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Introduction

In this thesis we address some relevant generalizations of the famous Brunn-Minkowski
inequality, and in particular we study its functional formulations, known in the literature
as the Borell-Brascamp-Lieb inequalities.

Among the Borell-Brascamp-Lieb inequalities, the most famous one is known as
the Prékopa-Leindler inequality, since it was previously proved by Prékopa [41] and
Leindler [37] (later rediscovered by Brascamp and Lieb in [10]). It states that

ˆ
Rn
h dz ≥

(ˆ
Rn
f dx

)1−λ (ˆ
Rn
g dy

)λ
for any λ ∈ (0, 1) and every f, g, h : Rn −→ [0,+∞) such that

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn. (0.1)

In other words, if h evaluated at the convex combination of any two points is greater
than the (λ-weighted) geometric mean of f and g at those points, then the integral
of h is not less than the (λ-weighted) geometric mean of the integrals of f and g. If
the Prékopa-Leindler inequality reminds the reader of anything, it is probably Hölder’s
inequality with the inequality reversed. Recall that if f ∈ Lp(Rn), g ∈ Lq(Rn) are
nonnegative functions with p, q ≥ 1 and 1

p + 1
q = 1, then Hölder’s inequality claims that

ˆ
Rn
k dx ≤

(ˆ
Rn
fp dx

)1/p (ˆ
Rn
gq dx

)1/q
,

where k(x) = f(x)g(x). Let λ ∈ (0, 1), 1/p = 1− λ, 1/q = λ: the latter can be rewritten
as ˆ

Rn
f1−λgλ dx ≤

(ˆ
Rn
f dx

)1−λ (ˆ
Rn
g dx

)λ
.

Thus the Prékopa-Leindler inequality can be seen in some sense as a reverse form of
Hölder’s inequality. On the other hand, there is no contradiction between the two
inequalities, since condition (0.1) is rather strong and of course it implies

h(x) ≥ f(x)1−λg(x)λ for all x ∈ Rn,
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and in general with strict sign.

The Prékopa-Leindler inequality is largely recognized as the functional formulation of
the multiplicative form of the Brunn-Minkowski inequality, that is

|(1− λ)A+ λB| ≥ |A|1−λ |B|λ , (0.2)

where λ ∈ (0, 1), |·| denotes the Lebesgue measure, A,B are nonempty measurable subset
of Rn and (1− λ)A+ λB is their Minkowski combination

(1− λ)A+ λB = {(1− λ)a+ λb : a ∈ A, b ∈ B} .

Indeed (0.2) can be easily deduced by applying the Prékopa-Leindler inequality to the
characteristic functions f = χA, g = χB, h = χ(1−λ)A+λB.

More generally, the Borell-Brascamp-Lieb inequalities constitute a larger family of
integral inequalities, including the Prékopa-Leindler inequality as the special case p = 0.
Let λ ∈ (0, 1), p ∈ [−1/n,+∞]. The Borell-Brascamp-Lieb inequality of index p states
that ˆ

Rn
h dx ≥

[
(1− λ)

(ˆ
Rn
f dx

) p
np+1

+ λ

(ˆ
Rn
g dx

) p
np+1

]np+1
p

,

provided that the nonnegative functions f, g, h satisfy

h((1− λ)x+ λy) ≥ [(1− λ)f(x)p + λg(y)p]1/p for all x, y ∈ Rn.

The latter two inequalities have to be read as limit for the the index p = 0 (Prékopa-
Leindler inequality), or p = +∞ or p = −1/n: namely for p = +∞

ˆ
Rn
h dx ≥

[
(1− λ)

(ˆ
Rn
f dx

)1/n
+ λ

(ˆ
Rn
g dx

)1/n
]n
,

if the nonnegative functions f, g, h satisfy

h((1− λ)x+ λy) ≥ max {f(x), g(y)} for all x, y ∈ Rn;

instead for p = −1/n it becomes
ˆ
Rn
h dx ≥ min

{ˆ
Rn
f dx,

ˆ
Rn
g dx

}
,

provided that the nonnegative functions f, g, h satisfy

h((1− λ)x+ λy) ≥
[
(1− λ)f(x)−1/n + λg(y)−1/n

]−n
for all x, y ∈ Rn.

All the Borell-Brascamp-Lieb inequalities can be interpreted as functional counterparts
of the Brunn-Minkowski inequality, since they are all equivalent each other (and in partic-
ular equivalent to the Prékopa-Leindler inequality). The Borell-Brascamp-Lieb inequality
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of index p = +∞ (using again the same characteristic functions) leads immediately to
the classical form of the Brunn-Minkowski inequality, i.e.

|(1− λ)A+ λB|1/n ≥ (1− λ) |A|1/n + λ |B|1/n , (0.3)

for every λ ∈ (0, 1), A,B nonempty measurable subset of Rn. Moreover equality holds
in (0.3) if and only if A,B are (essentially) homothetic convex sets.

Problems and topics inspired by the Brunn-Minkowski inequality and by the variety
of its formulations have attracted a growing interest in recent decades. In particular the
Borell-Brascamp-Lieb inequalities have been investigated in different areas of research,
also owing to their connections with other fields of Mathematics, like probability theory
and statistics, especially concerning concavity properties of certain functions and mea-
sures.

Between the various themes related to the Borell-Brascamp-Lieb inequalities, in this
thesis we mainly address the question of their stability, which is an important aspect
intrinsically related to their equality conditions.
Let us briefly explain what we mean by stability of an inequality. Suppose to known the
inequality and also the precise characterization of the situations in which the equality
occurs. The stability question is the following: assume that the involved objects (sets or
functions, or something else) in the inequality almost get the equality; can we claim that
these objects are near to the class which exactly attains the equality?
Moreover, in the affirmative, the stability of the inequality is called quantitative if we are
able to estimate the closeness to the equality conditions in explicit terms of the distance
from the equality in the original inequality.
Clearly, we should first formalize what we mean by almost getting inequality; then we
should specify in which sense, that is under what suitable distance, we describe nearness.

In recent years there has been renewed interest in the research of quantitative versions
for several inequalities. Such an interest finds its motivation in the following remark: quot-
ing Gardner [28] "If inequalities are silver currency in mathematics, those that come along
with precise equality conditions are gold. Equality conditions are treasure boxes containing
valuable information". Then a quantitative stability result is even more precious, because
it provides additional valuable informations about the closeness to the equality conditions.

The purpose of this work is twofold. On one hand it is aimed to be a detailed guide
regarding the world of the Borell-Brascamp-Lieb inequalities: we delve into the state
of the art of this topic by means of various proofs, remarks, links, generalizations and
refinements, including equality conditions. On the other hand we deal with questions
related to the stability of these inequalities: after recalling the existing stability results
concerning Borell-Brascamp-Lieb inequalities, we expose our original results.

Let us describe the organization of the dissertation. First of all we introduce in
Chapter 1 some basic definitions and concepts. For the sake of brevity, this chapter does
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not contain all the technical preliminaries needed in the thesis, which are given, when
necessary, within each chapter.

In Chapter 2 we present the fundamental Brunn-Minkowski inequality, exhibiting some
well known equivalent formulations and a simple proof, due to Hadwiger and Ohmann,
basically derived by the arithmetic–geometric mean inequality. Furthermore we notice
that the isoperimetric inequality for convex bodies is a direct consequence of the Brunn-
Minkowski inequality. In the last part of Chapter 2 we recall the equality conditions of the
Brunn-Minkowski inequality, and some related stability results, especially the crucial and
recent one of Figalli and Jerison [25]. To get into the concept of stability, in the course of
Chapter 2 we will quote further quantitative versions of the Brunn-Minkowski inequality,
due to Groemer [31], Figalli-Maggi-Pratelli [26, 27], in addition to the mentioned result
of Figalli and Jerison.

Chapter 3 is devoted to a detailed presentation of the Borell-Brascamp-Lieb inequal-
ities, providing four different proofs and clarifying the relationship with the Brunn-
Minkowski inequality. We underline that the third proof (Subsection 3.3.3) relies on
an idea of Klartag [36] and it is crucial for our main result in [43], that is Theorem
7.1.1 in Chapter 7. On the other hand the fourth proof (Subsection 3.3.4) is original
at some degree and based on a work of Uhrin [50]. At the end of Chapter 3 we show
the relationship between the Borell-Brascamp-Lieb inequalities and another integral
inequality, precisely Theorem 3.4.1.

In order to investigate the equality conditions for the Borell-Brascamp-Lieb inequali-
ties, Chapter 4 contains the proof of a larger class of integral inequalities, consequence
of Theorem 3.4.1, including their equality conditions provided by Dubuc [23]. These
conditions, stated in Proposition 4.1.2, allow us to deduce, in Section 4.2 and Section 4.3,
a precise characterization for the equality case of the Borell-Brascamp-Lieb inequalities.
Although some of these equality conditions (surely the ones relative to the Prékopa-
Leindler inequality, see [2, 3, 12] for example) are known in literature, their proofs can
not be explicitly found, to our knowledge. Then we give detailed proofs in Chapter 4,
and this can be considered an original contribution (see [42]).

In Chapter 5 we summarize the (few) known stability results for Borell-Brascamp-Lieb
inequalities. We will describe stability results for Prékopa-Leindler inequality due to
Ball-Böröczky [2,3] and Bucur-Fragalà [12], and we will state a quantitative version of
the Borell-Brascamp-Lieb inequalities of index p > 0 for power concave functions, proved
by Ghilli and Salani [30].

Finally the last two chapters, Chapter 6 and Chapter 7, are aimed to present and
describe the main original contributions of the thesis. While Chapter 6 concerns the
stability of a strengthened one-dimensional Borell-Brascamp-Lieb inequality, Chapter 7
is devoted to a general stability version of the Borell-Brascamp-Lieb inequalities, for the
first time without concavity assumptions on the involved functions. The results of these
two chapters are respectively contained in the submitted paper [44] and of the published
paper [43].
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Chapter 1

Ingredients

1.1 Basic notations
Throughout this dissertation the symbol | · | is used to denote different things and we
hope this is not going to cause confusion. In particular: for a real number a we denote
by |a| its absolute value, as usual; for a vector x = (x1, . . . , xn) ∈ Rn we denote by |x|
its euclidean norm, that is |x| =

√
x2

1 + · · ·+ x2
n; for a set A ⊂ Rn we denote by |A| its

n-dimensional Lebesgue measure or, sometimes, its outer measure if A is not measurable.
Let us recall that the outer measure of a subset A ⊂ Rn is defined as

inf

∑
n∈N
|Pn| : {Pn}n∈N ⊆ P, A ⊆

⋃
n∈N

Pn

 ,
where P is the algebra of the finite unions of n-dimensional rectangles (with the term
rectangle we mean the cartesian product of n real intervals, possibly unbounded). On
the other hand, the inner Lebesgue measure of A ⊂ Rn is the supremum of the measures
of its compact subsets. For any A ⊂ Rn consider the (perhaps infinite) outer and inner
Lebsegue measure: if these two quantities coincide for the set A, the latter is said to be
measurable and the common value of these quantities is its Lebesgue measure |A|.

Let A ⊂ Rn. We denote by A its closure, by ∂A its boundary and indicate its surface
area with Hn−1 (∂A). Its convex hull, denoted by conv(A), is the smallest convex subset
of Rn that contains A. We denote by Kn the family of n-dimensional convex bodies, i.e.
compact, convex subsets of Rn, with nonempty interior.

The support set of a nonnegative continuous function f : Rn → [0,+∞) is denoted by
Supp(f), that is Supp(f) = {x ∈ Rn : f(x) > 0}. In general (when f is not necessarily
continuous), by Supp(f) we denote the (essential) support set, defined as follows:

Supp(f) = Rn \ ∪A∈FA

where F = {A ⊆ Rn : A is open and f vanishes a.e. in A}.
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For further use, we recall the so-called Cavalieri formula in a simplified version: let f
be a nonnegative function belonging to L1(R), then

ˆ
R
f(x) dx =

ˆ +∞

0
|{x : f(x) ≥ t}| dt. (1.1)

1.2 Minkowski combination
Let A be a subset of Rn and let α > 0; we set

αA = {z ∈ Rn : z = αx, x ∈ A} ;

The Minkowski sum of two subsets A and B of Rn is simply defined as

A+B = {a+ b : a ∈ A, b ∈ B} .

It is trivial to check that these two operations, respectively rescaling and Minkowski sum,
preserve convexity.

In particular, given λ ∈ (0, 1), we call Minkowski combination (of coefficient λ) of two
nonempty sets A,B ⊆ Rn the set

(1− λ)A+ λB = {(1− λ)a+ λb : a ∈ A, b ∈ B} . (1.2)

Being defined in terms of the previous operations, also the Minkowski combination
preserve the convexity: if A,B are convex sets, then (1− λ)A+ λB is convex.
Exemple 1.2.1. In R2 the Minkowski combination (of coefficient λ = 1/2)

1
2Q+ 1

2B(0, 1)

of a square and a disk is a rounded square.

Remark 1.2.2. If A is convex, then for every λ ∈ (0, 1) holds

(1− λ)A+ λA = A.

8



It is interesting to note that if A is not convex, there exists λ ∈ (0, 1) for which the latter
identity does not hold: indeed in general only the inclusion

A ⊆ (1− λ)A+ λA

holds, since any a ∈ A can be trivially expressed by the sum (1− λ)a+ λa. We underline
that the opposite inclusion characterizes the convex sets. In fact

(1− λ)A+ λA ⊆ A for every λ ∈ (0, 1)

means that for any a1, a2 ∈ A the convex combination (1 − λ)a1 + λa2 belongs to A:
hence we recognize the definition of convexity. In other words, if A is not convex then
there exists λ ∈ (0, 1) for which A is a proper subset of (1− λ)A+ λA and vice versa.

1.3 Generalized means and p-concavity
It is useful to introduce the generalized means of two nonnegative numbers and the
corresponding notion of power concavity for a nonnegative function.

Definition 1.3.1. Let q ∈ [−∞,+∞] and λ ∈ (0, 1). Given two real numbers a ≥ 0 and
b ≥ 0, the quantity

Mq(a, b;λ) =


max{a, b} q = +∞ ,

[(1− λ)aq + λbq]
1
q q ∈ R \ {0} ,

a1−λbλ q = 0 ,
min{a, b} q = −∞ ,

if ab > 0 ; (1.3)

Mq(a, b;λ) = 0 for every q ∈ R ∪ {±∞} , if ab = 0,

represents the (λ-weighted) q-mean of the nonnegative numbers a and b.

Observe that for every λ ∈ (0, 1) it holds

lim
q→+∞

Mq(a, b;λ) = max {a, b} , lim
q→0
Mq(a, b;λ) = a1−λbλ, lim

q→−∞
Mq(a, b;λ) = min {a, b} .

Some of these generalized means are well known: for example the cases q = 1 and
q = 0 correspond respectively to the (λ-weighted) arithmetic mean and geometric mean.
A simple consequence of Jensen’s inequality is

Mq(a, b;λ) ≥Mp(a, b;λ) if q > p, (1.4)

that is the p-means are monotone increasing with respect to the index p.
For every q > p, equality holds in (1.4) if and only if a = b or ab = 0.
Choosing q = 1 and p = 0 in (1.4), we recognize the arithmetic–geometric mean inequality

(1− λ)a+ λb ≥ a1−λbλ.
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for two nonnegative numbers a, b. Its classical (and symmetric) form occurs when λ = 1/2:

a+ b

2 ≥
√
ab.

The latter can be generalized for three or more nonnegative numbers a1, ..., an, becoming

1
n

n∑
j=1

aj ≥

 n∏
j=1

aj

1/n

. (1.5)

Definition 1.3.2. A nonnegative function u : Rn −→ [0,+∞) is p-concave for some
p ∈ R ∪ {±∞} if

u((1− λ)x+ λy) ≥Mp(u(x), u(y);λ) ∀ x, y ∈ Rn ∀ λ ∈ (0, 1) .

Roughly speaking, u is p-concave if it has convex support Ω and:
(i) up is concave in Ω for p > 0;
(ii) u is "log-concave", i.e. log u is concave in Ω for p = 0;
(iii) up is convex in Ω for p < 0;
(iv) u is "quasiconcave" (i.e. all its superlevel sets {z : u(z) ≥ t} are convex) for p = −∞;
(v) u is a positive constant in Ω for p = +∞.

