manifolds (i.e., when J, J′ are both integrable) and

ξ =

(
xi =

zi + zi

2
,yi =

zi− zi

2i

)
, ξ

′ =

(
x′i =

z′i + z′i

2
,y′i =

z′i− z′i

2i

)

are systems of holomorphic coordinates for M and M′, respectively, the expression
of an arbitrary smooth real map f : M −→M′ is of the form

f (zi,z j) = ( f m(zi,z j), f m(zi,zn)) ,

where f m(zi,z j) and f m(zi,z j) denote the values of f (zi,z j) in the complex coordi-
nates z′m and z′m of M′. In such coordinates the (C-linear extended) map

∂ J,J′ f : TCM −→ TCM

is

∂ J,J′ f
(

∂

∂ zi

)
=−i

∂ f j

∂ zi

∂

∂ z′ j
− i

∂ f j

∂ zi
∂

∂ z′ j
− i

∂ f j

∂ zi

∂

∂ z′ j
+ i

∂ f j

∂ zi

∂

∂ z′ j
=

=−i2
∂ f j

∂ zi

∂

∂ z′ j
,

showing that ∂ J,J′ f vanishes identically if and only if the f `’s are holomorphic in
the usual sense.

In the following, when (M,J) ⊂ (Cn,Jst), we will often use the simplified nota-
tion ∂ J′ = ∂ Jst,J′ . Given an almost complex manifold (M,J), a map

f : ∆ = { |ζ |< 1 } −→ (M,J)
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is called J-holomorphic disk if it is (Jst,J)-holomorphic or, equivalently, if ∂ J f = 0.
A simple argument shows that, for an arbitrary C 1-map f : ∆ −→ (M,J), the J-
holomorphicity condition ∂ J f = 0 is equivalent to the differential equation

∂J f

(
∂

∂x

∣∣∣∣
ζ

)
= 0 for any ζ = x+ iy ∈ ∆

(see e.g. [27, 51]).

4.2 Canonical lifts of almost complex structures

When (M,J) is a (integrable) complex manifold, it is easy to define a correspond-
ing pair of natural complex structures on the tangent bundle

π̂ : T M −→M

and on the cotangent bundle

π̃ : T ∗M −→M .

In fact, any system of holomorphic coordinates ξ = (xi) can be used to locally
identify M, T M and T ∗M with open subsets of Cn, TCn = C2n and T ∗Cn = C2n,
respectively. These identifications determine integrable almost complex structures
J and J̃ on T M and T ∗M, which turn out to be independent on the choice of the
considered system of holomorphic coordinates. They are therefore naturally and
globally defined complex structures on T M and T ∗M, respectively.

When (M,J) is a (non-integrable) almost complex manifold, the notion of “sys-
tem of holomorphic coordinates” is meaningless and the above construction does
not apply. However, it is still possible to define a pair of almost complex structures
on T M and T ∗M, which depend in a canonical way on the almost complex J of M.
Such almost complex structures were introduced by Yano and Ishihara in the ’70’s
and are defined as follows (see [59]). Given a system of coordinates

ξ = (x1, . . . ,x2n) : U ⊂M −→ Rn ,

let us denote by

ξ̂ = (x1, . . . ,x2n,q1, . . . ,q2n) : π̂
−1(U )⊂ T M −→ R4n ,

ξ̃ = (x1, . . . ,x2n, p1, . . . , p2n) : π̃
−1(U )⊂ T ∗M −→ R4n ,
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the associated coordinates on T M|U and T ∗M|U , determined by the components qi

of the vectors v= qi ∂

∂xi in the basis
(

∂

∂xi

)
and by the components p j of the covectors

α = p jdx j in the basis (dxi). Let us also denote by Ji
j = Ji

j(x) the components of the
almost complex structure J = Ji

j
∂

∂xi ⊗dx j.

The canonical lifts of J on T M and T ∗M are the almost complex structures J on
T M and J̃ on T ∗M, defined by

J= Ja
i

∂

∂xa ⊗dxi + Ja
i

∂

∂qa ⊗dqi +qbJa
i,b

∂

∂qa ⊗dxi , (4.2)

J̃= Ja
i

∂

∂xa ⊗dxi + Ja
i

∂

∂ pi
⊗d pa +

+
1
2

pa

(
−Ja

i, j + Ja
j,i + Ja

`

(
J`i,mJm

j − J`j,mJm
i

))
∂

∂ p j
⊗dxi . (4.3)

These tensor fields can be checked to be independent on the chart (xi) and:

i) the standard projections π̂ : T ∗M −→M, π̃ : T ∗M −→M are (J,J)-holomorphic
and (J̃,J)-holomorphic, respectively;

ii) given a (J,J′)-biholomorphism f : (M,J) −→ (N,J′) between almost complex
manifolds, the tangent and cotangent maps

f∗ : T M −→ T N and f ∗ : T ∗N −→ T ∗M

are (J,J′)- and (J̃′, J̃)-holomorphic, respectively;
iii)when J is integrable, J and J̃ coincide with above described integrable complex

structures of T M and T ∗M, respectively.

In order to better understand the property (iii) and see the precise relation between
the almost complex structures J and J̃ with their analogues of the integrable case,
it is convenient to rewrite them in (non-holomorphic) complex coordinates, i.e., in
complex coordinates of the form

(zA) = (za = xa + ixa+n,za = za = xa− ixa+n) .

If (qA) = (qa,qa) and (pA) = (pa, pa
def
= pa) are the complex components of real

vector fields and real 1-forms

X = qa ∂

∂ za +qa ∂

∂ za ∈ T M , ω = padza + padza ∈ T ∗M ,

the canonical lifts J and J̃ can re-written in the following form:

J= JA
B

(
∂

∂ zA ⊗dzB +
∂

∂qA ⊗dqB
)
+qCJA

B,C
∂

∂qA ⊗dxB ,
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J̃= JB
A

(
∂

∂ zB ⊗dzA +
∂

∂ pA
⊗d pB

)
+

+
1
2

pC
(
−JC

A,B + JC
B,A + JC

L
(
JL

A,MJM
B − JL

B,MJM
A
)) ∂

∂ pB
⊗dzA ,

where the JA
B ’s are the components of J w.r.t. the complex vector fields

(
∂

∂ zA

)
. When

J is integrable and (z1, . . . ,zn) are holomorphic coordinates, the JA
B ’s are constant and

equal to the entries of the matrix

(
JA

B
)
=

(
iδ a

b 0
0 −iδ a

b

)
.

and J and J̃ assume the familiar expressions

J= JA
B

(
∂

∂ zA ⊗dzA +
∂

∂qA ⊗dqB
)

, J̃= JB
A

(
∂

∂ zB ⊗dzA +
∂

∂ pA
⊗d pB

)
.

4.3 Strong pseudoconvexity in the almost complex setting

The classical notions of “CR structure”, “Levi form”, “(strong) pseudoconvexity”
admit direct and simple generalizations in the context of almost complex manifolds.
Let us recall them.

Let (M,J) be an almost complex manifold and Γ ⊂ M a connected (smooth)
hypersurface. The (induced) CR structure of Γ is the pair (D ,JD ) formed by

a) the distribution D ⊂ T M defined by

D =
⋃

x∈M

Dx , Dx = { v ∈ TxΓ : Jv ∈ TxΓ } ;

b) the family JD of complex structures

JD
x : Dx −→Dx , JD

x (v) = Jx v .

