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“We are called to be architects of the future, not its victims” 
Richard Buckminster-Fuller 

 
 
This book is about “systems-of-systems“. If you search in GOOGLE for this 

term, the result is 176'000'000 results in 0.60 seconds (20.9.2016). This fact clear-
ly shows the importance and vibrancy of this field! However, it also shows the 
wide and diverging variety of viewpoints, concepts and opinions related to sys-
tems-of-systems. 

Technical systems-of-systems – in the form of networked, independent constit-
uent computing systems temporarily collaborating to achieve a well-defined ob-
jective – form the backbone of most of today’s infrastructure. The energy grid, 
most transportation systems, the global banking industry, the water-supply system, 
the military equipment, many embedded systems, and a great number more, 
strongly depend on systems-of-systems. The correct operation and continuous 
availability of these underlying systems-of-systems are fundamental for the func-
tioning of our modern society. 

Looking at such systems-of-systems, one property clearly stands out: Complex-
ity. Modern systems-of-systems have reached a degree of structural and behavioral 
complexity, which makes it difficult – in many cases impossible – to understand 
them. As a consequence, a massive engineering effort and monetary investment 
are required to design, implement, maintain and evolve many of today’s systems-
of-systems. Due to new properties which are introduced, when systems-of-systems 
are formed – such as emergent behavior, especially unpredictable emergent be-
havior – also a new element of risk is introduced. Because our dependence on 
such growing systems-of-systems is nearly total, we need reliable methods, prin-
ciples and tools to manage the evolution of our systems-of-systems in today’s 
world of growing complexity, relentless change and merciless uncertainty. This 
book is a move forward on this interesting and important path. 

The first important step of achieving this objective is the development of an 
understandable and consistent set of concepts describing the systems-of-systems 
domain. This is not the case in the current state-of-the-art: Therefore, this is the 
first valuable contribution of this book for the community. 

Systems-of-systems become alive by exchanging information and control be-
tween their constituent systems and the physical environment via interfaces. Inter-
faces are responsible for many properties in systems-of-systems and need there-
fore, detailed attention: This is the second impressive result of the book – a 
thourough treatment of interface definition, specification, implementation and 
monitoring. 

The most fascinating and disturbing phenomenon in systems-of-systems is 
emergence: Behavior or properties which only become active or visible when the 
constituent systems start cooperating. Emergence has been studied in many con-
texts and with many objectives: Here we find a consistent theory with important 
novel concepts, which is applicable to many systems. This is a major research 
achievement. 
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Next, a rich conceptual model of generic systems-of-systems, divided into 10 
viewpoints, is developed. The conceptual model is supported by a SySML-profile, 
covering the 10 viewpoints. Especially interesting and innovative parts are the rep-
resentation and use of time in the SoS time package and the handling of emer-
gence in the SoS emergence package. As additional material, a 3-level architecture 
description framework for generic systems-of-systems – again well implementing 
the 10 viewpoints – is presented, which can be used in a commercially available 
graphical tool. This part greatly helps the understanding of systems-of-systems 
development and documentation. 

One of the very strong points of this book is the presentation of time and syn-
chronized timing in systems-of-systems. This aspect has not been dealt with in 
sufficient theoretical rigourness in the existing literature. Topics are global time 
base and resilient clocks – presenting both innovative research and an excellent tu-
torial. 

Many systems-of-systems are not static, but must adapt to changing require-
ments, be it changing business requirements or in response to changing environ-
mental or operational parameters of the constituent systems. Timely adaptation of 
systems-of-systems requires a property that is called dynamicity. A theory – based 
on autonomic computing – and implementation patterns for coping with dynamici-
ty are presented. 

The book is on a research and technology level and all through the book, inter-
esting and illustrative examples can be found. 

The book grew out of a sequence of EU-funded projects of which the described 
project AMADEOS was the culmination. Most of the book shows an admirable 
maturity, both of the materials and the presentation, and is certainly a source of 
much more fruitful research. 

I wish the reader as much satisfaction in reading this rewarding book as the au-
thors had during writing it! 

 
 
 
 
September 2016, 
Prof. Dr. Frank J. Furrer 
Technical University of Dresden, Germany 
Faculty for Computer Science 
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The general availability of a powerful communication infrastructure (e.g., the 
Internet) makes it possible to interconnect existing self-contained computer-
systems— called Constituent Systems (CS)— that already provide a useful service 
to their users. Such a composition of a set of independent and autonomous systems 
that brings about novel services to their stakeholders is called a System-of-Systems 
(SoS). The purpose of building an SoS out of CSs is to realize emergent services 
that go beyond the services provided by any of the isolated CSs. Emergence is 
thus at the core of SoS engineering. 

Consider, for example, a local bank terminal that is connected to the worldwide 
ATM system. This connection enables the novel service of worldwide accessibil-
ity of a local bank account.  A tourist in a remote country can withdraw money, 
denoted in the currency of the host country, from his/her home bank that displays 
the transaction in the currency of the home bank. Since the exchange rate of the 
currencies is time dependent, the monetary value of this multi-currency transac-
tion depends on the instant when the transaction is executed.  This simple example 
shows that new issues, such as the appropriate representation of information in 
differing contexts or the time when an action takes place play an important role in 
such an SoS. 

The vision of the Internet of Things (IoT) assumes that the networked connec-
tion of smart things, i.e. Cyber-Physical System (CPS) with sensors and actuators 
that observe and directly influence the physical environment, has the potential to 
provide disruptive novel services to our society. We call such an integration of 
stand-alone CPSs that provides services that go beyond the services of any of its 
isolated CPSs a Cyber-Physical System of Systems (CPSoS).  

Consider, for example, a smart grid where a multitude of autonomous energy 
producers and energy consumers, controlled by their local CPSs and the control 
systems of the utility companies cooperate to provide a smooth flow of electric 
energy from producers to consumers. Despite the fact that such a possibly gigantic 

mailto:h.kopetz@gmail.com
mailto:andrea.bondavalli@unifi.it
mailto:sara.bouchenak@insa-lyon.fr
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CPSoS is in a continuous state of evolution, it must provide a dependable service 
24 hours a day, seven days a week. 

This book on Systems of Systems documents the main insights on Cyber-
Physical System of Systems (CPSoSs) that we gained during our work in the Euro-
pean Research Project AMADEOS (acronym for Architecture for Multi-criticality 
Agile Dependable Evolutionary Open System-of-Systems). The objective of this 
research was to bring time awareness, dynamicity and evolution into the design of 
SoSs, to establish a sound conceptual model that provides a well-defined language 
for describing SoSs, to investigate the intricate topic of emergence in an SoS, and 
to outline a generic architectural framework and an SoS design methodology, sup-
ported by some prototype tools, for the modeling, development and evolution of 
time-sensitive SoSs. 

The AMADEOS partners from industry (Thales Nederlands, Resiltech and 
ENCS) and universities (University of Firenze, Vienna University of Technology 
and Université Grenoble Alpes) joined their efforts to arrive at results that are, on 
the one hand, of wide-ranging value in an industrial context, and on the other 
hand, extend the understanding of SoSs beyond the current state of the art in the 
academic world.  

It is the objective of this book to present in a single consistent body the founda-
tional concepts and their relationships in order to form a conceptual basis for the 
description and understanding of SoSs and to go deeper in what we consider the 
characterizing and distinguishing elements of SoSs: time, emergence, evolution 
and dynamicity.  

The first part of the book is devoted to this conceptual work. We start in Chap-
ter one with the set of definitions of the relevant concepts. The need of a new ap-
proach and vision of interfaces is the topic of chapter two. In chapter three we in-
vestigate the phenomenon of emergence in CPSoSs, with a definition of 
emergence in the SoS context and discuss some properties of emergent phenome-
na. Chapter four provides the definition of the AMADEOS conceptual model that 
captures SoS basic concepts and their interrelationships, and provides a SysML 
profile semi-formalization supporting the definition of SoS Platform Independent 
Models (PIMs).   

Part two of the book deals with the engineering framework developed in 
AMADEOS and the technical solutions adopted to deal with time, dynamicity and 
evolution. More precisely Chapter five defines the overall tool-supported 
AMADEOS Architectural Framework (AF), with its main building blocks and in-
terfaces. Chapter six elaborates on the role of time and clocks in SoSs and presents 
the design of a Resilient Master Clock (RMC), a hardware-software solution that 
has been developed in the course of the AMADEOS project. The final chapter in 
this part presents the AMADEOS dynamicity management and the different Moni-
tor-Analyze-Plan-Execute (MAPE) components.  

Part three of the book contains case studies of smart grid applications to 
demonstrate the suitability of the AMADEOS methodology for the design of an 
advanced industrial SoS.  
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In the following, we present a short overview of the main points covered in 
each one of the chapters of this book. 

The objective of Chapter one is the development of a set of coherent concepts 
and the associated terms that can be used by domain experts to communicate their 
ideas about SoSs. We start form the fundamental notion of a Constituent System 
(CS) that is time aware and consider an SoS as an integration of a finite number of 
Constituent Systems (CS) which are independent and operable, and which are 
networked together for a period of time to achieve a certain higher goal. The CSs 
interact by the timely exchange of information items (we call them Itoms) across 
Relied Upon Interfaces (RUI). An Itom is an atomic triple of data, explanation of 
the data and time. It follows a detailed model of time, based on Newtonian phys-
ics, and time measurement by digital clocks is presented. This model of time is 
used to define the notion of the state of a system at a given instant as the totality of 
the information items from the past that can have an influence on the future be-
haviour of a system. We then discuss the characteristics of three basic communica-
tion mechanisms in cyberspace:  datagrams, event triggered positive acknowl-
edgment and retransmission protocols, and time-triggered protocols, followed by 
an elaboration of the information flow across stigmergic channels in the physical 
environment. After a short passage on interfaces (which are discussed at length in 
Chapter 2) the concepts of dynamicity and evolution are treated in the last section 
of Chapter 1. 

The focus of Chapter two is on the important role that interfaces play in the 
control of the cognitive complexity of the models that explain the behavior of an 
SoS.  The boundaries among the CSs within an SoS are formed by the Relied Up-
on Interfaces (RUI) of the CSs.  The precise specifications of the syntactic, seman-
tic and temporal properties of these RUIs hide the internals of a CS implementa-
tion and are good example for the application of the well known divide and 
conquer principle. Interface layers allow the discussion of system interface prop-
erties at different abstraction levels. Three interface layers are introduced: the 
cyber-physical layer, the Informational layer, and the service layer. The cyber-
physical layer is concerned with the reliable transport of context sensitive bit-
patterns across RUIs, both via messages in cyber-space and stigmergic channels in 
the physical environment. The informational layer abstracts from the context-
sensitivity and the concrete technical implementations of the cyber-physical layer. 
The service layer structures the behavior of a system into a set of capabilities ena-
bling management of dynamcity and evolution at the interface level. The specifi-
cation of the execution semantics of a RUI assumes a frame-based synchronous 
data flow model.  In many SoSs the connections between the RUIs of the CSs are 
not static, but dynamic. The sections in Chapter two on dynamicity and managed 
evolution give details on the reaction and reconfiguration capabilities of an SoS 
that can be considered in the CPSoS design at the interface level. 

Chapter three deals with the important topic of emergence in CPSoSs. As quot-
ed above, emergence is at the core of SoS engineering. The essence of the concept 
emergence is aptly communicated by the following quote, attributed to Aristotle:  
The Whole is Greater than the Sum of its Parts. The interactions of parts (the CSs) 
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can generate a whole (the SoS) with unprecedented properties that go beyond the 
properties of any of its constituent parts. The immense varieties of inanimate and 
living entities that are found in our world are the result of emergent phenomena 
that have a small number of elementary particles at their base. After a lengthy dis-
cussion about the importance of multi-level hierarchies in the models of nearly de-
composable complex systems, the following definition of emergence is presented:  
A phenomenon of a whole at the macro-level is emergent if and only if it is of a 
new kind with respect to the non-relational phenomena of any of its proper parts 
at the micro level. In the following sections of Chapter three the concepts of 
downward causation and supervenience are explained and it is conjectured that in 
a multi-level hierarchy emergent phenomena are likely to appear at the macro-
level when there is a causal-loop formed between the micro-level that forms the 
whole and the whole (i.e., the ensemble of parts) that constrains the behavior of 
the parts at the micro-level. A schema for the classification of emergent phenome-
na is presented and four concrete examples of emergent phenomena in computer 
systems are given.  In the final section of Chapter three, the focus is on the analy-
sis of detrimental emergent phenomena in safety critical CPSoS. 

Chapter four covers the AMADEOS SysML profile for SoS conceptual model-
ing. The focus is on the definition of a SysML profile as a modeling support for 
representing the AMADEOS SoS conceptual model. The basic SoS concepts and 
their relationships are modeled using a SysML semi-formal representation accord-
ing to different viewpoints, which represent the key perspectives of AMADEOS: 
structure, dynamicity and evolution, dependability and security, time, multi-
criticality and emergence. Finally, a Smart Grid household scenario is introduced 
to exemplify the application of the profile and to instantiate the basic SoS con-
cepts to a concrete case-study from the Smart Grid domain, focusing on the Archi-
tecture and Emergence viewpoints. 

Chapter five introduces the overall tool-supported AMADEOS Architectural 
Framework (AF) with its main building blocks and interfaces. The high-level rep-
resentation of the AMADEOS AF is shown as a pyramid made of four different 
layers, namely mission, conceptual, logical and implementation. Apart from the 
mission block, all the remaining levels are organized in slices, each corresponding 
to a specific viewpoint. The following viewpoints of an SoS are explored: struc-
ture, dependability, security, emergence, and multi-criticality. Finally, for SoS 
modeling, a supporting facility tool based on Blockly is demonstrated. Blockly is a 
visual Domain Specific Language (DSL) and has been adopted to ease the design 
of SoS by means of a simple and intuitive user interface; thus requiring minimal 
technology expertise and support for the SoS designer.  

Chapter six stipulates that a global notion of time with known precision, shared 
by all CSs, is essential for the dependable operation of an SoS. Such a global no-
tion of time is needed to specify the temporal properties of interfaces, to enable 
the interpretation of timestamps in the different CSs, to limit the validity of real-
time data, to synchronize input and output actions across CSs, to provide conflict-
free resource allocation, to perform prompt error detection and to strengthen secu-
rity protocols.  Since CSs can join and leave the SoS dynamically, external clock 
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synchronization is the preferred alternative in an SoS. Such an external clock syn-
chronization can be based on the standardized time signal distributed worldwide 
by Global Navigation Satellite Systems (GNSS), such as GPS, Galileo or 
GLONASS. Since a GNSS time signal can become unavailable, a resilient master 
clock is proposed to extend the holdover interval after a time-signal failure. In 
AMADEOS a prototype of such a resilient GPS disciplined master clock has been 
developed and tested. The chapter describes the design, implementation and vali-
dation of this resilient master clock prototype. 

Chapter seven is devoted to the management of dynamicity in SoS. The well-
known Monitor-Analyze-Plan-Execute (MAPE) control loop, developed by IBM 
in the context of autonomic computing, provides the framework for the manage-
ment of dynamicity. When a Service Level Agreement (SLA) and its associated 
Service Level Objectives (SLOs) are associated with the service of a managed el-
ement, the MAPE control loop guarantees that these SLOs are met.  If this is not 
the case, a new plan is calculated and used to reconfigure the system. This chapter 
presents AMADEOS dynamicity management and the components of MAPE. 

Finally, Chapter eight contains three case studies from the smart grid domain to 
demonstrate the viability of the AMADEOS approach to the design of SoSs. The 
three case studies, electric vehicle charging, household management, and an inte-
grated case study that combines the first two together with ancillary services are 
modeled by using the AMADEOS Architectural Framework (AF) and the 
AMADEOS tool set. We utilize the four levels of the AMADEOS AF: mission, 
conceptual, logical and implementation, as well as the seven viewpoints that have 
been defined: structure, dynamicity, evolution, dependability and security, time, 
multi-criticality and emergence.   

Modeling complex and pervasive infrastructures as the one used as case study 
clearly highlights how the support of a precise conceptual model and of specific 
tools for its instantiation is fundamental for a sound and comprehensive codifica-
tion of the various properties of the whole. At design time the identification of 
causal loop in the lower levels of the hierarchy, enabled by the support for simula-
tion through model execution, is a mandatory step to identify possible emergent 
behaviors at the higher levels. In fact, such behaviors may lead, also in future evo-
lution of the system of systems, to a violation of system requirements. A correct 
representation of the environment has proven to be also necessary. Finally, global 
time awareness and monitoring are fundamental to early detect and to contain the 
effect of detrimental emergence phenomena at run time. 

Although the chapters of the book are arranged in a logical order, an effort has 
been made to keep each chapter self-contained. The book contains at the end a 
glossary of all the terms and concepts used to ease reading and provide a reference 
for relevant terms in the domain of SoSs. 
This book can be used as a textbook or supplemental reading for advanced teach-
ing on SoSs, their concepts and their design.  In addition to this book, a set of 
slides is available that helps a lecturer in the development of the teaching material 
for an advanced course on Systems of systems 
 (http://rcl.dsi.unifi.it/projects/amadeos/amadeosteachingmaterial).   

http://rcl.dsi.unifi.it/projects/amadeos/amadeosteachingmaterial
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1.1 Introduction 

A System of System (SoS) stems from the integration of existing systems (legacy 
systems), normally operated by different organizations, and new systems that have 
been designed to take advantage of this integration.  Many of the established as-
sumptions in classical system design, such as e.g., the scope of the system is 
known, that the design phase of a system is terminated by an acceptance test or 
that faults are exceptional events, are not justified in an SoS environment. This is 
well represented by Table 1-1. 

In this chapter we present the fundamental concepts for Systems of Systems 
engineering established within the AMADEOS1 project, with the objective of 
proposing a shared System of Systems vocabulary and define an implicit theory 
about the SoS domain. 

The overarching concern of our work is to target the reduction of the cognitive 
complexity needed to comprehend the behaviour of a SoS by the application of 
appropriate simplification strategies [29]. In fact, the considerable cognitive effort 
needed to understand the operation of a large SoS is the main cause for the sub-
stantial engineering (and monetary) effort required to design and maintain many 
of today’s Systems of Systems. 

                                                           
1 FP7-ICT-2013-10-610535 AMADEOS: Architecture for Multi-criticality Agile Dependable Evo-

lutionary Open System-of-Systems, http://amadeos-project.eu/ 

mailto:andrea.ceccarelli@unifi.it
mailto:andrea.bondavalli@unifi.it
mailto:froemel@vmars.tuwien.ac.at
mailto:oliver@vmars.tuwien.ac.at
mailto:h.kopetz@gmail.com


18  

Our position is that the first important step of achieving simplicity is the de-
velopment of an understandable set of concepts that describes the SoS domain. In 
fact, if the language used to talk about a domain contains terms with clearly de-
fined meanings that are shared by a wide part of the domain community, then the 
communication of ideas among experts is simplified. Consequently, starting from 
a detailed analysis of the existing concepts for the SoS domain (e.g., from the pro-
jects DANSE [35], DSoS [7], COMPASS [36]), in this work we reuse main ex-
isting concepts, and formulate new ones when needed, to propose a shared vocab-
ulary for Systems of Systems that can be used in a coherent and consistent manner. 

The concepts devised are divided in ten viewpoints, summarized below. Note-
worthy, an extended version of the conceptual model is freely available at [33]. 

Fundamental System Concepts. Discussed in Section 1.2, the first group focus-
es on the static structure of systems and their parts. It starts from the presentation 
of the universe and time of discourse of an SoS, to finally define an SoS and its re-
lated parts. 

Time. Discussed in Section 1.3, this group explains the progression of time and 
its role in an SoS. The role of time and clocks in SoSes is further debated in Chap-
ter 6. 

Data and state. Discussed in Section 1.4, this groups defines the data and in-
formation that are exchanged between the Constituent Systems that form an SoS. 
These concepts are further investigated in Chapter 2. 

Actions and Behaviour. Discussed in Section 1.5, this group illustrates the dy-
namics of an SoS, that consists of discrete variables by an event-based view or by 
a state-based view. 

 
Characteristic Monolithic System System-of-System 
Scope of the System Fixed (known) Not known 
Clock Synchronization Internal External (e.g., GPS) 
Structure Hierarchical Networked 
Requirements and Spec. Fixed Changing 
Evolution Version Control Uncoordinated 
Testing Test Phases Continuous 
Implementation Technol-
ogy 

Given and Fixed Unknown 

Faults (Physical, Design) Exceptional Normal 
Control Central Autonomous 
Emergence Insignificant Important 
System Development Process Model ??? 

Table 1-1: Comparison of an SoS compared to a mono-
lithic system [22] 
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Communications. Discussed in Section 1.6, the focus of this group is on the 
role and properties of a communication system in an SoS. These concepts are fur-
ther elaborated in Chapter 2. 

Interfaces. Discussed in Section 1.7, this group presents the fundamentals defi-
nition for the interfaces i.e., the points of interaction of SoS components with each 
other and with the environment over time. These concepts are further debated in 
Chapter 2. 

Evolution and Dynamicity. Discussed in Section 1.8, this group explains SoS 
dynamicity, intended as short term changes, and evolution, intended as long term 
changes. These concepts are also largely applied in Chapter 7. 

System design and tool. Discussed in Section 1.9, this group sets the founda-
tional concepts to define design methodologies to engineer SoSes. 

Dependability and Security. Discussed in Section 1.10, this group presents de-
pendability and security concepts, in compliance with the taxonomies presented in 
[3], [4], [1]. 

Emergence. The phenomenon of emergence in Cyber-Physical Systems of Sys-
tems and its main concepts are largely discussed in Chapter 3. Consequently, this 
group of concepts is only briefly introduced in this Chapter. The definition of 
emergence reported in Chapter 3 states that “a phenomenon of a whole at the mac-
ro-level is emergent if and only if it is of a new kind with respect to the non-
relational phenomena of any of its proper parts at the micro level”. Emergent phe-
nomena can be of a different nature either beneficial or detrimental and either ex-
pected or unexpected. Managing emergence is essential to avoid undesired, possi-
bly unexpected situations generated from CSs interactions and to realize desired 
emergent phenomena being usually the higher goal of an SoS.  For example, sys-
tem safety has been acknowledged as an emerging property [31], because its 
meaning at the SoS level does not have the same meaning for the individual CS, 
and obviously it cannot be expressed just as the sum of the individual parts. Addi-
tionally, to further strengthen on the relevance of emergence in an SoS, we remark 
that it is acknowledged that the SoS may be exposed to new security threats when 
novel phenomena arise [32], [34]. 

1.2 Fundamental System Concepts 

1.2.1 Universe and time of discourse 

We start by delineating the universe and time of discourse of an SoS.   
 

Universe of Discourse (UoD): The Universe of Discourse comprises the set of en-
tities and the relations among the entities that are of interest when modeling the 
selected view of the world. 
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The word domain is often used as synonym to the notion Universe of Dis-

course. 
 

Interval of Discourse (IoD): The Interval of Discourse specifies the time interval 
that is of interest when dealing with the selected view of the world. 

 
In order to structure the UoD during the IoD, we must identify objects that have 

a distinct and self-contained existence. 
 

Entity: Something that exists as a distinct and self-contained unit. 
 
We distinguish between two very different kinds of entities, things and con-

structs. 
 

Thing: A physical entity that has an identifiable existence in the physical world. 
 
Referring to the Three World Model of Popper [8] there is another class of enti-

ties, we call them constructs that have no physical existence on their own but are 
products of the human mind. 

 
Construct: a non-physical entity, a product of the human mind, such as an idea. 

1.2.2 Systems 

We use the definition of the term system introduced in the EU Project DSOS (De-
pendable System-of-systems IST-1999-11585 [9]: 

 
System: An entity that is capable of interacting with its environment and may be 
sensitive to the progression of time. 

 
By ‘sensitive to the progression of time’ we mean the system may react differ-

ently, at different points in time, to the same pattern of input activity, and this dif-
ference is due to the progression of time. A simple example is a time-controlled 
heating system, where the temperature set-point depends on the current time [9]. 
The role of humans in a system is discussed at length below in this section. 

 
Environment of a System: The entities and their actions in the UoD that are not 
part of a system but have the capability to interact with the system. 

 
In classical system engineering, the first step in the analysis of a system is the 

establishment of an exact boundary between the system under investigation and its 
environment. 
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System Boundary: A dividing line between two systems or between a system and 
its environment. 

 
In SoS Engineering, such an approach can be problematic, because in many 

SoS the system boundary is dynamic. Consider, e.g., a car-to-car SoS that consists 
of a plurality of cars cruising in an area. Where is the boundary of such an SoS?  
A good concept should be stable, i.e., its important properties, such as size, should 
remain fairly constant during the IoD. The boundary of the car-to-car SoS does 
not satisfy this requirement and is thus a poor concept.  Our analysis of many oth-
er existing SoSs, e.g., the worldwide ATM system or a smart grid system came to 
a similar conclusion:  it is hardly possible to define a stable boundary of an SoS 
[22] [29]. 

In the above example of a car-to-car SoS each individual car in the system 
(consisting of the mechanics of the car, the control system within the car and the 
driver) can be considered as an autonomous system that tries to achieve its given 
objective without any control by another system. 
Autonomous System: A system that can provide its services without guidance by 
another system. 

 
Before starting with the detailed design of a large system an overall blueprint 

that establishes the framework of the evolving artifact should be developed. 
 

System Architecture: The blueprint of a design that establishes the overall struc-
ture, the major building blocks and the interactions among these major building 
blocks and the environment.  

 
Every organization that develops a system follows a set of explicit or implicit 

rules and conventions, e.g., naming conventions, representation of data (e.g., en-
dianness of data), protocols etc. when designing the system. This set of explicit or 
implicit rules and conventions is called the architectural style. 

Many of the existing legacy systems have been designed in the context of a 
single organization that follows its often ill-documented idiosyncratic architectural 
style. For example, undocumented implicit assumptions about the attributes of da-
ta can lead to mismatches when data is sent from one subsystem to another sub-
system in an SoS. 

 
Monolithic System: A system is called monolithic if distinguishable services are 
not clearly separated in the implementation but are interwoven. 

 
Many systems are not monolithic wholes without any internal structure, but 

are composed of interrelated parts, each of the latter being in turn hierarchic in 
structure until we reach some lowest level of elementary subsystem [11], p.184.  

 
Subsystem: A subordinate system that is a part of an encompassing system. 
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We call the subsystems of a System of Systems (SoS) Constituent Systems 

(CSs). 
 

Constituent System (CS): An autonomous subsystem of an SoS, consisting of com-
puter systems and possibly of controlled objects and/or human role players that 
interact to provide a given service. 

 
The decomposition of a system into subsystems can be carried out until the 

internal structure of a subsystem is of no further interest. The systems that form 
the lowest level of a considered hierarchy are called components. 

Some systems can be decomposed without loss into well-understood parts, so 
that the functions at the system level can be derived from the functions of the 
parts [25]. 

 
Cyber-Physical System (CPS): A system consisting of a computer system (the 

cyber system), a controlled object (a physical system) and possibly of interacting 
humans. 

 
An interacting human can be a prime mover or role player. 
 

Prime mover: A human that interacts with the system according to his/her own 
goal. 

 
An example for a prime mover could be a legitimate user or a malicious user 

that uses the system for his/her own advantage. A human who is a prime mover 
can be considered to be a constituent system (CS). 

 
Role player: A human that acts according to a given script during the execution of 
a system and could be replaced in principle by a cyber-physical system. 

 
A CPS is composed not only of the computer system, i.e., the cyber system, but 

also of a controlled object and possibly a human role player. 
 

Entourage of a CPS: The entourage is composed of those entities of a CPS (e.g., 
the role playing human, controlled object) that are external to the cyber system of 
the CPS but are considered an integral part of the CPS. 

1.2.3 System-of-Systems 

We decided to select the following definition of Jamishidi as the starting point of 
our work [10]. 
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System-of-Systems (SoS): An SoS is an integration of a finite number of constituent 
systems (CS) which are independent and operable, and which are networked to-
gether for a period of time to achieve a certain higher goal. 

 
We consider the phrase that are networked together for a period of time an 

important part of this definition, since it denotes that a static scope of an SoS may 
not exist and the boundary between an SoS and its environment can be dynamic. 

 
Dahmann and Baldwin have introduced the following four categories of SoSs 

[11]: 
 

Directed SoS: An SoS with a central managed purpose and central ownership of 
all CSs. An example would be the set of control systems in an unmanned rocket. 

 
Acknowledged SoS: Independent ownership of the CSs, but cooperative agree-
ments among the owners to an aligned purpose.  

 
Collaborative SoS: Voluntary interactions of independent CSs to achieve a goal 
that is beneficial to the individual CS. 

 
Virtual SoS: Lack of central purpose and central alignment. 

 
While a directed SoS, e.g., the CSs in an automobile that are under strict central 

management and ownership of a car company, comes close to a homogenous sys-
tem, the other extreme, a virtual CS, lacks the elements of homogeneity and is 
formed by heterogeneous subsystems belonging to very different organizations.  

 
We call an interface of a CS where the services of a CS are offered to other CSs 

a Relied Upon Interface (RUI). It is ‘’relied upon’’ with respect to the SoS, since 
the service of the SoS as a whole relies on the services provided by the respective 
CSs across the RUIs. 

 
Relied upon Interface (RUI): An interface of a CS where the services of the CS are 
offered to other CSs. 

 
In addition to a Relied upon Message Interface (RUMI) where messages con-

taining information are exchanged among the CSs, a Relied upon Physical Inter-
face (RUPI) where things or energy are exchanged among the CSs can exist.  

 
Relied upon Message Interface (RUMI): A message interface where the services of 
a CS are offered to the other CSs of an SoS.  

 
Relied upon Physical Interface (RUPI): A physical interface where things or en-
ergy are exchanged among the CSs of an SoS.  
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Relied upon Service (RUS): (Part of) a Constituent System (CS) service that is of-
fered at the Relied Upon Interface (RUI) of a service providing CS under a Ser-
vice Level Agreement (SLA). 

 
There may be other interfaces to systems external to a CS which we investigate 

in Section 1.6, together with the issues of information exchange and interface 
specification. 

1.3 Time 

The focus of the previous Section was on the static structure of systems and their 
parts. In this Section we start being concerned with change. The concept of 
change depends on the progression of time that is one of the core topics that is in-
vestigated in AMADEOS. In an SoS a global notion of time is required in order to  

• Enable the interpretation of timestamps in the different CSs.  
• Limit the validity of real-time control data. 
• Synchronize input and output actions across nodes. 
• Provide conflict-free resource allocation. 
• Perform prompt error detection. 
• Strengthen security protocols. 

 
We base our model of time on Newtonian physics and consider time as an in-

dependent variable that progresses on a dense time-line from the past into the fu-
ture. For a deep discussion on the issues of time we refer to the excellent book by 
Withrow, The Natural Philosophy of Time [12] that considers also the revision to 
the Newtonian model by the theory of relativity. From the perspective of an SoS 
the relativistic model of time does not bring any new insights above those of the 
Newtonian model of time. 

1.3.1  Basics on time 

Time: A continuous measurable physical quantity in which events occur in a se-
quence proceeding from the past to the present to the future. 

 
This definition of time, which denotes physical time, has been adapted from 

Dictionary.com and uses a number of fundamental concepts that cannot be defined 
without circularity. 

 
Timeline: A dense line denoting the independent progression of time from the past 
to the future. 
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The directed time-line is often called the arrow of time. According to Newton, 
time progresses in dense (infinitesimal) fractions along the arrow of time from the 
past to the future.  

 
Instant: A cut of the timeline. 
 
Event: A happening at an instant. 

 
An event is a happening that reports about some change of state at an instant. 
 

Signal: An event that is used to convey information typically by prearrangement 
between the parties concerned. 

 
Instants are totally ordered, while events are only partially ordered. More than 

one event can happen at the same instant. 
 

Temporal order: The temporal order of events is the order of events on the time-
line. 

 
Causal order: A causal order among a set of events is an order that reflects the 
cause-effect relationships among the events. 

 
Temporal order and causal order are related, but not identical. Temporal order 

of a cause event followed by an effect event is a necessary prerequisite of causal 
order, but causal order is more than temporal order [2], p.53. 

 
Interval: A section of the timeline between two instants.  

 
While an interval denotes a section of the timeline between two instants, the 

duration informs about the length only, but not about the position of such a sec-
tion. 

 
Duration: The length of an interval. 

 
The length of an interval can only be measured if a standard for the duration is 

available. The physical SI second is such an international standard (the Interna-
tional System of Units is abbreviated by SI). 

 
Second: An internationally standardized time measurement unit where the dura-
tion of a second is defined as 9 192 631 770 periods of oscillation of a specified 
transition of the Cesium 133 atom. 

 
The physical second is the same in all three important universal time standards, 

UTC, TAI and GPS time. UTC (Universal Time Coordinated) is an astronomical 
time standard that is aligned with the rotation of the earth. Since the rotational 
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speed of the earth is not constant, it has been decided to base the SI second on 
atomic processes establishing the International Atomic Time TAI (Temps 
Atomique International). On January 1, 1958 at 00:00:00 TAI and UTC had the 
same value. The TAI standard is chronoscopic and maintained as the weighted av-
erage of the time kept by over 200 atomic clocks in over 50 national laboratories. 
TAI is distributed world-wide by the satellite navigation system GPS (Global Po-
sitioning System). 

 
Offset of events: The offset of two events denotes the duration between two events 
and the position of the second event with respect to the first event on the timeline. 

 
The position of an instant on a standardized timeline can only be specified if a 

starting point, the origin, for measuring the progression of time (in seconds) has 
been established. 

 
Epoch: An instant on the timeline chosen as the origin for time-measurement. 

 
GPS represents the progression of TAI time in weeks and full seconds within a 

week. The week count is restarted every 1024 weeks, i.e., after 19.6 years. The 
Epoch of the GPS signal started at 00:00:19 TAI on January 6, 1980 and again, af-
ter 1024 weeks at 00:00:19 TAI on August 22, 1999.  

 
Cycle: A temporal sequence of significant events that, upon completion, arrives at 
a final state that is related to the initial state, from which the temporal sequence of 
significant events can be started again. 

 
An example for a cycle is the rotation of a crankshaft in an automotive engine. 

Although the duration of the cycle changes, the sequence of the significant events 
during a cycle is always the same. 

 
Period: A cycle marked by a constant duration between the related states at the 
start and the end of the cycle. 

 
Periodic Systems are of utmost relevance in control applications 
 

Periodic System: A system where the temporal behaviour is structured into a se-
quence of periods. 

 
Periodicity is not mandatory, but often assumed as it leads to simpler algo-

rithms and more stable and secure systems [14], pp.19-4. Note that the difference 
between cycle and period is the constant duration of the period during the IoD. 
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1.3.2  Clocks 

Time is measured with clocks. In the cyber-domain, digital clocks are used. 
 
Clock: A (digital) clock is an autonomous system that consists of an oscillator and 
a register. Whenever the oscillator completes a period, an event is generated that 
increments the register. 

 
Oscillators and digital clocks are closely related. When looking at an oscillator, 

the form of the wave over the full cycle is of importance. When looking at a clock, 
only the distance between the events that denote the completion of cycles of the 
oscillator is of importance.  

 
Nominal Frequency: The desired frequency of an oscillator [24]. 

 
Frequency drift: A systematic undesired change in frequency of an oscillator over 
time [24]. 

 
Frequency drift is due to ageing plus changes in the environment and other fac-

tors external to the oscillator. 
 

Frequency offset: The frequency difference between a frequency value and the ref-
erence frequency value [24]. 

 
Stability: The stability of a clock is a measure that denotes the constancy of the 
oscillator frequency during the IoD. 

 
The state of the register of a clock is often called the state of clock. The state of 

a clock remains constant during a complete period of the oscillator. 
 

Wander: The long-term phase variations of the significant instants of a timing 
signal from their ideal position on the time-line (where long-term implies here that 
these variation of frequency are less than 10 Hz).  (see also jitter) [24]. 

 
Jitter: The short-term phase variations of the significant instants of a timing sig-
nal from their ideal position on the time-line (where long-term implies here that 
these variation of frequency are greater than or equal to 10 Hz).  (see also wan-
der) [24]. 

 
The term timing signal can refer to a signal of a clock or of any other periodic 

event. There exist other clocks, e.g., a sun dial, which is not digital in nature. The 
time resolution of every digital clock is limited by the duration of the period of the 
oscillator. 
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Tick: The event that increments the register is called the tick of the clock. 
 

Granularity/Granule of a clock: The duration between two successive ticks of a 
clock is called the granularity of the clock or a granule of time. 

 
The granularity of a clock can only be measured if another clock with a finer 

granularity is available.  We introduce a reference clock as a working hypothesis 
for measuring the instant of occurrence of an event of interest (such as, e.g., a 
clock tick) and make the following three hypothetical assumptions: (i) the refer-
ence clock has such a small granularity, e.g., a femto second (10-15 s), that digitali-
zation errors can be neglected as second order effects,  (ii) the reference clock can 
observe every event of interest without any delay and (iii) the state of the refer-
ence clock is always in perfect agreement with TAI time. 

 
Reference clock: A hypothetical clock of a granularity smaller than any duration 
of interest and whose state is in agreement with TAI. 

 
Coordinated Clock: A clock synchronized within stated limits to a reference clock 
that is spatially separated [24]. 

 
Every good (fault-free) free-running clock has an individual granularity that 

can deviate from the specified nominal granularity by an amount that is contained 
in the specification document of the physical clock under investigation.  

 
Drift: The drift of a physical clock is a quality measure describing the frequency 
ratio between the physical clock and the reference clock.  

 
Since the drift of a good clock is a number close to 1, it is conducive to intro-

duce a drift rate by 
 

Drift Rate = |Drift – 1| 
 
Typical clocks have a drift rate of 10-4 to 10-8. There exists no perfect clock 

with a drift rate of 0. The drift rate of a good clock will always stay in the interval 
contained in the specification document of the clock. If the drift rate of a clock 
leaves this specified interval, we say that the clock has failed. 

 
Timestamp (of an event):  The timestamp of an event is the state of a selected clock 
at the instant of event occurrence. 

 
Note that a timestamp is always associated with a selected clock. If we use the 

reference clock for time-stamping, we call the time-stamp absolute. 
 

Absolute Timestamp: An absolute timestamp of an event is the timestamp of this 
event that is generated by the reference clock. 
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If events are occurring close to each other, closer than the granularity of a digi-

tal clock, then an existing temporal order of the events cannot be established on 
the basis of the timestamps of the events.  

If two events are timestamped by two different clocks, the temporal order of the 
events can be established on the basis of their timestamps only if the two clocks 
are synchronized. 

 
Clock Ensemble: A collection of clocks, not necessary in the same physical loca-
tion, operated together in a coordinated way either for mutual control of their in-
dividual properties or to maximize the performance (time accuracy and frequency 
stability) and availability of a time-scale derived from the ensemble [24]. 

 
Clock synchronization establishes a global notion of time in a clock ensemble. 

A global notion of time is required in an SoS if the timestamps generated in one 
CS must be interpreted in another CS. Global time is an abstraction of physical 
time in a distributed computer system. It is approximated by a properly selected 
subset of the ticks of each synchronized local clock of an ensemble. A selected tick 
of a local clock is called a tick of the global time. For more information on the 
global notion of time, see [2] pp. 58-64. 

 
Precision: The precision of an ensemble of synchronized clocks denotes the maxi-
mum offset of respective ticks of the global time of any two clocks of the ensemble 
over the IoD. The precision is expressed in the number of ticks of the reference 
clock. 

 
The precision of an ensemble of clocks is determined by the quality of the os-

cillators, by the frequency of synchronization, by the type of synchronization algo-
rithm and by the jitter of the synchronization messages. Once the precision of the 
ensemble has been established, the granularity of the global time follows by ap-
plying the reasonableness condition. 

 
Reasonableness Condition: The reasonableness condition of clock synchroniza-
tion states that the granularity of the global time must be larger than the precision 
of the ensemble of clocks. 

 
We distinguish between two types of clock synchronization, internal clock syn-

chronization and external clock synchronization. 
 

Internal Clock Synchronization: The process of mutual synchronization of an en-
semble of clocks in order to establish a global time with a bounded precision. 

 
There are a number of different internal synchronization algorithms, both non-

fault tolerant or fault-tolerant, published in the literature (see e.g., [13], and many 
others).  These algorithms require the cooperation of all involved clocks. 
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External Clock Synchronization: The synchronization of a clock with an external 
time base such as GPS. 

 
Primary Clock:  A clock whose rate corresponds to the adopted definition of the 
second. The primary clock achieves its specified accuracy independently of cali-
bration. 

 
The term master clock is often used synonymously to the term primary clock. If 

the clocks of an ensemble are externally synchronized, they are also internally 
synchronized with a precision of |2A|, where A is the accuracy. 
 
Accuracy: The accuracy of a clock denotes the maximum offset of a given clock 
from the external time reference during the IoD, measured by the reference clock. 

 
The external time reference can be a primary clock or the GPS time. 

1.3.3   Time in an SoS 

In a recent report from the GAO to the US Congress [15] it is noted that a global 
notion of time is required in nearly all infrastructure SoSs, such as telecommuni-
cation, transportation, energy, etc. In an SoS, external clock synchronization is the 
preferred alternative to establish a global time, since the scope of an SoS is often 
ill defined and it is not possible to identify a priori all CSs that must be involved 
in the (internal) clock synchronization. A CS that does not share the global time 
established by a subset of the CSs cannot interpret the timestamps that are pro-
duced by this subset. 

The preferred means of clock synchronization in an SoS is the external syn-
chronization of the local clocks of the CSs with the standardized time signal dis-
tributed worldwide by satellite navigation systems, such as GPS, Galileo or 
GLONASS. The GPS system, consisting at least of 24 active satellites transmit pe-
riodic time signals worldwide that are derived from satellite-local atomic clocks 
and seldom differ from each other by more than 20 ns [14]. A GPS receiver de-
codes the signals and calculates, based on the offset among the signals, the posi-
tion and time at the location of the GPS receiver. The accuracy of the GPS time is 
better than 100 ns. The periodic time signal, generated by a GPS receiver, can be 
used to discipline a quartz oscillator. 

 
GPSDO (Global Positioning System Disciplined Oscillator): The GPSDO syn-
chronizes its time signals with the information received from a GPS receiver. 

 
With a well-synchronized GPSDO a drift rate in the order 10-10 can be 

achieved. 
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Holdover: The duration during which the local clock can maintain the required 
precision of the time without any input from the GPS.  

 
According to [16], p.62 a good GPSDO has deviated from GPS time by less 

than 100 μsec during the loss of GPS input of one week.  As long as the GPS is 
operating and its input is available, a GPSDO can provide an accuracy of the 
global time of better than 100 nsec. If there is the requirement that, the free run-
ning global time must not deviate by more than 1μsec, a holdover of up to one 
hour is achievable using a good GPSDO. 

The measurement of the position of an event on the timeline or of the duration 
between two events by a digital global time must take account of two types of un-
avoidable errors, the synchronization error caused by the finite precision of the 
global time and the digitalization error caused by the discrete time base. If the 
reasonableness condition is respected, the sum of these errors will be less than 2g, 
where g is the granularity of the global time. It follows that the true duration be-
tween two events dtrue lies in the following interval around the observed value dobs. 

 
(dobs-2g) < dtrue < (dobs +2g) 
 
The duration between events that are temporally ordered can be smaller than 

the granularity of a single clock. This situation is even worse if two different glob-
ally synchronized clocks observe the two different events. It is therefore impossi-
ble to establish the true temporal order of events in case the events are closer to-
gether than 2g. This impossibility result can give rise to inconsistencies about the 
perceived temporal order of two events in distributed system. 

These inconsistencies can be avoided, if a minimum distance between events is 
maintained, such that the temporal order of the events, derived from the 
timestamps of the events that have been generated by different clocks of a system 
with properly synchronized clocks is always the same. 

 
Sparse Time: A time-base in a distributed computer system where the physical 
time is partitioned into an infinite sequence of active and passive intervals. 

 
The active intervals can be enumerated by the sequence of natural numbers and 

this number can be assigned as the timestamp of an event occurring in an active 
interval. In order to establish consistency all events that occur in the same active 
interval of a sparse time are considered to have occurred simultaneously.  This 
procedure establishes consistency at the price of faithfulness, since the temporal 
order of events that are closer together than the distance between sparse events is 
lost. 

 
Sparse Events: Events that occur in the active interval of the sparse time. 
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Events that are in the SoC of a computer system with access to a global time, 
e.g., the start of sending a message, can be delayed until the next active interval 
and thus can be forced to be sparse events. 

 
Non-Sparse Events: Events that occur in the passive interval of the sparse time. 

 
Events that are outside the SoC of the computer system and are in the SoC of 

the environment cannot be forced to occur in the active intervals of the sparse time 
base, and can therefore be non-sparse events. 

If all observers of a non-sparse event agree, by the execution of an agreement 
protocol, that the observed non-sparse event should be moved to the same nearest 
active interval of the sparse time base, then the consistency of these events can be 
established at the price of a further reduced faithfulness. 

 
Time-aware SoS: A SoS is time-aware if its Constituent Systems (CSs) can use a 
global timebase in order to timely conduct output actions and consistently – within 
the whole SoS – establish the temporal order of observed events. 

1.4 Data and State 

Systems-of-Systems (SoSs) come about by the transfer of information of one Con-
stituent System (CS) to another CS.  But what is information? How is information 
related to data? After a thorough investigation of the literature about the funda-
mental concepts data and information it is concluded, that these terms are not 
well-defined in the domain of information science-see also the paper by C. Zins 
who asked a number of computer scientists about their meaning associated with 
the terms data-information-knowledge and published the divergent views reported 
to him in [16]. In this Section we will elaborate on the concepts of data and infor-
mation along the lines of reasoning expressed in [17]. 

1.4.1 Data and Information 

Let us start by defining the fundamental concepts of data and information [17]: 
 

Data: A data item is an artefact, a pattern, created for a specified purpose. 
 
In cyber space, data is represented by a bit-pattern.  In order to arrive at the 

meaning of the bit pattern, i.e., the information expressed by the bit pattern, we 
need an explanation that tells us how to interpret the given bit pattern. 

 
Information:  A proposition about the state of or an action in the world. 
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A proposition can be about factual circumstances or plans, i.e., schemes for 

action in the future.  In any case, information belongs to the category of con-
structs, i.e., non-physical entities in world three of Popper [8]. Sometimes the 
phrase semantic content is used as a synonym for information. 

 
Explanation: The explanation of the data establishes the links between data and 
already existing concepts in the mind of a human receiver or the rules for han-
dling the data by a machine. 

 
Since only the combination of data and an associated explanation can convey 

information, we form the new concept of an Itom that we consider the smallest 
unit that can carry information. 

 
Itom: An Itom (Information Atom) is a tuple consisting of data and the associated 
explanation of the data. 

 
The concept of an Itom is related to the concept of an infon introduced by Flo-

ridi [18]. However, the properties we assign to an Itom are different from the 
properties Floridi assigns to an infon. The concept of an Itom does not make any 
assumptions about the truthfulness of the semantic content, the information, in the 
Itom. We thus can attribute factual information as true information (correspond-
ence theory of truth [19]), misinformation (accidentally false) or disinformation 
(intentionally false), or just call it information if we do not know yet if it is true or 
false. It is often the case that only some time after data has been acquired it can be 
decided whether the information conveyed by the data is true or false (e.g., con-
sider the case of a value error of a sensor). 

When data is intended for a human receiver then the explanation must describe 
the data using concepts that are familiar to the intended human receiver. When da-
ta is intended for processing by a machine, the explanation consists of two parts, 
we call them computer instructions and explanation of purpose [17].  

The computer instructions tell the computer system how the data bit-string is 
partitioned into syntactic chunks and how the syntactic chunks have to be stored, 
retrieved, and processed by the computer.  This part of the explanation can thus be 
considered as a machine program for a (virtual) computer. Such a machine pro-
gram is also represented by a bit-string. We call the data bit-string object data and 
the instruction bit-string that explains the object data, meta data. 

A computer Itom thus contains digital object data and digital meta data. The 
recursion stops when the meta data is a sequence of well-defined machine instruc-
tions for the destined computer. In this case, the design of the computer serves as 
an explanation for the meaning of the data. 

The second part of the explanation of an Itom, the explanation of purpose, is 
directed to humans who are involved in the design and operation of the computer 
system, since the notion of purpose is alien to a computer system. The explanation 
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of purpose is part of the documentation of the cyber system and must be expressed 
in a form that is understandable to the human user/designer. 

To facilitate the exchange of information among heterogeneous computer sys-
tems in the Internet, markup languages, such as the Extensible Markup Language 
XML [20], that help to explain the meaning of data have been developed. Since in 
XML the explanation is separated from the data, the explanation can be adopted to 
the context of use of the data. Markup languages provide a mechanism to support 
an explanation of data. In many situations the explanation of the data is taken im-
plicitly from the context. 

When data is moved from one CS to another CS of an SoS, the context may 
change, implying that an explanation that is context-dependent changes as well. 
Take the example of temperature expressed as a number.  In one context (e.g., Eu-
rope) the number is interpreted as degrees Celsius, while in another context (e.g., 
the US) the number is interpreted as degrees Fahrenheit. If we do not change the 
number (the data) then the meaning of the Itom is changed when moving the data 
from one context to another context.  The neglected context sensitivity of data has 
caused accidents in SoSs [21]. 

An observation of a dynamic entity is only complete if the instant, the 
timestamp of making the observation, is recorded as part of the explanation. 

The timestamp of input data is determined by the termination instant of the 
sensing process. 

No timestamp is needed in the explanation when the properties of the observed 
entity are static. In the context of our work, we are mostly interested in dynamic 
properties of systems. 

1.4.2 State 

Many systems store information about their interactions with the environment 
(since the start of a system with a clean memory) and use this information to in-
fluence their future behaviour.  

 
State: The state of a system at a given instant is the totality of the information from 
the past that can have an influence on the future behaviour of a system. 

 
A state is thus a valued data structure that characterizes the condition of a sys-

tem at an instant. The concept of state is meaningless without a concept of time, 
since the distinction between past and future is only possible if the system is time-
aware. 

 
Stateless System: A system that does not contain state at a considered level of ab-
straction. 

 
Statefull System: A system that contains state at a considered level of abstraction. 
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The variables that hold the stored state in a statefull system are called state var-

iables. 
 

State Variable: A variable that holds information about the state. 
 

State Space: The state space of a system is formed by the totality of all possible 
values of the state variables during the IoD. 

 
Instantaneous State Space: The state space of a system is formed by the totality of 
all possible values of the state variables at a given instant. 

 
If we observe the progress of a system, we will recognize that the size of the 

instantaneous state space grows or shrinks as time passes.  The instantaneous state 
space has a relative minimum at the start and end of an atomic action. 

The size of the instantaneous state space is important if we want to restart a 
system after a failure (e.g., a corruption of the state by a transient fault). We have 
to repair the corrupted instantaneous state before we can reuse the system. Gener-
ally, the smaller the instantaneous state space at the instant of reintegration, the 
easier it is to repair and restart a system. 

Most control systems are cyclic or even periodic systems. 
 

Ground State: At a given level of abstraction, the ground state of a cyclic system is 
a state at an instant when the size of the instantaneous state space is at a minimum 
relative to the sizes of the instantaneous state spaces at all other instants of the 
cycle.  

 
We call the instant during the cycle of a cyclic system where the size of the in-

stantaneous state has a minimum the ground state instant. 
 

Ground State Instant: The instant of the ground state in a cyclic system. 
 
At the ground state instant all information of the past that is considered rele-

vant for the future behaviour should be contained in a declared ground state data 
structure. At the ground state instant no task may be active and all communication 
channels are flushed. Ground state instants are ideal for reintegrating components 
that have failed. 

 
Declared Ground State: A declared data structure that contains the relevant 
ground state of a given application at the ground state instant. 

 
The declared ground state is essential for system recovery. The declared 

ground state contains only of those ground state variables that are considered rele-
vant by the designer for the future operation of the system in the given application. 
Other ground state variables are considered non-relevant because they have only a 
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minor influence on the future operation of the system. The decision of whether an 
identified state variable is relevant or not relevant depends on a deep understand-
ing of the dynamics of an application. 

 
Concise State:  The state of a system is considered concise if the size of the de-
clared ground state is at most in the same order of magnitude as the size of the 
system's largest input message. 

 
Many control systems have a concise state.  There are other systems, such as 

data base systems that do not have a concise state—the size of the state of a data-
base system can be Gigabytes. 

In contrast to state variables that hold information about the state at an instant 
an event variable holds information about a change at an instant. 

 
Event Variable:  A variable that holds information about some change of state at 
an instant. 

1.5 Actions and Behaviour 

We can observe the dynamics of a system that consists of discrete variables by an 
event-based view or by a state-based view.   

 In the event-based view we observe the state of relevant state variables at the 
beginning of the observation and then record all events (i.e. changes of the state 
variables) and the time of occurrence of the events in a trace.  We can reconstruct 
the value of all state variables at any past instant of interest by the recorded trace. 
However, if the number of events that can happen is not bounded, the amount of 
data generated by the event-based view cannot be bounded. 

In the periodic state-based view (called sampling), we observe the values of 
relevant state variables at selected observation instants (the sampling points) and 
record these values of the state variables in a trace. The duration between two ob-
servation instants puts a limit on the amount of data generated by the state-based 
view. However, the price for this limit is the loss of fidelity in the trace. Events 
that happen within a duration that is shorter than the duration between the equidis-
tant observation instants may get lost. 

 
Sampling: The observation of the value of relevant state variables at selected ob-
servation instants. 

 
Most control systems use sampling to acquire information about the controlled 

object.  The choice of the duration between two observation instants, called the 
sampling interval, is critical for acquiring a satisfying image of the controlled ob-
ject. This issue is discussed extensively in the literature about control engineering 
[23]. 
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1.5.1 Actions 

In the following we introduce some concepts that allow us to describe the dynam-
ics of a computer system. 
 
Action: The execution of a program by a computer or a protocol by a communica-
tion system. 

 
An action is started at a specified instant by a start signal and terminates at a 

specified instant with the production of an end signal. 
 

Start signal:  An event that causes the start of an action. 
 

End signal: An event that is produced by the termination of an action. 
 
Between the start signal and end signal an action is active. 
 

Execution Time: The duration it takes to execute a specific action on a given com-
puter.  

 
The execution time depends on the performance of the available hardware and 

is also data dependent. 
 

Worst Case Execution Time (WCET): The worst-case data independent execution 
time required to execute an action on a given computer. 

 
There are two possible sources for a start signal of an action. 
 

Time-triggered (TT) Action:  An action where the start signal is derived from the 
progression of time. 

 
An action can also be started by the completion of the previous action or by 

some other event (e.g., the push of a start button). 
 

Event-triggered (ET) Action:  An action where the start signal is derived from an 
event other than the progression of time. 

 
We distinguish also between computational actions and communication ac-

tions. 
 

Computational Action: An action that is characterized by the execution of a pro-
gram by a machine. 
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Communication Action: An action that is characterized by the execution of a 
communication protocol by a communication system. 

 
In our model of an action we assume that at the start event an action reads in-

put data and state. At the end event an action produces output data and a new state. 
An action reads input data if the input data is still available after the action. An ac-
tion consumes input data if the input data record is unavailable after the consump-
tion by an action. 

An action writes output data, if an old version of the output data is overwritten 
by the output data generated by the action.  An action produces output data if a 
new unit of output data is generated by the action. 

 
Input Action:  An action that reads or consumes input data at an interface. 

 
Output Action: An action that writes or produces output data at an interface.  

 
We distinguish between actions that access the state of a system and those that 

do not. 
 

Stateless Action:  An action that produces output on the basis of input only and 
does not read, consume, write or produce state. 

 
Statefull action: An action that reads, consumes, writes or produces state. 

 
An action starts at the start signal and terminates by producing an end signal. 

In the interval <start signal, end signal> an action is active. While an action is ac-
tive, the notion of state is undefined. 

We can compose actions to form action sequences. 
 

Action Sequence: A sequence of actions, where the end-signal of a preceding ac-
tion acts as the start signal of a following action. 

 
An action sequence is often called a process. 
 

Activity Interval: The interval between the start signal and the end signal of an ac-
tion or a sequence of related actions. 

 
An action at a given level of abstraction, e.g., the execution of a program, can 

be decomposed into sub-actions.  The decomposition ends when the internal be-
haviour of a sub-action is of no concern. 

 
Atomic Action: An atomic action is an action that has the all-or-nothing property. 
It either completes and delivers the intended result or does not have any effect on 
its environment. 
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Atomic actions are related to the notion of a component introduced above: nei-
ther the internals of components (from the point of view of structure) nor the in-
ternals of an atomic action (from the point of view of behaviour) are of interest. 

 
Irrevocable Action: An action that cannot be undone. 

 
An irrevocable action has a lasting effect on the environment of a system. For 

example, consider an output action that triggers an airbag in a car. 
 

Idempotent Action: An action is idempotent if the effect of executing it more than 
once has the same effect as of executing it only once. 

 
For example, the action move the door to 45 degrees is idempotent, while the 

action move the door by five degrees is not idempotent. Idempotent actions are of 
importance in the process of recovery after a failure. 

We can combine computational action and communication actions to form a 
transaction. 

 
Transaction: A related sequence of computational actions and communication ac-
tions.  

 
Real-Time (RT) Transaction:  a time-bounded transaction. 

 
In a control system the duration of the RT-transaction that starts with the ob-

servation of the controlled object and terminates with the output of the result to an 
actuating device has an effect on the quality of control. 

 
Transaction Activity Interval: The interval between the start signal and the end 
signal of a transaction. 

1.5.2 Behaviour 

The behaviour of a system-the observable traces of activity at the system interfac-
es-is of utmost interest to a user. 
 
Function:  A function is a mapping of input data to output data. 
 
Behaviour: The timed sequence of the effects of input and output actions that can 
be observed at an interface of a system. 

 
The effect of a consuming input action is the consumption of the input data 

record, while the effect of a reading input action does not change the input data 
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and therefore has no observable effect. This is not true at the output side. Both, a 
writing output action and a producing output action have an observable effect. 

 
Deterministic Behaviour: A system behaves deterministically if, given an initial 
state at a defined instant and a set of future timed inputs, the future states, the val-
ues and instants of all future outputs are entailed. 

 
A system may exhibit an intended behaviour or it may demonstrate a behav-

iour that is unintended (e.g., erroneous behaviour). 
 

Service: The intended behaviour of a system. 
 

The service specification must specify the intended behaviour of a system. In 
non real-time systems, the service specification focuses on the data aspect of the 
behaviour. In real-time systems the precise temporal specification of the service is 
an integral part of the specification.  

 
Capability: Ability to perform a service or function. 

1.6 Communication 

It is the basic objective of a communication system to transport a message from a 
sender to one or more receivers within a given duration and with a high dependa-
bility.  By high dependability we mean that by the end of a specified time window 
the message should have arrived at the receivers with a high probability, the mes-
sage is not corrupted, either by unintentional or intentional means, and that the se-
curity of the message (confidentiality, integrity, etc.) has not been compromised. 
In some environments e.g., the Internet of Things (IoT), there are other constraints 
on the message transport, such as, e.g., minimal energy consumption. 

In an SoS the communication among the CSs by the exchange of messages is 
the core mechanism that realizes the integration of the CSs.  It is imperative to 
elaborate on the concepts related to the message exchange with great care. 

Since communication requires that diverse senders and receivers agree on the 
rules of the game, all involved partners must share these rules and their interpreta-
tion. 

 
Communication Protocol: The set of rules that govern a communication action. 

