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Preface

The positive impact of antibiotics in human health has been challenged in the past
decade by the emergence and prevalence of antibiotic resistant pathogens either in
the hospitals or in the community, requiring renovated efforts to identify and
develop therapeutic alternatives. The current medical need to identify antibiotics
with novel structures and unexploited mode of action is triggering the development
of new strategies for the discovery of natural and synthetic molecules, providing
new options in the never-ending battle against ever-evolving resistant bacteria.

The objective of this book is to present an updated review of the status of all
major classes of antibiotics, especially focusing on most recent advances in
already known chemical classes, including new analogs and semi-synthetic
derivatives, as well as the recent new classes that have reached the clinic in the
past years or are in clinical and preclinical development phases. This work is
divided into two major sections covering both the clinical impact of bacterial
pathogens and the current trends in antibiotic discovery and development.

The first section opens with a review by Davies (Chap. 1) on the origin and
evolution of antibiotics emphasizing the need to understand their role in the
environment and their chemical and biological evolution to successfully exploit
their pharmaceutical potential. Rossolini et al. (Chap. 2) review the evolution of
the clinical impact of Gram-positive pathogens, and especially the multiresistant
ones, in health care-associated and community-acquired bacterial infections,
whereas Paitan and Ron (Chap. 3) analyze the rising prevalence of resistant Gram-
negative pathogens, including their various resistance mechanisms, prevalence,
risk factors, as one of the major clinical problem given the lack of treatment
options.

The second section contains a series of 13 chapters covering the status of
different classes of antibiotics, including both novel candidates in development as
well as mature compounds. The emergence of pan-resistant pathogens challenging
the development of new b-lactams and the most recent advances in the under-
standing of the action of this family of antibiotics are accurately reviewed by
Leemans et al. (Chap. 4). The chemical diversity of peptide antibiotics has been
classified into five different classes of compounds. Glycopeptides are extensively
described by Marcone and Marinelli (Chap. 5), whereas Baltz (Chap. 6) presents
the specific characteristics of daptomycin and other related lipopeptides. Lanti-
biotics is another emerging family of peptides with no evident cross-resistance
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with any of the major classes of antibiotics (Cortes, Chap. 7). Vaara reviews the
status of old and new analogs of polymyxin against Gram-negative pathogens
(Chap. 8), whereas Carter and McDonalds present the recent developments in the
biosynthesis and medicinal chemistry of uridyl peptide antibiotics (Chap. 9). The
recent development of new aminoglycosides within the review of traditional
aminoglycosides by Kirst and Marinelli provides an extensive coverage of the
evolution of this old class (Chap. 10). Similarly, the chapters on traditional
macrolides (Kirst, Chap. 11) and tetracyclines (Genilloud and Vicente, Chap. 12)
include recent progress in the development of semi-synthetic and synthetic ana-
logs. The last four chapters include reviews on the class of oxazolidinones (Zappia
et al., Chap. 13) with description of the antibacterial activity and chemistry of this
synthetic new antibiotics, the development of actinonin and its analogs as peptide
deformylase inhibitor (East, Chap. 15), the status of other smaller classes of
protein synthesis inhibitors (Kirst, Chap. 14), and novel bacterial topoisomerase
inhibitors (Pucci and Willes, Chap. 16).

The book concludes with an extended review by Genilloud and Vicente of
recent strategies developed in the pharma and academic sectors to respond to
emerging medical needs (Chap. 17), ranging from the use of selected old and new
targets to novel screening approaches involving the implementation of alternative
technologies and mode of action studies.

The editors thank the contribution of all authors, with a special mention of
Herbert Kirst, who greatly supported in the preparation and revision of the last
chapters ensuring the final completion of the work.