A 1-form ϑ in T ∗Γ is called defining form for D if for any x ∈ Γ

kerϑx = Dx .

Notice that, for any pair of defining forms ϑ , ϑ ′ for D , there exists a nowhere
vanishing, smooth real function λ such that

ϑ
′ = λ ·ϑ . (4.4)
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In the following, we will assume that Γ is oriented, i.e., endowed with a fixed choice
of a nowhere vanishing vector field ξ ∈ TΓ \D . Clearly, Nx = Jξx is transversal to
TxΓ at all points x ∈ Γ and to be oriented in the previous sense coincide with the
usual definition. If Γ = ∂D is the boundary of a relatively compact domain D⊂M,
we will always assume that the orientating field ξ is such that the vector Nx = Jξx
is pointing outwards D for any x ∈ Γ . A defining form ϑ such that ϑ(ξ )> 0 (resp.
< 0) will be called positive (resp. negative).

Given a fixed positive defining form ϑ , the Levi form of Γ at x is the quadratic
form

Lx : Dx −→ R , Lx(v) = dϑx(v,J v) = ϑx([X (v),JX (v)]) , (4.5)

where X (v) is any smooth vector field with values in D such that X (v)
x = v. From the

last expression in (4.5), it follows immediately that if ϑ is replaced by another pos-
itive defining form, the corresponding Levi form changes only by a positive factor.

Definition 4.1 An oriented smooth hypersurface Γ ⊂M is called strongly pseudo-
convex if Lx > 0 for any x ∈ Γ . A smooth, relatively compact domain D ⊂ M is
called strongly pseudoconvex if ∂D is strongly pseudoconvex.

Many properties of classical strongly pseudoconvex domains generalize to the
case of strongly pseudoconvex domains in almost manifolds. For instance, it is
known that D ⊂ M is strongly pseudoconvex if and only if it admits a strictly J-
plurisubharmonic defining function (for the definition of J-plurisubharmonicity, see
later). For this and other basic properties of almost complex domains, we refer to
the survey [16].

4.4 Stationary disks

Let us now introduce the notion of stationary disks of almost complex strongly
pseudoconvex domains. The original definition of stationary disk is due to Lempert
[31] (see also [49]) and extended by Tumanov [54] to more general settings for sub-
manifolds in (integrable) complex manifolds. Tumanov’s definition extends directly
to the almost complex environment (see [15, 16, 22]). As before, (M,J) is an almost
complex manifold and Γ = ∂D⊂M is the oriented, smooth hypersurface, which is
the boundary of a relatively compact domain D⊂M.

Let us recall that the conormal bundle of Γ is the collection N of 1-forms at the
points of Γ defined by

N = { α ∈ T ∗x M : x ∈ Γ and TxΓ ⊂ kerα } ⊂ T ∗M|Γ .

We denote N∗ = N \{zero section}.
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Definition 4.2 Given α ≥ 1, ε > 0, a map f : ∆ → M from the closed unit disk
∆ ⊂ C into M is called C α,ε -stationary disk of D if

i) f |∆ is a J-holomorphic embedding and f (∂∆)⊂ ∂D;
ii) there exists a J̃-holomorphic maps f̃ : ∆ → T ∗M with π ◦ f̃ = f and ξ̃ ◦ f̃ in

C α,ε(∆ ,C2n) for some system of complex coordinates ξ̃ = (zi,w j), such that

ζ
−1 · f̃ (ζ ) ∈N∗ for any ζ ∈ ∂∆ . (4.6)

If f is a stationary disk, the maps f̃ that satisfy (ii) are called stationary lifts of f

In (4.6), the product “ · ” denotes the C-action on T ∗M defined by

ζ ·α = Re(ζ )α− Im(ζ )J∗α for any α ∈ T ∗M, ζ ∈ C . (4.7)

We point out that, as a consequence of the maximum principle for subharmonic
functions and of the fact that D is strongly pseudoconvex, for any disk f : ∆ −→M
satisfying (i), one has that f (∆)⊂ D and f (ζ ) ∈ ∂D if and only if ζ ∈ ∂∆ .

Remark 4.3 When J is an integrable complex structure, condition (ii) implies that
the restriction along f (∂∆) of the CR distribution of ∂D extends to a J̃-holomorphic
bundle over ∆ (' f (∆)), this being a characterizing property of the usual stationary
disks of the domains of Cn ([31]). This is one of the reasons why the previous
definition can be considered as the natural generalization of the concept of stationary
disk in the almost complex setting.

5 Almost complex domains of circular type

5.1 Looking for the stationary disks of almost complex domain

In this and the next sections, D is a smooth, relatively compact, strongly pseudocon-
vex domain in an almost complex manifold (M,J) with boundary Γ = ∂D and

N∗ = N \{zero section} , where N ⊂ T ∗M|∂D conormal bundle .

We will also assume that:

– D⊂M is contained in a globally coordinatizable open subset U ⊂M or, equiv-
alently, D is a domain of M = R2n ' Cn equipped with a non-standard complex
structure J;

– D has a smooth global defining function ρ : U ⊂M −→ R, i.e.,

D = { x ∈M : ρ(x)< 0 }
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with dρx 6= 0 for any x ∈ Γ = ∂D.

Let us study the differential problem that characterizes the lifts f̃ : ∆ → T ∗M of
stationary disks of D. Consider the map

ρ̃ : R∗×T ∗M|U −→ R×T ∗M|U , ρ̃(t,α)
def
=(ρ(π̃(α)),α− t ·dρπ̃(α)) . (5.1)

Notice that N∗ is a 2n-dimensional submanifold of T ∗M and that it can be identified
with the level set

{(t,α) : t 6= 0 , ρ̃(t,α) = (0R,0 T∗
π̃(α)

M
)} ⊂ R∗×T ∗M|U ,

which is a 2n-dimensional submanifold of R∗×T ∗M. Therefore, using a system of
coordinates ξ̃ = (xi, p j) on T ∗M|U , associated with coordinates ξ = (xi), we may
identify R∗×T ∗M|U with an open subset V ⊂ R4n+1 and N∗ with the level set in
V defined by

N∗ ' { (t,α) ∈ V : ρ̃
i(t,α) = 0 , 1≤ i≤ 2n+1} .

By a direct check of the rank of the Jacobian, one can see that ρ̃ = (ρ̃1, . . . , ρ̃2n+1)
is a smooth defining function for N∗.

We now consider the map r : C×V ⊂ C×R4n+1 −→ R2n+1, defined by

r(ζ , t,α)
def
=
(
ρ̃

1(t,ζ−1 ·α), . . . , ρ̃n(t,ζ−1 ·α)
)
. (5.2)

By the above identifications, we have that a disk f : ∆ → D ⊂ R2n is stationary if
and only if there exists f̃ ∈ C α,ε(∆̄ ;C2n) and λ ∈ C ε(∂∆ ;R) such that ∂ J f̃ (ζ ) = 0, ζ ∈ ∆ ,

r(ζ ,λ (ζ ), f̃ (ζ )) = 0, ζ ∈ ∂∆ ,

(5.3)

where ∂ J = ∂ Jst,J : C α(∆ ;C2n) −→ C α−1(∆ ;C2n) is the operator (4.1). Problem
(5.3) belongs to the class usually called of generalized Riemann-Hilbert problems,
for which there exists a well developed theory (see e.g. [36, 55]).

