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Estimates for geographical domains through geoadditive
models in presence of missing geographical information

Chiara Bocci, Emilia Rocco
Department of Statistics “G. Parenti”, University of Florence

Abstract

This paper deals with the matter of applying a geoadditive model to produce
estimates for some geographical domains in the absence of point referenced geo-
graphical data. The implementation of a geoadditive model needs the statistical
units to be referenced at point locations and if we use it to produce model-based
estimates of a parameter of interest for some geographical domains, the spatial
location is required for all the population units. This information is not always
easily available. Typically, we know the coordinates for sampled units, but for
the non-sampled units we only know the areas - like blocks, municipalities, etc. -
to which they belong. In such situation, the classic approach is to locate all the
non-sampled units by the coordinates of their corresponding area centroid. This is
obviously an approximation and its effect on the estimates can be strong, depend-
ing on the level of nonlinearity in the spatial pattern and on the area dimension.
We propose a different approach that, instead of using the same coordinates for
all the units, imposes a distribution for the locations inside each area. Our ap-
proach is formalized under a Bayes inferential perspective and its performance is
evaluated through various Markov Chain Monte Carlo experiments implemented
under different scenarios.

Keywords: Hierarchical Bayesian models, Imputation, Penalized splines, Linear
mixed model, Sample representativeness.

1 Introduction

Over the last twenty years, spatial data analysis has become a relevant instru-
ment in most areas of observational sciences, from epidemiology to environmental
to social sciences, since the focus on geographical locations and on possible spatial
patterns and relationships can help our understanding of the studied phenomena.
Obviously spatial data analysis is involved when data are spatially located and ex-
plicit consideration is given to the possible importance of their spatial distribution
in the analysis or in the interpretation of results.

Geostatistical methodologies are concerned with this target and typically are
applied, exploiting the exact knowledge of the spatial coordinates (latitude and
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longitude) of sampled units, to analyze the spatial pattern or to obtain spa-
tial interpolations and predictions of the studied phenomenon. In particular,
geoadditive models (Kammann and Wand, 2003) belong to this set of method-
ologies and analyze the spatial distribution of the study variable while accounting
for possible linear or non-linear covariate effects by merging an additive model
(Hastie and Tibshirani, 1990) and a kriging model (Cressie, 1993) and by express-
ing both as a linear mixed model.

To fit a geoadditive model, only the sampled statistical units are required to
be referenced at points locations. If, however, we use the same geoadditive model
to produce model-based estimates of a parameter of interest for some geographical
domains, the spatial information is required for all the population units.

However often we don’t know the exact location of all the population units,
especially when socio-economic data are involved. Typically, we know the coor-
dinates for sampled units (which could be specifically collected for the analysis),
but we don’t know the exact location of all the non-sampled population units. For
the non-sampled units we know just the areas to which they belong like census
districts, blocks, municipalities, etc. How can we continue to use the geostatistical
techniques under these circumstances?

In such situation, the classic approach is to locate all the units belonging to the
same area by the coordinates (latitude and longitude) of the geographical centre or
centroid of the area. This is obviously an approximation, induced by nothing but
a geometrical property, and its effect on the estimates can be strong, depending
on the level of nonlinearity in the spatial pattern and on the area dimension.

In this paper we propose to fill the holes in the geographical information fol-
lowing a stochastic imputation approach (Little and Rubin, 1987) instead of the
classic deterministic one with the centroids. In particular we suggest to treat the
lack of geographical information imposing a distribution for the locations inside
each area. This is realized through a hierarchical Bayesian formulation of the
geoadditive model in which a prior distribution on the spatial coordinates is de-
fined. The performance of our imputation approach is evaluated through various
Markov Chain Monte Carlo (MCMC) experiments implemented under different
scenarios: true distribution of the spatial coordinates (homogeneous Poisson pro-
cess, inhomogeneous Poisson process, Beta distribution) and a-priori coordinate
distribution used in the hierarchical Bayesian formulation (Centroid, Uniform and
Beta).

The results shows that our approach, that includes the classical imputation
approach through the centroids as a special case, is promising and that its perfor-
mance depends on the properness of the hypothesis used in the definition of the
a-priori distribution of spatial coordinates.