 
In the past fifty years, hundreds of different communication protocols that of-

ten only differ in minor aspects, have been developed. Many of them are still in 
use in legacy systems.  This diversity of protocols hinders the realization of the 
economies of scale by the semiconductor industry.   
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We distinguish between two classes of protocols: basic transport protocols and 
higher-level protocols. The basic transport protocols are concerned with the 
transport of data from a sender to one or more receivers. The higher-level proto-
cols build on these basic transport protocols to provide more sophisticated ser-
vices.   

1.6.1 Messages 

Message: A data structure that is formed for the purpose of the timely exchange of 
information among computer systems. 

 
We have introduced the word timely in this definition to highlight that a mes-

sage combines concerns of the value domain and of the temporal domain in a sin-
gle unit. 

In the temporal domain, two important instants must be considered. 
 

Send Instant:  The instant when the first bit of a message leaves the sender. 
Arrival Instant: The instant when the first bit of a message arrives at the receiver. 
Receive Instant: The instant when the last bit of a message arrives at the receiver. 
Transport Duration: The duration between the send instant and the receive in-
stant. 

 
Messages can be classified by the strictness of the temporal requirements.  
In real-time communication systems strict deadlines that limit the transport du-

ration must be met by the communication system. 
From the point of view of the value domain, a message normally consists of 

three fields: a header, a data field, and a trailer.  The header contains transport in-
formation that is relevant for the transport of the message by the communication 
system, such as the delivery address, priority information etc. The data field con-
tains the payload of a message that, from the point of view of transport, is an un-
structured bit vector. The trailer contains redundant information that allows the 
receiver to check whether the bit vector in the message has been corrupted during 
transport. Since a corrupted message is discarded, we can assume (as the fault 
model on a higher level) that the communication system delivers either a correct 
message or no message at all. 

 



42  

1.6.2 Basic Transport Service 

A basic transport service transfers a message from a sender to one or more receiv-
ers.  We limit our discussion to three different transport protocol classes that are 
representative for a number of important protocols in each class: 

• Datagram 
• PAR Message 
• TT Message 

 
Datagram:  A best effort message transport service for the transmission of spo-
radic messages from a sender to one or many receivers. 

 
A datagram is a very simple transport service.  A datagram is forwarded along 

the best available route from a sender to one or a number of receivers. Every data-
gram is considered independent from any other datagram.  It follows that a se-
quence of datagrams can be reordered by the communication system. If a data-
gram is corrupted or lost, no error will be indicated. 

 
PAR-Message: A PAR-Message (Positive Acknowledgment or Retransmission) is 
an error controlled transport service for the transmission of sporadic messages 
from a sender to a single receiver. 

 
In the positive acknowledgment-or-retransmission (PAR) protocol a sender 

waits for a given time until it has received a positive acknowledgement message 
from the receiver indicating that the previous message has arrived correctly. In 
case the timeout elapses before the acknowledgement message arrives at the send-
er, the original message is retransmitted. This procedure is repeated n-times (pro-
tocol specific) before a permanent failure of the communication is reported to the 
high-level sender. The jitter of the PAR protocol is substantial, since in most cases 
the first try will be successful, while in a few cases the message will arrive after n 
times the timeout value plus the worst-case message transport latency. Since the 
timeout value must be longer than two worst-case message transport latencies (one 
for the original message and one for the acknowledgment) the jitter of PAR is 
longer than (2n) worst-case message-transport latencies ([2], p.169).  In addition 
to this basic PAR protocol one can find many protocol variants that refine this 
basic PAR protocol. 

 
TT-Message: A TT-Message (Time-Triggered) is an error controlled transport 
service for the transmission of periodic messages from a sender to many receivers 
where the send instant is derived from the progression of the global time. 

 
A time-triggered message is a periodic message that is transported from one 

sender to one or more receivers according to a pre-planned schedule. Since it is 
known a priori at the sender, the receiver and the communication system when a 
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time-triggered message is expected to arrive, it is possible to avoid conflicts and 
realize a tight phase alignment between an incoming and an outgoing message in a 
communication system switch. The error detection of a TT-message is performed 
by the receiver on the basis of his a priori knowledge about the expected arrival 
time of a message. The error detection latency is determined by the precision of 
the global time. 

Table 1-2 reports on the main characteristics of the transport services surveyed 
above. Although the basic datagram service does not provide temporal error detec-
tion, a-posteriori error detection of datagram messages can be achieved by putting 
the send timestamp in the message, given that synchronized clocks are available. 

It is up to the application to decide which basic transport protocol is most ap-
propriate to integrate the CSs into an SoS. 

1.6.3 High-Level Protocols 

The transport protocols form the basis for the design of higher-level protocols, 
such as protocols for file transmission and file sharing, device detection and nu-
merous other tasks.  It is beyond the scope of this conceptual model to discuss the 
diversity of higher-level protocols. In the latter part of the AMADEOS project we 
will look at some of the higher level protocols that are of particular relevance in 
SoSs. 

However, it must be considered that the temporal properties of the basic 
transport protocol determine to a significant extent the temporal properties of the 
high-level protocols. 

Characteristic Datagram PAR-Message TT- Message 
Send Instants sporadic sporadic periodic 
Data/Control Flow uni-directional bi-directional uni-directional 
Flow Control none explicit implicit 
Message Handling R/W or C/P C/P R/W 

Transport Duration a priori un-
known 

upper limit 
known tight limit known 

Jitter of the Message unknown large small 
Temporal Error Detection none at Sender at Receiver 
Example UDP TCP/IP TT-Ethernet 

Table 1-2: Characteristics of transport services 
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1.6.4 Stigmergy 

Constituent systems (CSs) that form the autonomous subsystems of Systems-of-
Systems (SoSs) can exchange information items via two different types of chan-
nels: the conventional communication channels for the transport of messages and 
the stigmergic channels that transport information via the change and observation 
of states in the environment. The characteristics of the stigmergic channels, which 
often close the missing link in a control loop can have a decisive influence on the 
system-level behaviour of an SoS and the appearance of emergent phenomena 
[26].  
 
Stigmergy: Stigmergy is a mechanism of indirect coordination between agents or 
actions. The principle is that the trace left in the environment by an action stimu-
lates the performance of a next action, by the same or a different agent. 

 
The concept of stigmergy has been first introduced in the field of biology to 

capture the indirect information flow among ants working together [27] [28]. 
Whenever an ant builds or follows a trail, it deposits a greater or lesser amount of 
pheromone on the trail, depending on whether it has successfully found a prey or 
not. Due to positive feedback, successful trails—i.e., trails that lead to an abundant 
supply of prey—end up with a high concentration of pheromone. The running 
speed of the ants on a trail is a non-linear function of the trail-pheromone concen-
tration.  Since the trail-pheromone evaporates—we call this process environmental 
dynamics—unused trails disappear autonomously as time progresses. 

 
Environmental Dynamics: Autonomous environmental processes that cause a 
change of state variables in the physical environment.  

 
The impact of environmental dynamics on the stigmergic information ensures 

that the captured itoms are well-aligned with the current state of the physical envi-
ronment. No such alignment takes place if itoms are transported on cyber chan-
nels. 

 
Stigmergic Information Flow: The information flow between a sending CS and a 
receiving CS where the sending CS initiates a state change in the environment and 
the receiving CS observes the new state of the environment.  

 
If the output action of the sender and the input action of the receiver are clos-

ing a stigmergic link of a control loop, then the synchronization of the respective 
output and input actions and the transfer function of the physical object in the en-
vironment determine the delay of the stigmergic link and are thus of importance 
for the performance and stability of the control loop. The synchronization of the 
respective output and input actions requires the availability of a global time base 
of known precision. 
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A good example for a stigmergic information flow is the exchange of infor-
mation among the drivers of cars on a busy intersection. 

1.7  Interfaces 

Central to the integration of systems are their interfaces, i.e., their points of inter-
action with each other and the environment over time. A point of interaction al-
lows for an exchange of information among connected entities. 

 
Interaction: An interaction is an exchange of information at connected interfaces. 

 
The concept of a channel represents this exchange of information at connected 

interfaces. 
 

Channel: A logical or physical link that transports information among systems at 
their connected interfaces. 

 
A channel is implemented by a communication system (e.g., a computer net-

work, or a physical transmission medium) which might affect the transported in-
formation, for example by introducing uncertainties in the value/time domains. In 
telecommunications a channel model describes all channel effects relevant to the 
transfer of information. 

 
Interface Properties: The valued attributes associated with an interface. 

 
Interface Layer: An abstraction level under which interface properties can be dis-
cussed. 
 
Cyber Space: Cyber space is an abstraction of the Universe of Discourse (UoD) 
that consists only of information processing systems and cyber channels to realize 
message-based interactions. 
 
Environmental Model: A model that describes the behavior of the environment 
that is relevant for the interfacing entities at a suitable level of abstraction. 

 
Note that abstraction is always associated with a given specified purpose. 
 
Interface properties can be characterized at different interface layers: 
 

• Cyber-Physical Layer: At the cyber-physical layer information is represent-
ed as data items (e.g., a bit-pattern in cyberspace, or properties of 
things/energy in the physical world) that are transferred among interacting 
systems during the IoD. 
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• Itom Layer: In this layer we are concerned with the timely exchange of 
Itoms by unidirectional channels across CS interfaces. 

• Service Layer: At the service layer, the interface exposes the system behav-
ior structured as capabilities. In contrast to the informational layer, Itom 
channels are not individually described at the service layer, but only the inter-
dependencies between the exchanged Itoms are specified. 

Each system’s point of interaction is an interface that (1) together with all other 
system interfaces establishes a well-defined boundary of the system, and (2) 
makes system services to other systems or the environment available. Consequent-
ly, any possibly complex internal structure that is responsible for the observable 
system behaviour can be reduced to the specification of the system interfaces [2]. 

Interface Specification: The interface specification defines at all appropriate in-
terface layers the interface properties, i.e., what type of, how, and for what pur-
pose information is exchanged at that interface. 

1.7.1 System-of-Systems Interfaces 

Interfaces within Constituent Systems (CSs) that are not exposed to other CSs or 
the CS’s environment are internal. 

 
Internal Interface: An interface among two or more subsystems of a Constituent 
System (CS). 
External Interface: A Constituent System (CS) is embedded in the physical envi-
ronment by its external interfaces. 

 
We distinguish three types of external CS interfaces: Time-Synchronization In-

terface (TSI), Relied Upon Interfaces (RUIs) and utility interfaces. RUIs have 
been defined in Section 1.2.3. 

 
Time-Synchronization Interface (TSI): The TSI enables external time-
synchronization to establish a global timebase for time-aware CPSoSs. 

 
Utility Interface: An interface of a CS that is used for the configuration, the con-
trol, or the observation of the behaviour of the CS. 

 
The purposes of the utility interfaces are to (1) configure and update the sys-

tem, (2) diagnose the system, and (3) let the system interact with its remaining lo-
cal physical environment which is unrelated to the services of the SoS. In 
acknowledgement of these three purposes we introduce the utility interfaces: Con-
figuration Interface (C-Interface), Diagnostic Interface (D-Interface), and Local 
I/O Interface (L-Interface). 
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Configuration and Update Interface (C-Interface): An interface of a CS that is 
used for the integration of the CS into an SoS and the reconfiguration of the CS's 
RUIs while integrated in a SoS. 

 
The C-Interface is able to modify the interface specification of RUIs. If we can 

rely on a SoS where the CSs have access to a global time base, we can allow non-
backward compatible updates (i.e., discontinuous evolution) and more importantly 
support time-controlled SoS evolution. A predefined validity instant which is part 
of the interface specification determines when all affected CSs need to use the up-
dated RUI specification and abandon the old RUI specification. This validity in-
stant should be chosen appropriately far in the future (e.g., in the order of the up-
date/maintenance cycle of all impacted CSs). 

 
Validity Instant: The instant up until an interface specification remains valid and 
a new, possibly changed interface specification becomes effective. 

 
Service providers guarantee that the old interface specification remains active 

until the validity instant such that service consumers can rely on them up to the re-
configuration instant. 

 
Diagnosis Interface (D-Interface): An interface that exposes the internals of a 
Constituent System (CS) for the purpose of diagnosis. 

 
The D-Interface is an aid during CS development and the diagnosis of CS in-

ternal faults. 
 

Monitoring CS: A CS of an SoS that monitors the information exchanges across 
the RUMIs of an SoS or the operation of selected CSs across the D-Interface. 

 
There are interfaces among the components of a CS which are hidden behind 

the RUI of the CS and which are not visible from the outside of a CS, e.g., the in-
terface between a physical sensor and the system that captures the raw data, per-
forms data conditioning and presents the refined data at the RUMI. 

 
Local I/O Interface (L-Interface): An interface that allows a Constituent System 
(CS) to interact with its surrounding physical reality or other CSs that is not ac-
cessible over any other external interface. 

 
Some external interfaces are always connected with respect to the currently ac-

tive operational mode of a correct system. 
 

Connected Interface: An interface that is connected to at least one other interface 
by a channel. 
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A disconnected external interface might be a fault (e.g., a loose cable that was 
supposed to connect a joystick to a flight control system) which causes possibly 
catastrophic system failure. 

In a SoS the CSs may connect their RUIs according to a RUI connecting strate-
gy that searches for and connects to RUIs of other CSs. 

 
RUI connecting strategy: Part of the interface specification of RUIs is the RUI 
connecting strategy which searches for desired, w.r.t. connections available, and 
compatible RUIs of other CSs and connects them until they either become unde-
sirable, unavailable, or incompatible. 

 
One important class of faults that might occur at connected interfaces is related 

to compatibility. 
 

Property Mismatch: A disagreement among connected interfaces in one or more 
of their interface properties. 

 
Connection System/Gateway Component/Wrapper: A new system with at least two 
interfaces that is introduced between interfaces of the connected component 
systems in order to resolve property mismatches among these systems (which 
will typically be legacy systems), to coordinate multicast communication, and/or 
to introduce emerging services. 

1.8 Evolution and Dynamicity 

Large scale Systems-of-Systems (SoSs) tend to be designed for a long period of 
usage (10 years+). Over time, the demands and the constraints put on the system 
will usually change, as will the environment in which the system is to operate. The 
AMADEOS project studies the design of systems of systems that are not just ro-
bust to dynamicity (short term change), but to long term changes as well. This 
Section addresses a number of terms related to the evolution of SoSs. 

  
Evolution: Process of gradual and progressive change or development, resulting 
from changes in its environment (primary) or in itself (secondary).  

 
Although the term evolution in other contexts does not have a positive or nega-

tive direction, in the SoSs context, evolution refers to maintaining and optimizing 
the system - a positive direction, therefore. 

 
Managed evolution: Evolution that is guided and supported to achieve a certain 
goal. 
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For SoSs, evolution is needed to cope with changes. Managed evolution refers 
to the evolution guidance. The goal can be anything like performance, efficiency,  
etc. The following two definitions further detail managed evolution for SoSs: 

 
Managed SoS evolution: Process of modifying the SoS to keep it relevant in face of 
an ever-changing environment. 

 
This is Primary evolution; examples of environmental changes include new 

available technology, new business cases / strategies, new business processes, 
changing user needs, new legal requirements, compliance rules and safety regula-
tions, changing political issues, new standards, etc. 

 
Unmanaged SoS evolution: Ongoing modification of the SoS that occurs as a re-
sult of ongoing changes in (some of) its CSs. 

 
This is Secondary evolution; examples of such internal changes include chang-

ing circumstances, ongoing optimization, etc. This type of evolution may lead to 
unintended emergent behaviour, e.g., due to some kind of “mismatch” between 
Constituent Systems (CSs) (see Section 1.2.3).  

 
Local Evolution: Local evolution only affects the internals of a Constituent System 
(CS) which still provides its service according to the same and unmodified Relied 
Upon Interface (RUI) specification. 
 
Global Evolution: Global evolution affects the SoS service and thus how CSs in-
teract. Consequently, global evolution is realized by changes to the Relied Upon 
Interface (RUI) specifications. 
 
Evolutionary Performance: A quality metric that quantifies the business value and 
the agility of a system. 
 
Evolutionary Step: An evolutionary change of limited scope. 
 
Minor Evolutionary Step: An evolutionary step that does not affect the Relied Up-
on Interface (RUI) Itom Specification (I-Spec) and consequently has no effects on 
SoS dynamicity or SoS emergence. 
 
Major Evolutionary Step: An evolutionary step that affects the Relied Upon Inter-
face (RUI) Itom specification and might need to be considered in the management 
of SoS dynamicity and SoS emergence. 

 
Managed SoS evolution is due to changes in the environment. The goal of 

managed evolution in AMADEOS is maximizing business value, while maintain-
ing high SoS agility: 

 



50  

Business value: Overarching concept to denote the performance, impact, useful-
ness, etc. of the functioning of the SoS. 
 
Agility (of a system): Quality metric that represents the ability of a system to effi-
ciently implement evolutionary changes. 

 
Quantizing business value is difficult since it is a multi-criteria optimization 

problem. Aiming for Pareto optimality, various aspects (measured by utility func-
tions) are weighted on a case-by-case basis. 

System performance is a key term in the concept of business value: 
 

System performance: The combination of system effectiveness and system efficien-
cy. 
System effectiveness: The system's behaviour as compared to the desired behav-
iour. 
System efficiency: The amount of resources the system needs to act in its environ-
ment. 

 
For the last definition, it is important to understand what system resources are 

in the area of SoS: 
 

System resources: Renewable or consumable goods used to achieve a certain 
goal. E.g., a CPU, CPU-time, electricity. 

 
Dynamicity of a system: The capability of a system to react promptly to changes in 
the environment. 

 
Linked to dynamicity and to the control strategy shifting from a central to an 

autonomous paradigm, is the concept of reconfigurability. 
 

Reconfigurability: The capability of a system to adapt its internal structure in or-
der to mitigate internal failures or to improve the service quality. 

 
We conclude the discussion presenting fundamentals on governance, because 

governance-related facts may have impact on SoS evolution. 
 
Authority: The relationship in which one party has the right to demand changes in 
the behaviour or configuration of another party, which is obliged to conform to 
these demands. 
 
(Collaborative) SoS Authority: An organizational entity that has societal, legal, 
and/or business responsibilities to keep a collaborative SoS relevant to its stake-
holders. To this end it has authority over RUI specifications and how changes to 
them are rolled out. 
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For the purpose of rolling out changes to RUI specifications, the SoS authority 
needs the capabilities to measure the state of the implemented changed RUI speci-
fications, and to give incentives to motivate CSs to implement the RUI specifica-
tion changes. 
 
Incentive:  Some motivation (e.g., reward, punishment) that induces action. 

1.9 System design and tools 

SoSs can have a very complex architecture. They are constituted by several CSs 
which interact with each other. Due to their complexity, well defined design 
methodologies should be used, in order to avoid that some SoS requirement is not 
fulfilled and to ease the maintainability of the SoS. 

1.9.1 Architecture 

The architecture of a system can have some variants or even can vary during its 
operation. We recognize this adaptability of a system architecture by the following 
three concepts.  

 
Evolvable architecture: An architecture that is adaptable and then is able to in-
corporate known and unknown changes in the environment or in itself. 

 
Flexible architecture: Architecture that can be easily adapted to a variety of fu-
ture possible developments. 

 
Robust architecture: Architecture that performs sufficiently well under a variety of 
possible future developments. 

 
The architecture then involves several components which interact with each 

other. The place where they interact is defined as interface. 
During the development lifecycle of a system, we start from conceptual 

thoughts which are then translated into requirements, which are then mapped into 
an architecture. The process that brings designers to define a particular architec-
ture of the system is called design. 

 
Design: The process of defining an architecture, components, modules and inter-
faces of a system to satisfy specified requirement. 

 
In the AMADEOS context, design is a verb, architecture is a noun. The people 

who perform the design are designers. 
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Designer: An entity that specifies the structural and behavioral properties of a de-
sign object. 

 
There are several methodologies to design a system. 
 

Hierarchical Design: A design methodology where the envisioned system is in-
tended to form a holarchy or formal hierarchy. 

 
Top Down Design: A hierarchical design methodology where the design starts at 
the top of the holarchy or formal hierarchy. 

 
Bottom Up Design: A hierarchical design methodology where the design starts at 
the bottom of the holarchy or formal hierarchy. 

 
Meet-in-the-Middle Design: A hierarchical design methodology where the top 
down design and the bottom up design are intermingled. 

 
This methodology is useful to decrease the degree of the complexity of a sys-

tem and to ease its maintainability. In particular, in the hierarchical design the sys-
tem can be split in different subsystems that can be grouped in modules. 

 
Module: A set of standardized parts or independent units that can be used to con-
struct a more complex structure. 

 
The modularity is the technique that combines these modules in order to build 

a more complex system. 
 

Modularity: Engineering technique that builds larger systems by integrating mod-
ules. 

 
In the context that an SoS shall deal with evolving environments, then also de-

sign methodologies focused on evolution shall be defined. 
 

Design for evolution: Exploration of forward compatible system architectures, i.e. 
designing applications that can evolve with an ever-changing environment. Prin-
ciples of evolvability include modularity, updateability and extensibility. Design 
for evolution aims to achieve robust and/or flexible architectures. 

 
Examples for design for evolution are Internet applications that are forward 

compatible given changes in business processes and strategies as well as in tech-
nology (digital, genetic, information-based and wireless). 

In the context of SoS, design for evolution can be reformulated in the follow-
ing manner. 
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Design for evolution in the context of SoS: Design for evolution means that we un-
derstand the user environment and design a large SoS in such a way that expected 
changes can be accommodated without any global impact on the architecture. 
'Expected' refers to the fact that changes will happen, it does not mean that these 
changes themselves are foreseeable. 

 
In addition, during the system development lifecycle some activities to verify 

if the architecture developed during the design process is compliant and if it ful-
fills the requirements of the system are foreseen. Verification of design is an im-
portant activity especially in critical systems and several methodologies are de-
fined to perform it. In particular there is a methodology which has in mind 
verification since the design phase. 

 
Design for testability: The architectural and design decisions in order to enable to 
easily and effectively test our system. 

 
Then we have two methodologies to perform design verification: 
 

Design inspection: Examination of the design and determination of its conformity 
with specific requirements. 

 
Design walkthrough: Quality practice where the design is validated through peer 
review. 

 
In order to perform all these activities some useful tools can be used to help the 

designers and verifiers job. 

1.10 Dependability and Security 

We report the basic concepts related to dependability, security and multi-
criticality. These are important properties for System-of-Systems (SoSs) since 
they impact availability/continuity of operations, reliability, maintainability, safe-
ty, data integrity, data privacy and confidentiality. Definitions for dependability 
and security concepts can be very subtle; slight changes in wording can change the 
entire meaning. Thus, we have chosen to refer to basic concepts and definitions 
that are widely used in the dependability and security community.  

The reference taxonomy for the basic concepts of dependability applied to 
computer-based systems can be found in [3]. It is the result of a work originated in 
1980, when a joint committee on “Fundamental Concepts and Terminology” was 
formed by the TC on Fault–Tolerant Computing of the IEEE CS1 and the IFIP 
WG 10.4 “Dependable Computing and Fault Tolerance” with the intent of merg-
ing the distinct but convergent paths of the dependability and security communi-
ties. 
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In addition to the work of Laprie [3] [4], we also refer to definitions from the 
CNSS Instruction No. 4009: National Information Assurance (IA) Glossary [1]. 
The CNSSI 4009 was created through a working group with the objective to create 
a standard glossary of security terms to be used across the U.S. Government, and 
this glossary is periodically updated with new terms. We also cite security terms 
as defined by Ross Anderson’s “Security Engineering: A Guide to Building De-
pendable Distributed Systems” [5] and Bruce Schneier’s “Applied Cryptography” 
[6]. 

1.10.1 Threats: Faults, Errors, and Failures 

The threats that may affect a system during its entire life from a dependability 
viewpoint are failures, errors and faults. Failures, errors and faults are defined in 
the following, together with other related concepts. 

 
Failure: The actual system behaviour deviation from the intended system behav-
iour. 
Error: Part of the system state that deviated from the intended system state and 
could lead to system failure. 

 
It is important to note that many errors do not reach the system’s external inter-

faces, hence do not necessarily cause system failure. 
 

Fault: The adjudged or hypothesized cause of an error; a fault is active when it 
causes an error, otherwise it is dormant. 

 
The prior presence of vulnerability, i.e., a fault that enables the existence of an 

error to possibly influence the system behaviour, is necessary such that a system 
fails.  

The creation and manifestation mechanism of faults, errors, and failures is 
called “chain of threats”. The chain of threats summarizes the causality relation-
ship between faults, errors and failures. A fault activates (fault activation) in com-
ponent A and generates an error; this error is successively transformed into other 
errors (error propagation) within the component (internal propagation) because of 
the computation process. When some error reaches the service interface of com-
ponent A, it generates a failure, so that the service delivered by A to component B 
becomes incorrect. The ensuing service failure of component A appears as an ex-
ternal fault to component B. 
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1.10.2 Dependability, Attributes, and Attaining Dependability 

Dependability (original definition): The ability to deliver service that can justifi-
ably be trusted. 

 
The above definition stresses the need for justification of “trust”, so an alternate 

definition is given: 
 

Dependability (new definition): The ability to avoid failures that are more fre-
quent and more severe than is acceptable. 

 
This last definition has a twofold role, because in addition to the definition it-

self it also provides the criterion for deciding whether the system is dependable or 
not. Dependability is an integrating concept that encompasses the following de-
pendability attributes: 

 
Availability: Readiness for service. 
Reliability: Continuity of service. 
Maintainability: The ability to undergo modifications and repairs. 
Safety: The absence of catastrophic consequences on the user(s) and on the envi-
ronment. 
Integrity: The absence of improper system state alterations. 

 
A specialized secondary attribute of dependability is robustness. 
 

Robustness: Dependability with respect to external faults (including malicious ex-
ternal actions). 

 
The means to attain dependability (and security) are grouped into four major 

dependability categories: 
 

Fault prevention: The means to prevent the occurrence or introduction of faults. 
 
Fault prevention is part of general engineering and aims to prevent the intro-

duction of faults during the development phase of the system, e.g. improving the 
development processes. 

 
Fault tolerance: The means to avoid service failures in the presence of faults. 

 
Fault tolerance aims to avoid the occurrence of failures by performing error de-

tection (identification of the presence of errors) and system recovery (it transform 
a system state containing one or more errors into a state without detected errors 
and without faults that can be activated again) over time. 
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Fault removal: The means to reduce the number and severity of faults. 
 
Fault removal can be performed both during the development phase, by per-

forming verification, diagnosis and correction, and during the operational life, by 
performing corrective and preventive maintenance actions. 

 
Fault forecasting: The means to estimate the present number, the future incidence, 
and the likely consequences of faults. 

 
Fault forecasting is conducted by performing an evaluation of system behav-

iour with respect to fault occurrence of activation, using either qualitative evalua-
tions (identifying, classifying and ranking the failure modes) or quantitative ones 
(evaluating in terms of probabilities the extent to which some of the attributes are 
satisfied). 

The relationship among the above mentioned means are the following: fault 
prevention and fault tolerance aim to provide the ability to deliver a service that 
can be trusted, while fault removal and fault forecasting aim to reach confidence 
in that ability by justifying that the functional and the dependability and security 
specifications are adequate and that the system is likely to meet them. 

1.10.3 Security  

Continuing with the concepts defined by Laprie [4], when addressing security an 
additional attribute needs to be considered: confidentiality. 

 
Confidentiality: The absence of unauthorized disclosure of information. 

 
Based on the above definitions, security is defined as follows: 
 

Security: The composition of confidentiality, integrity, and availability; security 
requires in effect the concurrent existence of availability for authorized actions 
only, confidentiality, and integrity (with “improper” meaning “unauthorized”). 

 
We also consider the security definitions proposed by the CNSSI 4009 [1], 

which discusses security in terms of risk management. In this glossary, security is 
a condition that results from the establishment and maintenance of protective 
measures that enable an enterprise to perform its mission or critical functions de-
spite risks posed by threats to its use of information systems. 

 
Threat: Any circumstance or event with the potential to adversely impact organi-
zational operations (including mission, functions, image, or reputation), organiza-
tional assets, individuals, or other organizations through a system via unauthor-
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ized access, destruction, disclosure, modification of information, and/or denial of 
service.  

 
A threat can be summarised as a failure, error or fault. 
 

Vulnerability: Weakness in a system, system security procedures, internal con-
trols, or implementation that could be exploited by a threat.  

 
Vulnerabilities can be summarised as internal faults that enable an external ac-

tivation to harm the system [4]. 
Risk is defined in terms of the impact and likelihood of a particular threat.   

 
Risk: A measure of the extent to which an organization is threatened by a potential 
circumstance or event, and typically a function of 1) the adverse impacts that 
would arise if the circumstance or event occurs; and 2) the likelihood of occur-
rence.   

 
Encryption using cryptography can be used to ensure confidentiality. The fol-

lowing definitions from Bruce Schneier’s “Applied Cryptography” [6], have been 
adapted to incorporate our definitions of data and information. 

 
Encryption: The process of disguising data in such a way as to hide the infor-
mation it contains.  

 
Cryptography: The art and science of keeping data secure. 

 
Data that has not been encrypted is referred to as plaintext or cleartext. Data 

that has been encrypted is called ciphertext. 
 

Decryption: The process of turning ciphertext back into plaintext. 
 
Encryption systems generally fall into two categories, asymmetric and symmet-

ric, that are differentiated by the types of keys they use. 
 

Key: A numerical value used to control cryptographic operations, such as decryp-
tion and encryption. 

 
Symmetric Cryptography: Cryptography using the same key for both encryption 
and decryption.   

 
Public Key Cryptography (asymmetric cryptography): Cryptography that uses a 
public-private key pair for encryption and decryption. 
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1.11 Conclusions 

The need of understanding and explaining the SoS in a clear way is a relevant 
requirement in order to reduce the cognitive complexity in SoS engineering. The 
scope of the set of concepts presented in this Chapter is to provide a common ba-
sis for the understanding and the description of Systems of Systems; we hope that 
such SoS concepts contribute towards such needed clarification. 

Finally, we conclude mentioning that SoS engineering is closely related to 
many other IT domains by looking at the glue that is needed to integrate the di-
verse systems, for example Cyber-Physical Systems (CPSs), embedded systems, 
Internet of Things (IoT), Big Data. The concepts introduced in this Chapter and in 
the AMADEOS project to describe the properties of an SoS can thus form a foun-
dation of a conceptual model in these other domains as well.  
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2.1 Introduction 

In the past twenty years the view on how we engineer, operate and evolve in-
dependently owned and managed Cyber-Physical Systems (CPSs) in order to real-
ize and optimize complex economical processes has started to change. Advances 
in telecommunications and automation accompanied by standardization efforts re-
sulted in sophisticated cross-domain information and communication technologies 
(e.g., the Internet of Things (IoT) [38] [45], elastic processing and storage clouds, 
Web Services) that allow for the integration of more and more existing and previ-
ously technologically isolated CPSs. These legacy systems became cooperating 
Constituent Systems (CSs) of evolving Cyber-Physical Systems-of-Systems 
(CPSoSs) and – by their physical and cyber interaction – give rise to new emer-
gent services that cannot be realized by any single or small number of CSs alone. 

One prototypical example of a CPSoS is a smart grid [50] where the interacting 
CPSs (producers, consumers, and prosumers where, for example, electricity con-
suming households are equipped with electricity producing photovoltaic power 
plants) cooperate to optimize energy distribution with respect to stability, depend-
ability, and costs. A smart grid handles high dynamicity as it constantly reconfig-
ures in order to react to changed energy production and demand conditions. Fur-
ther they need to support evolution during runtime as the service of the smart grid 
is adapted or extended towards new requirements or technological advances. Fi-
nally, smart grids represent critical infrastructure that may in the event of failure 
cost human lives or cause high economical costs. Hence a smart grid needs to ful-
fill high expectations concerning its dependability, including security and safety. 

Central to the integration of CPSs as CSs of evolving CPSoSs are their inter-
faces, i.e., their points of interaction with each other (direct interaction) and with 
their common environment (indirect interaction) over time. The identification, 
proper specification, standardization, and managed modification of these interfac-
es are of paramount importance in order to tackle CPSoS key challenges related to 
emergence, dynamicity, evolution and dependability. Specifically, time-sensitive 
physical interactions and the role of delays in emergence impose the requirement 
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of properly taking time for all kinds of interactions in CPSoSs into account. To 
this end this work assumes the availability of a sparse global timebase [61] [62] 
that can be used by all involved CSs to temporally coordinate interactions at their 
interfaces. We call an SoS where its CSs have access to such a global timebase a 
time-aware SoS. 

The objective of this chapter is twofold: First, we conceptualize time-sensitive 
interactions in CPSoSs at appropriate interface layers and propose a CS interface 
design that simplifies engineering, operating and evolving such CPSoSs. Second, 
we discuss evolution of CPSoSs and how to manage it by applying our proposed 
interface design.  

The following section gives a brief overview of related work. Section 2.3 con-
ceptualizes interfaces in CPSoSs and introduces the Relied Upon Interface (RUI) 
of a CS which is an interface the operational service of the overall CPSoS relies 
upon. Section 2.4 discusses the design of RUIs. Section 2.5 suggests how evolu-
tion can be managed at the RUI. Section 2.6 concludes this chapter. 

2.2 Related Work 

In the domain of safety-critical real-time systems several simplification princi-
ples concerning the integration of models of distributed computer systems with 
models of physical processes have been suggested [60]: abstraction, separation of 
concerns, causality by determinism, temporal segmentation, independence of enti-
ties, observability, and consistent time. In accordance with these simplification 
strategies the design of linking interfaces [60] which realize cyber-interactions 
among nodes of a distributed real-time system, and the design of sensor/actuator 
interfaces [46] that interact with the physical process of a Cyber-Physical System 
(CPS) has been proposed. 
Maier outlines in [66] fundamental differences in developing monolithic systems 
compared to a System-of-Systems (SoS) where for example the single Constituent 
Systems (CSs) are operationally and managerially independent, the SoS has an 
evolutionary nature, and there are emergent behaviors. Maier postulates that SoS 
architecting might rely entirely on interface design and the specification of com-
munication standards at multiple abstraction levels. 

The World Wide Web (WWW) running on top of the Internet is often consid-
ered as one of the first examples of a human engineered SoS, also satisfying 
Maier’s definition of SoSs. Fielding [51] suggests the concept of an architectural 
style, i.e., in his thesis the “named, coordinated set of architectural constraints”, 
and uses it to obtain an appropriate architectural design for networked software 
components. Fielding further introduces the Representational State Transfer 
(REST) architectural style which he applied in the definition of the Hypertext 
Transfer Protocol (HTTP) and Uniform Resource Identifier (URI) specifications. 
Together they describe the generic interface which is in its essential form still used 
in all interactions of the WWW. 
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Web Services (WSs) [39] [44] are a prominent web-inspired implementation of 
the Service-oriented-Architecture (SoA). They are based on machine-interpretable 
interface descriptions (Web Service Description Language (WSDL), and other 
WS-* specifications) and give support for platform-independent machine-to-
machine interaction over large-scale networks like the Internet. Highly distributed 
applications can be integrated by means of Web Service (WS) that are provided 
and owned by possibly many different entities. However, WSs are subject to the 
limitations of underlying technologies and the expressiveness of the used descrip-
tion languages. For example, the end-to-end delay of messages is in the scope of 
underlying technologies. Currently, temporal and semantic interoperability is not 
part of the interface specification, hence – while an agent might syntactically be 
able to interact with a WS – there might be a temporal and/or semantic mismatch 
leading to undesired effects. 

OPC Unified Architecture (OPC UA) [65] is a SoA machine-to-machine com-
munication stack intended to tackle challenges related to semantic interoperability. 
The OPC UA specifications are maintained by the Open Platform Communica-
tions (OPC) Foundation and have been in part standardized in IEC 62541. The ex-
tensible information model allows the description of arbitrary object structures 
where object data and its meta data is managed. 

Caffall and Michael propose in [42] the concept of service-oriented contract in-
terfaces for an architectural framework for SoSs. Contract interfaces are based on 
the principles of Design-by-Contract (DbC) and demand an explicit definition of 
interfaces among CSs that formalize assumptions about the services provided by a 
CS to achieve goals of the SoS. 

2.3 Interfaces in Cyber-Physical Systems-of-Systems 

This section introduces interfaces in the architectural context of time-aware 
Cyber-Physical Systems-of-Systems (CPSoSs), discusses interface abstraction 
layers, and presents different interface classes of Constituent Systems (CSs) that 
are part of a CPSoS. 

2.3.1 Architectural Elements of Cyber-Physical Systems-of-Systems 

A CPSoS is a System-of-Systems (SoS) whose interacting Constituent Systems 
(CSs) are Cyber-Physical Systems (CPSs). The architecture of a CPSoS defines 
the boundaries of its elements (major building blocks), the relationships among 
them, and the relationship between elements and their environment at abstraction 
levels that are useful for the discussion of CPSoS attributes of interest. There are 
many important attributes (e.g., business, societal, legal) to investigate in CPSoSs, 
but this chapter focuses on behavioral attributes, i.e., on interaction relations 
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among architectural elements of CPSoSs. The architectural elements in CPSoSs 
are: the Itom [63] as the unit of interaction, the CS as a computing component that 
interacts physically and digitally with its environment, and the environment of 
CSs that enables the interactions among CSs. An Itom is an information atom 
comprising of data and explanation in an atomic unit. The environment of a CS 
consists of all entities that have the capability to interact with the CS. 

CSs process Itoms which they exchange with their environment at their inter-
faces. There are two kinds of interactions a CS can have with its environment: 
message-based interactions with cyber space and physical or stigmergic interac-
tions [64]. In order to model stigmergic interactions it is useful to define the con-
cept of an entourage of a CS, i.e. all entities that are part of a CS, but are external 
of its computer system. It consists of humans and things and may change over 
time. The entourage of two or more CPSs may – not necessarily simultaneously – 
overlap during the Interval of Discourse (IoD). Overlapping entourages provide a 
common environment which enables stigmergic interactions among involved 
CPSs. 

Itom 

 
An Itom [63] is the basic information item exchanged in interactions of CSs. It 

is defined as ”a timed proposition about some state or behavior in the world” in 
some representation (data) together with the explanation of this representation. For 
processing in computer systems the representation and explanation can be both 
coded as bit strings, i.e., digital data. The representation part is called object data, 
while the explanation of the object data is called meta data. Depending on the 
Itom’s purpose, the meta data might be based on an ontology (e.g., a conceptual 
model of Newtonian physics), or can be a machine program for a (virtual) com-
puter system which explains the object data (cf. code mobility [53]). Interacting 
CSs may adhere to different contexts, i.e., often have implicit assumptions about 
the actual meaning and temporal properties of exchanged object data. Conceptual-
ly, Itoms solve this context dependency problem by tying information representa-
tion and explanation together. Hence object data is interpreted consistently across 
all CSs that need to access and process the information contained in the Itom. 

The definition of Itoms is recursive and allows that an Itom contains other 
Itoms. Take for example the object- and meta data of two or more Itoms and re-
gard them as object data of a higher level Itom. The explanation of this higher-
level Itom describes how to extract the contained Itoms. Consequently, Itoms can 
be – in principle – arbitrarily complex constructs that might describe (virtual) 
computer machines and thus (virtual) CSs. 

To avoid misinterpretation of interactions the explicit definition of Itoms as the 
basic unit of interaction is essential in modeling CPSoSs. Explicitly defined Itoms 
also enable automatic Itom transformation systems which are able to map object 
data in compliance to one explanation into object data conforming to another ex-
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planation and vice-versa, provided the two meta data explanations can be put for-
mally into relation, i.e., a bijective function exists that maps one explanation (de-
scribed by meta data) to the other. 

Constituent System 

A Constituent System (CS) is a Cyber-Physical System (CPS) which consists 
of a computer system (cyber part), optionally an influenced and/or observed object 
(physical part) and possibly humans. The object, i.e., a thing obeying to physical 
laws in the dense physical time of our reality, can be observed by sensors and/or 
influenced by actuators of the cyber part (for example for the purpose to control 
it). The behavior of the computer system and its ability to conduct actions in the 
physical environment adheres to a discrete progression of time. Consequently, a 
sufficient alignment of the dense physical time and the discrete computer time is 
essential for an influence or observation of the physical part of a CPS that is pre-
cise enough for the application at hand. 

The purpose of a CS regarding its integration in a collaborative SoS is the real-
ization of a service that allows the CS to benefit from the emergent CPSoS ser-
vice. The service of a CS is only provided at its interface thus an interface specifi-
cation sufficiently defines the CS’s interaction capabilities (all possible 
interactions) that the CS internals must deliver. In CPSoSs a precise temporal co-
ordination of the individual CSs is required across the whole CPSoS. Hence, CSs 
have access to a sparse global timebase [61], and are able to timestamp input ac-
tions (messages, sensor observations) and timely generate output actions (messag-
es, actuations) at the CS interface within the precision of the global timebase. 

The computer system of a CS processes Itoms that are received at the CS inter-
face by sensors observing a property of the physical state in the entourage of the 
CS, or are received by messages. Further a CS generates new Itoms that can be 
implemented as influences on the physical state in the entourage by actuators, or 
sent as messages into cyber-space, possibly to other CSs. 

In summary, a CS implements a time-aware computational element that oper-
ates on Itoms which it exchanges with its environment according to its interface 
specification. 

Environment 

A CS interacts with two kinds of environments at its interface: cyber space 
which allows message-based communication and the physical environment which 
enables physical interactions among CSs. 
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Cyber Space 

Cyber space is a distributed information processing system that enables mes-
sage-based interactions among CSs by means of direct and indirect cyber chan-
nels. For instance, the IP-based Internet is a prominent example of a planet-scale 
cyber space where in principle any two systems with a unique IP address can es-
tablish cyber channels and exchange Itoms. The concept of (physical) proximity 
and neighborhood of CSs does not necessarily play a significant role in cyber 
space. The physical distance between two CSs exchanging messages via cyber 
space might only affect the delay of the message, but has no other impact on the 
communication (e.g., does not change message contents in the absence of faults). 

A direct cyber channel conveys messages from one sending CS to one or more 
receiving CS without any modifications. 

An indirect cyber channel is established over the state of a shared memory 
which is located somewhere in cyber space. The sending CSs modify the shared 
memory by means of state messages. The shared memory is also possibly affected 
by cyber dynamics a form of environmental dynamics. Cyber dynamics are auton-
omous processes inherent within the cyber space and/or cyber interactions of other 
not explicitly modeled systems. Finally, receiving CSs obtain the (partial) state of 
the shared memory. For example, the publish-subscribe [49] communication para-
digm is supported by indirect cyber channels where cyber-dynamics (that are in 
this example part of the system architecture) take care about queueing published 
messages and notifying subscribers. Many popular message-based middleware 
platforms support publish-subscribe, e.g., the Robot Operating System (ROS) 
[70], or Eclipse paho2, based on MQTT [41]. 

Physical Environment 

The physical environment consists of things and physical fields (energy) whose 
properties we model as a dynamic network of physical state variables. Such a net-
work of state variables can be described in an environmental model (for example, 
see [57] about an ontology-based environmental model) which captures the inter-
relationships (e.g., transfer delays, functional dependencies, location) of the state 
variables. For example, the temperature and the pressure of air are physically re-
lated and if one is affected by an actuation, so is the other one. Our networked 
view on the relations of physical state variables allows for a simple composition of 
environmental models, the consideration of different levels of detail, and taking 
interfacing effects into account. Note that one can reduce this network to a single 
set of physical state variables where all relations among the variables need to be 
described explicitly. 

In the physical environment the concept of proximity is essential, because 
many physical interactions depend on distance (e.g., force fields). In case the en-
                                                           
2 https://eclipse.org/paho/ 



66  

tourages of two or more CSs overlap during the IoD, a stigmergic information 
flow, i.e., a physical interaction, can take place. Overlapping entourages help to 
limit the size of the environmental model that needs to be considered for the inter-
action of CSs. Figure 2-1 shows the network of physical state variables which is 
under the influence of environmental dynamics, but also part of the entourage of 
multiple CSs. Environmental dynamics are the time-sensitive effects of autono-
mous processes occurring in the environment. 

 

 

Figure 2-1: Overlapping entourage of CPSs enabling 
physical interaction 

An actuator is an interface device of a CS which allows the CS to apply chang-
es to one or more state variables of the physical environment that is currently part 
of the CS’s entourage. Besides this actuation also other environmental dynamics 
may act on the network of state variables. For example, a heating actuator might 
increase the state variable ‘room temperature’, while environmental dynamics 
(heat dissipation) additionally affect the state variable over time. Concerning our 
environmental model, actuators are connected to the environmental model such 
that their influences affect the state variables appropriately by considering their 
placement, actuation delays, and effect propagation through the environmental 
model. 

Sensors within the interface of a CS can observe a state variable of the physical 
environment. Usually these observations are limited with respect to measurement 
resolution, temporal accuracy, and rate limits. Consequently, such an observation 
is only partial and noisy. Similar to actuators, also the sensors need to be appropri-
ately connected with the environmental model in order to take their placement and 
their capability to make observations (measurement delay) into account. 
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2.3.2 Interface Layers 

Interface layers allow the discussion of system interface properties and their 
definition in interface specifications at different abstraction levels and modeling 
viewpoints. In the following, three interface layers are introduced: the cyber-
physical, the informational, and the service layer. The informational layer is an 
abstraction over the cyber-physical one, while the service layer structures the be-
havior of a system in a set of capabilities.  

Cyber-Physical Layer 

At the cyber-physical layer information is represented by data items (e.g., a bit-
pattern in cyber space, or properties of things/energy in the physical world) that 
are transferred among interacting systems during the Interval of Discourse (IoD). 
While in this layer there is a distinction between cyber- and physical channels, 
both share many properties, because cyber channels are implemented by physical 
channels. Consequently, any interaction over cyber-physical channels is ruled by 
the progression of time and fundamentally constrained by the speed of light and 
distance among communicating systems. Time is an elemental property of cyber- 
and physical interfaces and must be considered at all interaction abstractions. Im-
portant properties of the cyber-physical layer are: signals (i.e., prearranged repre-
sentation of information), transmission medium, characteristics of connectors, fre-
quencies, bit rates, energy levels. 

Interface properties at the cyber-physical layer are defined in the Cyber-
Physical Interface Specification (CP-Spec) which consists of the two disjoint 
specifications: Interface Physical Specification (P-Spec) and the Interface Mes-
sage Specification (M-Spec). 

Physical Interfaces 

Physical interfaces of CSs are realized by energy transformers that are able to 
(1) take observations from the physical environment, and (2) set actions initiated 
from the computer system of the CS in the physical environment. An observation 
in time-aware CPSoSs is a time-stamped measurement of a physical state variable 
(a property of a thing). A sensor is an interface device that measures the physical 
environment and produces observations in the form of digital data (a bit pattern), 
whereas the sensor design determines which property of the physical environment 
is observed. Sensor-fusion and state estimation [58] are well researched tech-
niques to improve the fidelity of sensor observations. An actuator is an interface 
device that accepts digital data and control information (e.g., an actuation dead-
line) from an interface component, and realizes the intended effect in the physical 
environment (influences physical state variables). 
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As physical interfaces enable the interaction with the time-sensitive physical 
environment, they are time-sensitive as well. Hence, sensor/actuator latency and 
jitter affect the temporal accuracy of an observation or the timely effect in the 
physical environment. 

The design of sensors and actuators as well as their placement in the physical 
environment determines the semantics of the digital in-, and/or, output bit-pattern, 
i.e., effectively form a basic Itom that contains the observation or actuation. In re-
gard to information theory, we often have that some property of a thing (e.g., volt-
age level) has additional meaning to its receivers (e.g., digital zero and one), while 
the actual property of the thing becomes irrelevant, after the measured value has 
been properly abstracted. This refinement process takes place according to a re-
ceiver/sender shared conceptual context. It removes intrinsic information and pro-
duced a higher level Itom that contains only the extrinsic information. In computer 
systems, such overlay-meaning needs to be added as meta data until an Itom is 
formed which the target CSs can interpret and access correctly. The refinement 
process also removes unnecessary data that is not needed to convey the intended 
information, i.e., transforms raw object data to refined object data. 

Take for example a speed limit sign at the side of the road which should be in-
terpreted as such by an autonomous car CS. First, a camera sensor of the CS pro-
duces a bitmap Itom where the road side including the speed limit is contained as 
a large array of pixels. Then, for instance machine learning-based methods take 
this bitmap Itom, segment the image, and finally extract an Itom describing the 
speed limit sign. At this point the bitmap Itom including its large object data be-
comes irrelevant and can be removed from the computer system memory. The 
new Itom is then further contextualized with surrounding/implicit information 
(e.g., which metric or non-metric system the country where the road is located us-
es). Finally, it is possible to construct the speed limit Itom consisting of object da-
ta that represents a numeric value and meta data which explains (e.g., decimal, 
km/h, speed limit) the object data to be usable by the CS. 

The Interface Physical Specification (P-Spec) describes the properties of sen-
sors and actuators (e.g., sample rates, value/time uncertainties, observation granu-
larity) in order to exchange Itoms with the physical environment according to a 
specified purpose. On the input side the P-Spec specifies the formation of basic 
level Itoms from sensor observations. On the output side the P-Spec defines how 
basic level Itoms are implemented by actuators as influences on physical state var-
iables. The P-Spec together with an environmental model allows for the descrip-
tion of stigmergic channels. 

Cyber Interfaces 

Cyber interfaces produce and/or consume messages, i.e., bit-patterns in cyber 
space (e.g., an email) according to the Interface Message Specification (M-Spec). 
The M-Spec consists of three parts [61]: (1) the transport specification, (2) the 
syntactic specification, and (3) the semantic specification. The transport specifica-
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tion describes all properties of a message that are needed by the communication 
system to correctly deliver the message from the sender to the receiver(s). A cor-
rectly transported message adheres to all temporal and dependability specifica-
tions. The cyber interface consists of ports (channel endpoints) where messages 
are placed for sending, or received messages are read from. A port has the follow-
ing properties: 

• Direction: Each port has either the direction incoming (messages can be read 
from the port), or the direction outgoing (messages can be written to the port). 

• Size: The size of the data contained in the message determines the port size. 
• Type: The port type specifies whether the message contains state data and 

should adhere to a read/write paradigm or event data and should adhere to the 
consume/produce paradigm. 

• Temporal Properties: The temporal properties determine the temporal behav-
ior of a message with respect to maximum/minimum delay, maximum jitter, 
periodicity, and bounds on send and receive instants. 

• Dependability Properties: The dependability properties specify dependability 
parameters (e.g., reliability, security, availability) of the message transport. 

The named syntactic units of a message are called message variables [61] and 
are defined in the syntactic specification. Additionally, the semantic specification 
links the name of message variable to its explanation, i.e., syntactic and semantic 
specification define the Itom contained in a cyber message. 

 
For cyber interfaces we can differentiate among several types of compatibility: 

• Context compatibility: The same data (bit pattern) is explained in the same 
way at the sender and at the receiver. 

• Context incompatibility: The same data (bit pattern) is explained differently 
at the sender and at the receiver. 

• Syntactic Compatibility: The syntactic chunks sent by the sender are received 
by the receiver without any modification. 

• Full Compatibility: The Itom that is sent by the sender is received by the re-
ceiver without modification. 

In case of context compatibility, syntactic compatibility suffices to realize full 
compatibility. In case of context incompatibility a gateway is required to translate 
the data representation of the sender to a data representation that is compatible 
with the context of the receiver. 

Informational Layer 

This interface layer concerns the timely exchange of Itoms by unidirectional 
channels across interfaces. It provides an abstraction over cyber-physical channels 
to context-independent [63], direct and indirect information flows among systems 
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and their environment [64]. The abstraction over cyber-physical channels removes 
any lower-level details of the interactions that is not relevant for describing the in-
formation processing behavior of CSs. Itoms at this layer are maximally refined 
and explicitly specified, i.e., their meta data is available to the extent necessary for 
all CSs that are possibly involved with these Itoms. Their realization at the lower-
level cyber-physical layer must adhere to the semantics specified at the informa-
tional layer, otherwise the abstraction is invalid and there is risk of property mis-
match among interacting CSs. All for the CPSoS service relevant cyber-physical 
interactions must be taken into account at the informational layer. Otherwise there 
are hidden channels at the informational layer which might compromise security, 
safety, or may lead to unexpected behavioral detrimental emergence. 

Further, the informational layer focuses on modeling the direct and indirect 
communication among CSs. There are cases where it is beneficial not to model 
every system involved in an interaction explicitly, but regard them as anonymous 
common environment of a smaller set of systems of interest which indirectly in-
teract over this common environment. Indirect communication also allows for de-
centralized coordination of systems [72] and the description of cascading effects 
[52]. 

• Direct Communication: Itoms are transferred directly and unmodified from 
one sending to one or more receiving CSs. Consequently, we model a direct 
channel by a system that simply forwards Itoms from its input to its outputs ac-
cording to given temporal and dependability properties.  

• Indirect Communication: The Itoms of a sending CS affects the state of the 
common environment of one or more CSs. Additionally, the state of this com-
mon environment is possibly affected by environmental dynamics, i.e., time-
sensitive processes that act autonomously and independently of the explicitly 
modeled systems. Finally, receiving CSs read Itoms from the common envi-
ronment by taking observations. The received Itoms represent a superposition 
of all influences carried out by other CSs or environmental dynamics. In con-
trast to direct communication, not all CSs participating in an interaction need to 
be modeled explicitly, as long as their effects are appropriately considered in 
the model of the environmental dynamics. We model an indirect channel by in-
stantiating an additional Environmental CS (ECS) which incorporates the be-
havior of the common environment of indirectly interacting CSs. 

An Itom channel is characterized by what kind of Itoms the channel can 
transport, the sender, one or more recipients, temporal properties, and dependabil-
ity properties. The Interface Itom Specification (I-Spec) describes the Itoms ex-
changed at the system interface, independently of how the information transfer is 
actually realized. For example: a system ’car’ notifies cars behind about its sudden 
change of velocity to an immediate stop by ’emergency brake’ Itoms. In the cyber-
physical layer these Itoms might be implemented by: (1) a stigmergic channel be-
tween the braking car and the cars behind who observe that the car in front sud-
denly slows down, (2) a stigmergic channel realized by the brake light of the 
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sender and the human operators of the cars behind, and (3) a wireless car2car 
cyber channel between the braking car and the cars behind. 

Service Layer 

At the service layer, the interface exposes the system behavior structured as ca-
pabilities. In contrast to the informational layer, Itom channels are not individually 
described at the service layer, but only the interdependencies between the ex-
changed Itoms are specified. If a system with a need is matched with a system that 
offers the needed capability, the interdependencies must be resolved in the infor-
mation interface layer with concrete Itom channels. Hence, at the service interface 
layer there is an instantiable collection of Itom channels per offered capability 
where generic properties of the Itom channels and their interaction pattern are de-
scribed. 

Systems may provide many services through their interfaces provided that their 
internal structure can rely on required services. This concept is a fundamental 
principle in the Service-oriented Architecture (SoA) [48] where components in 
need of capabilities and components that offer capabilities are brought together by 
means of a service registry, service discovery, and service composition. A service 
provider is a component that provides a service, while a service consumer is a 
component that uses a service. The service registry is a repository of Interface 
Service Specifications (S-Specs) of capabilities that can be provided by a service 
provider. Service discovery is the process where service consumers match their 
service requirements against the available S-Specs in a service registry. Finally, 
service composition is the integration of multiple services into a new service. The 
benefits of this service-based view are twofold: 

First, there is an immediate reduction of complexity, because one does not need 
to regard component relations on the basis of single Itom channels anymore. Ser-
vice consumers can discover services they depend on, and a scheduler can instan-
tiate the necessary unidirectional Itom channels automatically. Further service 
composition enables the formation of higher-level services based on low-level 
services. Take the example of a service that provides a humanoid robot the capa-
bility to open doors. Such a service would need to implement planning and re-
planning of the complex movements realized by lower-level actuation services 
while constantly taking into account observations (e.g., position of arms, state of 
the door) from lower-level sensing services. 

Second, the coupling of components (integrated in one system) is loose, be-
cause the actual constituents of composed services are unimportant background 
details in the service-based view. This freedom in service composition allows for 
self-organized system reconfiguration such that the system is able to perform op-
timally in case new services become available and previously active services be-
come un-available. For example, a service consumer does not depend on a single 
component to provide the required service, but the service consumer can lookup 



72  

multiple suitable services from the service registry and choose the optimal regard-
ing computational, communicational, or other costs. 

These benefits have been originally observed in the context of free market 
economy where trading among buyers and sellers led to efficiency in the produc-
tion and distribution of products. 

An S-Spec also includes a set of quality metrics that are available for an inde-
pendent observer to determine the quality of a provided service. Based on these 
quality metrics, service providers can offer their service under a Service Level 
Agreement (SLA) which consists of Service Level Objectives (SLOs) together with 
the price of a service, and compensation actions in case an SLO of a committed 
service was not achieved. An SLO describes a quantifiable service objective based 
on measurable quality metrics that can be monitored independently of the service 
provider. Service providers can publish their SLA with a reference to the S-Spec 
of an offered service at the service registry, such that prospective service consum-
ers can find and choose an appropriate service provider. 

2.3.3 Interfaces of a Constituent System 

Interfaces within Constituent Systems (CSs) that are not exposed to other CSs 
or the CS’s environment are called internal interfaces. A CS is embedded in its 
environment by its external interfaces. When applying the principle of separation 
of concerns, there are three subtypes of external interfaces: Time-Synchronization 
Interface (TSI), Relied Upon Interface (RUI), and utility interfaces. The TSI ena-
bles external time-synchronization to establish a global timebase for realizing 
time-aware CPSoS. Most important for the integration of a CS in a CPSoS is its 
RUI which is the interface the emergent and operational CPSoS service relies up-
on. The optional utility interface is an interface of a CS that does not need to be 
considered for the operational service of CPSoSs. 

The purposes of the utility interfaces are to (1) configure and update the CS, (2) 
diagnose the CS, and (3) let the CS interact with its remaining local environment 
which is unrelated to the operative service of the CPSoS. These three purposes 
justify the introduction of the following utility interfaces: Configuration Interface 
(C-Interface), Diagnostic Interface (D-Interface), and Local I/O Interface (L-
Interface). Figure 2-2 shows all external interfaces of a CS.  
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Figure 2-2: Interfaces of a Constituent System (CS) 

 
In time-aware CPSoSs, the CSs have access to a synchronized global time base 

with bounded precision. Such a global time base can be established by external 
clock synchronization over the TSI to, for example, a Global Navigation Satellite 
System (GNSS) like GPS. Time-awareness allows for temporally ordering ob-
served events and temporally correctly executing timely available actions in a dis-
tributed setting. Naturally, in case the communication or computation subsystem 
or both fail to deliver or execute an action at its deadline, the execution cannot be 
guaranteed to be temporally correct. However, in a time-aware CPSoS the tem-
poral order of observed events – no matter which CS observed them – can be al-
ways determined. 

We briefly discuss the utility interfaces. The C-Interface is an interface of a CS 
that is used for the integration of the CS into a CPSoS and the reconfiguration of 
the CS’s RUIs while integrated in a CPSoS. In time-aware CPSoSs the C-Interface 
allows to update the interface specification of RUIs to realize time-controlled evo-
lution (see Section 2.5.3). A predefined validity instant which is part of the inter-
face specification determines when all affected CSs need to use the updated RUI 
specification and abandon the old RUI specification. This validity instant should 
be chosen appropriately far in the future (e.g., in the order of the update or 
maintenance cycle of all impacted CSs). Service providers guarantee that the old 
interface specification remains active until the validity instant such that service 
consumers can rely on them up to the reconfiguration instant. The D-Interface is 
an interface that exposes the internals of a CS for the purpose of diagnosis. Final-
ly, the L-Interface is an interface that allows a CS to interact with its surrounding 
physical reality that is not accessible over any other external interface, for exam-
ple to realize Human Machine Interfaces (HMIs), or provide other CS-local only 
services. 