In order to study the solution space of (5.3) and its stability w.r.t. small deforma-
tions of data, one has to find explicit coordinate expressions for the operators, which
determines this problem. For this, let us fix an almost complex structure J = Jo, a
point xo ∈ D(⊂ R2n) and a vector vo ∈ TxoD ' R2n. Denote by R1, . . . , R5 the
operators

( f̃ ,λ ,µ) ∈ C α,ε(∆ ;C2n)×C ε(∂∆ ;R)×R∗ ,

which correspond to the conditions of (5.3) plus some additional conditions, which
are convenient to introduce in order to fully parameterize the solution space of the
problem:
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R1( f̃ ,λ ,µ) = ∂ Jo f̃ (J̃-holomorphicity of f̃ ) ,

R2( f̃ ,λ ,µ) = r(ζ ,λ (ζ ), f̃ (ζ )) (boundary data for f̃ ) ,

R3( f̃ ,λ ,µ) = π̃( f̃ )|ζ=0− xo (center of f = π̃ ◦ f̃ ) ,

R4( f̃ ,λ ,µ) = π̃( f̃ )∗

(
∂

∂x

∣∣∣
ζ=0

)
−µ vo (tangent vector at the center) ,

R5( f̃ ,λ ,µ) = f̃
(

π̃( f̃ )∗
(

∂

∂x

∣∣∣
1

))
−1 (normalizing condition on f̃ ) .

(5.4)

Using Hopf’s Lemma, one can check that, for any stationary disk, there exists ex-
actly one stationary lift satisfying the condition

f̃
(

π̃( f̃ )∗

(
∂

∂x

∣∣∣∣
1

))
= 1 .

Therefore, if we denote by R(Jo,xo,vo) = (R1, . . . ,R5) the operator

R(Jo,xo,vo) = (R1, . . . ,R5) : C α,ε(∆ ;C2n)×C ε(∂∆ ;R)×R∗ −→

−→ C α−1,ε(∆ ;C2n)×C ε(∂∆ ;R2n+1)×Cn×Cn×R ,

we see that there is a one-to-one correspondence between the stationary disks f :

∆ −→ D with f (0) = xo and f∗

(
∂

∂x

∣∣∣
xo

)
and the solutions to the problem

R(Jo,xo,vo)( f̃ ,λ ,µ) = 0 . (5.5)

The following is a well-known fact of Lempert’s theory of stationary disks ([31]):
If D ⊂ Cn is a strictly (linearly) convex, smoothly bounded domain, endowed with
the standard complex structure Jo = Jst, for any xo ∈ D and vo ∈ TxoD, the problem
(5.5) has a unique solution smoothly depending on data xo and vo.

Now, a similar existence and uniqueness result and a smooth dependence on
the data for the stationary disks of almost complex domains (D,J) can be proved
whenever J is small deformations of Jst in the following sense.

Consider a solution ( f̃o,λo,µo) of (5.5) and denote by

R(Jo,xo,vo; f̃o,λo,µo)

def
= Ṙ(Jo,xo,vo)|( f̃o,λo,µo)

the linearized operator at ( f̃o,λo,µo) determined by R(Jo,xo,vo). By the Implicit
Function Theorem (see e.g. [29]), when the linear operator R = R(Jo,xo,vo; f̃o,λo,µo)

is invertible, there exists a solution to the problem R(Jt ,xt ,vt )( f̃ ,λ ,µ) = 0 for any
smooth deformation (Jt ,xt ,vt) of (Jo,xo,vo) for a sufficiently small t. In this case
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dimR kerR(Jo,xo,vo; f̃o,λo,µo)
is equal to the dimension of the solutions space. This fact

motivates the following definition.

Definition 5.1 Let fo : ∆ → D be a stationary disk of (D,Jo) with xo = f (0) and

vo = f∗

(
∂

∂x

∣∣∣
ζ=0

)
. We say that ∂D is a good boundary for (Jo, fo) if there exists

a lift f̃o of fo and a function λo such that ( f̃o,λo,1) is a solution to (5.5) and the
linearized operator R=R(Jo,xo,vo; f̃o,λo,1)

is invertible.

The Implicit Function Theorem and previous remarks bring immediately to the next
proposition. In the statement, we denote by g = gi jdxi⊗ dx j a fixed Riemannian
metric on a neighborhood of D and by g∗ = gi jdxi⊗ dx j + gi jd pi⊗ d p j the corre-
sponding Riemannian metric on T ∗M. We also set

‖J− J′‖(1)
D

def
= sup

x∈D,v∈T (T ∗x M)

‖J(v)−J′(v)‖g∗

‖v‖g
, (5.6)

where ‖ ·‖g and ‖ ·‖g∗ are the norm functions determined by g and g∗. The topology
determined by the norm ‖ · ‖(1)

D
is clearly independent on the choice of g.

Proposition 5.2 Let fo : ∆ →D be a stationary disk of D⊂ (M,Jo) with xo = fo(0)

and vo = fo∗

(
∂

∂x

∣∣∣
ζ=0

)
. Assume also that ∂D is a good boundary for (Jo, fo).

Then, there exists neighborhoods V ⊂ D, W ⊂ T D of xo and vo, with π̃(W ) =
V ⊂ D, and ε > 0 such that, for any

x ∈ V , v ∈W , ‖J− Jo‖(1)D
< ε ,

there exists a unique stationary disk f with

f (0) = x and f∗

(
∂

∂x

∣∣∣∣
ζ=0

)
= µ v for some µ 6= 0 . (5.7)

The disk f depends smoothly on x, v and J.

The previous result reduces the problem of finding domains with well-behaved fam-
ilies of stationary disks to the query for almost complex domains (D,J) with sta-
tionary disks and good boundaries for such disks – let us informally call this kind of
domains “good”. By these remarks, we can determined useful and efficient results
if we are able to determine conditions that ensure that a domain is “good”. Such
conditions do exist and we will shortly discuss them.

For the moment, let us see what one can do if he has to deal with a “good”
almost complex domain. As usual, let D ⊂ (M,J) be a smooth, relatively compact,
strongly pseudoconvex domain in almost complex manifold. For a fixed xo ∈ D, let
π : M̃−→M be the blow up of M at xo. Here some care is needed: Keep in mind that
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the definition of “blow up at a point” is usually defined just for complex manifolds.
Nonetheless there exists a generalization that makes sense also in case of almost
complex domains and this is the notion we refer to (for details, see e.g. [44]).

Now, if f : ∆ −→ D is a stationary disk with f (0) = xo and f∗
(

∂

∂x

∣∣∣
0

)
= w, we

may define a J-holomorphic lift of f with image in the closure D̃ in M̃ of the blow
up D̃ at xo:

f̂ : ∆ −→ D̂⊂ M̂ , f̂ (ζ ) =

 ( f (ζ ), [ f (ζ )]) if ζ 6= 0 ,

(xo, [w]) if ζ = 0 .

This allows to consider the next definition.