Flavia Marinelli
Olga Genilloud
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Part I
Current Trends in Antibiotics, Pathogens

and Medical Needs



Chapter 2
Novel Infectious Diseases and Emerging
Gram-Positive Multi-Resistant Pathogens
in Hospital and Community Acquired
Infections

Gian Maria Rossolini, Fabio Arena and Simona Pollini

Abstract Gram-positive pathogens are a major cause of healthcare-associated and
community-acquired bacterial infections. Staphylococci (mostly Staphylococcus
aureus but also coagulase-negative staphylococci), enterococci, streptococci, and
Clostridium difficile are the most important species of clinical interest. Antibiotic
resistance issues are common among Gram-positive pathogens, especially among
staphylococci and enterococci. Methicillin-resistant Staphylococcus aureus
(MRSA) and glycopeptide-resistant enterococci (GRE) are paradigms for difficult-
to-treat multi-resistant pathogen capable of global-scale diffusion, with remarkable
impact on morbidity, mortality, and healthcare-associated costs. MRSA, in par-
ticular, is the most relevant Gram-positive multi-resistant pathogen in terms of
diffusion and overall clinical impact, being a leading cause for healthcare-asso-
ciated infections worldwide, as well as an emerging cause of community-acquired
infections that are often associated with novel MRSA strains. Resistance to anti-
MRSA and anti-VRE drugs remains uncommon or exceptional among the
respective species. However, invasive infections caused by MRSA strains resistant
to glycopeptides, linezolid, or daptomycin, and by VRE strains resistant to lin-
ezolid or daptomycin have increasingly been reported, especially after prolonged
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drug exposure, and a transferable resistance mechanism to linezolid and other anti-
ribosomal agents has recently emerged among staphylococci and enterococci. This
evolving scenario underscores the need for continuing efforts aimed at surveillance
and control of infections caused by multi-resistant Gram-positives, and at the
discovery and development of new drugs active against these pathogens.

2.1 Introduction

Gram-positive bacterial pathogens remain a very common cause for healthcare-
associated infections (HCAIs) and for community-acquired infections, and represent
a major target for antimicrobial chemotherapy. The most important Gram-positives
of clinical interest are staphylococci, enterococci, streptococci, and Clostridium
difficile, although other species (e.g., Listeria and corynebacteria) may also play a
role in some settings. The spectrum of infections caused by Gram-positives is very
broad, including skin and skin structure infections (SSSIs), upper and lower respi-
ratory tract infections, bloodstream infections (BSIs) and endocarditis, surgical site
infections (SSIs), bone and joint infections, diabetic foot infections, central nervous
system infections, urinary tract infections (UTIs), and intestinal infections. Central
venous catheters and other artificial devices are also a common site for Gram-
positive infections, mostly caused by coagulase-negative staphylococci.

Antibiotic resistance issues are common among Gram-positive pathogens, espe-
cially among staphylococci and enterococci. Methicillin-resistant Staphylococcus
aureus (MRSA) and glycopeptide-resistant enterococci (GRE) are well-known
paradigms of difficult-to-treat Gram-positive multi-resistant pathogens capable of
global-scale diffusion, which have attained high proportions in several epidemio-
logical settings (see below). Resistance problems remain overall lower with
streptococci and other Gram-positives, although relatively high proportions of
penicillin- and/or macrolide-resistant pneumococci are reported in many countries
(EARS-Net 2010; Linares et al. 2010; Darabi et al. 2010).

The scope of this chapter is to provide an overview of the most important multi-
resistant Gram-positive pathogens emerging as causes of HCAIs and community-
acquired infections, i.e., MRSA and GRE, and to briefly discuss some aspects
related with Clostridium difficile infection.

2.2 Methicillin-Resistant S. aureus as a Cause of Hospital-
and Community-Acquired Infections

Among Gram-positives, methicillin-resistant S. aureus (MRSA) is by far the most
relevant resistant pathogen, being a leading cause for SSSIs, BSIs, and hospital-
acquired pneumonia (HAP) worldwide (Boucher and Corey 2008). MRSA strains
have acquired a mecA gene encoding a peculiar penicillin-binding protein (PBP),
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named PBP2a, which is not inhibited by methicillin, oxacillin, and other con-
ventional b-lactams available for clinical use (see Leemans et al., this volume),
and can take over the functions of the resident staphylococcal PBPs (Fuda et al.
2004). Thus, expression of PBP2a results in clinical resistance to those compounds
(which are normally the first choice for treatment of S. aureus infections), and anti-
MRSA antibiotics (which are often more toxic and expensive, see below) become
the mandatory treatment option (Welte and Pletz 2010).