A connected interface is an interface that is connected to at least one other in-
terface by a channel. Some external interfaces are always connected with respect 
to the currently active operational mode of a correct system. A disconnected ex-
ternal interface might be the cause of a fault [40] (e.g., a loose cable that was sup-
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posed to connect a joystick to a flight controller) which might even lead to a cata-
strophic failure. 

CSs may connect their RUIs according to a RUI connecting strategy that 
searches for and connects to RUIs of other CSs. The RUI connecting strategy is a 
part of the interface specification of RUIs and searches for desired, with respect to 
connections available, and compatible RUIs of other CSs and connects them until 
they either become undesirable, unavailable, or incompatible. For instance, in the 
global Automated Teller Machine (ATM) network, a cardholder together with a 
smartcard based payment card form a CS that is most of the time disconnected 
from any other CSs. The RUI connecting strategy of the payment card CS is influ-
enced by the cardholder’s need for cash (desire), nearby located and operational 
ATM terminals (availability) and whether the ATM terminal accepts the payment 
card (compatibility). 

2.4 Relied Upon Interfaces 

This section discusses the Relied Upon Interface (RUI) model at the previously in-
troduced interface layers, also showing how interface layers are connected. Then 
the section proposes appropriate execution semantics of the RUI model at the in-
formational layer and closes with a brief discussion of how CPSoS dynamicity is 
handled by the RUI specification. 

2.4.1 RUI Model Overview 

The Relied Upon Interface (RUI) establishes a system boundary of a CS by 
separating it from its environment. The part of the CS behavior which the CPSoS 
service relies upon can be observed at the RUI of the CS. Consequently, the inter-
face specification of a CS’s RUI hides the possibly complex internal behavior of a 
CS from the overall CPSoS. However, even more importantly the complexity of 
the overall behavior of a possibly enormous CPSoS is also hidden from a CS at its 
RUI. Hence, the RUI specification can be regarded as a complexity firewall be-
cause it regulates all interactions taking place across the specified interface. Innate 
to RUIs, i.e., the points of interactions of CSs, is the transfer of information occur-
ring over these interfaces. It follows an examination of RUIs for each of the three 
interface layers that we introduced in Section 2.3.2. 

RUI Cyber-Physical Layer 

Figure 2-3 gives an overview of cyber-physical interactions at the RUIs of two 
CSs that are externally time-synchronized and have access to a global timebase. 
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The RUI consists of two sub-interfaces: the Relied Upon Message Interface 
(RUMI) a cyber interface, and the Relied Upon Physical Interface (RUPI). 

 

 

Figure 2-3: Relied Upon Interfaces (RUIs) at the cyber-
physical layer 

The RUPI consists of sensors and actuators that take and time-stamp observa-
tions of and/or act at a defined deadline on some physical state (e.g., the tempera-
ture of a room) in the physical environment according to their design. Environ-
mental dynamics (e.g., heat dissipation through walls) act additionally to other 
CSs on the physical state. CSs that interact with each other over a common physi-
cal environment establish a stigmergic channel [64], i.e., they communicate indi-
rectly by influencing and measuring the physical state. 

The RUMI allows (1) for the unidirectional transport of state and event mes-
sages [61] by means of conventional direct cyber channels, and (2) for the indirect 
coordination with other CSs by means of indirect cyber channels. A state message 
contains only state observations, i.e., the observed state (e.g., temperature of a 
room) at a specific instant. 
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RUI Informational Layer 

The informational layer abstracts over informational context-sensitivity, and 
focuses on direct and indirect information flows among CSs. An indirect channel 
(cyber or stigmergic) is modelled by instantiating an additional Environmental CS 
(ECS). 

This interface layer is useful during the design of CPSoSs (e.g., model-based 
design, design space exploration), as well as in the analysis of CPSoSs. For exam-
ple, we believe that identifying causally related interactions among CSs is para-
mount for detecting and predicting emergence (see Chapter 3). Naturally, for find-
ing such causal relationships the RUI specifications, the associated interface 
models, and the environmental models need to be accurate regarding reality, i.e., 
there should not be any hidden channels. A hidden channel is a latent information 
flow among CSs that has not been considered by the modeler. Hidden channels 
might close feedback loops that are believed to be liable for possibly undesired 
detrimental emergence [64]. In case some behavior is observed at the RUIs of CSs 
during CPSoS operation, but cannot be reproduced in a simulation at the informa-
tional layer, there are hidden channels present that should be identified. 

RUI Service Layer 

At the service interface layer, we introduce Relied Upon Services (RUSs) that 
are provided at the RUI of a CS. They are described in the Service Specification 
(S-Spec) of the RUI as a set of RUS-related operations. A service operation is a 
behavioral abstraction over one or more unidirectional Itom channels. It groups 
them together and defines their interaction pattern, i.e., the sequence of all opera-
tion-related Itoms over all channel endpoints from the perspective of the service 
provider. Examples of interaction patterns are: request-response, notify, or solicit. 
Actual Itom channels, or consequently cyber-physical channels are only instantiat-
ed (or their provisioning considered) if a RUS is committed to a service requester. 

Besides defining the operations of a RUS, the S-Spec also includes a set of 
quality metrics that allow an independent observer (e.g., a monitoring CS) to de-
termine the quality of a RUS provided at a CS. Based on this quality metrics, a 
RUS provider can publish its Service Level Agreement (SLA) at the service regis-
try such that service requesters are able to find and request suitable services. RUS 
providers and consumers are CSs. The service registry – depending on dynamicity 
and business requirements of the particular CPSoS – can be either realized as an-
other CS (operated by an SoS authority) to allow for a runtime RUS composition, 
or it is realized in an off-line manner. 

At the service level we model the emergent CPSoS service as a set of depend-
encies on the required RUSs, such that any CS that wants to use or benefit from 
the emergent CPSoS service needs to provide these RUSs. However, a CS does 
not need to directly provide all or even any RUSs a given emergent CPSoS service 
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depends on, as long as the CS is able to request and consume them from other 
RUS providers. 

Example 

This section shows in a small example how the interface layers of the RUI are 
connected. The example CPSoS consists of n interacting CSs. At the cyber-
physical interface layer, it contains CSs that interact by using direct and indirect 
cyber-physical channels. In the informational layer these channels correspond to 
Itom channels and Itom processing subsystems that implement the behavior of in-
direct communication. Finally, at the service layer we are able to group channels 
that are associated with a service and express service dependency relationships. 

Cyber-Physical Layer 

Figure 2-4 shows cyber-physical interactions realized by some concrete tech-
nology (e.g., data exchanged in cyber space by a TCP/IP network stack, physical 
location of the CS on a street influenced by actuators). To relate the channels 
among the CSs and their environment across all interface layers, we draw all 
channels related to a distinguishable service with the same style. Cyber Channels 
(CCs) are drawn with a solid line style, while Physical Channels (PCs) are drawn 
with a dashed line style. Some of the CCs and some of the PCs are labeled for eas-
ier identification. 

 
CC 1 and CC 2 are direct cyber channels of the same service (e.g., a database 

lookup service realized by a request and a response channel). CC 3 and CCs origi-
nating from CSs 3 to n-1 are writers of an indirect channel. For example, they 
publish information whether an alarm occurred. This indirect channel has only one 
reader (CC 4): CS n which could be an alarm monitor. Further, there is a 
stigmergic channel realized by PC 1 (actuator which is part of the CS 1 RUPI), 
physical state variables, and PC 2 (a sensor device of the CS 2 RUPI). Another 
stigmergic channel (realized in the figure via the overlapping entourages in the 
lower right of the physical environment) is shown where all CSs are able to influ-
ence physical state variables and also observe them, for example the position of 
CSs on a street. 
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Figure 2-4: Constituent Systems (CSs), Cyber Channels 
(CCs), and Physical Channels (PCs) at the Cyber-Physical 

Interface Layer 

Informational Layer 

Figure 2-5 shows the example CPSoS at the informational layer. All direct CCs 
have a corresponding Itom Channel (IC), for example see IC 1 corresponds to CC 
1. The indirect CC is realized by an additional Environmental CS (ECS) which 
implements the behaviour of the indirect CC described by an appropriate envi-
ronmental model (shared memories with all acting cyber dynamics). Also for each 
stigmergic channel an additional ECS realizes the environmental model (environ-
mental model with all acting environmental dynamics). 

 

 

Figure 2-5: Constituent Systems (CSs) and Itom Channel 
(ICs) at the Informational Interface Layer 
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  Service Layer 

The service layer of the example CPSoS consists of four services in the de-
pendency relation shown in Figure 2-6. For example, service A depends on the 
environmental services C and D. Service A might be a database lookup service 
provided by CS 2. The incoming and outgoing arrows on the left of the service 
vertex symbolize the two Itom channel ports from the perspective of the service 
provider (one input port and one output port). The three environmental services B, 
C, and D are provided by ECSs (e.g., environmental service D is provided by ECS 
3 in the informational layer). CSs that consume such services need to either act as 
an influence/writer, or as an observer/reader. The ports on the left side of an envi-
ronmental service represents the influence/writer service consumer (e.g., CS 1 is 
an influence/writer of ECS 2), and the ports on the right side of an environmental 
service stand for the observer/reader service consumer (for instance, CS 2 is an 
observer/reader of ECS 2). 

 

 

Figure 2-6: Service Interface Layer 

2.4.2 Execution Semantics of the Informational RUI Model 

The interface model describes the part of the system behavior which is observ-
able at that interface. In the previous section we presented an overview of the RUI 
model. In this section we want to enrich our interface design by suggesting a 
Frame-based Synchronous Dataflow Model (FSDM) as an execution semantic for 
the informational layer. Having such execution semantics, allows the detailed 
study of CPSoSs with respect to behavioral properties at the informational layer in 
the value domain and in the temporal domain. 

Frame-based Synchronous Dataflow Model 

The FSDM is prominent in modeling dependable real-time systems that interact 
with physical systems or models of them. Further, there are many high-quality 
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tools and languages to design, execute/simulate, and verify such synchronous 
models, e.g., GIOTTO [56], and Lustre [54]. 

In the FSDM the dense physical time is discretized into frames, i.e., periodic 
sequences of constant duration. Each of the frames consists of a synchronization 
phase and a processing phase. During the synchronization phase the input is re-
ceived (in a sample and hold manner) from the system environment and the output 
is sent to the environment. In the processing phase the system’s function calcu-
lates the next state and the output from the input and the current state. Only during 
the synchronization phase there is interaction between a CS and its otherwise free-
running environment. Under the synchronous hypothesis [69] a frame duration is 
short enough such that the system appropriately reacts to changes in its environ-
ment. Hence, the frame duration is determined by the environmental dynamics. 
For instance, for a keyboard-based Human Machine Interface (HMI) a frame dura-
tion of 50ms is appropriate for most applications, while for a crash detection sys-
tem in a car a frame duration lower than 1ms is more appropriate. 

It follows a brief overview of the implementation of the CPSoS elements at the 
informational layer by means of the FSDM: 

• Itom: Data flows in the FSDM transport Itoms. They are the input and output 
elements of Constituent Systems (CSs) and Environmental CSs (ECSs) that ac-
cess, process, or generate them in each frame. Itoms can be described by 
markup languages, like XML. 

• Direct Itom Channel Model: A direct channel is connected among one send-
ing and one or more receiving RUI models. It acts in a store-and-forward man-
ner, i.e., the output of this model usually is a delayed copy of the input. Im-
portant model attributes are delay, jitter, and optional fault behavior. 

• CS and ECS RUI Models: RUI models can connect to channel models ac-
cording to their connecting strategy (see Sections 2.3.3 and 2.4.3). In time-
aware CPSoS the internal state of a CS includes the current global time on 
which input, output and computation actions can be based. ECS RUI models 
describe the behavior of the common environment of indirectly interacting CSs. 
They need to integrate the Itoms received from connected CS RUI models in 
their internal state and apply specified environmental dynamics to this internal 
state at each frame. The output of ECSs reflects their internal state according to 
the (often limited) observation capabilities of the receiving connected RUI 
models. ECSs that model large state spaces and computational intensive envi-
ronmental dynamics of the physical environment can limit the considered inter-
actions to the overlapping entourages of the involved CSs. 

Implementation Considerations 

In time-aware CPSoSs the CSs as well as the cyber channels might not be able 
to guarantee the reaction time constraints imposed by the FSDM. Still, if inputs 
(and outputs) adhere to the state semantics, there are sophisticated state estimation 
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techniques [58] available to tolerate occasional violations of the synchronous hy-
pothesis (even to the extent of incorporating state observations with significant de-
lay and jitter, e.g., cf. [47], Figure 2-2). 

In time-aware CPSoSs the CSs can use the available global timebase to drive a 
periodic control subsystem of a CS as follows: Frame start instants are aligned 
with a tick event of the global time and frame durations are multiples of the granu-
larity of the global time. Further, the periodic control subsystem is responsible in 
the processing phase to activate application tasks, and during the synchronization 
phase to conduct send and receive actions. There is implementation technology 
available that readily supports the FSDM. Examples are: TTEthernet [71], TTP/C, 
or the ACROSS Multi-Processor System-on-Chip [73]. 

2.4.3 RUIs under Dynamicity 

Dynamicity describes the reaction or reconfiguration capabilities that have been 
already considered in the CPSoS design. Therefore, any supported dynamicity 
needs to be defined in the RUI specifications. We examine three prototypical dy-
namicity cases: 

• dynamicity with respect to connecting two or more CSs at their RUIs, 
• dynamicity in making (partial) CS or emergent CPSoS services available to 

other CSs (RUS composition), and 
• dynamicity to adapt to changes in the environment. 

RUIs might be connected only for a finite duration within an Interval of Dis-
course (IoD). A disconnected RUI might be a normal, fault-free interface state and 
may result at most in CS service degradation, but not in CS failure. This key as-
pect of RUIs is responsible for the impossibility to establish a static system 
boundary of a CPSoS. CSs may disconnect and reconnect and they might even be 
part of multiple CPSoSs (e.g., a modern day NFC enabled smartphone can be part 
of the global telephone network, the Internet, and the global ATM network which 
are three large and independently operating CPSoSs).  

The RUI connection strategy is part of the interface specification of RUIs that 
regulates how CSs establish connections. All RUI connecting strategies are local 
to their respective CS. Still, they influence the dynamic global network topology 
of a CPSoSs. Consequently, they are co-responsible for the occurrence and regula-
tion of self-organization and emergent phenomena.  

At the cyber-physical and informational layers of RUIs it is cognitively com-
plex to describe the dynamic CS interaction that is necessary for accessing a ser-
vice on the basis of individual channels, because the specific client CSs are un-
known before runtime. For example, take a CS that offers a database service. This 
database service requires a request and a response Itom channel per client CS. For 
n client CSs one would need to specify 2n dedicated channels at the cyber-
physical or informational interface layer. When considering the same situation at 
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the service layer, only the database service together with the two required chan-
nels needs to be specified. The mechanisms of service discovery and service com-
position allow a scheduler to automatically instantiate the request and response 
channels for each client CS during runtime. 

Finally, CSs might need to react to the changing environment and need to re-
configure the set of offered services in order to: (1) accomplish overall CPSoS 
goals (e.g., limit total energy budget, enter a safe state, ...), or (2) tolerate faults 
(e.g., suddenly disconnected CSs or failing CSs). At the service interface layer, 
paradigms known from the Service-oriented Architecture (SoA) are readily avail-
able for use. For example, one such paradigm is to replace services with a degrad-
ed version, or to replace failed services altogether with services from other (re-
dundant) CSs [57]. 

2.5 Interfaces in Evolving Cyber-Physical Systems-of-Systems 

Evolution of Cyber-Physical Systems-of-Systems (CPSoSs) concerns design 
modifications introduced into the interacting Constituent Systems (CSs) that are 
triggered by changes in the CPSoS environment. Changes of the CPSoS environ-
ment might include, for example, advances in technology, or are changes in socie-
tal or business needs. Often these needs originate from the desire to change a ser-
vice towards increased efficiency or the wish to introduce new services altogether. 
Ultimately, evolutionary changes to the design and consequently operation of the 
CPSoS should counteract obsolescence in order to keep the CPSoS relevant, in-
crease its business value for involved stake holders, while not deteriorating al-
ready provided and still needed services. 

When discussing evolution in possibly large and complex systems like CPSoSs 
we distinguish between unmanaged and managed evolution [68]. In unmanaged 
evolution there is no guidance about how a CPSoS evolves. Owners of CSs are 
free to change services and cooperation with other CSs is motivated by each CS 
owner’s own gain in perceived business value. Facebook, Wikipedia, Google ser-
vices, and Twitter messaging are examples of CSs whose interfaces are controlled 
and evolved by the respective owning companies. The composition of such CSs is 
not driven by a specific central purpose and leads to virtual SoSs (e.g., Twit-
ter/Facebook integration of fitness tracking and training applications, or a clever 
integration of Wikipedia and Facebook to realize file-sharing services). Conse-
quently, unmanaged evolution is most suitable for virtual SoSs where there is no 
clear central purpose. 

In this section we focus on the technical realization of managed evolution [68] 
which is most appropriate for collaborative SoSs (but also directed and acknowl-
edged SoSs, see Chapter 1 for details about SoS classifications). Managed evolu-
tion has been originally suggested in the context of large, long-term operational 
software systems that also show many similarities with CPSoSs (complex func-
tional, semantical, temporal, technical, and operational interdependencies of inter-
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acting systems with non-trivially replaceable legacy subsystems). In collaborative 
SoSs, managed evolution must be planned and supervised by an SoS authority, 
i.e., an organizational entity (for example established by a CPSoS consortium or 
enterprise), such that “the efficiency of developing and operating the system is 
preserved or even increased” [68]. The SoS authority has a specific CPSoS pur-
pose in mind, maintains the specifications of Relied Upon Interfaces (RUIs), and 
has a set of capabilities in order to manage CPSoS evolution. The capabilities are: 

• means to introduce changes into a CPSoS by ultimately modifying RUI specifi-
cations of CSs, 

• monitor the evolutionary performance of the evolving CPSoS, and 
• give incentives to steer the evolutionary process forward, i.e., influence CSs to 

implement modified RUI specifications. 

In the following we discuss scope and challenges of managed evolution in 
time-aware CPSoSs and in particular investigate evolution at Relied Upon Inter-
faces (RUIs) of CSs. We attempt to confine risks associated with unexpected det-
rimental emergence and finally suggest a set of guidelines how to handle evolution 
in time-aware CPSoSs. 

2.5.1 Scope and Challenges 

Managed evolution as described in [68] discusses and addresses challenges re-
lated to large, complex, and long-term operational software systems. The compre-
hensive findings of the authors apply to collaborative SoSs, because they share all 
characteristics of the systems discussed in [68]. For example, one important chal-
lenge the authors address is maintaining agility (i.e., the ability to efficiently im-
plement evolutionary changes) while also carrying out necessary changes to in-
crease the system’s business value. 

Further, the authors extensively examine organizational, governance, and even 
cultural or people aspects of evolving systems, while in this chapter we mostly 
concentrate on technical aspects. In the following, we identify challenges specifi-
cally occurring in the evolution of time-aware CPSoSs that we want to tackle: 

• Continuous Evolution: Compared to traditional monolithic systems, CPSoSs 
need to continuously evolve, because replacement of the overall CPSoS as well 
as a redesign from scratch (green-lawn or greenfield approach) are infeasible 
with respect to involved costs, risks, or inacceptable operational discontinuities. 
For example, in the global Automated Teller Machine (ATM) SoS at one point 
in time a more secure chip-based payment card has been introduced. It is im-
mediately clear that an instantaneous replacement of all payment cards together 
with the replacement of all Points of Sale (PoS) and ATM terminals worldwide 
cannot be done because of scaling issues. Consequently, CPSoSs need to 
evolve continuously, usually during runtime. 
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• Multi-version Evolution: An unavoidable consequence of continuous evolu-
tion is that parts of an CPSoS are at different evolutionary states. In large and 
long-term operational CPSoSs the CSs cannot be replaced or upgraded simul-
taneously. Hence CSs need to be able to interact with older versions of them-
selves. Further, CSs cannot be arbitrarily updated and might become at some 
point legacy CSs that need wrapping to be able to interact with the further 
evolved CPSoS. In CPSoSs we have CSs in multiple versions and need to take 
care about appropriately wrapping legacy CSs. 

• Unexpected Detrimental Emergence: Evolutionary changes might lead to un-
expected emergence that is highly undesired (e.g., compromised security or 
safety properties of an CPSoS). Unfortunately, unexpected emergence cannot 
be easily or reliably predicated and may only be discovered by accident, be-
cause the boundary of a CPSoS is not static and there might by unforeseen en-
vironmental effects. For example, consider the British Airways Flight 38 where 
a Boeing 777 crashed on January 17th, 2008 shortly before the runway at its 
destination: both engines suddenly failed during landing. The investigation 
concluded that ice has formed in the fuel system which restricted the fuel flow 
to both engines [37]. At that time the formation of ice was an unconsidered en-
vironmental effect which was only revealed after an accident occurred.  

• Evolving CPSoS Dynamicity: AMADEOS CPSoSs feature architectural sup-
port for adaptive monitoring, analyzing and planning via cognitive and predic-
tive models, and execution of reaction strategies. These architectural means to 
handle CPSoS dynamicity need to evolve together with changes in the CPSoS 
service. For example, in case an evolutionary change allows more efficient use 
of crossroads and use of street lanes, different traffic situations might arise 
which require different reaction strategies in order to optimize traffic flow and 
minimize detrimental effects of faults. 

Note that we do not claim that this list of challenges is complete. There might 
be more challenges related to evolution, especially, if one wants to discuss 
CPSoSs of specific application domains. 

2.5.2 Local and Global Evolution 

We call changes within a CS that do not affect its interactions with other CSs 
local evolution. Local evolution does not modify any of the CS’s RUI specifica-
tions and consequently remains invisible at the CPSoS level. Still, local evolution 
is important to optimize the operation of CSs, introduce new or change local-only 
CS services, or prepare CSs for a pending global evolutionary step. 

Local evolution harbors the risk of introducing hidden channels (i.e., unconsid-
ered interactions) among CSs which could lead to emergent effects. Hence, local 
evolution must carefully respect RUI specifications which forbid – in principle – 
any interaction of a CS with its environment that is not explicitly defined. Howev-
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er, in praxis this is difficult to achieve, especially in relation to stigmergic interac-
tions over a common physical environment. For example, a processor may leak in-
formation via its power consumption. In case some local evolutionary change ena-
bles an attacker to measure the power consumption, CPSoS security might be 
compromised. 

In contrast to local evolution, we call changes that affect the interactions of CSs 
and thus the service of the overall CPSoS global evolution.  As such, global evolu-
tion concerns the change of RUI specifications and how these changes are coming 
into effect. In CPSoSs we have continuous evolution. Consequently, CPSoSs can-
not be changed radically, but need to evolve gradually towards changed or new 
goals in evolutionary steps of limited scope preferably with predictable effects. 

Inspired by biological evolution of life (cf. Darwin and natural selection) we 
regard CPSoS evolution as a tree-like search towards adaptation to environmental 
conditions. The search space consists of all possible changes that can be realized 
to address (changed) environmental conditions. Naturally this search space is too 
large to explore exhaustively; only some of the possible changes are actually real-
ized and can be represented as a tree-like search space exploration. Figure 2-7 
sketches how we view the process of global evolution in CPSoSs. Each of the ver-
tices of the acyclic graph represents a specific evolutionary state or version of the 
CSs making up a CPSoS. The edges in the graph represent evolutionary steps. The 
vertical dashed line represents the instant now which separates the past (versions 
of CSs that exist and may or may not be in operation) from the future (versions of 
CSs that are planned and are not operational yet). We assume that some versions 
of CSs are compatible at the present. In the figure we have indicated two overlap-
ping sets of versions of CSs that are compatible (upper and lower lassos contain-
ing a set of vertices each).  

 
 

 

Figure 2-7: Tree-like search towards adaptation 
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Three fundamentally different types of evolutionary steps have been identified: 

• Basic Step: A basic evolutionary step is a linear, incremental update from one 
version of a CPSoS to the next one. In Figure 2-7 a basic step is represented for 
example between the two most left vertices. 

• Fork: In this case two or more different versions evolve from the same ances-
tor version. For example, a smart grid CPSoS might have evolved in one coun-
try up to a certain version which is adopted by a different CPSoS consortium in 
a different country. Over time these two versions might diverge further up to a 
point where CSs from one evolved version are not compatible anymore with 
the CSs from the other evolved version. Figure 2-7 exemplifies this case after 
the second vertex from the left where there is a fork into three different ver-
sions. 

• Merge: Finally, two versions of CSs that are part of the same CPSoS might 
merge in a later version in order to reduce unnecessary functional redundan-
cies, benefit from standardization efforts, or consolidated interfaces. In Figure 
2-7 this case is depicted in the vertex that has two incoming edges. 

Note that in some cases a version can be abandoned and not evolved further as 
we have illustrated in Figure 2-7 by using the shaded version vertex which has no 
outgoing edge. CSs of such an abandoned version will turn into legacy CSs until 
they become obsolete. 

In terms of managed evolution, forks create mostly business value, while merg-
es increase agility. Basic steps either increase business value or agility. It is in the 
responsibility of the involved SoS authorities to appropriately control evolutionary 
steps such that the business value for all stakeholders stays viable while simulta-
neously agility is not reduced. Both, business value and agility are quality metrics 
that are composed of CPSoS application-specific quality metrics. For example, the 
business value of a CPSoS consisting of autonomous cars that should transport 
humans in a city while minimizing environmental pollution can be assessed by av-
erage transportation time per km and average pollution per km. 

2.5.3 Managing Global Evolution at Relied Upon Interfaces 

Integral to managing evolution in CPSoSs is the establishment of an SoS au-
thority over RUI specifications. The SoS authority needs to carefully plan and ex-
ecute evolutionary steps that – depending on their magnitude – may require con-
sidering the possibility of unexpected detrimental emergent effects, and modifying 
the management of CPSoS dynamicity. 
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SoS Authority and Management of RUI Specifications 

We consider the SoS authority as a mandatory organizational entity in collabo-
rative SoSs that has societal, legal, or business responsibilities in order to keep the 
CPSoS relevant to its stakeholders. For this purpose, the SoS authority has moni-
toring and amelioration powers within the CPSoS in order to steer it towards a de-
sired target version. In particular the SoS authority manages RUI specifications 
and controls how changes of these specifications are rolled out. An SoS authority 
might be composed of representatives of key CPSoS stakeholders, like CS manu-
facturers or governments. 

SoS authorities select and adopt a suitable set of standards developed by stand-
ardization organizations such as the Institute of Electrical and Electronics Engi-
neers (IEEE), the Society of Automotive Engineers (SAE), or the Object Man-
agement Group (OMG). The role of standardization organizations in CPSoSs is to 
provide a stable and broadly accepted conceptual and technological basis for the 
realization of RUI specifications. For example, the SAE J1708 standard specifies 
the serial communication (physical layer) of Electronic Control Units (ECUs) in 
heavy duty vehicles. 

In the following we outline a technical realization of RUI specification man-
agement on a Service-oriented-Architecture (SoA) approach. Authorized Relied 
Upon Service (RUS) specifications (S-Specs) are administrated at a service regis-
try (see Section 2.3.2). Only the SoS authority can authorize and publish S-Specs 
at the service registry. For example, a CS owner3 participates in the CPSoS by be-
ing a RUS provider that offers the RUS in compliance to an authorized S-Spec. In 
support of multi-version evolution the service registry needs to feature version 
management for authorized S-Specs, i.e., the SoS authority can add new versions 
of S-Specs to the service registry that coexist with older S-Spec versions. Now 
owners of CSs that provide RUSs have the possibility to specify in their respective 
SLAs to which specific version of an authorized S-Spec they refer to. For each 
supported S-Spec version a different SLA needs to be offered by the CS owner. 

Besides managing RUI specifications the SoS authority needs to assess and 
steer the overall evolutionary process of the CPSoS. The performance of the evo-
lutionary process of a CPSoS is derived from measurable quality metrics describ-
ing business value and agility of the CPSoS. Consequently, the measurement of 
the evolutionary performance can be efficiently integrated in the monitoring and 
analyzing blocks of the AMADEOS solutions concerning the management of 
CPSoS dynamicity (see Chapter 7). One example of an important quality metric 
for the assessment of the evolutionary performance in CPSoSs is the adoption rate 
of existing or newly introduced CSs to new or changed versions of S-Specs. 

The adoption rate is controllable by the SoS authority who can give incentives 
in order to move the evolutionary process towards a desired target version. Incen-
tives can be advantages or disadvantages where even monetary penalties apply in 
case a CS is not upgraded to a more recent version. For example, in the global Au-
                                                           
3 For the sake of brevity we assume here that the owner of a CS is also its manufacturer and user.  
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tomated Teller Machine (ATM) network SoS the payment card industry shifted li-
ability at a specified deadline from money institutes to the Point of Sale (PoS) op-
erators (usually merchants), if they used old and insecure equipment to process 
payment cards. As the deadline of the liability shift approached and passed, PoS 
operators risked compensating monetary losses caused by fraud from their own 
pocket, if an insecure PoS terminal under their responsibility was involved. This 
strong incentive forced PoS operators to upgrade to more secure PoS terminals 
where they are not liable in the event of fraud. 

Magnitude and Effects of Evolutionary Steps 

We define the magnitude of an evolutionary step by considering which of the 
interface layers (see Section 2.3.2) of RUIs are affected by it: 

• Cyber-Physical Layer: Technological advances (e.g., different communica-
tion protocols, more energy efficient sensors and actuators) may lead to a 
change of how cyber-physical interactions are carried out. In the case that other 
interface layers remain unaffected (i.e., there is no change in the information 
flows) we have a minor evolutionary step. A minor evolutionary step does not 
require any further considerations concerning emergence and managing CPSoS 
dynamicity. In the context of the AMADEOS Architectural Framework (AF) 
detailed in Chapter 5, a minor evolutionary step only concerns differences in 
the implementation level. 

• Informational Layer: We consider changes at the informational layer as a ma-
jor evolutionary step, because a change in the Itom interactions of CSs needs to 
be carefully assessed with respect to emergence and the management of CPSoS 
dynamicity. Regarding the AMADEOS AF a major evolutionary step implies 
changes at the logical, conceptual or even up to the mission level. 

• Service Layer: Changes at the service layer are always accompanied by 
changes in the underlying interface layers. Consequently, a change at the ser-
vice level also represents a major evolutionary step that has implications on 
emergence and the management of CPSoS dynamicity. 

Methods from Scenario-based Reasoning (SBR) [43] can be employed to pre-
evaluate effects of evolutionary steps according to CPSoS-specific quality metrics 
under quantified uncertainty. 

Handling Continuous Evolution 

It remains to discuss the transition from one CPSoS version to an evolved ver-
sion. Continuous evolution in CPSoSs is based on the principle of backward com-
patibility of its CSs. This backward compatibility needs to be established by up-
grading or introducing new CSs that also support the interaction with non-
upgraded CSs. 
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We have already described a multi-version service registry and that Relied Up-
on Service (RUS) providing CSs can support multiple versions of S-Specs. Now 
we want to emphasize that also CSs requesting RUS have the possibility to con-
sume different versions of a RUS. In fact, the more versions of RUSs a CS is able 
to provide or consume, the ‘smoother’ a CPSoS is able to evolve. Naturally, newly 
introduced RUSs should not disrupt existing or legacy RUSs. 

At some point conflicting or obsolete RUSs need to be retired and old, non-
upgradable CSs that depend on them or provide them become incompatible with 
more recent CSs. In case these old and non-upgradable CSs are still essential for 
the operation of the CPSoS they become legacy CSs and their service needs to be 
appropriately wrapped. For example, a wrapping CS can be introduced in an evo-
lutionary step. The wrapping CS is able to offer the service of the legacy CS en-
capsulated in a version of a RUS that is compatible with all non-legacy CSs.  

In time-aware CPSoSs there is the benefit of a global time that allows tempo-
rally coordinating the execution of an evolutionary step. The SoS authority can de-
fine validity instants in new versions of RUI specifications such that they are 
switched on at a specific instant. For example, a desired emergent effect may only 
occur if a critical number of CSs adhere to the new RUS version simultaneously. 
Also, for some CPSoSs it might be useful to steer its CSs first to a safe, ground, or 
dormant state, then perform further (physical) upgrades, and finally awake them to 
interact in the evolved CPSoS (see car-recalls and repair procedures in the auto-
motive domain). 

2.5.4 Avoiding Detrimental Emergence 

The occurrence of unexpected detrimental emergence is a problematic case in 
engineering, operating and evolving CPSoSs. Against our expectations and current 
predictive capabilities something harmful and possibly catastrophic happened. 
Why can we not prevent unexpected emergence by design? While the engineering 
process is indeed responsible for the interaction abilities of the CSs, CPSoSs are 
also open systems that interact with their environment. This environment of a 
CPSoS may change over time and/or might be insufficiently understood, i.e., in 
general we cannot be certain that our models of the CPSoS environment are com-
plete. Also the boundary of a CPSoS is dynamic and influences how the CPSoS 
environment affects the CPSoS itself. For example, consider a fault-tolerant 
CPSoS: If the number of its redundant CSs is small, an environment that causes 
intermittent faults in CSs at a constant rate (e.g., radiation) is much more hostile 
than compared to the same CPSoS where the number of redundant CSs is large. 
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An evolving CPSoS attempts to adapt to changes in its environment (real 
changes or a changed understanding of the environment). Consequently, there are 
two co-dependent causes that enable the occurrence of unexpected detrimental 
emergence in CPSoSs: 

• An evolutionary step that changes how CSs interact, and 
• a change in the CPSoS environment and/or hidden channels. 

To the best of our knowledge there is currently no scalable theory to eliminate 
the first cause with certainty. The number of possible interactions in real-world 
CPSoSs (physical environment!) diminishes any hope to exhaustively test for all 
known emergent phenomena, and to evaluate them with respect to their possibly 
detrimental effects. Even if there was a theory solving this issue, one fundamental 
problem remains: Identifying unknown emergence, i.e., effects or properties that 
are conceptually novel at the macro-level (SoS level), but are not present in the 
non-relational phenomena of the parts at the micro-level (level of CSs). 

Unfortunately, the situation is even worse concerning the second presumed 
cause that enables the occurrence of unexpected emergence. Changes in the 
CPSoS environment are outside the sphere of control of a CPSoS consortium. 
Some of these changes may lead to the occurrence of previously rare or unlikely 
interactions of CSs which may in return result in a (detrimental) unexpected emer-
gent phenomenon. Finally, hidden channels are an unfortunate consequence of our 
ignorance about the CPSoS environment. They may close causal loops or enable 
cascading effects which again could trigger (detrimental) unexpected emergence. 

In summary, it appears that in principle we cannot prevent all first occurrences 
of detrimental emergent phenomena with absolute certainty. Further, both an ill-
conceived evolutionary step, and (unlucky) changes in the CPSoS environment 
may lead to undesired emergent phenomena. In the following subsections we dis-
cuss a mitigation strategy based on results described in Chapter 3. 

Mitigation strategy 

In order to minimize occurrence and subsequent damage due to unexpected det-
rimental emergence we suggest a mitigation strategy consisting of the following 
procedures: 

• Augmentation of CPSoS design with expectations about nominal opera-
tion: Relied Upon Service (RUS) specifications should contain assertions that 
indicate whether the RUS is provided and consumed nominally and according 
to the designer’s expectations. Runtime monitoring implemented in the man-
agement of CPSoS dynamicity (see Chapter 7) can check the defined assertions 
against all interactions of CSs and log as well as timestamp any occurring 
anomalies. 

• Discovery of the onset of unexpected emergent phenomena: Quality metrics 
associated with the onset of emergence (e.g., critical slow-down, density), un-
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explainable anomalies, and patterns of previously diagnosed and analyzed 
emergence should lead to the discovery of the onset of (detrimental) unex-
pected emergence. Again this procedure should be implemented in the man-
agement of CPSoS dynamicity. 

• Diagnosis and analysis of unexpected emergence: After an unexpected 
emergent phenomenon has been discovered, it must be carefully diagnosed and 
analyzed. This procedure must reveal the trans-ordinal law and it might expose 
hidden channels or changes in the CPSoS environment that have not been no-
ticed yet. Based on the result of the analysis inaccurate (environmental) models 
should be corrected and an appropriate evolutionary step planned to prevent the 
now expected detrimental emergence. 

• Prevention of detrimental emergence by design: As soon as new expected 
detrimental emergence has been found an evolutionary step should be per-
formed that ameliorates ongoing detrimental emergence and prevents its further 
occurrence. Amelioration can be implemented in the management of CPSoS 
dynamicity by deploying suitable reaction strategies (e.g., introduction of ran-
domness to break unintended synchronization [67]). Prevention of detrimental 
emergence should be implemented by appropriately constraining the RUIs of 
CSs such that their interactions do not lead to the detrimental emergent effect 
anymore. 

• Prediction of detrimental emergence: When planning an evolutionary step, 
we can predict/search for detrimental emergence by applying analytical meth-
ods (e.g., finding causal loops, cascading effects) as well as simulation of mod-
els of the CPSoS and its environment. 

Detecting Unknown Emergence 

Often emergent phenomena are associated with some kind of regularities or 
shift in densities, but looking for something unknown that does not appear to have 
any generic and unique characteristics limits our detection abilities. Mogul [67] 
suggests building a library of signatures of emergence that occur in distributed 
computer systems and gives interesting examples: trashing caused by ‘unlucky’ 
scheduling (not just overprovisioning), unintended synchronization, unintended 
oscillation or periodicity, detectable by spectral analysis, deadlock and livelock, 
phase change, chaotic behavior. 

While building such a library still requires some decision procedure to classify 
anomalies as emergent, it would – together with monitoring – allow for efficient 
detection of already encountered emergence. A decision procedure to classify 
anomalies could be supported by unsupervised machine learning. Self-organizing 
Maps (SOMs) appear to be a particularly interesting technique where clusters of 
structure or density differences in data can be found (see Figure 2-8, right). 
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Figure 2-8: Self-Organizing Maps (SOMs) reveal emer-
gent regularities in high-dim input data 

The SOM [59] is an unsupervised machine learning approach that is based on 
an artificial neural network of a usually low-dimensional topology (e.g., two-
dimensional as depicted in Figure 2-8, left). During the training process possibly 
high-dimensional input data is (after appropriate pre-processing [55]) firstly vector 
quantized and secondly mapped to the SOM while attempting to preserve the orig-
inal topology of the input data. Various visualizations for SOMs exist to both 
make the information contained in the SOM accessible for analysis, but also to al-
low for assessments concerning the quality of the vector quantization and the qual-
ity of the topology preservation. Consequently, visualizations are critical for the 
interpretation of SOMs. Visualizations often focus on a single or a few aspects of 
the SOM, i.e., for analyzing SOMs, it is often necessary to study multiple visuali-
zations of them in combination. For example, visualizations can express structural 
information about input vector density relations, distance relations among mapped 
input vectors (also called topology), or class information. Further, SOMs can be 
used to both semantically relate different input samples among one another, and to 
predict the relation of new input samples to input samples used in training. 

2.5.5 Design Guidelines for Evolvable Systems-of-Systems 

We conclude this section with a list of design guidelines for evolving CPSoSs 
that in particular apply to collaborative SoSs: 

• Precisely specify temporal properties of RUIs. Local evolution might inadvert-
ently violate RUI specifications, particularly in the temporal domain. Such vio-
lations may lead to hidden channels enabling undesired interactions among 
CSs. The undesired interactions possibly cause unexpected detrimental emer-
gence. Therefore, CSs need to be checked (e.g., by the CPSoS dynamicity 
management) concerning their conformance to authorized RUI specifications. 
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• Adopt managed evolution to steer CPSoS evolution in a way such that neces-
sary changes are implemented and the CPSoS remains flexible concerning fu-
ture changes. 

• Implement an SoS authority that has the capabilities to change RUI specifica-
tions, to assess the evolutionary state of the CPSoS, and to give incentives to 
control the onset of the evolutionary process.  

• Define evolutionary steps that move the CPSoS towards its changed goal, but 
limit them in scope such that they remain predictable (with respect to the cur-
rent knowledge of the CPSoS consortium) in their effects. 

• Use the global timebase to temporally coordinate evolutionary steps. 
• Use executable CPSoS models (see Section 2.4.2) in simulations and historic 

data recorded in the evolving CPSoS during runtime to pre-validate planned 
evolutionary steps. 

• Use monitoring and assertion checks at the RUIs (e.g., by management facili-
ties of the CPSoS dynamicity) to validate evolutionary steps. In case of hints 
about the onset of unexpected emergence update the models and take corrective 
actions, if possible before a detrimental effect manifests. 

• Unexpected emergence appears to be unpredictable in principle even in careful-
ly managed evolution. First occurrence might not be preventable in all cases, 
therefore use the mitigation strategy described in Section 2.5.4. 

• Keep human domain experts in the design loop of evolutionary steps. The 
CPSoSs that we want to engineer and operate integrate humans, affect humans 
and should co-evolve with humans. Consequently, only humans are fully capa-
ble of judging how to best address a change in the environment of CPSoSs. 

2.6 Conclusion 

In this chapter we discussed interfaces in time-aware Cyber-Physical Systems-
of-Systems (CPSoSs) for the purpose to investigate behavioral properties of 
CPSoSs. First, we characterized relevant architectural elements of CPSoSs and in-
troduced three interface layers: the cyber-physical layer, the informational layer, 
and the service layer. Based on this conceptual groundwork, we identified (among 
other interfaces) the Relied Upon Interface (RUI) of a Constituent System (CS) as 
the fundamental interface responsible for the operational behavior of CPSoSs and 
managing CPSoS evolution. 

The RUI is a CS interface on which the global, operational CPSoS service re-
lies upon. We described the RUI model at each of the introduced interface layers, 
and outlined execution semantics for the informational layer to support the explo-
ration of behavioral effects, like the occurrence of emergence. 

In the second part of the chapter we focused on CPSoS evolution and how to 
manage it at the RUI of CSs. To this end we introduced an SoS authority that is in 
control of RUI specifications, plans evolutionary steps, and carries them out by 
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changing RUI specifications. We discovered that both – changes in the CPSoS en-
vironment and evolutionary changes – harbors the risk of unpredicted detrimental 
emergence and suggested a mitigation strategy. 
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3.1 Introduction  

The essence of the concept emergence is aptly communicated by the following 
quote, attributed to Aristotle, who lived more than 2000 years ago:  The Whole is 
Greater than the Sum of its Parts. The interactions of Parts can generate a Whole 
with unprecedented properties that go beyond the properties of any of its constitu-
ent Parts. The immense varieties of inanimate and living entities that are found in 
our world are the result of emergent phenomena that have a small number of ele-
mentary particles at their base. 

A System-of-Systems (SoS) consists of a set of autonomous technical systems, 
called constituent systems (CS) that are independent and provide a useful service 
to their environment [91]. The purpose of building a System-of-Systems out of 
CSs is to realize new services that go beyond the services provided by any of the 
isolated CSs. Emergence is thus at the core of SoS engineering. 

A Cyber-Physical System (CPS) is a synthesis of processes in the physical en-
vironment and computer systems that contain sensors to observe the physical envi-
ronment and actuators to influence the physical environment.  In most cases, the 
computer systems are distributed and contain computational nodes connected 
through networks that realize the information exchange among the nodes. A 
Cyber-Physical System-of-Systems (CPSoS) is an integration of stand-alone CPSs 
that provides services that go beyond the services of any of its isolated CPSs. 

It is the objective of this chapter to investigate the phenomenon of emergence 
in CPSoS. In the following section we look at some prior work on emergence in 
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the domains of philosophy and computer science. Since emergence is always re-
ferring to phenomena that occur at a given level of a hierarchic system model, 
Section 3.2 elaborates in detail on the concept of a multi-level hierarchy. Section 
3.4 presents a definition of emergence in the SoS context and discusses some 
properties of emergent phenomena. Section 3.5 introduces a number of examples 
of emergent phenomena in computer systems. Section 3.6 discusses some design 
guidelines that help to detect the potential of emergent phenomena in a CPSoS and 
mitigate the effects of detrimental emergence. This Chapter terminates with a con-
clusion in Section 3.7. 

3.2 Related Work  

In philosophy the questions of how the diversity of the world emerges out 
of simple physical building blocks has been a topic of inquiry since the time of 
the ancient Greeks, leading to abundant literature about emergence, e.g., the 
survey articles [93] [107] or the books by [89] [77] [Clay06]. Computer scien-
tists got interested in the topic of emergence when it was realized that some 
striking phenomena that are observed at the system level of complex systems 
could not be explained by looking at the system’s components in isolation. A 
well-publicized example of such a striking phenomenon is the flash crash of the 
stock market on May 6, 2010 [75]. Emergence can be regarded as an intriguing 
part-whole relation that investigates how the properties and the interaction of the 
parts lead to novel phenomena of a whole. 

J. Holland remarks in [89]: Despite its ubiquity and importance, emergence 
is an enigmatic and recondite topic, more wondered at than analyzed… It is un-
likely that a topic as complicated as emergence will submit meekly to a concise 
definition and I have no such definition to offer. Fromm [82] [83] elaborates on 
different forms of emergence and investigates the emergence of complexity in 
large systems. In [67], J. Mogul describes emergent misbehavior in a number of 
computer systems, discusses how emergence can manifest itself, and proposes 
a research agenda for studying the phenomena of emergence in complex com-
puter systems. In the European Research Project TAREA SoS the current state of 
the art in the field of SoS has been captured [87] and a roadmap for future SoS 
research has been proposed.  In this roadmap the topics of theoretical foundations 
of SoSs and of emergence are in a prominent position. In [92], Keating argues 
for the development of a firm epistemological foundation of emergence in SoSs. 
In the proceedings of the yearly IEEE conference on Systems of Systems Engi-
neering and the book [91] by Jamshidi relevant contributions to the topic of 
emergence in SoSs can be found. Parunak and VanderBrok [101] and Huberman 
and Hogg [90] observed that variable temporal delays play a key role in the gen-
eration of emergent misbehavior in an SoS.  In [78] Boschetti and Gray elabo-
rate on the limits of insights gained from computer simulations when modeling 
emergent phenomena in natural systems. 
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3.3 MULTI-level Hierarchy  

The understanding and analysis of the immense variety of things and their be-
havior in the non-living and living world around us require appropriate modeling 
structures. Such a modeling structure must limit the overall complexity of a single 
model and support the step-wise integration of a multitude of different models. 
One such widely identified modeling structure is that of a multi-level hierarchy, 
where level-specific rules and laws govern the interdependence of entities at each 
level of the hierarchy. Since the phenomenon of emergence is always associated 
with levels of a multi-level hierarchy it is useful to start with a thorough discus-
sion of multi-level hierarchies. 

A multi-level hierarchy is a recursive structure where a system, the whole at the 
level of interest (the macro-level), can be taken apart into a set of sub-systems, the 
parts, that interact statically or dynamically at the level below (the micro-level). 
Each one of these sub-systems can be viewed as a system of its own when the fo-
cus of observation is shifted from the level above to the level below.  This recur-
sive decomposition ends when the internals of a sub-system is of no further inter-
est.  We call such a sub-system at the lowest level of interest (the base of the 
hierarchy) an elementary part or a component. 

In his seminal paper The Architecture of Complexity Herbert Simon posits 
[105] (p.219): If there are important systems in the world that are complex without 
being hierarchic, they may to a considerable degree escape our observation or un-
derstanding. 

Our models of the world of things are organized along such a widely cited Mul-
ti–level Material Hierarchy, giving rise to the establishment of dedicated scientific 
disciplines for each level, e.g.: 

• Atoms consist of elementary particles (the field of physics) 
• Molecules consist of atoms (the field of chemistry) 
• Cells consist of molecules (the field of biology) 
• Organs consist of cells (the field of medicine) 

3.3.1 Whole versus Parts 

Viewed from the macro-level, the whole is an established entity that encapsu-
lates and hides its parts that interact at the lower level.  If the parts at the micro-
level that form the whole at the macro level are all identical we talk about a homo-
geneous structure, otherwise we talk about a heterogeneous structure.  

At a given macro-level, we consider the whole as an entity that is surrounded 
by a surface.  Interfaces located at the surface of the whole control the exchange 
of matter, energy or information among the wholes at the same level.  

Koestler [94] (p.341) has introduced the term holon to refer to the two-faced 
character of an entity in a multi-level hierarchy.  The word holon is a combination 
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of the Greek “holos”, meaning all, and the suffix “on” which means part. The 
point of view of the observer determines which view of a given holon is appropri-
ate in a particular scenario. 

 

Figure 3-9 gives a graphical representation of the holon. Viewed from the outside at the mac-
ro level, a holon is a stable whole that can interact with other holons of that level by an interface 
across its surface. Viewed from below, the micro-level, a holon is characterized by a set of inter-
acting parts that are confined by the boundaries of the holon. This rigorous enclosure of the 
parts of a holon at the micro-level is absolutely essential to maintain the integrity of the ab-
straction of a holon as a whole at the macro level. 

Koester states in [94] (p.343): Every holon has the dual tendency to preserve 
and assert its individuality as a quasi-autonomous whole; and to function as an in-
tegrated part of an (existing or evolving) larger whole.  This polarity between Self-
Assertive (S-A) and Integrative (INT) tendencies is inherent in the concept of hi-
erarchic order and a universal characteristic of life. 

There are two relations characterizing two adjacent levels of a hierarchy: (i) the 
level relation between the whole at the macro-level and the parts of the micro-
level and (ii) the interaction relation among the parts of the micro-level.  

3.3.2 Level Relations 

The type of the level relation determines the character of a multi-level hierar-
chy. In this section we focus on three types of level relations, a nested (or struc-
ture) hierarchy, a description hierarchy and a control hierarchy.  For the emer-
gence of novel behavior in a CPSoS the control hierarchy is the most important. 
  

Figure 3-9: Two-faced Character of 
a Holon 
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Structure Hierarchy 

We call a hierarchy a structure (or nested) hierarchy if the whole comprises the 
parts or, in different wording, the parts are contained in the whole, i.e., consists of 
(from the top to the bottom) or forms (from the bottom to the top) stand for the 
level relation of containment.   

Structure hierarchies are formed by the identification and classification of the 
observation of physical structures that are existent in the world of things, irrespec-
tive of the subjective view of the observer. These physical structures are often 
formed by physical force-fields (see also Section 3.3.3, Physical Interactions). 

The Multi-level Material Hierarchy referred to in the beginning of Section 3.2 
above is an example for a structure hierarchy.   

Description Hierarchy 

A multi-level hierarchy that describes a set of related entities at different levels 
of abstraction is called a multi-level description hierarchy. A description hierarchy 
can be much simpler than the related structure hierarchy provided the structure 
hierarchy is highly redundant. If a complex structure is completely un-redundant, 
then it is its own simplest description [105] (p.221).  

We distinguish two types of descriptions, state descriptions and process de-
scriptions. State descriptions describe the state of the world at the instant of obser-
vation.  Process descriptions explain how a new state of the world unfolds as time 
progresses that is how the state transitions happen. A description of behavior is a 
process description. 

The classification of entities in a description hierarchy is usually based on cog-
nitive models of the observer and thus may be dependent on the subjective view of 
the observer.  Moreover, depending on the purpose, different levels of description 
of the same physical structure can be introduced by the observer.  

For example, the thermodynamic description of the behavior of a gas is at a 
higher level of description than the statistical description of the same physical ma-
terial and the choice among them may depend on the purpose of the description. 

If the redundancy of a structure is removed from its description hierarchy, then 
a significant simplification of the description can be realized (e.g., [105] p.220). 

In case the elements of a hierarchy are constructs, i.e. non-material entities that 
are the product of the human mind, the assignment of the constructs to hierarchical 
levels always results in a description hierarchy, the organization of which is de-
termined by the purpose of the observer.   

In many, but not in all cases, the description hierarchy of a structure follows the 
structure hierarchy. 
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Control Hierarchy 

In a control hierarchy the macro-level provides some constraints on the struc-
ture or behavior of the parts at the micro-level thus establishing a causal link from 
the macro level to the micro-level.  Constraints restrict the behavior of things be-
yond the natural laws, which the things must always obey. 

In many, but not all cases, the control hierarchy follows the structure hierar-
chy. Ahl [74] (p.107) provides the following example: The concept army denotes a 
structure hierarchy that consists of the soldiers of all ranks and contains them all.  
In contrast, a general at the top of an army (a military hierarchy) controls the sol-
diers, but does not contain them. 
In some cases, as the example of the military hierarchy above shows, the control 
constraints originate from outside, i.e. above the macro-level. In other cases, the 
control constraints have their origin in the whole, i.e. the collective behavior of the 
parts of the micro-level. It is this latter case that is relevant for the analysis of 
emergence. Many equivalent examples can be found in Distributed Computing 
when we have centralized or decentralized control and management. Since behav-
ior (function plus time) is a concept that depends on the progression of time, there 
is a temporal dimension in control hierarchies that deal with behavior.  

    Since the behavior of the parts forms the behavior of the whole, but the 
whole can constrain the behavior of the parts we have an example of a causal 
loop in such a control hierarchy. 

We can observe such a causal loop in many scenarios that are classified as 
emergent in every-day language:  the behavior of birds in flocks, the synchronized 
oscillations of fireflies or the build-up of a traffic jam at a congested highway.  

Pattee [103] discusses control hierarchies extensively in The Physical Basis 
and the Origins of Hierarchical Control.  In order to support the simplification at 
the macro-level and establish a hierarchical control level, a control hierarchy must 
on one side abstract from some degrees of freedom of the behavior of the parts at 
the micro-level but on the other side must constrain some other degrees of free-
dom of the behavior of the parts, i.e., a control hierarchy must provide constraints 
from above, while, in a multi-level material hierarchy the natural laws provide 
constraints from below.   

The delicate borderline between the constraints from above on the behavior 
of the micro-parts and the freedom of behavior of the micro-parts is decisive for 
the proper functioning of any control hierarchy.   
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There are two extremes of control which lead to a collapse of the control hier-
archy: (i) full control from above which defeats the principle of abstraction of con-
trol and leads to a full deterministic behavior and (ii) no constraints from above 
which can lead to unconstrained chaotic behavior (see Figure 3-10).   

For example, a good conductor of an orchestra will control the tempo of the 
performance without taking away the freedom from the musicians to express their 
individual interpretation of the music. 

3.3.3 Interaction Relations 

Formal Hierarchy 

Simon [105] (p.195) calls a hierarchy a formal hierarchy if the interaction rela-
tion is empty, i.e., the parts are only related to the whole of the higher adjacent 
level. If, in the above example, the soldiers relate at a given level only to their 
boss, but not to each other, then we have an example of a formal hierarchy.  Mod-
els that have the structure of a formal hierarchy are rare. 
  

Figure 3-10: Self Assertiveness of a Holon 
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Physical Interactions 

The physical interactions at any considered level of a material hierarchy can be 
classified in the following three dimensions: (i) distance among the parts, (ii) 
force fields among the parts and (iii) frequency of interactions among the parts. In 
general, as we move up the levels of a material hierarchy the distance increases, 
the force-field magnitude decreases and the frequency of interactions decreases 
[105].   

Simon argues that the laws that govern the behavior at each level are nearly in-
dependent of the level above and below, giving rise to the principle of near de-
composability [105] (p.209) of levels. 

This principle of near decomposability states that an approximate model 
suffices in most cases to model the behavior at any given level of a multi-level 
hierarchy.  

This approximate model considers only the physical interactions at the consid-
ered level and abstracts from the behavior of the high-frequency parts at the level 
below and considers the dynamic parameters of the low frequency parts at the lev-
el above that provide the constraints as constants. 

Informational Interactions 

Informational interactions exchange information among the communicating 
partners. When the information exchanged consists of data and an explanation of 
the data we observe the exchange of Itoms.  

Itom: An Itom is an atomic unit of object data and meta data. The object data 
represents some semantic content, and the meta data provides an explanation of 
the object data, i.e., how the semantic content represented by object data can be 
accessed. The semantic content of (or the information contained in) an Itom re-
ports about a timed proposition relating to some entities in the world [96].   

In a Cyber-Physical System-of-Systems (CPSoS) we distinguish between two 
types of informational interactions: (i) message-based information interactions in 
cyber space and (ii) stigmergic information interactions in the physical world. 

Interactions in the cyber space allow in principle the exchange of explicitly de-
fined Itoms which travel unmodified (invariant semantic content) from a sender to 
a set of receivers. Stigmergic interactions are indirect and involve influencing the 
state of the common environment of senders and receivers. Such environment may 
also be under the possible influence of environmental dynamics. Environmental 
dynamics are autonomous processes in the environment (physical world or cyber 
space) that also act on the state of the environment. Consequently, in stigmergic 
interactions it is – in many cases – not possible to send the same Itom from sender 
to receivers. Instead very often receivers will only be able to observe object data 
which is (more or less closely) related to the original data sent and needs to be cor-
rectly interpreted to avoid property mismatch. A model of the environmental dy-
namics able to represent the processing and modifications performed on data 
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would be paramount in the understanding and mastering of stigmergic information 
exchange. 

In cyber space data is represented by a bit-pattern that can be generated by the 
processing of stored Itoms or by some data acquisition process, e.g., by a sensor.  
For data acquisition, the design of the sensor determines how the acquired bit pat-
tern has to be interpreted, i.e., provides for the explanation of the object data.     

Since an Itom is a higher-level concept than the sole object data in an Itom, we 
propose to use Itoms in the specification of Relied-Upon Interfaces (RUIs) among 
the Constituent Systems (CSs) of a CPSoS (see Chapter 2). According to [96] the 
full specification of an Itom has to provide answers to the following questions: 

• Identification: What entity is involved? The entity must be clearly identified in 
the space-time reference frame. 

• Purpose: Why is the data created? This answer establishes the link between 
the raw data, the refined data and the purpose of the CPSoS. 

• Meaning: How has the data to be interpreted by a human or manipulated by a 
machine? If the answer to this question is directed towards a human, then the 
presentation of the answer must use symbols and refer to concepts that are fa-
miliar to the human. If a computer acquires data, then the explanation must 
specify how the data must be manipulated and stored by the computer. 

• Time: What are the temporal properties of the data? Real-time data must in-
clude the instant of observation in the entity. In control applications it is helpful 
to include a second timestamp, a validity instant that delimits the validity of the 
control data as part of the Itom [95] (p.4).  

Message-based Information Flows: A message-based information flow is 
present if one CS sends a message to another CS. In many legacy distributed sys-
tems only object data is contained in a message while the explanation of the data 
is derived from the context.  

In a CPSoS the involved CSs can be operating in differing contexts, e.g., in the 
US and Europe. For example, in the US temperature is represented by degrees 
Fahrenheit, while in Europe temperature is represented by degrees Celsius. As a 
consequence, the same data (bit-patterns) can convey a different meaning if the 
contexts of the sender differs from the context of the receiver of the message, 
causing a property mismatch.  Such property mismatches have been the cause of 
severe accidents.   

Stigmergic Information Flows: A stigmergic information flow is present if 
one sending CS acts on the physical environment and changes the state of the en-
vironment and later on another receiving CS observes the changed state in the en-
vironment with a sensor that captures the sensor specific aspect of the environ-
ment [97]. Consider, for example, the coordination of cars on a busy highway to 
realize a smooth flow of traffic. In addition to the direct communication by explic-
it signals among the drivers of the cars (e.g., the blinker or horn), the stigmergic 
information flow based on the observation of the movement of the vehicles on the 
road (caused by the actions of other drivers) is a primary source of information for 
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the assessment of a traffic scenario. An important characteristic of stigmergic in-
formation flows is the consideration of up to date environmental dynamics. 