Definition 5.3 Let xo ∈ D and D̃ as above and denote by F (xo) the family of all
stationary disks of D with f (0) = xo. We say that F (xo) is a foliation of circular
type of the pointed domain (D,xo) if the following conditions are satisfied:

i) for any v ∈ TxoD, there exists a unique disk f (v) ∈F (xo) such that f (v)∗
(

∂

∂x

∣∣∣
0

)
=

µ ·v for some 0 6= µ ∈ R;
ii) under a fixed identification (TxoD,Jxo)' (Cn,Jst), the map

E : B̃n ⊂ C̃n −→ D̃ , E(v, [v]) = f̃ (v)(|v |) , (5.8)

between the blow ups of Bn ⊂ Cn and D at 0 and xo, respectively, is smooth
and extends smoothly up to the boundary, determining a diffeomorphism E|∂Bn :
∂Bn −→ ∂D.

If F (xo) is a foliation of circular type, we say that xo is the center of the foliation
and that D is a domain of circular type with center xo.

Proposition 5.2 brings to the following stability result for foliation of circular type
of “good” domains.

Proposition 5.4 Let D be of circular type w.r.t. to an almost complex structure Jo
and with center xo, such that ∂D is a good boundary for (Jo, f ) for any f ∈F (xo).

Then there exists ε > 0 and an open neighborhood U ⊂D of xo such that for all
almost complex structures J (defined on a neighborhood of D) with ‖J−Jo‖(1)D

< ε ,
D is a domain of circular type w.r.t. J with center x ∈U (i.e., for any such J and x,
the corresponding collection of stationary disks F (x) is a foliation of circular type).

Let us now come to the main results on existence of foliations by stationary disks.

Theorem 5.5 ([43]) Let D ⊂ M be a bounded, relatively compact, strongly pseu-
doconvex domain with smooth boundary in an almost complex manifold (M,Jo). If
there exists a diffeomorphism
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ϕ : U ⊂M −→ ϕ(U )⊂ Cn ,

between an open neighborhood U of D and an open subset of Cn, with the property
that D′=ϕ(D) is a strictly linearly convex domain D′⊂Cn and ϕ∗(Jo) is sufficiently
close to Jst in C 1-norm, then D is a domain of circular type w.r.t. Jo with center x∈D
(for any x ∈ D!).

This result is essentially a generalization of the result for the case D′ = Bn, proved
by Coupet, Gaussier and Sukhov in [15]. Its proof is also very close to a similar
result, proved independently by Gaussier and Joo in [21].

The proof is technical and we just outline the key ingredients. The first thing
to be done is to show that the boundary ∂D of a strictly (linearly) convex domain
D⊂ (Cn,Jst) is good for any pair (Jst, f ) formed by the standard complex structure
Jst and a stationary disk f of D through any xo ∈D (here, “stationary” is in the usual
sense, in the context of integrable complex structures). In this case, existence and
uniqueness results are determined by Lempert’s theory.

Secondly, for any vo ∈ TxoD, one considers the Riemann-Hilbert operator

R = R(Jst,xo,vo) = (R1,R2,R3,R4,R5)

defined in (5.4) and the corresponding linearization

R=R(Jo,xo,vo; f̃o,λo,µo)
= (R1,R2,R3,R4,R5)

at a given triple ( f̃o,λo,µo), corresponding to some lift f̃o of a stationary disk fo.
One of the key points of the whole proof consists in showing that the operator
R̃ = (R1,R2), given by just the first two components of R, is surjective and with
finite dimensional kernel. After this, if one consider the other three components
(R3,R4,R5) (which correspond to the operators which fix the initial data and im-
pose an additional normalizing condition), the resulting operator R is “nailed down”
to become a linear isomorphism.

The surjectivity of R̃ = (R1,R2) is in fact a direct consequence of a result by
Globevnik ([23]) and of general facts of the theory of Riemann-Hilbert problems.
Such results can be used only if one is able to compute explicitly (and hence check
whether they satisfy or not certain conditions) the so-called partial indices and the
Maslov index of the conormal bundle along the boundaries of stationary disks of
a strictly (linearly) convex domain D ⊂ Cn. The computation of these indices is
radically simplified by considering the so-called flattening coordinates of Lempert
and Pang, in which a given stationary disk and the boundary nearby assume very
simple expressions (see [38], Prop. 2.36 and Thm. 2.45).

We conclude this section, mentioning that there exists also the following “bound-
ary version” for Theorem 5.5. As before, let D ⊂ M be a smoothly bounded, rel-
atively compact, strongly pseudoconvex domain in an almost complex manifold
(M,Jo). For a fixed point xo ∈ ∂D, consider a Riemannian metric < ·, · > around
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xo, which is Hermitian w.r.t. Jo, a normal vector ν to ∂M at xo, pointing inwards,
and for any a > 0, let us denote by C (a) the cone

C (a) = { v ∈ TxoM : < v,ν >> a } .

With the same techniques of Theorem 5.5, one can prove the following:

Theorem 5.6 ([43]) Assume that there exists a diffeomorphism

ϕ : U ⊂M −→ ϕ(U )⊂ Cn ,

between an open neighborhood U of D and an open subset of Cn, with the property
that D′ = ϕ(D) is a strictly linearly convex domain D′ ⊂ Cn and that ϕ∗(Jo) is
sufficiently close to Jst in C 1-norm. Then for any xo ∈ ∂D and a > 0, there exists
a foliation by stationary disks of a subdomain D(a)

(xo)
⊂ D, in which all disks map

1 ∈ ∂∆ into xo ∈ ∂D and have boundary tangent vector at xo contained in the cone
C (a).

For the definition of boundary tangent vector and a more detailed description of the
subdomain D(a)

(xo)
⊂ D, see [43].

5.2 Almost complex domains of circular type and normal forms

The project of this section can be roughly described as follows:

– Try to reproduce the steps, performed in the study of stationary disks and Monge-
Ampère foliations of complex domains, in the new wider context of domains in
almost complex manifolds.

– Show that such steps can in fact be performed for a very large class of almost
complex domains and give useful information about pluripotential theory on al-
most complex domains.

As usual, let D⊂ (M,J) be a smooth, relatively compact domain in an almost com-
plex manifold and, for any point xo of an almost complex domain D⊂ (M,J), denote
by F (xo) the family of stationary disks of D with f (0) = xo. Imitating the definition
of circular domains in complex manifolds, we introduce the following notion.

Definition 5.7 ([43]) We say that F (xo) is a foliation of circular type if:

i) for any v ∈ TxoD, there exists a unique disk f (v) ∈F (xo) with f (v)∗
(

∂

∂x

∣∣∣
0

)
= µ ·v

for some 0 6= µ ∈ R;
ii) for a fixed identification (Txo D,Jxo) ' (Cn,Jst), the map from the blow up B̃n at

0 of Bn to the blow up D̃ at xo of D

Ẽ : B̃n ⊂ C̃n −→ D̃ , Ẽ(v, [v])def
= f̃ (v)(|v |) (5.9)
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is smooth, extends smoothly up to the boundary and determines a diffeomor-
phism between the boundaries Ẽ|

∂ B̃n : ∂ B̃n = ∂Bn −→ ∂ D̃ = ∂D.

The point xo is called center of the foliation and Ẽ : B̃n −→ D̃ is called (generalized)
Riemann map of (D,xo). Any domain D ⊂ (M,J) admitting a foliation of circular
type centered at xo is called almost complex domain of circular type with center xo.