Overall, MRSA poses a global healthcare challenge affecting both industrial-
ized and low-income countries. Proportions of MRSA infections can reach values
higher than 50–60 % of S. aureus infections in some settings (Stefani et al. 2012),
although with significant geographical and institutional differences which largely
depend on the efficacy of infection control practices adopted at the nationwide or
local level. In Europe, for instance, the proportion of MRSA among invasive
isolates of S. aureus was reported to vary between 0.5 and 52 % in different
countries, according to the most recent data from the EARS-Net surveillance
system (EARS-Net 2010). In some countries (e.g., the United Kingdom and
France) the enforcement of strict infection control strategies has apparently been
successful in curbing the dissemination of MRSA in recent years (EARS-Net
2010; Johnson et al. 2012). However, MRSA proportions continue to be very high
in several countries, and MRSA remains one of the leading multi-resistant
pathogens in terms of clinical burden (EARS-Net 2010; Kock et al. 2010).

MRSA infections were originally detected in the 1960s (i.e., soon after intro-
duction of methicillin in clinical practice) and their epidemiology has undergone
significant evolution during the past decades. Initially, these infections emerged as
typical hospital-acquired infections (HA-MRSA infections), and exhibited a
remarkable ability at spreading both in acute-care hospitals and in long-term care
facilities where strict infection control practices were not enforced (DeLeo and
Chambers 2009; Kock et al. 2010). The mortality rate associated with invasive
HA-MRSA infections varies considerably between different settings, but in some
cases may exceed 50 % (Klevens et al. 2007; Kock et al. 2010). In the mid-2000s,
in the United States, it was calculated that the yearly in-hospital mortality
attributable to MRSA infections was overall comparable with the mortality
associated with HIV/AIDS, viral hepatitis and tuberculosis taken together
(Boucher and Corey 2008). A recent European study has confirmed the substantial
clinical burden associated with MRSA BSIs in terms of mortality rates and length
of hospital stay (De Kraker et al. 2011), underscoring the impact and the public
health relevance of this resistant pathogen. HAP caused by MRSA also represents
a major clinical challenge, with high mortality rates particularly in ventilated
patients (Kollef et al. 2005; Welte and Pletz 2010). Since recent global-scale
surveillance data indicate that S. aureus is the leading cause of HAP in the United
States and Europe, being associated with approximately one-third to one-fourth of
cases, respectively (Jones 2010), this further underscores the impact of MRSA in
hospital-acquired infections of the lower respiratory tract. Spreading of HA-
MRSA typically follows a clonal pattern. A limited number of very successful HA-
MRSA clonal complexes (CCs) have disseminated internationally, with CC5 and

2 Novel Infectious Diseases and Emerging Gram-Positive 13



CC8 being the most prevalent worldwide and CC22, CC30 and CC45 being less
frequently detected and limited to specific areas (Stefani et al. 2012).

More recently, MRSA infections have also emerged as community-associated
(CA) infections (CA-MRSA infections) (DeLeo et al. 2010). Unlike HA-MRSA
infections, CA-MRSA infections are often encountered among young and other-
wise healthy subjects lacking the risk factors that are typically associated with HA-
MRSA infections (i.e., long hospitalization periods, prolonged antimicrobial
therapy, chronic cardiovascular, and pulmonary diseases, diabetes) (Liu et al.
2011). SSSIs are the most common presentation of CA-MRSA infections
(approximately 90 % of all clinical manifestations), with many of them being mild
to moderate (DeLeo et al. 2010; Skov et al. 2012). However, CA-MRSA may also
cause severe infections, such as necrotising cellulitis or fasciitis and necrotising
pneumonia, associated with high mortality rates (up to 75 % in case of necrotizing
pneumonia) (Li et al. 2011). Noteworthy, most of the CA-MRSA strains involved
in severe infections necrotising infections produce potent cytotoxins, such as the
Panton–Valentine leukocidin, the a-hemolysin or the a-type phenol-soluble mod-
ulins, which are believed to play an important role in the pathogenesis of these
infections (David and Daum 2010). CA-MRSA has experienced a remarkable
diffusion in North America, while these infections have remained overall less
common in Europe, although with an increasing trend (Otter and French 2010).
CA-MRSA also disseminates with a clonal pattern, but a higher diversity has been
observed in the population structure, with clonal complexes differing in different
geographic areas and some being quite characteristic of specific areas or conti-
nents. For instance, while CC1 and CC8 are mostly detected among CA-MRSA
from the United States and Canada, ST80 appears to circulate in Europe (DeLeo
et al. 2010; Rolo et al. 2012). Unlike HA-MRSA strains, which usually exhibit
complex multi-resistant phenotypes including non b-lactam agents (e.g., fluoro-
quinolones, macrolides, and lincosamides, see Leemans et al.; Pucci and Wiles;
Kirst, this volume), CA-MRSA strains often remain susceptible to these drugs, and
this peculiar resistance profile, together with the presence of certain classes of
SCCmec elements carrying the mecA gene (e.g., SCCmecIV types and SCCmecV),
have been regarded as biological markers for CA-MRSA strains (David and Daum
2010). However, in recent years, the spread of CA-MRSA clones in the hospital
setting and the movement of typical HA-MRSA clones (such as CC5) in the
opposite direction has increasingly been reported (Campanile et al. 2012; David
and Daum 2010; Maree et al. 2007; Otter and French 2011; Song et al. 2011;
Valsesia et al. 2010), blurring the original distinction between CA-MRSA and HA-
MRSA infections and making typical CA-MRSA clones a potential cause for HA
infections.