The paper is organized as follows. Section 2 briefly reviews the theory of
geoadditive model. In Section 3 the matter of applying geoadditive models to
produce model-based estimates for some geographical domains in the absence of
point referenced auxiliary data is discussed and the complete hierarchical Bayesian
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formulation of the geoadditive model under our stochastic imputation approach
is presented. The performance of this approach is evaluated in Sections 4 and 5
through various MCMC experiments. Section 6 concludes with final remarks and
ongoing questions.

2 Geoadditive models

Basically, to obtain a surface estimate we can exploit the exact knowledge of the
spatial coordinates (latitude and longitude) of the studied phenomenon by using
bivariate smoothing techniques, such as kernel estimate or kriging (Cressie, 1993;
Ruppert et al., 2003). However, usually the spatial information alone does not
properly explain the pattern of the response variable and we need to introduce
some covariates in a more complex model.

Geoadditive models, introduced by Kammann and Wand (2003), answer this
problem as they analyze the spatial distribution of the study variable while ac-
counting for possible linear or non-linear covariate effects. Under the additivity
assumption they can handle such covariate effects by merging an additive model
- that accounts for the relationship between the variables - and a kriging model -
that accounts for the spatial correlation - and by expressing both as a linear mixed
model. The linear mixed model representation is a useful instrument because it
allows estimation using mixed model methodology and software.

Let xi and ti, 1 ≤ i ≤ n,a linear and a non-linear predictors of yi at spatial
location si, s ∈ <. A geoadditive model for such data can be formulated as

yi = α+ βxxi + g(ti) + h(si) + εi, εi ∼ N(0, σ2
ε), (1)

where g is an unspecified univariate smooth function and h is an unspecified
bivariate smooth function.

Representing g(·) with a low-rank truncated linear spline with Kt knots and
h(·) with a low-rank thin plate spline with Ks knots

g(t) = β0t + βtt+

Kt∑
k=1

utk(t− κtk)+

h(s) = β0s + sTβs +

Ks∑
k=1

uskbtps(s,κ
s
k)

the model (1) can be written as a mixed model (Kammann and Wand, 2003)

y = Xβ + Zu+ ε, (2)

with

E

[
u
ε

]
=

[
0
0

]
, Cov

[
u
ε

]
=

σ2
t IKt 0 0
0 σ2

sIKs 0
0 0 σ2

εIn

 .
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where

X =
[
1, xi, ti, s

T
i

]
1≤i≤n

,

β =
[
β0, βx, βt,β

T
s

]
,

u =
[
ut1, ..., u

r
Kt

, us1, ..., u
s
Ks

]
,

β0 = α + β0t + β0s and Z is obtained by concatenating the matrices containing
spline basis functions to handle g and h, respectively

Z = [Zt|Zs] ,

Zt =
[
(ti − κt1)+, ..., (ti − κtKt

)+
]
1≤i≤n

,

Zs = [btps(si,κ
s
k)]1≤i≤n,1≤k≤Ks

=

= [C (si − κs
k)]1≤i≤n,1≤k≤Ks

· [C (κs
h − κs

k)]
−1/2
1≤h,k≤Ks

,

where C(v) = ‖v‖2 log ‖v‖ and κt1, ..., κ
t
Kt

and κs
1, ...,κ

s
Ks

are the knots locations
for the two functions.

The amount of smoothing for both the additive component and the geostatis-
tical component of the model can be quantified through the variance components
ratios σ2

ε/σ
2
t and σ2

ε/σ
2
s .

The addition of others explicative variables is straightforward: smoothing com-
ponents are added in the random effects term Zu, while linear components can be
incorporated as fixed effects in theXβ term. Moreover, the mixed model structure
provides a unified and modular framework that allows to easily extend the model
to include various kind of generalization and evolution (Ruppert et al., 2009).

The mixed model (2) could be fit in a frequentist framework using Best Linear
Unbiased Predictor (BLUP) or Penalized Quasi Likelihood (PQL) estimation. In
this paper we adopt a Bayesian inferential perspective, by placing priors on the
model parameters and simulating their joint posterior distribution. Often the
posterior density is analytically unavailable but can be simulated using Markov
Chain Monte Carlo (MCMC). Moreover, the posterior distribution of any explicit
function of the model parameters can be obtained as a by-product of simulation
algorithm.