As in the integrable case, consider the blow-down map

π : B̃n −→ Bn

and the (uniquely defined) map E : Bn −→ D such that the following diagram com-
mutes

B̃n D̃

Bn D

Ẽ

E

π π

-

? ?
-

The map E defined in this way is C ∞ on Bn \ {0} and it is continuous at 0.
However, in general, E is not smooth at 0. Nevertheless, one can consider a new
differentiable structure on Bn, formed by the atlas of coordinate charts of the form

ξ
′ : U −→ R2n , ξ

′ = ξ ◦E ,

where the ξ = (xi) are charts of the differentiable structure of D⊂M. By construc-
tion, these charts overlap smoothly with the standard coordinates of R2n on any
open subsets of Bn \ {0}. Hence their restrictions on Bn \ {0} belong to the stan-
dard differentiable structure of Bn. On the other hand, when E is not smooth at 0,
they cannot smoothly overlap with standard coordinates in neighborhoods of 0. This
means that they give a non-standard differentiable structure on Bn, which coincides
with the standard one only on Bn \{0}.

In the following, we always implicitly consider on Bn such new differentiable
structure. Notice that, by construction, the map E : Bn −→ D is smooth also at 0 if
Bn is endowed with such non-standard differentiable structure.

Now, let us consider on Bn the almost complex structure J′ defined by

J′ = E∗(J) .

We stress once again that the tensor field J′ is smooth over the whole Bn, provided
that one considers the differentiable structure on Bn defined above; w.r.t. the stan-
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dard differentiable structure, J′ is smooth only on Bn \ {0} and it is possibly non
well-defined at 0 ∈ Bn.

The pair (Bn,J′) is called normal form of the almost complex domain of circular
type (D,J). After all necessary verifications, one can conclude that the following
perfect analogue of the situation in the integrable case, holds true: Any almost com-
plex domain D⊂ (M,J) of circular type is (J,J′)-biholomorphic to its normal form
(Bn,J′) through a map that sends the J-stationary disks of D into the straight radial
disks of Bn, which are therefore J′-stationary disks.

This shows that the analysis of almost complex domains can be reduced to the
study of almost complex structures on Bn with the above properties, i.e., such that
the straight radial disks are J′-stationary.

Consider the distribution Z ⊂ TBn defined in (3.1). We have the following.

Theorem 5.8 A pair (Bn,J), formed by Bn endowed with a non-standard differ-
entiable structure, coinciding with the standard one on Bn \ {0}, and an almost
complex structure J which is smooth w.r.t. such differentiable structure, is a domain
of circular type in normal form if and only if

i) Z is J-invariant (i.e., JZ = Z );
ii) the straight radial disks of Bn are J-stationary;
iii) the non-standard differentiable structure is such that the blow-up B̃n of Bn at 0,

determined by J, is equivalent, as differentiable manifold, to the blow-up deter-
mined by the standard complex structure.

In the following, the almost complex structures J on Bn, satisfying (i) - (iii) of
previous theorem, will be called L-almost complex structure.

It is important to observe that (ii) holds if and only if, in suitable systems of
coordinates, the components of J belong to the range of a Fredholm operator, i.e.,
they belong to a space, which is finite codimensional in an appropriate Hilbert space,
and can be characterized by a finite number of equations. This fact has a pair of
interesting consequences, namely that:

a) the class of L-almost complex structure is in practice a very large class;
b) such class naturally includes two smaller classes, characterized by very simple

conditions, which are very useful to construct a number of interesting examples.

The definitions and the analysis of such smaller classes are the contents of next
section.

5.3 “Nice” and “very nice” L-almost complex structures

Consider the distributions Z and H on Bn defined in (3.1) and (3.2). We recall
that:



5 Almost complex domains of circular type 43

– denoting, as usual, τo(z) = ‖z‖2 and dc
st = J∗st ◦d ◦ J∗st, one has that JstZz = Zz

Zz = kerddc
st logτo

for any z ∈ Bn \{0} ;

– Z and H are not only orthogonal w.r.t. the Euclidean metric but also w.r.t. the
Jst-invariant 2-form ddc

Jst
τo;

– for any z ∈ Bn \{0}, the subspace Hz ⊂ TzBn coincides with the Jst-holomorphic
tangent space of the sphere Sc = { τo = c }, c = τo(z):

– for any tangent space TzBn, z 6= 0, the complexification TC
z Bn decomposes into

the direct sum

TC
z Bn = Z C

z ⊕H C
z =

(
Z 10

z ⊕Z 01
z
)
⊕
(
H 10

z ⊕H 01
z
)
,

where we denoted by Z 01
z , H 01

z the (−i)-eigenspaces of Jst in Z C
z and H C

z ,
and by Z 10

z , H 10
z their complex conjugates (which are the (+i)-eigenspaces).

Now, an arbitrary almost complex structure J on Bn is uniquely determined by
the corresponding distribution of (−i)-eigenspaces (TzBn)01

J in TC
x Bn. Generically,

these eigenspaces are determined by a tensor field ϕ ∈ Hom(T 01Bn,T 10Bn) such
that

(TzBn)01
J = T 01

z Bn +ϕ(T 01
z Bn) ,

where, as before, we denoted T 01
z Bn = (TzBn)01

Jst
and T 10

z Bn = (TzBn)10
Jst

. If we con-
sider the decomposition of φ as a sum of the form

φ = φ
Z ⊕φ

H ⊕φ
Z ,H ⊕φ

H ,Z

with

φ
Z ∈ Hom(Z 01,Z 10) , φ

H ∈ Hom(H 01,H 10) , φ
Z ,H ∈ Hom(Z 01,H 10) ,

φ
H ,Z ∈ Hom(H 01,Z 10) ,

we have that the (−i)-eigenspaces (TzBn)01
J can be written as

(TzBn)01
J =

(
Z 01 +φ

Z
z (Z 01)+φ

Z ,H
z (Z 01)

)
+

+
(

H 01 +φ
H
z (H 01)+φ

H ,Z
z (H 01)

)
. (5.10)

We observe that J satisfies condition (i) of Theorem 5.8 (i.e., J(Z ) ⊂ Z and
J|Z = Jst|Z ) if and only if the components ϕZ and ϕZ ,H are identically equal to
0, that is

ϕ = ϕ
H +ϕ

H ,Z .
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In such class of almost complex structures J on Bn, it is very convenient to consider
the following conditions.

1) J is called nice if the corresponding deformation tensor ϕ is, in addition, of the
form

ϕ = ϕ
H .

This is equivalent to assume that the distribution H is J-invariant.
2) J is called very nice if

ϕ = ϕ
H and LZ0,1ϕ

H = 0 .

This assumption corresponds to require that J is nice and that the deformation
tensor ϕ depends Jst-holomorphically on the complex parameter that describe
the straight radial disks of Bn.

A geometric motivation for considering the notion of “very nice structures”
comes from the following. It is well known that, in case of integrable complex
structures, there exists a strict relation between stationary disks and Kobayashi ex-
tremal disks. This is a fact that goes back to the ideas of Poletski ([49]) and Lempert
([31]), which showed that, under appropriate regularity conditions, the stationary
disks are the solutions to the Euler-Lagrange conditions for the extremal Kobayashi
disks (they are the critical point of a suitable functional!). In fact, by the results of
[31] we know that the two notions agree for the strictly linearly convex domains in
Cn.