Since the early 2000s, livestock-associated (LA) MRSA infections in humans
were also reported, caused by MRSA strains of CC398 which are commonly found
among pigs and cattle (Crombe et al. 2012; Porrero et al. 2012; Schaumburg et al.
2012; van Cleef et al. 2011). LA-MRSA infections caused by CC398 strains have
mostly been reported from Europe and only sporadically from Asia and the United
States (Monecke et al. 2011). These infections appear to be common only in
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individuals having frequent contact with livestock and living in geographical areas
with high density of farms (van Cleef et al. 2011), and may range from mild SSSIs
to severe infections such as BSIs, endocarditis, pneumonia, and necrotising fas-
ciitis (Mammina et al. 2010; Soavi et al. 2010; van der Mee-Marquet et al. 2011).
Recent studies indicate that LA-MRSA is not significantly spreading into hospital
settings in Europe, and that invasive infections are quite uncommon (Grundmann
et al. 2010; Wassenberg et al. 2011).

The most popular options for MRSA infections include vancomycin, teicopl-
anin (see Marcone and Marinelli, this volume), linezolid (see Zappia et al., this
volume), and daptomycin (see Baltz, this volume). Tigecycline (see Genilloud and
Vicente, this volume) is also very active against MRSA, while telavancin (a new
lipoglycopeptide, see Marcone and Marinelli, this volume) and ceftaroline (a new
cephalosporin endowed with high binding affinity to PBP2a, see Leemans et al.,
this volume) have been the most recent additions in the repertoire of anti-MRSA
drugs. Moreover, a number of novel anti-MRSA agents of various classes are
found at various developmental stages of the pipeline (e.g., dalbavancin, orita-
vancin, razupenem, omadacycline, and nemonoxacin) (Hait et al. 2011; Kihara
et al. 2008; Li et al. 2010; Zhanel et al. 2010; see Marcone and Marinelli; Leemans
et al.; Genilloud and Vicente; Pucci and Wiles, this volume).