3 Lack of geographical information and regional mean
estimation

Suppose to have a population of N units divided in Q regions, and to be interested
in estimate the regional mean of a study variable y. We take a sample of n units
from which we collect the response variable y, the location s and, possibly, some
other covariates (that are known without error for all the population units). To
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obtain the regional mean, we want to apply a model-based mean estimator based
on (2):

ˆ̄yq =
1

Nq

∑
i∈Sq

yi +
∑
i∈Rq

(
xiβ̂ + ziû

) , (3)

where Nq is the total number of units in region q and Sq and Rq indicate the sets
of the sampled and non-sampled units belonging to region q.

We obtain the estimated parameters from the sampled units, but, if we don’t
know s for the not-sample units, we cannot use directly (3). To better show the
problem, consider to have a linear predictor xi of yi at spatial location si and to
use the following spline regression model

yi = β0 + βxxi + βT
s si +

Ks∑
k=1

uskbtps(si,κ
s
k) + εi.

The model-based mean estimator becomes:

ˆ̄yq =
1

Nq

∑
i∈Sq

yi +
∑
i∈Rq

(
β̂0 + β̂xxi + β̂

T

s si +

Ks∑
k=1

ûskbtps(si,κ
s
k)

) , (4)

How can we still apply this estimator if we don’t know si for the non-sampled
units Rq? In the classic approach the si values are replaced with the region
centroid cq, that is a constant for all the units in region q.

We decided to proceed differently, treating the lack of geographical information
as a particular problem of missing data: instead of use the same coordinates cq for
all the units in region q, which may be defined as a particular case of deterministic
imputation, we choose to use a stochastic Bayesian imputation approach including
in the hierarchical Bayesian formulation of the geoadditive model (Ruppert et al.,
2003, Chapter 16) a prior distribution fs(θq) for si inside each region q and then
using the joint posterior distribution of all parameters given the data as the basis
of inference.

Thus, under stochastic imputation, our complete hierarchical Bayesian for-
mulation of the geoadditive model (following specifications of Crainiceanu et al.
(2005)) is

yi|β,u, σ2
ε

ind∼ N

(
β0 + βxxi + βT

s s+

Ks∑
k=1

uskbtps(s,κ
s
k), σ

2
ε

)
,

u|σ2
s∼N(0, σ2

sIKs),

si|θq∼fs(θq),

(5)

with non-informative priors for θq, here not specified as depending on the choice
of fs, and for β, σ2

s , σ
2
ε{
β0, βx, βs

ind∼ N(0, 108)

σ−2
s , σ−2

ε
ind∼ Gamma(10−8, 10−8).
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The parametrization of the Gamma(a,b) distribution implies that the parameter
has mean a/b = 1 and variance a/b2 = 108. Moreover, it should be noticed that
we parameterize the inverse of the variance, that is the precision parameter.

We should note that if, for each region, fs is a probability mass function that
assumed value 1 when s = cq and 0 otherwise, then our formulation corresponds
to the centroid approach.

4 MCMC Experiments

In order to evaluate the performance of our approach with respect to the classic
centroid approach, various MCMC experiments are implemented under different
scenarios.

For the implementation of our experiments, we follow the settings and examples
presented in Crainiceanu et al. (2005) and Marley and Wand (2010). All the anal-
ysis are implemented using the WinBUGS Bayesian inference package (Lunn et al.,
2000), a Windows interface to the BUGS inference engine (Spiegelhalter et al.,
2003). We access WinBUGS using the package BRugs (Ligges et al., 2009) in the
R computing environment (R Development Core Team, 2010). As pointed out in
(Marley and Wand, 2010, p.2), employment of BRugs has the advantage that an
entire analysis can be managed using a single R script and accompanying BUGS

script. Because R is used at the front-end and back-end of the analysis, one can
take advantage of R’s functionality for data input and pre-processing, as well as
summary and graphical display.