Now, it is important to have in mind that, for generic almost complex domains,
these two notions – stationarity and extremality – are no longer related. Counterex-
amples have been recently exhibited by Gaussier and Joo in [21]. The authors de-
termined also some conditions, which are sufficient for a stationary disk to be also
extremal and which can be described as follows.

Let us first recall a few concepts related with the geometry of the tangent bundle
of a manifold M. We recall that the vertical distribution in T (T M) is the subbundle
of T (T M) defined by

TV (T M) =
⋃

(x,v)∈T M

TV
(x,v)M , TV

(x,v)M = kerπ∗|(x,v) .

For any x ∈M, let us denote by (·)V : TxM −→ TV
(x,v)M the map

(
wi ∂

∂xi

∣∣∣∣
x

)V
def
= wi ∂

∂qi

∣∣∣∣
(x,v)

.

It is possible to check that this map does not depend on the choice of coordinates and
that it determines a natural map from T M to T (T M) (see [59]). For any w ∈ T M,
the corresponding vector wV ∈ T (T M) is called vertical lift of w.



5 Almost complex domains of circular type 45

Definition 5.9 ([22, 44]) Let f : ∆ −→ M be a C α,ε , J-holomorphic embedding
with f (∂∆)⊂ ∂D. We call infinitesimal variation of f any J-holomorphic map W :
∆ −→ T M of class C α−1,ε with π ◦W = f (here, π : T M −→ M is the natural
projection). An infinitesimal variation W is called attached to ∂D and with fixed
center if

a) α(Wζ ) = 0 for any α ∈N f (ζ ), ζ ∈ ∂∆ ,
b) W |0 = 0.

It is called with fixed central direction if in addition it satisfies

c) W∗
(

∂

∂ Reζ

∣∣∣
0

)
∈ TV

W0
(T M) and it is equal to λ

(
f∗
(

∂

∂ Reζ

∣∣∣
0

))V
for some λ ∈ R.

The disk f is called Kobayashi critical if for any infinitesimal variation W , attached
to ∂D and with fixed central direction, one has W∗

(
∂

∂ Reζ

∣∣∣
0

)
= 0.

Such definition is motivated by the fact that, when f (t) : ∆ −→ M, t ∈]− a,a[, is
a smooth 1-parameter family of J-holomorphic disks of class C α,ε with f (0) = f ,
then W = d f (t)

dt

∣∣∣
t=0

is a variational field on f . Moreover, if f (t) is such that, for all

t ∈]a,a[

f (t)(∂∆)⊂ ∂D , f (t)(0) = f (0) , f (t)∗

(
∂

∂ Reζ

∣∣∣∣
0

)
∈ R f∗

(
∂

∂ Reζ

∣∣∣∣
0

)
, (5.11)

then W satisfies (a) - (c). On the other hand, a disk f is a locally extremal disk if for
any J-holomorphic disk g : ∆ −→M of class C α,ε , with image contained in some
neighborhood of f (∆) and such that, for some λ ∈ R,

g(∂∆)⊂ ∂D , g(0) = f (0) = xo , g∗

(
∂

∂ Reζ

∣∣∣∣
0

)
= λ f∗

(
∂

∂ Reζ

∣∣∣∣
0

)
,

then λ ≤ 1. It is known that the notions of “Kobayashi critical” and “locally ex-
tremal Kobayashi disk” are tightly related. In fact, any locally extremal disk f , with
f (∂∆) ⊂ ∂D, is Kobayashi critical. Conversely, when D ⊂ Cn is strictly convex
around f (∆) and J is sufficiently close to Jst, any Kobayashi critical disk f is lo-
cally extremal ([21, 22, 44]).

Next theorem gives conditions that imply the equality between stationary and
critical disks and will be used in the sequel. It is a refinement of a result and argu-
ments given in [20] (see [44]). In this statement, f : ∆ −→ M is a J-holomorphic
embedding, of class C α,ε with f (∂∆) ⊂ ∂D, and Varo( f ) denotes the class of in-
finitesimal variations of f attached to ∂D and with fixed center.

Theorem 5.10 Assume that D ⊂ M is of the form D = { ρ < 0 } for some J-
plurisubharmonic ρ and that Varo( f ) contains a (2n−2)-dimensional J-invariant
vector space, generated by infinitesimal variations ei, Jei, 1 ≤ i ≤ n− 1, such that
the maps
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ζ
−1 · ei(ζ ) , ζ

−1 · Jei(ζ ) : ∆ −→ T M

are of class C α,ε on ∆ . Assume also that, for any ζ ∈ ∆ , the set {ei(ζ ),Jei(ζ )} ⊂
Tf (ζ )M span a subspace, which is complementary to Tf (ζ ) f (∆)⊂ Tf (ζ )M.

Then f is critical if and only if it is stationary.

This result has a direct application in our case. Assume that (Bn,J) is an almost
complex domain of circular type in normal form (i.e., such that J is an L-almost
complex structure).

One can construct variations of the straight radial disks of Bn, deforming them
through the directions of H and obtain a special subspace Ṽ ⊂ Varo( f ) of in-
finitesimal variations for any given straight radial disk f . It turns out that when J is
nice, (i.e., H is J-invariant),

JṼ⊂Varo( f ) ⇐⇒ LZ01 J = 0 ,

i.e., if and only if J is very nice. Combining this fact with the previous theorem, one
is able to prove the following proposition which motivates the interest for “very nice
structures”.

Proposition 5.11 Let (Bn,J) be an almost complex domain of circular type in nor-
mal form. If J is very nice, the straight radial disks of Bn are not only stationary
disks but also Kobayashi critical.

6 Plurisubharmonic functions and pseudoconvex almost complex
manifolds

Let (M,J) be an almost complex manifold and Ω k(M), k ≥ 0, the space of k-forms
of M. We denote by dc : Ω k(M)−→Ω k+1(M) the classical dc-operator

dc
α = (−1)k(J∗ ◦d ◦ J∗)(α) ,

where J∗ denotes the usual action of J on k-forms, i.e.,

J∗β (v1, . . . ,vk)
def
=(−1)k

β (J v1, . . . ,J vk)

Let us recall, once again, that when J is integrable,

dc = i(∂ −∂ ) , ∂∂ =
1
2i

ddc , ddc =−dcd

and that ddcu is a J-Hermitian 2-form for any C 2-function u. We stress the fact
that, when J is not integrable, dcd 6=−ddc and the 2-forms ddcu, determined by the
functions u ∈ C 2(M), are usually not J-Hermitian. In fact, one has that
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ddcu(JX1,X2)+ddcu(X1,JX2) = 4NX1X2(u) , (6.1)

where NX1X2 is the Nijenhuis tensor evaluated on X1, X2 and is – of course – in
general non zero. This fact suggests the following definition.

Definition 6.1 Let u : U ⊂M −→R be of class C 2. We call J-Hessian of u at x the
symmetric form Hess(u)x ∈ S2TxM, whose associated quadratic form is L (u)x(v) =
ddcu(v,J v)x. By polarization formula and (6.1), one has that, for any v, w ∈ TxM,

Hess(u)x(v,w) =
1
2
(ddcu(v,J w)+ddcu(w,J v))

∣∣∣∣
x
=

= ddcu(v,J w)x−2Nvw(u) . (6.2)

We remark that Hess(u)x is not only symmetric, but also J-Hermitian, i.e.,

Hess(u)x(J v,J w) = Hess(u)x(v,w) for any v,w

and it is associated with the Hermitian antisymmetric tensor

Hess(u)(J·, ·) = 1
2
(ddcu(·, ·)+ddcu(J·,J·)) = 1

2
(ddcu+ J∗ddcu) . (6.3)

The Levi form of u at x is the quadratic form

L (u)x(v) = ddcu(v,J v)|x .