Notice that p = 1 corresponds to usual concavity in Ω.
It follows from (1.4) that if u is q-concave, then u is p-concave for any p ≤ q.
Hence quasiconcavity is the weakest conceivable concavity property. The quasiconcave
envelope of a function f is the smallest quasiconcave function greater than or equal to f ,
that is the smallest function, greater than or equal to f , whose superlevel sets are convex.

The Brunn-Minkowski inequality (which will be presented in detail in Chapter 2)

|(1− λ)A+ λB|1/n ≥ (1− λ) |A|1/n + λ |B|1/n

states that the Lebesgue measure is a (1/n)-concave function in relation to the Minkowski
combination in Rn.

1.4 The (p, λ)-convolution of two functions
Let λ ∈ (0, 1), f, g : Rn −→ [0,+∞). The supremal convolution of f and g is the function
(1− λ)f ⊕1 λg : Rn −→ [0,+∞) defined as follows:

((1− λ)f ⊕1 λg) (z) = sup {M1 (f(x), g(y);λ) : z = (1− λ)x+ λy} .

This definition can be easily generalized.
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Definition 1.4.1. Let p ∈ [−∞,+∞], λ ∈ (0, 1), f, g : Rn −→ [0,+∞). The (p, λ)-
convolution of f and g is the function (1 − λ)f ⊕p λg : Rn −→ [0,+∞) given by

((1− λ)f ⊕p λg) (z) = sup {Mp (f(x), g(y);λ) : z = (1− λ)x+ λy} . (1.6)

In other words, the (p, λ)-convolution of f and g, for p > 0 corresponds to the
(1/p)-power of the supremal convolution (with coefficient λ) of fp and gp. Trivially

((1− λ)f ⊕p λg) ((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn,

and the function (1− λ)f ⊕p λg is, by Definition 1.4.1, the smallest function satisfying
this property. Indeed the condition

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn (1.7)

is clearly equivalent to h ≥ (1−λ)f ⊕p λg. We underline that (1.7) is the key assumption
of the Borell-Brascamp-Lieb inequalities, which represent the main topic of the thesis.
From Definition 1.4.1 and (1.4), we get

(1− λ)f ⊕q λg ≥ (1− λ)f ⊕p λg if −∞ ≤ p < q ≤ +∞.

Note that whenever f, g are p-concave, the function (1− λ)f ⊕p λg is also p-concave.
Clearly the function (1− λ)f ⊕p λf is not less than f , since

[(1− λ)f ⊕p λf ] (z) ≥Mp (f(z), f(z);λ) = f(z).

Furthermore it holds
[(1− λ)f ⊕p λf ] = f

if and only if f is a p-concave function. This observation about the (p, λ)-convolution
and the p-concavity is the functional counterpart of Remark 1.2.2.

Now we clarify the relation between the (p, λ)-convolution of two functions and the
Minkowski combination of suitable sets, corresponding to the involved functions.

Definition 1.4.2. Let p > 0. Given u : Rn −→ [0,+∞) we consider the set which
represents the subgraph of up, namely

A(p)
u = {(x, t) ∈ Rn × R : x ∈ Suppu, 0 ≤ t ≤ u(x)p} .

Let p > 0; then, roughly speaking, the subgraph of ((1− λ)f ⊕p λg)p is obtained as
the Minkowski combination (with coefficient λ) of the subgraphs of fp and gp. Precisely
we have

A
(p)
(1−λ)f⊕pλg = (1− λ)A(p)

f + λA(p)
g ,

where these subsets of Rn+1 represent respectively the graphs of fp, gp, ((1− λ)f ⊕p λg)p,
according to Definition 1.4.2.
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Throughout the thesis we use for simplicity the notation hp,λ in place of (1−λ)f⊕pλg
to denote the (p, λ)-convolution of f and g, when there are no doubts about what the
involved functions f, g are. More explicitly we mean:

hp,λ = (1− λ)f ⊕p λg.
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Chapter 2

The Brunn-Minkowski inequality
(BM)

2.1 Presentation and equivalent formulations
The classical form of the Brunn-Minkowski inequality (BM in the following) regards only
convex bodies and it plays a crucial role in the related theory (see Schneider’s excellent
book [47], also for detailed remarks and references concerning its early history). The
validity of the BM inequality has been extended later to the class of measurable sets.
Providing a lower bound on the volume of a Minkowski combination in terms of the
volume of the individual sets, for a long time it has been considered to belong only to
geometry. Anyway, by the mid-twentieth century, Lusternik, Hadwiger and Ohmann,
and Henstock and Macbeath gave considerable extensions of the inequality, which began
to be viewed as an analytical result. When Prékopa [41] and Leindler [37] established
the so-called Prékopa-Leindler inequality, a functional equivalent version of the Brunn-
Minkowski inequality, its role as an analytical tool has been widely recognized. Since
then it has been rightly considered one of the principal geometric-analytical inequalities.

We refer to the beautiful paper of Gardner [28] (please, note also the extended
version [29]) for an exhaustive presentation of the historical development of the Brunn-
Minkowski inequality, combined with a careful explanation of its several extensions and
of its intriguing (sometimes unexpected) relationships with other meaningful inequalities.
Among these, notice that the classical isoperimetric inequality for convex bodies can be
derived as a quick consequence of BM inequality (see Section 2.3).

Let us now recall the BM inequality in its general form for the Euclidean spaces.
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Theorem 2.1.1 (Brunn-Minkowski inequality).
Given λ ∈ (0, 1), let A,B ⊆ Rn be nonempty measurable sets. Then

|(1− λ)A+ λB|1/n ≥ (1− λ) |A|1/n + λ |B|1/n , (2.1)

where | · | possibly means outer measure if (1−λ)A+λB is not measurable. In other words,
the Lebesgue measure in Rn is 1/n-concave in relation to the Minkowski combination.

The theorem is clearly trivial when |A| = 0 = |B| or |(1− λ)A+ λB| = +∞, and also
when only one among A,B has measure zero is trivial. For example, let |B| = 0. The
set B is notempty, thus there exists an element b belonging to B. Hence the Minkowski
combination (1−λ)A+λB contains (1−λ)A+λ {b}, which differs from the set (1−λ)A
only for the translation represented by λb. By the n-homogeneity of the Lebesgue measure
in Rn and its invariance under translations, it follows

|(1− λ)A+ λB|1/n ≥ |(1− λ)A+ λ {b}|1/n = |(1− λ)A|1/n = (1− λ) |A|1/n ,

i.e. (2.1), being |B| = 0.
Remark 2.1.2. Moreover we can note that if B consists of only one point B = {b}, then
equality holds in (2.1). A similar considerations hold if at least one among A,B has
infinite measure, |A| = +∞ say. In the same way

|(1− λ)A+ λB|1/n ≥ |(1− λ)A+ λ {b}|1/n = (1− λ) |A|1/n = +∞,

hence we get equality in (2.1), since the right and left hand sides coincide with +∞.
Therefore the result (2.1) is really meaningful only if A,B have positive finite measure.

Without loss of generality we can suppose

|A| , |B| ∈ (0,+∞).

Remark 2.1.3. Another easy case happens if B = αA;

(1− λ)A+ λB = (1− λ)A+ λαA ⊇ [(1− λ) + λα]A; thus

|(1− λ)A+ λB|1/n ≥ |[(1− λ) + λα]A|1/n

= [(1− λ) + λα] |A|1/n = (1− λ) |A|1/n + λ |αA|1/n = (1− λ) |A|1/n + λ |B|1/n ,

having repeatedly used the n-homogeneity of the volume in Rn. Since the volume
is invariant under rigid motions, the same property continue to hold if A and B are
homothetic sets of the kind B = αA + v, i.e. if they coincide up to dilatations and
translations. In particular, if α = 1 and A = B is a convex set, then (Remark 1.2.2)

(1− λ)A+ λB = (1− λ)A+ λA = A.

In this way both the (right and left hand) sides of (2.1) coincide with the term |A|1/n.
This is the simplest (not trivial) case of equality in the BM inequality.
However, the other cases are strongly related to this one (Proposition 2.4.2).
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Remark 2.1.4. Let us now focus on some observations regarding the measurability problem.
Maybe unexpectedly, there exist measurable sets A,B whose Minkowski combination
(1 − λ)A + λB is not measurable: see the examples of Sierpïnski [49]. But in rather
general assumptions this problem does not occur: any convex set is measurable thus the
Minkowski combination of two convex sets is measurable, being convex; moreover, if A
and B are Borel sets then (1− λ)A+ λB is measurable. To remedy the possibly lack of
measurability of one or more involved sets, one can simply replace the measure in the
BM inequality (2.1) by the outer or inner Lebesgue measure. For a proof and a careful
examination of these generalizations of the BM inequality (in the equivalent form (2.2)),
we refer to [13] (Chapter 2, Theorem 8.3.1).

Although we usually consider the BM inequality in its classical form (2.1), since it
behaves nicely with respect to the Borell-Brascamp-Lieb inequalities (and in particular
with the key assumption (1.7)), there are several equivalent formulations of the BM
inequality: for instance let us see (2.2), (2.3) and (2.4). Especially the latter may wrongly
appear weaker than (2.1). The inequality (2.3) is known as the multiplicative form of
the BM inequality.

Lemma 2.1.1 (Brunn-Minkowski inequality, equivalent statements).
Given λ ∈ (0, 1), let A,B ⊆ Rn be nonempty measurable. Then any of the following
assertions is equivalent to the BM inequality (2.1):

|A+B|1/n ≥ |A|1/n + |B|1/n ; (2.2)

|(1− λ)A+ λB| ≥ |A|1−λ |B|λ ; (2.3)

|(1− λ)A+ λB| ≥ min {|A| , |B|} . (2.4)

Proof. Of course, (2.1) trivially implies (2.3), and (2.3) yields (2.4), since

|(1− λ)A+ λB| ≥
[
(1− λ) |A|1/n + λ |B|1/n

]n
≥ |A|1−λ |B|λ ≥ min {|A| , |B|} ,

using (1.4) with the indices 1/n > 0 > −∞. For the implication (2.4) ⇒ (2.2), suppose
without loss of generality that |A| , |B| are positive. Replace A and B in (2.4) by |A|−1/nA

and |B|−1/nB, respectively, and choose

λ = |B|1/n

|A|1/n + |B|1/n
.

In this way (2.4), by the n-homogeneity of Lebesgue measure, becomes∣∣∣∣∣ |A|1/n

|A|1/n + |B|1/n
|A|−1/nA+ |B|1/n

|A|1/n + |B|1/n
|B|−1/nB

∣∣∣∣∣
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≥ min
{∣∣∣|A|−1/nA

∣∣∣ , ∣∣∣|B|−1/nB
∣∣∣} = 1,

i.e.
|A+B| ≥

[
|A|1/n + |B|1/n

]n
, that is (2.2).

Finally let us show the implication (2.2) ⇒ (2.1), obtaining the equivalence of the three
results. It suffices to apply (2.2) with (1− λ)A and λB in place of A and B, deriving

|(1− λ)A+ λB|1/n ≥ |(1− λ)A|1/n + |λB|1/n ,

that is (2.1), again by the n-homogeneity of the volume.

Remark 2.1.5. Noticeably, the (1/n)-concavity of the volume in the BM inequality (2.1)
is the highest possible concavity property, thanks to the n-homogeneity of the volume in
Rn. In fact assume that

|(1− λ)A+ λB| ≥ [(1− λ) |A|p + λ |B|p]1/p .

Let us show that it necessarily implies p ≤ 1
n . Choosing λ = 1/2 and A = {0} we get∣∣∣∣12 {0}+ 1

2B
∣∣∣∣ =

∣∣∣∣12B
∣∣∣∣ = 2−n |B|

≥
[1

2 |{0}|
p + 1

2 |B|
p
]1/p

=
[1

2 |B|
p
]1/p

= 2−1/p |B| .

It follows 2−n ≥ 2−1/p, that is p ≤ 1
n . In this sense, the BM inequality (2.1) is an optimal

result.
We underline that the last observations concerning the optimal (1/n)-concavity of the

volume in relation to the Minkowski combination in Rn, and the equivalence between the
BM inequality with its formulation (2.3) and (2.4), hold in the same way for any other
operator having, just like the volume, the following properties: α-homogeneity in Rn,
increasing monotonicity with respect to set inclusion and invariance under rigid motions.
Precisely one can prove

Lemma 2.1.2. Let λ ∈ (0, 1), α 6= 0, C be a subset of P(Rn) (i.e the set of all subsets
of Rn) close under Minkowski combination (1.2). Let F : C −→ [0,+∞] be a functional
which is α-homogeneous, monotone increasing with respect to set inclusion and invariant
under rigid motions. Suppose moreover that F 1/α is concave in relation to the Minkowski
combination, i.e.

F ((1− λ)A+ λB)1/α ≥ (1− λ)F (A)1/α + λF (B)1/α, (2.5)

for all A,B ∈ C. Then (2.5) is equivalent to

F ((1− λ)A+ λB) ≥ F (A)1−λF (B)λ and F ((1− λ)A+ λB) ≥ min {F (A), F (B)} ,

and 1
α is the highest possible concavity exponent for F .
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The proof, which we omit, is very similar to those one provided for the BM inequality.
Since (2.5) is a statement which clearly reminds the BM inequality (it coincides with the
BM inequality choosing the volume as the functional F ), we introduce the next definition,
following Colesanti [16].

Definition 2.1.6. Let F be an operator which satisfies the assumptions of Lemma 2.1.2.
If in addition (2.5) holds, then we say that F satisfies a Brunn-Minkowski inequality.

Many variational functionals satisfy a BM inequality: for instance see [6, 7, 9, 11,16–
18,34,45,46].

2.2 A sketch of the proof
The BM inequality, in its full generality, can be obtained through several proofs, using
different techniques: for instance it can be derived using the Steiner symmetrization. For
the sake of clearness we reproduce a sketch of the proof given by Hadwiger and Ohmann
in [32]. This proof, which provides the BM inequality for bounded measurable sets, is
surprising simple and elegant. In fact only two tools are essentially required: the classical
arithmetic–geometric mean inequality (1.5) to prove BM inequality for parallelepipeds,
and a trick to deduce the BM inequality for finite unions of parallelepipeds, arguing by
induction.

Proof of the BM inequality for bounded sets. As noticed in the previous paragraph, with-
out loss of generality we can suppose that |A| , |B| ∈ (0,+∞). First we prove the result
when A,B ⊂ Rn are parallelepipeds (i.e. n-dimensional rectangles) whose sides are
parallel to the coordinate hyperplanes. Indicating with aj and bj , respectively, the
lengths of the sides of A and B (in the j-th coordinate direction), trivially

|(1− λ)A| =
n∏
j=1

(1− λ)aj , |λB| =
n∏
j=1

λbj ,

since (1− λ)A and λB are the corresponding parallelepipeds whose sides are rescaled by
the factors 1− λ and λ. On the other hand also their Minkowski convex combination
(1− λ)A+ λB is a parallelepiped whose sides are parallel to the coordinate hyperplanes,
this time having lengths (1− λ)aj + λbj . Therefore

|(1− λ)A+ λB| =
n∏
j=1

[(1− λ)aj + λbj ] .

Now compare the volumes of these three parallelepipeds, noticing that (2.1), by n-
homogeneity of the volume in Rn, is equivalent to

|(1− λ)A|1/n

|(1− λ)A+ λB|1/n
+ |λB|1/n

|(1− λ)A+ λB|1/n
≤ 1, i.e.
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 n∏
j=1

(1− λ)aj
(1− λ)aj + λbj

1/n

+

 n∏
j=1

λbj
(1− λ)aj + λbj

1/n

≤ 1.

Now the arithmetic–geometric mean inequality (1.5) yields n∏
j=1

(1− λ)aj
(1− λ)aj + λbj

1/n

+

 n∏
j=1

λbj
(1− λ)aj + λbj

1/n

≤ 1
n

n∑
j=1

(1− λ)aj
(1− λ)aj + λbj

+ 1
n

n∑
j=1

λbj
(1− λ)aj + λbj

= 1
n

n∑
j=1

(1− λ)aj + λbj
(1− λ)aj + λbj

= 1.

This gives the BM inequality for boxes (i.e. parallelepipeds whose sides are parallel to
the coordinate hyperplanes).