Vancomycin and teicoplanin (see Marcone and Marinelli, this volume) are
normally considered the first choice for infections caused by MRSA, although with
some limitations related with slow bactericidal activity, potential toxicity (espe-
cially for vancomycin), and individual pharmacokinetic variability which man-
dates for therapeutic drug monitoring at least in severe infections (Liu et al. 2011).
Despite an increased use in clinical practice since almost three decades (due to the
global emergence of MRSA), resistance to glycopeptides has remained very
uncommon among MRSA strains. In fact, S. aureus has evolved two mechanisms
of glycopeptide resistance, of which one is mediated by chromosomal mutations
that alter the cell wall structure and physiology limiting the access of glycopep-
tides to the D-ala-D-ala target in peptidoglycan precursors, while the other is
mediated by acquisition of a van gene cluster which is responsible for the synthesis
of modified peptidoglycan precursors with reduced affinity for glycopeptides. The
former mechanism has been described since the late 1990s (Hiramatsu et al. 1997)
and is associated with a moderate increase in MIC values (usually up to 4–8 mg/L
for vancomycin, the so-called VISA phenotype) (Howden et al. 2010). In some
cases the VISA phenotype is only expressed by a subpopulation in a background of
susceptible bacterial cells (the so-called hVISA phenotype) (Howden et al. 2010).
The emergence of VISA and hVISA strains appear to be typically associated with
prolonged exposure to glycopeptides, and such strains are often recovered from
patients with vancomycin treatment failure (Bae et al. 2009; Howden et al. 2010;
Khatib et al. 2011). Indeed, isolates exhibiting the VISA phenotype have been
identified belonging to many epidemic MRSA clonal lineages, including the
hospital acquired ST5 and ST8 (Gardete et al. 2008; Hageman et al. 2008; Howe
et al. 2004), but their overall proportions has remained low and significant epi-
demic diffusion has not been observed. Several mutations associated with the
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VISA phenotype have been characterised (Gardete et al. 2012; Howden et al.
2010), and it has been demonstrated how the stepwise accumulation of mutations
can lead first to the hVISA phenotype and that to a homogeneous VISA phenotype
(Neoh et al. 2008). Noteworthy, mutations involved in the resistance phenotype
can also be responsible for the repression of some virulence-related properties
(such as the quorum sensing regulator Agr, the a-type phenol-soluble modulins, a-
hemolysin and protein A), which may help the resistant bacteria to evade the host
immune system (Gardete et al. 2012) but could also be associated with reduced
fitness and poor in vivo survival (McCallum et al. 2006) accounting for the low
propensity to epidemic diffusion exhibited by VISA strains.

Glycopeptide resistance mediated by acquisition of a van gene cluster is typi-
cally associated with higher MICs (vancomycin MICs are usually [16 mg/L; the
so-called VRSA phenotype). This resistance mechanism was first detected in an
MRSA strain isolated in 2002 in the United States (Bartley 2002) and raised
considerable concern. However, only a few additional VRSA isolates have been
reported thus far, including 11 isolates from the United States (Sievert et al. 2008,
http://www.cdc.gov/HAI/settings/lab/vrsa_lab_search_containment.html), one
from India (Saha et al. 2008) and 1 from Iran (Aligholi et al. 2008), showing no
propensity to cross-transmission and epidemic diffusion, and in no case VRSAs
were involved in severe bacteremic infections (most isolates were from infected
ulcers or wounds, or simply colonizers). This was likely due to a fitness defect
associated with the modified cell wall structure. In fact, competition experiments
between an MRSA recipient of CC5 (a lineage prone to the acquisition of resis-
tance traits) and its isogenic VRSA transconjugant revealed that, in the absence of
vancomycin, the transconjugant had a significant fitness disadvantage (Kos et al.
2012). GRE were the most likely source of the van operon found in VRSA strains,
as suggested by the similarity of their genetic contexts and by results of in vitro
and in vivo transfer experiments (Perichon and Courvalin 2009). Indeed, in many
cases of VRSA isolation, a GRE had also been co-isolated from the patient
(Perichon and Courvalin 2009).

The most recent anti-MRSA drugs may offer advantages in terms of pharma-
cokinetic properties, clinical efficacy, and/or reduced toxicity and usually retain
activity against glycopeptide non-susceptible MRSA strains (with the exception of
daptomycin, which exhibit reduced activity against some VISA strains (Yang et al.
2010). Linezolid (see Zappia et al., this volume) is the most popular anti-MRSA
option (in alternative to glycopeptides) due to oral bioavailability and improved
clinical outcomes reported in some infections such as nosocomial pneumonia
(Wunderink et al. 2012) and complicated SSSIs (Itani et al. 2010).