Hidden Channels 

There exist many indirect information flows, in particular stigmergic ones, 
which remain both i) unknown to the sender which is not aware of the flow, and 
ii) are not captured by systems designers or modelers.  We call such existing inter-
action relations hidden channels.  

Hidden channels are problematic, because they can contribute to the generation 
of causal loops (and therefore take active part in the rise of emergent phenomena). 
In addition, these causal links may lead to a modification of the understood hol-
archy abstraction, i.e., parts of one level interact directly with parts of another 
level which may establish hidden level relations (e.g., a control hierarchy). Ef-
fects of such modification of the holarchy abstraction may cause both unintended 
information leakage (violations of security properties) and unexpected negative 
emergence.  

Usually it is difficult to protect the state of the physical environment regarding 
observations of receivers. Additionally, in many cases a sender may be even una-
ware of leaking information to its environment. For example, consider security at-
tacks based on observing the electromagnetic emissions of a processor on smart 
cards [84].  

Still, hidden channels should be avoided by properly identifying them (see Sec-
tion 3.6.1) or insulating against them (e.g., firewalls, physical insulation). 

3.4 Emergence  

It is quite common, as we move up a multi-level hierarchy, that novel phenom-
ena can be observed at a given level that are not present at the level below.  We 
call these new phenomena emergent phenomena.  We use the term phenomenon as 
an umbrella term that can refer to structure, behavior or property. 

In many cases the laws that explain the genesis of these emergent phenomena 
are formulated post facto because it would require a very knowledgeable mind to 
predict a priori all possible phenomena that can come into existence out of the in-
teractions of many given parts.  The first appearance of an emergent phenomenon 
is often a surprise to a human observer.  
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3.4.1 Definition of Emergence 

In order to achieve a level of objectivity we aim for a definition of emergence 
that is based on a property of the scenario and not on a relation between the sce-
nario and the observer.   

Let us analyze the relationship between two adjacent levels of a multi-level hi-
erarchy, the micro-level (the level of the parts) and the macro-level (the level of 
the whole) where emergent phenomena are observed, assuming that the level rela-
tion is given. We restrict our analysis to these two levels and disregard the case 
where some properties of the parts are themselves emergent with respect to their 
lower-level parts. Our definition of emergence in a Cyber-Physical Systems-of-
Systems is the result of many interdisciplinary discussions during the AMADEOS 
Workshop on Emergence in Cyber-Physical Systems-of-Systems [88]. 

A phenomenon of a whole at the macro-level is emergent if and only if it is 
of a new kind with respect to the non-relational phenomena of any of its 
proper parts at the micro level. 

A phenomenon is of a new kind if the concepts required to explain this phe-
nomenon cannot be found in the world of the isolated parts. Conceptual Novelty is 
thus the landmark of our definition of emergence. 

Note that, according to the above definition, the emergent phenomena must on-
ly be of a new kind with respect to the non-relational phenomena of the parts, not 
with respect to the knowledge of the observer. If a phenomenon of a whole at the 
macro-level is not of a new kind with respect to the non-relational phenomena of 
any of its proper parts at the micro level then we call this phenomenon resultant.   

The essence for the occurrence of emergent phenomena at the macro-level (the 
SoS level) lies in the interactions of the parts at the micro-level, i.e., in the spatial 
arrangement of the parts caused by physical force-fields and/or the designed tem-
poral informational interactions among the parts at the micro-level. 

In CPSoS, the phenomenon we are interested in is behavior. In a CPSoS the 
observable behavior of a system is the temporal sequence of observable states of 
the system in the Interval of Discourse.  We are thus interested in diachronic 
emergence, where initial interactions of the parts at the micro-level precede the 
appearance of the emergent phenomenon at the macro level.  

We assume that the temporal distance between two observation instants of an 
observer is a multiple of a smallest duration.  This smallest temporal distance ex-
presses the grain of observation of this particular observer. If the duration of a 
state is shorter than the grain of observation then this short-lived state may evade 
the observations of this observer.  The duration of the grain of observation should 
be selected on the basis of the purpose of the observer, the dynamics of the ob-
served system and the minimal response time of the entities at the chosen level of 
observation. 

Some scientists posit that emergent behavior is connected with a surprise of the 
observer [104]. According to this view, emergence occurs, if the causal link be-
tween the interactions of the parts and the behavior of the whole is non obvious to 
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the observer (and therefore a surprise to the observer). According to this defini-
tion, the state of knowledge of the observer is the decisive criterion for the classi-
fication of a phenomenon as emergent. As a consequence, different observers with 
different states of knowledge will judge the same phenomenon differently. It fol-
lows that emergence is considered a relation between the whole and the observer 
and not a property of the whole.  

3.4.2 Explained vs. Unexplained Emergence 

At first we pose the question whether emergent properties are reducible to the 
properties of the parts considered in isolation. 

The following quote about Scientific Reduction is taken from the Stanford En-
cyclopedia on Philosophy: 

The term ‘reduction’ as used in philosophy expresses the idea that if an entity x 
reduces to an entity y then y is in a sense prior to x, is more basic than x, is such 
that x fully depends upon it or is constituted by it. Saying that x reduces to y typi-
cally implies that x is nothing more than y or nothing over and above y. 

In an artifact, such as a CPSoS, emergent properties appear at the macro-level 
if the parts at the micro-level interact according to a design provided by a human 
designer—this is more than the parts considered in isolation. It follows that emer-
gent properties in a CPSoS are not reducible to the parts considered in isolation. 

According to our definition of emergence in Section 3.4.1, a novel phenome-
non is considered emergent, irrespective of whether it can be explained how the 
new phenomenon at the macro level has developed out of the parts at the micro-
level. Given the present state of knowledge, some of these emergent phenomena 
can be explained by existing theories while there are other emergent phenomena 
where at present no full explanation can be given as to how they developed. Ex-
amples for (as of today) unexplained emergence are the generation of life or the 
generation of the mind on top of the neurons in the brain. 

But what constitutes a proper scientific explanation? Hempel and Oppenheim 
[86] (p.138) outlined a general schema for a scientific explanation of a phenome-
non as follows: 

Given 
Statements of antecedent conditions  
and 
General Laws   
then a logical deduction of the 
Description of the empirical phenomenon to be explained 
is entailed. 

The antecedent conditions can be initial conditions or boundary conditions that 
are unconstrained by the general laws. 

The general laws can be either universally valid natural laws that reign over 
the behavior of things or logical laws describing a valid judgment in the domain of 
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constructs. Natural laws do not change in time or have a memory of the past.  A 
natural law, such as a physical law, must hold everywhere, no matter what level of 
a multi-level hierarchy is the focus of the investigations. 

A weaker form of explanation is provided if the general laws in the above 
schema are replaced by established rules. There are fundamental differences be-
tween general laws and established rules. General laws are inexorable and univer-
sally valid while established rules are structure dependent and local. Rules about 
the behavior of things are based on more or less meticulous experimental observa-
tions. A special case is the introduction of imposed rules, e.g., the rules of an arti-
ficial game, such as chess.   The degree of accuracy and rigor of various estab-
lished rules differ substantially. 

It thus follows that between the two extremes of scientifically explained and 
not explained at all there is a continuum of explanations that are more or less ac-
ceptable and are relative with respect to the general state of knowledge and the 
opinion of the observer at a given point in time. 

3.4.3 Conceptualization at the Macro-Level 

According to our definition of emergence, novel concepts should be formed 
and new laws may have to be introduced to be able to express the emerging phe-
nomena at the macro level appropriately. Note that the emergent phenomena and 
laws must be new w.r.t. the phenomena of the isolated parts, but not necessarily 
new with respect to the knowledge of the observer, i.e., such phenomena are 
emergent irrespective of the state of knowledge of the observer. 

In the history of science, many novel laws that employ new concepts have been 
introduced to capture the newly observed regularities of phenomena at a macro-
level. We call such a new law that deals with the emerging phenomena at a macro 
level an intra-ordinal law [100]. At a later time, some of these laws have been re-
duced to well-understood effects of the parts at the adjacent micro-level, e.g., the 
thermodynamic theory of a gas can be explained by the statistical theory of gas 
[76]. 

Since the concepts at the macro level are new with respect to the existing con-
cepts that describe the properties of the parts, the established laws that determine 
the behavior of the parts at the micro-level will probably not embrace the new 
concepts of the macro-level. Therefore, it is often necessary to formulate inter-
ordinal laws (also called bridge laws) to relate the established concepts at the mi-
cro-level with the new concepts of the macro-level. 

The proper conceptualization of the new phenomena at the macro level is 
at the core of the simplifying power of a multi-level hierarchy with emergent 
phenomena. 

Let us look at the example of a transistor.  The transistor effect is an emergent 
effect caused by the proper arrangement of dopant atoms in a semiconducting 
crystal. The exact arrangement of the dopant atoms is of no significance as long as 
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the provided behavioral specifications of a transistor are met.  In a VLSI chip that 
contains millions of transistor, the detailed microstructure of every single transis-
tor is probably unique, but the external behavior of the transistors (the holons) is 
considered the same if the behavioral parameters are within the given specifica-
tions.  It is a tremendous simplification for the designer of an electronic circuit 
that she/he does not have to consider the unique microstructure of every single 
transistor.  

3.4.4 Downward Causation 

In classical physics, the concept of causation links an effect to an earlier cause. 
If in the domain of Newtonian mechanics precisely defined initial conditions (the 
cause) are given, an object will move along a trajectory (the effect) that is fully de-
termined by the differential equations that express the laws of macro-mechanics. 
However, in the domain of micro-mechanics, where quantum-physical laws reign, 
it is not possible to observe the initial conditions of an object without influencing 
the object of observation. This is one of the reasons, why the concept of unidirec-
tional causation is highly debated in the modern sciences. Another reason pertains 
to the multitude of parameters, captured in the notion of a causal field that charac-
terizes the causes of real-life phenomena. It is often up to subjective judgment to 
determine which one of these many causes is considered the most prominent 
cause. 

On the other side, the unidirectional cause-effect relation plays a prominent 
role in our subjective models of the world in order to realize intended effects or to 
avoid the causes of undesired effects. To quote Pattee [102] (p.64 onwards):  I be-
lieve the common everyday meaning of the concept of causation is entirely prag-
matic. In other words, we use the word cause for events that might be controllable 
. . .  the value of the concept of causation lies in its identification of where our 
power and control can be effective.  . . .  when we seek the cause of an accident, 
we are looking for those particular focal events over which we might have had 
some control.  We are not interested in all those parallel subsidiary conditions 
that were also necessary for the accident to occur, but that we could not control . . 
. .  

Along this line of reasoning the term downward causation denotes the concept 
that the whole at the macro-level can constrain or even control the behavior of the 
parts at the micro-level (the level below).  

Downward causation is a difficult concept to define precisely, because it de-
scribes the collective, concurrent, distributed behavior at the system level.  . . . 
Downward causation is ubiquitous and occurs continuously at all levels, but it is 
usually ignored simply because it is not under our control. . . . The motion of one 
body in an n-body model might be seen as a case of downward causation [102] 
(p.64).  
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Downward causation establishes a causal loop between the micro-level and the 
adjacent macro level.  The interaction of the parts at the micro-level causes the 
whole at the macro-level while the whole at the macro-level constrains the behav-
ior of the parts at the micro-level (see also Section 3.5.2). We conjecture that in a 
multi-level hierarchy emergent phenomena are likely to appear at the macro-level 
when there is a causal-loop formed between the micro-level that forms the whole 
and the whole (i.e., the ensemble of parts) that constrains the behavior of the parts 
at the micro-level.  

In a system that exhibits downward causation the degrees of freedom of the 
parts that can be exploited at the micro-level, e.g., by mechanisms of self-
organization are limited by: 

1. Constraints on the degrees of freedom of material parts at a micro-level coming 
from below, i.e., upward causation deriving from applicable natural laws, e.g., 
the laws of physics. 

2. Constraints on the degrees of freedom of a part at the micro-level coming from 
above, the whole at the macro-level by downward causation. 

Note that in a concrete system, some of these categories can be empty. For ex-
ample, in a hierarchy of constructs there is no upward causation, i.e. constraints 
on the parts from below caused by natural laws. 

In our opinion the exclusion argument by Kim [93]—that in a system with 
downward causation macro causal powers compete with micro causal powers and, 
if this is the case, micro causal powers will always win, needs to be reconsidered 
since the macro causal powers and the micro causal powers restrict different de-
grees of freedom of the parts and are thus not in conflict. 

Another different way in which emergence is observed in practice in the real 
world also is the one caused by a Cascade effect [81]. A cascade effect exists, if in 
a system with a multitude of parts at the micro level a state change of a part at the 
micro-level causes successive state changes of many other parts at the micro level.  
The cumulative effect of the totality of these state changes results in a novel phe-
nomenon, such as an avalanche or a nuclear explosion. An epidemic is also a good 
example for a cascade effect. Cascade effects are diachronic, since they develop 
over time.   

There may be other mechanisms that lead to emergent phenomena that we have 
not yet identified. 

3.4.5 Supervenience 

The principle of Supervenience [98] establishes an important dependence rela-
tion between the emerging phenomena at the macro-level and the interactions and 
arrangement of the parts at the micro-level. Supervenience states that 

Sup_1: a given emerging phenomenon at the macro level can emerge out of 
many different arrangements or interactions of the parts at the micro-level while 
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Sup_2: a difference in the emerging phenomena at the macro level requires a 
difference in the arrangements or the interactions of the parts at the micro level.  

Because of Sup_1 one can abstract from the many different arrangements or in-
teractions of the parts at the micro level that lead to the same emerging phenome-
na at the macro level—see the example of the transistor above. Sup_1 entails a 
significant simplification of the higher-level models of a multi-level hierarchy.  

Because of Sup_2 any difference in the emerging phenomena at the macro level 
can be traced to some significant difference at the micro level. Sup_2 is important 
from the point of view of failure diagnosis. 

3.4.6 Classification of Emergence  

 
 

 
Figure 3-11 depicts a schema for the classification of emergent phenomena.  
 

In a CPSoS the CSs interact, i.e., via message-based channels in cyber space in 
which they exchange Itoms, and interact also via stigmergic channels information 
flows in the physical world. These interactions can give rise to emergent be-
havior at the level of CPSoS. Although this behavior is explainable in 
principle, we may not be able to explain or predict this behavior in practice 
due to our ignorance about the full scope of the CPSoS, the precise tem-
poral interactions among the CS (see e.g. the deadlock example in Section 
3.5) and hidden communication channels behind the interfaces of a CS.    

Figure 3-11: Classification of Emergent Phenomena 
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3.5 Examples of Emergence in Computer Systems  

In this Section we discuss a number of examples of emergent behavior in com-
puter systems. The first four examples can be explained, while the fifth example, 
the Flash Crash of the stock market on May 6, 2010 [75], although explainable in 
principle has not been explained in practice up to today.  

3.5.1 Deadlock in Computer Systems 

In some publications, the occurrence of a deadlock in a computer system is 
called an emergent phenomenon [85]. With the advent of multi-programming 
computer systems, the following event has been occasionally observed: when exe-
cuting a number of processes concurrently, the system comes to a permanent halt, 
although each process, executed in isolation executes flawlessly. At first, this phe-
nomenon could not be explained and was considered a surprise. Later on (around 
the year 1970) a full explanation of this phenomenon, called deadlock, was given 
[80]. The following simple example of Figure 3-12 explains the essence of the 
phenomenon deadlock.  

Let us consider the execution of a seat reservation system (cf. Figure 3-12) in 
an ideal world, where no failures of the computer hardware will ever occur. As 
long as only a finite number of reservation processes of Type A are executed con-
currently, the system will operate flawlessly forever.  The same will happen if on-
ly a finite number of reservation processes of Type B execute concurrently. How-
ever, if a finite number of processes of Type A and processes of Type B operate 
concurrently, the system will sometimes stop forever (deadlock).  Stopping forever 
is the novel phenomenon that is not happening if processes of Type A or processes 
of Type B operate in isolation. 

In the program sketch of Figure 3-12 there are two semaphore variables, Smoney 
and Sseat initialized with the value 1. Whenever a process executes a Wait opera-
tion on a semaphore variable, the process is only allowed to enter the following 
Critical Section if the value of the semaphore variable is positive at the start of ex-
ecution of the atomic operation Wait. The atomic operation Wait tests the value of 
the designated semaphore variable. In case the test gives a positive value, it de-
creases the value of the semaphore variable by 1 and enters the Critical Section. 
Otherwise it waits until the value of the semaphore variable gets positive. The 
semaphore operation Signal, executed at the end of a Critical Section, increases 
the value of the designated semaphore variable by 1 and thus enables another 
waiting process to enter the Critical Section. 
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Figure 3-12: Example of deadlock 

 
In Figure 3-12, the semaphore Smoney ensures that in the following Critical Sec-

tion, dealing with the money only a single process is allowed to execute at an in-
stant.  Likewise, the semaphore variable Sseat ensures that in the following Critical 
Section dealing with the seat allocation only a single process is allowed to execute 
at a time. As long as processes of type A execute concurrently, the execution of 
Wait(Smoney) is always followed by Wait(SSeat).  

However, if the executions of processes of Type A and Type B are interleaved, 
then it can happen that a process of Type A enters the Critical Section protected 
by Smoney and, before the process of Type A executes the operation Wait(SSeat) a 
process of Type B enters its critical Section protected by Sseat. From now on, a 
deadlock is unavoidable if the money and the seat are available, since both pro-
cesses have to wait forever on the release of the respective following Critical Sec-
tion.   

The observed phenomenon of deadlock fulfills the requirement of an emergent 
phenomenon: 

• The phenomenon deadlock—halting forever—is novel with respect to the sim-
ple world of an individual processes, where the notion of halting forever is not 
present. 

• There is downward causation.  The system of concurrently executing processes 
constrains the execution of an individual process by indirect communication 
channels established by the semaphore variables. 

It is important to note that although this phenomenon is fully explainable it is 
not predictable, even in theory. If two processes try to execute the same sema-
phore operation exactly simultaneously, the underlying hardware enters into a 
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state of meta-stability [106] (p.77). It is not predictable, even in theory, which one 
of the two simultaneous processes will win this race.  

It is also revealing to look at the problem of deadlock from the point of view of 
determinism.  Although each one of the individual processes, the parts, behaves 
deterministically the behavior of the overall system, the whole, is non-
deterministic. 

3.5.2 Distributed Fault-Tolerant Clock Synchronization 

In a time-triggered distributed computer system computational and communi-
cation processes are triggered by the progression of a global notion of physical 
time. This global notion of physical time must be fault-tolerant in order to miti-
gate the effects of a failing physical clock.  

A distributed fault-tolerant synchronization algorithm constructs the fault-
tolerant global time.  Such an algorithm comprises the following three phases [95] 
(p.69): 

1. Periodic exchange of the time value of the local clock of each computing node 
among all the nodes of the system. 

2. Distributed calculation of a global fault-tolerant time value, taking the local 
readings of the clock as inputs. 

3. Adjustment of the local clock to come into agreement with the calculated glob-
al fault tolerant time value. 

According to the theory of clock synchronization the number N of clocks in a 
system must be larger than 3k, where k is the number of faulty clocks i.e., N ≥ 
(3k+1). 

A physical clock is a device that contains a physical oscillator (e.g., a crystal) 
and a counter that counts the number of ticks of the oscillator and thus contains 
the state of the clock. The frequency of the physical oscillator is determined by the 
laws of physics and depends on the size of the crystal and environmental condi-
tions, such as temperature or pressure—a case of upward causation. The speed of 
the oscillator cannot be modified by downward causation. However, the state of 
the clock is modified by downward causation in step iii of the algorithm. 

The phenomenon fault-tolerant clock synchronization fulfills the requirement 
of an emergent phenomenon: 

• The phenomenon fault-tolerant time, which does not fail if a single clock fails, 
is novel with respect to the behavior of a single clock that can fail.  

• There is downward causation.  The system of concurrently executing clocks 
constrains the execution of an individual clock by adjusting the state of the 
counter of the local clock to a value that has been determined by the ensemble 
of clocks. 
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This example of emergence is interesting from the point of view of how up-
ward causation (the frequency of a physical clock) and downward causation (the 
periodic correction of the state of a clock caused by the time value calculated by 
the ensemble of clocks at the macro level) interact and form a causal loop. 

3.5.3 Alarm Processing 

In an industrial plant an alarm is triggered when the value of a significant state 
variable exceeds a preset threshold limit. There may be thousands of significant 
state variables that are monitored in a large industrial plant. Since a single serious 
fault may cause a correlated alarm shower an alarm processing system must re-
duce the alarm rate at the operator interface to a manageable level in order to 
avoid an operator overload. The alarm processing system establishes the causal 
dependencies of alarms and decides which alarms can be hidden from the opera-
tor.  

An alarm processing system consists of distributed sensors that can detect 
alarms and send alarm messages, a communication system that transports the 
alarm messages to an alarm processing center and the alarm analysis software that 
decides which alarm to hide.  

Alarms are events that happen infrequently in normal operation. Many commu-
nication protocols for the transport of the alarm messages are of the PAR (Positive 
Acknowledgment of Retransmission) type for the transmission of event messages. 
The PAR protocol contains a retransmission mechanism to resend a message in 
case the previously sent message is not acknowledged in due time. Under heavy 
load, this mechanism can lead to a cascade effect 

In the case of a correlated alarm shower that arises from a single serious fault, 
the event-triggered communication system slows down because the increased load 
on a finite capacity channel causes a delay of some messages. This slow-down in-
duces the retransmission mechanism to kick in and to increase the load on the 
communication system even further. This can lead to a collapse called thrashing—
an emergent phenomenon. 

• The phenomenon thrashing, is novel with respect to the behavior under normal 
operation.  

• There is downward causation.  The high-load on the communication causes a 
slowdown of the communication system that causes the retransmission mecha-
nism to increase the load even further. 
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3.5.4 Conway’s Game of Life 

Conway’s Game of Life is a simple cellular automaton. It is played on a set of 
cells organized in a square array. Since there are no things involved, there is no 
upward causation from natural laws. 

 

 

Figure 3-13: Conway’s Game of Life 

 
The simple rules of Conway’s game of life are shown in Figure 3-13. A player 

can select the initial conditions, i.e. the initial marking of the cells on the square 
array, as he/she pleases. After a round of updating all cells according to the transi-
tion rules, a new marking on the square array comes into sight. This marking 
forms the initial conditions for the following round, etc. Given defined initial con-
dition, the series of states that develop is deterministic. 

Let us choose the pattern for the initial conditions as shown in the left upper 
corner of Fig.5. If all other cells of the square array are empty, then a phenomenon 
called glider appears.  

If we select a grain of observation that observes the evolving patterns on the 
square array only after every four rounds then we clearly see the glider moving 
down diagonally along the square array. Holland calls this an emergent phenome-
non [89]. 

• The moving glider is a deterministic consequence of the selected initial condi-
tions and the rules of the game of life at the micro-level. If the moving glider 
meets on its passage a non-empty cell of the square array then the moving glid-
er disappears.  

• The phenomenon of the moving glider that is observable on the selected macro 
level of a description hierarchy (Section 3.3.2) is novel and a surprise to a hu-
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man observer.  It is very difficult for the human mind to predict the patterns 
that will evolve deterministically form an initial condition in the course of 
many rounds.   

• There is downward causation (a feedback loop) from one round to the next 
round, because the pattern that comes to sight after all cells have executed a 
round forms the initial condition for each cell in the following round.   

3.5.5 Stock Market Crash on May 6, 2010 

In today's electronic financial markets, an electronic trader can execute more 
than 1000 trades in a single second. The actions of a multitude of human traders 
and automated trading systems at the micro-level cause the valuation of the assets 
at the macro level which in turn influences the actions of the human traders and 
the algorithms of the automated trading systems, thus forming causal loops and 
cascade effects that can result in emergent misbehavior. 

Aldrich et al. [75] reports about such a misbehavior of the stock market, called 
the Flash Crash on May 6, 2010: “. . . in the span of a mere four and half minutes, 
the Dow Jones Industrial Average lost approximately 1,000 points.” 

“As computerized high-frequency traders exited the stock market, the resulting 
lack of liquidity causes shares of some prominent companies to trade down as low 
as a penny or as high as $100.000” (N.Y Times, October 1, 2010)  

About half an hour after the start of the Flash Crash, the stock market stabilized 
at a level that was significantly below the pre-crash valuation, destroying billions 
of dollars of equity. 

The Flash Crash raises difficult, policy-relevant questions of causation. As is 
the case with most market events, the circumstances of the Flash Crash cannot be 
reconstructed because a detailed record of the precise temporal order of all rele-
vant events is not available. This “Flash Crash” occurred in the absence of fun-
damental news that could explain the observed price pattern and is generally 
viewed as the result of endogenous factors related to the complexity of modern 
equity market trading Aldrich et al. [75].  

Analysts lack access to the specifications of the automated trading algorithms 
that were active in the markets prior to and during the crash, and cannot replicate 
the strategies implemented by human traders active during the relevant period. In-
tense investigations and congressional hearings followed, but conclusive evidence 
is still missing six years after the crash. Although the sequence of events that 
caused the Flash Crash is explainable in theory it cannot be reconstructed in prac-
tice due to the concurrency and ignorance about the immense multitude of inter-
acting transactions. 
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3.6 Consequences for CPSos Design  

In CPSoS design not all the combinations allowed by Figure 3-11 are of inter-
est, in fact we are particularly interested in the behavior domain, i.e., behavioral 
emergence. Figure 3-14 classifies the emergent behavior of a CPSoS from the 
point of view of the consequences of this behavior on the overall mission of a 
CPSoS and from the prediction or awareness we may have on the appearance of 
emergent behavior.  

Expected and beneficial emergent behavior is the normal case (quadrant 1) that 
results from a conscious design effort. Unexpected and beneficial emergent behav-
ior is a positive surprise (quadrant 3). Expected detrimental emergent behavior can 
be avoided by adhering to proper design rules (quadrant 2). The problematic case 
is quadrant 4, unexpected detrimental emergent behavior.  

In safety-critical CPSoSs, an unexpected detrimental emergent behavior can be 
the cause of a catastrophic accident. But how can we detect and avoid an unknown 
and therefore unexpected emergent phenomenon? 

 

 
 

Clearly a conscious and aware design discipline aims to move, as knowledge 
progresses, more and more emergent phenomena from quadrant 4 to quadrant 2, in 
which provisions can be taken to mitigate, eliminate or prevent detrimental emer-
gence. To exemplify just observe that while at its first manifestation deadlock was 
a problematic issue in distributed systems, today every computer student is though 
many of the different ways we have developed to properly address it.   

Still our knowledge regarding CPSoS may remain limited and our ignorance 
about them can hardly be sufficiently reduced especially when we consider COTS 
components and legacy constituent systems. In fact, most CPSoS are built incor-
porating such LEGACY and COTS on which very little is known and where the 
information flow is often quite hidden.  

In the remainder of this section we will focus on quadrant 4, the problematic 
case of detrimental unexpected emergent with special regards to undiscovered 
emergent phenomena never seen before.  

Figure 3-14: Contribution of Emergent 
Behavior 
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3.6.1 Exposure of the Direct and Indirect Information Flow 

In a CPSoS emergent behavior is the result of direct or indirect flow of infor-
mation among the constituent systems.  

At design time, the planned message-based, stigmergic and sometimes human 
information flow patterns should be analyzed in order to find potential causal 
loops and cascade effects. However, this analysis has limits where part of the in-
formation flow is hidden behind the interface of a CS whose interface model is in-
complete because it abstracts from the details of the world behind the interface.  

At run time, the actual information flow should be observed without the probe 
effect and documented with precise timestamps such that the temporal order of 
events can be reconstructed in a post hoc analysis of a scenario to establish the 
precise sequence that led to detrimental emergent behavior. This POST MORTEM 
analysis would be particularly useful to discover and explain new (just encoun-
tered) emergent phenomena. Actually such analysis, coupled with disclosure of 
the internal algorithms used for automatic trading would have allowed to explain 
the Stock Market Crash (Section 3.5.5).   

3.6.2 Safety-Critical Systems 

The behavior of a safety-critical system should conform to the design model 
that is the basis of the safety argument. The design model does not and cannot 
take into account unknown emergent effects that can cause a deviation of the actu-
al behavior from the intended behavior.  

Since in safety-critical CPSoS even a very small probability for a detrimental 
emergent phenomenon cannot be tolerated, it is proposed that the evolving state of 
a safety-critical CPSoS is meticulously monitored by an independent monitor 
component in order to detect the onset of an unexpected deviation of the actual 
state from the intended state. This deviation can be an indication for the start of an 
unknown (and therefore unexpected) detrimental emergent behavior. The system 
internal information flow to the monitoring system must operate in real-time in 
order that the monitor can act promptly. Since emergent behavior is diachronic, 
(i.e. it develops over time) an independent meta (monitoring) system that continu-
ally observes the evolving state of the object system can detect the early onset of a 
deviation and thus provide an immediate warning of a forthcoming disruption due 
to an emergent phenomenon. Based on this immediate warning, mitigating actions 
can be activated that bring the object system back to normal operation or at least 
to a safe state.  

It is important to note that the monitoring system should be state-based, and 
not process-based. A state-based monitoring system acts on a higher-level of ab-
straction than a process-based system since it is concerned with the properties of 
the states of a system only and not with the much more involved processes that 
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generate the state changes. A state-based monitoring system is thus much simpler 
than a process-based monitoring system. This fundamental difference between a 
state based and a process-based system is also important from the point of view of 
design diversity to detect hidden software errors.  

Taking again the example of the Stock Market Crash (Section 3.5.5), if an in-
dependent monitoring system (without knowledge of the trading algorithms) had 
continually observed significant parameters that are relevant indicators of the 
market state and it had acted in the sub-millisecond range to stop the trading activ-
ities (safe state) the flash-crash that disrupted the market and wiped out billions of 
dollars of equity could have been avoided. 

3.7 Conclusions  

The purpose of building a Cyber-Physical System-of-Systems out of Constitu-
ent Systems (CSs) is to realize new services that go beyond the services provided 
by any of the CSs in isolation. Emergence is thus at the core of CPSoS engineer-
ing. In this Chapter we have surveyed some of the abundant past literature on 
emergence from the fields of philosophy and computer science, looked at the 
characteristics of multi-level hierarchies, developed a CPSoS definition of emer-
gence and analyzed some examples of emergent behavior in computer systems.  

We identified the basic mechanism that can lead to emergent phenomena: 
causal loops between the macro-level and the micro-level of a multi-level hierar-
chy (with the variant of cascade effects) that result in conceptually novel phenom-
ena. We came to the conclusion that due to the ignorance about the scope of 
CPSoS even a thorough design analysis cannot uncover all potential mechanisms 
that can result in unexpected emergent phenomena at run-time. Unexpected emer-
gent phenomena manifest themselves in a CPSoS by a diachronic deviation of the 
actual behavior from the intended (design) behavior.  

Since unknown emergent effects can be the cause of a deviation of the actual 
behavior from the intended behavior, the meticulous observation of the behavior 
of a safety-critical CPSoS by an independent monitoring system can detect the on-
set of diachronic emergence and initiate mitigating actions before the detrimental 
emergent phenomenon has fully developed.  
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4.1 Introduction  

In the European Union FP7-610535-AMADEOS project, a conceptual model 
for Systems of Systems (SoSs) has been conceived to find a common language al-
lowing experts to collaborate on modelling, engineering, and analyzing SoSs (see 
public deliverable D2.3 “AMADEOS conceptual model - Revised” [108]).  

Analogously to the conceptual model for the architecture of software intensive 
systems, we separated the description of basics SoS concepts into different per-
spectives. These perspectives are called viewpoints, each of which is focused on 
different concerns of the SoS: structure, evolution, dynamicity, dependability, se-
curity, time, multi-criticality and emergence.  

• Structure: It represents architectural concerns of an SoS. In particular it defines 
the manner in which Constituent Systems (CSs) are composed [125] and how 
do they exchange semantically well-defined messages [118] through their inter-
faces [130].  

• Evolution and dynamicity: Dynamicity represents variations to the operation of 
SoS that have been considered at design-time to reconfigure the SoS in specific 
situations e.g., either after a fault or after the variation of an external condition 
[129]. Evolution represents changes that have been introduced later to accom-
modate modified or new requirements by means of including, removing or 
modifying system functions [124].  

• Dependability and security [109]: It consists of non-functional critical require-
ments as availability, reliability, safety, privacy or confidentiality.  

• Time: It is fundamental since SoSs are sensitive to the progression of time and 
it is necessary to design responsive SoSs able to achieve reliably time-
dependent requirements [117].  
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• Multi-criticality: It aims at integrating together subsystems providing services 
with different levels of criticality corresponding to different dependability and 
security requirements [131].  

• Emergence: It mainly denotes the appearance of novel phenomena at the SoS 
level that are not observable at CSs level; managing emergence is essential to 
avoid undesired, possibly unexpected, situations generated from CSs interac-
tions as well as to realize desired emergent phenomena being usually the higher 
goal of an SoS [122]. 

In this chapter we will focus on the basic SoS concepts belonging to the differ-
ent viewpoints and on their semantic relationships, and we will present a SysML 
profile to represent the conceptual model. 

 
The rest of this chapter is structured as follows: Section 4.2 presents the differ-

ent concepts defined in a SysML profile to model an SoS. Section 4.3 describes 
the structural properties of an SoS in term of architecture, communication and in-
terface. Section 4.4 defines the concept of evolution related to all changes of an 
SoS. Section 4.5 presents the concept of dynamicity that represents the variation to 
the operation of an SoS considered at design time. Section 4.6 describes the con-
cepts related dependability, security and multi-criticality aspects. Section 4.7 de-
scribes the global notion of time exploited in an SoS, while Section 4.8 defines the 
concept of emergence of novel phenomena at the SoS level. Then, Section 4.9 in-
troduces a concrete case study to illustrate the application of basic SoS concepts. 
Lastly, Section 4.10 provides a brief overview of related works before the conclu-
sion in Section 4.11. 

4.2 Conceptual modeling support: the AMADEOS SysML 
profile 

This section focuses on the definition of a SysML profile as a modeling support 
for representing the basic concepts for SoS and their relationships. Following the 
viewpoint-driven approach previously introduced, the concepts and their relation-
ships have been modeled using a SysML semi-formal representation, organized in 
a profile4 composed by viewpoint-related packages. To this end, we have defined 
specific constructs and we have exploited already implemented stereotypes avail-
able in other related profiles to support specific viewpoints. Our proposed profile 
is meant to be used by designers in describing the static SoS structure and its dy-
namic behavior according to the introduced viewpoints. Such an SoS description 
can be adopted to be kept consistent across viewpoints by tools and for machine-

                                                           
4 https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git - GitHub 

public link to the AMADEOS SysML profile and the Smart Grid application 
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assisted cross-viewpoint analyses (e.g., finding detrimental emergent SoS behav-
ior). 

The SoS profile will be used as an abstract model to represent the topology and 
the state evolution of an operational SoS. The profile diagrams contain the SoS 
basic concepts distributed in sub-packages as follows: 

• SoS Architecture: describes the basic architectural elements and their se-
mantic relationships. 

• SoS Communication: provides the fundamental elements in order to de-
scribe the behavior of an SoS in terms of sequence of messages ex-
changed among CSs.  

• SoS Interface: describes all the points of integration that allow the ex-
change of information among the connected entities. 

• SoS Dependability: provides the basic concepts related to SoS dependa-
bility. 

• SoS Security: provides the basic concepts related to SoS security. 
• SoS Evolution: provides the main elements to describe the process of 

gradual and progressive change of an SoS.  
• SoS Dynamicity: provides basic concepts related to SoS dynamicity. 
• SoS Scenario-based reasoning: provides the basic concepts for support-

ing the generation, evaluation and management of different scenarios re-
sulting from SoS dynamicity, thus supporting decision-making in an SoS. 

• SoS Time: provides the fundamental elements to describe time concepts.  
• SoS Multi-Criticality: provide the basic concepts to describe the multi-

criticality aspects of an SoS. 
• SoS Emergence: provides the main elements to describe the SoS emer-

gence concepts. 
 
It is worth noticing that most of the above packages come from a direct map-

ping to the views previously defined except for SoS Architecture, SoS Communi-
cation and SoS Interface that all together implement the Structure view, and for 
SoS Dynamicity and SoS Scenario-based reasoning that map into the Dynamicity 
view.  

We have implemented the whole profile by exploiting the Eclipse integrated 
development environment, jointly with Papyrus. Eclipse is an open source envi-
ronment and offers all the related advantages in terms of cost, customizability, 
flexibility and interoperability. Papyrus is an Eclipse plugin, which offers a very 
advanced support to define UML profiles. 

In the following sections, we will discuss the key elements of the conceptual 
model for each identified viewpoint. All the new introduced stereotypes extend the 
“Block” stereotype of SysML, if not differently specified. For the sake of readabil-
ity, we will not represent such relations in the SysML diagrams describing the dif-
ferent packages.  
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4.3 Structure viewpoint 

The viewpoint of structure represents architectural concerns of an SoS. In particu-
lar, it defines the manner in which CSs are composed [125] and how do they ex-
change semantically well-defined messages [118] through their interfaces [130].  

The static structure of an SoS is based on the concept of a Constituent System 
(CS), which is ‘An autonomous subsystem of an SoS, consisting of computer sys-
tems and possibly of a controlled objects and/or human role players that interact 
to provide a given service’. A CS exchanges information that is either represented 
by things/energy or data with its environment by means of interfaces. The envi-
ronment of a CS includes all entities that are able to interact with the CS, includ-
ing other CSs. In our context, information is a proposition about the state of or an 
action in the world, which is either an attribute of a physical thing (e.g., tempera-
ture of a room) or an attribute of an abstract construct (e.g., execution time of a 
program). 

The interfaces among which the CSs interact one another are the Relied Upon 
Interfaces (RUIs). As such, the CS service – which is its intended behavior – is 
provided at this interface. RUI is further structured in the Relied Upon Message 
Interface (RUMI) and the Relied Upon Physical Interface (RUPI). RUMI allows 
for message-based communication of CSs over cyberspace (e.g., the Internet) 
while RUPI enables the indirect physical exchange of things or energy among CSs 
over their common environment. It consists of sensors and actuators that take and 
time-stamp observations of and/or act at a defined deadline on some physical state 
(e.g., the temperature of a room) in the physical environment according to their 
design. Environmental dynamics (e.g., heat dissipation through walls) act addi-
tionally to other CSs on the physical state. CSs that interact with each other over a 
common physical environment establish a stigmergic channel, i.e., they communi-
cate indirectly over influencing and measuring the physical state. For more details 
on the interface topic, please refer to [119], and Chapter 2 of this book. 

The profile supports the description of the static and dynamic structure of an 
SoS representing: the basic architectural elements and their semantic relationships; 
the sequence of messages exchanged among CSs in an SoS; the points of integra-
tion, i.e., interfaces, allowing the exchange of information/energy among connect-
ed entities. 

The structural properties of an SoS are described using three different packages 
“SoS Architecture” (Section 4.3.1), “SoS Communication” (Section 4.3.2), and 
“SoS Interface” (Section 4.3.3). The first defines Stereotypes useful to describe 
the topology of an SoS; the second provides Stereotypes to describe the communi-
cation aspects between the Constituent Systems of an SoS; finally, “SoS Inter-
face” semi-formalizes internal and external points of interaction of an SoS. 
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4.3.1 SoS architecture package 

Architectural components are defined within the “SoS Architecture” package (see 
Figure 4-15). This package extends SysML Block Definition Diagram (BDD) in 
order to model the topology and the relations of an SoS. Blocks in SysML BDD 
are the basic structural element used to model the structure of systems (Wolfrom) 
and they can be used to represent: systems, system components (hardware and 
software), items, conceptual entities and logical abstractions. A Block is depicted 
as a rectangle with compartments that contain Block characteristics such as: name, 
properties, operations and requirements that the Block satisfies. A Block provides 
a unifying concept to describe the structure of an element or a system: System, 
Hardware, Software, Data, Procedure, Facility and Person. 

This type of diagram helps a system designer to depict the static structure of an 
SoS in terms of its constituent system and possible relationships. 

The first Stereotype is “entity” and it extends the SysML metaclass “Block”. 
We distinguish between two different kinds of entities: “thing” or “construct”. 
They extend the properties of “entity” and so they are also represented as Blocks. 

A “System” is a type of entity (thereby a Block), it has the same characteristic 
but it is also capable of interacting with its environment. As it is expressed by the 
“sys_type” Enumeration, a system can be:  

• “autonomous” - A system that can provide its services without guid-
ance by another system; 

• “monolithic” - if distinguishable services are not clearly separated in 
the implementation but are interwoven; 

• “open” (or “closed”) - A system that is interacting (or is not interact-
ing) with its environment during the given time interval of interest; 

• “legacy” - An existing operational system within an organization that 
provides an indispensable service to the organization; 

• “homogeneous” - A system where all sub-systems adhere to the same 
architectural style; 

• “reducible” - A system where the sum of the parts makes the whole; 
• “evolutionary” - A system where the interface is dynamic (i.e., the 

service specification changes during the given time interval of inter-
est); 

• “periodic” - A system where the temporal behavior is structured into a 
sequence of periods. 

• “stateful” (or “stateless”) - A system that contains (or does not con-
tain) state at a considered level of abstraction. 

A system can be influenced by an “architectural_style”, it can provide a 
communication “interface” and it has a “boundary”. A “subsystem” is a sub-
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ordinate system that is part of a system and it is related to “system” by a com-
posite relation. 
 

 

Figure 4-15: SoS Architecture package 

 
A Constituent System or “CS” is an autonomous subsystem of an SoS, consist-

ing of human machine interfaces “HMI” and possibly of physical “con-
trolled_object” and it provides a given “service” by interacting with 
“role_player” through the “RUMI” (that is introduced in SoS Communication 
package). RUMI represents a message interface where the services of a CS are of-
fered to other CSs of an SoS, and “RUPI” Stereotype represents a physical inter-
face where things are exchanged among the CSs of an SoS. A wrapper represents 
a new system with at least two interfaces, which is introduced between interfaces 
of the connected component systems to resolve property mismatches among these 
systems, which will typically be legacy_systems. A prime mover is a human that 
interacts with the system according to his/her own goal. In the profile, the “wrap-
per”, the “legacy_system” and the “prime_mover” are “CS”, which is a Stereo-
type that extends the property of “system” that contains multiple “sub_system”, 
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which in turn can be “CS”. A system has a “state_space” composed of states de-
scribed by the variables that may be accessed by the CS service. In addition, a CS 
interacts with cyber-physical systems. “SOS” Stereotype represents the integration 
of systems, i.e., CSs which are independent and operable, and which are net-
worked together for a period of time to achieve a certain goal. As expressed by the 
“sos_type” Enumeration, an SoS can be:  

• “directed” - An SoS with a central managed purpose and central own-
ership of all CSs; 

• “acknowledged” - Independent ownership of the CSs, but cooperative 
agreements among the owners to an aligned purpose;   

• “collaborative” - Voluntary interactions of independent CSs to 
achieve a goal that is beneficial to the individual CS; 

• “virtual” - Lack of central purpose and central alignment. 

A Cyber-Physical System (“CPS”) is composed by a set of “cyber_system” 
(i.e., computer systems), and “physical_system” (i.e., controlled objects). 

4.3.2 SoS communication package 

The “SoS Communication” package (see Figure 4-16) is composed of CSs that ex-
change information with other elements. In order to represent the exchanged in-
formation during the progression of time we use a SysML Sequence Diagram and 
we represent a CS not only as a Block entity of BDD but also as “Lifeline” meta-
class. “Lifeline” is a metaclass and part of Sequence Diagrams. Through a Se-
quence Diagram it is possible to represent the behavior of a system in terms of a 
sequence of messages exchanged between parts and a “Lifeline” defines the indi-
vidual participants in the interaction (Constituent System). Moreover, through a 
“Lifeline” it is possible to describe the temporal behavior of an SoS. The time is 
showed by the length of the “Lifeline” and it passes from top to bottom: the inter-
action starts near the top of the diagram and ends at the bottom. 
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Figure 4-16: SoS Communication package 

 
A “RUI” Stereotype represents an external interface of a CS where the services 

of a CS are offered to other CSs. It extends “external_interface” (defined in “SoS 
Interface” package) and guarantees the exchange of information among CSs 
(“CS” is defined in “SoS Architecture” package). A RUI can be represented also 
as a Sequence Diagram in which CSs are represented by the lifelines that ex-
change information. A RUI, can be either a “RUMI” or a “RUPI” and it is moni-
tored through “probes”. A RUI connecting strategy is part of the interface specifi-
cation that searches for desired, w.r.t. connections available, and compatible RUIs 
of other CSs and connects them until they either become undesirable, unavailable, 
or incompatible. A RUI, having a “connection_strategy”, is instantiated comply-
ing to possibly multiple "dependability_guarantees" and satisfying “security” 
constraints. 

A “RUMI” represents a message interface for the exchange of information 
among two or more CSs and extends the “RUI” Stereotype. While messages are 
exchanged through the RUMI, physical elements are exchanged among the CSs of 
an SoS through the “RUPI”; physical elements are things or energy.  

In this package we also model the concept of a stigmergic channel. This type of 
channel transports information via the change and observation of states in the en-
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vironment. To represent a stigmergic mechanism, we have introduced the “envi-
ronment” Stereotype that is affected by the RUI. 

A message is a data structure that is composed by a “data_field”, a “header” 
and a “trailer” and it flows through a “transport_service”. The main transport 
protocol classes to send a message from a sender to a receiver are listed in the 
“transport_service” Enumeration data type, i.e.:  

• “datagram” - A best effort message transport service for the trans-
mission of sporadic messages from a sender to one or many receivers; 

• “PAR-Message” - A PAR-Message (Positive Acknowledgment or 
Retransmission) is an error controlled transport service for the trans-
mission of sporadic messages from a sender to a single receiver; 

• “TT-Message” - A TT-Message (Time-Triggered) is an error con-
trolled transport service for the transmission of periodic messages 
from a sender to many receivers.  

A message can be classified as:  
• “valid”- A message is valid if its checksum and contents are in 

agreement; 
• “checked” - A message is checked at the source (or, in short, checked) 

if it passes the output assertion; 
• “permitted” - A message is permitted with respect to a receiver if it 

passes the input assertion of that receiver. The input assertion should 
verify, at least, that the message is valid; 

• “timely” - A message is timely if it is in agreement with the temporal 
specification; 

• “correctness” - A message is correct if it is both timely and value cor-
rect. A message is value-correct if it is in agreement with the value 
specification; 

• “insidious” - A message is insidious if it is permitted but incorrect. 

4.3.3 SoS Interface package 

The interfaces are the key issue to the integration of systems (see also Chapter 
2 of this book) and in this section we introduce an in-depth analysis of the SoS in-
terface concepts, which are represented in Figure 4-17. 

An interface can be an “internal_interface” a “physical_interface”, a “mes-
sage_based_interface” and an “external_interface”. The internal interface con-
nects two or more subsystems of a CS (the Stereotype “subsystem”, defined in SoS 
Architecture package, is connected with “internal_interface” in order to represent 
this relation). The physical interface consists of three different types of elements, 
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namely “sensor”, “actuator” and “transducer”. The “mes-
sage_based_interface” allows the transmission of message by means of “mes-
sage” which are defined in terms of “message_variable”. Finally, the external in-
terface connects two or more CS (the Stereotype “CS” is connected with 
“external_interface”). A different type of “external_interface” is the “utili-
ty_interface”, which is an interface of a CS that is used for the configuration, or 
the control, or the observation of the behavior of the CS. The purposes of the utili-
ty interfaces are to i) configure and update a CS, ii) diagnose a CS, and iii) let a 
CS interact with its remaining local physical environment that is unrelated to the 
operative services of the SoS.  

The utility interface is specialized into three different types of interfaces:  
• “c-interface” - configuration interface - an interface of a CS that is 

used for the integration of the CS into an SoS and the reconfiguration 
of the CS's RUIs while integrated in a SoS. 

• “d-interface” - diagnosis interface - an interface that exposes the in-
ternals of a CS for the purpose of diagnosis.  

• “local_IO_Interface” - an interface that allows a CS to interact with 
its surrounding physical reality that is not accessible over any other 
external interface. For example, a CS that controls the temperature of 
a room usually has at least the following local IO Interfaces: a sensor 
to measure the temperature, an actuator that regulates the flow of en-
ergy to a heater element, and a Human-Machine-Interface (HMI) that 
allows humans to enter a temperature set point. 

An interface has a specification (“interface_specification”) with different kind 
of levels: Interface Cyber-Physical Specification (“cp-spec”), Interface Itom Spec-
ification (“i-spec”) and Interface Service Specification (“s-spec”). “cp-spec” is 
extended by “m-spec” that specifies interface properties related to cyber message. 
“m-spec” is further extended by the “transport_specification” Stereotype to de-
scribe all properties of the communication system for correctly transporting a 
message from the sender to the receiver(s). “cp-spec” is also extended by “p-
spec” which specifies the interfaces properties related to physical interactions. If 
the interfaces are service-based, this means that the system provides many ser-
vices. We have introduced the Stereotype “SLA” Service Level Agreement that 
defines the service relationship between two parties: the “provider” and the “re-
cipient”. “SLA” consists of one or more “SLO”, i.e., the Service Level Objec-
tives. In addition, we have created a new Stereotype that represents the “reserva-
tion”. The reservation is a commitment by a service provider that a resource that 
has been allocated to a service requester (upon request at “request_instant”) at 
the reservation allocation instant (“allocation_instant”) will remain allocated un-
til the reservation end instant (“end_instant”). A “registry” contains multiple 
service specifications allowing multiple “service_composition” according to the 
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“SLA”. A “channel” connects interfaces, and it can be physical or logical (“phys-
ical_channel”, “logical_channel”).  

 

 

Figure 4-17: SoS Interface package 
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 The interaction enabled by the channel has the following attributes: ”trans-
ferred_info” (every interaction involves the transfer of information among partic-
ipating systems), “temporal_property” (an interaction takes time, i.e., for an in-
teraction to occur it is initiated and completed according to system-specific 
temporal properties) and “dependability_req” (e.g., interactions might require re-
silience with respect to perturbation or need to guarantee security properties like 
confidentiality). Through channel interactions, the information is transmitted by 
means of messages”. A “channel_model” describes the effects of the channel on 
the transferred information. An “interface_model” contains the explanation of the 
interface. An interface, associated to an “interface_port” has an afferent and an 
efferent “interface_model”, which are affected and may affect the interface, re-
spectively. A “connection_strategy” Stereotype is defined and connected to a 
RUI.  

4.4 Evolution viewpoint 

Large scale Systems-of-Systems (SoSs) tend to be designed for a long period of 
usage (10 years+). Over time, the demands and the constraints put on the system 
will usually change, as will the environment in which the system is to operate. The 
AMADEOS project studied the design of systems of systems that are not just ro-
bust to dynamicity (short-term change), but to long-term changes as well. Evolu-
tion represents changes that have been introduced later to accommodate modified 
or new requirements by means of including, removing or modifying system func-
tions [124].  

In contrast to dynamicity, the concept of evolution relates to all changes of an 
SoS that are not given by design, but arise by changes in the environment (primary 
evolution), or by new or changed requirements on the SoS service itself (second-
ary evolution). In the prospect of formalizing a methodology that allows evolution 
to take place in a controlled manner, the concept of managed evolution is most 
relevant. It is defined as the ‘evolution that is guided and supported to achieve a 
certain goal’ [124]; 

4.4.1 SoS Evolution package 

In order to describe this type of processes we have chosen a Block Definition Dia-
gram, because it is designed to show the generic characteristics and structures of a 
system.  
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Figure 4-18: SoS Evolution package 

 
The main SoS concepts are modelled within the “SoS Evolution” package of 

our SoS profile. Figure 4-18 shows the “evolution” Stereotype as a Block of a 
BDD, aiming at describing an SoS change. In our conceptual model we envision 
two different types of evolution:  

• “managed_evolution” - Process of modifying the SoS to keep it rele-
vant in face of an ever-changing environment. Examples of environ-
mental changes include new available technology, new business cases 
/ strategies, new business processes, changing user needs, new legal 
requirements, compliance rules and safety regulations, changing polit-
ical issues, new standards, etc.  

• “unmanaged_evolution” - Ongoing modification of the SoS that oc-
curs as a result of ongoing changes in (some of) its CSs. Examples of 
such internal changes include changing circumstances, ongoing opti-
mization, etc.   

An SoS evolution has a “goal”, improves the “business value” by means of the 
exploit of “system_resource” and can be affected by the environment. Evolution 
is achieved by modifying CSs and consequently the whole SoS. 
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4.5 Dynamicity viewpoint 

Dynamicity is the property of an entity that constantly changes in term of offered 
services, built-in structure and interactions with other entities.  It represents varia-
tions to the operation of SoS that have been considered at design-time to reconfig-
ure the SoS in specific situations e.g., either after a fault or after the variation of an 
external condition [129]. Dynamicity encompasses all interactions, e.g., message 
exchange over time.  
Closely related to dynamicity is the concept of reconfigurability, which is the abil-
ity of a system to change its configuration according to the current demands. 

The Dynamicity components are described by means of two different packages, 
i.e., "SoS Dynamicity" (Section 4.5.1) and "SoS Scenario-based reasoning" (Sec-
tion 4.5.2). 

4.5.1 SoS Dynamicity package 

In this section we show how to use a semi-formal language in order to repre-
sent the dynamicity of an SoS. Our objective is to (1) identify which parts of an 
SoS are dynamic at a certain extent and (2) to represent the dynamic behavior 
through the interactions among CSs.  

As presented in Figure 4-19 we have introduced the concept of "dynamicity" 
(belonging to the already defined stereotype "entity"), which can be applied ei-
ther to a CS or to a whole SoS. Dynamicity may be of different nature, either 
"dynamic_service", or "reconfigurability", i.e., the variation to the CSs archi-
tecture, or "dynamic_interaction". Already defined concepts like "service" and 
"interaction" are the objects of a dynamic behavior. 

Eliciting dynamicity behavior of different nature that applies to different por-
tions of an SoS is not enough to have a full understanding of the dynamic behav-
ior. With this aim, along with the dynamicity package, we have considered inter-
action diagrams in order to focus on the message interchange between a number of 
lifelines: Sequence Diagrams. We propose a methodology to be used to represent 
dynamicity as it follows: 

• Making use of Sequence Diagrams to represent the system behavior in 
terms of a sequence messages exchanged between parts; 

• Selecting the constituent systems involved in the communication; 
• Describing the most common interactions. 
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Figure 4-19: SoS Dynamicity package 

 
This type of representation helps a system designer to understand which are the 

properties of an SoS that are constantly changing and how the SoS can change and 
rearrange its components. The dynamic introduction, modification or removal of 
constituent systems can introduce new system behaviors that need to be analyzed.  

4.5.2 SoS Scenario-based reasoning package 

Scenario based reasoning package aims at supporting dynamicity and evolution 
of an SoS. By means of this component of the profile we aim at supporting the 
generation, evaluation and management of different scenarios thus supporting de-
cision-making in an SoS. As shown in Figure 4-20, the main concept of this com-
ponent is "scenario" which is composed by a set of "scenario_state" each of 
which associated to an "event" to be applied at each state. A state is in instantia-
tion of a set of "variables" which are relevant for the decision-making. Such var-
iables can be extracted by means of an "inference_process" and they pertain to a 
"domain_model". The latter defines relationships among variables in terms of 
correlations ("causal_model") and causation ("causal_graph") dependencies.  

The process of generating scenario results from the "situation assessment" 
that depends on the "environment". "decision_making" is the process to select 
a course of actions among different possible alternate scenarios. A multi-criteria 
decision analysis "mcda" may be also applied to improve the decision-making 
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process. Finally, scenarios are subject to pruning and updating operations in order 
to discard non-correct or un-likely scenarios and to update scenarios dealing with 
newly available information. 

 

 

Figure 4-20: SoS Scenario-Based Reasoning (SBR) pack-
age 

4.6 Dependability, security, and multi-criticality viewpoints 

In any large system, faults and threats are normal and may impact on the avail-
ability, reliability, maintainability, safety, data integrity, data privacy, and confi-
dentiality. Traditional dependability and security concepts [109] like fault, error 
and failure, have been included in the conceptual model. Dependability integrates 
the attributes of availability, reliability, maintainability, safety, integrity and ro-
bustness, and it can be attained by means of fault prevention, fault tolerance, fault 
removal and fault forecast. 

Security is impacted by threats that impose risks exploiting possible SoS vul-
nerabilities. It is the composition of confidentiality, integrity, and availability; se-
curity requires in effect the concurrent existence of availability for authorized ac-
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tions only, confidentiality, and integrity (with “improper” meaning “unauthor-
ized”). 

 
Confidentiality is ensured by means of encryption. Keys are used for encryp-

tion/decryption operations, which can be public or private. In an access control 
system, the security policy is enforced by what is called the reference monitor, 
which represents the mechanism that implements the access control model. Au-
thorization assigns permissions, which are defined in a security policy. A security 
policy relies on trusted systems, which encompass hardware, software or human 
components. 

Multi-criticality aims at integrating together subsystems providing services 
with different levels of criticality corresponding to different dependability and se-
curity requirements [131].  

A multi-critical SoS is a system containing several components that execute 
applications with different criticality, such as safety-critical and non-safety-
critical.  The architecture of safety-critical applications shall be built taking into 
account that while some part of the system may have strong safety-critical re-
quirements, other parts may be not so critical. 

For example, a railway system is a multi-criticality system, given that it con-
sists of components that deliver services at different criticality levels, e.g., a brak-
ing service and a heating service. These components usually adhere to different 
Safety Integrity Levels (SIL) resulting in a system exhibiting different levels of 
criticality. 

 
In the following we describe the three different packages supporting the defini-

tion of dependability (Section 4.6.1), security (Section 4.6.2) and multi-criticality 
(Section 4.6.3) aspects. The terminology is based on canonical definitions of de-
pendability and security concerns as defined in [109]. 

4.6.1 SoS Dependability package 

Figure 4-21 shows the key concepts captured within the dependability package. A 
CS or a whole SoS may require possible multiple “dependability_guarantee” 
through the achievement of possible different dependability “metric” by means of 
possible different “technique”.  

A technique is exploited to reduce the occurrence of faults: 
“fault_prevention”, “fault_tolerance”, “fault_removal”, “fault_forecast”. 

A “measure” represents a property expected from a dependable system ex-
pressed in terms of a quantitative “target_value”: “availability”, “reliability”, 
“maintainability”, “safety”, “integrity”, “robustness”. 

The profile supports the definition of “fault_containment region”, “error_ 
containment” and “error_containment_region”. The first contains components 
operating correctly regardless of any arbitrary fault outside the region. These 
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components may have erroneous output actions that are alleviated with the defini-
tion of “error_containment”, which prevents propagation of errors by employing 
error detection and a mitigation strategy. This leads to the definition of “er-
ror_containment_region” which contains more “fault_containment region” 
having “error_containment". A Fault Containment Region (FCR) is a collection 
of components that operates correctly regardless of any arbitrary fault outside the 
region. 

 

 

Figure 4-21: Dependability conceptual model. 

4.6.2 SoS Security package 

This section describes the fundamental elements used by a system designer to 
represent security aspects of an SoS.  