If A and B are finite unions of boxes, we argue by induction on the number of boxes,
using a trick called the Hadwiger-Ohmann cut, as follows. Without loss of generality
(possibly translating A) we can assume that a coordinate hyperplane, say {xn = 0},
separates two boxes in A. With A+ and A− denote the unions of the boxes formed by
intersecting the boxes in A with the half-spaces {xn ≥ 0} and {xn ≤ 0}, respectively.
Analogously define B+ and B−. Possibly translating B (if necessary) it holds

|A+|
|A|

= |B+|
|B|

, (2.6)

and consequently
|A−|
|A|

= |B−|
|B|

, (2.7)

since |A+|+ |A−| = |A| and |B+|+ |B−| = |B|. Furthermore

(1− λ)A+ λB ⊇ [(1− λ)A+ + λB+] ∪ [(1− λ)A− + λB−] . (2.8)

Observe that A+ + B+ ⊆ {xn ≥ 0} , A− + B− ⊆ {xn ≤ 0} , and that the numbers of
boxes in A+ ∪B+ and A− ∪B− are both smaller, by construction, than the number of
boxes in A ∪ B. By induction on the latter number of boxes, and by (2.6), (2.7) and
(2.8) we derive

|(1− λ)A+ λB| ≥ |(1− λ)A+ + λB+|+ |(1− λ)A− + λB−|

≥
[
(1− λ) |A+|1/n + λ |B+|1/n

]n
+
[
(1− λ) |A−|1/n + λ |B−|1/n

]n
=
[
(1− λ) |A+|1/n + λ

|B|1/n

|A|1/n
|A+|1/n

]n
+
[
(1− λ) |A−|1/n + λ

|B|1/n

|A|1/n
|A−|1/n

]n

= |A+|
[
(1− λ) + λ

|B|1/n

|A|1/n

]n
+ |A−|

[
(1− λ) + λ

|B|1/n

|A|1/n

]n
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= (|A+|+ |A−|)
[
(1− λ) + λ

|B|1/n

|A|1/n

]n
= |A|

[
(1− λ) + λ

|B|1/n

|A|1/n

]n

=
[
(1− λ) |A|1/n + λ |B|1/n

]n
.

The BM inequality is established for finite unions of boxes.
The next step regards bounded measurable sets, which can be approximated by

sequences of finite unions of boxes. Given A,B bounded measurable sets, it is well known
that

|A| = sup
{
|P | : P finite union of boxes such that P ⊆ A

}
,

and the corresponding property for |B|. In particular there exist two sequences {Pk}k ∈N , {Qk}k ∈N
of finite unions of boxes such that Pk ⊆ A, Qk ⊆ B for every k, and

lim
k→+∞

|Pk| = |A| , lim
k→+∞

|Qk| = |B| .

We have already derived the BM inequality for finite unions of boxes, thus for any k ∈ N

(1− λ) |Pk|1/n + λ |Qk|1/n ≤ |(1− λ)Pk + λQk|1/n

Passing to the limsup in the latter, for k → +∞, we obtain

(1− λ) |A|1/n + λ |B|1/n ≤ lim sup
k→+∞

|(1− λ)Pk + λQk|1/n

≤ sup
{
|P |1/n : P finite union of boxes such that P ⊆ (1− λ)A+ λB

}
= |(1− λ)A+ λB|1/n ,

that is the desired BM inequality.

Finally (we omit this last part) the assumption that the sets are bounded can be
removed (we refer to [13], Chapter 2). The complete generalization of the BM inequality
regards nonempty sets not necessarily measurable: the inequality continues to hold
considering the outer or inner Lebesgue measure in Rn in place of the usual Lebesgue
measure.

2.3 A remarkable consequence: the isoperimetric inequal-
ity for convex bodies

The BM inequality has strong and unexpected relations with many other fundamental
analytic and geometric inequalities: for instance with the isoperimeric inequality and
Sobolev inequalities. Let us discuss how the BM inequality quickly yields the classical
isoperimetric inequality for convex bodies. The well known isoperimetric principle states:
among all the sets of fixed surface area, the ball maximises the volume. In rigorous terms,
it can be formulated in the realm of convex bodies as
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Proposition 2.3.1 (Isoperimetric inequality for convex bodies).
There exists a dimensional constant c(n) such that for every K ∈ Kn holds

|K|
n−1
n ≤ c(n) · Hn−1 (∂K) ; (2.9)

in addition equality holds in (2.9) if and only if K is a ball.

Proof. Adopting the Minkowski’s definition of the surface area, we know that

Hn−1 (∂K) = lim
ε→0

|K + εBn| − |K|
ε

, (2.10)

where Bn is the closed n-dimensional unit ball in Rn. Notice that the BM inequality
(2.2) yields

|K + εBn|1/n ≥ |K|1/n + |εBn|1/n = |K|1/n + ε |Bn|1/n . (2.11)
Consider the function

v(ε) = |K + εBn| .
By (2.10) and (2.11)(

d

dε
v

)
(0) = lim

ε→0

v(ε)− v(0)
ε

= lim
ε→0

|K + εBn| − |K|
ε

= Hn−1 (∂K) ,

(
d

dε
v1/n

)
(0) = lim

ε→0

v1/n(ε)− v1/n(0)
ε

= lim
ε→0

|K + εBn|1/n − |K|1/n

ε
≥ |Bn|1/n .

Consequently
1
n
· v(0)

1
n
−1 ·

[(
d

dε
v

)
(0)
]

=
(
d

dε
v1/n

)
(0) ≥ |Bn|1/n , i.e.

1
n
|K|

1−n
n · Hn−1 (∂K) ≥ |Bn|1/n .

Then every convex body K satisfies

|K|
n−1
n ≤ H

n−1 (∂K)
n |Bn|1/n

,

i.e. (2.9) with c(n) =
(
n |Bn|1/n

)−1
.

Anticipating the equality conditions of the BM inequality, stated in Proposition 2.4.2 of
the next section, we can claim that equality holds in (2.11) if and only if K = Bn (up
to homotheties). Since (2.11) is the unique inequality in this proof, if K is a ball then
equality holds in (2.9). Vice versa the ball is the only convex body for which equality
holds in (2.9) (we omit this technical part: see [29] for a complete proof).

In particular, for n = 2 in Proposition 2.3.1, we recognize the classical isoperimetric
inequality in the plane:

L2 ≥ 4πA,
where A is the area of a (convex) domain enclosed by a curve of length L. In such a case
c(2) = (2

√
π)−1, according to c(n) =

(
n |Bn|1/n

)−1
.
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2.4 Equality conditions and the stability question
To investigate the stability question, it is important to know when the BM inequality
(2.1) becomes an equality. A very careful examination of the proof provides the following
equality conditions (first we state them in the assumption |A| , |B| ∈ (0,+∞), more
interesting for us).

Proposition 2.4.1 (Equality case in BM inequality, when |A| , |B| ∈ (0,+∞)).
Let λ ∈ (0, 1), let A,B ⊂ Rn such that |A| , |B| ∈ (0,+∞) and (1−λ)A+λB is measurable.
Then equality holds in the BM inequality, namely

|(1− λ)A+ λB|1/n = (1− λ) |A|1/n + λ |B|1/n , (2.12)

if and only if there exist a convex set K ⊆ Rn, v1, v2 ∈ Rn and λ1, λ2 > 0 such that

λ1A+ v1 ⊆ K, λ2B + v2 ⊆ K, |K \ (λ1A+ v1)| = |K \ (λ2B + v2)| = 0. (2.13)

We remark that Proposition 2.4.1 may be rephrased by saying that equality holds in
(2.1) if and only if the involved sets are convex and homothetic sets from which sets of
measure zero have been removed.
To clarify this characterization we exhibit two similar examples in R2, which have an
opposite behaviour with respect to BM. Let λ ∈ (0, 1). If A = B is a circle deprived of an
internal point, then equality in (2.1) holds. Vice versa if A = B is the union of a circle
and an external point, then equality in (2.1) is not satisfied. In both situations the right
hand side of (2.1) coincide with the volume of the circle raise to the power 1/n, but only
in the first situation the left hand side has the same value. In fact when A = B is a circle
deprived of an internal point, then (1− λ)A+ λB is the whole circle and nothing more...
while, in the second situation, (1− λ)A+ λB contains also a small circle (a rescaling of
the original circle of ratio max {1− λ, λ}) having the external point as center. These so
different behaviours intrinsically depend on the definition (1.2) of Minkowski combination.

In general assumption, there are only three situations in which equality holds in the
BM inequality. We summarize these equality conditions and refer to [13], Theorem 8.3.1,
in which the authors prove the following equality conditions for the BM inequality (2.2).
In their statements |·| possibly means the inner Lebesgue measure of the involved sets;
for simplicity, let’s assume the measurability of the involved sets.

Proposition 2.4.2 (Equality conditions for BM inequality, Theorem 8.3.1 in [13]).
Given λ ∈ (0, 1), let A,B ⊂ Rn be nonempty measurable sets such that (1− λ)A+ λB is
measurable and |(1− λ)A+ λB| is finite. Then

|(1− λ)A+ λB|1/n = (1− λ) |A|1/n + λ |B|1/n

holds only in these three cases:
(1) |(1− λ)A+ λB| = 0;
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(2) A or B consists of only one point;
(3) A,B are homothetic convex bodies from which sets of zero measure may have been
removed.

Note that (3) is exactly the equality condition of Proposition 2.4.1, i.e. the one in
the assumptions |A| , |B| ∈ (0,+∞), the meaningful case. Instead the conditions (1) and
(2) trivially imply equality in the BM inequality (see Remark 2.1.2). About (2), note
that if |A| ∈ (0,+∞) and B contains at least two elements, i.e. {b1, b2} ⊆ B, equality
cannot hold in the BM inequality. Indeed in such a case (1 − λ)A + λB contains two
different copies of (1− λ)A, precisely (1− λ)A+ λb1 and (1− λ)A+ λb2. This yields the
strict BM inequality. See [13] for more details and further comments.

When dealing with a rigid inequality, a natural question arises about the stability of
the equality case; here the question at hand is the following: if |A| , |B| ∈ (0,+∞) and we
are close to equality (2.12), i.e. if

δ = |(1− λ)A+ λB|1/n − (1− λ) |A|1/n − λ |B|1/n ≥ 0

is sufficiently small, must the sets A,B be close (in some suitable sense) to satisfy (2.13)?
And in such a case, is it possible to estimate, in terms of the perturbation δ, the closeness
of A and B from the equality condition (2.13)?

Both the questions have affirmative answer. In the next sections we mention some
stability results for the BM inequality, which will be useful in Chapter 5 and Chapter 7.

2.5 Some stability results for convex sets
The stability of BM inequality was first investigated and solved in the class of convex
sets, see for instance [22,24,26,27,31,48].
Let us recall the stability results due to Groemer [31] and Figalli, Maggi, Pratelli [26,27].
Their statements represent quantitative versions of the BM inequality (2.1), which hold
in the family Kn of the n-dimensional convex bodies in Rn.

In order to present these results, we introduce the following notations.
Given K0,K1 subsets of Rn having positive Lebesgue measure, we set

νj = |Kj |1/n , M = max {ν0, ν1} , m = min {ν0, ν1} , d̃ = max
{
d(K0)
ν0

,
d(K1)
ν1

}
,

where d(Kj) indicates the diameter of Kj . Recall that the Hausdorff distance H(J, L)
between two sets J, L ⊂ Rn is defined as follows:

H(K,L) = inf {r ≥ 0 : J ⊆ L+ rBn, L ⊆ J + rBn} ,

where Bn is the closed unit ball in Rn. Then we set

H0(J, L) = H(τ0J, τ1L), (2.14)
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where τ0, τ1 are two homotheties (i.e. translation plus dilation) such that |τ0J | = |τ1L| = 1
and such that the centroids of τ0J and τ1L coincide.
We also recall that the relative asymmetry of two sets J, L ⊂ Rn is defined as follows:

A(J, L) = inf
x∈Rn

 |J∆(x+ µL)|
|J |

, µ =
( |J |
|L|

) 1
n

 , (2.15)

where ∆ denotes the operation of symmetric difference, i.e. A ∆ B = (A \B) ∪ (B \A).
The first result, due to Groemer, is written in terms of the Hausdorff distance between

(two suitable homothetic copies of) A and B.

Proposition 2.5.1. Let n ≥ 2, λ ∈ (0, 1), A,B ∈ Kn. Then

|(1− λ)A+ λB| ≥
[
(1− λ) |A|1/n + λ |B|1/n

]n (
1 + ηnH0(A,B)n+1

)
,

where

ηn =
(
γn

(
M

m

1√
λ(1− λ)

+ 2
)
d̃

)−n−1

, (2.16)

H0 is defined as in (2.14) and

γn =
(

1 + 1
32−13

)
3
n−1
n 2

n+2
n+1n < 6.00025n.

The second quantitative proposition of the BM inequality, due to Figalli, Maggi,
Pratelli, is written in terms of the relative asymmetry of A and B.

Proposition 2.5.2. Let λ ∈ (0, 1), A,B ∈ Kn. Then

|(1− λ)A+ λB| ≥
[
(1− λ) |A|1/n + λ |B|1/n

]n(
1 + nm

ΛM

(A(A,B)
θn

)2)
,

where Λ = max
{

λ
1−λ ,

1−λ
λ

}
, A is defined in (2.15) and θn is a positive constant depending

on dimension n with polynomial growth. In particular

θn ≤
362n7(

2− 2
n−1
n

)3/2 . (2.17)

2.6 A meaningful stability result without convexity assump-
tions

Let us examine some general stability results for the BM inequality, which do not require
the convexity of the involved sets.

In Chapter 6, the following sharp stability result for the BM inequality in R (see [25]
for more details) will be useful.
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Proposition 2.6.1 (One-dimensional BM stability). Let A,B ⊂ R be measurable. If

|A+B| < |A|+ |B|+ δ for some δ ≤ min {|A| , |B|}

(where |·| means outer measure if A+B is not measurable), then there exist two intervals
I, J ⊂ R such that

A ⊆ I, B ⊆ J, |I \A| ≤ δ, |J \B| ≤ δ.

In particular it holds |conv(A) \A| ≤ δ and |conv(B) \B| ≤ δ.
Notice that it is not required the convexity of the sets A,B. It is also interesting to

notice that the result holds only under the assumption that δ is sufficiently small, namely
δ ≤ min {|A| , |B|}. This smallness assumption on δ is necessary, as it can be easily seen
by the following example: let L� 1 (i.e. greater than 1 and big enough) and

A = B = [0, 1] ∪ {L} .

Then it is easily checked that

|A+B| = |[0, 2] ∪ [L,L+ 1] ∪ {2L}| = 3, |A|+ |B| = 2,

while |conv(A) \A| = L − 1 can be arbitrarily large. Hence the result is false for
δ > 1 = min {|A| , |B|} , despite the assumption |A+B| < |A|+ |B|+ δ is satisfied.

Remark 2.6.2. Recall that the question we are trying to address, for n ≥ 2, is the following:
assume that (2.1) is almost an equality; is it true that both A and B are almost convex,
and that actually they are close to the same convex set? Notice that this question has
two statements in it. Indeed, we are wondering if the error in the BM inequality, namely

δ = |(1− λ)A+ λB|1/n − (1− λ) |A|1/n − λ |B|1/n ≥ 0

is able to control how far A and B are from their respective convex hulls and how much
the shapes of A and B differ each other.

Recently Christ [14, 15] addressed the investigation of the stability without convexity
assumptions, and its qualitative results have been made quantitative by Figalli and
Jerison in [25]; here is their result.
Proposition 2.6.3. Let n ≥ 2, and A,B ⊂ Rn be measurable sets with |A| = |B| = 1.
Let λ ∈ (0, 1), set τ = min {λ, 1− λ} and S = (1− λ)A+ λB. If

|S| ≤ 1 + δ (2.18)

for some δ ≤ e−Mn(τ), then there exists a convex K ⊂ Rn such that, up to a translation,

A ∪B ⊆ K and |K \A|+ |K \B| ≤ τ−Nnδσn(τ).

The constant Nn can be explicitly computed and we can take

Mn(τ) = 23n+2
n3n |log τ |3

n

τ3n , σn(τ) = τ3n

23n+1n3n |log τ |3n
.
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Notice that the result holds under the assumption that δ is sufficiently small, namely
δ ≤ e−Mn(τ). A smallness assumption on δ is again crucial (see [25]). Anyway, this
proposition successfully solves the question of Remark 2.6.2: if the error δ is sufficiently
small, that is A and B are sufficiently close to satisfy equality in BM inequality, then the
closeness of A and B from their respective convex hulls and the nearness between their
shapes can be estimated in terms of δ.

For further use, we rewrite Proposition 2.6.3 without the normalization constraint
|A| = |B| = 1.

