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Abstract

Rainfall is considered a highly valuable climatological resources and is a funda-
mental component of any water resource assessment strategy. Rainfall character-
ization has important repercussions, among others, on climate change scenarios,
flood risk mitigation, water resources availability and drought assessment. We
use a hierarchical modeling approach to investigate a collection of spatially refer-
enced time series of extreme values. We implement a geoadditive mixed model for
extremes with a temporal random effect, where we assume that the observations
follow generalized extreme value (GEV) distributions whose locations are spa-
tially dependent where the dependence is captured using the geoadditive model.
The analyzed territory is the catchment area of Arno River in Tuscany in Central
Italy. The dataset is composed by the time series of annual maxima of daily rain-
fall recorded in about 400 rain gauges, spatially distributed over an area of about
8.830 km2 . The record period covers mainly the second half of 20th century.

1 Introduction

Extreme value models and techniques are widely applied in environmental studies
to define protection systems against the effects of extreme levels of environmental
processes. Environmental extreme events such as floods, earthquakes, hurricanes,
may have a massive impact on everyday life for the consequences and damage
that they cause. For this reason there is considerable attention in studying, un-
derstanding and predicting the nature of such phenomena and the problems caused
by them, not least because of the possible link between extreme climate events
and climate change. Regarding the matter related to the climate change science,
a certain importance is cover by the implication of changes in the hydrological
cycle.

Among all hydrologic processes, rainfall is a very important variable as it is a
fundamental component of flood risk mitigation and drought assessment, as well
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as water resources availability and management. Specific technical studies, sum-
marized in the most recent Intergovernmental Panel on Climate Change reports
(Pachauri and Reisinger, 2007; Bates et al., 2008) and by the Environmental Euro-
pean Agency (EEA, 2007) highlight several emergencies related to water that the
community has to face in the next future to cope with a changing climate. Fur-
thermore special attention has been paid to the potential changes in the extreme
events that could accompany global climate change; as it constitutes a primary
concern in estimating the impacts of climate change. Extreme events, such as heat
waves, heavy rain, hailstorms, snowfall, and droughts, are in fact responsible for
a large part of climate-related damages (Meehl et al., 2000), and their impact is
of great concern for the community and stakeholders (Easterling et al., 2000). A
number of theoretical modeling and empirical analyses have also suggested that
notable changes in the frequency and intensity of extreme events, including intense
rainfall and floods, may occur even when there are only small changes in climate
(Katz and Brown, 1992; Wagner, 1996).

In this framework, in the past two decades there has been an increasing in-
terest for statistical methods that model rare events (Coles, 2001; Smith, 2003).
Statistical modeling of extreme values has flourished since about the mid-1980s.
Such analysis, for instance, can help by estimating both the rate and magnitude of
rare events, so that precautionary measures can be taken to prevent catastrophic
phenomena, plan for their impact and mitigate their effects.

The Generalized Extreme Value distribution (GEV) is widely adopted model
for extreme events in the univariate context. It’s motivation derives from asymp-
totic arguments that are based on reasonably wide classes of stationary processes.

For modeling extremes of non-stationary sequences it is commonplace to still
use the GEV as a basic model, but to handle the issue of non-stationarity by
regression modeling of the GEV parameters. Traditionally this has been done
using parametric models (Coles 2001, chapter 6), but there has been considerable
recent interest in the possibility of nonparametric or semiparametric modeling
of extreme value model parameters. For example, Davison and Ramesh (2002)
and Chavez-Demoulin and Davison (2005) have demonstrated the usefulness of
nonparametric regression, or smoothing, for certain types of extreme value mod-
els. The former used a local likelihood approach, while the latter used smoothing
splines. Nevertheless, the literature on smoothing in extremes models remains
scarce and in its infancy. Whilst the theory and statistical practice of univariate
extremes is well developed, there is much less guidance for the modeling of spatial
extremes. This creates problems because many environmental processes - such
as rainfall - have a natural spatial domain. The spatial analogue of univariate or
multivariate extreme value models is the class of max-stable processes. (e.g de
Haan and Pickands, 1986; Resnick, 1987). Max-stable processes were first devel-
oped by de Haan (1984) and have a similar asymptotic motivation, but expanded
to a spatial domain, as the GEV distribution in the univariate case. They provide
a general and useful approach to model extreme processes incorporating tempo-
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ral or, more commonly, spatial dependence. On the statistical side, a parametric
class of max-stable processes, together with a simple approach for inference, is
provided by Smith (1990). Statistical methods for max-stable processes and data
analysis of practical problems are discussed further by Coles (1993) and Coles and
Tawn (1996). However, likelihood methods for such models are complicated by
the intractability of density functions in all but the most trivial cases, although
some alternative nonparametric estimators have been proposed by de Haan and
Pereira (2006).