4.1 Scenarios Specification

Three MCMC experiments are implemented for each of four scenarios concerning
the population data. All scenarios are characterized by the following setting:

• The study variable is simulated by the model

yi = α+ βxxi + f(si) + εi

where εi ∼ N(0, σ2
ε), σε = 0.2, α = 10, βx = 0.4, x ∼ Ber(0.5) is a dummy

variable known for the whole population, s represents the spatial location
that is generated by a different spatial point process in each scenario and
function f(s) is obtained as a bivariate normal mixture density (following
Wand and Jones (1993)) and is represented in Figure 1.

• The population consisting of N = 3000 units is located in the unit squared
O = [0, 1]× [0, 1] which is divided in Q = 9 rectangular regions that can be
represented by their vertices [(l1q,m1q), (l2q,m1q), (l2q,m2q), (l1q,m2q)]. The
regions are obtained using a random binary splitting procedure.

Each scenario differs from the others for the spatial point process used to
generate s. We consider 4 data generating processes (presented in Figure 2): (A)
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Figure 1: Bivariate normal mixture density f(s). Rectangles are the regions and
the red stars indicate the centroids.

homogeneous Poisson process on O, (B) inhomogeneous Poisson process on O,
(C) inhomogeneous Poisson process on each rectangular region, (D) independent
bivariate Beta distribution on each rectangular region.

For a detailed description of the Poisson processes we refer to Diggle (1983,
Chapter 4), here we say that the processes parameters are set to obtain a realiza-
tion of roundly 3000 units and that for scenario C, the intensity function λ(s) of
the inhomogeneous Poisson process changes in every area.

For the independent bivariate Beta distribution, we generate in each region a
number of units proportional to the area size, with the coordinates s obtained as
realizations of two independent different Beta distributions, defined respectively
on the latitude interval [l1q;m1q] and on the longitude interval [l2q;m2q]. The
parameters of the two Beta distributions change in every area.

7



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s[1]

s[
2]

1

2

3

4

5

6

78

9

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

s[1]

s[
2]

1

2

3

4

5

6

78

9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s[1]

s[
2]

1

2

3

4

5

6

78

9

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s[1]

s[
2]

1

2

3

4

5

6

78

9

(d)

Figure 2: Spatial distributions of the population units: (a) homogeneous Poisson
process, (b) inhomogeneous Poisson process, (c) inhomogeneous Poisson process
on each region, (d) independent bivariate Beta distribution on each region.

For each population setting three MCMC experiments are performed to esti-
mate the mean of y in the 9 regions applying the estimator (4) and using the model
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formulation (5). They are characterized by three different choices of the prior dis-
tribution fs(θq) for si inside each region q, that is by three different imputation
models:

• Centroid Imputation: si is replaced with the region centroid cq, constant
in region q. fs is the probability mass function that assumed value 1 when
s = cq and 0 otherwise.

fs(si) =

{
1 if si = cq
0 if si 6= cq

.

• Uniform Imputation: fs is a bivariate Uniform distribution on [l1q;m1q]×
[l2q;m2q]

si
ind∼ Uniform on [l1q;m1q]× [l2q;m2q].

• Beta Imputation: fs is obtained as product of two independent Beta dis-
tributions on [l1q;m1q]× [l2q;m2q]

si|a1q, b1q, a2q, b2q
ind∼ Beta (a1q; b1q)× Beta (a2q; b2q) on [l1q;m1q]× [l2q;m2q].

with parameters a1q, b1q, a2q, b2q estimated directly in the MCMC process,
by adding the following priors to model (5)

a1q, b1q, a2q, b2q
ind∼ Unif(0; 100).

The common elements to all the MCMC experiments are:

• f(s) is modeled considering a penalized thin plate spline function with Ks =
64 knots selected on a regular grid on space. We choose this type of splines
since it tends to have good numerical properties and, as pointed out by
Crainiceanu et al. (2005, p.2), the posterior correlation of parameters for
the thin-plate splines is much smaller than for other basis, which greatly
improves mixing.

• the MCMC analysis is implemented with a burn-in period of 15000 iterations
and then we retain 5000 iterations, thinned by a factor of 5, resulting in a
sample of size h = 1000 retained for inference.