Linezolid resistance is still very uncommon among staphylococci, with sus-
ceptibility rates close to 100 % among MRSA, and slightly lower (98 %) among
methicillin-resistant CNS (Flamm et al. 2012; Jones et al. 2009; Ross et al. 2011).
Resistance to linezolid can be due to mutational modification of the ribosomal
target (23S rRNA or L3 and L4 ribosomal proteins) (Long and Vester 2012), and
in case of rRNA mutations can increase in a stepwise manner with the accumu-
lation of mutated copies of the 23S rRNA genes in the bacterial chromosome
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(Besier et al. 2008). This type of resistance has mostly been reported following
prolonged exposure to the drug (e.g., in osteomyelitis or in cystic fibrosis patients
(Benefield et al. 2012; Endimiani et al. 2011), while resistant strains do not exhibit
significant propensity for cross-transmission and spreading (Long and Vester
2012). A transferable resistance mechanism to linezolid, mediated by ribosomal
methylation via the plasmid-encoded Cfr protein, has also been detected in MRSA
and in methicillin-resistant coagulase-negative staphylococci (Bongiorno et al.
2010; Bonilla et al. 2010; Long et al. 2006; Morales et al. 2010; Sanchez-Garcia
et al. 2010). The ribosomal modification carried out by the Cfr protein is associ-
ated with resistance to several anti-ribosomal agents including phenicols, linco-
samides, oxazolidinones, pleuromutilins, and streptogramin A (the PhLOPSA

phenotype), suggesting that Cfr production could be co-selected by different
antimicrobial agents used both in clinical and in veterinary practice (Long et al.
2006; see Kirst; Zappia et al., this volume). The emergence of the cfr gene in
MRSA is a matter of major concern, since Cfr-positive MRSA strains may exhibit
high linezolid MICs (up to 64 mg/L) and their potential for cross-transmission and
causing nosocomial outbreaks with invasive infections (e.g., ventilator-associated
pneumonia and BSIs) has been documented (Morales et al. 2010; Sanchez-Garcia
et al. 2010).

Also daptomycin resistance (see Baltz, this volume) is very uncommon among
MRSA, although some VISA strains may exhibit reduced susceptibility to this
drug. Resistance is achieved via accumulation of multiple chromosomal mutations
contributing to the increase in MIC values (Mishra et al. 2009; Yang et al. 2009).
Some of these mutations, affecting cell-wall thickness, are apparently involved in
cross-resistance with glycopeptides and account for the reduction of daptomycin
activity against VISA strains (Cafiso et al. 2012; Yang et al. 2009). However,
mutations that alter the cell surface charge (e.g., mutations in yycFG and mprF,
and mutations that upregulate the dltABCD operon) were also found to be asso-
ciated with decreased susceptibility to daptomycin (Yang et al. 2009, 2010),
underscoring the notion that resistance to daptomycin can be achieved by multiple
mechanisms. Daptomycin-resistant MRSA strains are usually selected following
prolonged exposure to the drug (e.g., in osteomyelitis and orthopedic prosthesis
infections) (Enoch et al. 2007) and thus far have not shown propensity to cross-
transmission and epidemic diffusion.

Resistance to telavancin (see Marcone and Marinelli, this volume) and ceftar-
oline (see Leemans et al., this volume) has not been reported from clinical
infections. However, prolonged in vitro exposure of MRSA to subinhibitory
concentrations of telavancin resulted in the selection of mutants with televancin
MICs of 2 mg/L (Kosowska-Shick et al. 2009), while the presence of multiple
mutations in PBP2a from some MRSA isolates can result in decreased binding
affinity of ceftaroline, with increased MIC values (1–4 mg/L) (Mendes et al.
2012). Altogether, these findings suggest that resistance to these new molecules
could arise by mutation in a stepwise manner.
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2.3 Infections Caused by Glycopeptide-Resistant
Enterococci

Enterococci are gut commensals that can act as opportunistic pathogens and are a
leading cause for HCAIs including UTIs, BSIs and endocarditis, SSIs, complicated
intra-abdominal infections, and infections of catheters and other medical devices
(Malani et al. 2002). Enterococcus faecalis and Enterococcus faecium are the two
most relevant species, although infections by unusual species, such as Enterococcus
gallinarum, have occasionally been described (Contreras et al. 2008).

Enterococci are intrinsically resistant to many antibiotics and exhibit a
remarkable ability to acquire resistance to anti-enterococcal agents. From the
clinical perspective, the most important resistance issue is represented by acquired
resistance to glycopeptides, which are the drugs of choice for enterococcal
infections caused by ampicillin-resistant strains, which are now quite prevalent
(Arias et al. 2012; EARS-Net 2010; Hidron et al. 2008).