Corollary 2.6.4. Let n ≥ 2 and A,B ⊂ Rn be measurable sets with |A| , |B| ∈ (0,+∞).
Let λ ∈ (0, 1), set τ = min {λ, 1− λ} and S = (1− λ)A+ λB. If

|S| −
[
(1− λ) |A|1/n + λ |B|1/n

]n[
(1− λ) |A|1/n + λ |B|1/n

]n ≤ δ (2.19)

for some δ ≤ e−Mn(τ), then there exist a convex K ⊂ Rn and two homothetic copies Ã
and B̃ of A and B such that

Ã ∪ B̃ ⊆ K and
∣∣∣K \ Ã∣∣∣+ ∣∣∣K \ B̃∣∣∣ ≤ τ−Nnδσn(τ).

Proof. The proof is standard and we give it just for the sake of completeness. First set

Ã = A

|A|1/n
, B̃ = B

|B|1/n

so that |Ã| = |B̃| = 1. Then define

S̃ := µÃ+ (1− µ)B̃ with µ = (1− λ) |A|1/n

(1− λ) |A|1/n + λ |B|1/n
,

and observe that |S̃| ≥ 1 by the Brunn-Minkowski inequality. It is easily seen that

S̃ = S

(1− λ) |A|1/n + λ |B|1/n
.

Now we see that the hypothesis (2.18) holds for Ã, B̃, S̃, indeed by (2.19)

∣∣∣S̃∣∣∣− 1 =
|S| −

[
(1− λ) |A|1/n + λ |B|1/n

]n[
(1− λ) |A|1/n + λ |B|1/n

]n ≤ δ.

Proposition 2.6.3 applied to Ã, B̃ and S̃ implies the result and this concludes the proof.
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Chapter 3

The Borell-Brascamp-Lieb
inequalities (BBL)

3.1 Introduction
This thesis is primarily concerned with a family of inequalities called Borell-Brascamp-
Lieb inequalities, which we recall hereafter. For simplicity of exposition we refer to them
with the acronym "BBL" inequalities.

They can be viewed as functional or analytic versions of the Brunn-Minkoski inequality.
In Section 3.2 we explain this link in details. To state the BBL inequalities we shall use
the generalized means (1.3) introduced in Section 1.3.

Theorem 3.1.1 (BBL inequalities).
Let 0 < λ < 1, − 1

n ≤ p ≤ +∞, and let f, g, h : Rn −→ [0,+∞) be integrable functions
such that

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn. (3.1)

Then ˆ
Rn
h(x) dx ≥M p

np+1

(ˆ
Rn
f(x) dx,

ˆ
Rn
g(x) dx ;λ

)
. (3.2)

Here the number p/(np+ 1) has to be interpreted in the obvious way in the extremal
cases, i.e. it is equal to −∞ when p = −1/n and to 1/n when p = +∞.

The BBL inequalities were first proved (in a slightly different form) for p > 0 by
Henstock and Macbeath (with n = 1) in [35] and by Dinghas in [21]. Then they were
generalized by Brascamp and Lieb in [11] and by Borell in [8].

Surely (3.1) is relevant only when f(x) and g(y) are positive, otherwise their p-mean
is zero and (3.1) is obviously satisfied, being h nonnegative. Hence (3.1) is equivalent to

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y such that f(x), g(y) > 0.
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Though inequality (3.2) in itself is rather simple, the condition behind it, i.e. (3.1),
is unusual as it is not a point-wise condition but involves the values of f, g and h at
different points. We emphasize that the condition (3.1) is strong, since it requires that
the function h is big enough compared to f and g: precisely h evaluated at the convex
combination of any two points must be greater than or equal to the p-mean of f and g
at those points. In other words (3.1) means

h ≥ hp,λ, (3.3)

where hp,λ is the (p, λ)-convolution of f and g, defined in (1.6). Roughly speaking hp,λ
is the smallest function satisfying (3.1): therefore it suffices to prove the theorem for
h = hp,λ, by monotony of the Lebesgue integral and (3.3).

Remark 3.1.2. First of all observe that (3.2) can be trivial in some special situations. A first
case occurs when one among f and g is almost everywhere zero, i.e.

´
Rn f = 0 or

´
Rn g = 0,

from which obviously follows (3.2) by the definition of generalized mean (a generalized
mean of two nonnegative numbers is zero if at least one of them is zero, according to
(1.3)). Another situation in which BBL inequality is trivial happens when f = g, because
choosing x = y in (3.1) we get h(x) = h((1 − λ)x + λx) ≥ Mp(f(x), g(x);λ) = f(x),
therefore by comparison

´
Rnh ≥

´
Rn f =Mq

(´
Rn f,

´
Rn f ;λ

)
for every q ∈ [−∞,+∞].

Then, without loss of generality, suppose that f and g are not a.e. zero (i.e. their integral
are positive) and that they are different from each other (i.e. the set {x : f(x) 6= g(x)}
has positive measure).

Also, if
´
Rn h = +∞, there is nothing to prove. Let us examine some cases in which

the key assumption (3.1) forces
´
Rn h to diverge making (3.2) a trivial result. For example

if p > 0 and at least one among
´
Rn f and

´
Rn g diverges, then

´
Rn h also diverges thanks

to (3.1), as it is easily seen: let y0 such that g(y0) = ε > 0; then (3.1) yields, for any x
satisfying f(x) > 0,

h((1− λ)x+ λy0) ≥Mp(f(x), ε;λ) ≥ max
{

(1− λ)1/pf(x), λ1/pε
}
, (3.4)

where in the last inequality we use the positivity of the index p. Then, by comparison
and using the change of variable z = (1− λ)x+ λy0 (where y0 is the element previously
fixed), we get ˆ

Rn
h(z) dz = (1− λ)n

ˆ
Rn
h ((1− λ)x+ λy0) dx

≥ (1− λ)
np+1
p

ˆ
{x: f(x)>0}

f(x) dx = (1− λ)
np+1
p

ˆ
Rn
f(x) dx = +∞.

Thus, for an index p > 0, we can reduce our study to the function f, g ∈ L1 (Rn) \ {0}.
Also with this restriction, if |{x : f(x) > 0}| = +∞ or |{y : g(y) > 0}| = +∞, then h
necessarily diverges. Indeed (3.4) leads to
ˆ
Rn
h(z) dz = (1−λ)n

ˆ
Rn
h ((1− λ)x+ λy0) dx ≥ (1−λ)nλ1/pε |{x : f(x) > 0}| = +∞.
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So the meaningful case of BBL inequality of index p > 0 occurs when f 6= g ∈ L1 (Rn)\{0}
and they are compactly supported functions. Instead if p ≤ 0 the condition (3.1) does
not ensure that

´
Rn h diverges, even if

´
Rn f (or

´
Rn g) diverges or if their support sets

have infinite measure.

Remark 3.1.3. When the functions h, f, g coincide, (3.1) clearly represents an assumption
of p-concavity, becoming

f((1− λ)x+ λy) ≥Mp(f(x), f(y);λ)

for the fixed λ ∈ (0, 1) of the assumptions. Actually the latter inequality does not force
f to be p-concave, because it is required only for the fixed λ, not for every λ ∈ (0, 1).
However if f is continuous, then

f((1− λ)x+ λy) ≥Mp(f(x), f(y);λ)

for a fixed λ ∈ (0, 1) yields the same inequality for every λ ∈ (0, 1). Thus if f, g, h coincide
with a continuous function, (3.1) ensures the p-concavity of the involved functions. Note
that if f = g = h almost everywhere, then (3.2) is trivially satisfied and it is an equality,
since

´
Rnf = M p

np+1

(´
Rn f,

´
Rn f ;λ

)
. We emphasize that, up to homotheties of the

involved function, this one is essentially the unique situation in which equality holds in
the BBL inequality. Indeed we will able to prove, in Chapter 4, that equality holds in
BBL of index p if and only if the three functions f, g, h coincide almost everywhere (and
up to suitable homotheties) with a same p-concave function.

The case p = 0 in the BBL inequalities (Theorem 3.1.1) is known as Prékopa-Leindler
inequality, as it was previously proved by Prékopa [41] and Leindler [37] (later rediscovered
by Brascamp and Lieb in [10]). From now on, we often call it "PL" inequality. It is
probably the most famous one among the BBL inequalities and the unique case in which
the indices p and p/(np+ 1) coincide (being both zero). Let us state it separately.

Proposition 3.1.4 (PL inequality).
Let 0 < λ < 1, f, g, h be nonnegative measurable functions defined in Rn such that

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn.

Then ˆ
Rn
h dx ≥

(ˆ
Rn
f dx

)1−λ (ˆ
Rn
g dx

)λ
. (3.5)
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As explained in [29], in Theorem 3.1.1 we have to place greater emphasis on the
negative values of p, and in particular on the critical value p = −1/n. Indeed is rather
simple, starting with the BBL inequality of index p = −1/n, to derive all the other cases.
On the contrary, at our knowledge, there is not a direct proof which allows to prove the
BBL inequality of index p = −1/n by means of another BBL inequality.

The proof of Corollary 1.1 in [19] shows that Theorem 3.1.1 for p = −1/n implies
Theorem 3.1.1 for all p > −1/n. This follows from a suitable rescaling of the involved
functions f, g, h, together with the obvious observation that

1
Mp(a, b;λ) =M−p

(1
a
,
1
b

;λ
)
, (3.6)

and the following technical lemma (for a proof we refer to [29], Lemma 10.1), consequence
of Hölder’s inequality (see [33], page 24).

Lemma 3.1.1. Let 0 < λ < 1, and let a, b, c, d be nonnegative numbers. Let q ∈ R, p ∈
R ∪ {+∞}. If p+ q ≥ 0, then

Mp(a, b;λ)Mq(c, d;λ) ≥Ms(ac, bd;λ),

where

s =


0 if p = q = 0,
−∞ if p = −q 6= 0,
pq
p+q otherwise .

For the sake of clarity we present the proof of Corollary 1.1 in [19], in a simplified
version. Indeed the proofs in [19] are more general, because they concern not only the
usual version of the BBL inequalities in Euclidean spaces, i.e. Theorem 3.1.1, but a
generalization in the framework of Riemannian manifolds.

Proposition 3.1.5. BBL inequality for p = −1/n implies all the other BBL inequal-
ities; in other words, Theorem 3.1.1 for p = −1/n implies Theorem 3.1.1 for all
p ∈ (−1/n,+∞].

Proof. Beforehand notice that the latter proposition is obvious if
´
Rn f dx =

´
Rn g dx = I,

since in this case every generalized mean of the two integrals is I, so (3.2) is the same for
every p, namely

´
Rnh dx ≥ I, while the assumption (3.1) in the case p = −1/n is clearly

the weakest one, due to the the monotonicity (1.4) of p-means. Then suppose that the
integrals of f and g, respectively denoted by F and G, are positive and different each
other (if F = 0 or G = 0, then (3.2) is a trivial consequence ofM p

np+1
(F,G;λ) = 0).

Let f, g, h satisfy the assumptions of Theorem 3.1.1 for a fixed index p ≥ −1/n.
In particular it holds (3.1), i.e. h((1 − λ)x + λy) ≥ Mp(f(x), g(y);λ). Normalize
f = f/F, g = g/G and define

h = h

M p
np+1

(F,G;λ) .
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If we show that f, g, h satisfy (3.1) for p = −1/n, the desired inequality
´
Rnh dx ≥ 1

(clearly equivalent to
´
Rnh dx ≥ M p

np+1
(F,G;λ)), follows by the case p = −1/n, since

(3.2) in such a case implies
ˆ
Rn
h dx ≥ min

{ˆ
Rn
f dx,

ˆ
Rn
g dx

}
= min {1, 1} = 1

By (3.6) and (3.1)

h((1− λ)x+ λy) =M− p
np+1

( 1
F
,

1
G

;λ
)
h((1− λ)x+ λy)

≥M− p
np+1

( 1
F
,

1
G

;λ
)
Mp(f(x), g(y);λ)

≥M− 1
n

(
f(x)
F

,
g(y)
G

;λ
)

=M− 1
n

(
f(x), g(y);λ

)
,

where Lemma 3.1.1 has been applied in the last inequality with q = − p
np+1 and s = −1/n

if p 6= 0 (or s = 0 if p = 0: howeverM0 ≥M− 1
n
by monotonicity of p-means). Therefore

f, g, h satisfy (3.1) for p = −1/n, so we conclude that
´
Rnh dx ≥M p

np+1
(F,G;λ), namely

Theorem 3.1.1 holds for the index p.

Remark 3.1.6. In fact in the previous proof we have applied the BBL inequality of index
p = −1/n only to the functions f, g, h, and let us emphasize that

´
Rn f dx = 1 =

´
Rn g dx

(since f = f/F, g = g/G). In particular the previous proof shows that it suffices to prove
the BBL inequality for p = −1/n and for f, g, h satisfying

h((1− λ)x+ λy) ≥M−1/n(f(x), g(y);λ) and
ˆ
Rn
f dx = 1 =

ˆ
Rn
g dx,

in order to demonstrate all the BBL inequalities (including the extremal case p = −1/n),
where f, g may have arbitrary integrals.

Let us summarize this fact, namely the strength of the normalized version of BBL for
p = −1/n, as follows.

Corollary 3.1.7 (BBL inequality of index −1/n, with
´
f =
´
g = 1).

Let 0 < λ < 1, and let f, g, h be nonnegative integrable functions on Rn satisfying
ˆ
Rn
f dx = 1 =

ˆ
Rn
g dx, and

h((1− λ)x+ λy) ≥M−1/n(f(x), g(y);λ) for all x, y ∈ Rn.

Then ˆ
Rn
h dx ≥ 1.

Furthermore this inequality implies all the BBL inequalities.
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3.2 Equivalence with the BM inequality
One way to understand the importance of BBL inequalities is to set them in relation with
the BM inequality, showing that the BBL inequalities represent its analytic counterparts.
Let us clarify this intrinsic link.

The BM inequality follows immediately applying one of the BBL inequalities to the
characteristic functions of the involved sets A,B and of their Minkowski combination.
Denote by χA the characteristic function of a set A:

χA(x) =
{

1 if x ∈ A,
0 if x /∈ A .

Precisely, Theorem 3.1.1 trivially implies (2.1) by applying (3.2) for p = +∞ to the
characteristic functions f = χA, g = χB, h = χ(1−λ)A+λB, where A,B are subsets of Rn
having positive measure (besides, the BM inequality is obvious if |A| = 0 or |B| = 0).
Indeed f = χA, g = χB, h = χ(1−λ)A+λB satisfy (3.1) (in (3.1) the right hand side is not
zero if and only if x ∈ A, y ∈ B, and in such a case the right and left side coincide with
the value 1), and (3.2) for p = +∞ claims

|(1− λ)A+ λB| =
ˆ
Rn
h ≥M1/n

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
=M1/n (|A| , |B| ;λ)

i.e. the BM inequality (2.1). Using the same characteristic functions, observe that an
arbitrary BBL inequality of index p ∈

[
− 1
n ,+∞

]
implies (2.1): again (3.1) is satisfied and

(3.2), applied to these characteristic functions, claims the corresponding
(

p
np+1

)
-concavity

of the volume in Rn. In particular it yields its quasiconcavity (2.4), which is equivalent
to the BM inequality (thanks to Lemma 2.1.1). The opposite implication, that is

BM inequality yields BBL inequality (3.7)

is rather delicate. Note that this implication becomes intuitive as soon as one notices a
correspondence between the graph of hpp,λ (where hp,λ is (p, λ)-supremal convolution of f
and g, defined in (1.6)) and the graphs of fp and gp: let p 6= 0; then, roughly speaking,
the graph of hpp,λ is obtained as the Minkowski combination (with coefficient λ) of the
graphs of fp and gp; precisely we have (see Section 1.4)

A
(p)
hp,λ

= (1− λ)A(p)
f + λA(p)

g ,

where these three subsets of Rn+1 are defined as in Definition 1.4.2. In particular the
BM inequality applied (in Rn+1) to the sets A(1)

h1,λ
, A

(1)
f , A

(1)
g leads to the BBL inequality

of index p = 1, because∣∣∣A(1)
h1,λ

∣∣∣ 1
n+1 ≥ (1− λ)

∣∣∣A(1)
f

∣∣∣ 1
n+1 + λ

∣∣∣A(1)
g

∣∣∣ 1
n+1
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clearly coincide with (3.2) for p = 1 (from which n
np+1 = 1

n+1), since∣∣∣A(1)
f

∣∣∣ =
ˆ
Rn
f dx,

and the same property holds for A(1)
g and A(1)

h1,λ
.

For the other indices p 6= 1 the implication (3.7) is far less direct and we refer to the
next sections for this.