• the geoadditive model (5) is fitted using a stratified sample of n = 500 units
selected from the population with strata corresponding to the rectangular
regions, proportional allocation of the sample units in each strata and simple
random sample selection in each strata.

In next section, for each population scenario the mean estimates obtained
in correspondence of each imputation approach are compared. In order to take
into account not only the model variability but also the variability due to the
sampling design each MCMC experiment is repeated m = 100 times. In each
replica a new sample is selected and used to fit the model and calculate the
mean estimates. Obviously, for each population scenario the three imputation
hypothesis are compared using the same 100 samples.
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4.2 Results

Figures 3, 4, 5 and 6 show, for scenarios A, B, C and D, the posterior density of
the regional mean estimator under the three imputation approaches. The green,
red and blue lines correspond respectively to the Centroid, Uniform and Beta
imputation approaches, while the vertical lines indicate the true mean values. Each
posterior density is evaluated over an MCMC sample of 100000 units (unifying
the m = 100 chains of h = 1000 units), thus its variability include both the model
effect and the sampling design effect.

In addition to graphical representation, the estimator performance is evaluated
computing the Relative Bias (RB) and the Relative Root Mean Square Error
(RRMSE) defined as

RBq =
1

hm

∑hm
j=1 (ˆ̄yqj − ȳq)

ȳq

and

RRMSEq =

√
1

hm

∑hm
j=1 (ˆ̄yqj − ȳq)2

ȳq
,

where ȳq denotes the actual mean of region q and ˆ̄yjq is the predicted value at
simulation j, j = 1, ..., hm. Tables 1, 2, 3 and 4 present the values of RB and
RRMSE of the regional mean estimator under the three imputation approaches,
for scenarios A, B, C and D respectively.

The values reported in the last row of each table correspond to RB and RRMSE
of the overall mean estimator. Moreover, the posterior densities of the overall mean
estimator are presented in Figure 7.

Observing Figures 3 and 6 and the corresponding Tables 1 and 4, it is straight-
forward to note that if the imputation distribution fs corresponds to the popu-
lation spatial distribution, the stochastic imputation approach produces better
estimates than the classic centroid approach. This is the case of the Uniform
approach in scenario A (Fig. 3) and of the Beta approach in scenario D (Fig. 6).

The Beta imputation approach works well also in scenario A, due to the fact
that the true spatial distribution in each region is a special case of the bivari-
ate Beta distribution, but it produces less precise estimates than the Uniform
imputation since the Beta parameters need to be estimated in the fitting process.

For scenarios B (Fig. 4 and Table 2) and C (Fig. 5 and Table 3) none of
the imputation models corresponds to the population spatial distribution, but the
Beta approach still presents a good performance. This depends on the fact that
the Beta distribution has the advantage of modeling different shapes depending
on the parameters value. In our approach these parameters are estimated directly
in the MCMC process exploiting the spatial distribution of the sampled units and
producing a posterior bivariate Beta distribution that is as similar as possible to
the sample spatial distribution. Obviously, the good performance of this approach
relies on the representativeness of the sample. This aspect is further investigated
in Section 5.
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Figure 3: Posterior density of the regional model-based mean estimator under
scenario A (homogeneous Poisson process) for the three imputation approaches:
Centroid (green line), Uniform (red line) and Beta (blue line). The vertical lines
indicate the true mean values.

Table 1: Empirical RB and RRMSE of the model-based mean estimator under
scenario A (homogeneous Poisson process) for the three imputation approaches.

Centroid Imputation Uniform Imputation Beta Imputation
Region RBias % RRMSE % RBias % RRMSE % RBias % RRMSE %

1 0.7934 1.0726 -0.1060 0.3926 0.0748 0.5429
2 0.1790 0.6245 0.0380 0.4737 0.0169 0.5396
3 -3.1145 3.1856 0.0317 0.2641 -0.0834 0.4517
4 1.6969 1.8209 0.0565 0.3141 0.0632 0.4521
5 0.3569 0.8211 -0.0051 0.4036 -0.0537 0.7527
6 -0.3597 0.7326 0.1338 0.3857 0.0177 0.4059
7 0.0116 0.5783 0.2422 0.5127 0.1608 0.6099
8 0.2409 0.7920 -0.1407 0.3687 -0.1274 0.5344
9 2.0669 2.1835 -0.0713 0.3975 -0.1114 0.7074
Overall -0.2861 0.3860 0.0089 0.1254 -0.0269 0.1979
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Figure 4: Posterior density of the regional model-based mean estimator under
scenario B (inhomogeneous Poisson process on O) for the three imputation ap-
proaches: Centroid (green line), Uniform (red line) and Beta (blue line). The
vertical lines indicate the true mean values.