As shown in Figure 4-22, we connect the Stereotype “SOS” and “CS” to “se-
curity” Stereotype to satisfy the security conditions of an SoS. To this end we use 
“cryptography” based on symmetric (“symmetric_cryptography”) or public key 
(“public_key_cryptography”) infrastructure.  

The “encryption” Stereotype represents the process of disguising data in such 
a way to hide the information it contains. In this way, data exchanged between 
Constituent Systems are processed using a cryptography key. Three types of key 
have been represented: “symmetric_key”, “private_key” or “public_key”. 
Symmetric key is exploited for symmetric cryptography, while private and public 
keys for the public-key cryptography. 
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Figure 4-22: SoS Security package 

 
The information exchanged (also called “data”) can be encrypted (“cipher-

text”), or not encrypted (“plaintext”); the “decryption” Stereotype represents the 
process of turning ciphertext to plaintext.  

During the cryptography phase the access control (“access_Control”) consists 
of a set of actions that are permitted or not allowed by the system. Figure 4-22 
shows a “subject” that represents an active user, a process or a device that causes 
information to flow among objects or changes the system state. A subject may 
have attributes (“permission”) that describe how the subject can access to objects. 
An “object” is a passive system-related devices, files, records, tables, processes, 
programs, or domain containing or receiving information. Access to an object im-
plies access to the information it contains. The “access_process” is composed by 
the “authentication” and the “authorization”. The former represents the process 
of verifying the identity or other attributes claimed by or assumed of a subject or 
verifying the source and integrity of data. The latter represents the mechanism of 
applying access right to a subject.  

The “reference_monitor” represents the mechanism that implements the ac-
cess control model and the “access_control_model” captures the set of allowed 
actions within a system as a policy. The access control follows a “securityPolicy” 
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that represents a set of rules that are used by the system to determine whether a 
given subject can be permitted to gain access to a specific object. 

4.6.3 SoS Multi-criticality package 

We introduced the concepts of “critical_service” as a particular type of “ser-
vice” having a certain “critical_level” (see Figure 4-23). The latter is associated to 
“dependability_guarantee” and “security”. The definition of the stereotype 
“service” belongs to the SoS Architecture package where it is linked to CS, i.e., 
the component, being able to provide the service itself. Thus the concept of “criti-
cal_service” is indirectly linked to definition of “SOS” and “CS” by means the 
definition of “service”.  

 

 

Figure 4-23: Multi-criticality package 

4.7 Time viewpoint  

In an SoS a global notion of time is required in order to:  
• Enable the interpretation of timestamps in the different CSs;  
• Limit the validity of real-time control data; 
• Synchronize input and output actions across nodes; 
• Provide conflict-free resource allocation; 
• Perform prompt error detection; 
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• Strengthen security protocols. 

Time is fundamental since SoSs are sensitive to the progression of time and it is 
necessary to design responsive SoSs able to achieve reliably time-dependent re-
quirements [117].  

The progression of time enables change, i.e., dynamicity and evolution, in 
SoSs. In the AMADEOS project, it has been concluded that a global sparse time-
base – accessible by all CSs – is fundamental for reducing cognitive complexity in 
understanding aspects related to all non-static investigated viewpoints on SoSs. 
For example, a sparse global time base allows establishing consistently – across 
all CSs – a temporal order among sparse events, regardless which CSs originally 
produced these sparse events. 

We express the time-related concepts by adopting the MARTE standard [127]. 
MARTE is an UML profile that provides support for non-functional property 
modelling, defines concepts for software, hardware platform modelling, and con-
cepts for quantitative analysis (e.g. schedulability, performance). 

We measure time through clocks by defining a clock stereotype that extends 
the one defined in the MARTE profile. A MARTE Clock Stereotype is considered 
as a means to access to time, either physical or logical. The MARTE Clock is an 
abstract class and it refers to a discrete time.  

4.7.1 SoS Time package 

Figure 4-24 shows a set of main time-related aspects. A Constituent System 
(defined in SoS Architecture package) can share a clock. The Stereotype “clock” 
is also defined as a SysML Block in order to model this concept through a Block 
Definition Diagram. A (digital) clock is an autonomous system that consists of an 
oscillator and a register. Whenever the oscillator completes a period, an event is 
generated that increments the register. A “timeline” represents the progression of 
the time and it is designed with a Stereotype that extends the metaclass “Lifeline” 
of a Sequence Diagram. The “timeline” is composed by an infinite number of in-
stants (“instant” Stereotype) measured using a “time_code” and a “time_scale”. 
A time code is a system of digital or analog symbols used in a specified format to 
convey time information i.e., date, time of day or time interval.  A time scale is a 
family of time codes for a particular timeline that provide an unambiguous time 
ordering (temporal order of events). 

 A “clock” could be based on an “internal_sync”, i.e., on a process of mutual 
synchronization of an ensemble of clocks in order to establish a global time with a 
bounded precision, or on an “external_sync”, i.e., on the synchronization of a 
clock with an external time base such as GPS. It could be a “reference_clock”, 
i.e., a hypothetical clock of a granularity smaller than any duration of interest and 
whose state is in agreement with TAI, or a “primary_clock”, i.e., a clock whose 
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rate corresponds to the adopted definition of the second (the primary clock 
achieves its specified accuracy independently of calibration).   

 

 

Figure 4-24: SoS Time package 

 
Finally, the clock could have the following properties:  

• “accuracy” - the maximum offset of a given clock from the external 
time reference during the time interval of interest, measured by the 
reference clock;  
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• “granularity” - the duration between two successive ticks of a clock; 
“tick” - the event that increments the register of the clock;  

• “offset” - the offset of two events denotes the duration between two 
events and the position of the second event with respect to the first 
event on the timeline; 

• “frequency_offset” - the frequency difference between a frequency 
value and the reference frequency value; 

• “stability” - a measure that denotes the constancy of the oscillator fre-
quency during the given interval of time of interest; 

• “wander” - long-term phase variations of the significant instants of a 
timing signal from their ideal position on the time-line; 

• “jitter” - short-term phase variations of the significant instants of a 
timing signal from their ideal position on the time-line. 

If a clock is a “physical clock”, we use the “drift” measure in order to describe 
the frequency ratio between the physical and the reference clock. A digital clock 
consists of an “oscillator”, represented as a Stereotype, with a “nomi-
nal_frequency” and a “frequency_drift”, represented as properties. A “coordi-
nated_clock” is a particular type of a clock, it is synchronized within stated limits 
to a reference clock. A “clock_ensamble” is a collection of clocks operated to-
gether in a coordinated way with a certain “precision”. We define “gpsdo”, a Ste-
reotype that represents a particular type of clock where its time signals are syn-
chronized with information received from a GPS receiver, and “holdover”, a 
property expressing the duration during which the local clock can maintain the re-
quired precision of the time without any input from the GPS. 

The “timestamp” is the state of a selected clock at the instant of event occur-
rence. It depends on selected clock and if we use the reference clock for time-
stamping, we call the timestamp “absolute_timestamp”. An ensemble of clocks 
could synchronize in order to establish a “global_time” with a bounded precision. 

An “instant” is a cut of the “timeline” and an “interval” is a section of time-
line composed by two instants. The latter is defined as an “IntervalConstraint” 
of a Sequence Diagram. 

An “event” can happen at a particular instant, and to represent this type of in-
formation we have used a “TimeConstraint” of a Sequence Diagram. A “signal” 
is a particular event used to convey information typically by arrangement between 
the parties concerned. An “epoch” is a particular instant on the timeline chosen as 
the origin for the time-measurement. A “cycle” is a temporal sequence of signifi-
cant events whereas a “period” is a specific type of cycle marked by a constant 
duration between the related states at the start and the end at the end of the cycle, 
called “phase”. The offset of two events denotes the duration between two events 
and it is represented by the “offset” Stereotype. 
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4.8 Emergence viewpoint  

The concept of Emergence (see also Chapter 3 of this book) is one of the most 
important challenges of AMADEOS. As already described in previous sections, 
SoSs are built to realize new services that CSs separately cannot provide.  

Emergence mainly denotes the appearance of novel phenomena at the SoS level 
that are not observable at CSs level; managing emergence is essential to avoid un-
desired, possibly unexpected situations generated from CSs interactions and to re-
alize desired emergent phenomena being usually the higher goal of an SoS [122]. 

In the AMADEOS conceptual model, emergence is defined as follows: ‘A phe-
nomenon of a whole at the macro-level is emergent if and only if it is new with re-
spect to the non-relational phenomena of any of its proper parts at the micro lev-
el’. Consequently, it is behavior observable at the global level (e.g., a traffic jam) 
that cannot be reduced to the behavior of one of the parts (e.g., a single car ana-
lyzed in isolation). If an emergent phenomenon can be explained by a trans-
ordinal law, i.e., a law that explains the emergent phenomenon at the macro level 
from properties or interactions of parts at the micro level, it is explained emer-
gence. In case such laws have not been found (yet), it is unexplained emergence. 
While there are cases of unexplained emergence (e.g., the human consciousness), 
the type of emergence that is occurring in the cyber part of an SoS is explained 
emergence, even if we are surprised and cannot explain the occurrence of an un-
expected emergent phenomenon at the moment of its first encounter. If we have 
made proper provisions to observe and document all interactions (messages) 
among the CSs in the domains of time and value, we can replay and analyze the 
scenario after the fact. At the end, we will find the mechanisms that explain the 
occurrence of the emergent phenomenon. There is no ontological novelty in the 
interactions of the CSs in the cyber parts of an SoS. 

Hence an explained emergent phenomenon can be classified as expected (trans-
ordinal laws are known), or unexpected (trans-ordinal laws are not known). Or-
thogonally, emergent phenomenon can be beneficial, or detrimental.  

Hence four cases of emergent behavior must be distinguished in an SoS. Ex-
pected and beneficial emergent behavior is the normal case. Unexpected and bene-
ficial emergent behavior is a positive surprise. Expected detrimental emergent be-
havior can be avoided by adhering to proper design rules. The problematic case is 
unexpected detrimental emergent behaviour. For an in-depth discussion about 
emergence in SoSs we refer to [120]. 

4.8.1 SoS Emergence package 

In this section we show how to use a semi-formal language to represent an 
emergent behavior of an SoS. Nevertheless, because of the nature of the emer-
gence concept, defining a semi-formal language, thus only eliciting an emergent 
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behavior, is not sufficient. Our aim is also capturing operational aspects related to 
emergence by considering an SoS in action. 

For these reasons we propose two different types of representation that a sys-
tem designer can choose:  

• Block Definition Diagram; 

• Sequence Diagram. 

Figure 4-25 shows the profile package for the emergence behavior as a block 
definition diagram.  

 

 

Figure 4-25: SoS Emergence package  

This package represents the main concepts of emergence using a Block Defini-
tion Diagram. We represent a “phenomenon” as a block and we distinguish an 
“emergent_phenomenon” from a “resultant_phenomenon”. An emergent phe-
nomenon can be explained (“explained_emergence_phenomenon”) or unex-
plained (“unexplained_emergence_phenomenon”) and in the former case there 
is a trans-ordinal law (“transOrdinal_law”) that explains the behavior. 

An SoS with emergent phenomena has an emergent behavior that could be ex-
pected, unexpected, beneficial or detrimental. For this reason, we consequently de-
fined the four following blocks: “unexpected_and_detrimental”, “ex-
pected_and_detrimental”, “unexpected_and_beneficial”, 
“expected_and_beneficial”. 
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4.9 The profile at work 

In this section we introduce a Smart Grid household scenario to exemplify the 
application of the profile and to instantiate the basic SoS concepts to a concrete 
case-study from the Smart Grid domain, focusing on the Architecture (Section 
4.9.1) and Emergence (Section 4.9.2) viewpoints. Further examples of application 
of the profile to the selected use-case can be found in [123] and public deliverable 
D2.3 “AMADEOS conceptual model - Revised” [108]. 

 
In a Smart Grid household scenario different operationally independent sub-

systems aim at delivering the desired emergent phenomenon of improving the ef-
ficiency and the reliability of the production and distribution of electricity through 
communication facilities. Requests for energy coming from electronic appliances 
are forwarded towards the subsystems in charge of granting or denying each re-
quest while achieving the Smart Grid goal, i.e., keeping the production and con-
sumption rates for connected households balanced.  

 

 

Figure 4-26: Smart Grid case study 

Figure 4-26 shows the topology of the main subsystems involved within a sin-
gle household of the Smart Grid scenario. Washing machines and microwaves are 
examples of electronic appliances. They represent a flexible load which may initi-
ate an energy request. The smart meter measures energy consumption and produc-
tion rates; the Distributed Energy Resource (DER) manages the energy produced 
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through energy generating and storage systems, like wind-powered electrical gen-
erators or batteries. A command display shows consumption rates and enables res-
idents to interact with their own energy control system. The Energy Management 
Gateway (EMG) controls the flexible loads and the DER based on measurements 
received from the smart meter and in agreement with the coordinator to establish 
optimal energy distribution. The coordinator is connected to the Neighborhood 
Network Access Point (NNAP) with the aim of keeping the production and the 
consumption of energy for a set of connected households balanced. A Distribution 
System Operator (DSO) regulates consumption and production rates at the country 
level. By means of its Load Management Optimizer (LMO), a DSO receives in-
formation from a meter aggregator and enacts control decisions in cooperation 
with the coordinator. The access to the household is provided by one or more Lo-
cal Network Access Points (LNAPs) connected to a NNAP. All the above men-
tioned components require proper interfaces in order to exchange control messag-
es and physical energy entities within and outside the household Smart Grid. 

4.9.1 Modeling the Architecture viewpoint  

Using the SoS Architecture package it is possible to represent the topology of any 
System of Systems. Now we show how to use SoS through the Smart Grid house-
hold case study. 

First of all, it is necessary to decide what are the main constituent systems in-
volved, and how to represent them. For each system component we use a Block 
element of a Block Definition Diagram and through the connections we show the 
relations between them. Using the stereotypes defined in the “SoS Architecture” 
package it is possible define the Smart Grid household as a system of systems 
(SoS) and all the other elements as constituent systems (CSs).  
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Figure 4-27: Smart Grid Household Block Definition Di-
agram 

Figure 4-27 shows a model example of a Smart Grid with the application of our 
profile (“SoS Architecture” package). The “SG_Households” is a Block and it is 
stereotyped as an SoS; it is composed by 5 CSs, which exchange information. 
Among others, the block “Flexible Load” is stereotyped as a CS and it is com-
posed by a set of household electrical appliances: Microwave, Washing Machine, 
Clothes Dryer, etc. These latter are switched on and off dynamically based on the 
current needs. 

An application example of the main SoS communication concepts is shown in 
Figure 4-28. Through the Smart Grid household case study, we describe a set of 
communication messages exchanged between the involved CSs. 
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Figure 4-28: Message exchange between CSs of a Smart 
Grid 

First of all, it is necessary to decide which are the involved elements in the 
communication and how many message are exchanged. We identify a “Lifeline” 
as a constituent system and a “message” as exchange data between two constituent 
systems. A message could contain all the properties defined in Figure 4-16 and 
they can be displayed using a constraint or a comment box. Figure 4-28 shows the 
message properties using a comment box (e.g., “data_field”=2kW, “header”=wm 
to EMG, “trailer”=t1, “trans_type”=PAR_message). 

4.9.2 Modeling the emergence viewpoint 

While a Block definition diagram defines stereotypes and related elements to 
capture statically the emergence behavior, a sequence diagram is able to define 
dynamic interactions leading to emergence. We adopt a sequence diagram where 
each lifeline represents a constituent system and each message specifies the kind 
of communication between the lifelines, the sender and the receiver. An SoS is 
prone to changes: sometimes constituent systems are incremented, modified or 
removed. To this end, this kind of diagram helps the system designer to easily up-
date and analyze new system behaviors. The diagram not only describes the com-
munication but it also helps to represent the SoS behavior during the progression 
of time. 

To show the difference between a “static” and “dynamic” representation of 
emergence, we consider a particular scenario of the Smart Grid previously de-
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scribed. The dynamicity of the household electrical appliances may lead to an 
emergent behavior of the system in case of a peak of request of energy coming 
from the neighborhood. Let us assume that because of a public event, an excep-
tional lighting of specific public spaces has to be supported by the Smart Grid. In 
this case, while in the household it was commonly possible to turn on microwave 
and washing machine together, we end up in a very limited provision of energy, 
which is not sufficient for both the electrical appliances. This phenomenon repre-
sents an emergent behavior of the Smart Grid since it is not possible to devise it if 
we only look at the interactions of the internal household CSs without considering 
the neighborhood CSs. 

Figure 4-29 shows, through a BDD, how the public event lighting is represent-
ed as an explained and detrimental emergent phenomenon, explained by the bal-
ancing behavior of the Coordinator and causing reduced energy for the electrical 
appliances. This phenomenon causes an unexpected and detrimental behavior of 
the SoS, which allows it to only satisfy a subset of energy requests.  

 

 

Figure 4-29: Smart Grid Household – Emergent behavior 

 
However, using this type of diagram we are not able to represent the progres-

sion of time and the semantic of message that may contribute to reveal emergence 
phenomena. Especially, the above representation does not attach greater im-
portance to capture the time aspects of the SoS emergent phenomena.  

We now introduce the representation of the exceeding peak energy request by 
using a sequence diagram. We adopt a sequence diagram to show the emergent 
behavior of the electrical appliances request by means of the interaction among re-
lated CSs of the Smart Grid. 
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Figure 4-30: Smart Grid Household SysML Model – 
Emergent Behavior description 

As shown in Figure 4-30, “electronic appliances” CSs are represented as “Life-
line” and their interactions are represented through directed labeled arrows. Wash-
ing Machine is switched on at t2 after the agreement allowed from the Coordina-
tor. As next, the Coordinator receives (at time t3) and grants (at time t4) the 
energy for switching on the public lighting for the exceptional event. This request 
is forwarded to the Coordinator by the Public Event Lighting (PEL) EMG, which 
is external to the household. At time t5, microwave issues its request to be con-
nected to the Smart Grid but it receives a negative acknowledgment at time t7. 
Usually, the household would be able to switch on the washing machine and the 
microwave at the same time. On the contrary, because of the public event lighting 
resulting in a peak of energy from the house neighborhood it results that only a re-
duced amount of energy is available for the electrical appliance (emergent behav-
ior). Indeed, right before the requests issued from the microwave (time t5) and the 
clothes dryer (time t8), the Coordinator allocates the energy for the public lighting 
event and consequently no further requests of energy from the house can be grant-
ed.  

This illustrative example shows that networked individual systems together to 
realize a higher goal, which none of individual system can achieve in isolation, 
could lead to an emergent behavior: impossibility of satisfying commonly granted 
energy requests. The Emergent behavior is shown through the message exchange 
and it consists of unexpected and detrimental emergent behavior caused by a sys-
tem dynamicity property. 

4.10 Related works 

In this section we present an overview of related ADL design approaches present-
ed in the literature of SoSs. This analysis is not meant to be exhaustive but it is 
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based on some of the most representative related works on designing SoSs. Its ob-
jective is to determine to what extent viewpoints-based SoS concepts have been 
already captured in the literature.  

In [115] the authors propose the use of SysML in representing an SoS by 
adopting and in some cases extending canonical SysML diagrams in order to 
model different viewpoints of an SoS. Beyond structure, a specific support to the 
multi-criticality viewpoint is also provided by adopting the specific stereotypes 
aiming at grouping requirements according to qualitative and quantities metrics to 
support trade-off analysis. Nevertheless, there is no specific support for other 
viewpoints, including time, dependability/security, dynamicity, evolution and 
emergence. 

A partial answer to the above issues is given by the approach presented in 
[121] providing support to structure and evolution viewpoints of an SoS by ex-
ploiting several SysML models. The authors propose the adoption of diagrams to 
determine an evolving SoS and its environment and the interactions occurring be-
tween an SoS and the environment and among CSs themselves. Noteworthy the 
approach is still missing specific support to dynamicity, emergence, multi-
criticality, dependability/security and time. In [128], the presented SysML model-
ing approach allows the definition of the SoS structure and how to support dy-
namicity and evolution viewpoints by means of understanding the dis-alignment of 
a simulated SoS with respect to its requirements. Noteworthy, it is still missing a 
specific support to emergence, multi-criticality, dependability, security and time. 

The approaches presented in [110] and [116] provide support to model the 
structure of an SoS and emergence by means of the extension to SysML diagrams. 
Analyses of the former models are conducted to provide evidence that require-
ments are fulfilled. The approach supports fault-handling (dependability view-
point) and responsiveness (time viewpoint) of an SoS, but it does not provide any 
specific support to dynamicity, evolution and multi-criticality.  

The approach in [114], within the context of the DANSE EU project [111], 
supports the definition of an SoS structure, dynamicity and evolution (by means of 
Graph Grammars), emergence, etc., with the only exception of multi-criticality. 
DANSE presented a set of methodologies and tools to model and to analyze SoSs 
based on the Unified Profile for DoDAF and MoDAF (UPDM). In particular, 
DANSE focuses on the six models that can be represented as executable forms of 
SysML as partially reported in [114], according to a well-defined formalism to re-
late basics SoS concepts and their relationships. In the context of DANSE, the 
Goal Specification Contract Language (GSCL) assures the achievement of de-
pendability and security requirements and it guarantees the timely response of an 
SoS.  

All these approaches have shown the utility of adopting SysML formalisms to 
model architectural aspects of SoSs, thus supporting different types of analysis 
and a first step towards executable artifacts which can be automatically derived. 
Although these approaches provide detailed insights for different viewpoints as-
pects, it is still missing (i) an homogeneous synthesis at a more abstract level of 
key design-related SoS concepts, and (ii) a viewpoint-based vision. Bringing this 
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perspective in one single consistent reference model, it is possible to provide solu-
tions to specific design problems while still keeping the required interconnections 
among viewpoints. 

4.11 Conclusions 

This chapter presented a viewpoint-driven approach to design SoSs by adopting 
a SysML profile. We pointed out the gaps in the literature of ADLs for SoSs with 
respect to a set of viewpoints that we deemed essential for understanding SoSs. We 
outlined the conceptual model at the basis of the profile and we presented how to 
solve specific viewpoint needs in an integrated fashion by exploiting the high-level 
SoS representation in a small scale scenario. We implemented the profile in the 
Eclipse integrated development environment jointly with Papyrus [113], i.e., an 
Eclipse plug-in supporting advanced facilities for manipulating UML artifacts and 
SysML profiling. 

 
The AMADEOS SoS profile can be adopted along with a Model-Driven Engi-

neering (MDE) approach. MDE is an approach to system development and it pro-
vides a means for using models to direct the course of understanding, design, con-
struction, deployment, operation, maintenance and modification. For a model-
driven architecture perspective [126], our SoS profile is a Platform Independent 
Model (PIM) or, in other words, a view of the system from the platform independ-
ent viewpoint. It provides a set of technical concepts involving SoS architecture 
and behavior without losing the platform independent characteristics.  

This kind of independent architecture makes possible to analyze step by step all 
the PIM viewpoints and to obtain one or more Platform Specific Models (PSM), 
where the SoS profile is specialized and improved according to the do-
main/enterprise specific technologies that belong to the enterprise implementing 
the SoS instance. A PSM is a view of a system from the platform-specific view-
point. It combines the specifications in the PIM with details that specify how that 
system uses a particular type of platform and on the platform itself.  

 
Furthermore, the SoS PSM can represent the base step for other activities such 

as the following: 
• Source code generation: through an automatic transformation the SoS 

model can be translated in source code; 

• System analysis: the SoS model can be the starting point for a lot of sys-
tem analysis like: hazard analysis (HA), Failure Mode and Effect Analy-
sis (FMEA), Fault Tree Analysis (FTA); 

• System testing: the SoS model can be the basic layer to identify test pro-
cedures or resolve problems of testing coverage. 
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5.1 Introduction 

This chapter defines the overall tool-supported "AMADEOS architectural 
framework", with its main building blocks and interfaces. It particularly focuses 
on Structure, Dependability, Security, Emergence, and Multi-criticality viewpoints 
of an SoS.  Finally, for SoS modeling, a "supporting facility tool" based on 
Blockly is demonstrated. Blockly is a visual DSL and has been adopted to ease the 
design of SoS by means of simpler and intuitive user interface; thus requiring min-
imal technology expertise and support for the SoS designer.  

5.2 Architecture framework for Sos 

Architectural framework does not refer to the specific design of specific system 
architecture, but they rather represent a view on how such architecture should be 
described. Although architectural frameworks are “prescriptive” and not “descrip-
tive”, there is still no consensus on providing a methodological step-by-step in-
struction to be followed. In [133], the authors describe a study involving the use of 
a design approach to guide the development of an SoS architecture by means of 
rules, guidance and artefacts for collaboratively developing, presenting and com-
municating architectures without an order set of phases to carry out. In [134] and 
[135], it is noticed a close relation between architecting methods and the architec-
tural frameworks, thus a step-by-step set of instructions is provided to guide the 
development of SoS architectures.  

When building an SoS architectural framework, the aim is to be instrumental in 
the creation of future evolvable systems of systems. Both description views and 
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methodology shall be allowed, as long as it facilitates the design of the architec-
ture of such systems.  

Architectural frameworks that are currently used in SoS literature have been 
applied in different contexts of operation along with ADL solutions to model dif-
ferent architectural aspects of an SoS. In the following we provide insights on cur-
rently adopted architectural frameworks and ADL approaches. 

5.2.1 ADLs in SoS Architectural Frameworks 

This section collects a few ADL approaches that have been proposed in the 
literature to model different aspects of SoS. They range from approaches 
dealing with very specific problems to frameworks.  

Among the approaches presented in the context of research projects we consid-
er solutions proposed in COMPASS and DANSE EU projects. COMPASS aims at 
supporting the application of formal analysis tools and techniques at the level of 
the graphical notations used in current industrial practice. COMPASS project ex-
ploits the Artisan Studio tool [136] in order to support system and requirements 
modelling using SysML as well as software modelling using UML and code gen-
eration. As stated in [137] COMPASS proposes the adoption of Context Dia-
grams, Use Case Diagrams, Block Definition Diagrams and Sequence Diagrams.  
COMPASS exploits tool's well-established extension mechanisms to extend tradi-
tional systems modelling as needed to model SoS.  Starting from artefact created 
with the tool, COMPASS provide a well-defined denotational semantic of SysML 
blocks by means of the COMPASS modelling language (CML), a formal specifi-
cation language that supports a variety of analysis techniques. 

The DANSE methodology and tools are mainly based on the Unified Profile 
for DoDAF and MoDAF (UPDM). The latter has also been extended to cover the 
NATO Architecture Framework (NAF) and it provides more than fifty different 
model types grouped in eight viewpoints [138]. These viewpoints are: Capability 
Viewpoint, Operational Viewpoints, Service Viewpoint, System Viewpoints, Ser-
vice Viewpoint, Data & Information Viewpoint, Project Viewpoint and Standard 
Viewpoint. In particular DANSE focuses on the six models that can be represented 
as executable forms of System Modelling Language (SysML). 

In [139], the authors propose a formalism for relating basics SoS concepts by 
means of a UML class diagram. They identify as basic concepts SystemType, Sys-
tem-Of-Systems, Goal, Role, Service, Requirement, Port, Requirement and Port. 
Consequently, they adopted their defined formalism to instantiate an operative 
SoS by means of adopting canonical UML diagrams such as Sequence diagram. 
The behaviour of CS is formalized through Timed Automata and its dynamici-
ty/evolution is achieved by means of Graph Grammars. 

An example of modelling SoS by means of SysML is given in [140] where the 
authors exploit different diagrams and in particular executable diagram in order to 
simulate Net-centric SoS through the Petri Net formalism. In [141] the authors 
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propose the use of SySML in representing an SoS in general and for a particular 
applicative scenario. They propose to adopt and in some cases to extend canonical 
SySML diagrams in order to model different aspects of an SoS. They defined con-
cept Diagram as an extension of class diagrams to depict the top-level systems of 
an SoS and external stereotypes. This helps in identifying the boundaries between 
the system and its environment. They adopted the class diagram with an aggrega-
tor operator to represent that a component is composed by a set of other compo-
nents. They proposed the adoption of a requirement diagram with an additional 
stereotype, i.e., critical requirement which is a particular type of requirement. 
This diagram groups together requirements according to qualitative and quantities 
metrics to support a trade-off analysis. They adopt canonical use case diagrams to 
represent the set of action an SoS performs. The SySML activity and sequence di-
agram are exploited to represent the SoS at the functional level and its exchanges 
of messages, respectively. Finally, they exploit a block diagram as a refinement of 
their concept diagram, which aims at representing blocks/component with well-
defined interfaces, i.e., serviceports and flowports.  

The approach presented in [142] describes how several SysML models can be 
used to support a set of needs that the authors deemed essential for an SoS, namely 
translating capability objectives, understanding systems and their relationships, 
monitoring and assessing changes, developing and evolving the SoS architecture, 
addressing requirements and solution options. The authors propose to apply a 
Model-Driven Systems Development (MDSD) approach [143] to an SoS. The first 
step consists in determining capabilities and actors through use cases diagrams by 
defining what is in the system and what remains outside, as stated in a context di-
agram. Use cases determine the top-level service or capabilities and the major ac-
tions necessary to perform the use cases and all of the alternate actions. Finally, 
two different diagrams describe the interactions, i.e., black box sequence diagram 
and white box sequence diagram. Black box sequence diagrams show the flow of 
the requests that pass between the SoS and the environment while white box se-
quence diagrams depict the flow of requests between the constituent systems, and 
between the constituent systems and the external entities. 

Among others, the approaches presented in this section show the utility of 
adopting SysML formalisms in order to model different architectural and non-
architectural aspects of an SoS. This supports different types of analysis and it rep-
resents a first step towards executable artefacts, which can be automatically de-
rived from SysML. As shown in this section, in the literature different attempts 
exist to apply SysML approaches to specific viewpoints that we deemed essential 
in providing architecture for Multi-Critical Agile Dependable and Evolutionary 
SoS. Nevertheless, an architectural framework that provides an integrated support 
to all these viewpoints is still missing. The architectural framework will benefit of 
the approaches proposed in the literature in supporting specific viewpoints (when 
they exist) and it will integrate SysML specific solutions to provide a usable high-
level support for designers of SoS. 
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5.3 The AMADEOS architecture framework 

The AMADEOS architectural framework (AF) is described by means of a 
high-level perspective of activities and artefacts involved in SoS design phases 
and by its viewpoint-based specialization. 

5.3.1 High-level view 

The high-level representation of the AF is shown in Figure 5-31 as a pyramid 
made of four different layers, namely Mission, Conceptual, Logical and Imple-
mentation. Apart from the Mission block, all the remaining levels are organized in 
slices, each corresponding to a specific viewpoint.  

 

Mission

SoS 
Framework

Input:
• Conceptual model
• Meta-requirements
Output: SoS requirements (for each viewpoint)

Enhanced Design

Contextualization and Realization

Input:
• SoS requirements
• SoS Profile
• SoS Management Infrastructure (MAPE), RUI, Resilient Master Clock,     
  Dependability Support Units, Evolutionary Support Units
Output: SoS Logical Description (Platform Independent Architecture)

Input:
• SoS Logical Description 
• Domain/Enterprise specific techniques
Output: Instrumented  SoS with AMADEOS solutions (Platform-specific Architecture)

AMADEOS
Viewpoint 1

AMADEOS
Viewpoint 2

AMADEOS
Viewpoint n

SoS

Requirements Definition

 

Figure 5-31: AMADEOS Architectural Framework. 
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The starting point of the AF consists in defining the Mission of an SoS. The 
mission is commonly formalized by means of a document of intents created by en-
terprise managers having in mind a high-level perspective of the system and a 
clear definition of business-related issues. The document of intents is written in 
natural language to formalize the overall objectives and functionalities of an SoS 
starting from a shortened version of the glossary illustrating main SoS concepts 
and other related mission-relevant arguments. 

At the Conceptual Level, it is possible to consider a subset of viewpoints de-
pending on the target SoS and its mission; however in AMADEOS we focus till to 
collaborative SoS, for which we identify a set of viewpoints that must be consid-
ered as mandatory. Inputs to these levels are the document of intents describing 
the mission, the conceptual model [144] defining main SoS concepts and their re-
lationships and the AMADEOS meta-requirements [145], which can guide the 
identification of requirements for specific SoS instances. For each viewpoint (cor-
responding to a slice of the pyramid), the SoS is examined and described. The re-
sulting description should be the requirements of the SoS (these can be expressed 
in natural language, as well as using formalisms for the description of require-
ments). The identification of relations between the different viewpoints is carried 
out at this phase.  

The Logical Level provides support for designing an SoS based on the view-
points requirements in the AMADEOS SysML profile (Chapter 4)and the Build-
ing blocks defined in Section 5.4. The output of this phase consists in the platform 
independent description of the SoS in a semi-formal language (SysML), for the 
different viewpoints.  

The Implementation Level leads to the integration of new CSs with already ex-
isting and deployed CSs starting from the logical architecture defined at the previ-
ous level and domain/enterprise specific techniques. At this level, the input logical 
architecture is refined and instrumented with domain/enterprise specific technolo-
gies which belong to the enterprise implementing the SoS instance.  

We depict in Figure 5-32 a process-based view of each level of the AF. We 
represent the basic task ad the input/output artefacts involved at each level. This 
gives a more detailed description of the relationships and evolution of the main ar-
tefacts produced in each level of the pyramid (see Figure 5-31) and the relations 
between levels (through the top-down processes of refinement and instantiation, 
and bottom-up processes of generalization and abstraction). The artefacts catego-
ries at each level are intended to be generic enough to fit all the viewpoints. 
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Figure 5-32: Refinement and evolution of processes in AF 
Design 

 
On the Mission Level, a relatively slow-paced cycle takes place to address the 

continuous synchronization between the operational needs, the currently targeted 
capabilities of the SoS architecture and the technological possibilities to achieve 
the needs. At this stage, enterprise managers iterate the above phases to determine 
the mission of the SoS which is then formalized in a document of intents along 
with possible target solutions to be implemented. 

On the Conceptual Level the alignment between the overall envisioned con-
cepts and the SoS domain takes place more frequently. On this level the 
AMADEOS concepts which are relevant to achieve the mission are extracted from 
the document of intents and then filtered based on the viewpoint to which they be-
long. Further details may be added at each viewpoint descriptions to support the 
targeted capabilities within the SoS domain. Connections among viewpoints de-
scriptions are identified in an early stage before similar concepts are aligned with 
each other, if needed. 

On the Logical Level, cycles occur at a more rapid pace and are used to ensure 
that all desired functionalities and qualities are supported by the developed archi-
tecture. To this end, building blocks are selected and further integrated to obtain a 
design model which is generic enough to be applied to different types of platform. 
The design process follows a viewpoint-based perspective based on which target 
models are created for each viewpoint. Application specific details are added at 
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this stage before viewpoint models are linked with each other according to the de-
pendencies early identified at the Conceptual level. At Logical level, wrappers for 
legacy CSs have to be defined in terms of proper RUI interfaces which connect 
such legacy components to the rest of the logical SoS. Finally, validation activities 
take place, e.g., either by supporting the generation of models that are correct by 
construction or through predefined consistency checks. The generation of models, 
the integration of building blocks and the model consistency checks are made pos-
sible by exploiting the AMADEOS profile.  

The most frequent cycles occur at the Implementation Level, where the SoS ar-
chitecture is defined at its most fine-grained level by augmenting it with specific 
platform-dependent and specific technologies which are exploited by the target en-
terprise in order to obtain an operational SoS instance. At this stage the possibly 
available legacy components may be added to the platform-dependent architec-
ture, provided that they have been properly encapsulated in the SoS at the logical 
level. This implementation model may then be validated through the technologies 
which are commonly adopted in place by the enterprise. In order for this phase to 
be supported, it is necessary that specific validation techniques adopted in the en-
terprise comply with the AMADEOS profile specification. However, it is not the 
main focus of AMADEOS to provide full support to implementation of single 
CSs. Nevertheless, this phase includes all the steps from the platform independent 
architecture to the architecture showing how each and every feature in the product 
should work and how every component should work. This phase is kept in the 
framework for completeness. 

5.3.2 Viewpoint-driven Analysis 

The AF has been represented through a high level view which describes the 
processes of defining an operational SoS instance starting from the mission defini-
tion. The architectural viewpoints required for supporting this definition are the 
ones considered in the AMADEOS vision, i.e., structure, dynamicity, evolution, 
dependability and security, time, multi-criticality, emergence. We describe in the 
following how the AF can support the activities required by each viewpoint.  

Viewpoint of Structure 

The Structure viewpoint concerns with representing the overall structure of the 
SoS. It focuses on architectural concerns of an SoS and it is closely related to oth-
er issues like SoS constraints, RUMI and semantics of communication. Indeed, de-
fining interfaces among CSs is important as this stage to support their communica-
tions. 

The input to the conceptual level of an SoS is the mission (or vision). This en-
tails the overall objectives of the SoS as well as the required functionalities. The 
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structure viewpoint entails examining these objectives and determining the con-
straints of the interfaces, and the communication, between constituent systems. 
Unlike the other viewpoints, the structure viewpoint places restrictions upon the 
activities of the SoS.  

By addressing the meta-requirements in the context of the specific mission, a 
set of structural requirements can be identified that restrict the overall architecture 
that will be eventually delivered. For example, from [CONSTR 11], standards 
compliance of one or more CSs may be very important, particularly in use cases 
such as in the Smart Energy domain. Also the conceptual model is exploited as the 
vocabulary of concepts to be adopted. 

The output of the conceptual level consists of a set of requirements that relate 
to the structural architecture of the SoS. 

The logical design of an SoS architecture will be based upon the Structure re-
quirements identified at the conceptual level and the building blocks identified 
along with the SysML profile. The SysML Block Definition Diagram (BDD) is 
used to model the topology and the relations of an SoS. Blocks in SysML BDD 
are the basic structural element used to model the structure of systems. A Block 
provides a unifying concept to describe the structure of an element or a system. 
This type of diagram helps a system designer to depict the static structure of an 
SoS in terms of its CSs systems and their possible relationships. By means of 
BDDs it will be possible to model the static structure of CSs, their interfaces and 
how the communication among CSs is achieved. 

The output of the logical level will be a platform independent SoS architecture 
specification from a structural point of view. This will consist of the outline of the 
CSs identified by the requirements and the RUMIs that specify the interactions be-
tween these former CSs.  

On the implementation level, the platform independent structural design from 
the enhanced design level is further concretized using specific contextual require-
ments, towards building the SoS structural architecture. For example, specific CSs 
may already exist and may need to be integrated. In the structural viewpoint, this 
will lead to specific RUMIs that are used to define how CSs will interact. These 
RUMIs consist of the communication protocols that define the messages that will 
be shared between CSs. The implementation level is very specific to the actual 
CSs involved and the operational context. The output consists in a fully contextu-
alized SoS structural architecture.  

Viewpoint of Dynamicity 

Dynamicity refers to short-term changes in an SoS, which occur in response to 
changing environmental or operational parameters of the CSs. These changes can 
refer to offered services, built-in structure and interactions with other entities, and 
may have different effects, such as SoS adaptation or the generation of emergent 
phenomena. 
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Starting from the SoS mission, the dynamicity requirements and the conceptual 
model, the output of the conceptual level is the set of dynamicity requirements, 
i.e., requirements related to the dynamicity viewpoint for the specific mission. The 
latter are the input of the logical level which also exploit the SysML profile and 
the building blocks to support the generate of the platform independent SoS archi-
tecture. The building blocks of the SoS management infrastructure defined are ex-
ploited to achieve dynamicity requirements, through the monitoring, analysis, 
planning and execution activities. Instantiation of the profile is connected with the 
Structure viewpoint of the SoS. Interactions elicited among CS take into account 
the service provided at the RUI interfaces as regulated by the SLA. 

At the implementation level, the generic SoS architecture is instantiated into a 
platform-specific SoS architecture. This includes, among others, the implementa-
tion of RUIs that integrate monitoring and execution features that implement the 
MAPE-K architecture, and SLA-oriented reconfiguration operations. It results an 
architecture specialized by the enterprises with their adopted technologies to pro-
vide support to dynamicity though a platform-specific architecture.  

Viewpoint of Evolution 

Large scale Systems-of-Systems tend to be designed for a long period of usage 
during which the demands and constraints put on the system will usually change, 
as well as its environment. Evolution is the process of gradual and progressive 
change or development of an SoS, resulting from changes in its environment or in 
itself. In managed SoS evolution, the modification of the SoS keeps it relevant in 
face of an ever-changing environment; whereas in unmanaged SoS evolution, on-
going modification of the SoS occurs as a result of on-going changes in (some of) 
its CSs. 

At the conceptual level, starting from the mission, the evolution meta-
requirements and the conceptual model, a set of evolution requirements produced. 
The latter are exploited along with the SysML profile and the building blocks at 
the logical level. In particular, instantiation of the profile is connected with the 
Structure viewpoint of the SoS. Interactions elicited among CSs take into account 
the service provided at the RUI interfaces, and the business value improved by 
evolution. The logical level results in the platform independent SoS architecture. 

The role of the implementation level is to translate the generic SoS architecture 
into a platform-specific SoS architecture with, among others, evolution aspects. 
This includes RUI modification, and has a tight connection with the time view-
point to ensure backward compatible evolution versions. Through the architecture 
as specialized by the enterprise it is possible to provide support to evolution 
though a platform-specific architecture.  
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Viewpoint of Dependability and Security 

Dependability and security are essential properties of an SoS since they affect 
its availability, reliability, maintainability, safety data integrity, data privacy and 
confidentiality. 

The conceptual level, build the set of dependability and security requirements 
from SoS mission, meta-requirements and the conceptual model. Dependability 
and security are important to ensure the proper functioning of an SoS. At the con-
ceptual level, the input is the overall objectives and functionalities required to 
meet the mission of the SoS. Dependability and security requirements are not 
stand-alone requirements; they are connected to the other requirements, including 
time, multi-criticality, and others, that compose the set of requirements for the 
SoS.  

At the logical level the Dependability and Security requirements are exploited 
to define the dependability and security components of the SysML profile There 
are two packages: “SoS Dependability” and “SoS Security”. One of the key con-
cepts in SoS dependability and security is splitting functionalities into well-
defined components and interfaces such that the number of components that re-
quire explicit trust is kept to a minimum. In the context of the SysML profile, each 
block in the Block Definition Diagram has interaction points for itoms flowing in 
and outside the block. We first consider the functionalities required by the SoS 
and determine how security-critical each functionality is. We then consider what 
kinds of components make up the SoS and map functionalities to components. The 
most security-critical functionalities should be grouped together. Thus, the SoS 
will have a small number of highly-trusted, security-critical components. Less se-
curity-critical functionalities will be handled by less secure components. There 
will be different levels of dependability for each CS and different levels of securi-
ty for each SoS.  

The output of the logical phase is a platform-independent SoS architecture. The 
latter is exploited at the implementation level to create a platform-specific archi-
tecture specialized by the enterprise with their adopted technologies. For defining 
platform-specific trustworthy CS one could rely on the trustworthiness-enhancing 
design patterns described in the OPTET project [146]. This comprises a number of 
UML Patterns, which from the AMADEOS perspective can be seen as Dependa-
bility and Security architectural patterns. 

Viewpoint of Time 

Time does not only play an important role in the control of the physical envi-
ronment of an SoS, where, for instance, the temporal properties of a control loop 
impact the efficiency and quality of control. It is also crucial for the information 
exchange between CSs, as in many cases timeouts and communication delays may 
decide whether the distinct CSs are able to serve their purposes. Correct handling 
of time enables the reduction of cognitive complexity required to design an SoS 
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and facilitates the integration of new CSs into the system. On the other hand, un-
defined timing of communication between CSs might introduce unintended emer-
gent effects. 

Time meta-requirements along with related concepts and the SoS mission are 
exploited at the conceptual level to generate time dependent requirements. System 
components and functionalities sensitive to the progression of time need to be 
identified and the requirements on their temporal behavior have to be specified. 
This mainly comprises requirements on timeliness of interactions between CSs 
(e.g., the exchange of information to avoid collisions between cars has to take 
place before the cars collide), and the time synchronization of those CSs (e.g., re-
quirements on the precision of synchronization and time granularity). Since there 
is a close relation to other viewpoints, like Security, Dynamicity or Emergence, 
the temporal requirements have to be aligned with the requirements regarding the 
other viewpoints. Furthermore, the behavior of the SoS in case that some of the 
temporal requirements cannot be fulfilled has to be specified.  

At the logical level the temporal behaviour of the SoS is designed based on the 
conceptual requirements defined in the level above. The mechanism to achieve a 
synchronized global time base among all CSs has to be defined (e.g., internal or 
external synchronization of time). Such a time base allows relating timestamps of 
different CSs with each other, and thus enables the temporal ordering of events in 
the SoS. The exact temporal interaction between individual types of CSs is mod-
elled and included in the SysML RUMI specification. A precise temporal specifi-
cation at this level simplifies the integration of CSs that have been individually 
designed and implemented at the next levels. 

At the implementation level the producer of a CS brings the temporal specifica-
tion of interactions between CSs into a real implementation using a specific plat-
form. This includes implementing the time synchronization mechanism defined in 
order to achieve a common time base. As the implementation has to comply with 
the temporal model of interactions, unintended side effects of temporal misbehav-
iour are avoided, and hence, the integration of the CS into the SoS is simplified 
and the instrumented SoS instance is created. 

Viewpoint of Multi-criticality 

Multi-criticality supports the provision of services of an SoS with different crit-
icality, such as safety-critical and non-safety-critical. Indeed, while some part of 
the SoS may have strong safety-critical requirements, other parts may be not so 
critical.  

At the conceptual level the definition of multi-criticality requirements is carried 
out in order to support the definition of services with different criticality levels. To 
this end, the meta-requirements is exploited according to the SoS mission and us-
ing the related SoS concepts.  

At the logical level the requirements along with building blocks and the profile 
are exploited to define the platform independent SoS instance. The SoS architec-
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ture and RUMI specification is done so that, recalling the macro-level of the gen-
eral architecture of an SoS [145], CSs characterized by a specific criticality level n 
and a macro-level m can rely on CSs characterized by a criticality level greater or 
equal to their one owned by the same or a lower macro-level. 

As stated by requirement [MULTI-CR6] a CS shall not rely on CSs character-
ized by a lower criticality level than its one. Thus, it is also necessary to have de-
signed a clear architecture profile which details the structure of the SoS, detailing 
the interaction among the CSs. In this way it is possible to verify the correctness 
of the interaction among the CSs checking for violations of the aforementioned 
requirements. In the case that a CS offer several services that are characterized by 
different criticality levels, then a precise specification of the RUMI building block 
can help to preserve both the FCR and ECR, making failure propagation from 
non-critical services to critical one impossible. 

At the implementation level the SoS Logical description (platform independ-
ent) is specialized by exploiting the enterprise-specific technologies based on spe-
cific enterprise technologies and it will result in a platform-specific instrumented 
SoS architecture and RUMI specification.  

Viewpoint of Emergence 

Emergence is an intrinsic property of the SoS and it concerns with novel phe-
nomena that manifest at the macro-level (i.e., at SoS level) which are new with re-
spect to the non-relational phenomena of any of its proper parts (i.e., CSs) at the 
micro level. The rationale behind emergence is that by composing CSs, either pos-
itive or detrimental global emergent phenomena may occur. Managing such phe-
nomena can help avoiding unsafe unexpected situations generated from safe CSs, 
and may help eliciting positive emerging phenomena. 

Appropriate effort shall be devoted to monitoring, analysing and predicting 
detrimental emergence phenomena and to mitigating (executing appropriate reac-
tions) their effect on the SoS. For non-detrimental emergence, it is desirable, but 
not mandatory to monitor, analyse and predict emergence phenomena. Emergence 
may be influenced or generated by modifications to the Structure (e.g., adding 
new components which introduces new functionalities, or adding new components 
that may change the error model, e.g., introducing new Itoms which enables new 
interoperability between CSs), dynamicity and evolution (making the system able 
to make changes to the way its CSs interacts with each other and how the system 
is aligned with changing business requirements). Note that emergence phenomena 
may cause violations to handling of time, dependability and security of the 
SoS/CS. 

In the Conceptual level, starting from the SoS mission, the meta-requirements 
and basic SoS concepts, we identify the instantiated emergence requirements.  

The Logical Level concerns with applying the profile to identify emergence 
and categorize it according to the strength and predictability of effects. Because of 
the nature of the emergence concept, in we deemed not sufficient to simply elicit 
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an emergent behaviour. We also consider worth capturing operational aspects re-
lated to emergence by considering an SoS in action. For these reasons, in we con-
sider two possible diagrams to represent emergence through Block Definition Di-
agram and Sequence Diagram. The building blocks defined in Section Y support 
the monitoring, analysing, planning and executing mitigating activities required by 
the emergence management requirements. The instantiation of the profile should 
be tightly connected with the Structure viewpoint of the SoS. Interactions elicited 
among CS should be defined according to the Request-Response model and take 
into account the service provided at the RUI interfaces as regulated by the SLA. 
For supporting early identification and mitigation of emergence, particular atten-
tion has to be devoted to the interactions through stigmergic channels. The design 
process will also consider application and domain specific details which will be 
added by the designer. Finally, validation activities will check the correct applica-
tion of building blocks, their integration and the usage of SoS domain specific 
concepts (possibly available through an SoS profile). 

The platform independent architecture resulting from the logical is instantiated, 
configured and to linked the architectural elements, which support the achieve-
ment of the emergence requirements through the implementation of a platform-
specific instance. 

 
 
Evolutionary aspects 
 
A SoS evolves over time as constituent systems are modified, replaced or add-

ed, or due to its relevant environment (gradually) changes. This evolution is driven 
by incremental, new, and changing requirements of the SoS. An architectural 
framework for SoS should provide a tool aimed at predicting possible evolution-
ary paths based on anticipated requirements and use-cases. 

Scenario-based Reasoning for SoS Architecture design 

In architectural systems engineering the use of scenarios is not uncommon. It is 
a cost-effective means of controlling risk and to maintain system quality through-
out the processes of software design, development and maintenance [147] [148] 
Preparing for evolution of an SoS, a scenario-based approach can also be adopted 
to guarantee that the development that an architecture undergoes is sensible, i.e. it 
must guarantee that the quality goals of the system are still met.  

By using scenarios to guide the design of an SoS architecture, the context of the 
envisioned SoS is incorporated into the possible design choices by the architect. 
Established scenarios provide a narrative, which enables communication about fu-
ture requirements and capabilities between different stakeholders [148]. Scenario-
based design is a user-based approach in which different use-cases of a system are 
defined by narratives, from which a lower-level description of the system can be 
extracted. However, not every SoS can be described by narratives focused around 
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use-cases and user interactions. Moreover, a narrative provides the intended use of 
a system from the perspective of a single expert or end-user, whereas in the con-
text of SoS single use-cases are more related to the constituent systems than to the 
SoS as a compound structure.  Therefore, a more methodical approach is needed, 
in which multiple experts can define relevant states and variables that may de-
scribe the possible evolution of the SoS and its relevant environment.  

Scenario-based reasoning (SBR) [149] provides a methodical approach to gen-
erate and explore scenarios. In the SBR approach, scenarios are built from a set of 
variables, and each combination of variable states makes up a single scenario. 
Relevant scenario variables are those that influence the design of the system, such 
as variables that denote for example: environmental conditions, organizational dy-
namics, economic conditions, technological development, and interactions with 
the system form a user perspective. Such variables can have dependence relations 
between them which are, for example: causal, functional, influential, or probabilis-
tic. For instance, enabling a certain security feature in the system will typically 
have an influence on its usability.  

SBR enables what-if exploration to reason about possible future conditions and 
consequences for the architecture of an SoS. Through the analysis of different 
scenarios and their dependencies, inconsistencies can be revealed that may have 
consequences for the eventual architectural design of the system. Through the 
identification (also generation) of scenarios from a model describing the context 
under which the SoS will be deployed and the possible future uses of the system, 
evolving requirements may be elicited. By thinking about how to operationalize 
these requirements, insights are acquired about how they map to the architectural 
design of the system. 

 

Figure 5-33: A small example causal model for SBR. 

 
Figure 5-33 shows a small sample model from an environmental point of view, 

from which possible scenarios can be extracted for analysis. It depicts causal rela-
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tions between the possibility of providing financial incentives for electrical vehicle 
use and energy production by consumers. Increased popularity of these use-cases 
in turn has an effect on the load placed on the local neighborhood grid. 

5.4 The AMADEOS Building blocks 

In this section, we present the AMADEOS architectural building blocks which 
are exploited in the AMADEOS architectural framework. 

5.4.1 SoS Management Infrastructure 

The SoS management infrastructure in terms of a set of patterns which are ap-
plicable to enact monitoring, analysing, planning and execution strategies. The lat-
ter are developed as highly-dependable services, which we deemed essential for an 
SoS architecture. In order to implement the support to the above services we got 
inspired by the literature of Autonomic computing [150] which is a promising ap-
proach for a dependable architecture of very large information systems [135]. In 
particular, we propose to adopt the well-known MAPE-k cycle to implement the 
above services through Monitoring, Analyze, Plan and Execution components.  

Our idea is to implement such patterns by means of composing CSs interacting 
with each other through well-defined RUI interfaces. These patterns are: (1) Hier-
archical Control, (2) Master/Slave, (3) Regional Planner, (4) Coordinated Con-
trol and (5) Information Sharing. Patterns (1), (2) and (3) implement the so-called 
Formal Hierarchy, while patterns (4) and (5) implement the Non-formal hierar-
chy. We recall that Formal hierarchy and Non-formal hierarchy have been dis-
cussed in Chapter 3 of this book.  

Formal Hierarchy. In a Formal hierarchy any CS at level n is controlled by a 
CS at level n+1. It follows that the MAPE components are placed in the CSs 
forming the controlling level, i.e., level n, while controlled CSs are placed at level 
n-1. We consider three possible instances of this pattern as follows. The Hierar-
chical Control pattern consists in having a CS implementing all the MAPE phases 
(see Figure 5-34).  
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Figure 5-34: Hierarchical control pattern 

 
In the Master/Slave pattern (see Figure 5-35), the controller CS implements A 

and P, and then delegate to additional CSs M and E (Figure 5-35).  
 

 

CS CS

A P

M E M E

Macro-level n

Macro-level n-1

 

Figure 5-35: Master/Slave pattern 

 
In the Regional Planner (see Figure 5-36) the controller CS implements only 

the Plan phase while it delegates to a set of CSs Analysis, Monitoring and Execute 
phases. The CS implementing the Plan phase operates for a region of CSs for 
which it is responsible. 
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Figure 5-36: Regional planner pattern 

 
Non-Formal Hierarchy. In a Non-formal hierarchy CSs at level n-1 interacts 

with the others at the same level by creating a whole at the level n. It follows that 
all controlled CSs and the CSs implementing the MAPE components are all placed 
at the same level, i.e., level n-1. Two possible implementations are as it follows.  

In the Coordinated control pattern (see Figure 5-37) each of the CS at level n 
implements all the M, A, P and E phases. The latter coordinate their operation 
with corresponding peers of CSs at the same level (Figure 5-37). 
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Figure 5-37: Coordinated control pattern 

 
In the Information Sharing (see Figure 5-38) is similar to the Coordinated con-

trol pattern but only interactions between Monitors are allowed. 
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Figure 5-38: Information sharing pattern 

Patterns composition 

Each pattern presented in the earlier section exploited CSs at two possible ab-
straction levels. For the hierarchical control, we have at the higher level the man-
aging CSs implementing the control of managed CSs which, in turn, have been 
represented as black boxes. For the holarchycal control, we have managed and 
managing CSs all at the same abstraction level, where all the managed elements 
are represented as black boxes, as well. The application of the above patterns may 
be applied compositionally and recursively by arbitrary replacing the managed CS 
by any other pattern.  

Finally, in addition to the presented patterns, a CS, being it a managing or a 
managed element, may interact with the physical environment by implementing 
the MAPE components. To this end, we introduce the atomic pattern as shown in 
Figure 5-39.  
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Figure 5-39: Atomic pattern 
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Communication Infrastructure. The communication among the MAPE build-
ing blocks is achieved by appropriate interfaces whose nature depends on the ob-
jective of the communication, either physical entities or messages. Consistently 
with the AMADEOS conceptual model, we adopt RUMIs to support the commu-
nication among MAPE blocks for managing SoS, since we only require the ex-
change of information, i.e., Itoms, and not physical entities (which would require 
RUPIs). Indeed, in the presented management infrastructure, our MAPE blocks do 
not receive physical entities but simply messages, which can be sent/received 
within a single CS or across CSs. Those messages have been graphical represented 
in the pattern as yellow envelope items. The only exception is the atomic pattern, 
which supports the interaction with the physical environment and consequently it 
requires the adoption of RUPIs to exchange physical entities. Noteworthy, we on-
ly represent RUIs to support the communication of MAPE blocks, which span dif-
ferent CSs while we neglect to consider MAPE interactions within a single CS. 

5.4.2 Resilient master clock 

Resilient master clock (RMC) is a resilient fail-silent master clock based on satel-
lite-based time synchronization (e.g., GPS or Galileo signals), to provide a de-
pendable global time base for cyber-physical Systems-of-Systems in AMADEOS. 

5.5 The RMC is detailed in Chapter-6 of this book.Supporting 
facilities for AMADEOS 

5.5.1 Introduction 

The supporting facility tool5 is used to model, validate, query, and simulate an 
AMADEOS based SoS using the Blockly tool6 . Blockly is an open source library 
for building visual programming editor or a visual DSL (domain specific lan-
guage). Blockly has been adopted to ease the design of SoS by means of simpler 
and intuitive user interface; thus requiring minimal technology expertise and sup-
port for the SoS designer. Its main features are: (i) Fast, and only a modern web 
browser is required; (ii) Intuitive and simpler user interface; (iii) Easily extendable 
with custom blocks; (iv) Ability to check constraints at design time (user defined 
and pre-defined constraints) and warn user when the user makes mistakes; and (iv) 
Support code and XML generation. 
                                                           

5 http://blockly4sos.resiltech.com 
6 https://developers.google.com/blockly/ 

http://blockly4sos.resiltech.com/
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The supporting facility tool is a generic SoS designer in accordance with the 
AMADEOS conceptual model and for this the Blockly tool has been customized 
to be used for SoS modelling. The flow of model-driven engineering using the 
supporting facility tool is depicted in the Figure 5-40. The SysML meta-model is 
first transformed to Blockly blocks. These blocks could be used in the supporting 
facility tool to create an SoS model.  

The main motivation of supporting facility tool is: the current SoS design tools 
are complex and non-intuitive for general SoS designers; also, many of the exist-
ing tools expect designers to be well-versed with object-oriented concepts. The 
goal of supporting facility tool is to simplify and provide means to rapid model-
ling of SoS using the SysML profile (meta-model). In traditional modelling envi-
ronment, large models have been known to be difficult to design and maintain; 
and often leading to spaghetti diagrams. The tool aims to reduce the complexity by 
using collapsed views instead of lines to connect blocks. Also, the tool aims to 
warn user of common errors/mistakes during modelling and helps in quicker test-
ing of SoS through simulation. The main advantage of using the supporting facili-
ty tool is that the SoS designer need not have deep knowledge of SysML/UML; 
the tool hides all the object-oriented concepts from the user and provides full 
compliance with the AMADEOS profile. The only prerequisite is high-level 
knowledge about the profile and knowledge of the supporting facility tool usage. 

The supporting facility simplifies the task of SoS modelling by reducing the 
prerequisites to start modelling. Once the supporting facility is installed on a web 
server, it can be accessed from any machine using a modern web-browser. It can 
also be used locally without the need of a web server. It provides rapid modelling, 
validating, code-generation, and simulation facilities to the user. The supporting 
facility can generate three outputs: (i) the model in XML, (ii) Python code-
generated for the simulation, and (iii) PlantUML version of the model. 