Recently Padoan and Wand (2008) propose the use of mixed model-based
splines for extremal models developing nonparametric estimation for a smoothly
varying location parameter within the GEV model. A compelling feature of this
approach is that the smoothing parameters correspond to variance components,
so maximum likelihood or Bayesian techniques can be applied for model fitting,
assessment and inference (e.g. Ruppert,Wand and Carroll, 2003).

Here we implement a geoadditive mixed model for extremes with a temporal
random effect. We assume that the observations follow generalized extreme value
distributions whose locations are spatially dependent where the dependence is
captured using the geoadditive model. The analyzed territory is the catchment
area of Arno River in Tuscany in Central Italy. The dataset is composed by the
time series of annual maxima of daily rainfall recorded in about 400 rain gauges,
spatially distributed over an area of about 8.830 km2. The record period covers
mainly the second half of 20th century.

The characteristics of the dataset to which we apply our model are presented
in the next section. Then we outline the model and display the estimation of the
parameters and the preliminary results are discussed. We conclude with some
brief remarks.

2 Dataset Description

The investigation is developed on the catchment area of Arno River almost entirely
situated within Tuscany, Central Italy. The area is expected to suffer significantly
from global climate change (Burlando and Rosso, 2002). The area is characterized
by a climate that ranges from temperate to Mediterranean maritime, and by a
complex physical topography. It presents plain areas near the sea and around the
main metropolitan areas, hilly internal zones, and the mountainous area of the
Apennines (Figure 1). The river is 241 km long and the catchment area is of
about 8830 km2 and has a mean elevation of 353 m a.m.s.l..

The precipitation regime is greatly influenced by the topography. Total annual
precipitation ranges from 720 mm to 1690 mm (Figure 2). Heavy storms mainly
occur in autumn following dry summers. Most of the territory of Arno River
basin have suffered in the past from many severe hydro-geological events (Fatichi
and Caporali, 2009), with high levels of risk due to the vulnerability of a unique
artistic and cultural heritage (Caporali et al., 2004).
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Figure 1: Geographical location and orography (i.e. Digital Terrain Model) of the
catchment area of Arno River in Central Italy.

Figure 2: Average Total Annual Precipitation and rain gauges distribution of Arno
River basin (daily precipitation dataset; recorded period 1916-2008).

The time series of annual maxima of daily rainfall recorded in 415 rain gauges
are analysed. The registrations cover the period 1916-2008 and the available rain
gauges series length ranges from 1 to 81 years. Using the time series minimum
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length suggested by WMO (1983), only stations with at least 30 hydrologic years
of data, even not consecutive, were considered. In addition, in order to have
enough rain gauges observations to estimate each year specific effect, we reduce
the time series length to the post Second World War period: 1951-2000. The final
dataset is composed by the data recorded from 1951 to 2000 at 118 rain gauges
for a total of 4903 observations.

3 Geoadditive Mixed Models for Sample Extremes

Extreme value theory begins with a sequence Y1, Y2, . . . of independent and identi-
cally distributed random variables and, for a given n asks about parametric models
for Mn = maxY1, . . . , Yn. If the distribution of the Yi is specified, the exact distri-
bution of Mn is known. In the absence of such specification, extreme value theory

considers the existence of limn→∞ P
[
Mn−bn
an

≤ y
]
≡ F (y) for two sequences of real

numbers an > 0, bn. If F (y) is a non-degenerate distribution function, it belongs
to either the Gumbel, the Fréchet or the Weibull class of distributions, which can
all be usefully expressed under the umbrella of the GEV(µ, ψ, ξ) .

F (y;µ, ψ, ξ) = exp

{
−
[
1 + ξ

(
y − µ

ψ

)] 1
ξ

}
, −∞ < µ, ξ <∞, ψ > 0 (1)

for y : 1 + ξ (y−µ)ψ > 0 and µ, ψ and ξ are respectively location, scale and shape
parameters. The GEV distribution is heavy-tailed and its probability density
function decreases at a slow rate when the shape parameter ξ is positive. On the
other hand, the GEV distribution has a bounded upper tail for a negative shape
parameter. Note that n is not specified; the GEV is viewed as an approximate
distribution to model the maximum of a sufficiently long sequence of random
variables.