Table 2: Empirical RB and RRMSE of the model-based mean estimator under
scenario B (inhomogeneous Poisson process on O) for the three imputation ap-
proaches.

Centroid Imputation Uniform Imputation Beta Imputation
Region RBias % RRMSE % RBias % RRMSE % RBias % RRMSE %

1 1.5427 1.7086 0.3019 0.4796 0.0770 0.5067
2 -0.1183 0.6995 -0.1747 0.5283 0.0219 0.5200
3 -5.8033 5.8560 -3.0559 3.0820 -0.1910 0.4458
4 2.1125 2.2369 0.5721 0.6848 0.1740 0.5280
5 -0.7650 1.0841 -1.3633 1.4199 -0.1384 0.6976
6 -0.5418 0.9037 -0.1433 0.4055 -0.0390 0.3751
7 -0.7888 1.0004 -0.6332 0.8045 0.0422 0.6082
8 1.3448 1.5056 0.7700 0.8457 0.0124 0.4686
9 1.3178 1.5541 -0.6146 0.7459 0.1635 0.7659
Overall -1.1534 1.1905 -0.9406 0.9535 -0.0207 0.1979
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Figure 5: Posterior density of the regional model-based mean estimator under sce-
nario C (inhomogeneous Poisson process on each region) for the three imputation
approaches: Centroid (green line), Uniform (red line) and Beta (blue line). The
vertical lines indicate the true mean values.

Table 3: Empirical RB and RRMSE of the model-based mean estimator under
scenario C (inhomogeneous Poisson process on O) for the three imputation ap-
proaches.

Centroid Imputation Uniform Imputation Beta Imputation
Region RBias % RRMSE % RBias % RRMSE % RBias % RRMSE %

1 1.5210 1.9031 -0.2256 0.7465 0.1777 0.9244
2 0.0809 0.6108 -0.1959 0.4660 0.0475 0.4581
3 -4.8635 4.9351 -2.0413 2.0646 -0.3337 0.5723
4 1.1259 1.2053 -0.6395 0.6768 -0.1398 0.3759
5 -0.3290 0.8681 -0.8983 0.9951 -0.1369 0.7468
6 0.4805 1.4733 -0.2036 1.1369 -0.0393 0.8779
7 -0.6250 1.0207 -0.9846 1.1835 -0.0861 0.8967
8 0.2472 0.7276 -0.2919 0.4204 -0.0261 0.4347
9 1.1119 1.4059 -1.2302 1.3163 -0.1010 0.8539
Overall -0.8551 0.9073 -0.9873 0.9953 -0.1425 0.2483
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Figure 6: Posterior density of the regional model-based mean estimator under
scenario D (bivariate Beta distribution on each region) for the three imputation
approaches: Centroid (green line), Uniform (red line) and Beta (blue line). The
vertical lines indicate the true mean values.

Table 4: Empirical RB and RRMSE of the model-based mean estimator under
scenario D (bivariate Beta distribution on each region) for the three imputation
approaches.

Centroid Imputation Uniform Imputation Beta Imputation
Region RBias % RRMSE % RBias % RRMSE % RBias % RRMSE %

1 2.3203 2.4269 1.3440 1.4220 -0.0046 0.4289
2 0.4227 0.8285 -0.0076 0.6944 0.0336 0.5121
3 -3.0580 3.1006 -0.7285 0.8775 0.0863 0.3261
4 -0.6350 0.8042 -2.4948 2.5406 -0.0298 0.3874
5 1.0137 1.3327 0.5416 0.7010 0.2488 0.8755
6 -0.4144 0.6593 0.0342 0.5208 -0.0778 0.4076
7 -1.2892 1.4489 -1.1110 1.2835 0.1120 0.6043
8 1.3736 1.5183 0.6886 0.7977 -0.0116 0.4258
9 0.0750 0.7751 -2.2920 2.3339 -0.0230 0.6983
Overall -0.5710 0.6144 -0.5872 0.6204 0.0403 0.1710
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Figure 7: Posterior density of the overall model-based mean estimator under the
four scenarios and for the three imputation approaches: Centroid (green line),
Uniform (red line) and Beta (blue line). The vertical lines indicate the true mean
values.