The operator ddc defined above turns out to be suitable to study plurisubhamonicity
on almost complex manifolds. It has been used for instance by Pali in [37] for his
study of positivity questions and in a very recent work of Harvey and Lawson ([25]),
using a completely different point of view involving viscosity approach, to provide a
satisfactory weak pluripotential theory in the almost complex setting. We will further
give evidence that it is appropriate to define the almost complex Monge-Ampère
operator. Finally, we point out that Pliś ([48]) uses it to study the inhomogeneous
almost complex Monge-Ampère equation.

An upper semicontinuous function u : U ⊂ M −→ R is called J-plurisub-
harmonic if

u◦ f : ∆ −→ R

is subharmonic for any J-holomorphic disk f : ∆ −→ U ⊂ M. As for complex
manifolds, for any u ∈ C 2(U ) one has that

u is J-plurisubharmonic

if and only if

L (u)x(v) = Hess(u)x(v,v)≥ 0 for any x ∈U and v ∈ TxM .
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This motivates the following generalizations of classical notions. In the follow-
ing, for any U ⊂ M, the symbol Psh(U ) denotes the class of J-plurisubharmonic
functions on U .

Definition 6.2 Let (M,J) be an almost complex manifold and U ⊂ M an open
subset. We say that u ∈ Psh(U ) is strictly J-plurisubharmonic if:

a) u ∈ L1
loc(U );

b) for any xo ∈ U there exists a neighborhood V of xo and v ∈ C 2(V )∩Psh(V )
for which Hess(v)x is positive definite at all points and u− v is in Psh(V ).

In particular, u ∈ Psh(U ) ∩ C 2(U ) is strictly plurisubharmonic if and only if
Hess(u)x is positive definite at any x ∈U .

The almost complex manifold (M,J) is called strongly pseudoconvex (or Stein)
manifold if it admits a C 2 -strictly plurisubharmonic exhaustion τ : M −→]−∞,∞[.

6.1 Maximal plurisubharmonic functions

The J-plurisubharmonic functions share most of the basic properties of classical
plurisubharmonic functions. In particular, as it occurs for the domains in complex
manifolds, for any open domain U ⊂ (M,J), the class Psh(U ) is a convex cone and
for any given ui ∈ Psh(U ) and λi ∈ R, also

u =
n

∑
i=1

λiui and u′ = max{ u1, . . . ,un }

are in Psh(U ). It is therefore natural to consider the following notion of “maximal”
J-plurisubharmonic functions.

Definition 6.3 Let D be a domain in a strongly pseudoconvex almost complex man-
ifold (M,J). A function u ∈ Psh(D) is called maximal if for any open U ⊂⊂D and
h ∈ Psh(U ) satisfying the condition

limsup
z→x

h(z)≤ u(x) for all x ∈ ∂U , (6.4)

one has that h≤ u|U .

The following characterization of maximal plurisubharmonic functions “nails down”
the right candidate for what should be considered as “almost complex Monge-
Ampère operator”.

Theorem 6.4 Let D ⊂M be a domain of a strongly pseudoconvex almost complex
manifold (M,J) of dimension 2n. A function u ∈ Psh(D)∩C 2(D) is maximal if and
only if it satisfies
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(ddcu+ J∗(ddcu))n = 0 . (6.5)

Proof. Let τ : M −→]−∞,+∞[ be a C 2 strictly plurisubharmonic exhaustion for M
and assume that u satisfies (6.5). We need to show that for any h ∈ Psh(U ) on an
U ⊂⊂ D that satisfies (6.4), one has that h≤ u|U . Suppose not and pick U ⊂⊂ D
and h∈ Psh(U ), so that (6.4) is true but there exists xo ∈U with u(xo)< h(xo). Let
λ > 0 so small that

h(xo)+λ (τ(xo)−M)> u(xo) , where M = max
y∈U

τ(y) ,

and denote by ĥ the function

ĥdef
= h+λ (τ−M)|U . (6.6)

By construction, ĥ ∈ Psh(U ), satisfies (6.4) and (ĥ−u)(xo)> 0. In particular, ĥ−u
achieves its maximum at some inner point yo ∈ U . Now, we remark that (6.5) is
equivalent to say that, for any x ∈ D, there exists 0 6= v ∈ TxM so that

(ddcu+ J∗(ddcu))x (v,J v) = Hessx(u)(v,v) = 0 . (6.7)

Let 0 6= vo ∈ TyoM be a vector for which (6.7) is true and let f : ∆ −→ M be a
J-holomorphic disk so that f (0) = yo and with

f∗

(
∂

∂x

∣∣∣∣
0

)
= vo , f∗

(
∂

∂y

∣∣∣∣
0

)
= f∗

(
Jst

∂

∂x

∣∣∣∣
0

)
= J vo .

Then, consider the function G : ∆ −→ R defined by

Gdef
= ĥ◦ f −u◦ f = h◦ f +(λτ−λM−u)◦ f . (6.8)

We claim that there exists a disk ∆r = {|ζ | < r} such that G|∆r is subharmonic. In
fact, since τ is C 2 and strictly plurisubharmonic and Hess(u)yo(vo,vo) = 0, we have
that

0 < Hess((λτ−λM−u))yo(vo,vo) = 2i ∂∂ ((λτ−λM−u)◦ f )
∣∣∣
0
.

Hence, by continuity, there exists r > 0 so that

0 < 2i ∂∂ ((λτ−λM−u)◦ f )
∣∣∣
ζ

for any ζ ∈ ∆r .

It follows that (λτ−λM−u)◦ f |∆r is strictly subharmonic and that G|∆r is subhar-
monic, being sum of subharmonic functions. At this point, it suffices to observe that,
since yo is a point of maximum for ĥ− u on f (∆) ⊂ U , then 0 = f−1(yo) ∈ ∆r is
an inner point of maximum for G|∆r . In fact, from this and the maximum principle,
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we get that G|∆r is constant and hence that h◦ f |∆r is C 2 with 2i ∂∂ (h◦ f )
∣∣∣
∆r

< 0,

contradicting the hypothesis on subharmonicity of h◦ f .
Conversely, assume that u ∈ C 2(D)∩ Psh(D) is maximal, but that there exists

yo ∈D for which Hessyo(u)(v,v)> 0 for any 0 6= v ∈ TyoM and consider the follow-
ing well known result (see e.g. [18]).

Lemma 6.5 For any ε > 0, there exists a relatively compact neighborhood U of
yo, such that (U ,J) is (J,J′)-biholomorphic to (Bn,J′) for some J′ such that ‖J′−
Jst‖Bn, C 2 < ε .

Due to this, we may assume that τ = τo ◦ϕ , with τo(z) = ‖z‖2, is a C 2 strictly J-
plurisubharmonic exhaustion on U , tending to 1 at the points of ∂U . Hence, there
is a constant c > 0 such that

Hessx(u+ c(1− τ))(v,v) = Hessx(u)(v,v)− cHessx(τ)(v,v)≥ 0 ,

for all x ∈U and v ∈ TxM ' R2n with ‖v‖= 1. This means that

ĥdef
= (u+ c(1− τ))|Byo (r)

is in C 2(U )∩Psh(U ), satisfies (6.4) and, by maximality of u, satisfies ĥ≤ u at all
points of U . But there is also an ε > 0 such that /0 6= τ−1([0,1−ε[)(U and hence
such that, on this subset, ĥ≥ u+ cε > u, contradicting the maximality of u.