Acquired glycopeptide resistance is due to the synthesis of a modified pepti-
doglycan target with reduced affinity to glycopeptides following the acquisition of
a set of genes (van genes) that encode the several functions required for modified
peptidoglycan biosynthesis (Reynolds and Courvalin 2005). Several variants of
such gene clusters have been discovered (e.g., vanA, vanB, vanC, vanD, vanE,
vanG, vanL, vanM, vanN) that can be associated with variable glycopeptide
resistance phenotypes and are often carried on transposable elements such as
Tn1546 (Lebreton et al. 2011; Raynolds and Courvalin 2005; Sujatha et al. 2012;
Xu et al. 2010; see Marcone and Marinelli, this volume).

Glycopeptide resistance in enterococci was originally reported in the late 1980s
(Uttley et al. 1989) and has undergone a global diffusion during the past two
decades, especially in E. faecium. In the United States, a remarkable dissemination
of GRE has been observed, with proportions of up to 60 % reported among
E. faecium isolates from BSIs (Deshpande et al. 2007). In Europe, the proportion
of GRE is quite variable depending on the country (from 2 to 35 % for invasive
isolates of E. faecium), and mixed trends (increasing or decreasing) have been
reported in different countries (EARS-Net 2010 report).

Molecular epidemiology has identified a lineage of E. faecium belonging in
CC17 as the leading cause of infections, and outbreaks caused by this pathogen
have been reported worldwide (Willems et al. 2005). Strains of this lineage have
adapted to the hospital niches and acquired virulence genes (e.g., espEfm and
hylEfm) (Billström et al. 2008; Leavis et al. 2004), and are usually resistant to
penicillins and often to glycopeptides.

Very few options (and not all of them approved) are available for treating
infections caused by GRE, including linezolid (see Zappia et al., this volume),
tigecycline (see Genilloud and Vicente, this volume), daptomycin (see Baltz, this
volume), and quinupristin-dalfopristin (only for E. faecium strains, see Kirst, this
volume).
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Resistance to linezolid, which is the most popular option for GRE infections, is
still uncommon among enterococci but has been increasingly reported since 2002
(Auckland et al. 2002; Gonzales et al. 2001; Ntokou et al. 2012). Resistance is
usually due to ribosomal target modification following mutations of the 23S rRNA
or, less frequently, of the L3 and L4 ribosomal proteins (Prystowsky et al. 2001;
Saager et al. 2008). Mutants are often selected from susceptible strains following
prolonged drug exposure (Rahim 2003; Swoboda 2005), but linezolid-resistant
strains have also been isolated from patients with no previous exposure to the drug,
indicating that these strains have some potential for cross-transmission and dis-
semination even in the absence of antibiotic pressure (Schutle et al. 2008). Most
recently, the plasmid-encoded Cfr ribosomal methylase, which mediates trans-
ferable resistance to linezolid and other anti-ribosomal agents in staphylococci (see
above), has also been detected in a linezolid-resistant strain of E. faecalis isolated
from a patient that had received long-term linezolid treatment (Diaz et al. 2012).
This observation highlights that transferable linezolid resistance mediated by Cfr
could also spread among enterococci.

Enterococcal strains non susceptible to daptomycin remain relatively rare but
have been reported since 2003, mostly among GREs (Kelesidis et al. 2011).
Resistance can occur either in isolates exposed to prolonged drug treatment or in
isolates from patients with no previous exposure to daptomycin (Lesho et al. 2006;
Kelesidis et al. 2012), suggesting the possibility of cross-transmission and dis-
semination even in the absence of antibiotic pressure. Various mutations, either in
a regulatory system involved in the cell envelope response to antibiotics (liaFSR)
or in genes encoding proteins involved in phospholipid metabolism have been
associated with daptomycin resistance (Arias et al. 2011; Munita et al. 2012; see
Baltz, this volume), but the mechanism of resistance remains unclear. Currently,
there are no known transferable determinants that confer resistance to daptomycin.