It should be noted, however, that the sample representativeness affects esti-
mator (4) under all the imputation approaches. The fact that the population
structure should be valid for the sample too is a common assumption in almost
all inferential methods. In our case we require this assumption primarily to infer
the unit spatial distribution rather than to model y. In fact, since the geoadditive
model is a semiparametric procedure where the spatial influence is modeled locally
with a spline structure, the parameter estimation of model 5 is little sensitive to
the spatial sample representativeness (unless huge amount of spatially clustered
data are missing, especially near the region boundaries).

About the classical centroid approach we can observe that almost in all the
cases it performs worse than the Beta imputation, even if there are some specific
situation in which it seems a good choice (see for example region 7 in scenario
A or region 5 in scenario C). However, this strictly depends on the specific units
spatial distribution and values of y inside that region. This consideration applies
also to the behavior of the Uniform distribution in Scenarios B, C and D: generally
it doesn’t work well but may be good in some specific situation.

15



The good performance of the Beta imputation under all the scenarios is re-
flected also in the mean estimation for the overall area O, as we observe from the
posterior distribution of the mean estimator showed in Figure 7.

5 Non-representative Samples

The results presented in Section 4.2 show that the hierarchical Bayesian formu-
lation of geoadditive models with stochastic imputation, here suggested to deal
with the lack of spatial coordinates for non sampled units, produces better regional
mean estimates than the classical centroid imputation approach. This happens not
only when the prior distribution chosen for the spatial coordinates corresponds to
the true coordinates distribution, but also when a “flexible” distribution, like the
independent bivariate Beta, is used to obtain an approximate spatial distribution
of s, as long as the sample spatial distribution reflects that one of the population.

In order to show the relevance of the spatial representativeness property of the
sample we have performed some other MCMC experiments. To better visualize
the spatial distribution of sample units in these new experiments we assume to
have a univariate s so that the regions are actually intervals.

The study variable y is simulated by the model

yi = α+ βxxi + f(si) + εi (6)

where εi ∼ N(0, σ2
ε), σε = 0.2, α = 10, βx = 0.4, x ∼ Ber(0.5) is a dummy variable

known for the whole population, s represents the spatial location and is generated
by a uniform distribution in every region and function f(s) = sin(3πs3). The
population consisting of N = 3000 units is located in the interval O = [0, 1] which
is divided in Q = 4 intervals [0, 0.2], [0.2, 0.5], [0.5, 0.82], [0.82, 1]. The obtained
population is showed in Figure 8(a): the green and black dots correspond to the
units with xi = 0 and xi = 1 respectively, the vertical dashed lines indicate the
regions and the red lines indicate the deterministic component of model (6).

Given this population setting, three different scenarios are considered: varying
the type of samples selected from the population. For each scenario, three MCMC
experiments are performed to estimate the mean of y in the 4 regions. Each
experiment corresponds to the univariate version of one of the imputation models
defined in Section 4.1.

All the tree types of samples are stratified samples of n = 500 units with
strata corresponding to the 4 regions and proportional allocation of sampled units
in each strata. They differs in the sampling design adopted to select the units in
each strata:

• Representative sample: a simple random sample is selected in each strata;

• Type 1 Non-representative sample: in each strata, the 70% of the sam-
ple is randomly selected among the units with s values lower than the centroid
and the remaining 30% is randomly selected among the units with s values
greater than the centroid;
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Figure 8: Scenarios Settings: (a) Simulated population, with the green and black
dots corresponding to the units with xi = 0 and xi = 1 respectively, the vertical
dashed lines indicating the regions and the red lines indicating the deterministic
component of model (6); (b) Distribution of a Representative sample; (c) Dis-
tribution of a Type 1 Non-representative sample; (d) Distribution of a Type 2
Non-representative sample.