PlantUML is a simple text based UML format which can be readily integrated 
with many tools7. The exported model in PlantUML may be used for further re-
finement or formal analysis. For example: the PlantUML model can be viewed in 
Eclipse using plug-ins8. Though, full interpretability between tools is an ongoing 
research topic and is under investigation.  

Python is a general purpose portable language, and the Python code generated 
by the tool can be further refined and also be used to connect to other simulators 
or external systems for interaction while running simulation. 

 

                                                           
7  http://plantuml.com/running.html 
8 http://plantuml.com/eclipse.html 

http://plantuml.com/running.html
http://plantuml.com/eclipse.html


176  

 

Figure 5-40: Flow of MDE using the supporting facility 
tool 

As the supporting facility tool is based on the SysML profile (the meta-model) 
derived from the AMADEOS conceptual model, the SysML (in XML) is trans-
formed into Blockly by using PlantUML as an intermediary language. PlantUML 
is chosen as an intermediate format as it is a simple text format which makes de-
bugging during the model transformation easier. Below is an example of model 
transformation from SysML in Papyrus/Eclipse to Blockly (Figure 5-41 and Fig-
ure 5-42).  
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Figure 5-41: An example subset of SysML meta-model to 
be transformed to Blockly 
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Figure 5-42: SysML (Figure 5-41) imported to Blockly 

5.5.2 Modelling SoS 

When the tool is launched, it creates a default SoS block called “exam-
ple_block” as an example. All the blocks required to build an SoS can be found in 
the toolbox on left hand side. These blocks are imported from the AMADEOS 
SysML profile provided by a profile expert. Each block in the tool contains infor-
mation taken from the AMADEOS conceptual model to guide the SoS designer. 
For example, help for CS block can be found by right clicking a block and select-
ing Help. Also, each imported block in Blockly is associated with a view-
point/building-block, for example all blocks associated with Communication 
viewpoint is present in the Communication category in the toolbox. 

Traditionally, Blockly requires users to drag and drop blocks from 
flyout/toolbox to create new blocks. To improve usability and correctness, a 
Blockly API: Blockly.FieldDropdown() is used to show the list of blocks compati-
ble to be connected for a given block; this lets the user create blocks in an easier 
way. Figure 5-43 shows an example, where to add a Technique block, the tool 
shows that the following new compatible blocks can be added: “Fault forecast”, 
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“Fault prevention”, “Fault removal”, and “Fault tolerance”. In the profile, Tech-
nique is an abstract block and the above four blocks inherit the Technique block. 

A block once created can have three views, (i) collapsed view, (ii) partially-
collapsed view, and (iii) uncollapsed view as shown in Figure 5-44. Collapsed 
view allows the user to reduce the number of blocks screen on the screen and to 
focus on the current editing block. Partially collapsed block only shows the non-
empty attributes of a block hence the designer may choose to view only the 
attributes defined. Full view/uncollapsed view is used to see all the attributes of a 
block. A user can cycle between the three views by double-clicking the block. 

Also, for each block it is possible to see the attributes related to selected 
viewpoints/building-blocks as shown in Figure 5-45 and Figure 5-46. This is 
achieved by providing a mutator button for each block at top left hand side. 

 
 

 

Figure 5-43: Aiding user to add new blocks through 
dropdown 
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Figure 5-44: Three ways to view a block (i. Collapsed, ii. 
Partially-collapsed, and iii. Un-collapsed) 
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Figure 5-45: Viewpoints/building-blocks of a block can 
be enabled or disabled 
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Figure 5-46: Filtered view of SoS 
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Figure 5-47: Use of Type-Indicator Plug-in (compatible 
connections for cs4 are indicated by yellow colour) 

To provide an intuitive modeling environment, the supporting facility uses a 
readily available open source plug-in called Type-Indicator9. This plugin indicates 
all the blocks compatable (with yellow color) with current block while it is being 
dragged, as shown in Figure 5-47 (the block cs4 is currently being dragged). 

 
Requirements Management 
 
Requirements management is an important aspect of an SoS design, where 

traceability of requirements must be viewed/monitored. Requirements may be di-
vided based on the viewpoints and building-blocks: Architecture, Communication, 
Dependability, etc. Each block maintains the list of requirements it meets and each 
requirement block maintains the list of blocks which satisfy it; thus offering full 
traceability (Figure 5-48, Figure 5-49, and Figure 5-50). Blockly also supports 
adding comments to blocks to make the design clearer. 

 
 
 
 

                                                           
9 https://github.com/HendrikD/blockly-plugins/tree/master/type-indicator 
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Figure 5-48: Example of blocks related to requirements 
management  

 

 

Figure 5-49: Each block can satisfy a requirement (by 
providing the requirement ID it satisfies) 
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Figure 5-50: Traceability of requirements 

 
Constraints in the model 
 
Each block exports a list of variables in JavaScript which can be used to to de-

fine constraints. These variables are defined in the format: 
block.<relation_name>_<block_type> (For e.g. a CS block exports 
block.provides_service). Also, each block exports shortcut variables in the form 
block.m_<block_type> (e.g. for a CS block, block.m_service). Instead of “block” 
keyword, a shortcut variable “b“ may also be used. 

For multiple inputs, a dictionary variable in the form “d_<variable_name>” is 
also exported. This variable is used to access variables by using block name as a 
key (e.g. for an SoS, Using the variable block.d_cs[‘cs1’] the CS in the SoS hav-
ing name cs1 can be referred. Constraints make a model precise, the constraints 
provided by the tool uses JavaScript’s “eval” function to evaluate the constraints 
and change the color of block to black in colour if the constraint is not satisfied. 
The constraints are evaluated at each onchange event of block. Constraints rely on 
the variables exported by a block. Figure 5-51 shows an example use of con-
straints. 
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Figure 5-51: An example of a constraint where the mem-
ber variable m_valid is checked 

 
Constraints may also be used to detect causal loops which may lead to emer-

gence scenario in SoS (Figure 5-52). 
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Figure 5-52: Detecting emergence in model through 
constraints 

Model querying 
 
On large models it is difficult to visualize the entire SoS, and then the need for 

custom viewpoints arises. Blockly does not use lines to show relationship between 
blocks and uses collapsed views to hide the complexity of an SoS model. Model 
querying can be used search for blocks which satisfy a given condition (using a 
query). It may also be used to visualize a model in traditional view (i.e. showing 
blocks and its relationship with other blocks using lines). To query a given model, 
a user can right click on workspace and choose “show query diagram.  In the que-
ry diagram, user may write a filter function for querying the model. For example, 
return true; indicates that no filtering is required (i.e.: show all blocks for the 
model depicted in Figure 5-53); which results in the graph as shown in Figure 5-
54. Using the filter “return b.of_type == ‘RUMI’;” which indicates to highlight all 
blocks of type “RUMI”, this query returns the graph depicted in Figure 5-55 (note 
that b is a shortcut for variable block). Model querying helps in visualizing custom 
viewpoints of SoS and can be helpful in identifying issues in the SoS design. 
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Figure 5-53: Model querying large models (for query 
“return true;” i.e. show all blocks) 

 

 

Figure 5-54: Result of “return true;” query 
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Figure 5-55: Result of “return b.of_type == ‘RUMI’;” 
query (select all RUMIs) 

Adding a link to a block 
 
One way to design a SoS is by using links to existing blocks.  Creating links 

can help reuse an existing block; however, this is different from copy-pasting a 
block in blockly. Links are reference to the linked blocks. For example: CSs can 
be created on workspace and only links may be added to the SoS block, as shown 
in Figure 5-56. 
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Figure 5-56: Reusing an existing block (cs1) using links. 

 
Grouping for modular SoS design 
 
The supporting facility allows grouping of compatible blocks together to modu-

larize the design. For example, all CSs can be grouped together as shown in Figure 
5-57. The group block helps in organizing the model into meaningful groups.  
Also, when a block of a group blocks is refered, the group name is indicated to 
distinguish it from other blocks which may have similar names. 
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Figure 5-57: Similar blocks can be grouped together 

5.5.3 Simulation environment for SoS 

Behaviour 
 
Once a static model is defined, behaviours may be added to any block. To add a 

behavior, the user can right click on the interested block, and choose “Add behav-
ior”. The behavior represents the code to be executed during simulation, and can 
be written in Python programming language (as shown in Figure 5-58). The func-
tion names init, start, and run can be defined and are executed during initializa-
tion, start of the block, and during the course of simulation respectively. 
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Figure 5-58: Example of behaviour for a service 

The run function for a service block has a special meaning and is exposed as a 
TCP/IP server. All the behavior code written for all blocks are integrated in to a 
single file for code generation. 

 
XML and Code generation 
 
After the model is loaded, it can be exported to XML and code for simulation 

by clicking on the appropriate buttons on the top right hand side of the tool. 
Unique object names are generated for all blocks in a format: <block-
type>_<block-name>_<block-id>. 

 
Simulator components 
 
The simulator is a set of Python programs meant for executing the desired sce-

narios created by designer (the scenarios may also be represented using sequence-
diagrams). The simulator consists of the following main components: Object ini-
talizer, Registry, Sequence diagram, GUI, Runtime sequence diagram, log genera-
tor, and Clock. 

 
Object initializer 
 
The simulation initializes each object/block defined in the model using the 

block’s constructor. Single inputs are considered as strings/integers/object; where-
as multiple inputs are considered as array. If a value for single input is not provid-
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ed, its value is considered as None in Python; whereas for multiple inputs it is con-
sidered as an empty array []. 

 
Certain blocks such as CS/Wrapper/Roleplayer/CPS can have a member called 

“cardinality” (Figure 5-59). It indicates number of objects to be simulated. This is 
implemented by using copy.deepcopy () function of Python on the original object. 
Each instance is assigned a _instance_id (1 to N); where N is the cardinality speci-
fied in the model. Example: the below model creates an SoS called MySoS and 
has 200 CSs having name cs1. Each of the CSs will have _instance_id attribute 
from 1 to 200. 

 

 

Figure 5-59: Specifying the cardinality for CS – cs1 

Registry 
 
Registry is one of the main components of the simulator. It is a service that 

maintains the list of services offered by various CSs registered in a SoS. It is used 
by the CSs to search for a particular service. In the simulator, the registry is im-
plemented as a TCP/IP server, where CSs can add/remove/update their own ser-
vice information. Having a known common registry allows the possibility to run 
the simulation across several computer systems connected together. 

 
Sequence diagram 
 
Blockly blocks related to sequence diagrams helps to create non-ambiguous se-

quence diagrams, which can be readily converted to code. Simulator follows the 
exact sequence as defined in the sequence-diagram created by the user. Thus, the 
code generated from the sequence diagram (Figure 5-60) is executed right after the 
simulator has been started and initialized. A sequence diagram is added to model 
to simulate a scenario (Figure 5-60); the sequence diagram designed in supporting 
facility tool can also be visualized in classical sequence by right clicking the se-
quence diagram block and selecting “load sequence diagram”. This loads the se-
quence diagram in sequence diagram window, which can be viewed by right click-
ing workspace and selecting “Show sequence diagram”.  
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GUI 
 
The GUI of the simulator is the starting point of the simulator, and it lets the 

user select the systems to be run on the current machine and displays the progress 
of the simulation by logging activities performed by blocks (such as CS/RUMI, 
etc). 

 
Runtime Sequence diagrams 
 
Given the sequence diagram created by the user, the simulator starts executing 

the sequence diagram. While executing, each activity performed by RUIs are 
logged as sequence diagram in PlantUML format by adding timestamp to each ac-
tivity. This creates a runtime-sequence diagram (in result.seq file), which shows 
what actions have occurred with its timestamp. The runtime-sequence diagram al-
so shows the delay between each action. 

 
Log generator 
 
The logs generated by the simulator can be saved in a file and can be used to 

compute the metrics of interest. These metrics may indicate the quality of SoS by 
measuring performance/delays/failures etc. 

 
Clock 
 
The simulator uses the system clock of the machine on which the simulation is 

running. However, it is possible to setup an experimental setup in which, each CS 
runs on different machine using different clocks. These clocks could be synchro-
nized with a master clock e.g. the RMC developed in task D 4.4 [151].  Faulty 
scenarios (regarding time synchronization) are also possible to generate by pertur-
bating local clocks of each machine, or by removing master clock from the net-
work. 
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Figure 5-60: Sequence diagram in supporting facility tool 
using Blockly 

Simulator Code organization 
 
The code generation of the supporting facility tool generates a “.zip” file in the 

format “<model-name>.zip”, which contains the complete code for the simula-
tion. The simulator code is created for each model based on the specified sequence 
diagram. The generated code when extracted is organized as shown below (the 
model name is “sos-model”): 

 
 
 



196  

 

Figure 5-61: Simulator code directory structure 

 
The top directory name is in the format “SoS-Simulation-<Date-and-Time>”, 

which hosts two executable code files: “simulation-on-unix.sh” and “simulation-
on-windows.bat”; both are meant to start simulation on UNIX-based and Win-
dows-based machines respectively. The model-<Date-and-Time>.xml file consist 
of model in XML format. 

 
The “src” folder contains the simulator code, the constructor code for each 

blocks, and initialization code of the block objects created in the model. The entire 
code consists of the following files: 

 
1) amadeos.py 

This file contains all the constructors for each block defined in the SoS 
profile from the conceptual model. This file may be edited to add/refine addi-
tional generic classic functionalities. 

 
2) model_behaviour.py 

This file contains the behaviors for each block defined during the SoS 
modelling. The behaviours are associated with each instance of a block and 
not for each class. Thus the behaviour for one object will not be shared by 
other objects of the same class. 

 
3) sos.py 

This is the main simulator code which is started by “simulation-on-
windows.bat” or “simulation-on-unix.sh” file. This code sets a random seed 
for random number generation, creates the registry, sets global data for simu-
lation, and starts the user interface for simulation. 

Also, this file contains code that starts the simulation by starting all sys-
tems as a thread, runs the code related to the sequence diagram, and waits for 
all threads to join.  
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4) sos_gui.py 

This file contains the GUI code for selecting the systems to be started on 
the running machine. Also, this file contains code for showing the log of ac-
tivities performed by each CS. 

Running the Simulation 
 
After the code generation, a user can start the simulation by launching the file 

“simulation-on-unix.sh” or “simulation-on-windows.bat” (Figure 5-61). When the 
simulation starts, a GUI is shown that allows the user to select the list of systems 
to be started, and the registry IP address and port. An example GUI is shown in 
Figure 5-62. After selecting the list of systems to be started, the user can start sim-
ulation by clicking the “Start simulation” button. 

 
Simulation over a network of computers 
 
The SoS simulation may also be performed over a network of computers. This 

is achieved by maintaining a common registry machine; thus forming a distributed 
system running various AMADEOS based systems in each of the computer sys-
tems communicating through TCP/IP. 

 
This also allows the possibility of the simulator to interact with real legacy-

systems. Each machine can run a set of systems (CSs/Wrappers/Primemovers). 
When run, a separate thread is created for each selected system; and each system 
initializes itself and starts its RUIs in separate threads. 

 
Example run of an SoS simulation 
 
This section describes and the steps for running the simulation using an exam-

ple simulation of a SoS model designed in the supporting facility tool. An example 
SoS may be launched from the dropdown found on the top left hand side of the 
tool. 

5.5.4 Prerequisite to run simulation 

As simulator code is written in Python 2.7, the pre-requisite to run simulation is 
an installation of Python version 2.710. On Windows it is preferred to install Py-
thon at c:\Python27, which is the default option provided by the installer.  

 

                                                           
10 https://www.python.org/download/releases/2.7/ 

https://www.python.org/download/releases/2.7/
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5.5.5 Starting the simulator 

As mentioned earlier, the simulator code will be generated as a file in the form 
“<sos-name>”.zip, containing a src folder and two files: “simulation-on-
windows.bat” and “simulation-on-unix.sh”.  

The simulator starts when the user runs the script “simulation-on-windows.bat” 
or “simulation-on-unix.sh” depending on the operating system. 

For security reasons, on some versions of Windows it may be required to right 
click on the “simulation-on-windows.bat”, click to properties, and check “Un-
block” this file. 

When the simulator starts, it shows a GUI (Figure 5-62), where the user can 
specify the list of systems to be started on the current machine. After system selec-
tion, the user may click “Start simulator” to start the simulation. The user can see 
the log of activities appearing during the simulation on the GUI (Figure 5-62).  

 
 

 

Figure 5-62: Start-up GUI of simulator 



199 

After the simulation run, the user may close the GUI. The simulator generates 
the result of the current simulation, i.e., message passing between RUMIs and in-
teractions between RUPIs - as a run-time sequence diagram in a file called “re-
sult.seq”. The result is saved in the same directory where the simulation was run. 
This file can be viewed by a PlantUML viewer or a sequence diagram-viewer 
available in the supporting facility tool by right clicking on workspace and select-
ing “Show sequence diagram”. The sequence diagram frame can be extended to fit 
the page, and the user can use the “Browse button” in sequence diagram frame to 
load the “result.seq” file.  

5.6 Conclusion 

This chapter has introduced the architectural framework and supporting facility 
tools for AMADEOS based SoS.  
This chapter has showcased the features of the supporting facility tool, focusing 
on simplicity and intuitiveness in modeling and simulating an SoS. The supporting 
facility tool also demonstrates the possibility of: design, validation, querying, sim-
ulation of system of systems.  Case studies using the supporting facility tool will 
be presented in Chapter 8. 
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6.1 Introduction: Challenges for time-aware Cyber-Physical 
Systems-of-Systems 

6.1.1 On the Role of Time in Cyber-Physical Systems-of-Systems  

Since many years, it has been acknowledged that the role of time is fundamen-
tal to the design of distributed algorithms [182]. This is exacerbated in cyber-
physical distributed systems, and consequently in Systems-of-Systems, where it is 
sometimes impossible to say which one of two observed environmental events oc-
curred first. 

Computers, and consequently constituent systems (CSs), use at least a basic 
mechanism for local time keeping, in the form of incremental timers. In fact, each 
autonomous CS has its own oscillator that swings freely and is uncoordinated with 
respect to the oscillation of the oscillator in any other autonomous CS. These os-
cillators are often adequate to make local duration measurements, generate alarms 
by time-out, etc. However, there are reasons for resorting to clocks that give you 
an absolute notion of time. Clocks are the only way to achieve tightly synchro-
nized actions of an ensemble of nodes in a System-of-Systems [184]. 

For example, synchronized clocks make it possible to measure the duration of 
some action that starts in one node and ends in another node [183]. This is a com-
mon requirement in many applications, where the duration between events that 
occur in the environment of the different CSs of an SoS must be determined. It is 
not possible to measure the duration between events that occur in the physical en-

mailto:andrea.ceccarelli@unifi.it
mailto:francesco.brancati@resiltech.com
mailto:froemel@vmars.tuwien.ac.at
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vironment of different CSs if no global notion of time of adequate precision is 
shared by all CSs of the SoS. 

If a global timestamp is assigned to every significant event, then the duration 
between any two significant events occurring at any place within the whole SoS 
can be calculated easily. For example, we can consider the temporal validity of re-
al-time data. An observation of a dynamic entity, e.g., the state of traffic light, 
e.g., green, can only be used for control purposes within a validity interval that 
depends on the dynamics of the entity (the traffic light). If the observation of the 
environment is performed by a CS that is different from the CS that uses the ob-
servation, then, based on the timestamp of the observation, the user can determine 
if the given observation is still valid to use at a particular later instant [162], [163]. 
Given that such a global SoS time is available, this global time can be used to rad-
ically simplify the solution of many other temporal coordination problems in an 
SoS [162], [163]. 

As an SoS is sensitive to the progression of time, such global notion of time is 
required in order to [163], [167], amongst other: i) enable the interpretation of 
timestamps in the different CSs; ii) limit the validity of real-time control data; iii) 
synchronize input and output actions across nodes, with specific reference to 
stigmergic and message-based information exchange; iv) specify the temporal 
properties of interfaces; v) perform prompt error detection; vi) strengthen security 
protocols; vii) allocate resources conflict-free (e.g, in time-triggered communica-
tion, scheduling).  

A dependable global (physical) time is thus needed to establish the backbone 
of the temporal infrastructure of an SoS. Every CS in the SoS that is subject to 
physical time requirements should be able to measure time with an appropriate 
precision, and achieve a quality of time synchronization which is deemed suffi-
cient [185]. Such a dependable global (physical) time is a fundamental require-
ment for time-aware SoS, although we remark that it is well-known that it is im-
possible to precisely synchronize the clocks in a distributed computer system. A 
measurement error in the timestamps of events is unavoidable. This measurement 
error can lead to inconsistencies between the actual and recorded temporal order 
of events [162], [186]. 

6.1.2 Towards a dependable global time-base 

In an SoS, external clock synchronization is the preferred alternative to estab-
lish a global time, since the scope of an SoS is often ill defined and it is not possi-
ble to identify a priori all CSs that must be involved in the (internal) clock syn-
chronization. A CS that does not share the global time established by a subset of 
the CSs cannot interpret the timestamps that are produced by this subset. The pre-
ferred means of clock synchronization in an SoS is the external synchronization of 
the local clocks of the CSs with the standardized time signal distributed worldwide 
by satellite navigation systems, such as GPS, Galileo or GLONASS. Standalone 
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satellite navigation systems are based on receivers processing GNSS (Global Nav-
igation Satellite Systems) satellite signals. GNSS currently have two core constel-
lations: Global Positioning System (GPS) of the United States and the Global 
Navigation Satellite System (GLONASS) of the Russian Federation. Other similar 
systems are the upcoming European Galileo positioning system, the Japanese 
Quasi-Zenith Satellite System (QZSS), and the proposed COMPASS-Bediou Nav-
igation System of China. 

Reasons which may affect the availability and signal quality of the standalone 
satellite navigation systems and related algorithms, and consequently quality of 
clock synchronization, have been extensively discussed in literature e.g., a com-
prehensive overview can be found in [179], [180]. Special considerations related 
to the availability of GPS signal refer specifically to mobile CSs. GPS is not avail-
able in building or under roofing (e.g., in a wood), which is very likely to (tempo-
rarily) happen for mobile CSs. Such mobile CSs that operate on batteries are ener-
gy sensitive.  Since a GPS sensor is very expensive in terms of consumed energy 
these mobile applications can benefit by switching off the GPS whenever possible 
and as long as possible, still maintaining the required synchronization quality. 

Additionally, it should be considered that GPS may be subject to deliberate at-
tacks, which even when detected timely they still make the GPS signal unavailable 
for the whole duration of the attack [166]. Amongst these, we mention [181] i) 
jamming GNSS based vehicle tracking devices to prevent a supervisor’s 
knowledge of a driver’s movements, or avoiding road user charging; ii) rebroad-
casting (‘meaconing’) a GNSS signal maliciously, accidentally or to improve re-
ception but causing misreporting of a position; iii) spoofing GNSS signals to cre-
ate a controllable misreporting. 

In a report from the US Government Accountability Office (GAO) to the US 
Congress [164] on “GPS-Disruption—Efforts to Assess Risks to Critical Infra-
structure and Coordinate Agency Action Should be Enhanced” it is pointed out 
that many of the large infrastructure SoSs in the US are already using GPS time 
synchronization on a wide scale and a disruption of the GPS signals could have a 
catastrophic effect on the infrastructure.  In this report it is noted that a global no-
tion of time is required in nearly all infrastructure SoSs, such as telecommunica-
tion, transportation, energy, etc. and this essential requirement has been met by 
gradually using more and more often the time signals provided by GPS, not con-
sidering what consequences a disruption of the time distribution, either accidental 
or intentional, has on the overall availability and function of the infrastructure 
[167]. 

Even more recently, on 4 February 2016 the BBC reported that “several com-
panies were hit by hours of system warnings after 15 GPS satellites broadcast the 
wrong time, according to time-monitoring company Chronos“ [165]. This led to 
serious problems to many companies that resulted in money loss.  

These events just confirm existing warnings from different communities. For 
example, a Report from the UK Royal Academy of Engineering in 2011 [181] 
suggests that the U.K. may have become dangerously over-reliant on satellite-
navigation signals, and too many applications have little or no back-up were these 
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signals to go down. The report concludes that several concerns are bounded to 
GNSS. First, non-GNSS based back-ups are often absent, inadequately exercised 
or inadequately maintained”. Second, that the jammers are easily available and 
that most jammers are able to block GPS, GLONASS and GALILEO. Third, a full 
picture of the dependencies on GPS and similar systems is missing. 

Starting from the above concern, we can conclude that we should not entirely 
rely on satellite navigation systems to build a dependable global time base in 
time-aware SoS. Following this observation, this Chapter presents the design and 
development of a resilient fail-silent master clock based on satellite-based time 
synchronization (e.g., GPS or Galileo signals), to provide a dependable global 
time base for cyber-physical Systems-of-Systems. Such Resilient Master Clock 
(RMC) is intended to feature low power consumption, low weight and low cost. 
The RMC should be built with hardware Off-the-Shelf (OTS), as for example 
COTS MEMS sensors, and whenever possible software OTS.  

The RMC includes an independent oscillator and GPS devices complemented 
by acceptance tests. In fact, software clock control techniques are devised in order 
to: 

 
1. Provide a self-estimation of the quality of clock synchronization. This is 

achieved via the Reliable and Self-Aware Clock (R&SAClock), which acts 
as an oracle of the quality of clock synchronization. R&SAClock keeps 
nodes of a network aware about the quality of synchronization: it monitors 
the synchronization level of the local clock with respect to a global time ref-
erence (like the Temps Atomique International, TAI). 

2. Extend the holdover duration of the clock by compensation of local clock 
deviations, especially in case of absence of the GPS signals. In fact, clock 
(crystal oscillators) deviations may be caused by physical environmental var-
iations, like temperature, pressure, humidity variations, voltage. Correction 
techniques based on COTS sensors are introduced to compensate local clock 
deviations and avoid unsynchronized clocks in SoSs in the absence of GPS 
signals. 

 
When the satellite-based time synchronization signal fails (or it is corrupted by 

a security incident), for a certain amount of time, the RMC is able to maintain its 
clock close to the global time within a required accuracy until the satellites signal 
becomes available again. 

The rest of the section is organized as follows. Section 6.2 presents the archi-
tecture design of the Resilient Master Clock. The successive Section 6.3 and Sec-
tion 6.4 explore the main technical solutions that are included in the Resilient 
Master Clock, that are respectively intended to discipline the clock when the GPS 
signal is unavailable, and to provide a self-estimation on synchronization uncer-
tainty. Section 6.5 presents conclusions. 
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6.2 Resilient Master Clock (RMC) Architecture 

This section discusses the architecture of the RMC. The presentation of the ar-
chitecture is generic i.e., it is not bound to a specific board or pieces of hardware. 
For example, in Section 6.3 and Section 6.4, two different instantiations of (part 
of) the RMC on two different boards will be described.  

The architecture of the RMC is represented in Figure 6-63, and described be-
low. In Figure 6-63, the components in light grey are required hardware and soft-
ware components that should be available for the selected OTS board. Dark grey 
components identify instead the components that have been devised and devel-
oped when building the Resilient Master Clock. 

The architecture of the RMC is divided in three layers: the board (or Hardware 
layer), the Operating System (or OS layer) and the Middleware. Each layer con-
sists of the different constituent blocks which are herewith described. 

 

 

Figure 6-63: Resilient Master Clock architecture. 

 
Board layer. The building blocks of this layer are hardware components. These 

are: 
 A GPS module for receiving time messages by the GPS satellite constel-

lation. The messages are then provided to any enquiring hardware or 
software along with a one-pulse-per-second (1PPS) signal. 

 Sensors. Sensors for acquiring information about the environment. Ex-
amples are temperature and pressure sensors. 

 Comm. This block refers to the communication interface. For example, an 
Ethernet Network Interface Card (NIC) can connect the RMC to a net-
work in which CSs slaves wait for time synchronization packets from the 
RMC, which acts as a master clock node. 

Middleware

OS

Board
Comm

CPU

SW Clock

Master PTP Synch

R&SAclock

CDC

Checker

GPS Sensors
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 CPU, Memory and the physical oscillator. These are standard compo-
nents of any hardware board. The physical clock is particularly relevant 
in our context. 

 
OS Layer. This layer includes a local software clock (SW Clock) which is usu-

ally created by Operating Systems starting from the hardware clock and that pro-
vides the timestamps to the services executing on the board. 

 
Middleware layer. This layer includes OTS SW components (Synch, master 

PTP) and SW components that are specific for the RMC. In particular, these are 
the following.  

Synch. The Network Time Protocol (NTP [178]) is a networking protocol for 
clock synchronization between computer systems over packet-switched, variable-
latency data networks. NTP is intended to synchronize all participating computers 
to within a few milliseconds of Coordinated Universal Time (UTC). Since RMC is 
based on TAI, it should be remarked that conversion UTC-TAI is trivial [187]. A 
synchronization module (Synch) based on the Network Time Protocol (NTP) uses 
the GPS time signals to discipline the local clock. 

MasterPTP. The Precision Time Protocol (PTP, [168]) is a protocol used to 
synchronize clocks throughout a computer network. On a local area network, it 
achieves clock accuracy in the sub-microsecond range, making it suitable for 
measurement and control systems. PTP is defined in the IEEE 1588-
2008 standard. A master Precision Time Protocol (PTP) module is available on 
the RMC, and it allows broadcasting a time synchronization packet according to 
the protocol IEEE 1588 PTP to the nodes of the subnetwork to which the board is 
connected through Comm.  

R&SAClock. The R&SAclock uses the offset and drift obtained from the syn-
chronization module to estimate the uncertainty of the time provided by the local 
clock over time. 

Clock Drift Compensation (CDC). The CDC module generate a clock-drift 
compensated Pulse Per Second (PPS) signal when the GPS signal is unavailable. 
The compensation mechanism provided by the CDC module is based on: i) the 
values measured by the dedicated sensors (e.g., temperature), and ii) a-priori 
knowledge of the frequency deviation caused by environmental changes on the 
onboard crystal oscillator (e.g., temperature variations). 

Checker. A checker module checks the uncertainty associated to the time of 
the local clock provided by the R&SAclock; consequently, it decides if the RMC 
can be considered a reliable time source and allows or blocks the PTP synchroni-
zation. For example, it can be implemented as a process which periodically checks 
the quality of the local time provided by the R&SAClock. On the other hand, 
when the quality of the local time is outside acceptable thresholds, the PTP syn-
chronization beans must be stopped because the RMC cannot be considered a time 
reference.  
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6.3 The Clock Drift Compensation Module 

This section discusses the Clock Drift Compensation (CDC) module that pro-
vides a periodic Pulse Per Second (PPS) time signal to the Synch module (cf. Fig-
ure 6-63). During normal operation, the CDC module forwards the high quality, 
externally provided time signal (e.g., generated by a GPS receiver). In case the ex-
ternally provided time signal becomes unavailable, the CDC module switches 
seamlessly without interruption of the output PPS signal to holdover mode until 
the external time signal becomes available again. During holdover mode the CDC 
module internally generates the output PPS time signal for the Sync module from 
a local clock based on a common (quartz) crystal oscillator. This local clock is 
drift compensated with respect to the – now in holdover mode unavailable – ex-
ternal time signal. The drift compensation improves the precision of the internally 
generated PPS time signal and consequently allows for a prolonged holdover dura-
tion compared to a crystal oscillator based clock that is not clock drift compen-
sated. 

In the following subsections we detail our clock drift compensation method 
and present a proof-of-concept prototype implementation which we used for cali-
brating and evaluating the CDC module. 

6.3.1 Compensating the Drift of Clocks based on Crystal 
Oscillators 

Clocks in computer systems are usually realized by a digital counter register 
and a crystal oscillator whereas each oscillation generates a tick event that incre-
ments the counter register. The oscillator frequency output slightly deviates from 
its designed nominal frequency output, because of (1) mechanical imperfections 
introduced during manufacturing of the oscillator, (2) dynamic deviations caused 
by aging of the oscillator, and (3) environmental conditions (e.g., temperature, ac-
celeration, humidity) acting on the oscillator. The static and dynamic deviations 
from the nominal frequency are the cause for clock drift: Any two clocks of the 
same design, even when perfectly started at the same instant, will eventually drift 
apart as time progresses. 

For establishing a global time in Cyber-Physical Systems-of-Systems 
(CPSoSs), we need to periodically resynchronize the local clocks of the Constitu-
ent Systems (CSs) by external clock synchronization (e.g., synchronization with 
the GPS time source). The resynchronization is necessary to ensure a bounded off-
set, also called precision, among the clocks of the CSs. A critical parameter of 
clock synchronization is the resynchronization period which needs to be short 
enough to keep all clocks within the required precision. By actively compensating 
the clock drift, the duration between two resynchronization instants can be in-
creased. This is of particular interest if the source for external synchronization is 
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unavailable (e.g., losing the GPS signal when driving into a tunnel, turning the 
GPS receiver off to save power), while the synchronization precision of the clocks 
of the CSs has to be maintained until the external source becomes available again. 
 
Drift Compensation Method. In order to compensate clock drift, the effects of 
internal and external sources of oscillator frequency deviations must be negated. 
This requires to measure these effects or know a-priori about them, but also to ap-
ply corrective actions on the clock. There are two options to apply corrections: (1) 
control the enclosing environment of the oscillator (e.g., oven-controlled or volt-
age-controlled oscillators) such that the output frequency is corrected, or (2) to pe-
riodically correct the counter register by adding each correction period a correc-
tion value that compensates for the frequency deviations. 

The first approach requires, additionally to the measurement of the enclosing 
environment, possibly expensive and power-demanding actuation hardware (e.g., 
heat source), insulation, or is in case of some effects (e.g., acceleration) infeasible. 
However, for some effects (for example, temperature, humidity, pressure, aging) 
this approach is technically more simple, as it only requires to steer the oscillator 
frequency close to the external clock source and then maintain the same environ-
mental conditions during holdover mode. 

The clock drift compensation of the CDC module is based on the second cor-
rection approach which also depends on measuring the oscillator environment, but 
– besides that – can be realized purely in software. This software implements a 
compensation model which predicts for each correction period an accurate correc-
tion value in clock ticks. To achieve a high level of accuracy, the clock drift com-
pensation model fuses several sources of information (a-priori knowledge, sensor 
observations). 

Important parameters of our drift compensation method – besides the drift 
compensation model – are the tick rate of the external time signal which should be 
forwarded as the output tick by the CDC module during normal operation and 
generated when absent during holdover mode, the correction period, and the inter-
nal tick rate or oscillator frequency. The output tick rate determines the counter 
register size, i.e., this register needs to be able to count the number of internal 
ticks that correspond to one output tick. The output tick rate also determines the 
correction period, because corrections predicted by the compensation model 
should be applied for each output tick to avoid imprecision effects. Finally, in or-
der to have only a small discretization error, the clock compensation method as-
sumes that the output tick rate (e.g., 1 Hz) is much lower than the internal tick rate 
(e.g., at least a few kHz or MHz). 
 
Compensation Model. The clock drift compensation model is based on (1) a-
priori knowledge about the oscillator (e.g., manufacturing defects, aging behavior, 
known effects of environmental conditions), and (2) on the currently observed ex-
ternal time signal and the environmental conditions. Environmental conditions that 
can be observed by sensors are for example: temperature, barometric pressure, ac-
celeration, air humidity. 
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Explicitly defining a compensation model would be a tremendous task, be-
cause it requires precise knowledge about all relevant physical properties of the 
crystal oscillator, their interrelationships, and the involved sensors which – simi-
larly to the oscillator – also slightly deviate from their designed characteristics 
(measurement errors that depend on currently prevailing environmental condi-
tions). Consequently, we focus on defining and parameterizing the compensation 
model by using classical machine learning techniques where, for example, regres-
sion (curve fitting) for independent input variables, or artificial neural networks 
for input variables with unknown dependency relationships are available. The se-
lection of a concrete machine learning technique depends on the available sensors, 
available computational resources and the required compensation quality. Regard-
less of the technique, training of the compensation model is necessary by taking a 
set of input instances (e.g., an observation of the environmental conditions) and 
adjusting the model parameters such that it maps the input data to a known correc-
tion value for the counter register. The trained model is then available during 
holdover mode for predicting correction values for new input data where the cor-
rection value wasn’t known before. 

For model training there are two methods that should be applied in combina-
tion: 

• Offline-Learning/Calibration: After manufacturing the CDC module, includ-
ing its oscillator and the sensors, obtains training data by observing (using its 
own sensors) the controlled environmental conditions. Under these controlled 
environmental conditions, the oscillator frequency deviation is measured by 
external equipment (e.g., an oscilloscope that measures the difference of the 
external time signal with respect to the internally generated output tick during 
holdover). Training data is collected by doing various sweeps of the controlled 
environmental conditions through the range of expected environmental condi-
tions and recording the sensor observations together with the necessary correc-
tion value. Offline learning initializes the compensation model with a-priori 
knowledge. 

• Online-Learning/Adaptation: During operation of the CDC module the com-
pensation model can be adjusted by constantly retraining it, when the external 
time signal is available. Online-learning compensates for aging effects of the 
oscillator and involved sensors. Also online-learning possibly allows for limit-
ing the necessary offline-learning to a smaller sample size of a production se-
ries where only small model deviations are expected among individual CDC 
modules. 
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6.3.2 Proof-of-Concept Prototype 

The proof-of-concept prototype is based on an implementation of the CDC 
module on the SmartAP 2.011, a small embedded system originally intended for 
auto-piloting small aircrafts. It consists of a STM32 ARM Cortex M4 microcon-
troller integrated with two external quartz oscillators (84 MHz, and 32.768 KHz), 
and sensors to measure acceleration (Invensense MPU-6050 / MPU-9150), baro-
metric pressure (MS5611-01BA03). We customized the board by adding sensors 
to additionally measure temperature and air humidity (Sensirion SHT75). As an 
external time signal we used an UBLOX LEA-6H GPS receiver. For wirelessly 
communicating with the board we added a Bluetooth module (Microchip RN42). 

The microcontroller implements a data recording functionality to obtain the 
measured training data, and the drift compensation method including a simple var-
iant of a compensation model. In this prototype we did not implement online-
learning, because the effects of online-learning are minor, if the compensation 
model is well calibrated and the CDC module prototype has not been left several 
months for aging between calibration and evaluation. 

 
Compensation Model Implementation. Figure 6-64 illustrates a simple com-

pensation model based on look-up tables where averaged training data can be de-
ployed directly. For each environmental condition a look-up table exists from 
which the contribution of the measured parameter to the clock drift is obtained. 
Temperature is codependent with all other environmental conditions. Consequent-
ly, the lookup tables for pressure, humidity, and acceleration contain temperature 
dependent correction values. To estimate the clock drift for the current correction 
period, the individual contributions are summed up and added to the constant drift 
value of the crystal oscillator. 

 

                                                           
11 http://sky-drones.com/autopilots/9-smartap-autopilot-20.html 
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Figure 6-64: Clock drift compensation model based on 
look-up tables. 

 
Training of the Compensation Model. The compensation model training data 

is obtained by placing the CDC module with its sensors in an experimental cham-
ber within which the environmental conditions can be controlled. For each correc-
tion period an oscilloscope records the deviation of the internally generated output 
time signal from the external time signal (GPS receiver).  

Figure 6-65 shows our prototype of such an experimental chamber. It consists 
of a thermally insulated box with a Peltier element for heating and cooling, an air 
pump to produce an over or under pressure inside, and a humidifier. To achieve a 
constant acceleration force on the oscillator crystal, the board is mounted on a 
plate that can be rotated. Acceleration forces can be applied on the oscillator in X 
and Y directions, depending on how the board is mounted on the rotating plate. 

By using this box, one environmental condition after the other is varied from 
its minimum value up to the maximum, and vice versa. For each set point the 
number of oscillations of the crystal oscillator, which drives the clock, is counted 
several times. The reading and resetting of this counter is triggered every second 
by the PPS time pulse originating from the GPS receiver. 
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Figure 6-65: Experimental chamber for obtaining train-
ing data for the compensation model. On the right the 

prototype of the CDC module has been highlighted with a 
red circle and is mounted on the rotating plate. 

 
From the recorded training data, the constant drift at certain environmental 

conditions – i.e., the zero conditions C0 – is obtained. C0 can be selected arbitrari-
ly. Furthermore, for each condition that can be observed a table entry (see lookup-
based compensation model in the previous section) is derived by averaging over 
the training data that have been recorded for the same environmental conditions. 
These table entries indicate the additional drift if the conditions deviate from the 
zero conditions C0. 

6.3.3 Evaluation  

The evaluation of the CDC module is conducted using the abovementioned 
experimental chamber. In particular, only results for temperature and acceleration 
in X direction for the 84 MHz quartz oscillator are shown here, while information 
also on other environmental conditions (Y-acceleration, air humidity, barometric 
pressure) and the second oscillator can be found in [176]. 

 
Obtaining Training Data. The investigated oscillator has a measured variance 

(i.e., variations in the number of oscillations when environmental conditions are 
stable) around its nominal frequency of approximately 0.02381 ppm. In the fol-
lowing we present frequency deviations of the oscillator when doing a temperature 
sweep from 0° C to 50° Celsius and an acceleration sweep from 0 g to 5 g (g is the 
weight per mass unit). 

Figure 6-66 depicts the frequency deviation over the temperature range. If, for 
instance, the frequency deviation is about 2.5 ppm (e.g., at 15° Celsius), it means 
that in each second a clock driven by this oscillator deviates 2.5 µs from a clock 
with perfect accuracy. Without clock synchronization, this deviation sums up to 9 
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ms/hour, or 0.216 s/day. In Figure 6-66, a positive value of the deviation denotes 
an increase in the number of oscillations compared to the nominal value. 

 

 

Figure 6-66: Frequency deviation with respect to temper-
ature. 

 
Figure 6-67 shows the frequency deviation of the oscillator concerning varia-

tions in the acceleration force and temperature. 
 

 

Figure 6-67: Frequency deviation with respect to accel-
eration in X-axis at different temperatures. 

 
The results show that additionally to the significant correlation between the 

temperature and the frequency deviation, the oscillator exhibited deviations con-
cerning changes in acceleration (and pressure and humidity, see [176]). All these 
deviations have been higher than the variance of the oscillator at stable environ-
mental conditions. 
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Evaluation of Compensation Model. The evaluation of the compensation 

model carried out by recording the compensation performance over a set of test 
sequences where the controllable environmental conditions are varied. Each of the 
test sequences takes 240 minutes. Figure 6-68 and Figure 6-69 show three of such 
sequences for the environmental conditions temperature and acceleration in X di-
rection. 

 

Figure 6-68: Three test sequences of temperature set 
points. 

 

Figure 6-69: Three test sequences of X-acceleration set 
points. 

Figure 6-70 shows the compensation performance of the CDC module in hold-
over mode only for the first test sequence (1. Sequence), because all other test se-
quences gave similar results. In Figure 6-70 we plotted the results for two different 
compensation models: basic compensation (only constant drift correction), and 
temperature, acceleration and pressure (T&A&P). Also for comparison reasons, 
the deviation is depicted, when no compensation mechanism is applied. Different 
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effects during manufacturing or aging of the oscillator crystal lead to a permanent 
deviation from the nominal frequency (here it is faster than the reference), which 
is about 60 ppm. 

Clearly, basic compensation has the largest corrective effect and improved the 
mean drift rate of the oscillator from an order of magnitude of about 10-5 to ap-
proximately 10-6. The compensation model that regarded more of the investigated 
environmental conditions (T&A&P) gave a better result, as the oscillator’s drift 
rate is now in the 10-7 order of magnitude. 

Even more improved results should be easily achievable when using more so-
phisticated compensation models, sensors of better quality, and implementing 
online-learning for self-fine-tuning. Consequently, this evaluation gives strong 
support to the benefits of our proposed clock drift compensation method. 
 

 

Figure 6-70: Frequency deviation under different com-
pensation models. 

6.3.4 Summary of Main Findings on the Clock Drift Compensation 
Module 

The proof-of-concept prototype confirms that the compensation of frequency 
deviations of crystal oscillators by passive observation of the surrounding envi-
ronmental conditions, and using a trained compensation model leads to a signifi-
cant decrease of clock drift.  The different environmental conditions indeed have 
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an effect on the stability of the oscillator and some of these effects can be reduced 
when these conditions are known. Available protocols (e.g., the Network Time 
Protocol – NTP) are able to compensate constant drifts of the local clock of a 
computer system, if the environmental conditions are not changed after the refer-
ence clock is disconnected. However, many CPSoSs operate in environments, 
within which it is infeasible – or at least only with a considerable effort (e.g., by 
constantly heating the crystal oscillator) – to keep these conditions stable. In con-
trast, sensors to determine the environmental conditions are often already availa-
ble in those systems, or can be installed at relatively low cost.  

While the presented improvement by temperature, acceleration and pressure 
compensation are already promising, further experiments have to be performed 
with more sophisticated compensation models and a more advanced experimental 
equipment that allows higher ranges of pressure, the up- and down variation of 
humidity, as well as experiments under other environmental conditions (e.g., vi-
bration, radiation, electromagnetic fields). 

6.4 Reliable and Self-aware Clock (R&SAClock) module 

The Reliable and Self Aware Clock (R&SAClock, [173]) is a software compo-
nent that provides IEEE 1588 compliant techniques for the analysis and improve-
ment of the synchronization quality among CSs interacting in SoS. The 
R&SAClock exploits statistical information in order to provide information about 
uncertainty of the current time view. 

Generally, in several contexts such as industrial automation, telecommunication 
or energy distribution, SoSs require an accurate synchronization of their CSs in 
order to assure the adequate Quality of Service (QoS). The statistical information 
collected by R&SAClock to estimate synchronization uncertainty [169] is used as 
feedback about quality of synchronization. The CSs equipped with R&SAClock 
are continuously updated about the current synchronization performance. 

6.4.1 General Concepts on R&SAClock 

A CS uses R&SAClock to acquire both the time value and synchronization un-
certainty associated with the time value. 

For clarity, we report basic notions on time and clocks that are used in the rest 
of this section. Noteworthy, the terminology is consistent with the terms defined in 
Chapter 1. Figure 6-71 below is introduced to better clarify relevant aspects.  

The global time is an abstraction of physical time in a distributed computer sys-
tem; it is the unique time view shared by the CSs. The reference clock is a work-
ing hypothesis for measuring the instant of occurrence of an event of interest: it is 
a clock that always holds the global time. We can say that the reference node is 
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the CS that owns the reference clock. Also, given a local clock c and any time in-
stant t, we define c(t) as the time value read by local clock c at time t. 

The behavior of a local clock c is characterized by the quantities offset, accura-
cy and drift. The offset of two events denotes the duration between two events and 
the position of the second event with respect to the first event on the timeline; the 
offset Θc(t) = t - c(t) is the actual distance of local clock c of the CS node n from 
the global time at time. This distance may vary through time.  

Accuracy Ac of clock c denotes the maximum offset of a given clock from the 
external time reference, measured by the reference clock. An upper bound of the 
offset adopted in the definition of system requirements and therefore targeted by 
clock synchronization mechanisms. 

The precision π of an ensemble of synchronized clocks denotes the maximum 
offset of (distance) respective ticks of the global time of any two clocks of the 
considered clock ensemble. 

The drift ρc(t) of a physical clock describes the frequency ratio between the 
physical clock and the reference clock i.e., the rate of deviation of a local clock c 
at time t from global time [171].  

 

 

Figure 6-71: Basic notions on time and clocks. 

 
Synchronization uncertainty Uc(t) is defined as an adaptive and conservative 

evaluation of the offset Θc(t) at any time t; uncertainty is such that Ac ≥ Uc(t) ≥ 
|Θc(t)| ≥ 0  [169]. Hence, accuracy cA  is an upper bound of uncertainty Uc(t) and 
consequently of the absolute value of the offset Θc(t). 
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When a CS asks the current time to R&SAClock, the latter provides an en-
riched time value useful for time synchronization. The enriched time value is 
composed of a set of values: likelyTime, minTime, maxTime and FLAG. Like-
lyTime is the time value computed reading the local clock. minTime and maxTime 
represent left and right synchronization uncertainty margins with respect to like-
lyTime. They are based on synchronization uncertainty provided by the internal 
mechanisms of R&SAClock. Finally, the FLAG takes the value 1 if requirements 
on uncertainty are satisfied, 0 otherwise. Details on R&SAClock and its imple-
mentation can be found in [169], [172]. 

It is evident that the main core of R&SAClock is the uncertainty evaluation al-
gorithm that equips R&SAClock with the ability to compute the uncertainty. Such 
an algorithm relies on the Statistical Predictor and Safety Margin (SPS) algorithm. 

Each CS that uses the R&SAClock getTime method for getting synchronization 
information and each CS has the two main expectations: i) a request for the time 
value should be satisfied quickly, and ii) the enriched time value should include 
the correct real time. These are formally expressed by the two requirements in Ta-
ble 6-3. 
 

Req. ID R&SAClock Requirement Description 

REQ1 

The service response time provided by R&SAClock is 
bounded: there exists a maximum reply time ∆RT from a get-
Time request made by a CS user to the delivery of the enriched 
time value (the probability that the getTime is not provided with-
in ∆RT is negligible). 

REQ2 

For any minTime and maxTime in any enriched time value 
generated at time t, it must be minTime ≤ t ≤ maxTime with a 
coverage ∆CV (by coverage we mean the probability that this 
equation is true). In other words, given likelyTime = c(t), the true 
time t must be guaranteed within the interval [minTime, max-
Time] with a coverage ∆CV. 

 

Table 6-3: Requirements for R&SAClock 

6.4.2 The Statistical Predictor and Safety Margin (SPS) 

In the following the SPS algorithm is briefly described for a local software 
clock c that is disciplined by an external clock synchronization mechanism. SPS 
computes the uncertainty at a time t with a coverage, intended as the probability 
that Ac ≥ Uc(t) ≥ |Θc(t)| ≥ 0 holds. The computed uncertainty is composed by three 
quantities: i) the estimated offset, ii) the output of a predictor function, P and iii) 
the output of a safety margin function, SM. The computation of synchronization 
uncertainty requires a right uncertainty Ur(t) and a left uncertainty Ul(t): conse-
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quently, SPS has a right predictor with a right safety margin for right uncertainty, 
and a left predictor with a left safety margin for left uncertainty. The output of the 
SPS at t ≥ t0 is constituted by the two values: 

𝑈𝑈𝑟𝑟(𝑡𝑡)=max(0, Θ�(𝑡𝑡0))+𝑃𝑃𝑟𝑟(𝑡𝑡)+𝑆𝑆𝑀𝑀𝑟𝑟(𝑡𝑡0)    (1) 
𝑈𝑈𝑙𝑙(𝑡𝑡)=min(0, Θ�(𝑡𝑡0))+𝑃𝑃𝑙𝑙(𝑡𝑡)+𝑆𝑆𝑀𝑀𝑙𝑙(𝑡𝑡0)    (2) 

The estimated offset Θ�(𝑡𝑡0) is computed by the synchronization mechanism and 
can contain errors. If the estimated offset is positive, it influences the computation 
of an upper bound on the offset itself and consequently is considered in (1). If it is 
negative, it is ignored. A symmetric reasoning holds for (2). 

The predictor functions, 𝑃𝑃𝑟𝑟(𝑡𝑡) and 𝑃𝑃𝑙𝑙(𝑡𝑡), predict the behavior of the oscillator 
and continuously provide bounds (lower and upper) which constitute a safe (pes-
simistic) estimation of the oscillator drift and consequently a bound on the offset. 
The oscillator drift is modelled with the random walk frequency noise model, one 
of the five canonical models used to model oscillators (the power-law models 
[175]), that we considered as appropriate and used. Obviously the parameters of 
this random walk are unknown and depend on the specific oscillator used. They 
are computed resorting to the observation of the last 𝑚𝑚 samples of the drift (where 
m smaller or equal to the set-up parameter M), and using a safe bound on the pop-
ulation variance of the estimated drift values. The coverage of this safe bound de-
pends on the set-up probabilities pds and pdv defined in Table 6-4 together other 
main quantities involved in the SPS algorithm. 

 
Symbol Definition 

t0 time in which the most recent synchronization is performed 
Θ�(𝑡𝑡0) estimated offset at time t0 
ρ�(𝑡𝑡0) estimated drift at time t0 

M, m maximum and current number of (most recent) samples of the 
estimated drift that the UEA collects (0 < m ≤ M) 

N, n maximum and current number of (most recent) samples of the 
estimated offset that the UEA collects (0 < n ≤ N) 

pds 
probability that the population variance of the estimated drift is 
smaller than a safe bound on such variance 

pdv 
a safe bound of the drift variation since t0 is computed with 
probability pdv 

pds ◦ pdv 
the joint probability of these two values represents the cover-
age of the prediction function 

pos 
probability that the population variance of the estimated offset 
is smaller than a safe bound on the variance 

pov a safe bound of the offset at t0 is computed with probability pov 

pos ◦ pov 
the joint probability of these two values represents the cover-
age of the safety margin function 

Table 6-4: SPS parameters 
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The safety margin functions 𝑆𝑆𝑀𝑀𝑟𝑟(𝑡𝑡0) and 𝑆𝑆𝑀𝑀𝑙𝑙(𝑡𝑡0) aim at compensating possi-

ble errors in the prediction or in the offset estimation. The safety margin function 
is computed starting from the collection of the last 𝑛𝑛 samples of the estimated off-
set (where n is smaller or equal to the set-up parameter N). A safe bound to the 
population variance of the estimated offset is computed. The coverage of this safe 
bound depends on the set-up probabilities pos and pov (see Table 6-4). 

The parameter t0 is the time in which the most recent synchronization is per-
formed. At time t0 the synchronization mechanism computes the estimated offset 
Θ�(𝑡𝑡0) and possibly the estimated drift 𝜌𝜌�(𝑡𝑡0) (if not provided by the mechanism, it 
can be easily computed by R&SAClock itself). 

6.4.3 Proof-of-concept and exemplary runs 

The R&SAClock has been implemented in the Beagle Bone [177] board with 
Debian OS as described in the AMADEOS deliverable D4.4 [176]. The 
R&SAClock uses GPS for clock synchronization; it acquires data on the estimated 
offset and drift from the Network Time Protocol (NTP) [170] component. 

When the synchronization uncertainty exceeds a given threshold, the Checker 
module is notified by reading the FLAG field of the enriched time value. The 
communication channel between the Checker and the R&SAClock is socket-
based. 

In the following we show an exemplary run with the R&SAClock executing on 
the Beagle Bone board proof-of-concept. We acknowledge that an extensive as-
sessment activity is required [174] i) to give evidence that the defined software 
executing on the proof-of-concepts satisfies the identified requirements, and ii) to 
opportunely tune the R&SAClock parameters (Table II). Still, we present this ex-
emplary run because it explains intuitively the behavior of R&SAClock.  

In the considered run, reported in  
 
Figure 6-72, the x-axis (in seconds) corresponds to the likelyTime collected 

reading the local clock. The maxTime and minTime computed by R&SAClock are 
respectively the two lines above and below the x-axis. In fact, the y-axis (in milli-
seconds) shows the maxTime and minTime with respect to likelyTime i.e., max-
Time-likelyTime and likelyTime - minTime. The FLAG value is not shown in this 
figure. 

In the present run, the R&SAClock was already running for 30000 seconds (see 
x-axis).  As long as the connection with the GPS signal is stable, NTP reliably dis-
ciplines the local clock: an accurate estimation of offset is provided, and synchro-
nization uncertainty is a small interval (in the order of few microseconds or less). 
As it can be shown in the time interval between second 30000 and 30600, the syn-
chronization uncertainty is slightly reduced through time. In fact, the R&SAClock 
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“studies” the past behavior of the local clock, understand that it is overall stable 
and trustable, and reduces synchronization uncertainty. 

Instead, at approximately second 30700, an instability in the local clock and 
NTP is detected, most likely due to the temporary unavailability of the GPS signal 
(signal loss). Synchronization uncertainty is increased, because no fresh infor-
mation on the clock behavior w.r.t. the reference time is provided.  

At approximately second 31900, the synchronization uncertainty steadily in-
creases through time. In fact, GPS signal is lost and no fresh information from the 
time source is provided. There are no guarantees that the clock is disciplined cor-
rectly.  

When the GPS signal is newly available (approximately at second 33200), a 
new accurate estimation of the offset is provided. Consequently, the synchroniza-
tion uncertainty is reduced again. However, from now on, the synchronization 
with the GPS is unstable: there are only few, sparse synchronizations. This deter-
mines the behavior of the R&SAClock, which cannot trust the local clock and 
consequently the synchronization uncertainty grows. 

 

 
 

Figure 6-72: Exemplary run of R&SAClock on the proof-of-concept. 

6.4.4 Summary of main findings on R&SAClock 

The R&SAClock was initially proposed in [169], [172], [173] to monitor the 
software clock in distributed system. In such works, R&SAClock was implement-
ed and exercised on a fixed node, and with the intention of supporting only the 
node itself.  

Instead, in the RMC, the R&SAClock is intended to operate as a failure detec-
tor for a Master clock: in other words, the Checker module of the RMC can read 
the FLAG value of the R&SAClock, and decide if the RMC can act as a master 
clock or not.  
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In addition, we implemented the R&SAClock on a light board which has small 
requirements for power consumption. This improves the range of applicability of 
the R&SAClock w.r.t. the previous environments described in [173], which are 
distributed servers. The experiments, although still preliminary, confirm that the 
R&SAClock behaves as expected also confirming, in a different environment, the 
results shown in [173]. 

6.5 Conclusions  

This Chapter discussed the role of time in Systems-of-Systems. Building on the 
terms, definition and knowledge defined in Chapter 1, this Chapter identified mo-
tivation, with examples, for the prominent role of time and clocks in time-aware 
Systems-of-Systems. Further, the Chapter discussed the challenges of resilient 
time keeping and it presents the Resilient Master Clock (RMC), a hardware-
software solution that acts as an accurate, fail-silent global time base which is ex-
ternally synchronized to a satellite-based time source.  

The design of the RMC is presented, its main algorithm illustrated including re-
sults from the execution on two different prototypes. Although significant work is 
still needed to consolidate results, the RMC appears a promising approach to pro-
vide a low-cost, low-power consumption solution for resilient time-keeping and 
resilient master clock in Systems-of-Systems. 
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7.1 Introduction 

SoS dynamicity refers to short-term changes in an SoS, which occur in response to 
changing environmental or operational parameters of the CSs. These changes may 
have different effects, such as SoS adaptation or the generation of emergent phe-
nomena. This chapter starts by recalling the MAPE approach in Section 7.2 before 
to introduce existing monitoring approaches in Section 7.3. Finally, Section 7.4 
overviews existing reconfiguration techniques for SoS dynamicity management, 
related to Analyzis, Planning and Execution phases and illustrates through an ex-
amples the possible implementations of dynamicity management with modelling 
and feedback control techniques. 

7.2 Overall MAPE approach 

We follow the classical MAPE-K control loop for designing an autonomic manag-
er over managed elements (Figure 7-73). This consists mainly in components to 
Monitor, Analyze, Plan and Execute the reconfiguration plan. When an SLA (Ser-
vice Level Agreement) and its associated service level objectives are associated 
with the service of a managed element, the MAPE control loop guarantees that 
those service level objectives are met, and if it is not the case, a new plan is calcu-
lated and used to reconfigure the system. 
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Figure 7-73: MAPE control loop 

7.2.1 SoS management infrastructure 

In this section we present how to exploit the AMADEOS SysML profile described 
in Chapter 4 in order to build the infrastructure for MAPE purposes. To this end, 
we implemented through the profile six MAPE architectural patterns. Thus, for 
each of the six patterns, we realize a SysML block diagram built using the stereo-
types defined in the profile. 
 