3.3 Four proofs of the BBL inequalities
Now our purpose is to show how so different techniques and approaches can lead to
the BBL inequalities. We emphasize that all the four proofs have in common a key
ingredient: the BM inequality. In fact it can be considered the seed, or the heart, of the
BBL inequalities.

The first proof, described in Gardner’s paper [29] (Theorem 10.2 therein), is by
induction on the dimension n. It is based on the introduction of a suitable volume
parameter t (in fact a 1-dimensional mass transportation) and on Lemma 3.1.1.

The second one is an application of optimal transportation theory, following the
ideas of McCann [40] and Barthe [5] (and adopting a slighty different strategy). These
authors (see the proofs 6.1.4 and 6.1.5 in [51]) proved PL inequality through arguments
of mass transportation and using the arithmetic-geometric inequality. Replacing the
arithmetic-geometric inequality with Lemma 3.1.1, these approaches can be generalized
and allow us to prove BBL inequalities.

The third proof is less general, since it concerns only the BBL inequalities of indices
p ≥ 0 in a slightly different version, given in Proposition 3.3.2. In such a proof, due to
Klartag [36], first we consider the cases p = 1/s with s ∈ N. The essential ingredient
in Klartag’s proof is the definition of suitable set Kf ,Kg,Kh ⊂ Rn+s, related to the
involved functions f, g, h of Proposition 3.3.2, and the consequent application of the BM
inequality to Kf ,Kg,Kh. Then all the remaining cases (including p = 0) are treated by
approximation. Let us point out that Klartag’s proof, providing this direct link between
BM and BBL inequalities, has been the crucial tool in order to establish our main result
in [43], i.e. Theorem 7.1.1 in this thesis.

The last proof deals with a slightly different form of the BBL inequalities of index
p ≤ 1 for bounded compactly supported functions. It is an alternative and original proof.
First we prove the PL inequality applying the BM inequality to certain sets, suitably
related to the involved functions, as in the spirit of the third proof. Then a similar
proof of the BBL inequality of index p ≤ 1 relies on the curvilinear extension of the
Brunn-Minkowski inequality, due to Uhrin [50].

3.3.1 Classical proof

First Proof of BBL inequalities, Theorem 3.1.1.
We argue by induction on the dimension n. First let n = 1. Without loss of generality
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suppose that
ˆ
R
f(x) dx = F > 0 and

ˆ
R
g(x) dx = G > 0,

otherwise (3.2) is trivial, since the right-hand side of (3.2) is zero if one among f and
g has null integral. Define u, v : [0, 1] −→ [−∞,+∞] such that u(t) and v(t) are the
smallest numbers satisfying

1
F

ˆ u(t)

−∞
f(x) dx = 1

G

ˆ v(t)

−∞
g(x) dx = t, (3.8)

and observe that u, v are strictly increasing functions and so are differentiable almost
everywhere. Taking the derivative of (3.8) with respect to t, it yields

f(u(t))u′(t)
F

= g(v(t))v′(t)
G

= 1 for a.e. t.

Therefore for a.e. t
u′(t) = F

f(u(t)) , v′(t) = G

g(v(t)) .

Let
w(t) = (1− λ)u(t) + λv(t), t ∈ [0, 1] .

For any t satisfying f(u(t)) · g(v(t)) 6= 0, consider the derivative

w′(t) = (1− λ)u′(t) + λv′(t)

= (1− λ) F

f(u(t)) + λ
G

g(v(t)) =M1

(
F

f(u(t)) ,
G

g(v(t)) ;λ
)
. (3.9)

Then, by assumption (3.1), (3.9) and Lemma 3.1.1 with q = 1, we deduce
ˆ
R
h(x) dx ≥

ˆ 1

0
h(w(t))w′(t) dt =

ˆ 1

0
h ((1− λ)u(t) + λv(t))w′(t) dt

≥
ˆ 1

0
Mp(f(u(t)), g(v(t));λ) · M1

(
F

f(u(t)) ,
G

g(v(t)) ;λ
)
dt

≥
ˆ 1

0
M p

p+1
(F,G;λ) dt = M p

p+1
(F,G;λ) ,

namely the desired result (3.2) when n = 1.
Now suppose that (3.2) is true for all natural numbers less than n. We want to prove

(3.2) for the dimension n, so let f, g, h defined on Rn satisfying Theorem 3.1.1. For each
s ∈ R, define the function hs : Rn−1 −→ [0,∞) as

hs(z) = h(z, s) for z ∈ Rn−1, (3.10)
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and define fs and gs analogously. Let x, y ∈ Rn−1, let a, b ∈ R and consider

c = (1− λ)a+ λb.

Therefore, by definition (3.10) and (3.1),

hc ((1− λ)x+ λy) = h ((1− λ)x+ λy, c) = h ((1− λ)x+ λy, (1− λ)a+ λb)

= h ((1− λ)(x, a) + λ(y, b)) ≥Mp(f(x, a), g(y, b);λ) =Mp(fa(x), gb(y);λ).

The inductive hypothesis (since hc, fa, gb are nonnegative functions on Rn−1 which satisfy
(3.1)) implies

ˆ
Rn−1

hc(x) dx ≥M p
(n−1)p+1

(ˆ
Rn−1

fa(x) dx,
ˆ
Rn−1

gb(x) dx ;λ
)
.

Finally define the following nonnegative functions H,F ,G on R, given by

H(c) =
ˆ
Rn−1

hc(x) dx, F(a) =
ˆ
Rn−1

fa(x) dx, G(b) =
ˆ
Rn−1

gb(x) dx.

Then
H(c) = H((1− λ)a+ λb) ≥M p

(n−1)p+1
(F(a),G(b);λ) ,

i.e. H,F ,G satisfy (3.1) with the index

q = p

(n− 1)p+ 1 .

Then
q

q + 1 = p

np+ 1 ,

and, by Fubini’s Theorem and Theorem 3.1.1 applied to the one-dimensional functions
H,F ,G, we conclude that

ˆ
Rn
h(x) dx =

ˆ
R

(ˆ
Rn−1

hc(z) dz
)
dc =

ˆ
R
H(c) dc

≥M q
q+1

(ˆ
R
F(a) da,

ˆ
R
G(b) db;λ

)
=M p

np+1

(ˆ
R
F(a) da,

ˆ
R
G(b) db;λ

)
=M p

np+1

(ˆ
R

(ˆ
Rn−1

fa(z) dz
)
da,

ˆ
R

(ˆ
Rn−1

gb(z) dz
)
db;λ

)
=M p

np+1

(ˆ
Rn
f(x) dx,

ˆ
Rn
g(x) dx ;λ

)
.
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3.3.2 A proof via optimal transportation theory

We recall basic notions and tools of the mass transportation theory, referring to Villani’s
book [51] for more details. Whenever T is a map from a measurable space X, equipped
with a measure µ, to an arbitrary space Y , we denote by T#µ the push-forward (or
image measure) of µ by T . Explicitly,

(T#µ)[B] = µ[T−1(B)].

If ν = T#µ, we say that T transports µ onto ν. Given two probability measure µ, ν,
with respective support in measurable spaces X and Y , let c(x, y) be a measurable cost
function defined on X × Y : the Monge’s optimal transportation problem consists in

minimizing
ˆ
X
c (x, T (x)) dµ(x)

on the set of all measurable maps T : X −→ Y such that T#µ = ν.
The optimal T ’s, if they exist, are called optimal transport. From now on we consider

X = Y = Rn and the quadratic transportation cost c(x, y) = |x− y|2. The strict
convexity of c(x, y) = |x− y|2 guarantees existence and uniqueness of the solution to the
Monge’s problem, if µ, ν are absolutely continuous with respect to Lebesgue measure.
Furthermore, one can geometrically characterize the optimal transport: it has to be the
gradient of a convex function on Rn. Precisely, Brenier’s theorem states that there exists
a unique optimal transport T , given by

T = ∇φ (µ-a.e.)

where φ is a convex function satisfying the Monge-Ampère equation (see Chapter 4 of [51])

f(x) = g(∇φ(x)) det(D2φ(x)), (3.11)

where dµ(x) = f(x)dx, dν(y) = g(y)dy are the probability measures, absolutely continu-
ous with respect to Lebesgue measure.

Second Proof of BBL inequalities, Theorem 3.1.1.
We use the strategy of Barthe (see the proof of the PL inequality in [51], Chapter 6) and
adapt it to the extremal index p = −1/n. In fact it suffices to prove BBL inequality for
p = −1/n, thanks to Proposition 3.1.5. Precisely, it is enough to prove Corollary 3.1.7,
as explained in Remark 3.1.6. Therefore we may assume that

´
Rn f = 1 =

´
Rn g and that

h, f, g satisfy (3.1) for p = −1/n, namely

h((1− λ)x+ λy) ≥M−1/n(f(x), g(y);λ) for all x, y ∈ Rn. (3.12)

So we have just to prove that ˆ
Rn
h ≥ 1.

Identify the functions f and g with the corresponding probability densities and let L be
the Lebesgue density on [0, 1]n. The main idea consists in a linear interpolation between
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the optimal transportation maps from f to L on one hand, from g to L on the other hand,
combined with the Monge-Ampère equations (3.11) satisfied by these maps. Consider the
convex maps φ1 and φ2, whose gradients transport respectively L onto f and L onto g.
The theory of optimal transportation ensures that φ1 and φ2 satisfy (almost everywhere
x ∈ [0, 1]n) the Monge-Ampère equations

f(∇φ1(x)) det(D2φ1(x)) = 1; (3.13)

g(∇φ2(x)) det(D2φ2(x)) = 1. (3.14)

The linear interpolation is given by

φ(x) = (1− λ)φ1(x) + λφ2(x). (3.15)

The last necessary ingredient is the Minkowki Determinant Theorem (for a proof we
mention [39], Section 4.1.8): let λ ∈ (0, 1), let A,B be n × n nonnegative symmetric
matrices: then

det ((1− λ)A+ λB)1/n ≥ (1− λ) det(A)1/n + λ det(B)1/n. (3.16)

The inequality (3.16) essentially relies on an application of the arithmetic-geometric mean
inequality. Using sequentially the change of variables z = ∇φ(x), (3.15), (3.12) (3.16),
(3.13) and (3.14) we deduce

ˆ
Rn
h(z) dz ≥

ˆ
[0,1]n

h(∇φ(x)) det
(
D2φ(x)

)
dx

=
ˆ

[0,1]n
h ((1− λ)∇φ1(x) + λ∇φ2(x)) · det

(
(1− λ)D2φ1(x) + λD2φ2(x)

)
dx

≥
ˆ

[0,1]n
M−1/n(f(∇φ1(x)), g(∇φ2(x));λ) · M1/n(det(D2φ1(x)),det(D2φ2(x));λ) dx

≥
ˆ

[0,1]n
M−∞(f(∇φ1(x)) det(D2φ1(x)), g(∇φ2(x)) det(D2φ1(x));λ) dx

=
ˆ

[0,1]n
M−∞(1, 1;λ) dx = |[0, 1]n| = 1,

where Lemma 3.1.1 has been used with p = 1/n, q = −1/n, s = −∞.

Remark 3.3.1. Instead of the linear interpolation between the optimal transportation maps
from f to L and from g to L, McCann’s argument [40] realizes the direct interpolation
between the two probability densities f and g, by means of the so-called displacement
interpolant {ρλ}0≤λ≤1, defined as

ρλ = [(1− λ)Id+ λ∇φ] #f, 0 ≤ λ ≤ 1,
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where ∇φ is (f -a.e.) the gradient of convex functions such that ∇φ#f = g. This
interpolation is the solution of a time-dependent transportation problem with a quadratic
cost function. Of course {ρλ}0≤λ≤1 is a family of probability densities that interpolates
between f and g, i.e. ρ0 = f and ρ1 = g. Moreover this interpolation has several
remarkable advantages; for example, some typical functionals F (defined on the sets of
absolutely continuous probability measures on Rn) are convex with respect to {ρλ}0≤λ≤1,
meaning that

λ 7−→ F (ρλ) is convex on [0, 1]. (3.17)

If the functional F satisfies (3.17), it is said displacement convex. For instance, the
Brunn-Minkowski inequality in Rn can be seen as a consequence (see [51], proof 1.2 in
Chapter 6) of the displacement convexity of the functional

U(ρ) = −
ˆ
Rn

(
dρ

dx

)1−1/n
dx.

3.3.3 Geometric proof

In certain cases the BBL inequalities can be seen as direct consequences of the BM
inequality. In order to prove this fact, we present a proof due to Klartag [36], which is
particularly useful for our future goals.

The version of BBL inequalities to which we are now interested, that is slightly weaker
than the usual formulation in Theorem 3.1.1, regards the cases p = 1/s > 0.

Proposition 3.3.2. Let 0 < λ < 1, s > 0, and let f, g, h be nonnegative integrable
functions on Rn satisfying

h((1− λ)x+ λy) ≥
[
(1− λ)f(x)1/s + λg(y)1/s

]s
(3.18)

for every x ∈ Supp(f), y ∈ Supp(g). Then
ˆ
Rn
h ≥M 1

n+s

(ˆ
Rn
f,

ˆ
Rn
g;λ

)
. (3.19)

Fixed x ∈ Supp(f) and y ∈ Supp(g) such that f(x) and g(y) are positive, notice
that the assumption (3.18) coincides with (3.1) for p = 1/s, while the latter is weaker
than the (3.18) if f(x) = 0 and g(y) > 0 or vice versa (because in our convention the
generalized mean of two nonnegative numbers is zero if one of them is zero).

Also note that (3.18) is required for the couples (x, y) belonging to Supp(f)×Supp(g):
one can easily check (arguing similarly to Remark 3.1.2) that in certain cases (for instance
if f, g are compactly supported) to require (3.18) for every x, y ∈ Rn necessarily force´
Rn h to diverge, making (3.19) trivial.

Notice that, given f and g, the smallest function satisfying (3.18) (hence the smallest
function to which Proposition 3.3.2 possibly applies to) is their (1/s)-Minkowksi sum,
defined as follows

hs,λ(z) = sup
{[

(1− λ)f(x)1/s + λg(y)1/s
]s

: z = (1− λ)x+ λy
}

(3.20)
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for z ∈ (1− λ) Supp(f) + λ Supp(g) and hs,λ(z) = 0 if z /∈ (1− λ) Supp(f) + λ Supp(g).

To begin, given two positive integers n, s, let f : Rn −→ [0,+∞) be an integrable
function with nonempty support (to avoid the trivial case in which f is identically
zero). Following Klartag’s notations and ideas [36] (see also [1]), we associate with f the
nonempty measurable set

Kf,s =
{

(x, y) ∈ Rn+s = Rn × Rs : x ∈ Supp(f), |y| ≤ f(x)1/s
}
, (3.21)

where x ∈ Rn and y ∈ Rs. In other words, Kf,s is the subset of Rn+s obtained as union
of the s-dimensional closed balls of center (x, 0) and radius f(x)1/s, for x belonging to
the support of f , or, if you prefer, the set in Rn+s obtained by rotating with respect to
y = 0 the (n+ 1)-dimensional set {(x, y) ∈ Rn+s : 0 ≤ y1 ≤ f(x)1/s, y2 = · · · = ys = 0}.

Figure 3.1: An example of Kf,s

Observe that Kf,s is convex if and only if f is (1/s)-concave (that is for us a function
f having compact convex support such that f1/s is concave on Supp (f)). If Supp(f) is
compact, then Kf,s is bounded if and only if f is bounded.

Moreover, thanks to Fubini’s Theorem, it holds

|Kf,s| =
ˆ

Supp(f)
ωs ·

(
f(x)1/s

)s
dx = ωs

ˆ
Rn
f(x) dx, (3.22)

where ωs denotes the measure of the unit ball in Rs. In this way, the integral of f
coincides, up to the dimensional constant ωs, with the volume of Kf,s. This simple
identity allows to deduce Proposition 3.3.2 as a direct application of the BM inequality.
Although of course the set Kf,s depends heavily on s, for simplicity from now on we will
remove the subindex s and just write Kf for Kf,s.
Let us begin with the simplest case, when p = 1/s with s positive integer.