6.2 Green functions of nice circular domains

The results of previous section motivate the following generalized notion of
Green functions.

Definition 6.6 Let D be a domain in a strongly pseudoconvex, almost complex
manifold (M,J). We call almost pluricomplex Green function with pole at xo ∈D an
exhaustion u : D−→ [−∞,0] such that

i) u|∂D = 0 and u(x) ' log‖x− xo‖ when x→ xo, for some Euclidean metric ‖ · ‖
on a neighborhood of xo;

ii) it is J-plurisubharmonic;
iii)it is a solution of the generalized Monge-Ampere equation (ddcu+ J∗(ddcu))n =

0 on D\{xo}.

Notice that, if a Green function with pole xo exists, by a direct consequence of
property of maximality (Theorem 6.4), it is unique.

Consider an almost complex domain D of circular type in (M,J) with center
xo and denote by Ẽ : B̃n −→ D̃ the corresponding Riemann map. We call standard
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exhaustion of D the map

τ(xo) : D−→ [0,1[ , τ(x) =

|Ẽ
−1(x)|2 if x 6= 0 ,

0 if x = xo .

so that, when D is in normal form, i.e., when D = (Bn,J) with J almost L-complex
structure, its standard exhaustion is just τo(z) = ‖z‖2.

Proposition 6.7 Let D be a domain of circular type in (M,J) with center xo and
standard exhaustion τ(xo). If u = logτ(xo) is J-plurisubharmonic, then u is an almost
pluricomplex Green function with pole at xo.

Proof. With no loss of generality, we may assume that the domain is in normal
form, i.e., D = (Bn,J) and τ(xo)(z) = τo(x) = ‖x‖2. Since τo is smooth on Bn \{0}
and u = logτo is J-plurisubharmonic, we have that Hess(u)x ≥ 0 for any x 6= 0. On
the other hand, for any straight disk f : ∆ −→ Bn of the form f (ζ ) = v ·ζ , we have
that u ◦ f is harmonic and Hess(u) f (ζ )(v,v) = 0 for any ζ 6= 0. This means that
Hess(u)x ≥ 0 has at least one vanishing eigenvalue at any point of Bn \{0} and that
(6.5) is satisfied. The other conditions of Definition 6.6 can be checked directly from
definitions.

When J is integrable, the standard exhaustion u = logτ(xo) of the normal form of a
domain of circular type is automatically plurisubharmonic ([42]), but in the almost
complex case, this is no longer true, even for small deformations of the standard
complex structure. Though this fact is known, it is important to try and understand
why it happens. In the next section, we will illustrate how it is easy to produce
illuminating examples using our deformation arguments and we provide hints on
how to avoid such pathologies.

6.3 A counterexample and pluricomplex Green functions of nice
domains.

On the blow up π : B̃2 −→ B2 of the unit ball B2 ⊂ C2 (defined in the usual way,
via the standard complex structure Jst) consider the vector fields

Z , JstZ , E , JstE ,

where Z is the lift on B̃n of the real vector field Re
(

zi ∂

∂ zi

)
on Bn and E is any vector

field in the distribution H that satisfies the conditions

[Z,E] = [JstZ,E] = 0 , [E,JstE] =−JstZ . (6.9)
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The standard holomorphic bundle T 10B̃2 is generated at all points by the complex
vector field

Z10 = Z− iJstZ ,

which determines the “radial” distribution, and by the complex vector field

E10 = E− iJstE ,

which determines the holomorphic tangent bundles of the spheres Sc = { τo(z) =
‖z‖= c }.

Let us also denote by (E10∗,E01∗,Z10∗,Z01∗) the field of complex coframes,
which is dual to the complex frame field (E10,E01 = E10,Z10,Z01 = Z10) at all
points.

Consider now a smooth real valued function h : B̃n −→ R such that

– on each sphere Sc, the restriction h|Sc is constant,
– h≡ 0 on an open neighborhood of π−1(0) = CP1,

and let ϕ ∈ Hom(H 01,Z 10 +H 10) be the deformation tensor

ϕz = h(z)Z10
z ⊗E01∗

z .

The almost complex structure J, corresponding to ϕ , is uniquely determined by the
J-holomorphic spaces

T 10
Jz B̃n = CZ10

z ⊕CẼ10
z where Ẽ10

z
def
= E10

z +h(z)Z01
z ,

By direct inspection, it is not hard to check that J is an almost L-complex structure
and that (B̃n,J) is an almost complex domain of circular type in normal form ([44]).
But we also have the following crucial fact.

Fact: If h 6≡ 0, the function u = logτo is not J-plurisubharmonic.

Indeed, using the definition of J and (6.9), one computes

Hess(Ẽ10, Ẽ10) = 2(1+2hhZ) ,

Hess(Ẽ10,Z10) = 2hZ , Hess(Z10,Z10) = 0

(here, we used the notation “(·)Z” to indicate the derivative (·)Z = Z(·) in the di-
rection of Z) so that the matrix H of the components of Hess(u)z w.r.t. the frame
{E10,Z10} is

H = 2
(

1+2hhZ hZ
hZ 0

)
.

Since the eigenvalues of H are λ± = 2 (1+2hhZ)±
√

(1+2hhZ)2+4h2
Z

2 , we conclude that
u is J-plurisubharmonic if and only if hZ ≡ 0 and hence if and only if h ≡ 0 at all
points (recall that, by assumptions, h vanishes identically around 0).
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Therefore, we may construct arbitrary examples in which u = logτo is not J-
plurisubharmonic for almost complex structures J arbitrarily close to the standard
one. This shows that in order to avoid situations like this it is not sufficient to restrict
to a class of sufficiently small deformations of integrable structures. One needs some
additional assumptions. One of them is the condition that J is also “nice”. In fact,
one has the following result.

Theorem 6.8 Let D be a nice circular domain with standard exhaustion τ(xo) and
normal form (Bn,J). If J is a sufficiently small C 1-deformation of Jst, then u =
logτ(xo) is the Green function with pole at xo.

Proof. We only need to show that u = log‖z‖2 is J-pseudoconvex on Bn \ {0}. If
(Bn,J) is nice, then Hess(u)z(Z ,H ) = 0 at any z 6= 0. Since the spheres Sc are
J-pseudoconvex for any J sufficiently close to the standard structure, the plurisub-
harmonicity of u follows directly by computing the Hessian along “orthogonal”
directions.

Putting all these facts together, one gets

Theorem 6.9 Let D be an almost complex domain of circular type with center xo in
(M,J) strongly pseudoconvex. If the normal form (Bn,J′) of (D,J) is very nice with
J′ sufficiently close to Jst, then

a) the stationary foliation F (xo) consists of extremal disks w.r.t. Kobayashi metric;
b) the function u = logτ(xo) is the almost pluricomplex Green function of D with

pole xo;
c) the distribution Zz = ker(Hess(u)z) is integrable and the closures of its integral

leaves are the disks in F (xo).
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