Each CS is represented as a block and it has an interface, either a RUMI or a RUPI 
interface in order to enable the exchange of messages and physical entities respec-
tively. Each CS may implement the SoS management activities, namely monitor-
ing, analysis, planning and execution.  
In the following we report the (1) Hierarchical Control, (2) Master/Slave, (3) Re-
gional Planner, (4) Coordinated control, (5) Information sharing, (6) Atomic pat-
terns and a conclusive analysis on their recursive inclusion in a SoS. 

7.2.2 Hierarchical control pattern 

In the hierarchical control pattern, we have a managed CS which is controlled di-
rectly by a managing CS by means of their RUMI interfaces over which monitor-
ing information and the enacting actions are transmitted. As we can notice (Figure 
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7-74), the managing CS has been stereotyped with all the functions of the MAPE 
cycle. We present below the UML representation of such pattern. 

 

 
 

Figure 7-74: Hierarchical control pattern 

7.2.3 Master/slave pattern 

In the master/slave pattern¸ a set of managing CSs shares part of the MAPE func-
tions (Figure 7-75). In our instantiation, master CS (Managing_AP_CS) performs 
analysis and planning activities and two slave CSs perform monitoring and exe-
cute functions (Managing_ME_CSx). The slave CSs send monitored_info to the 
master and they receive planned info from the master CS. This information is ex-
changed through the RUMI interfaces of slave CSs and the master CS. Finally, the 
slave CSs are in charge of communicating each with a managed CS. The latter 
transmit monitored data to the slave CS, which in turn forwards back the enacting 
actions as planned by the master CS. 
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Figure 7-75: Master-slave pattern 

7.2.4 Regional planner pattern 

In the Regional Planner, a regional managing CS (Managing_P_CS_x) imple-
ments only the Planning activity (Figure 7-76). Instead, Analysis, Monitoring and 
Execution are delegated to other managing CSs (Managing_MAE_CS_x). The re-
gional managing CS is responsible for a region of CSs and it exchanges with other 
peer CSs the information on a regional basis. At the bottom level, each managed 
CSs (Managed_CS_x) send monitoring information to its corresponding managing 
CS (Managing_MAE_CS_x), which performs analysis activities and then for-
wards the results to the regional CS (Managing_P_CS). The latter performs the 
Planning and forward enacting actions back to the managing CS. Finally, the man-
aging CS enacts such actions towards the managed CSs. 
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Figure 7-76: Regional planner 

7.2.5 Coordinated control planner 

In the following, we present the implementation for the non-formal hierarchy pat-
tern Coordinated Control pattern (Figure 7-77). The coordinated control pattern 
consists of a set of CS implementing all the MAPE phases (Managing_CS_x) and 
exchanging through their RUMIs the monitored, analysis, planned and execution 
information. Through RUMIs, the managing CSs can collect monitoring info from 
the managed CS (Managed_CS_x) and forward the actions to enact. 
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Figure 7-77: Coordinated control 

7.2.6 Information sharing pattern 

The information sharing pattern is another non-formal hierarchy pattern similar to 
the coordinated control pattern (Figure 7-78). The only thing that differentiates the 
corresponding implementations is the nature of information which is exchanged 
through the RUMIs of the managing CSs. In the sharing information pattern only 
monitored data are exchanged while the rest of information is not shared among 
managing CSs (Managing_CS_x). 
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Figure 7-78: Information sharing 

7.2.7 Atomic pattern 

In the following, we present the atomic pattern to enable the interaction of a CS 
with the physical environment (Figure 7-79). To this end, the managing CS 
(Atomic_CS) carries out the MAPE cycle once it has received monitoring infor-
mation through its RUPI interface and it forwards physical signal over the same 
interface. Physical entities received through the RUPI interface come from the af-
ferent environment while the outgoing flow of physical entities is forwarded to the 
efferent environment. 
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Figure 7-79: Atomic pattern 

7.2.8 Recursive inclusion of patterns for SoS design 

At SoS level, the MAPE should be applied recursively. Each CS implementing 
part of the MAPE may in turn be substituted recursively by another pattern which 
is realized through a further set of CSs. This approach foresees the possibility to 
have several nested levels of MAPE, each of them belonging to a different hierar-
chical level of the SoS, or holarchical set of CSs. Distinct set of CSs are observed 
by a MAPE in which the Adaptive Monitoring, the Analyzer and Planner, and the 
Reaction Strategies coexist and cooperate.  
Let us consider the scenario depicted in Figure 7-80, in which several CS are rep-
resented and controlled by an implementation of the MAPE-K cycle in which we 
have a dedicated CS for Monitoring, another for Analysis and Planning and a third 
one for Execution. 
The Adaptive Monitoring (M) is able to detect events according to the QoS speci-
fications of the CS. The Cognitive and Predictive Models (AP) search for the 
causes and the effects correlating data incoming from the Adaptive Monitoring. 
The Reaction Strategies (E) perform the proper recovery action. The considered 
SoS can be integrated in a more complex SoS; Figure 7-80 gives a representation 
of the recursive foreseen architecture. 
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Figure 7-80: Recursive view of the AMADEOS architec-
ture 

7.3 Monitoring / Analysis 

In this section, we report on the broad topic of monitoring in SoSs. In particular, 
focusing on observation and data analysis (i.e., the Monitoring and Analysis com-
ponents of the MAPE building block). We investigate basics on monitoring and 
detection (Section 7.3.1) and main monitoring approaches (Section 7.3.2). 

7.3.1 Basics on Monitoring and Detection in SoSs 

It is very important to guarantee that an SoS behaves as expected. To this end, 
monitoring activities control the SoS by means of verifying that system behavior 
and performance comply with well-defined rules. Verification activities can be 
carried out at two different stages either on-line, i.e., while monitoring data are 
collected, or off-line i.e., after the collection process.  
In monitoring literature, the system which has to be monitored is called target sys-
tem while the hardware component and the software application within the target 
systems are called respectively target component and target application. In our 
case a CS represents the target system while the target component and the target 
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application are represented by the physical and software part of the CS itself. We 
refer to the CS which receives monitored information as monitoring CS.  
Monitoring activities consists in observing behavior and performances of CS tar-
get components in order to collect useful information to guarantee the correct SoS 
functioning. Monitoring activities by themselves are not sufficient to guarantee the 
correct behavior of an SoS, but they have to be integrated with techniques to diag-
nose the SoS behavior in its execution environment. To this end, we have present-
ed in deliverable D3.1 [188] an SoS Management Infrastructure which comple-
ments Monitoring with Analysis, Planning and Execution (MAPE) facilities. This 
section focuses on the Monitoring (M), and partially also on the Detection of 
events (Analysis of data), consequently addressing the MA letters of the MAPE 
loop. These two actions (MA) are in fact often tightly bounded, because a moni-
toring system is usually conceived and instantiated with the specific intention of 
detecting specific events or verifying that certain conditions are met. 
Let us now focus on the way monitoring activities are carried out. Essential ob-
jects that are exploited to monitor the system behavior are the so called probes. 
Probes can be inserted either inside or outside the target system and provide useful 
information on how the system behaves. As an example Figure 7-81 shows the 
probes inserted within the target system which can also provide the system inter-
mediate output (see Figure 7-81-b) and it shows the possibility of monitoring the 
system as a black box (see Figure 7-81-a).    

 

Figure 7-81: Black box (a) and instrumented (b) monitor-
ing of the target system 

 
Probes can be hardware or software. In the first case hardware signals are moni-
tored, while in the second case, code is inserted within the target application to 
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collect internal information of the system (code instrumentation). Two rules have 
been defined which have to be respected by probes: 

• they should observe as much information as necessary to satisfy the ob-
jectives of the monitoring activities, 

• they should not compromise, or at least compromise as little as possible, 
the behavior of the target system. 

7.3.2 A general approach to SoS monitoring 

Considering the complexity and heterogeneity of an SoS, it is necessary that a 
monitoring solution deals with the issue of where to deploy the monitoring and de-
tection system. It could be placed locally on each CS or globally at a higher level. 
Both approaches have advantages and disadvantages with respect to the CS and/or 
the SoS, as listed in the following: 

• local solution pros: allows to perform a more precise detection activity on 
the single CS due to the perfect knowledge of CS itself. 

• local solution cons: could negatively affect the performance of each CS, 
thus compromising the overall performance of the SoS. 

• global solution pros: allows to improve detection accuracy, like detection 
of detrimental emergence phenomena. 

• global solution cons: requires a large amount of data to be transferred 
from each CS, thus potentially affecting the network bandwidth in nega-
tive way. 

To capture the pros of both the local and global solution, we envision the follow-
ing overall architecture.  
Each CS describes the provided services to the other CSs through the RUI specifi-
cation. The interface models are part of the RUI specification and must be based 
on an agreed ontology explaining the meaning of the interface variables ex-
changed across the RUI and must be compatible with each other. In order to estab-
lish the desired quality of service (QoS), quality metrics must be expressed as well 
in the RUI specification. For example, a Service Level Agreement (SLA) should 
be negotiated between the service provider and requester. Thanks to the RUI spec-
ification, the monitoring and the detection systems can ignore the intrinsic charac-
teristics of the CSs, but they are aware of its quality metrics and its SLA.  
Each CS that is included in the SoS can be equipped with a Local Detection Sys-
tem (LDS). The LDS i) includes probes exposed through the RUI and that are 
necessary to observe events; ii) if necessary, implements the atomic pattern to 
manage the physical environment of the CS itself. The knowledge of the LDS is 
limited to the CS: in other words, the other connected CSs are ignored. The differ-
ent detectors, relying on the exposed probes, can be organized and coordinate fol-
lowing the different MAPE patterns. 
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Figure 7-82: Monitoring infrastructure in SoSs 

At SoS level, a global detection system will be also deployed. It differs from the 
ones deployed at a local level because it has an overall view of the SoS and conse-
quently it has the ability to observe and detect events as a combination of the out-
puts of the individual LDSs. Furthermore, it may consider different and additional 
quality metrics and indicators with respect to the LDSs. The global detection sys-
tem fetches data from the LDS or MAPE instantiations available in the SoS, and 
perform global monitoring and analysis, acting according to the master/slave pat-
tern. 
Figure 7-82 shows a high level representation of the architecture of the envisioned 
system. Specifically, the CSs composing the SoS are represented in different 
shapes, to show that they are different one from the other. Each CS is able to 
communicate with the others by means of the RUI interface, represented by the 
box labelled RUI. Finally, the local detection systems, labelled LDS are also in-
cluded in the representation of each CS, in order to eventually detect anomalous 
events on the corresponding CS. At the top of the figure, the Global Detection 
System is also shown, which observes the status and the events that are happening 
at the SoS level.  
Depending on the monitoring purposes, confidentiality and privacy issues may 
need to be guaranteed through proper data security and anonymization.  Especial-
ly, while anonymization solutions can be executed locally, confidentiality requires 
that the endpoint agrees on adequate secure communication protocols. 
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7.4 Analysis / Planning / Execution 

7.4.1 Overview 

The main challenges related to the dynamic adaptation of CPSoS stem from the 
distributed nature of the measurement and control infrastructure (MAPE). 
Since the Monitoring and Analysis blocks have been discussed earlier, this section 
focuses primarily on a potential design of the Planning and Execution blocks.  
The M and A functions of the MAPE building block determine the values of the 
CPSoS parameters, whereas the P and E functions close the control loop either by 
generating control signals for the CS, or by adjusting the environmental parame-
ters of the CS, as depicted in Figure 7-83. 

 

 

Figure 7-83: Close loop control involving a CS and a 
MAPE block 

All MAPE functions are instantiated for a particular CPSoS dynamicity model, 
which specifies which state parameters need to be measured, what metrics have to 
be used for combining or aggregating these parameters, how the control must be 
implemented to achieve the desired effect, and how this control algorithm gener-
ates CS control parameters. Obviously, this domain knowledge applies in a similar 
way for all the composite MAPE patterns described in the AMADEOS deliverable 
D3.1 [188]. 
To emphasize the control aspect, we redraw the MAPE control loop as in Figure 
7-84. Although not fundamentally different from a traditional control loop, Figure 
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7-85 emphasizes the potential difference between the input and output parameters 
(𝑌𝑌(𝑡𝑡) and 𝑋𝑋(𝑡𝑡), respectively) toward the CPSoS and the monitoring and control 
parameters (µ(𝑡𝑡), and ε(t), respectively) toward the MAPE blocks. This is useful 
for CPS, since the monitoring and control of the RUPI-based interactions can also 
be executed through RUMI, which adds flexibility to the definition of reaction 
strategies. The (⋅ ) blocks denote some suitable transformations that map the ex-
ternal and control input vectors onto a common metric space, and the ⊕ block 
combines these values in a single metric to obtain the control value. Based on this 
value the Control block generates a vector σ(t) whose elements show the mis-
match between the current and desirable state parameters, so a new state can be 
selected that compensates for this mismatch. 

 

 

Figure 7-84: Control and feedback parameters in MAPE-
based control loops 

7.4.2 Example: Control loop for electrical vehicle system 

If the CS is a Charging Point (see AMADEOS use case [189] [190]) Y(t) in Figure 
7-85 can be a state vector specifying the charging current, maximum allowed 
power phasor variations, and last kWh price. When an Electric Vehicle (EV) is 
connected to the CP, the State includes, among other functions, a metering func-
tion which could generate the monitoring vector µ(t)as a sequence of messages at 
regular time intervals, containing instantaneous measurements of the current 
drawn by the EV, and the maximum available current for that CP. Similarly, X(t) 
could be the remaining charging time as estimated by the EV, and ε(t) could be a 
sequence of asynchronous (i.e. event-triggered) messages containing a new value 
for the kWh price, and a new maximum power rating for the CP. 
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Obviously, the summation block in Figure 7-84 assumes an appropriate abstrac-
tion of the two inputs (MAPE controls and external CPSoS inputs), which is 
achieved through some mappings. In the example considered above both the re-
maining charging time and the new kWh price could be mapped on some real val-
ue expressing the economic efficiency of the CP. 

To illustrate several reaction strategies, we construct a simple example derived 
from the AMADEOS EV Charging use case. Assume that a Charging Station in-
cludes 𝑵𝑵 charging Points (see 

Figure 7-85), has a total charging capacity Q, and a maximum charging rate 
I¬max. Each of the CP has a maximum charging rate 𝐼𝐼𝐼𝐼𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , with 
NI_CPmax = aImax, anda >  1, which means that when all CPs are in use, not all 
of them can deliver the maximum charging rate. To compensate for this limitation, 
the CP can influence the charging demand by increasing the energy unit prices. In 
general, the energy unit price has to be agreed between the EV user and the CSO 
before the charging operation starts, and should not be changed until the charging 
is complete. For this reason, it is convenient to define a charging contract in terms 
of total requested electric charge by useri, 𝑄𝑄𝑖𝑖 , and the maximum charging duration 
𝑡𝑡𝑖𝑖. For simplicity, we assume that the minimum charging times only depends on 
the maximum current that a CP outlet can provide. 

 

 
 

Figure 7-85: Simplified functional diagram for an electri-
cal vehicle charging station 

 
If the CSO chooses to guarantee a constant charging rate 𝐼𝐼𝑖𝑖 , then the charging time 
for EV 𝑖𝑖 will be constant as well (within some uncertainty limits): 𝑡𝑡𝑖𝑖 =  𝑄𝑄𝑖𝑖

𝑚𝑚𝑖𝑖
. Alt-
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hough it is both in the interest of the CSO and the user to minimize 𝑡𝑡𝑖𝑖, this is not 
achievable simultaneously for all the CPs.  
A good pricing strategy should try to approach the maximum charging current of 
the CSO(𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚), without lowering the charge unit price below a given minimum. 
As an example one could consider the following pricing function by the CSO, for 
user 𝑖𝑖: 
 𝑝𝑝𝑚𝑚𝐶𝐶𝐶𝐶𝑖𝑖(𝑄𝑄𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝑝𝑝0  

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚− 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖

�1 +
1

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼
� ,

𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖 < 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼 < 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚   

(1) 

 
The minimum charging time 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖  is achieved for the maximum available charg-
ing rate given the already committed capacity (I) for the  CSO: 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 =   𝑄𝑄𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚
. 

The third term of the product in the above formula increases the price as the com-
mitted capacity approached the maximum.  
Overall, the price variation looks like the graph in Figure 7-86. 

 

 

Figure 7-86: Possible price adaptation as a function of 
requested charging time and available 

At the same time, a user will always choose a shorter charging time, provided that 
the price does not increase beyond a predefined personal limit 𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚:  

𝑝𝑝𝑖𝑖 = min �𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑝𝑝𝐼𝐼𝑆𝑆𝐶𝐶𝑖𝑖� 
 
Of course, this is a naïve view, since 𝐼𝐼𝑖𝑖 varies in time as other running charging 
actions end (see Figure 7-87), so a significant part of the charging capacity is not 
used. The total revenue for the CSO at any given time 𝑃𝑃(𝑡𝑡) =  ∑ 𝑝𝑝𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝑡𝑡). At the 
same time, the instantaneous cost for the CSO is given by a component proportion-
al to the total current absorbed plus some constant cost value 𝑐𝑐0: 𝐼𝐼(𝑡𝑡) = 𝑐𝑐0 +
𝑐𝑐𝐼𝐼(𝑡𝑡). The profit made by the CSO can thus be expressed as: 

 
 𝜌𝜌𝑚𝑚𝐶𝐶𝐶𝐶(𝑡𝑡) =  𝑃𝑃(𝑡𝑡) − 𝐼𝐼(𝑡𝑡) (2) 
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Figure 7-87: Variation of the total charging current at 
CSO 

By allowing a variable maximum charging current, the actual charging time re-
sults shorter than the one calculated with the pricing model for constant charging 
current used in this example. The statistics of charging times and new requests 
will require pricing strategies that take into account the expected variations in the 
occupancy of CPs. 
 

7.4.3 Analytic approaches 

When the CPSoS behaves according to a known model expressed analytically, the 
control can be defined in terms of this model. The pricing model in equation (1) 
allows the CSO to set a dynamic price for a charging operation at constant current. 
However, this model leads to unused capacity, so it may be advantageous for the 
CSO to deliver a faster charge if there is unused capacity and other requests are 
expected to arrive soon.  
An optimal control problem with infinite time horizon attempts to maximize some 
cost or benefit function, such as the one in equation (2) [191]. A potential objec-
tive function for the optimal control problem could attempt the simultaneous op-
timisation of the following aspects: 

• minimizing the agreed charging time for the already started charging op-
erations. 

• maximizing the price for the new charging contract. 
 
The control parameters are the individual charge unit prices and the charging cur-
rents for each user. The constraints are the total current for the CSO, the maximum 
current of each CP, and the committed charging time for the already started charg-
ing actions.  
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The first term of the objective function defines how the charging current for user I 
can be increased after the charging action for user j ends. This can be done for in-
stance, proportionally: 

 
 Δ𝐼𝐼𝑖𝑖+ = 𝐼𝐼𝑖𝑖

𝐼𝐼𝑖𝑖
𝐼𝐼

=  𝐼𝐼𝑖𝑖
𝐼𝐼𝑖𝑖

∑ 𝐼𝐼𝑘𝑘𝑘𝑘≠𝑖𝑖
 (3) 

 
Whenever a new request comes at a time 𝑡𝑡𝑖𝑖_𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑠𝑠 after the adjustment of the charg-
ing rates, the new charging current must be maximised by reducing the current for 
the still running charge operations, down to the limit that would still allow the 
completion of the charging within the remaining time according to the original 
contract for user 𝑖𝑖: 

 
 

∆𝐼𝐼𝑖𝑖− =
𝑄𝑄𝑖𝑖 − ∫ 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑠𝑠𝑗𝑗_𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑠𝑠𝑖𝑖_𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑡𝑡𝑖𝑖_𝑒𝑒𝑖𝑖𝑒𝑒 − 𝑡𝑡𝑖𝑖_𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑠𝑠
 

(4) 

 
where 𝑡𝑡𝑖𝑖_𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑠𝑠 and 𝑡𝑡𝑖𝑖_𝑒𝑒𝑖𝑖𝑒𝑒 are the starting and ending times of the charging opera-
tion for user i.  
Equations (1) to (4) can be used for defining different control approaches, such as 
Optimal (Stochastic) Control with infinite time horizon [191], Linear Quadratic 
Controls [192], etc. 

7.4.4 Machine learning approaches 

In case when the dynamic behaviour of the CPSoS is unknown, or cannot be ex-
pressed analytically, data-driven techniques can be used for obtaining an implicit 
“encoding” of system behaviour. Such an encoding should be able to predict the 
outputs the system will generate for a given input and contextual parameters. 
Machine learning includes a set of techniques that use observations of a system’s 
behaviour patterns to attempt predicting its future states. If we consider the predic-
tive or supervised machine learning approach the goal is to learn a mapping from 
input values 𝐗𝐗 to an output value 𝑦𝑦 based on a set of input-output pairs called a 
training set. The mapping can be represented as a function 𝑓𝑓Θ, with a set of param-
eters Θ, that can be used, given an unseen before pattern 𝐗𝐗𝒊𝒊, to predict 𝑦𝑦�𝑖𝑖, i.e. 
𝑦𝑦�𝑖𝑖 = 𝑓𝑓Θ(𝐗𝐗𝑖𝑖). The function 𝑓𝑓Θ is what we call a model that is parametrized with a 
set of parameters Θ. 𝑓𝑓Θ can be, in fact, a simple linear function (regression), but 
generally is a complex algorithm that maps inputs to output values. The goal of 
machine learning is to find the set of parameters Θ of a chosen model based on a 
training data set D using a learning algorithm. If the parameters Θ are properly 
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learned then we will be able to estimate the class label 𝑦𝑦�𝑖𝑖 based on certain unseen 
input valuesxj ∉ D, where  ŷj=yj in the majority of the cases. 

Artificial Neural Networks (ANN) implement a machine learning technique in-
spired by a simplified model of the working of the brain. The elementary opera-
tions in an ANN are weighted summations of the inputs to obtain an output value. 
Different output values are obtained by summing the same input with different 
weights. This way, an input vector is mapped to an output vector. A multi-layer 
NN combines usually two or more such mapping units. The training of an ANN 
attempts to adjust the weights such that a particular output is consistently obtained 
for different input patterns belonging to the same class. When this is achieved, the 
ANN is said to be able to generalize. Another aspect of training attempts to adjust 
the weights such that different output patterns are generated for input vectors be-
longing to different classes. When this is achieved, the ANN is said to be able to 
discriminate. Training algorithms have been developed that achieve a good trade-
off between these two properties. One such algorithm is called the back-
propagation learning algorithm that uses an iterative scheme, such as gradient de-
scent [193], to optimize Θ in the learning equation described earlier. 
Returning to the EV charging example we want to estimate the best price for a 
new user i by learning a model based on the following input variables: 

• the number of charging points N; 
• the requested electrical charge 𝑄𝑄𝑖𝑖  by user 𝑖𝑖; 
• the maximum charging duration 𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  requested by user 𝑖𝑖; 
• the maximum charging durations of the other users j (j ≠  i); 
• the current charging rates 𝐼𝐼𝑖𝑖 of other EVs; 
• the maximum charging rate for the CPs; 
• the maximum charging rate of the CSO; 
• the minimum charging time of EV 𝑖𝑖, 𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖; 
• the expected number of users in the coming hour (based on historic data); 

Let’s denote these input variables with 𝑖𝑖𝑖𝑖. Based on 𝑖𝑖𝑖𝑖  we want to learn a model 
from which the best price 𝑝𝑝𝑖𝑖�   can be estimated for a new user 𝑖𝑖. In order to learn 
such a model the following cost function will be used 

 
 

𝐽𝐽(𝜃𝜃) =
1
2
�(𝑝𝑝𝑖𝑖𝑖𝑖 −  𝑝𝑝𝑖𝑖𝑛𝑛� )2
𝑁𝑁

𝑖𝑖=1

 
(5) 

 
Where 𝑝𝑝𝑛𝑛𝑖𝑖�  is the estimated price by the model, 𝑝𝑝𝑛𝑛𝑖𝑖 is the price associated to the 
input variables, N is the total number of training samples and n corresponds to the 
nth training sample �𝑖𝑖𝑛𝑛, 𝑝𝑝𝑛𝑛𝑖𝑖� ∈ 𝐷𝐷. In case an ANN is used as a model to learn the 
best price the gradient descent back-propagation algorithm can be used as an itera-
tive scheme to optimize the model based on the cost function J(θ). By using this 
iterative scheme, the parameters (i.e., the weights and bias term of each neuron in 
the ANN) are updated, after applying the training set D, such that the cost function 
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is minimized. When the change of the parameter values are small enough that it 
can be assumed that the parameters have converged and the model is learned.  
The learned solution may not be optimal, since the back-propagation algorithm 
can be trapped in a local minimum. This is due to the high nonlinear nature of the 
cost function in the parameter space. Often better performance can be obtained by 
using a pattern-by-pattern mode, also online mode, to learning the model. In this 
case the weights of the ANN are updated at every time instance a new pattern is 
presented. Additionally, it is also recommended to randomize the data sequence 
prior to using it for learning. In practice it was shown that the pattern-by-pattern 
mode result in faster convergence and better solutions [194]. 

7.4.5 Feedback control approach 

In the following, we consider a SoS in which one of the CSs is a computing clus-
ter used to run compute-intensive and/or data-intensive business logic of the 
cyber-physical system. In the following, we first illustrate the impact of environ-
mental changes and system configuration parameters on the performance and 
availability of such CSs. We then present a possible implementation of the Analy-
sis component of MAPE through behavioural modelling and a possible implemen-
tation of the Planning/Execution components of MAPE through feedback control. 
MapReduce is a popular programming model and execution environment for de-
veloping and executing distributed data-intensive and compute-intensive applica-
tions [195]. However, the complexity of configuration of such systems is continu-
ously increasing. Although the framework hides the complexities of parallelism 
from the users, deploying an efficient MapReduce implementation poses multiple 
challenges. MapReduce’s ad-hoc configuration and provisioning require a high 
level of expertise to tune [196]. Ensuring performance and dependability of 
MapReduce systems still poses several challenges. 
One of the most popular open source implementations of the MapReduce pro-
gramming model is Hadoop. It is composed of the Hadoop kernel, the Hadoop 
Distributed Filesystem (HDFS) and the MapReduce engine. Hadoop’s HDFS and 
MapReduce components originally derived from Google’s MapReduce and 
Google’s File System initial papers. HDFS provides the reliable distributed data 
storage and the MapReduce engine provides the framework to efficiently analyse 
this data. 
In the following, we consider a CS that is a MapReduce cluster that consists of 
sub-CSs represented by N nodes. A MapReduce workload is defined as the num-
ber of concurrent clients (C) that are sending requests to the central controller. 
Admission control is a classical technique to prevent server thrashing. It consists 
of limiting the maximum number of clients (MC) that are allowed to concurrently 
send requests to the central controller. 
The performance of MapReduce systems can be measured as the average time (Rt) 
needed to process a request in a certain time window. Low client response time is 
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a desirable as it reflects a reactive system. The average 𝑅𝑅𝑡𝑡 can, for instance, be 
calculated at every 30 seconds, using a sliding window with period 15 minutes. 

 
 𝑅𝑅𝑡𝑡[𝑠𝑠] = 𝑖𝑖𝑎𝑎𝑎𝑎(𝑅𝑅𝑡𝑡1,𝑅𝑅𝑡𝑡2, … ,𝑅𝑅𝑡𝑡𝑁𝑁) (6) 

 
 

Availability (Av) refers to the accessibility of the system to users. MapReduce is 
available if the user requests are accepted at the time of their submission. Availa-
bility is instantaneous and concentrates on the fraction of time where the system is 
operational in the sense of being accessible to the end user. Availability is meas-
ured as the ratio of accepted MapReduce client requests to the total number of re-
quests, during a period of time. T here is the previously defined sliding time win-
dow size that is used to assign a measurable dynamics to the system. Since T is 
constant for all experiments, we use only the percentage (%) symbol as the availa-
bility measurement unit in all the plots to simplify their understanding. 

 
 𝐴𝐴𝑎𝑎 �

%
𝑇𝑇
� =  

𝑁𝑁𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠
𝑁𝑁𝐶𝐶𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 + 𝑁𝑁𝑅𝑅𝑒𝑒𝑖𝑖𝑒𝑒𝑆𝑆𝑠𝑠𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠

∗ 100 (7) 

 
 

Furthermore, the service cost is a linear function of the MapReduce cluster size 
(N), and can be inferred directly from N. 
Finally, performance and availability metrics are part of the SLA of the MapRe-
duce system. The SLA specifies MapReduce service level objectives (SLOs) in 
terms of, for instance, the maximum response time 𝑅𝑅𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, and the minimum 
availability 𝐴𝐴𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖  to be guaranteed by the MapReduce system. 
Figure 7-88, Figure 7-89, and Figure 7-90 show the impact of the variation of, re-
spectively, the workload exogenous variable, the MapReduce cluster size control 
variable, and the MapReduce cluster’s admission control variable on performance 
and availability metrics. Thus, there is no one-fits-all configuration; rather, a solu-
tion that meets a combination of service level objectives as described below. 

 

 
 

Figure 7-88: Impact of workload on MapReduce perfor-
mance and availability with #Nodes=20, #MC=10 
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Figure 7-89: Impact of cluster size on MapReduce per-
formance and availability with #Clients=10, #MC=5 

 

 
 

Figure 7-90: Impact of admission control on MapReduce 
performance and availability with #Nodes=20, #Clients=10 

Example of a behavioral model 

Capturing the complex behaviour of MapReduce CSs is highly challenging. We 
propose a model that captures the dynamics of MapReduce CSs, and renders their 
levels of performance and availability. The model is built as a set of difference 
equations - as for biological or economical systems - that describe the impact of 
input variables’ variations on system’s output variables. We apply a novel model-
ling approach that considers the MapReduce system as unknown and derives a 
mathematical model based only on the impact of the input variations on the sys-
tem’s outputs. This technique is part of what we call system identification in con-
trol theory. Roughly speaking, one provides known input variation functions (e.g. 
a step or sinusoidal variation) to the system, and measures the system response to 
this excitation. Using the output measurements an identification algorithm can ap-
proximate the system’s internal dynamics. In most cases, without a loss in general-
ity, 1st or 2nd order polynomial difference equations capture the system behaviour 
sufficiently well.  
Figure 7-91 describes the proposed model variables. The inputs of the model are: 
exogenous input 𝐼𝐼 that represents the number of clients accessing the underlying 
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MapReduce system, in addition to tunable parameters that can be used to control 
the MapReduce system, namely the number of nodes N of the underlying MapRe-
duce cluster, and the maximum number of clients MC concurrently admitted in the 
MapReduce system. In addition to input variables, the model has the following 
output variables: the average response time 𝑅𝑅𝑡𝑡 to a MapReduce client request, and 
the level of availability 𝐴𝐴𝑎𝑎 of MapReduce to its clients. In the following, we de-
scribe the proposed model through the formulas of its output variables. 

 

 
 

Figure 7-91: System model inputs and outputs 

Example of feedback control 

A first attempt in controlling the response time of a MapReduce system by adding 
and removing nodes was realized in [197] by using a PI and a feedforward con-
troller. We design MR − Ctrl, an optimal controller, able to deal with contradicto-
ry objectives. As our MapReduce model has two outputs, MR − Ctrl will assure at 
the same time the response time and the availability specified in the SLA, while 
minimizing resource utilization. 
The complete schema of the control architecture is presented in Figure 7-92. All 
the variables used in the figure are defined in Table 7-5. More details regarding 
the implementation of the control framework can be found in [197]. As in Figure 
7-91, we consider the MapReduce system having two inputs (concatenated in the 
two dimensional vector 𝑢𝑢), one exogenous uncontrollable disturbance input 𝐼𝐼 and 
two outputs (concatenated in the two dimensional vector 𝑦𝑦). Vector 𝑢𝑢 contains the 
number of nodes in the cluster 𝑁𝑁 and the max number of clients 𝑀𝑀𝐼𝐼. While the y 
vector contains the response time 𝑅𝑅𝑡𝑡 and availability 𝐴𝐴𝑎𝑎. 
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Figure 7-92: The control architecture 

 
 
 

𝑦𝑦𝑟𝑟𝑒𝑒𝑆𝑆 =  �
𝑅𝑅𝑡𝑡𝑟𝑟𝑒𝑒𝑆𝑆
𝐴𝐴𝑎𝑎𝑟𝑟𝑒𝑒𝑆𝑆

� Reference – response time and availability set in the 
SLA. 

𝑦𝑦 =  �𝑅𝑅𝑡𝑡𝐴𝐴𝑎𝑎� Measured system output – response time and availabil-
ity. 

𝑢𝑢 =  � 𝑁𝑁𝑀𝑀𝐼𝐼� System control input – number of nodes in the system 
and the maximum number of clients. 

𝐼𝐼 Disturbance – number of clients trying to connect to 
the system. 

𝑖𝑖� Reconstructed behavior of MapReduce. 

Table 7-5: Definition of control variables 

7.5 Conclusions 

This chapter describes the overall approach for managing SoS dynamicity. Its 
main intent is to associate a Service Level Agreement with SoS, and to provide 
SLA guarantees in terms of dependability, security, performance, etc. The overall 
MAPE Monitoring/Analysis/Planning/Execution approach is followed for SoS 
dynamicity management. The approach is illustrated through different implemen-
tations and techniques, e.g., a scalable monitoring, feedback control-based behav-
ioural modelling and reaction strategies. 
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8.1 Introduction 

In this chapter we present three case studies in the smart grid domain: Electrical 
Vehicle charging, Household Management, and an integrated case study that com-
bines the first two together with ancillary services. These case studies are first 
modelled using the AMADEOS Architectural Framework (AF) and associated 
tooling. We utilise the four levels of the AMADEOS AF: mission, conceptual, 
logical and implementation, as well as the seven viewpoints that have been de-
fined: Structure, Dynamicity, Evolution, Dependability and security, Time, Multi-
criticality and Emergence. We therefore examine the entire lifecycle of the 
framework considering some real-world case studies. These case studies are based 
on experts’ feedback, including AMADEOS Advisory Board members, to ensure 
that realistic architectures are designed.  

The architectures developed in this chapter will be further instantiated in a sim-
ulation environment, using the simulation tooling developed in the AMADEOS 
project. With these instances several experiments will be run in order to validate 
the framework as well as the architectures that were defined. 

 
The three Smart Grid-based case studies described in this chapter are used to 

prove the effectiveness and consistency of the AMADEOS architectural frame-
work. The method provided by the framework allows to design and implement a 
generic SoS in a procedural and systematic way. To accomplish this, the 
AMADEOS project defines a pyramidal top-down approach that must be under-
taken passing through four different levels: a mission for the SoS, the conceptual 
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level, where the ideas and concepts of the SoS are defined in order to support the 
capabilities of the SoS. Next, the logical level where the SoS is designed and these 
concepts are adapted towards supporting the requirements of the individual SoS 
domain. Finally, these are actualised in the implementation level, where the design 
is contextualized and realized in the enterprise. 

8.2 Smart Grid SoS 

8.2.1  Smart Grid SoS model 

Figure 8-93 shows the model of the Smart Grid SoS created using the support-
ing facility tool. The Smart Grid SoS is composed of: EV_Charging, Medi-
um_Voltage_Control, and the Household CS. 

 

 

Figure 8-93 The Blockly Smart Grid SoS model 

8.2.2 EV-Charging SoS Case Study 

Mission 
 

The EV SoS must be designed to provide a friendly and convenient service to 
the users and at the same time, profitable to the provider. Planning and scheduling 
is of paramount importance for both energy providers and users: as an example, on 
one side, if the charging requests are spread during the day, there will be limited 
and/or controlled load peaks on the grid to be handled, thus the energy price may 
not vary abruptly over time and prioritized consumers (e.g., police and fire-fighter 
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vehicles, ambulances, etc.) will be easily handled by the charging station opera-
tors. On the other hand, knowing the energy prices and available time slots, the 
users will be able to carefully plan the recharging operation while keeping the ser-
vice affordable. 

A typical scenario would be as follows: EVs travel through a wide area, where 
several charging station operators provide recharging services, by means of charg-
ing points. Drivers in need of power for their EV can provide the expected charg-
ing context (duration, power, etc.) to the e-mobility service in order to receive in-
formation regarding recharging time slots and associated energy prices of each 
charging station operator. A load management optimizer that cooperates with the 
charging station operators carries out planning and scheduling activities. The in-
terested driver will then choose one of the slot-price pair possibility for recharging 
its vehicle, will be allowed to plug-in its EV at the charging point of the chosen 
charging station operator during the reserved time slot only, and the amount due 
will be based on the energy consumption times the booked price. At the end of the 
recharging operation, the driver receives a billing invoice. 

It is evident from the above-mentioned scenario that various dependability as-
pects need to be considered. The participant systems need to be time synchronized 
to provide consistent information for scheduling and planning purposes. Further-
more, critical EVs should be prioritized for recharging with respect to any other 
vehicle. Therefore, each EV should be assigned a priority level. Moreover, the e-
mobility service should be accessible by registered users only, i.e. the owner of an 
EV, to reduce the possibility of denial of service attacks being performed by illicit 
malevolent users scheduling recharging reservations, without a real need. 

Conceptual Level 

In this section we report the result of the activities performed at the conceptual 
level for the EV charging case study. For each viewpoint we list the most repre-
sentative identified SoS requirements defined taking as input the SoS meta-
requirements [198]. Traceability of the full set of requirements on meta-
requirements is also provided in [201]. 
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Architecture viewpoint 

The EVC consists of a subset of the CSs of the SoS “Electrical Vehicle Charg-
ing in Smart Grids” described in Chapter 2.1 of [201]. In particular: 

 

Name Description 

EV An electrical vehicle. 

Driver The driver of the EV. 

Charging Point  

(CP) 
A physical connection for recharging the EV. 

Smart Meter  

(SM) 

A smart meter providing production and consump-
tion values. May also enable advanced sensor facili-
ties providing active/reactive production, frequency 
monitoring, voltage monitoring, etc. 

Charging Station 
Operator (CSO) 

Operator of a charging station, which is an electri-
fied parking lot with several CPs, represented by an 
independent enterprise or owned by energy provid-
er. 

Load Manage-
ment Optimizer 

(LMO) 

The main software component connected to the grid 
which is in charge of providing power constraints 
and energy set points to the CSO. 

E-mobility ser-
vice 

- Lists the best charging station locations to EVs, 

- Handles reservations. 

- Receives availability updates from CSOs. 

Table 8-6: EV Charging Case Study Components 
Description 

High level representation of EV-Component interactions 

A pictorial view of the EV charging SoS is reported in Figure 8-94. 
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Figure 8-94: Electrical Vehicle Charging SoS architec-
ture 

 

The steps required to recharge an EV are described below. Each step number 
corresponds to a sequence of actions that are carried out.  

1. The information flow starts when a driver needs to recharge their EV. 
The driver requests a charging opportunity from the E-mobility service 
by providing the expected charging context (duration, power, etc.); 

2. The E-mobility replies with the charging opportunity availabilities by ac-
counting all CSOs present in the SoS; 

3. Once the charging opportunities are received, the Driver asks for a reser-
vation towards the most comfortable CSO according to his needs (e.g. 
availability of energy, distance, etc.) and the E-mobility forwards the 
message to the correspondent CSO; 

4. The CSO updates its schedule, considering the received request and the 
power constraints defined by the set points provided by the LMO. The 
CSO reserves the desired time slot, allocates the resources and sends to 
the E-mobility service an acknowledgement; 

5. The E-mobility service forwards the acknowledgment to the driver; 
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6. The driver reaches the CSO within the booked time slot. The EV is 
plugged in to the Charging Point (CP) and the CSO is notified about this 
event; 

7. The CSO decides whether to allow the charging operation or to deny it 
proposing a re-scheduling of the time slot. This can happen if the situa-
tion has changed between the time the driver has booked their slot and 
they arrive at the CP. For example, if a higher priority EV has requested a 
slot; 

8. While recharging, the Smart Meter measures the energy consumption and 
the resultant EV load for, respectively, billing and smart grid power flex-
ibility purposes. Such information are sent to the CSO; 

9. At the end of the charging cycle the EV is unplugged, 

10. The CSO sends the billing invoice to the driver through the E-mobility 
service. 

Dependability and Security viewpoint 

It is of paramount importance to guarantee the highest achievable availability 
and reliability of the SoS so that the charging requests are readily and continuous-
ly available. Achieving these properties allow not only to reach the highest quality 
of service, but also to maximise the profits. The SoS allows drivers to enquire for 
a charging opportunity through the E-mobility service and to have access to the 
CPs at any time. Thus, energy grid enterprises can maintain the grid stability, bal-
ance the load, and ensure correct voltage levels and frequency, etc., while energy 
providers can make the highest profits out of it. To avoid undermining such prem-
ises, Denial of Service (DoS) attacks caused by unauthorized users enquiring the 
E-mobility service or trying to access CPs need to be properly tackled.  

Dynamicity viewpoint 

EVs join and leave the SoS, according to the need for charging of the EV. The 
change in the topology due to this turnover of EVs characterizes the dynamicity 
(DYN) of the SoS. 

Emergence viewpoint 

According to [199], Emergence is: A phenomenon of a whole at the macro-
level is emergent if and only if it is new with respect to the non-relational phe-
nomena of any of its proper parts at the micro level. This indicates that these phe-
nomena cannot be observed at CS level, but at SoS level (or other higher level). 
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As consequence of identification of emergence scenarios, hazard analysis must be 
performed to identify and mitigate any hazards. 

Evolution viewpoint 

Due to technological advances, marketing, or customer needs; different kind of 
EVs it may be necessary to improve, change or add services. 

Multicriticality viewpoint 

The scenario described so far, only foresees normal EVs (e.g., private EVs) that 
need to recharge and ask for charging opportunity. However, during real-life 
emergencies, e.g. rescue operations, wildfires and public security, the requirement 
is that specific EVs must always be available. Therefore, the CSO scheduling 
strategies must prioritize such vehicles before any others. Emergency EV drivers 
access prioritized charging in the same fashion of any other driver, i.e. through the 
E-mobility service. 

Time viewpoint 

As a general remark, it is worth noting that most of the information exchanges 
between CSs rely upon a notion of time. As an example, it would be impossible to 
plan and schedule a request of recharging an EV by a driver for the current day or 
even pay the billing invoice if not properly time-stamped. Thus, to provide the 
payment services, to allow users to enquire for charging opportunities and to ef-
fectively, and efficiently, plan, and schedule, recharging operations over time, 
there must be awareness of time over the SoS. Further, each CS must be time syn-
chronized to a common reference time to successfully provide their services.  

Logical Level 

This section describes the SoS Logical Description of the SoS defined in [201] 
using the model made using the supporting facility tool.  

After loading the model in supporting facility and double clicking on 
EV_Charging CS we can see in Figure 8-95 that the EV-Charging Blockly model 
consist of CSs that matches to the diagram depicted in Figure 8-94. 
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Figure 8-95: EV Charging in Blockly 

 
Figure 8-95 and Figure 8-96 show that EV-Charging CS consists of the follow-

ing CSs: (i) Chargingpoint, (ii) CSO, (iv) DriverApp, (v) ElectricVehicle, (vi) 
EMobilityService, and (vii) EV-SmartMeter 

In the following section will be described in details the CSs listed above, 
through the expansion of the blocks.  

Charging Point CS 

The Chargingpoint CS can be expanded by double clicking on it and the result 
is depicted in Figure 8-96. 
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Figure 8-96: The Blockly Charging Point CS model 

 
Figure 8-96 shows that the Chargingpoint CS communicates with the Electric 

Vehicle, CSO, EV-SmartMeter CSs by the CharginPoint-ElectricVehicle RUPI, 
Chargingpoint-CSO RUPI and Chargingpoint-EV-SmartMeter RUPI, respective-
ly. Figure 8-96 also shows that the services provided by the Chargingpoint CS. 
Furthermore, it has a State Variable Chargingpoint: charging_done.  

From the viewpoint of communication, double clicking on RUPIs and RUMI 
blocks of Charging Point, CS Figure 8-96 shows that the Chargingpoint CS pro-
vides the services to CSO CS through the Chargingpoint-CSO RUMI. The Figure 
8-96 shows also that:  

• The Chargingpoint-ElectricVehicle RUPI transports the Plug-OUT-
Signal and it is connected to the ElectricVehicle-ChargingPoint RUPI of 
the ElectricVehicle CS, 

• The Charging Point-EV-Smart Meter RUPI transports Electricity and it 
is monitored through the Charging Point Probe. 

CSO CS 

On expanding the CSO CS block (Figure 8-97), its services, RUIs, MAPE, and 
state variables can be seen. 
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Figure 8-97: The CSO CS Blockly model 

 
Figure 8-97 shows that the Chargingpoint CS communicates with the Emobil-

ityService, Chargingpoint, LMO, Aggregator CSs by the CSO-EMobilityService, 
CSO-Chargingpoint, CSO-LMO, CSO-Aggregator RUMIs respectively. The Fig-
ure 8-97 also shows the services provided by the CSO CS. It also has a State vari-
able CSO: reservation. 

From the viewpoint of communication, double clicking on RUMIs blocks of 
CSO CS, Figure 8-97 shows that the CSO CS provides the following services: 

• CSO:do_charging_reservation, CSO:do_priority_charging_reservation 
to the EmobilityService CS through the CSO-EMobilityService RUMI, 

• CSO: EV Charging Schedule and CSO: Update energy consumption to 
the LMO CS through the CSO-LMO RUMI 

• CSO: Set Energy price and CSO: Forward energy price to the Aggrega-
tor CS through the CSO-Aggregator RUMI 

Figure 8-97 also shows that the CSO-Chargingpoint RUMI is connected to the 
Chargingpoint-CSO RUMI in order to call the service provided by ChargingPoint 
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CS; the CSO-LMO RUMI is monitored through the Probe CSO Probe. The CSO 
has a local clock that we call CSO-clock and that will be described when address-
ing the Time viewpoint. 

DriverApp CS 

 

Figure 8-98: The DriverAPP CS Blockly model 

 
On expanding the DriverAPP CS block in Figure 8-98, it shows that the Driv-

erApp CS communicates with EMobilityService CS by the DriverApp-
EMobilityService RUMI, and shows that provides the service DriverApp: ac-
cept_reservation.  

This figure also shows that DriverApp CS:  
• Interacts with a Role player: Driver, 
• Has the following State variables:  

o DriverApp:result_of_charging_opportunities_request; 
o DriverApp: selected_charging_opportunity; 
o DriverApp:duration; 
o DriverApp:power, 
o DriverApp:got_reservation. 

From the viewpoint of communication, double clicking on DriverApp-
EMobilityService RUMI, we see that the DriverApp CS provides the service 
DriverApp:accept_reservation by DriverApp-EMobilityService RUMI to EMo-
bility CS, and this RUMI is connected to the EMobilityService-DriverApp RUMI 
in order to call the services provides by the EMobilityService.  
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ElectricVehicle CS 

 

Figure 8-99: The EV CS Blockly model 

 
On expanding the ElectricVehicle block as depicted in Figure 8-99, it is shown 

that the ElectricVehicle CS has ElectricVehicle-Chargingpoint RUPI in order to 
connect with the Charging Point CS. Indeed, expanding the ElectricVehicle-
Chargingpoint RUPI you can see that the RUPI transport Plug-In-Signal and it is 
connected with Chargingpoint-ElectricVehicle RUPI.  
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EMobilityService CS 

 

Figure 8-100: The eMobility CS Blockly model 

 
On expanding the EMobilityService CS block as depicted in Figure 8-100, it is 

shown that the EMobilityService CS communicates with the DriverApp, Aggrega-
tor, Market, CSO CSs by the EMobilityService-DriverApp, EMobilityService-
Aggregator, EMobilityService-Market, EMobilityService-CSO RUMIs respective-
ly. 

Figure 8-100 shows also that EMobilityService CS provides the services:  
• EMobilityService: Set Energy price 
• EMobilityService: Forward Energy price 
• EMobilityService: do_charging_reservation 
• EMobilityService: get_available_charging_opportunities 
• EMobilityService: re_schedule 

and has the State variables:  
• EMobilityService:available_charging_opportunities 
• EMobilityService:charging_op_sent_by_driver 
• EMobilityService:reservation_to_be_sent_to_driver 

From the viewpoints of communication, double clicking on RUMIs blocks of 
EMobilityServices CS, the Figure 8-101 shows that the EMobilityService CS pro-
vides the services:  
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• EMobilityService:do_charging_reservation, EMobilityService: 
get_available_charging_opportunities, EMobilityService: re_schedule 
through the EMobilityService-DriverApp RUMI 

• EMobilityService: Set Energy price, EMobilityService: Forward Energy 
price through the EMobilityService-Aggregator, that is connected to the 
Aggregator-EmobilityService RUMI 

• EMobilityService: Set Energy price through the RUMI EMobil-
ityService-Market 

Furthermore, the EMobilityService-CSO is connected to the CSO-
EmobilityService RUMI in order to call the services provided by CSO CS. The 
Figure 8-101 shows also that EMobilityService has the State Variable:  

• EMobilityService:available_charging_opportunities 
• EMobilityService:charging_op_sent_by_driver 
• EMobilityService:reservation_to_be_sent_to_driver 

 

 

Figure 8-101: The eMobility CS RUMI model 
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EV-Smart Meter Cs 

 

Figure 8-102: The EV-Smart Meter CS Blockly model 

 
On expanding the EV-SmartMeter CS block as depicted in Figure 8-102, it 

shown that the EV-SmartMeter CS communicates with Chargingpoint and Meter 
Aggregator CSs by the EV-Smart Meter-Chargingpoint RUPI and EV-Smart Me-
ter-Meter Aggregator RUMI respectively.  

Figure 8-102 shows also that the EV-SmartMeter CS provides the service EV-
Smart Meter: Get_energy_consumption and implements MAPE Algorithm.  

From the viewpoint of communication, double clicking on RUMI and RUPI 
blocks of EV-Smart Meter CS, Figure 8-102 shows that the EV-SmartMeter CS 
provides the service EV-Smart Meter: Get_energy_consumption through the EV-
Smart Meter-Meter AggregatorRUMI, and the EV-Smart Meter-Chargingpoint 
RUPI is connected to the Charging Point-EV-SmartMeter RUPI of the Charg-
ingpint CS. 

 

Implementation 

As stated in D4.2 [201], the EV SoS must be designed to provide a friendly and 
convenient service to the users and, at the same time, profitable to the provider. 
Planning and scheduling is of paramount importance for both energy providers 
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and users: as an example, on one side, if the charging requests are spread during 
the day, there will be limited and/or controlled load peaks on the grid to be han-
dled, thus the energy price may not vary abruptly over time and prioritized con-
sumers (e.g., police and fire-fighter vehicles, ambulances, etc.) will be easily han-
dled by the charging station operators. On the other hand, knowing the energy 
prices and available time slots, the users will be able to carefully plan the recharg-
ing operation while keeping the service affordable. 

A typical scenario would be as follows: EVs travel through a wide area, where 
several charging station operators provide recharging services, by means of charg-
ing points. Drivers in need of power for their EV can provide the expected charg-
ing context (duration, power, etc.) to the e-mobility service in order to receive in-
formation regarding recharging time slots and associated energy prices of each 
charging station operator. A load management optimizer that cooperates with the 
charging station operators carries out planning and scheduling activities. The in-
terested driver will then choose one of the slot-price pair possibility for recharging 
its vehicle, will be allowed to plug-in its EV at the charging point of the chosen 
charging station operator during the reserved time slot only, and the amount due 
will be based on the energy consumption times the booked price. At the end of the 
recharging operation, the driver receives a billing invoice. 
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Figure 8-103: EV Charging SoS 

With this scenario in mind, and using the AMADEOS tooling, we designed a 
SoS (shown in Figure 8-103, and described in D4.1 [200]) based on a typical EV 
rollout, in particular based on the desired situation in the Netherlands, based on in-
terviews and workshops with experts, both in the EAB and Grid operators. This 
SoS was modelled using the Blockly tool (this is described in D4.2 [201]) and a 
simulator was generated from the tool. We combined this simulator with a simula-
tion toolkit called SimPy and performed a number of experiments based on the 
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scenarios defined in D4.2. This served to both validate the simulator as well as de-
termine if such a simulation could be used to determine and validate possible fu-
ture designs of the EV charging network, based on varying user and SoS behav-
iour. 

The simulation is built using “SimPy” and uses fixed time slots for reserva-
tions. At the moment these slots are 15 minutes long and start on 0, 15, 30 and 45 
minutes past each hour. Each Driver that wants to charge will attempt to make a 
Reservation for a Charging Point (via the E-Mobility Service) at a CSO. Because 
of these timeslots, a Reservation will only begin at the start of the next timeslot 
and will last for a number of time slots as calculated by the CSO. After the re-
served time has passed, the Driver is expected to Plug Out its EV from the Charg-
ing Point, though he can do so at an earlier point in time (if the EV is already fully 
charged, or the driver otherwise decides to do so). 

Below, we summarize some of the results received. These are preliminary re-
sults, and as the data retrieved from the simulator is extremely extensive, we iden-
tify only some of the more interesting aspects. In general, we found the tooling to 
be extremely useful, and, for example, several emergent behaviours were discov-
ered in the data that, if proven true, would lead to significant challenges to the 
electrical grid. Furthermore, the aspects that the SoS was designed to test (primari-
ly security and dependability) were successfully tested and validated. We plan to 
exploit these results in two manners: First to follow up on the results and perform 
more experiments after the end of the project, leading to publications, and second-
ly both Thales and ENCS are planning to make the simulator code available 
online, so other researchers can validate and use the same simulation code. 

 
Results from the EV Charging scenarios 
 
The first scenario that we will discuss is a usage case where EV drivers do not 

immediately remove their vehicles from the charging points for a period of time. 
This means that those drivers who do not remove their EVs are acting badly – 
blocking charge points from other users. We chose a fixed period of four hours for 
this behaviour in this scenario, and the simulation took place over a period of 24 
hours (simulated time via SimPy). There were 1000 EVs present and 500 Charg-
ing Points (CPs). In this simulation, market costs did not cause a significant 
change in behaviour. The EVs were set to desire a charge of 70%, with a “must 
charge” threshold at 20%. Four states are defined in the simulation: Charging, 
Driving, Idling and Waiting. Charging and Driving are self-evident. Idling was pe-
riods of time when the EV was not in use (due to lack of driver need). Waiting 
was an undesirable state where an EV was waiting for a CP to become available. 
In order to stress the Grid and the SoS as a whole, Idling was the least desired 
state of the three normal states – the chance of an EV idling was set to 10%. Final-
ly, note that the drivers, cars and initial state were randomly assigned and a period 
of fifteen minutes was allowed to let the state settle. This can be seen in an initial 
jump in all of the graphs. 
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Figure 8-104: Initial state where no drivers act badly 

In Figure 8-104, you see four basic types of behaviour: Driving, Idling, Waiting 
(for a free Charging Point) and Charging. The numbers on the X-axis reflect the 
number of EVs in that state. In this scenario, (and in all our tests, due to global 
variables that were set) the initial state was close to optimum for each of the EVs, 
with around 70% driving and 30% charging. The initial spike in charging (around 
10000 seconds into the simulation) is due to the initially driving EVs falling below 
the 20% lower threshold and requiring a charge. You can then see that after 
around 20000 seconds, the system reaches a steady state with around 70% driving, 
20% charging and 10% idle. Note also that there is an insignificant number of EVs 
in the waiting state. 

 

 

Figure 8-105: 20% of EVs acting badly 

Figure 8-105 shows the first set of EVs acting badly – in this case, 20% delay 
their disconnection from the CPs and block other drivers from using them. This 
scenario shows the resilience of the SoS to such behaviour – there is again the 
same spike in charging after around 10000 seconds, and a minor amount of EVs 
waiting, but again after around 20000 seconds, the SoS reaches a relatively steady 
state, although with more EVs charging (around 5% more) at any given time (and 
consequently 5% less driving) that the optimal case. One last thing to note is that 
all CPs are in use during the initial spike. 
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Figure 8-106: 40% of EVs behaving badly 

In Figure 8-106, the consequence of bad actors is more apparent. Now, there is 
a noticeable issue for EV drivers during the initial spike in usage, with a period of 
time when all of the CPs are in continual use (for around 15000 seconds) and there 
are some drivers constantly waiting for service. However, the SoS is still very re-
silient to this issue – the number of waiting drivers is still very low (maximum 
was 16 drivers). Furthermore, the average wait time was around 600 seconds (ten 
minutes). Again, this shows the resilience of the SoS to malicious events. Howev-
er, again there is a drop in number of active drivers when the SoS reaches a steady 
state of another 8%, with the number of charging drivers up by the same amount.  

 

 

Figure 8-107: 60% of EVs behaving badly 

Finally, in Figure 8-107, the first significant effects of bad behaviour can be 
recognized, while 60% of drivers are acting badly. First, the period where the ini-
tial spike causes full usage of all CPs, and consequently up to 100 EVs waiting for 
service at the worst point. Despite this, there is another drop in active drivers when 
the simulation reaches the steady state – down to around 58% from a high of over 
70% in the control simulation.  
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Figure 8-108: 80% of EVs behaving badly 

In Figure 8-108, we can see some significant changes in the usage profile of the 
SoS due to the bad behaviour of the EV drivers. In this scenario, during the initial 
spike, there is now a period of around 35000 seconds (nearly 10 hours in total) 
where all of the CPs are in constant use. This is also reflected in the more than 200 
EVs waiting at one point. In this scenario, we now see less than 50% of the EVs 
driving when the SoS reaches a steady state, with roughly the same number charg-
ing as driving. This means that 20% of the EVs have changed from driving to 
charging since the control simulation. However, this is taking place where only 
20% of drivers are behaving correctly and yet the SoS remains (for the most part) 
available for use. 

 

 

Figure 8-109: 100% of EVs behaving badly 

In the final simulation, shown in Figure 8-109, every driver is now acting bad-
ly. In this case, the effect on the SoS is dramatic and relatively catastrophic. In this 
simulation, for essentially the entire day, all of the CPs are in constant use, the 
number of drivers is down to less than 50% and for large periods of time, EVs are 
waiting to charge (more than 30% at the peak).  

Market simulation and Energy Usage 
These simulations were intended to determine the reaction of the SoS to mali-

cious behaviour on the part of the drivers. The results described above shows how 
the SoS behaves from the perspective of the EV drivers. However, there is another 
important aspect that can also be studied: the reaction of the SoS from the perspec-
tive of the Grid. This was calculated from the perspective of the TSO (see Figure 
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8-103). The mission of the SoS is, basically, to ensure the stability of the Grid, and 
to ensure that large changes in energy generation are not required. In order to 
achieve stability, a number of measures were enacted. First, the CPOs (there are 5 
independent CPOs in this simulation) received a wholesale price from the DSO, 
via the market, based on: 

1. Forecasted demand (by the DSO) for the next 24 hours, in fifteen minute 
intervals, and  

2. How much energy they predicted that they required also in next 24 hours, 
in fifteen-minute intervals.  

The goal of a CSO was, using the market price, to ensure they did not stray too 
far from their forecasted need. Prices were set by the DSO based on five energy 
bands – the price per unit was set based on the band that the CSO requested, re-
gardless of the actual energy used in reality. The ideal situation for a CSO was to 
get as close to the top of a band, without exceeding it, as the cost per unit would 
jump, and make the per unit cost more expensive. Therefore, if a CSO discovered 
that (based on EV reservations) that they were going to jump up to the next band, 
their behaviour would be to attempt to get many more customers, by reducing the 
customer price. We used this aspect to drive competition and the response from 
the domain experts was that this is indeed a desired future scenario. This aspect 
proves the evolutionary promise of an AMADEOS SoS design.  