Third Proof of BBL inequalities, Proposition 3.3.2 with s ∈ N.
Without loss of generality the integrals of f and g are positive, thus the sets Kf and
Kg have positive measure. Let Ωλ be the Minkowski combination (with coefficient λ)
of Ω0 = Supp(f) and Ω1 = Supp(g). Consider the function hs,λ as defined by (3.20);
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to simplify the notation, we will denote hs,λ by hλ from now on. First notice that the
support of hλ is Ωλ. Then it is easily seen that

Khλ = (1− λ)Kf + λKg . (3.23)

Moreover, since h ≥ hλ by assumption (3.18), we have Kh ⊇ Khλ . Applying BM
inequality (Theorem 2.1.1) to Khλ , by means of (3.23),

|Kh|
1

n+s ≥ |Khλ |
1

n+s ≥ (1− λ) |Kf |
1

n+s + λ |Kg|
1

n+s , (3.24)

where |Khλ | possibly means the outer measure of the set Khλ . Finally (3.22) yields

|Kh| = ωs

ˆ
Rn
h, |Kf | = ωs

ˆ
Rn
f, |Kg| = ωs

ˆ
Rn
g,

thus dividing (3.24) by ω
1

n+s
s we get (3.19).

Next we show how it is possible to generalize Proposition 3.3.2 to a positive index
s. The case of a positive rational index s requires the following definition. Given
f : Rn −→ [0,+∞) integrable and a positive integer q (it will be the denominator of the
rational number s) we consider the auxiliary function f̃ : Rnq −→ [0,+∞) defined as

f̃(x) = f̃(x1, ..., xq) =
q∏
j=1

f(xj), (3.25)

where x = (x1, ..., xq) ∈ (Rn)q. We observe that, by construction,
ˆ
Rnq

f̃ =
(ˆ

Rn
f

)q
; (3.26)

moreover Supp f̃ = (Supp f)× ...× (Supp f) = (Supp f)q.
The following lemma is an useful consequence of Hölder’s inequality (see [33], Theorem

10, pag 21) for families of real numbers (in our case for two sets of q positive numbers).

Lemma 3.3.1. Given a positive integer q, let {a1, ..., aq} , {b1, ..., bq} be two sets of q
real numbers. Then ∣∣∣∣∣∣

q∏
j=1

aj

∣∣∣∣∣∣+
∣∣∣∣∣∣
q∏
j=1

bj

∣∣∣∣∣∣ ≤
 q∏
j=1

(|aj |q + |bj |q)

1/q

.

From this lemma we deduce the following.

Corollary 3.3.3. Let λ ∈ (0, 1) and s = t
q with positive integers t, q.

Given f, g : Rn −→ [0,∞), x1, ..., xq, y1, ..., yq ∈ Rn, it holds

(1− λ)
q∏
j=1

f(xj)1/t + λ
q∏
j=1

g(yj)1/t ≤
q∏
j=1

[
(1− λ)f(xj)1/s + λg(yj)1/s

]1/q
.
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Proof. Observing that

(1− λ)
q∏
j=1

f(xj)1/t + λ
q∏
j=1

g(yj)1/t =
q∏
j=1

(1− λ)1/qf(xj)1/t +
q∏
j=1

λ1/qg(yj)1/t,

the result follows directly from Lemma 3.3.1 applied to {a1, ..., aq} , {b1, ..., bq} with
aj = (1− λ)1/qf(xj)1/t, bj = λ1/qg(yj)1/t, j = 1, ..., q.

Third Proof of BBL inequalities, Proposition 3.3.2 with generic s > 0.
We have already demonstrated the case s ∈ N. We show that this case suffices for all
the other cases. Next, assume that s = t/q is a rational number, where t, q ∈ N. By
Corollary 3.3.3 and (3.18), we have for any x1, ..., xq, y1, ..., yq ∈ Rn

(1− λ)
q∏
j=1

f(xj)1/t + λ
q∏
j=1

g(yj)1/t ≤
q∏
j=1

[
(1− λ)f(xj)1/s + λg(yj)1/s

]1/q

≤
q∏
j=1

h (1− λ)xj + λyj)1/t ,

i.e., by definition (3.25),

h̃((1− λ)x+ λy) ≥
[
(1− λ)f̃(x)1/t + λg̃(y)1/t

]t
,

where x = (x1, ..., xq) ∈ Rn, y = (y1, ..., yq) ∈ Rn. Notice that qs = t is integer, which is
the case we already dealt with, and that the last inequality states that h̃, f̃ , g̃ satisfy the
assumptions of Proposition 3.3.2 with t in place of s. Hence, using (3.26) and (3.19) (for
the index t ∈ N and for the functions h̃, f̃ , g̃ defined on Rnq) we derive(ˆ

Rn
h

) 1
n+s

=
(ˆ

Rnq
h̃

) 1
q(n+s)

=
(ˆ

Rnq
h̃

) 1
nq+t

≥ (1− λ)
(ˆ

Rnq
f̃

) 1
nq+t

+ λ

(ˆ
Rnq

g̃

) 1
nq+t

= (1− λ)
(ˆ

Rn
f

) 1
n+s

+ λ

(ˆ
Rn
g

) 1
n+s

and we get the proposition for every rational positive index s.
By an approximation argument, we generalize it to the case of a real number s > 0,

as follows. Given s > 0 there exists a decreasing sequence of positive rational numbers
{sj}j∈N convergent to s. For every j, being 1/s > 1/sj , (3.18) yields

h((1− λ)x+ λy) ≥
[
(1− λ)f(x)1/sj + λg(y)1/sj

]sj
with sj ∈ Q+: then(ˆ

Rn
h

) 1
n+sj ≥ (1− λ)

(ˆ
Rn
f

) 1
n+sj + λ

(ˆ
Rn
g

) 1
n+sj

.

Thus, passing to the limit j → +∞, the sequence
{

1
n+sj

}
converges increasing to 1

n+s
and we finally have (3.19).
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3.3.4 A proof through the curvilinear extension of BM inequality

The PL inequality, stated in Proposition 3.1.4 and corresponding to the case p = 0 of the
BBL inequalities, is the simplest functional version of the Brunn-Minkowski inequality.
In this section we want to derive the PL inequality applying the BM inequality to
suitable sets related to the involved functions. We present a proof of the PL inequality
in the spirit of Klartag’s proof for the BBL inequalities (that is the proof given in the
previous Section 3.3.3). We need a few concepts and notations, in order to present
a generalization of the BM inequality, due to Uhrin [50]. He called it the curvilinear
extension of the Brunn-Minkowski inequality. In what follows we denote with Rn+
the nonnegative orthant of Rn, i.e. the subset of Rn in which every component is
nonnegative. Let 0 < λ < 1, a = (a1, ..., an), b = (b1, ..., bn) ∈ Rn+, α = (α1, ..., αn) with
αi ∈ [−∞,+∞] i = 1, ..., n.
We define and denote by

(1− λ)a 4α λb (3.27)

the element of Rn whose components are

Mαi(ai, bi;λ) i = 1, ..., n.

The operation (3.27) of two points a, b ∈ Rn+ is a sort of abstract ”curvilinear” combination.
If αi = 1 for any i = 1, ..., n we can recognize the usual convex combination of two points
in Rn, i.e.

(1− λ)a 4(1,1,...,1) λb = (1− λ)a+ λb.

Through the previous definition, and extending the notion of Minkowski combination
(case α = (1, 1, ..., 1)), we introduce the concept of curvilinear combination of two sets.
Namely, given two nonempty sets A,B ⊆ Rn+, we define

(1− λ)A 4α λB = {(1− λ)a 4α λb : a ∈ A, b ∈ B} ⊆ Rn+.

We notice that, similarly to the Minkowski combination of two measurable sets, it is
possible that the set (1− λ)A 4α λB is not measurable, so eventually we consider its
inner Lebesgue measure (indicated again with |·|).

Uhrin established the following extension of the BM inequality, giving a lower estimate
for the volume of the curvilinear combination (1− λ)A 4α λB.

Theorem 3.3.4 (Theorem 2.1 in [50]). Let 0 < λ < 1, α = (α1, ..., αn) ∈ [0, 1]n, let
A,B ⊂ Rn+ be bounded sets of positive measure. Then

|(1− λ)A 4α λB| ≥ Mγ(|A| , |B| ;λ) (3.28)

where γ is the harmonic mean of α1, ..., αn, namely γ =
[∑n

i=1 α
−1
i

]−1
.

We observe that in the particular case of α = (1, 1, ..., 1) the set (1 − λ)A 4α λB
corresponds to the Minkowski combination and the index γ coincide with 1/n, thus we
obtain the classic BM inequality (2.1).
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Another special case, this time related to PL inequality, is given by α = (1, 1, ..., 1, 0)
with each of the n components equal to 1, except the last one, that is 0: the corresponding
index γ is 0. We denote this combination (1−λ)A 4(1,1,...,1,0) λB with the symbol A N B:
(3.28) in this case becomes

|A N B| ≥ |A|1−λ |B|λ . (3.29)

In other words, the volume of A N B is greater or equal to than the (λ-weighted) geometric
mean of the volumes of A and B. Notice that (3.29) is stronger than the multiplicative
form (2.3) of the BM inequality since A N B ⊆ (1 − λ)A + λB and the inclusion is
generally strict. Observing the inequalities (3.29) and (3.5), it is not difficult to imagine a
link among them. Indeed, given a nonnegative measurable function f in the assumptions
of PL inequality, the required link is provided by the corresponding measurable set given
by

Af = {(x, t) ∈ Rn × R : x ∈ Supp(f), 0 ≤ t ≤ f(x)} ⊆ Rn × R+. (3.30)

We can clearly recognize an analogy with the Klartag’s set Kf,s (see (3.21)), in fact Af is
exactly the upper half of Kf,1. Therefore Af inherits the properties of Kf,1, in particular
Af is convex if and only if f is concave and

|Af | =
ˆ
Rn
f. (3.31)

We are ready to prove the following version of PL inequality, which holds for bounded
functions with compact supports.

Proposition 3.3.5 (PL inequality for bounded functions).
Let 0 < λ < 1, f, g, h be nonnegative measurable functions defined in Rn. Assume that f
and g are bounded with compact supports. If

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn

then ˆ
Rn
h ≥

(ˆ
Rn
f

)1−λ (ˆ
Rn
g

)λ
.

Proof. Without loss of generality assume that the integrals of f and g are positive
(otherwise (3.32) holds obviously, being 0 the right hand side). Since the integrals
of f and g are positive, the sets Af and Ag have positive measure. Furthermore the
assumptions on f and g (boundness and compact support) ensure the boundness of the
corresponding Af and Ag. Therefore we can apply Theorem 3.3.4 to Af and Ag deducing

|Af N Ag| ≥ |Af |1−λ |Ag|λ . (3.32)

Then it is easily seen that (3.32) yields Ah ⊇ [Af N Ag], hence

|Ah| ≥ |Af N Ag| ≥ |Af |1−λ |Ag|λ . (3.33)
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Finally (3.31) implies

|Ah| =
ˆ
Rn
h, |Af | =

ˆ
Rn
f, |Ag| =

ˆ
Rn
g,

thus (3.33) is equivalent to the desired result.

The same kind of approach of Theorem 3.3.4, allow us to prove a slightly different
form of the BBL inequalities of index p ∈ (0, 1]. And actually, through a variant of
Theorem 3.3.4, this can be done for every p ∈

[
− 1
n , 1

]
. The required variant of Theorem

3.3.4, stated in [50] (see (2.15) therein), is

Theorem 3.3.6. Let 0 < λ < 1, A,B ⊂ Rn+ be bounded sets of positive measure. Suppose
that α = (α1, ..., αn) ∈ Rn satisfies[

n∑
i=1

α−1
i − n

]−1

≥ −1/n and

 j∑
i=1

α−1
i − j

−1

+ αj+1
1− αj+1

> 0 for every j = 1, ..., n− 1.

Then
|(1− λ)A 4α λB| ≥ Mγ(|A| , |B| ;λ)

where γ is the harmonic mean of α1, ..., αn, namely γ =
[∑n

i=1 α
−1
i

]−1
.

For simplicity denote the set (1− λ)A 4(1,1,...,1,p) λB with the symbol A 4p B. Let
p ∈

[
− 1
n−1 , 1

]
. Theorem 3.3.4 and 3.3.6, applied to α = (1, ..., 1, p) respectively with

p ∈ [0, 1] and p ∈
[
− 1
n−1 , 0

]
, imply immediately the following generalization of (3.29).

Corollary 3.3.7. Let 0 < λ < 1, n ≥ 2, p ∈
[
− 1
n−1 , 1

]
, let A,B ⊂ Rn+ be bounded sets

of positive measure. Then

|A 4p B| ≥ Mγ(|A| , |B| ;λ)

where

γ =

−∞ if p = − 1
n−1 ,

p
p(n−1)+1 otherwise .

We are ready to prove the BBL inequalities, in a slightly different form compared
to Theorem 3.1.1, for every index p ∈

[
− 1
n , 1

]
. The idea is the same of the proof of

Proposition 3.3.5 and we use again the sets Af , Ag, Ah given by (3.30).
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Proposition 3.3.8 (BBL inequality of index p ∈
[
− 1
n , 1

]
).

Let λ ∈ (0, 1), p ∈
[
− 1
n , 1

]
and let be f, g, h be nonnegative measurable functions defined

in Rn. Assume that f and g are bounded and compactly supported such that

h((1−λ)x+λy) ≥ [(1− λ)f(x)p + λg(y)p]1/p for all x ∈ Supp(f), y ∈ Supp(g). (3.34)

Then ˆ
Rn
h ≥M p

np+1

(ˆ
Rn
f,

ˆ
Rn
g;λ

)
.

Proof. Suppose p ∈ (−1/n, 1] \ {0} (for the remaining cases p = 0 and p = −1/n the
proof repeats itself by interpreting the involved quantities by limits). Once again we
can suppose without loss of generality that the integrals of f and g are positive. The
assumptions on f and g (namely their boundness and the compactness of their support)
ensure the boundness of the corresponding Af and Ag. Then we apply Corollary 3.3.7 to
the sets Af , Ag ⊂ Rn+1 associated with f, g, deriving

|Af 4p Ag| ≥ Mγ(|Af | , |Ag| ;λ),

where
γ = p

p((n+ 1)− 1) + 1 = p

pn+ 1 .

On the other hand, according to (3.34), it holds Ah ⊇ [Af 4p Ag], hence

|Ah| ≥ |Af 4p Ag| ≥ M p
np+1

(|Af | , |Ag| ;λ) .

Consequently the latter means, by (3.31),
ˆ
Rn
h ≥M p

np+1

(ˆ
Rn
f,

ˆ
Rn
g;λ

)
,

i.e. the desired result.

3.4 Relation with a wide class of integral inequalities
In [23], Dubuc investigated a family of integral inequalities in Rn, equivalent to BBL
inequalities, wondering when these inequalities were just equalities. We state the milestone
of these integral inequalities, due to Borell [8], and called Theoreme Bn in [23]. First
we focus our attention on the inequality in Theoreme Bn, then the next chapter will
be devoted to its equality conditions, provided by Dubuc. These equality conditions
will lead us to the precise characterization of the equality conditions for all the BBL
inequalities.

Let us notice that, although this characterization seems to have been known by many
mathematicians, at least in same cases, and it is in general ascribed to Dubuc, in fact in
literature we cannot find any explicit precise and complete statement or proof. Then the
content of the next chapter can be considered new at some degree.
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We will show the equivalence between the following result and the BBL inequalities,
through Corollary 3.4.3. After that we will observe that BBL inequalities lead to a rather
general family of integral inequalities, proved in Theoreme 11 of [23] using Theoreme
Bn. Between these inequalities, we will mention those one due to Dancs and Uhrin
(Proposition 3.4.5).

Proposition 3.4.1 (First part of Theoreme Bn, [23]).
Assume that the BBL inequality of index p = −1/n holds. Let f0, g0, h0 be nonnegative
integrable functions defined in Rn such that

ˆ
Rn
f0 =

ˆ
Rn
g0 = 1,

and

h0(x0 + y0) ≥
[
f0(x0)−1/n + g0(y0)−1/n

]−n
a.e. (x0, y0) ∈ R2n. (3.35)

Then ˆ
Rn
h0 ≥ 1.

Proof. Let x0 = (1− λ)x, y0 = λy. Setting

f(·) = (1− λ)nf0((1− λ)·), g(·) = λng0(λ·),

we have (by simple changes of variable)
ˆ
Rn
f(x) dx =

ˆ
Rn
f0(x0) dx0 = 1,

ˆ
Rn
g(y) dy =

ˆ
Rn
g0(y0) dy0 = 1.