• Type 2 Non-representative sample: in each strata the units are selected
with probability proportional to the inverse of the y values.

Examples of the three samples spatial distribution are showed in Figure 8.
The MCMC experiments follow the same settings described in Section 4.1 and

are replicated m = 100 times in order to take into account both the model and
the the sampling design variability. Function f(s) is modeled with a low-rank
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(a) Representative samples

(b) Type 1 Non-representative samples

(c) Type 2 Non-representative sample

Figure 9: Posterior density of the regional model-based mean estimator under the
three scenarios and for the three imputation approaches: Centroid (green line),
Uniform (red line) and Beta (blue line). The vertical lines indicate the true mean
values.

truncated linear spline with Ks = 30 knots located on the quantiles of the sample
distribution of s.

The posterior densities of the regional model-based mean estimator under the
three scenarios are presented in Figure 9. It is evident that when a simple random
sample is selected in each strata both the uniform imputation (that correspond to
the true spatial distribution) and the Beta imputation work well (analogously to
the bivariate scenario A).

In the other two scenarios the performance of both the two imputation ap-
proaches get worse but the Beta imputation is more affected. This is due to the
fact that the Beta imputation exploits the spatial distribution of the sampled units
to estimate its parameters, and as long as the spatial sample distribution does not
reflect the one of population the estimated parameters produce a posterior spatial
distribution different from the true one.
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On the contrary, the Uniform imputation does not exploit any sample informa-
tion, thus it correctly imputes the coordinates of the non sampled units. However,
since the sampled units selection depends on their location (or to their value of y
which is strictly connected to s by f(s)) the joint spatial distribution of sampled
and imputed units will not be Uniform.

Analogous considerations apply with the classic centroid imputation approach.
Thus, whichever imputation approach we use the mean estimator (4) will be af-
fected by the sample non-representativity.

It is important to note that the sample non-representativity is strictly related to
the imputation step of our analysis. Due to its semiparametric splines structure,
the geoadditive model is robust to sample non-representativity and the model
fitting step is hardly influenced by it.

6 Final remarks

In the last years the use of geostatistical techniques to produce model-based es-
timates of a parameter of interest for some geographical domains is grown. This
is also shown by some relative recent papers (Opsomer et al., 2008; Bocci, 2010;
Salvati et al., 2010) in which the use of geoadditive small area models are investi-
gated.

Their use however is not always straightforward as it needs for all the popula-
tion units to be referenced at point location, but this requirement in not so easy
to be accomplished. In this paper we have suggested a solution to this problem
that propose a hierarchical Bayesian formulation of a geoadditive model in which
a prior distribution for the spatial coordinates is defined to characterize the knowl-
edge prior to data collection. The missing spatial coordinates are then extracted
from their posterior distribution, obtained by MCMC simulation.

We have also shown that in absence of a prior knowledge of the spatial distribu-
tion, the spatial coordinates imputation approach with the Beta prior distribution
works well as long as the sample units have the same spatial distribution of the
population units. Moreover the Beta imputation is surely preferable to the classic
approach that locate each units with their corresponding area centroid.

We should highlight the generality of our stochastic Bayesian imputation ap-
proach. In all situation examined in the paper the use of the Beta distribution as
prior distribution is the better choice as long as the prior knowledge does not allows
to specify the true distribution (such as the Uniform distribution in scenario A).
If however the sample spatial distribution presents a more complex pattern (like
multimodal or clustered distributions) our model formulation approach can still be
used, by choosing a more flexible prior distribution (i.e. with more parameters).

Moreover, even if neither the exact units coordinates nor their true distribution
are known, some auxiliary information may still be available (e.g. land use, land
elevations, etc...). The advisability to use them in the formulation of the model
should be a future development.
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Finally, it might also be desirable to extend the Bayesian model formulation
in order to include information on the sample design. This should produce a
robust estimation with respect to the hypothesis of spatial representativeness of
the sample. We intend to also develop this aspect in our future work.
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