Now suppose we observe n sample maxima y1, . . . , yn as well as corresponding
covariate vectors x1, . . . ,xn. The yi are obtained from approximately equi-sized
samples of a variable of interest. A common situation is yi corresponding to the
annual maximum of a daily measurement, such as rainfall in a particular town,
for year i (1 ≤ i ≤ n). General GEV regression models (e.g. Coles, 2001) take the
form

yi|xi ∼ GEV(µ (xi) , ψ (xi) , ξ (xi))

where, for example, µ (xi) = g ([Xβ]i), g is a link function, β is a vector of
regression coefficients and X is a design matrix associated with the xis. Similar
structures may be imposed upon ψ (xi) and ξ (xi). The regression coefficients
can be estimated via maximum likelihood. The classic literature illustrate GEV
regression with parametric models, however recent works present more flexible
non-parametric approaches (Chavez-Demoulin and Davison (2005)).

Padoan and Wand (2008) discuss how generalized additive models (GAM) with
penalized splines can be carried out in a mixed model framework for the GEV
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family. Assuming that the location parameter in the GEV distribution is smooth
on an interval [a, b] in the xi domain then the simplest time-nonhomogeneous
nonparametric regression model is given by

yi|xi ∼ GEV(µ (xi) , ψ, ξ)

with a mixed model-based penalised spline model for µ

η(x) = g(µ(x)) = β0 + β1x+
K∑
k=1

ukzk(x), u1, . . . , uK i.i.d. N(0, σ2u)

where g is a link function and z1, . . . , zK is an appropriate set of spline basis
functions.

Let y = (y1, . . . , yn) and define the design matrices X = [1 xi]1≤i≤n, Z =
[zk (xi)]1≤i≤n,1≤k≤K associated with fixed effects β = [β0, β1] and random effects
u = [u1, . . . , uK ]. Given u, the yi are conditionally independent with distribution,

y|u ∼ GEV(g−1 (Xβ + Zu) , ψ, ξ). (2)

Note that µ ≡ g−1 (Xβ + Zu) is related to the conditional mean of y given u via

E (y|u) =

{
µ+ 1ψ [Γ (1− ξ)− 1] /ξ for ξ 6= 0

µ+ 1ψγ for ξ = 0

where 1 is a vector of n one values, Γ is the Gamma function and γ = 0.57721566...
is Euler’s constant.

The addition of other explicative variables in regression model (2) is straight-
forward: smoothing components and random effect components are added in the
random effects term Z, while linear components can be incorporated as fixed ef-
fects in the X term. Moreover, the mixed model structure provides a unified and
modular framework that allows to easily extend the model to include various kind
of generalization and evolution.

Geoadditive models, introduced by Kammand and Wand (2003), are a particu-
lar specification of GAM that models the spatial distribution of y with a bivariate
penalized spline on the spatial coordinates. Suppose to observe n sample maxima
yij at spatial location sij , s ∈ R2, j = 1, . . . , p and at time i = 1, . . . , t. In order
to model both the spatial and the temporal influence on the annual rainfall max-
ima, we consider a geoadditive mixed model for extremes with a temporal random
effect: 

yij |sij ∼ GEV(µ (sij) , ψ, ξ)

µ (sij) = β0 + sTijβs +

K∑
k=1

ukbtps(sij ,κk) + γi,
(3)

where btps are the low-rank thin plate spline basis functions with K knots and γi
is the time specific random effect. The model (3) can be written as a mixed model

y| (u,γ) ∼ GEV(Xβ + Zu+Dγ, ψ, ξ). (4)
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with

E

[
u
γ

]
=

[
0
0

]
, Cov

[
u
γ

]
=

[
σ2uIK 0
0 σ2γIt

]
.

where

β =
[
β0,β

T
s

]
,

u = [u1, ..., uK ] ,

γ = [γ1, ..., γt] ,

X =
[
1, sTij

]
1≤ij≤n ,

D = [dij ]1≤ij≤n ,

with dij an indicator taking value 1 if we observe a rainfall maxima at rain gauge j
in year i and 0 otherwise, and Z is the matrix containing the spline basis functions,
that is

Z = [btps(sij ,κk)]1≤ij≤n,1≤k≤K = [C (sij − κk)]1≤ij≤n,1≤k≤K ·[C (κh − κk)]
−1/2
1≤h,k≤K ,

where C(v) = ‖v‖2 log ‖v‖ and κ1, ...,κK are the spline knots locations.