Then the condition (3.35) can be rewritten as

h0((1− λ)x+ λy) ≥
[
(1− λ)f(x)−1/n + λg(y)−1/n

]−n
≥M−1/n (f(x), g(y);λ) ,

that is exactly the assumption (3.1) with p = −1/n. Thus we can apply Theorem 3.1.1
to the function f, g, h0, concluding that

ˆ
Rn
h0 ≥ min

{ˆ
Rn
f,

ˆ
Rn
g

}
= min {1, 1} = 1.

Noticeably, by Proposition 3.4.1 and its corresponding equality conditions, Dubuc
proved a wide class of integral inequalities, with a characterization of the equality case
that we will examine in detail in the next chapter. Precisely we are referring to Theoreme
11 in [23], which we recall adopting the notations of the author. So we indicate with H+

2
the set of the 1-homogeneous nonnegative functions p defined in [0,+∞)× [0,+∞); in
other words a function p : [0,+∞)× [0,+∞) −→ [0,+∞) belong to H+

2 if and only if

p(αu, αv) = α · p(u, v) for every α > 0, u, v ∈ [0,+∞).
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Given a function p ∈ H+
2 , we define the function pn defined in [0,+∞)× [0,+∞) as

pn(u, v) = inf
0<t<1

p

(
u

tn
,

v

(1− t)n
)
. (3.36)

Proposition 3.4.2 (Theoreme 11 in [23]).
Let p ∈ H+

2 , f, g, h be nonnegative integrable functions defined in Rn such that

h(x+ y) ≥ p (f(x), g(y)) a.e. (x, y) ∈ R2n. (3.37)

Then ˆ
Rn
h ≥ pn

(ˆ
Rn
f,

ˆ
Rn
g

)
. (3.38)

Proof. We set F =
´
Rn f, G =

´
Rn g (which without loss of generality we can suppose

positive) and introduce the functions

f0(·) = f(·)
F

, g0(·) = g(·)
G
, h0(·) = h(·)

pn(F,G) .

The inequality (3.38) is trivially equivalent to
´
Rn h0 ≥ 1. To prove the latter inequality it

is sufficient to observe that
´
Rn f0 = 1 =

´
Rn g0 and that h0, f0, g0 satisfy, by definition of

pn, the crucial condition (3.35). Therefore we can apply Proposition 3.4.1 to h0, f0, g0 and
conclude that

´
Rn h0 ≥ 1. Let us check the property (3.35) for a couple (x, y) ∈ R2n such

that f0(x) and g0(y) are positive (otherwise (3.35) is obviously satisfied), in particular
f(x) and g(y) are positive. For such a couple (x, y) ∈ Rn consider the value t ∈ (0, 1)
given by

t = f0(x)−1/n

f0(x)−1/n + g0(x)−1/n .

Then, by definition (3.36) and using the 1-homogeneity of p and (3.37), we have

pn(F,G) ≤ p
(
Ft−n, G(1− t)−n

)
= p

F ·
[
(F/f(x))1/n + (G/g(y))1/n

]n
F/f(x) , G ·

[
(F/f(x))1/n + (G/g(y))1/n

]n
G/g(y)


=
[
(F/f(x))1/n + (G/g(y))1/n

]n
p (f(x), g(y))

≤
[
(F/f(x))1/n + (G/g(y))1/n

]n
h(x+ y),

hence
h(x+ y)
pn(F,G) ≥

[
(F/f(x))1/n + (G/g(y))1/n

]−n
,

which is exactly (3.35).
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Next we prove that Proposition 3.4.2 implies, with suitable choices of the 1-homogeneous
functions p ∈ H+

2 , all the BBL inequalities. Therefore we exhibit the right choices of
p ∈ H+

2 to obtain the BBL inequalities, and calculate the related functions pn, distin-
guishing between the different types of index.

Lemma 3.4.1. All the following functions p belong to H+
2 :

(i) p(u, v) =M+∞(u, v;λ) =
{

max {u, v} if uv > 0,
0 if uv = 0;

(ii) p(u, v) =
{

[up + vp]1/p if uv > 0,
0 if uv = 0,

if p ∈ (−1/n,+∞) \ {0};

(iii) p(u, v) =M0(u, v;λ) = u1−λvλ;

(iv) p(u, v) =
[
u−1/n + v−1/n

]−n
.

They allow respectively to prove, by Proposition 3.4.2, the BBL inequality of index
+∞, p ∈ (−1/n,+∞) \ {0} , 0, −1/n. The corresponding functions pn are respectively

(i) pn(u, v) =


[
u1/n + v1/n

]n
if uv > 0,

0 if uv = 0;

(ii) pn(u, v) =


[
u

p
np+1 + v

p
np+1

]np+1
p if uv > 0,

0 if uv = 0,
if p ∈ (−1/n,+∞) \ {0};

(iii) pn(u, v) = (1− λ)−n(1−λ) λ−nλ · u1−λvλ;

(iv) pn(u, v) = min {u, v} .

Observe that all the q-meanMq(a, b;λ) belong to H+
2 , and we can consider directly

them in place of the previous ones, to obtain BBL inequalities. However we prefer to use
the functions p of the latter lemma for the computation of the related pn, because it is
simpler since these functions p (except p(u, v) = u1−λvλ) are independent of the weight
λ.

Proof. The property of 1-homogeneity is trivial for all the mentioned functions p, thus they
belong to H+

2 . For example, given p ∈ (−1/n,+∞) \ {0}, let us check the 1-homogeneity
for the second case of p, namely

p(u, v) =
{

[up + vp]1/p if uv > 0,
0 if uv = 0.

In this case, fixed α > 0, it holds

p(αu, αv) =
{

[(αu)p + (αv)p]1/p = α [up + vp]1/p if αu · αv > 0
0 if αu · αv = 0
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hence it coincides with α · p(u, v). Let us compute the functions pn, case by case. First of
all in every case uv = 0 clearly implies p(u, v) = 0, therefore pn(u, v) = 0 (since, setting
t = 1/2 in (3.36), it holds pn(u, v) ≤ 2np(u, v)). Thus we suppose u, v > 0 from now on.

(i) Case p(u, v) = max {u, v}. By definition (3.36) of pn,

pn(u, v) = inf
0<t<1

max
{
u

tn
,

v

(1− t)n
}
.

We begin to consider the simple case u = v:

pn(u, u) = inf
0<t<1

max
{
u

tn
,

u

(1− t)n
}

= u · inf
0<t<1

max
{
t−n, (1− t)−n

}
= 2nu,

since this infimum is attained for t = 1/2 (max {t−n, (1− t)−n} > 2n for any other
t ∈ (0, 1)). This consideration can be generalized for u 6= v: the infimum is attained for
t =

[
1 + (v/u)1/n

]−1
(again t is the value for which the terms u

t
n and v

(1−t)n coincide):
hence

pn(u, v) = max
{
u

t
n ,

u

(1− t)n
}

=
[
u1/n + v1/n

]n
.

(ii) Case p(u, v) = [up + vp]1/p for p ∈ (−1/n,+∞) \ {0}. By definition

pn(u, v) = inf
0<t<1

Λp(t), where Λp(t) =
[
upt−np + vp(1− t)−np

]1/p
.

We calculate

Λ′p(t) = 1
p

Λp(t)1−p
[
up · (−np) · t−np−1 + vp · (−np) · (1− t)−np−1 · (−1)

]
,

and we see that the infimum of pn(u, v) is attained for t =
[
1 + (v/u)

p
np+1

]−1
. After

some calculation we get

pn(u, v) = Λp(t) =
[
u

p
np+1 + v

p
np+1

]np+1
p

.

(iii) Case p(u, v) = u1−λvλ. Similarly it holds

pn(u, v) = u1−λvλ · inf
0<t<1

[
t−n(1−λ) (1− t)−nλ

]
= u1−λvλ ·

[
(1− λ)−n(1−λ) (1− (1− λ))−nλ

]
= (1− λ)−n(1−λ) λ−nλ · u1−λvλ.

(iv) Case p(u, v) =
[
u−1/n + v−1/n

]−n
. By definition

pn(u, v) = inf
0<t<1

Λ−1/n(t), where Λ−1/n(t) =
[
u−1/nt+ v−1/n(1− t)

]−n
.
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It is trivial to check, by means of its derivative

Λ′−1/n(t) = −n ·
(
Λ−1/n(t)

)n+1
n
[
u−1/n − v−1/n

]
,

that Λ−1/n is increasing if u > v, decreasing if u < v (and constant if u = v). Therefore

pn(u, v) = inf
0<t<1

Λ−1/n(t) =
{

Λ−1/n(0) if u ≥ v,
Λ−1/n(1) otherwise

=

=
{
v if u ≥ v,
u otherwise

= min {u, v} .

Before showing that every BBL inequality is a consequence of Proposition 3.4.2 and
Lemma 3.4.1 , we summarize the functions p and the corresponding pn.

p(u, v) pn(u, v)

(i) M+∞(u, v;λ)


[
u1/n + v1/n

]n
if uv > 0

0 if uv = 0

given p ∈ (−1/n,+∞) \ {0} with

(ii)
{

[up + vp]1/p if uv > 0
0 if uv = 0


[
u

p
np+1 + v

p
np+1

]np+1
p if uv > 0

0 if uv = 0

(iii) M0(u, v;λ) (1− λ)−n(1−λ) λ−nλ · M0(u, v;λ)

(iv)
[
u−1/n + v−1/n

]−n
min {u, v}

Proposition 3.4.3. Proposition 3.4.2 implies all the BBL inequalities.

Proof. Let 0 < λ < 1, p ∈ [− 1
n ,+∞], and let f, g, h be nonnegative integrable functions

on Rn satisfying

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn. (3.39)

We want to show that ˆ
Rn
h ≥M p

np+1

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
. (3.40)

Without loss of generality we may suppose that the integrals of f and g are positive
(otherwise the result is obvious). Set

x0 = (1− λ)x, y0 = λy.
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(i) Case p = +∞, i.e. p(u, v) =M+∞ (u, v;λ). Set

f0(·) = f

( ·
1− λ

)
, g0(·) = g

( ·
λ

)
, (3.41)

hence ˆ
Rn
f0 = (1− λ)n

ˆ
Rn
f,

ˆ
Rn
g0 = λn

ˆ
Rn
g. (3.42)

On the other hand (3.39) with p = +∞ becomes

h(x0 + y0) ≥M+∞ (f0(x0), g0(y0);λ) = p (f0(x0), g0(y0)) .

Proposition 3.4.2 and Lemma 3.4.1 yield (3.40) for p = +∞, indeed
ˆ
Rn
h ≥ pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)
=
[(ˆ

Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n

=
[
(1− λ)

(ˆ
Rn
f

)1/n
+ λ

(ˆ
Rn
g

)1/n
]n

=M1/n

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
.

(ii) Case p ∈ (−1/n, 0) ∪ (0,+∞), i.e. p(u, v) =
{

[up + vp]1/p if uv > 0,
0 if uv = 0,

.

Set
f0(·) = (1− λ)1/pf

( ·
1− λ

)
, g0(·) = λ1/pg

( ·
λ

)
, (3.43)

hence ˆ
Rn
f0 = (1− λ)

np+1
p

ˆ
Rn
f,

ˆ
Rn
g0 = λ

np+1
p

ˆ
Rn
g. (3.44)

Then (3.39) with p ∈ (−1/n, 0) ∪ (0,+∞) can be rewritten as

h(x0 + y0) ≥
{

[(f0(x0))p + (g0(y0))p]1/p if f0(x0) · g0(y0) > 0,
0 if f0(x0) · g0(y0) = 0,

= p (f0(x0), g0(y0)) .

Proposition 3.4.2 and Lemma 3.4.1 lead to (3.40) for p ∈ (−1/n, 0) ∪ (0,+∞), since

ˆ
Rn
h ≥ pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)
=
[(ˆ

Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np+1
p

=
[
(1− λ)

(ˆ
Rn
f

) p
np+1

+ λ

(ˆ
Rn
g

) p
np+1

]np+1
p

=M p
np+1

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
.

(iii) Case p = 0, i.e. p(u, v) = M0 (u, v;λ). With f0, g0 given by (3.41), condition
(3.39) of index p = 0 is equivalent to

h(x0 + y0) ≥M0 (f0(x0), g0(y0);λ) = p (f0(x0), g0(y0)) .
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Therefore ˆ
Rn
h ≥ pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)

=
( ´

Rn f0

(1− λ)n

)1−λ(´
Rn g0

λn

)λ
=
(ˆ

Rn
f

)1−λ (ˆ
Rn
g

)λ
,

by (3.42), Proposition 3.4.2 and Lemma 3.4.1. Thus we have obtained (3.40) for p = 0.
(iv) Case p = −1/n, i.e. p(u, v) =

[
u−1/n + v−1/n

]−n
. Set

f0(·) = (1− λ)−nf
( ·

1− λ

)
, g0(·) = λ−ng

( ·
λ

)
, (3.45)

hence ˆ
Rn
f0 =

ˆ
Rn
f,

ˆ
Rn
g0 =

ˆ
Rn
g.

Proposition 3.4.2 and Lemma 3.4.1 yield (3.40) for p = −∞, being
ˆ
Rn
h ≥ pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)
= min

{ˆ
Rn
f0,

ˆ
Rn
g0

}

= min
{ˆ

Rn
f,

ˆ
Rn
g

}
=M−∞

(ˆ
Rn
f,

ˆ
Rn
g;λ

)
.

Summarizing we have the following.

Corollary 3.4.4. The BBL inequality of index p = −1/n is equivalent to Proposition
3.4.1.

Proof. The BBL inequality with p = −1/n yields Proposition 3.4.1, which in turn implies
Proposition 3.4.2 which finally implies every BBL inequality.

As a further application of Proposition 3.4.2, we mention and deduce the following
integral inequalities, due to Dancs and Uhrin [20]. These inequalities complement in
some sense the BBL inequalities.

Proposition 3.4.5 (Theorem 3.3 in [20]).
Let 0 < λ < 1, −∞ ≤ p < −1/n, 0 ≤ f, g, h ∈ L1(Rn) such that

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn. (3.46)

Then ˆ
Rn
h ≥ min

{
(1− λ)

np+1
p

ˆ
Rn
f, λ

np+1
p

ˆ
Rn
g

}
. (3.47)
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Here the number (np+ 1)/p has to be interpreted in the obvious way in the extremal
case, i.e. it is equal to n when p = −∞. Note that the latter claim is really similar to
BBL inequalities: in fact they require the same kind of assumption, namely (3.46), this
time for an index p ∈ [−∞,−1/n). Not surprising, being a condition weaker than (3.1),
we get (3.47), which is in general a weaker result than (3.2).

Proof. Likewise the BBL inequalities (proof of Proposition 3.4.3), it is enough to apply
Proposition 3.4.2 to the suitable function p, that in this case is

p(u, v) = [up + vp]1/p if p ∈ (−∞,−1/n)

or p(u, v) = min {u, v} if p = −∞.

Case p ∈ (−∞,−1/n) : p(u, v) = [up + vp]1/p . By definition

pn(u, v) = inf
0<t<1

Λp(t), where Λp(t) =
[
upt−np + vp(1− t)−np

]1/p
.

Let Λp(0+) = limt→0+ Λp(t) and Λp(1−) = limt→1− Λp(t). It is easy to see that its
derivative

Λ′p(t) = 1
p

Λp(t)1−p
[
up · (−np) · t−np−1 + vp · (−np) · (1− t)−np−1 · (−1)

]
,

then (notice that p and np+ 1 are negative) Λp(t) is increasing for t <
[
1 + (v/u)

p
np+1

]−1

and decreasing for t >
[
1 + (v/u)

p
np+1

]−1
. Thus

pn(u, v) = inf
0<t<1

Λp(t) = min
{

Λp(1−),Λp(0+)
}

= min {u, v} .

Fix x0 = (1− λ)x, y0 = λy, and set

f0(·) = (1− λ)1/pf

( ·
1− λ

)
, g0(·) = λ1/pg

( ·
λ

)
,

from which ˆ
Rn
f0 = (1− λ)

np+1
p

ˆ
Rn
f,

ˆ
Rn
g0 = λ

np+1
p

ˆ
Rn
g. (3.48)

Then (3.46) with p ∈ (−∞,−1/n) can be rewritten as

h(x0 + y0) = [(f0(x0))p + (g0(y0))p]1/p = p (f0(x0), g0(y0)) .

Applying Proposition 3.4.2 and (3.48) we get (3.47) for p ∈ (−∞,−1/n):
ˆ
Rn
h ≥ min

{ˆ
Rn
f0,

ˆ
Rn
g0

}
= min

{
(1− λ)

np+1
p

ˆ
Rn
f, λ

np+1
p

ˆ
Rn
g

}
.