Concerning tigecycline (see Genilloud and Vicente, this volume), resistance is
very uncommon among enterococcal isolates (Bérenger et al. 2011; Hope et al.
2010; Zhao et al. 2012). However, emergence of strains with increased tigecycline
MICs during therapy has been occasionally documented (Werner et al. 2008), and
the recent detection of enterococcal isolates with reduced susceptibility to tige-
cycline in different reservoirs, including animals for food consumption, suggests
that selection of tigecycline-resistant isolates by antibiotics other than tigecycline
might occur in non-clinical settings (Freitas et al. 2011).

2.4 Issues with Clostridium difficile Infections

Clostridium difficile infection (CDI) is a leading cause of nosocomial diarrhea and
one of the most relevant HCAIs worldwide, with a significant burden on inpatients
morbidity and mortality (Miller et al. 2011). During recent years, CDI has shown
increasing trends in incidence and severity in many countries. For instance, data
from US vital records indicate that the number of death certificates with
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enterocolitis due to C. difficile listed as the primary cause of death increased from
793 in 1999 to 7483 in 2008 (Lessa et al. 2012). This dramatic increase in the
incidence and severity of C. difficile infections has largely been attributed to
emergence and global spread of hypervirulent epidemic strains, such as BI/NAP1/
027 (McDonald et al. 2005). Dissemination of these strains has apparently been
promoted, at least in part, by the overuse of some very popular drugs, such as the
fluoroquinolones (see Pucci and Wiles), to which these hypervirulent strains are
resistant.

Resistance to first-line drugs for CDI, including metronidazole for treatment of
mild to moderate cases and vancomycin for treatment of severe episodes, has been
reported but remains rare and is not regarded as a major clinical problem (Huang
et al. 2009; Shah et al. 2010). However, a reduced response to these standard
treatments and a relatively high incidence of recurrences (up to 20–25 %) have
been reported (Louie et al. 2011; Tenover et al. 2012).

Rifaximin is a non-absorbable rifamycin derivative characterized by potent
activity against C. difficile (Hecht et al. 2007; Shah et al. 2010), considered as an
alternative regimen in refractory CDI and in recurrences after successful treatment
with vancomycin. Recently, it has been suggested that rifaximin could also be
considered as a first-line agent for mild CDI cased (Rubin et al. 2011). Resistance
to rifamycins, which occurs by mutational amino acid substitutions in the b-
subunit of the bacterial RNA polymerase, is overall uncommon but has occa-
sionally been reported at high rates (Curry et al. 2009; Huang et al. 2009), and the
possibility of resistance should be considered especially in patients previously
exposed to rifampin or rifaximin (O’Connor et al. 2008).

Fidaxomicin is a new macrocyclic antibiotic that targets RNA polymerase,
specifically developed for treatment of CDI. Fidaxomicin has potent activity
against C. difficile, including ‘‘hyperepidemic’’ strains, while exhibiting a narrow
spectrum of activity with low interference on the commensal microbiota and
reaching high concentrations in the gut in absence of systemic absorption (Baines
et al. 2008). Resistance to fidaxomicin has been described after in vitro exposure
(Baines et al. 2008), but was found to be very uncommon in clinical trials
(Goldstein et al. 2011). Resistance associated with mutations in rpoB and rpoC
genes, encoding the b and b0 subunits of bacterial RNA polymerase respectively,
but these mutants are not cross-resistant to rifamycins nor cross-resistance with
fidaxomycin has been reported for rifampin-resistant mutants (Babakhani et al.
2011; Baines et al. 2008).

2.5 Conclusions

Microbial drug resistance has become a public health problem of global dimen-
sion. Resistance issues affect both Gram-positive and Gram-negative pathogens.
Although multi-resistant Gram-negatives are now emerging as a major clinical
challenge due to the dramatic shortage of new treatment options available against
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these pathogens, the overall burden caused by multi-resistant Gram-positives, and
of MRSA in particular, remains of primary importance. In fact, MRSA rates
continue to be high in most settings, and infections caused by MRSA and VRE
strains resistant to the principal backup drugs (linezolid, daptomycin and—for
MRSA—glycopeptides) have increasingly been reported. This dynamic resistance
scenario, together with the ability of MRSA to evolve different epidemiological
patterns (e.g., CA-MRSA and, most recently, LA-MRSA) underscores the need for
continuing efforts aimed at surveillance and control of infections caused by multi-
resistant Gram-positives, and at the discovery and development of new drugs
active against these pathogens.
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