 
 

 

Figure 8-110: Total network load with 0% bad behav-
iour. 

Based on the same simulations as shown in Section 0, Figure 8-110 shows the 
reaction of the Grid to the EV charging scenario where no bad behaviour is pre-
sent. The requests come in fifteen-minute intervals, and this can be seen in the 
jagged lines that are present in the graphs. In this instance, there is again an initial 
jump, after the 15 minutes settling down period and then a peak and trough after 
around 18000 seconds. This is again due to the jump in number of users charging 
at the start of the simulation based on their initial charge state and desire not to fall 
below 20% / attain 70% charge. The interesting outcome is the narrow band (be-
tween 40MWh and 60MWh) that the Grid eventually stabilizes towards. Future 
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research will definitely consider running such experiments over several weeks of 
simulated time and integrating a typical Grid usage pattern into the demand12. 

 

 

Figure 8-111: Total network load with 40% bad behav-
iour 

The 20% (not shown) and 40% bad behaviour results (see Figure 8-111) show 
how the bad behaviour is increasingly reflected in the variations of load over time. 
The intermediate results (60% and 80% bad behaviour) show increasingly wide 
variations, cumulating to the wide swings shown in Figure 8-112, where all of the 
drivers are again behaving badly. These variations once again show how malicious 
actors will cause significant issues for Grid operators. 

 

 

Figure 8-112: Total network load where 100% of the 
drivers are acting badly 

  

                                                           
12 As discussed in D4.2, the simulation was not run in concert with the MV case 

study. 
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8.2.3 Household Management Case Study 

Mission 

The goals of the SoS are somewhat similar to the ones of the EVC: allow users, 
i.e. households, to use home appliances (e.g., flexible or general loads) at a con-
venient price while properly scheduling the energy consumption and distribution 
to improve revenues for energy providers with the constraint of keeping a bal-
anced load on the grid. 

During a normal scenario, a user wants to activate one or more home applianc-
es, thus requiring for energy from the grid. Energy requirements are managed by 
an energy management gateway every time a person wants to activate home appli-
ances. The energy management gateway handles the scheduling of energy con-
sumption/provision within the household and sends requests to the coordinator to 
update consumption/production setpoints. The coordinator continuously updates 
the energy setpoints according to the grid energy availability. The actors need to 
be time synchronized to provide consistent information to the coordinator for 
scheduling and planning actions. Furthermore, some home appliances should be 
energy prioritized with respect to others (e.g., refrigerators, air conditioning sys-
tems, etc.). 

Conceptual level 

In this section we report the result of the activities performed at the conceptual 
level for the Household management case study. For each viewpoint we list the 
most representative identified SoS requirements defined taking as input the SoS 
meta-requirements [198]. Though, the requirements come from meta-
requirements, the traceability of the full set of requirements on meta-requirements 
is not provided. Some of the representative requirements are given below (the full 
set of requirements can be found [201]). 

Viewpoint examination 

The objective for which the SoS is designed for is to allow end customers (i.e., 
households) to interact with the coordinator in order to request the activation of 
some particular appliance. 
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Architecture viewpoint 

The HHM consists of a subset of the CSs of the SoS “Household scenario” de-
scribed in Chapter 2.2 of [201]. In particular: 

 

Name Description 

Coordinator 

An entity that receives energy prices and collects energy 
flexibilities. It applies optimization functions in order to 
shift power consumption and generation when energy pric-
es are favorable. 

Energy Man-
agement Gateway 

(EMG) 

It is any device/software or group of them installed in the 
customer facilities that allows the visualization of metro-
logical information, price and warning signals by the cus-
tomer and has the capability to take action (e.g. reschedul-
ing of power consumption/production) automatically or 
after approval by customer on any home appliances. 

Smart Meter 
(SM) 

A smart meter providing production and consumption val-
ues. May also enable advanced sensor facilities providing 
active/reactive production, frequency monitoring, voltage 
monitoring, etc. 

Distributed En-
ergy Resource 

(DER) 

DER devices are generation and energy storage systems 
that are connected to a power distribution system. 

Home Automa-
tion Device 

Device providing additional functionalities enabling con-
sumers to interact with their own environment (e.g., a 
smart thermostat). 

Flexible Load Load that can be controlled by the EMG (e.g., a smart 
washing machine). 

Local Network 
Access Point 

(LNAP) 

Provides the WAN connection for upload of the metering 
data. 

Display Main Human Machine Interface (HMI) between the 
householder and smart services. 

Table 8-7: Constituent Systems for Household case study 

High level representation of HH Management interactions 
 
A pictorial view of the HH management SoS is reported in Figure 8-113. 
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Figure 8-113: Household Management SoS architecture 

 
Figure 8-113 shows a pictorial view of the temporal sequence 1-7 comprising, 

for each step, the involved systems and connections from Figure 8-102. 
In the following, the steps performed in a nominal household scenario are de-

scribed. Each numbered step corresponds to a specific, adimensional, time instant 
at which the corresponding actions are carried out. 

1. A person wants to activate the Flexible Load appliance. The Flexible 
Load sends an energy request to the EMG. 

2. The EMG sends an aggregated energy request to coordinator. 

3. The Coordinator decides whether to accept or reject the EMG request by 
updating energy setpoints according to the energy availability on the grid. 

4. According to the Coordinator reply message, the EMG sends an OK/KO 
message to Flexible Loads Home Automation Devices and DERs. 

5. In the case of an OK message, the Flexible Load is activated. 

6. The SM measures the energy consumption and the resultant load for, re-
spectively, billing operations and smart grid power flexibility purposes. 
Load information are forwarded to the EMG. 

7. When the Flexible Load ends its tasks, the SM sends the total energy 
consumption and billing invoice to the user through the Display. 
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Dynamicity viewpoint 

The aforementioned case study is therefore very dynamic, in the sense that the 
service provided by the electrical grid is always changing, according to the cus-
tomer requests for home appliances. 

Evolution viewpoint 

Due to technological advances and new customer needs, the EMG should have 
the capability of easily integrate new HMIs, automation devices and loads. As an 
example, an householder may want the same interaction provided by the in-house 
Display on his smartphone and to use it not only while connected to the LNAP, 
but also when outside to schedule a washing machine while connected to the mo-
bile carrier. 

Multicriticality viewpoint 

Up to this point, we have described the case study assuming all the appliances 
with the same criticality. However, an HH consists of a large variety of possibly 
interconnected (net-centric) appliances providing different kind of services and, 
thus, characterized by different priority and criticality levels.  

8.2.4 Medium voltage control SoS Case Study 

Mission 

The mission is to provide charging services to EV drivers and to provide ener-
gy-related services to households, but also to highlight interesting emergent phe-
nomena that would not arises within the single SoS improving their interoperabil-
ity with predictable, dependable behaviour avoiding negative cascading emergent 
effects.  

Conceptual Level 

The Medium Voltage energy distribution infrastructures are needed to inter-
connect the EV-Charging SoS and HH Management SoS and consist of the fol-
lowing set of CSs: 

 



276  

Name Description 

DER Device able to produce energy in the grid. 

Battery Storage Battery used to store energy produced by DER 

Smart Meter 

A smart meter providing production and consumption 
values. May also enable advanced sensor facilities provid-
ing active/reactive production, frequency monitoring, 
voltage monitoring, etc. 

Meter Aggrega-
tor 

It is in charge of collecting metering data from the su-
pervised smart meters. 

LMO 
The main software component connected to the grid 

which is in charge of providing power constraints and en-
ergy set points to the CSO. 

DMS 

A system which provides applications to monitor and 
control a distribution grid from a centralized location, typ-
ically the control centre. A DMS typically has interfaces to 
other systems, like a GIS (Geographical Information Sys-
tem) or an OMS (Outage Management System). 

Information ser-
vices 

Commonly available services provided by a third party. 
E.g. weather information needed to predict PV production. 

Substation 
Substation system implementing the automation se-

quences and the control functions of interfacing process 
level control devices 

Ancillary Ser-
vices 

Information services to TSO (e.g. extreme increment or 
decrement of the electricity frequency). 

TSO Operating centre for supervising critical regions of the 
transmission grid 

Market Set of services designed to evaluate the Energy price. 

Aggregator 

Is designed to provide information from the grid to the 
Market. The Aggregator is able to aggregate information 
incoming from sources reducing complexity and redun-
dancy. 

Table 8-8: MV Energy distribution Constituent Systems 

This section describes at logical level the infrastructures related to the Medium 
Voltage energy distribution (Figure 8-114) and the examples of emergent phe-
nomena that could be coming from the interoperability of Ev-Charging SoS and 
HH Management SoS. 
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In the following, the steps performed to manage the energy distribution are de-
scribed. 

 
1. Smart meters (SM) are devices connected to each prosumer; 
2. SM collects and send information (also on demand) about power con-

sumption/generation to the Meter Aggregator; 
3. The Meter Aggregator sends the aggregated measures to the LMO (SM 

can provide information about energy consumption/generation to the 
EMG and the home Display); 

4. The LMO receives information about Substation Monitoring Data, 
Household forecasted energy consumption generation and EV charging 
schedule; 

5. The Distribution Management System (DMS) updates periodically LMO 
information for high level operation objectives, changes in data models 
(e.g. grid topology, newly connected charging station); 

6. Information services updates LMO with environmental information (e.g. 
weather data) 

7. The LMO sends periodically updates on energy consumption/generation 
set points to EV CSO, Household Coordinator, Storage, DER, Substa-
tions; 

8. The DMS updates periodically Ancillary Services with supporting infor-
mation (e.g. extreme increases or decreases in electricity frequency); 

9. Ancillary services forward the info to the Transmission System Operator 
(TSO); 

10. The TSO provides info to the Market for setting the energy price; 
11. The price of the energy can be requested by aggregators and other energy 

dealers (e.g. E-mobility); 
12. The Market provides energy price to the Aggregator, that forwards the 

price to the energy dealers and to controllers (i.e. CSO, Coordinator, 
EMG), 

13. Information about the demand and the generation Flexibilities are pro-
vided to the aggregator by Storages, DERs, CSO and EMG. 
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Figure 8-114: Architectural view of Medium Voltage 
Control (3). 

Viewpoint Examination 

Consider now the case where the owner of the HH has the capability of storing 
energy from DER and also owns an EV. As described in Section 8.2.1, their EV 
can be charged at a CSO by means of a CP, the energy used in this process is gen-
erally bought by the CSO from the energy market and sold at a specific price per 
each kWh (plus power grid fees including taxes). 
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Figure 8-115: The energy used to recharge an EV is 
bought from the market 

 

The CSO may also buy energy directly from the HHs for recharging EVs, like, 
e.g., when the HH energy price is cheaper than the one provided by the market or 
for compensating effects of some energy-related service disruptions (e.g., discon-
nected energy generators). In this case the total energy price would be the energy 
cost from the HH plus the power grid costs with taxes. 



280  

 

Figure 8-116: The CSO buys energy from the HH. 

 
From the above scenario, the below beneficial emergence scenarios were iden-

tified: 
 
Consider now the scenario in which the owner of the HH wants to recharge its 

EV to a CSO. It is evident that the energy needed to recharge the EV can be 
bought and provided, by the CSO, form either the energy market or HHs, includ-
ing the one owned by the driver of the EV. 
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Figure 8-117: The CSO can buy energy from either the 
market or HHs 

 
The HH owner can check the energy price, relative to the energy market, of the 

CSO and decide whether to recharge its EV with such energy or to use the energy 
stored at home using DER, i.e. the HH owner can compare the price of the energy 
stored at home with the one sold by the market and decide accordingly.  
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Figure 8-118: The HH owner can check and compare the 
price of the energy stored at home with the one of the market 

 
 
Suppose that the energy on the market is more expensive than the one stored at 

the HH. The HH owner will then decide to use its own stored energy to recharge 
its EV, enabling the energy transmission from the house to the CSO. Using the en-
ergy stored at home will cost the owner to pay only the provision of power grid 
including taxes (the price may be related to the total power grid usage time or to 
total transmitted kWh) (see Figure 8-117). 
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Figure 8-119: The HH owner decide to recharge its EV 
with the energy stored at home 

 
These new emergent behaviors clearly arise with the interconnection and the 

available communications between smart constituent system of a SoS, which the 
AMADEOS framework is able to capture and describe. This way the possible 
large variations in the network load could be attenuated by a suitable adaptation of 
the prices. However, if this adaptation process is not correctly implemented (for 
instance, if the adaptation is too quick and steep), then undesirable global phe-
nomena, such as oscillations of prices and load, could take place. 

Time viewpoint 

For identifying some of the time aspects, we describe two scenarios that extend 
the previous case studies with descriptions of some systems, processes, and inter-
actions where the existence of an accurate global time is essential for measuring 
and controlling the state of the power grid.  

 
Scenario 1: Maintaining the power phasor parameters 
 
The power phasor is defined by the amplitude, frequency, and relative phase of 

the electric current or voltage in a power line. As the load in the power network 
varies, the braking momentum of the power generators increases, so the genera-
tors’ rotors slow down. All variations in network load lead thus to variations in 
power frequency. Traditionally, these variations were compensated locally, by ap-
plying the load measurement signals to an Automated Generator Control (AGC), 
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which basically is an electro-mechanical governor that compensates for the chang-
es in braking momentum. The AGC signals are collected from different points in 
the network, and forwarded to large production facilities [202]. In order for the 
AGC to work efficiently, the following requirements must be satisfied: 
- Timely measurements of network loads. 
- Timely adjustment of voltage controllers. 

The adjustment signals for AGC are generated once every 2 to 4 seconds, so 
the transmission time requirements are not very strict [202]. 

Another phenomenon that alters the power phasor is the reactive power pro-
duced by the reactance (i.e. the reactive part of impedance) of a load. A capacitive 
load will make the voltage lag behind the current, whereas an inductive load will 
make the current lag behind the voltage. Although the reactive power does not dis-
sipate energy, it affects the efficiency of power transmission to the consumers, so 
this too must be controlled, such that the reactive angle ϕX is kept as close as pos-
sible to zero. 

 

 

Figure 8-120: Power triangle 

 
To compensate for reactive power introduced in the network primarily by mo-

tors and transformers, capacitive loads (capacitor banks) can be switched on or off 
by control units. Unlike the AGC, which acts centrally at the production facility, 
the reactive power control can be distributed across the grid [203]. In the 
AMADEOS scenarios this can be achieved by the LMO. 

In a purely reactive approach the individual measurements by SMs are collect-
ed by LMOs (via the EMGs or CSOs), which try to compensate for load variations 
using the locally available power reserves and by re-scheduling, when possible, of 
some loads. When these local measures are not sufficient, appropriate AGC sig-
nals are transmitted to the power generation facilities. Of course, particular im-
plementations could include additional aggregation layers, but those do not change 
significantly the problem. 

Concerning the reactive power in the grid, the LMOs try to locally compensate. 
In case when the local capacitor banks do not suffice, a signal must be broadcasted 

Active (“true”) power 
P = RI2 

Reactive power 
Q = XI2 

ϕX 

Apparent Power 
S = UI 
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(Reactive Load Control - RLC) to request additional capacitive loads be switched 
on by other LMOs.  

Overall, the load measurement and control architecture includes a number of 
geographically distributed LMOs and one local AGC for each of the power plants 
(see Figure 8-120). 

 

 

Figure 8-121: Load measurement and control architec-
ture 

 
The effectiveness of this reactive approach is limited, due to the delays in the 

transmission of AGC signals and the time required for adjustments. A more ad-
vanced approach (see Figure 8-121) tries to predict the variation of the load based 
on SCADA measurements from various places in the network, and a forecasting 
of load variations [204]. The prediction function is based on a sampling of the real 
load over some past time interval.  

Although the AGC and reactive load balancing are still slow (in the order of 
seconds), a good estimation of the current state of the system, as well as the load 
prediction, require better time accuracy than in the previous case, and global time 
awareness. Indeed, if two consecutive measurements from a given location in the 
power grid arrive in reverse order, then the detected variation trend is reversed. If 
this reversal occurs randomly over a large number of measurements, then the 
whole predictive load balancing has, on average, no effect. In a worst-case scenar-
io the order of a sequence of measurements can be altered such that the variations 
are amplified, leading potentially to the activation of circuit breakers on some 
network segments. 
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Figure 8-122: Load measurement and predictive control 
architecture 

Specific timing requirement can be identified for the two cases: 
 
A. Predictive balancing of active loads – in this case we assume that LMOs 

compete with each other, so they are not willing to use their local energy reserves 
to balance the load at other LMOs. In this case AGC messages are sent to the 
power plant to increase its power output. Similarly, when the load decreases and 
LMO’s storage capacity is reached, another message is sent to decrease the gener-
ators’ power output. Obviously, these are sent asynchronously by all LMOs. In 
order to ensure a proper ordering of these events at the local AGC Message 
Queue, all AGC messages must be time-stamped. The time difference between the 
local clocks that provide the time stamps must be smaller than the sampling inter-
val13 of the Active Load Prediction (ALP) function.  

B. Predictive balancing of reactive loads – in this case we assume that LMOs 
help each other since the cost of switching capacitor banks is low. A simple proto-
col could be defined as follows: 
- When a LMO needs additional capacitive reactance it broadcasts a RLC re-

quest message (RLC+), and when this is no longer needed it broadcasts a 
RLC-.  

- All RLC messages from different LMOs get stored in the Distributed RLC 
Queue.  

- All LMOs poll the queue and: 
o If the first message is RLC+ and the polling LMO has the disposable 

capacitance requested by that message, it removes this message in 
the queue and then switches on an appropriate capacitance. 

                                                           
13 Note that when the guaranteed transmission time for the AGC messages is 

smaller than the ALP sampling interval, then no time stamping (and thus no global 
time) is needed. 
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o If the first message is RLC- and the polling LMO has more allocated 
capacitance than that requested by the message, it removes this mes-
sage and switches off the appropriate capacitance. 

Of course, more elaborated and efficient protocols can be implemented for pro-
cessing more messages at once, but for the purposes of this study this is sufficient. 

Since each LMO has a local load predictor, the polling of the queue needs to be 
done at the same rate as the same sampling rate of the load prediction function. 
For a correct functioning of these predictors, the messages must be correctly or-
dered based on time stamps, as in the case of AGC. Additionally, the polling can-
not be done completely asynchronously since this could lead to race conditions 
due to the distributed queue. 

The time requirements resulting from these two cases are: 
1. The maximum synchronisation error should be smaller than the sampling 

interval of the load prediction function; otherwise, two messages arriving 
in reversed order could indicate a wrong trend (cases A and B) 

2. The polling of the queue should be done at specific time slots allocated to 
each LMO (time-division multiplex); the maximum synchronisation error 
(i.e. difference between local clocks) should be smaller than the time slot 
minus the time required for processing the queue (case B) 

 
Scenario 2: Forensic analysis of disruption events 
 
When a disruption occurs in a network, it may lead to cascading effects (Figure 

8-123). In case of complex networks of producers and consumers it is not always 
easy to identify the original event that initiated the cascaded failures. However, 
this information is crucial when network design needs to be improved to increase 
the resilience of the network, or when the network operators are liable for the 
quality of the services they provide.  

To cope with this requirement each circuit breaking event could be logged by 
the breakers’ control computer. This way a chain of events can be reconstructed 
and the root cause identified. However, given the high speed in which these events 
occur14, the temporal order of the logged events may be distorted by the differ-
ences in the local clocks used for time stamping. For this reason, it is necessary 
that the synchronization error between local clocks is kept below the breaking 
time of the fastest breaker plus the propagation time of the disruption. This is il-
lustrated in Figure 8-122, where a time value t0 corresponds to three different 
moments in three circuits whose local clocks are not synchronized. If the delay be-
tween two local clocks is too large, as it is the case for circuits i and j, then the 
events cannot be ordered correctly.  

                                                           
14 A typical reaction time for modern equipment is 1/8th of a 20ms cycle [205] 
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Figure 8-123: Cascaded propagation of disruption and 
time stamping of breaking events; in nominal terms, 

𝒕𝒕𝟎𝟎𝒊𝒊 = 𝒕𝒕𝟎𝟎𝟎𝟎 = 𝒕𝒕𝟎𝟎𝟎𝟎 

 
Finally, for both scenarios the maximum transmission times for all the messag-

es related to events occurring in the smart grid must be guaranteed. If this is not 
the case, then most of the functions described here cannot be implemented.  

8.3 Conclusion 

This chapter has shown how a realistic case study can be modeled in the 
Blockly tool and directly simulated. A high-level view of the entire model can be 
seen using the model query tool of supporting facility to select all blocks. Below is 
the graph of the model consisting of elements and relationship between each 
blocks. The diagram shows the complexity of the full model. 
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Figure 8-124: The full SmartGrid model generated using 
the model query: “return true;” (i.e.: select all blocks). 

Here, the triangles represent systems, star represents the 
SoS and other blocks are represented by circles. The color of 

the blocks is the same as the one in the Blockly model. 

 
Modeling complex and pervasive infrastructures as the one used as case study 
clearly highlights how the support of a precise conceptual model and of specific 
tools for its instantiation is fundamental for a sound and comprehensive codifica-
tion of the various properties of the whole. At design time the identification of 
causal loop in the lower levels of the hierarchy, enabled by the support for simula-
tion through model execution, is a mandatory step to identify possible emergent 
behaviors at the higher levels, that may lead, also in future evolution of the system 
of systems, to a violation of system requirements. A correct representation of the 
environment is necessary. Global time Awareness and monitoring are fundamental 
to early detect and to contain the effect of detrimental emergence phenomena at 
run time. The main benefits of the AMADEOS approach can be easily seen in the 
results from the simulations: The AMADEOS architectural framework and associ-
ated tools allow an SoS architecture to be comprehensively designed and a simula-
tion extracted that can be tested. This allows system architects to quickly test hy-
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pothesis regarding future systems and determine what attributes will lead to ad-
vantageous or poor results. 
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Glossary 

Note: All terms that are defined in this glossary are put in italics on first use in a 
chapter. 
 
Absolute Timestamp 2 An absolute timestamp of an event is the timestamp of this 

event that is generated by the reference clock. 
Acceptance Test 7 A test that determines if a state in the problem space is a 

member of the solution set. 
Access Control 8 Access control is concerned with providing control over 

security critical actions that take place in a system. Provid-
ing control over actions consists of explicitly determining 
either the actions that are permitted by the system, or ex-
plicitly determining the actions that are not permitted by 
the system. 

Access Control Mo-
del 

8 An access control model captures the set of allowed actions 
as a policy within a system. 

Accuracy 2 The accuracy of a clock denotes the maximum offset of a 
given clock from the external time reference during the 
IoD, measured by the reference clock. 

Acknowledged SoS 1 Independent ownership of the CSs, but cooperative agree-
ments among the owners to an aligned purpose. 

Action 4 The execution of a program by a computer or a protocol by 
a communication system. 

Action Sequence 4 A sequence of actions, where the end-signal of a preceding 
action acts as the start signal of a following action. 

Activity Interval 4 The interval between the start signal and the end signal of 
an action or a sequence of related actions. 

Actuator D An actuator is an interface device that accepts data and 
control information from an interface component and real-
izes the intended physical effect at its placement in the 
physical environment. 

Agility (of a system)  Quality metric that represents the ability of a system to ef-
ficiently implement evolutionary changes. 

Architectural Style 1 The set of explicit or implicit rules and conventions that 
determine the structure and representation of the internals 
of a system, its data and protocols. 

Arrival Instant 5 The instant when the first bit of a message arrives at the re-
ceiver. 

Artifact 1 An entity that has been intentionally produced by a human 
for a certain purpose. 

Atomic Action 4 An atomic action is an action that has the all-or-nothing 
property. It either completes and delivers the intended re-
sult or does not have any effect on its environment. 
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Attribute 1 A characteristic quality of an entity. 
Authentication 8 The process of verifying the identity or other attributes 

claimed by or assumed of a subject, or to verify the source 
and integrity of data. 

Authorization 8 Authorization is the mechanism of applying access rights 
to a subject. Authorizing a subject is typically processed by 
granting access rights to them within the access control 
policy. 

Authority B The relationship in which one party has the right to demand 
changes in the behavior or configuration of another party, 
which is obliged to conform to these demands. 

Autonomous System 1 A system that can provide its services without guidance by 
another system. 

Availability 8 Readiness for service. 
Behavior 4 The timed sequence of the effects of input and output ac-

tions that can be observed at an interface of a system. 
Bottom Up Design A A hierarchical design methodology where the design starts 

at the bottom of the holarchy or formal hierarchy. 
Business Value 9 Overarching concept to denote the performance, impact, 

usefulness, etc. of the functioning of the SoS. 
Capability 4 Ability to perform a service or function. 
Cascade Effect 6 A cascade effect exists, if in a system with a multitude of 

parts at the micro level a state change of a part at the mi-
cro-level causes successive state changes of many other 
parts at the micro level such that the cumulative effect of 
the totality of these state changes results in a novel phe-
nomenon. 

Causal Loop 6 A causal loop exists, if the emergent property at the macro-
level causes a change of the state of the parts at the micro-
level. 

Causal Model 9 Abstract model describing the causal dependencies be-
tween relevant variables in a given domain. 

Causal Order 2 A causal order among a set of events is an order that re-
flects the cause-effect relationships among the events. 

Channel D A logical or physical link that transports information 
among systems at their connected interfaces. 

Channel Model D A model that describes effects of the channel on the trans-
ferred information. 

Checked Message  A message is checked at the source (or, in short, checked) 
if it passes the output assertion. 

Ciphertext 8 Data in its encrypted form. 
Clock 2 A (digital) clock is an autonomous system that consists of 

an oscillator and a register. Whenever the oscillator com-
pletes a period, an event is generated that increments the 
register. 
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Clock Ensemble 2 A collection of clocks, not necessary in the same physical 
location, operated together in a coordinated way either for 
mutual control of their individual properties or to maximize 
the performance (time accuracy and frequency stability) 
and availability of a time-scale derived from the ensemble). 

Collaborative SoS 1 Voluntary interactions of independent CSs to achieve a 
goal that is beneficial to the individual CS. 

Communication Ac-
tion 

4 An action that is characterized by the execution of a com-
munication protocol by a communication system. 

Communication Pro-
tocol 

5 The set of rules that govern a communication action. 

Compatibility (full, 
Itom) 

D The Itom that is sent by the sender is received by the re-
ceiver without modification. 

Component 1 A subsystem of a system, the internal structure of which is 
of no interest. 

Computational Ac-
tion 

4 An action that is characterized by the execution of a pro-
gram by a machine. 

Concept 1 A category that is augmented by a set of beliefs about its 
relations to other categories, i.e., existing knowledge, is 
called a concept. 

Concise State 3 The state of a system is considered concise if the size of the 
declared ground state is at most in the same order of mag-
nitude as the size of the system's largest input message. 

Confidentiality 8 The absence of unauthorized disclosure of information. 
Configuration Inter-
face (C-Interface) 

D An interface of a CS that is used for the integration of the 
CS into an SoS and the reconfiguration of the CS's RUIs 
while integrated in a SoS. 

Connected Interface D An interface that is connected to at least one other interface 
by a channel. 

Connection Sys-
tem/Gateway Com-
ponent/Wrapper 

D A new system with at least two interfaces that is introduced 
between interfaces of the connected component systems 
in order to resolve property mismatches among these 
systems (which will typically be legacy systems). 

Consistency C The property of a set of entities that see the same data at 
the same time. 

Constituent System 
(CS) 

1 An autonomous subsystem of an SoS, consisting of com-
puter systems and possibly of controlled objects and/or 
human role players that interact to provide a given service. 

Constraint 7 A restriction in the problem space. 
Construct 1 A non-physical entity, a product of the human mind. 
Consume/Produce 
(CP) Paradigm 

5 At the sender, the communication system consumes the 
message from a sender queue and at the receiver the com-
munication system adds the received message to a receiver 
queue. 
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Context 1 The set of cultural circumstances, conventions or facts, and 
the time that surround and have a possible influence on a 
particular thing, construct, event, situation, system, etc. in 
the UoD. 

Context Compatibi-
lity 

D the same data (bit pattern) is explained in the same way at 
the sender and at the receiver. 

Context Incompati-
bility 

D the same data (bit pattern) is explained differently at the 
sender and at the receiver. 

Contract C Agreement between two or more parties, where one is the 
customer and the others are service providers. This can be a 
legally binding formal or an informal "contract". It can be 
expressed in terms of objectives. 

Control Flow 5 The flow of control signals when executing a protocol. 
Coordinated Clock 2 A clock synchronized within stated limits to a reference 

clock that is spatially separated. 
Correct Message  A message is correct if it is both timely and value correct. 
Critical Service 8 A critical service is the service of a system that requires a 

specific criticality level. 
Criticality 8 Criticality is a designation of the required criticality level 

for a system component. 
Criticality Level 8 The criticality level is the level of assurance against failure. 
Cryptography 8 The art and science of keeping data secure. 
Cyber-Physical Sys-
tem (CPS) 

1 A system consisting of a computer system (the cyber sys-
tem), a controlled object (a physical system) and possibly 
of interacting humans. 

Cyber Space D Cyber space is an abstraction of the Universe of Discourse 
(UoD) that consists only of information processing systems 
and cyber channels to realize message-based interactions. 

Cycle 2 A temporal sequence of significant events that, upon com-
pletion, arrives at a final state that is related to the initial 
state, from which the temporal sequence of significant 
events can be started again. 

Data 3 A data item is an artefact, a pattern, created for a specified 
purpose. 

Data Flow 5 The flow of the payload data of a message from a sender to 
the receivers. 

Datagram 5 A best effort message transport service for the transmission 
of sporadic messages from a sender to one or many receiv-
ers. 

Declared Ground 
State 

3 A declared data structure that contains the relevant ground 
state of a given application at the ground state instant. 

Decryption 8 The process of turning ciphertext back into plaintext. 
Dependability 8 The ability to deliver service that can justifiably be trusted. 
Design A The process of defining an architecture, components, mod-

ules and interfaces of a system to satisfy specified require-
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ment. 
Design for Evolution A Exploration of forward compatible system architectures, 

i.e. designing applications that can evolve with an ever-
changing environment. Principles of evolvability include 
modularity, updateability and extensibility. Design for evo-
lution aims to achieve robust and/or flexible architectures. 

Design for Evolution 
in the context of 
SoSs 

A Design for evolution means that we understand the user 
environment and design a large SoS in such a way that ex-
pected changes can be accommodated without any global 
impact on the architecture. 'Expected' refers to the fact that 
changes will happen, it does not mean that these changes 
themselves are foreseeable. 

Design for Testabili-
ty 

A The architectural and design decisions in order to enable to 
easily and effectively test our system. 

Design Inspection A Examination of the design and determination of its con-
formity with specific requirements. 

Design Walkthrough A Quality practice where the design is validated through peer 
review. 

Designer A An entity that specifies the structural and behavioral prop-
erties of a design object. 

Deterministic Beha-
vior 

4 A system behaves deterministically if, given an initial state 
at a defined instant and a set of future timed inputs, the fu-
ture states, the values and instants of all future outputs are 
entailed. 

Diagnosis Interface 
(D-Interface) 

D An interface that exposes the internals of a Constituent 
System (CS) for the purpose of diagnosis. 

Directed SoS 1 An SoS with a central managed purpose and central owner-
ship of all CSs. 

Downward Causa-
tion 

6 The phenomenon that some novel macro-level properties 
have causal powers to control the micro-level properties 
from which they emerge. 

Drift 2 The drift of a physical clock is a quality measure describ-
ing the frequency ratio between the physical clock and the 
reference clock. 

Duration 2 The length of an interval. 
Dynamicity of a sys-
tem 

9 The capability of a system to react promptly to changes in 
the environment. 

Emergence 6 A phenomenon of a whole at the macro-level is emergent if 
and only if it is of a new kind with respect to the non-
relational phenomena of any of its proper parts at the micro 
level. 

Encryption 8 The process of disguising data in such a way as to hide the 
information it contains. 

End Signal 4 An event that is produced by the termination of an action. 
Entity 1 Something that exists as a distinct and self-contained unit. 



296  

Entourage of a CPS 1 The entourage is composed of those entities of a CPS (e.g., 
the role playing human, controlled object) that are external 
to the cyber system of the CPS but are considered an inte-
gral part of the CPS. 

Environment of a 
System 

1 The entities and their actions in the UoD that are not part of 
a system but have the capability to interact with the system. 

Environmental Dy-
namics 

5 Autonomous environmental processes that cause a change 
of state variables in the physical environment. 

Environmental Mo-
del 

D A model that describes the behavior of the environment 
that is relevant for the interfacing entities at a suitable level 
of abstraction. 

Epoch 2 An instant on the timeline chosen as the origin for time-
measurement. 

Error 8 Part of the system state that deviated from the intended sys-
tem state and could lead to system failure. 

Error Containment 8 Error Containment prevents propagation of errors by em-
ploying error detection and a mitigation strategy. 

Error Containment 
Region (ECR) 

8 A set of at least two Fault Containment Regions (FCRs) 
that perform error containment. 

Established Rule 6 An observed consequence that often follows if a set of an-
tecedent conditions applies. 

Event 2 A happening at an instant. 
Event Variable 3 A variable that holds information about some change of 

state at an instant. 
Event-triggered (ET) 
Action 

4 An action where the start signal is derived from an event 
other than the progression of time. 

Evolution 9 Process of gradual and progressive change or development, 
resulting from changes in its environment (primary) or in 
itself (secondary). 

Evolutionary Per-
formance 

 A quality metric that quantifies the business value and the 
agility of a system. 

Evolutionary Step  An evolutionary change of limited scope. 
Evolvable architec-
ture 

A An architecture that is adaptable and then is able to incor-
porate known and unknown changes in the environment or 
in itself. 

Execution Time 4 The duration it takes to execute a specific action on a given 
computer. 

Explained Emer-
gence 

6 An emergent phenomenon that is observed at a macro level 
is explained emergent if a trans-ordinal law that explains 
the occurrence of the emergent phenomenon at the macro 
level out of the properties and interactions of the parts at 
the adjacent micro level is known (or has been formulated 
post facto). 

Explanation 3 The explanation of the data establishes the links between 
data and already existing concepts in the mind of a human 
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receiver or the rules for handling the data by a machine. 
Explicit Flow Con-
trol 

5 After having sent a message, the sender receives a control 
message from the receiver informing the sender that the re-
ceiver has processed the sent message. 

External Clock Syn-
chronization 

2 The synchronization of a clock with an external time base 
such as GPS. 

External Interface D A Constituent System (CS) is embedded in the physical 
environment by its external interfaces. 

Failure 8 The actual system behavior deviation from the intended 
system behavior. 

Failure Modes 8 The forms that the deviations from the system service may 
assume; failure modes are ranked according to failure se-
verities (e.g. minor vs. catastrophic failures). 

Fault 8 The adjudged or hypothesized cause of an error; a fault is 
active when it causes an error, otherwise it is dormant. 

Fault Containment 
Region (FCR) 

8 A Fault Containment Region (FCR) is a collection of com-
ponents that operates correctly regardless of any arbitrary 
fault outside the region. 

Fault Forecasting 8 The means to estimate the present number, the future inci-
dence, and the likely consequences of faults. 

Fault Prevention 8 The means to prevent the occurrence or introduction of 
faults. 

Fault Removal 8 The means to reduce the number and severity of faults. 
Fault Tolerance 8 The means to avoid service failures in the presence of 

faults. 
Flexible Architec-
ture 

A Architecture that can be easily adapted to a variety of fu-
ture possible developments. 

Flow Control 5 The control of the flow of messages from the sender to the 
receiver such that the sender does not outpace the receiver. 

Formal Problem 7 A problem in a well-defined problem space. 
Frequency Drift 2 A systematic undesired change in frequency of an oscilla-

tor over time. 
Frequency Offset 2 The frequency difference between a frequency value and 

the reference frequency value. 
Function 4 A function is a mapping of input data to output data. 
Gateway D A transformation system in cyberspace. 
General Law 6 An inevitable consequence that follows if a set of anteced-

ent conditions applies. 
Global Evolution  Global evolution affects the SoS service and thus how CSs 

interact. Consequently, global evolution is realized by 
changes to the Relied Upon Interface (RUI) specifications. 

Governance B Theoretical concept referring to the actions and processes 
by which stable practices and organizations arise and per-
sist. These actions and processes may operate in formal and 
informal organizations of any size; and they may function 
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for any purpose. 
Global Positioning 
System Disciplined 
Oscillator (GPSDO) 

2 The GPSDO synchronizes its time signals with the infor-
mation received from a GPS receiver. 

Granularity/Granule 
of a Clock 

2 The duration between two successive ticks of a clock is 
called the granularity of the clock or a granule of time. 

Ground State 3 At a given level of abstraction, the ground state of a cyclic 
system is a state at an instant when the size of the instanta-
neous state space is at a minimum relative to the sizes of 
the instantaneous state spaces at all other instants of the cy-
cle. 

Ground State Instant 3 The instant of the ground state in a cyclic system. 
Hierarchical Design A A design methodology where the envisioned system is in-

tended to form a holarchy or formal hierarchy. 
Holarchy 6 A structure where holons at one level interact horizontally 

to form a novel holon at the next higher level. 
Holdover 2 The duration during which the local clock can maintain the 

required precision of the time without any input from the 
GPS. 

Holon 6 A two-faced entity in a non-formal hierarchy that acts ex-
ternally at the macro-level as a whole while it is established 
internally by the interactions of its parts at the micro-level. 

Homogenous Sys-
tem 

1 A system where all sub-systems adhere to the same archi-
tectural style. 

Human-Machine In-
terface (HMI) Com-
ponent 

1 A component of the CS that realizes the human-machine 
interface of a CS. 

Idempotent Action 4 An action is idempotent if the effect of executing it more 
than once has the same effect as of executing it only once. 

Implicit Flow Con-
trol 

5 The sender and receiver agree a priori on a maximum send 
rate. The sender commits to never send messages faster 
than the agreed send rate and the receiver commits to ac-
cept all messages that the sender has sent. 

Incentive  Some motivation (e.g., reward, punishment) that induces 
action. 

Information 3 A proposition about the state of or an action in the world. 
Initial State 7 (i) an existing deficient state of affairs that needs a solution 

or (ii) a recognized opportunity that should be exploited or 
(iii) a formal statement of a question (academic story prob-
lem). 

Input Action 4 An action that reads or consumes input data at an interface. 
Input Data 3 Data that is used as an input to a system. 
Insidious Message  A message is insidious if it is permitted but incorrect. 
Instant 2 A cut of the timeline. 
Instantaneous State 3 The state space of a system is formed by the totality of all 
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Space possible values of the state variables at a given instant. 
Integrity 8 The absence of improper system state alterations. 
Interaction D An interaction is an exchange of information items at con-

nected interfaces. 
Interface 1 A point of interaction of a system with another system or 

with the system environment. 
Interface Physical 
Specification (P-
Spec) 

D Part of the CP-Spec that concerns the specification of ex-
changes with the physical environmental model. 

Interface Cyber-
Physical Specifica-
tion (CP-Spec) 

D Part of the interface specification that concerns interface 
properties at the cyber-physical interface layer. 

Interface Itom Speci-
fication (I-Spec) 

D Part of the interface specification that concerns interface 
properties at the informational interface layer. 

Interface Layer D An abstraction level under which interface properties can 
be discussed. 

Interface Message 
Specification (M-
Spec) 

D Part of the CP-Spec that concerns the specification of mes-
sages exchanged with the cyber space environmental mod-
el. 

Interface Model D The interface model contains the explanation of the data 
sent or received over this interface and thus establishes the 
Itoms. 

Interface Properties D The valued attributes associated with an interface. 
Interface Service 
Specification (S-
Spec) 

D Part of the interface specification that concerns interface 
properties at the service interface layer. 

Interface Specifica-
tion 

D The interface specification defines at all appropriate inter-
face layers the interface properties, i.e., what type of, how, 
and for what purpose information is exchanged at that in-
terface. 

Internal Clock Syn-
chronization 

2 The process of mutual synchronization of an ensemble of 
clocks in order to establish a global time with a bounded 
precision. 

Internal Interface D An interface among two or more subsystems of a Constitu-
ent System (CS). 

Interval 2 A section of the timeline between two instants. 
Interval of Discourse 
(IoD) 

1 The Interval of Discourse specifies the time interval that is 
of interest when dealing with the selected view of the 
world. 

Intra-ordinal Law 6 A new law that deals with the emerging phenomena at the 
macro level. 

Irrevocable Action 4 An action that cannot be undone. 
Itom 3 An Itom (Information Atom) is a tuple consisting of data 

and the associated explanation of the data. 
Jitter 2 The short-term phase variations of the significant instants 
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of a timing signal from their ideal position on the time-line 
(where long-term implies here that these variation of fre-
quency are greater than or equal to 10 Hz) (see also wan-
der). 

Jitter of a Message 5 The duration between the minimal transport duration and 
the maximum transport duration. 

Key 8 A numerical value used to control cryptographic opera-
tions, such as decryption and encryption. 

Legacy System 1 An existing operational system within an organization that 
provides an indispensable service to the organization. 

Local Evolution  Local evolution only affects the internals of a Constituent 
System (CS) which still provides its service according to 
the same and unmodified Relied Upon Interface (RUI) 
specification. 

Local I/O Interface 
(L-Interface) 

D An interface that allows a Constituent System (CS) to in-
teract with its surrounding physical reality that is not acces-
sible over any other external interface. 

Maintainability 8 The ability to undergo modifications and repairs. 
Managed Evolution 9 Evolution that is guided and supported to achieve a certain 

goal. 
Managed SoS Evo-
lution 

9 Process of modifying the SoS to keep it relevant in face of 
an ever-changing environment. 

Meet-in-the-Middle 
Design 

A A hierarchical design methodology where the top down de-
sign and the bottom up design are intermingled. 

Message 5 A data structure that is formed for the purpose of the timely 
exchange of information among computer systems. 

Message Variable D A tuple consisting of a syntactic unit of a message and a 
name, where the name points to the explanation of the syn-
tactic unit. 

Message-based In-
terface Port 

D The message-based interface contains ports (i.e., channel 
endpoints) where message payloads can be placed for send-
ing, or received message payloads can be read from. 

Meta Data 3 Data that describes the meaning of object data. 
Metric C Indicator used to quantitatively describe an attribute of the 

system, like throughput for performance or availability for 
dependability. 

Major Evolutionary 
Step 

 An evolutionary step that affects the Relied Upon Interface 
(RUI) Itom specification and might need to be considered 
in the management of SoS dynamicity and SoS emergence. 

Minor Evolutionary 
Step 

 An evolutionary step that does not affect the Relied Upon 
Interface (RUI) Itom Specification (I-Spec) and conse-
quently has no effects on SoS dynamicity or SoS emer-
gence. 

Modularity A Engineering technique that builds larger systems by inte-
grating modules. 
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Module A A set of standardized parts or independent units that can be 
used to construct a more complex structure. 

Monolithic System 1 A system is called monolithic if distinguishable services 
are not clearly separated in the implementation but are in-
terwoven. 

Multi-Criteria 
Decision Analysis 
(MCDA) 

9 MCDA is a sub-discipline of operations research that ex-
plicitly considers multiple criteria in decision-making, al-
lowing the evaluation of one or more decision alternatives 
in light of the multiple criteria. 

Multi-criticality Sys-
tem 

8 A multi-criticality system has at least two components that 
have a different criticality. 

Nominal Frequency 2 The desired frequency of an oscillator. 
Non-Sparse Events 2 Events that occur in the passive interval of the sparse time. 
Now 2 The instant that separates the past from the future. 
Object 8 Passive system-related devices, files, records, tables, pro-

cesses, programs, or domain containing or receiving infor-
mation. Access to an object implies access to the infor-
mation it contains. 

Object Data 3 Data that is the object of description by meta data. 
Objective C Values for the quality metrics to be attained. 
Observation of an 
Entity 

1 An atomic structure consisting of the name of the entity, 
the name and the value of the attribute (i.e., the property), 
and the timestamp denoting the instant of observation. 

Offset of events 2 The offset of two events denotes the duration between two 
events and the position of the second event with respect to 
the first event on the timeline. 

Open System 1 A system that is interacting with its environment during the 
given IoD. 

Output Action 4 An action that writes or produces output data at an inter-
face. 

Output Data 3 Data that is produced by a system. 
PAR-Message 5 A PAR-Message (Positive Acknowledgment or Retrans-

mission) is an error controlled transport service for the 
transmission of sporadic messages from a sender to a single 
receiver. 

Payload of a Mes-
sage 

5 The bit pattern carried in the data field of the message. 

Period 2 A cycle marked by a constant duration between the related 
states at the start and the end of the cycle. 

Periodic System 2 A system where the temporal behavior is structured into a 
sequence of periods. 

Permission 8 Attributes that specify the access that subjects have to ob-
jects in the system. 

Permitted Message  A message is permitted with respect to a receiver if it pass-
es the input assertion of that receiver. The input assertion 
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should verify, at least, that the message is valid. 
Phase 2 A measure that increases linearly in each period from 0 de-

grees at the start until 360 degrees at the end of the period. 
Phase alignment 2 The alignment of the phases between two periodic systems 

exhibiting the same period, such that a constant offset be-
tween the phases of the two systems is maintained. 

Plaintext 8 Unencrypted data. 
Precision 2 The precision of an ensemble of synchronized clocks de-

notes the maximum offset of respective ticks of the global 
time of any two clocks of the ensemble over the IoD. The 
precision is expressed in the number of ticks of the refer-
ence clock. 

Primary Clock 2 A clock whose rate corresponds to the adopted definition of 
the second. The primary clock achieves its specified accu-
racy independently of calibration. 

Prime Mover 1 A human that interacts with the system according to his/her 
own goal. 

Private Key 8 In an asymmetric cryptography scheme, the private or se-
cret key of a key pair which must be kept confidential and 
is used to decrypt messages encrypted with the public key. 

Problem 7 A perceived need to transform an initial state to a goal 
state. 

Property 1 A valued attribute. 
Property Mismatch D A disagreement among connected interfaces in one or more 

of their interface properties. 
Public Key 8 A cryptographic key that may be widely published and is 

used to enable the operation of an asymmetric cryptog-
raphy scheme. This key is mathematically linked with a 
corresponding private key. 

Public Key Crypto-
graphy 

8 Cryptography that uses a public-private key pair for en-
cryption and decryption. 

Quality C The standard of something as measured against other 
things; the degree of excellence of something. 

Quality of Service C The ability of a system to meet certain requirements for 
different aspects of the system like performance, dependa-
bility, evolvability, security or cost; possibly expressed in 
terms of levels and quantitatively evaluated through met-
rics. 

Raw Data 3 The bit pattern that is produced by a sensor system. 
Read/Write (RW) 
Paradigm 

5 At the sender the communication system reads the contents 
of the message from a message variable and at the receiver 
the communication system writes the arriving message into 
a message variable, overwriting the old content of the mes-
sage variable. 

Real-Time (RT) 4 A transaction that must complete before a specified dead-
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Transaction line. 
Real-Time System 
(RTS) 

1 A computer system for which the correct results must be 
produced within time constraints. 

Reasonableness 
Condition 

2 The reasonableness condition of clock synchronization 
states that the granularity of the global time must be larger 
than the precision of the ensemble of clocks. 

Receive Instant 5 The instant when the last bit of a message arrives at the re-
ceiver. 

Reconfigurability 9 The capability of a system to adapt its internal structure in 
order to mitigate internal failures or to improve the service 
quality. 

Reducible System 1 A system where the sum of the parts makes the whole. 
Reference Clock 2 A hypothetical clock of a granularity smaller than any du-

ration of interest and whose state is in agreement with TAI. 
Reference Monitor 8 A reference monitor represents the mechanism that imple-

ments the access control model. A reference monitor is de-
fined as: An access control concept that refers to an ab-
stract machine that mediates all accesses to objects by 
subjects. 

Refined Data 3 Data that has been created by a purposeful process from the 
raw data to simplify the explanation of the data in a given 
context. 

Reliability 8 Continuity of service. 
Relied upon Inter-
face (RUI) 

1 An interface of a CS where the services of the CS are of-
fered to other CSs. 

Relied upon Mes-
sage Interface 
(RUMI) 

1 A message interface where the services of a CS are offered 
to the other CSs of an SoS. 

Relied upon Physical 
Interface (RUPI) 

1 A physical interface where things or energy are exchanged 
among the CSs of an SoS. 

Relied upon Service 
(RUS) 

 (Part of) a Constituent System (CS) service that is offered 
at the Relied Upon Interface (RUI) of a service providing 
CS under a Service Level Agreement (SLA). 

Requirement C A statement that identifies a necessary attribute, capability, 
characteristic, or quality of a system. 

Reservation D A commitment by a service provider that a resource that 
has been allocated to a service requester at the reservation 
allocation instant will remain allocated until the reservation 
end instant. 

Reservation Alloca-
tion Instant 

D The instant when a resource reservation is allocated to a 
service requestor by a service provider. 

Reservation End 
Instant 

D The instant until a reservation is allocated to a service pro-
vider. 

Reservation Request 
Instant 

D The instant when a resource is requested by a service re-
questor. 
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Resultant Phenome-
non 

6 A phenomenon at the macro-level is resultant if it can be 
reduced to a sum of phenomena at the micro-level. 

Risk 8 A measure of the extent to which an organization is threat-
ened by a potential circumstance or event, and typically a 
function of 1) the adverse impacts that would arise if the 
circumstance or event occurs; and 2) the likelihood of oc-
currence. 

Robust Architecture A Architecture that performs sufficiently well under a variety 
of possible future developments. 

Robustness 8 Dependability with respect to external faults (including ma-
licious external actions). 

Role Player 1 A human that acts according to a given script during the 
execution of a system and could be replaced in principle by 
a cyber-physical system. 

RUI Connecting 
Strategy 

D Part of the interface specification of RUIs is the RUI con-
necting strategy which searches for desired, w.r.t. connec-
tions available, and compatible RUIs of other CSs and 
connects them until they either become undesirable, una-
vailable, or incompatible. 

Safety 8 The absence of catastrophic consequences on the user(s) 
and on the environment. 

Sampling 3 The observation of the value of relevant state variables at 
selected observation instants. 

Scenario 9 A scenario is a projected or imagined sequence of events 
describing what could possibly happen in the future (or 
have happened in the past). 

Scenario-Based Rea-
soning (SBR) 

9 Systematic approach to generate, evaluate and manage dif-
ferent scenarios in a given context. 

Second 2 An internationally standardized time measurement unit 
where the duration of a second is defined as 9 192 631 770 
periods of oscillation of a specified transition of the Ce-
sium 133 atom. 

Security 8 The composition of confidentiality, integrity, and availabil-
ity; security requires in effect the concurrent existence of 
availability for authorized actions only, confidentiality, and 
integrity (with “improper” meaning “unauthorized”). 

Security Level C Specification of the level of security to be achieved through 
the establishment and maintenance of protective measures. 

Security Policy 8 Given identified subjects and objects, there must be a set of 
rules that are used by the system to determine whether a 
given subject can be permitted to gain access to a specific 
object. This is called the security policy. 

Semantic Specifica-
tion 

5 The specification that explains the meaning of the named 
syntactic units. 

Send Instant 5 The instant when the first bit of a message leaves the send-
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er. 
Sensor D A sensor is an interface device that observes the system 

environment and produces data (a bit pattern) that can be 
explained by the design of the sensor and its placement in 
the physical environment. 

Service 4 The intended behavior of a system. 
Service Composition D The integration of multiple services into a new service is 

called service composition. 
Service Consumer D The component that requires a service. 
Service Discovery D Service discovery is the process where service consumers 

match their service requirements against the available In-
terface Service Specifications (S-Specs) in a service regis-
try. 

Service Level 
Agreement (SLA) 

D A SLA defines a set of Service Level Objectives (SLOs), 
the price of the service, and compensation actions in case 
of failure to deliver a committed service. 

Service Level Objec-
tive (SLO) 

D A functional or non-functional objective that can be evalu-
ated by observing the service provider to either achieved or 
not-achieved. Objectives are based on measurable quality 
metrics. 

Service Provider D The component that provides a service. 
Service Registry D The service registry is a repository of Interface Service 

Specifications (S-Specs) of service providers. 
Signal 2 An event that is used to convey information typically by 

prearrangement between the parties concerned. 
Situation assessment 9 Situation assessment is the process of achieving, acquiring 

or maintaining situation awareness. 
Solution Path/Plan 7 A path of intermediate states from the initial state to the 

goal state, considering the given constraints. 
Sparse Events 2 Events that occur in the active interval of the sparse time. 
Sparse Time 2 A time-base in a distributed computer system where the 

physical time is partitioned into an infinite sequence of ac-
tive and passive intervals. 

Sphere of Control 
(SoC) 

1 The sphere of control of a system during an IoD is defined 
by the set of entities that are under the control of the sys-
tem. 

Stability 2 The stability of a clock is a measure that denotes the con-
stancy of the oscillator frequency during the IoD. 

Start Signal 4 An event that causes the start of an action. 
State 3 The state of a system at a given instant is the totality of the 

information from the past that can have an influence on the 
future behavior of a system. 

State Space 3 The state space of a system is formed by the totality of all 
possible values of the state variables during the IoD. 

State Variable 3 A variable that holds information about the state. 
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Statefull Action 4 An action that reads, consumes, writes or produces state. 
Statefull System 3 A system that contains state at a considered level of ab-

straction. 
Stateless Action 4 An action that produces output on the basis of input only 

and does not read, consume, write or produce state. 
Stateless System 3 A system that does not contain state at a considered level of 

abstraction. 
Stigmergic Informa-
tion Flow 

5 The information flow between a sending CS and a receiv-
ing CS where the sending CS initiates a state change in the 
environment and the receiving CS observes the new state 
of the environment. 

Stigmergy 5 Stigmergy is a mechanism of indirect coordination between 
agents or actions. The principle is that the trace left in the 
environment by an action stimulates the performance of a 
next action, by the same or a different agent. 

Subject 8 An active user, process, or device that causes information 
to flow among objects or changes the system state. 

Subsystem 1 A subordinate system that is a part of an encompassing sys-
tem. 

Supervenience 6 The principle of Supervenience states that (Sup i) a given 
emerging phenomenon at the macro level can emerge out 
of many different arrangements or interactions of the parts 
at the micro-level while (Sup ii) a difference in the emerg-
ing phenomena at the macro level requires a difference in 
the arrangements or the interactions of the parts at the mi-
cro level. 

Symmetric Crypto-
graphy 

8 Cryptography using the same key for both encryption and 
decryption. 

Symmetric Key 8 A cryptographic key that is used to perform both encryp-
tion and decryption. 

Syntactic Compati-
bility 

D The syntactic chunks sent by the sender are received by the 
receiver without any modification. 

Syntactic Specifica-
tion 

5 The specification that explains how the data field of a mes-
sage is structured into syntactic units and assigns names to 
these syntactic units. 

System 1 An entity that is capable of interacting with its environment 
and may be sensitive to the progression of time. 

System Architecture 1 The blueprint of a design that establishes the overall struc-
ture, the major building blocks and the interactions among 
these major building blocks and the environment. 

System Boundary 1 A dividing line between two systems or between a system 
and its environment. 

System Effec-
tiveness 

9 The system's behavior as compared to the desired behavior. 

System Efficiency 9 The amount of resources the system needs to act in its envi-
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ronment. 
System Performance 9 The combination of system effectiveness and system effi-

ciency. 
System Resources 9 Renewable or consumable goods used to achieve a certain 

goal. E.g., a CPU, CPU-time, electricity. 
System-of-Systems 
(SoS) 

1 An SoS is an integration of a finite number of constituent 
systems (CS) which are independent and operable, and 
which are networked together for a period of time to 
achieve a certain higher goal. 

Temporal Order 2 The temporal order of events is the order of events on the 
timeline. 

Thing 1 A physical entity that has an identifiable existence in the 
physical world. 

Threat 8 Any circumstance or event with the potential to adversely 
impact organizational operations (including mission, func-
tions, image, or reputation), organizational assets, individ-
uals, or other organizations through a system via unauthor-
ized access, destruction, disclosure, modification of 
information, and/or denial of service. 

Tick 2 The event that increments the register is called the tick of 
the clock. 

Time 2 A continuous measureable physical quantity in which 
events occur in a sequence proceeding from the past to the 
present to the future. 

Timeline 2 A dense line denoting the independent progression of time 
from the past to the future. 

Timely Message  A message is timely if it is in agreement with the temporal 
specification. 

Timestamp (of an 
event) 

2 The timestamp of an event is the state of a selected clock at 
the instant of event occurrence. 

Time-aware SoS  A SoS is time-aware if its Constituent Systems (CSs) can 
use a global timebase in order to timely conduct output ac-
tions and consistently—within the whole SoS – establish 
the temporal order of observed events. 

Time-
Synchronization In-
terface (TSI) 

D The TSI enables external time-synchronization to establish 
a global timebase for time-aware SoSs. 

Time-Triggered 
(TT) Action 

4 An action where the start signal is derived from the pro-
gression of time. 

Top Down Design A A hierarchical design methodology where the design starts 
at the top of the holarchy or formal hierarchy. 

Transaction 4 A related sequence of computational actions and communi-
cation actions. 

Transaction Activity 
Interval 

4 The interval between the start signal and the end signal of a 
transaction. 
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Transducer D An interface device converting data to energy or vice versa. 
The device can either be a sensor or an actuator. 

Trans-Ordinal Law 6 A Law that explains the emergence of the whole and the 
new phenomena at the macro-level out of the properties 
and interactions of the parts at the lower adjacent micro-
level. 

Transport Duration 5 The duration between the send instant and the receive in-
stant. 

Transport Specifica-
tion 

D This part of the interface specification describes all proper-
ties of a message that are needed by the communication 
system to correctly transport a message from the sender to 
the receiver(s). 

Trusted System 8 A trusted system or component is one whose failure can 
break the security policy. 

TT-Message 5 A TT-Message (Time-Triggered) is an error controlled 
transport service for the transmission of periodic messages 
from a sender to many receivers. 

Unexplained Emer-
gence 

6 An emergent phenomenon that is observed at the macro 
level is unexplained emergent if, after a careful analysis of 
the emergent phenomenon, no trans-ordinal law that ex-
plains the appearance of the emergent phenomenon at the 
macro level out of the properties and interactions of the 
parts at the adjacent micro level is known (at least at pre-
sent). 

Universe of Dis-
course (UoD) 

1 The Universe of Discourse comprises the set of entities and 
the relations among the entities that are of interest when 
modeling the selected view of the world. 

Unmanaged SoS 
evolution 

9 Ongoing modification of the SoS that occurs as a result of 
ongoing changes in (some of) its CSs. 

Utility Interface D An interface of a CS that is used for the configuration, or 
the control, or the observation of the behavior of the CS. 

Valid Message  A message is valid if its checksum and contents are in 
agreement. 

Validity Instant D The instant up until an interface specification remains valid 
and a new, possibly changed interface specification be-
comes effective. 

Value 1 An element of the admissible value set of an attribute. 
Value Correct Mes-
sage 

 A message is value-correct if it is in agreement with the 
value specification. 

Variable 3 A tuple consisting of data and a name, where the name 
points to the explanation of the data. 

Virtual SoS 1 Lack of central purpose and central alignment. 
Vulnerability 8 Weakness in a system, system security procedures, internal 

controls, or implementation that could be exploited by a 
threat. 



309 

Wander 2 The long-term phase variations of the significant instants of 
a timing signal from their ideal position on the time-line 
(where long-term implies here that these variation of fre-
quency are less than 10 Hz) (see also jitter). 

Worst Case Execu-
tion Time (WCET) 

4 The worst-case data independent execution time required to 
execute an action on a given computer. 
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