4 Model Implementation

The geoadditive mixed model for extremes (4) can be naturally formulated as a hi-
erarchical Bayesian model and estimated under the Bayesian paradigm. Following
the specifications of Padoan (2008) and Crainiceanu at al. (2003), our complete
hierarchical Bayesian formulation is

1st level yi| (u,γ)
ind∼ GEV( [Xβ + Zu+Dγ]i , ψ, ξ),

2st level

u|σ2u ∼ N(0, σ2γIK),

γ|σ2γ ∼ N(0, σ2γIt),

β ∼ N(0, 104I)

ξ ∼ Unif(−5, 5)

ψ ∼ InvGamma(10−4, 10−4)

3st level
σ2u ∼ InvGamma(10−4, 10−4)

σ2γ ∼ InvGamma(10−4, 10−4).

where the parameters setting of the priors distributions for ξ, ψ, β, σ2u, σ
2
γ , corre-

sponds to non-informative priors.
Given the complexity of the proposed hierarchical models, we employ OpenBUGS

Bayesian MCMC inference package to do the model fitting. We access OpenBUGS
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using the package BRugs (Thomas et al., 2006) in the R computing environment (R
Development Core Team, 2011). We implement the MCMC analysis with a burn-
in period of 40000 iterations and then we retain 10000 iterations, that are thinned
by a factor of 5, resulting in a sample of size 2000 collected for inference. Finally,
the last setting concern the thin plate spline knots that are selected settingK = 30
and using the clara space filling algorithm of Kaufman and Rousseeuw (1990),
available in the R package cluster (the resulting knots location is presented in
Figure 3).

6.0 6.5 7.0 7.5

47
.6

47
.8

48
.0

48
.2

48
.4

48
.6

48
.8

49
.0

Knot locations for bivariate spline smoothing

Xcoord

Y
co

or
d

Figure 3: Knots location (in red) for the spline component. Black dots indicate
the rain gauges sites.

The estimated parameters are presented in Table 1, that provides their pos-
terior means along with the corresponding 95% credible intervals. The posterior
mean of the ξ takes value of 0.11 with 95% credible interval (0.09, 0.12), indicating
the GEV distributions of annual maximum rainfalls in the Arno catchment belong
to the Gumbel family and have heavy upper tails.

The resulting spatial smoothing component and time specific component of
µ (sij) are presented in Figures 4 and 5. Observing the map, it is evident the
presence of a spatial trend in the rainfall extreme dynamic, even after controlling
for the year effect. The spline seems to capture well the spatial dependence as it
produce the same same patter that is shown in Figure 2. The time influence is
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Table 1: Estimated parameters of the GEV geoadditive mixed model for the annual
maxima of daily rainfall.

Parameter* Posterior Mean 95% Credible Interval
β0 11.31 ( 8.75;13.82)
βs1 -1.74 (-4.39;1.21)
βs2 1.02 (0.62;1.38)
ξ 0.11 (0.09;0.12)
ψ 15.13 (14.79;15.45)
σγ 7.75 (6.35;9.51)
σu 27.24 (20.66;35.86)

*Intercept and coordinates coefficients are required by model structure.

pointed out by the estimated year specific random effects, that present a strong
variability through years.

Finally, in order to asses the usefulness of our model we plot the predicted
values of E(y|u,γ) against the observed values. The results, presented in Figure
6, show a good prediction performance.
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29.9 89.1
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Figure 4: Estimated spatial component of µ (sij).
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Figure 5: Estimated year specific random effects of µ (sij) (in red). Black dots
indicate the observed values.
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Figure 6: Predicted values of E(y|u,γ) (in red). Black dots indicate the observed
values.
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5 Conclusions

We have implemented a geoadditive modeling approach for explaining a collection
of spatially referenced time series of extreme values. We assume that the observa-
tions follow generalized extreme value distributions whose locations are spatially
dependent.

The results show that this model allows us to capture both the spatial and the
temporal dynamics of the rainfall extreme dynamic.

Under this approach we expect to reach a better understand of the occurrence
of extreme events which are of practical interest in climate change studies particu-
larly when related to intense rainfalls and floods, and hydraulic risk management.

References

Bates B.C., Kundzewicz Z.W., Wu S. and Palutikof J.P. (Eds.) (2008). Climate
Change and Water. Technical Paper of the Intergovernmental Panel on Climate
Change. IPCC Secretariat. Geneva, 210 pp.

Burlando, P. and Rosso, R. (2002). Effects of transient climate change on basin
hydrology. Precipitation scenarios for the Arno River, central Italy, Hydrological
Process., 16, 1151-1175.

Caporali E., Rinaldi, M. and Casagli, N. (2005). The Arno River Floods.
Giornale di Geologia Applicata, Vol. 1, 177:192. DOI: 10.1474/GGA.2005-01.0-
18.0018. ISSN: 1825-6635.

Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive mod-
elling of sample extremes. Applied Statistics, 54, 207-222.

Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Val-
ues. London: Springer.

Easterling D.R., Meehl G.A., Permesan C., Changnon S.A., Karl T.R. and
Mearns L.O. (2000). Climate extremes: observations, modelling and impacts.
Science 289: 2068-2074.

EEA, European Environment Agency (2007). Climate change and water adap-
tation issues. EEA Technical report NÂ◦ 2/2007, February.
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