Case p = −∞ : p(u, v) = min {u, v}. By definition (3.36) of pn,

pn(u, v) = inf
0<t<1

min
{
u

tn
,

v

(1− t)n
}

= min {u, v} ,
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since
inf

0<t<1

u

tn
= u, inf

0<t<1

v

(1− t)n = v.

Fix x0 = (1− λ)x, y0 = λy, and set

f0(·) = f

( ·
1− λ

)
, g0(·) = g

( ·
λ

)
,

from which ˆ
Rn
f0 = (1− λ)n

ˆ
Rn
f,

ˆ
Rn
g0 = λn

ˆ
Rn
g. (3.49)

Then (3.46) with p ∈ (−∞,−1/n) can be rewritten as

h(x0 + y0) = [(f0(x0))p + (g0(y0))p]1/p = p (f0(x0), g0(y0)) .

Applying Proposition 3.4.2 and (3.49) we have (3.47) for p = −∞, since
ˆ
Rn
h ≥ min

{ˆ
Rn
f0,

ˆ
Rn
g0

}
= min

{
(1− λ)n

ˆ
Rn
f, λn

ˆ
Rn
g

}
.
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Chapter 4

Equality case in BBL inequalities

4.1 A key result
In [23], as already explained, Dubuc proved a general family of integral inequalities in Rn,
represented by Proposition 3.4.2, wondering when these inequalities were just equalities.
To solve this question, it is useful to begin with the equality conditions of Theoreme Bn.
Thus we restate it, this time including the equality conditions (without proof).

Theorem 4.1.1 (Theoreme Bn, [23]).
Let f, g, h be three nonnegative integrable functions defined in Rn such that

ˆ
Rn
f =
ˆ
Rn
g = 1,

and
h(x0 + y0) ≥

[
f(x0)−1/n + g(y0)−1/n

]−n
a.e. (x0, y0) ∈ R2n.

Then ˆ
Rn
h ≥ 1. (4.1)

Moreover equality holds in (4.1), i.e.
´
Rn h(x) dx = 1, if and only if there exist a convex

function Φ : Rn −→ (0,∞] and a homothety in Rn

x→ m0x+ b0 with m0 ∈ (0,+∞), b0 ∈ Rn

such that f(x), g(x), h(x) coincide almost everywhere respectively with

Φ(x)−n, mn
0 Φ(m0x+ b0)−n, (m0 + 1)n Φ((m0 + 1)x+ b0)−n. (4.2)

In other words equality holds in (4.1) when the involved functions coincide (up to
homotheties and a.e.) with the same (−1/n)-concave function ϕ(x) = Φ(x)−n.
One of the implication of the equality case is trivial, namely

´
Rn h(x) dx = 1 follows
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directly by (4.2), knowing for example that
´
Rn f(x) dx = 1 and using the change of

variable z = (m0 + 1)x+ b0:
ˆ
Rn
h(x) dx =

ˆ
Rn

(m0 + 1)n Φ((m0+1)x+b0)−n dx =
ˆ
Rn

Φ(z)−n dz =
ˆ
Rn
f(z) dz = 1.

Instead the reverse implication is a delicate question, solved by Dubuc through several
technical lemmas and by an induction argument on the dimension n.

We underline that, by Theorem 4.1.1 and its corresponding equality conditions, Dubuc
characterized, in Theoreme 12 of [23], the equality case for inequality (3.38) of Proposition
3.4.2.

Proposition 4.1.2 (Theoremes 11-12, [23]).
Let p ∈ H+

2 , f, g, h be three nonnegative integrable functions defined in Rn such that

h(x+ y) ≥ p (f(x), g(y)) a.e. (x, y) ∈ R2n. (4.3)

Then ˆ
Rn
h(x) dx ≥ pn

(ˆ
Rn
f,

ˆ
Rn
g

)
. (4.4)

Moreover if equality holds in (4.4), then there exist m ∈ (0,+∞), b ∈ Rn, and a (−1/n)-
concave function ϕ : Rn −→ [0,+∞) such that

f(x) =
(ˆ

Rn
f

)
ϕ(x) a.e., (4.5)

mn · g(mx+ b) =
(ˆ

Rn
g

)
ϕ(x) a.e., (4.6)

(m+ 1)n · h ((m+ 1)x+ b) =
(ˆ

Rn
h

)
ϕ(x) a.e., (4.7)

(m+ 1)−n
(ˆ

Rn
h

)
·ϕ
(
x1 +mx2

1 +m

)
≥ p

((ˆ
Rn
f

)
· ϕ(x1), m−n

(ˆ
Rn
g

)
· ϕ(x2)

)
(4.8)

for every x1, x2 ∈ Rn, and the coefficient m ∈ (0,+∞) satisfies

pn

(ˆ
Rn
f,

ˆ
Rn
g

)
= p

 ´
Rn f(
1

m+1

)n ,
´
Rn g(
m
m+1

)n
 . (4.9)

In particular (see (3.36)) pn
(´

Rn f,
´
Rn g

)
is actually a minimum, which is attained for

t = 1
m+1 . If this is the only value in which the minimum is attained, then the coefficient

m ∈ (0,+∞) is uniquely determined.
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For the sake of clearness, we give the proof of the latter result, regarding the equality
case. We also emphasize that the necessary condition (4.9) is not part of the original
statement of Dubuc and it seems to be new. We have deduced (4.9) as a simple
consequence of the other equality conditions in Proposition 4.1.2. This additional
condition will be very useful to characterize the equality case in the BBL inequalities,
since it allow to determine uniquely the coefficient m and consequently to obtain the
desired p-concavity of the involved functions.

Proof. We set F =
´
Rn f dx G =

´
Rn g dx, which without loss of generality we suppose

positive. Introduce the functions

f0(·) = f(·)
F

, g0(·) = g(·)
G
, h0(·) = h(·)

pn(F,G) .

We have already seen that h0, f0, g0 satisfy the assumptions of Theorem 4.1.1, concluding
that

´
Rn h0 dx ≥ 1. Assume that equality holds in (4.4), i.e.

´
Rn h0 dx = 1. Then,

applying Theorem 4.1.1 (equality case) to the functions h0, f0, g0 we can conclude that
there exist m0 ∈ (0,+∞), b0 ∈ Rn, and a convex function Φ such that f0(z), g0(z), h0(z)
coincide almost everywhere respectively with

ϕ(z), mn
0ϕ(m0z + b0), (m0 + 1)n ϕ((m0 + 1)z + b0),

where
ϕ(z) = Φ(z)−n

is a (−1/n)-concave function (in particular ϕ is continuous in {z : ϕ(z) > 0}). Thus
(4.5) holds. Setting x = m0z + b0, m = 1

m0
, b = − b0

m0
, we get (4.6) and (4.7). Finally

(4.3) is equivalent to (4.8), thanks to (4.5), (4.6) and (4.7). Indeed, setting x1 = x and
x2 = y−b

m , it holds

p

((ˆ
Rn
f

)
· ϕ(x1),m−n

(ˆ
Rn
g

)
· ϕ(x2)

)
= p

((ˆ
Rn
f

)
· ϕ(x),m−n

(ˆ
Rn
g

)
· ϕ
(
y − b
m

))
= p (f(x), g(y)) ≤ h(x+ y) = (m+ 1)−n

(ˆ
Rn
h

)
ϕ

(
x+ y − b
m+ 1

)
= (m+ 1)−n

(ˆ
Rn
h

)
· ϕ
(
x1 +mx2
m+ 1

)
,

for every x1, x2 ∈ Rn. Now set x1 = x2 = x ∈ {z : ϕ(z) > 0}. Using the 1-homogeneity
of p, we get that

ϕ(x) · p
(ˆ

Rn
f, m−n

(ˆ
Rn
g

))
≤ (m+ 1)−n

(ˆ
Rn
h

)
· ϕ(x), i.e.

p

(ˆ
Rn
f, m−n

(ˆ
Rn
g

))
≤ (m+ 1)−n · pn

(ˆ
Rn
f,

ˆ
Rn
g

)
.
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Again by homogeneity of p it means

pn

(ˆ
Rn
f,

ˆ
Rn
g

)
≥ p

 ´
Rn f(
1

m+1

)n ,
´
Rn g(
m
m+1

)n
 .

On the other hand the opposite inequality follows trivially by definition (3.36) of pn,
(since 1

m+1 belongs to (0, 1)). Therefore we obtain (4.9).

4.2 Equality conditions for Prékopa-Leindler inequality
We deal with the equality case of the Prékopa-Leindler inequality.Our aim is to discover
how equality in PL inequality is naturally connected to log-concavity.

Let us check, using Proposition 4.1.2, the following well known characterization for
the equality case in PL, mentioned in various works (Theorem 4.2 in [17], and also [2,12])
but not explicitly proved in any of them.

Proposition 4.2.1 (Theorem 4.2 in [17]).
Let λ ∈ (0, 1), f, g, h : Rn −→ [0,+∞) with positive finite integrals such that

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn.

Then ˆ
Rn
h ≥

(ˆ
Rn
f

)1−λ (ˆ
Rn
g

)λ
. (4.10)

In addition, if equality holds in (4.10) then f coincides a.e. with a log-concave function
and there exist C ∈ R, a > 0 and x0 ∈ Rn such that

g(x) = Cf(ax+ x0) for almost every x ∈ Rn.

Precisely, we prove

Proposition 4.2.2 (Equality conditions for PL inequality).
Let λ ∈ (0, 1), f, g, h : Rn −→ [0,+∞) with positive finite integrals such that

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn.

If equality holds in PL inequality i.e.
ˆ
Rn
h =

(ˆ
Rn
f

)1−λ (ˆ
Rn
g

)λ
,

then there exist b ∈ Rn, and a log-concave function ϕ such that a.e.

(1− λ)n · ϕ(x) =
f
(

x
1−λ

)
´
Rn f

=
g
(

x
1−λ + b

λ

)
´
Rn g

=
h
(

x
1−λ + b

)
´
Rn h

. (4.11)
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Proof. It suffices to apply Proposition 4.1.2 to the functions h,

f0(·) = f

( ·
1− λ

)
, g0(·) = g

( ·
λ

)
(4.12)

with
p(u, v) = u1−λvλ, pn(u, v) = (1− λ)−n(1−λ) λ−nλ p(u, v).

Hence (4.9) reads

(1− λ)−n(1−λ) λ−nλ ·
(ˆ

Rn
f0

)1−λ (ˆ
Rn
g0

)λ

= (m+ 1)n(1−λ)
(ˆ

Rn
f0

)1−λ (m+ 1
m

)nλ (ˆ
Rn
g0

)λ
,

that is, denoting with t the fraction 1/(m+ 1),

(1− λ)−n(1−λ) · λ−nλ = t−n(1−λ) · (1− t)−nλ. (4.13)

Consider the function Λ : (0, 1) −→ (0,+∞) given by Λ(z) = z−n(1−λ) · (1− z)−nλ. Then

Λ′(z) = −n(1− λ) · z−n(1−λ)−1 · (1− z)−nλ + nλ · (1− z)−nλ−1 · z−n(1−λ),

and it is easy to check that Λ(z) is increasing if z > 1− λ, decreasing if z < 1− λ. Thus
Λ(z) admits minimum and this minimum is attained only for z = 1− λ, where

Λ(1− λ) = (1− λ)−n(1−λ) · λ−nλ.

In other words (4.13) corresponds to Λ(1 − λ) = Λ(t) = minz∈(0,1) Λ(z), and it yields
t = 1− λ, namely

m = λ

1− λ. (4.14)

Then, replacing (4.14) and (4.12), equality (4.11) follows from (4.5), (4.6) and (4.7),
where ϕ is (−1/n)-concave. Now we want to prove that ϕ is in fact log-concave. Indeed
(4.8) holds:

(m+ 1)−n
(ˆ

Rn
h

)
· ϕ
(
x1 +mx2

1 +m

)
≥ p

((ˆ
Rn
f0

)
· ϕ(x1), m−n

(ˆ
Rn
g0

)
· ϕ(x2)

)
,

i.e.
(m+ 1)−n

(ˆ
Rn
f0

)1−λ
(1− λ)−n(1−λ)

(ˆ
Rn
g0

)λ
λ−nλ ϕ

(
x1 +mx2

1 +m

)

≥
(ˆ

Rn
f0

)1−λ
ϕ(x1)1−λ

(ˆ
Rn
g0

)λ
m−nλ ϕ(x2)λ.

Through (4.14) the latter is equivalent to

ϕ ((1− λ)x1 + λx2) ≥ ϕ(x1)1−λϕ(x2)λ.

Moreover ϕ is a continuous function, being (−1/n)−concave (thanks to Proposition 4.1.2).
This implies that ϕ is a log-concave function, thanks to the continuity of ϕ (ensured by
its (−1/n)-concavity).
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4.3 Equality conditions for the other BBL inequalities

4.3.1 Case p ∈ (−1/n,+∞) \ {0}
We will prove that the equality in the BBL inequality of index p is essentially linked
to the property of p-concavity. Precisely in the equality case the involved functions,
under suitable assumptions, have to be p-concave (while Proposition 4.1.2 ensures only
(−1/n)-concavity). Given p ∈ (−1/n, 0) ∪ (0,+∞), we have demonstrated in Corollary
3.4.3 that Proposition 4.1.2 implies the BBL inequality of index p, by using the function
p ∈ H+

2 defined as

p(u, v) =
{

[up + vp]1/p if uv > 0,
0 if uv = 0,

(4.15)

with the corresponding function

pn(u, v) =


[
u

p
np+1 + v

p
np+1

]np+1
p if uv > 0,

0 if uv = 0.
(4.16)

Let λ ∈ (0, 1), h, f, g nonnegative (with positive finite integrals) satisfying (3.39) for a
fixed p ∈ (−1/n,+∞) \ {0}, i.e. h, f0, g0 satisfy (3.37), where f0, g0 are given by (3.43).
Suppose that equality holds in the BBL of index p, i.e.

ˆ
Rn
h =M p

np+1

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
∈ (0,+∞);

this is equivalent to (see the proof of Proposition 3.4.3)

ˆ
Rn
h dx = pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)
=
[(ˆ

Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np+1
p

,

so we can apply Proposition 4.1.2 to the functions h, f0, g0. The equality case in
Proposition 4.1.2 states that h, f0, g0 coincide (almost everywhere and up to homotheties
(4.5),(4.6),(4.7)) with a same function ϕ, at least (−1/n)-concave. Now we want to prove
that ϕ is in fact p-concave.

Theorem 4.3.1 (Equality conditions for BBL inequality of index p ∈ (−1/n, 0)∪(0,+∞)).
Let λ ∈ (0, 1), p ∈ (−1/n, 0) ∪ (0,+∞), f, g, h : Rn −→ [0,+∞) with positive finite
integrals such that

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn.

Then equality holds in BBL inequality, i.e.
ˆ
Rn
h =M p

np+1

(ˆ
Rn
f,

ˆ
Rn
g;λ

)
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if and only if there exist b ∈ Rn, and a p-concave function ϕ such that a.e.

(1− λ)
np+1
p

(ˆ
Rn
f

)
· ϕ(x) = (1− λ)1/p · f

(
x

1− λ

)

=
(
λ

m

)1/p
· g
(
mx+ b

λ

)
= (m+ 1)−1/p · h ((m+ 1)x+ b) , (4.17)

where

m = λ

1− λ

( ´
Rn g´
Rn f

) p
np+1

. (4.18)

Proof. One implication is trivial: if f, g, h satisfy (4.17) then equality holds in the
corresponding BBL inequality. Indeed, considering the respective integrals, (4.17) yields

(1− λ)1/p ·
ˆ
Rn
f

(
x

1− λ

)
dx =

(
λ

m

)1/p
·
ˆ
Rn
g

(
mx+ b

λ

)
dx

= (m+ 1)−1/p ·
ˆ
Rn
h ((m+ 1)x+ b) dx,

i.e. (through simple changes of variables)

(1− λ)
np+1
p

(ˆ
Rn
f

)
=
(
λ

m

)np+1
p
(ˆ

Rn
g

)
=
( 1
m+ 1

)np+1
p
(ˆ

Rn
h

)
.

In particular
ˆ
Rn
f =

(
λ

m(1− λ)

)np+1
p
ˆ
Rn
g,

ˆ
Rn
h = λ

np+1
p

(
m+ 1
m

)np+1
p
(ˆ

Rn
g

)
, and

M p
np+1

(ˆ
Rn
f,

ˆ
Rn
g, ;λ

)
=M p

np+1

( λ

m(1− λ)

)np+1
p
ˆ
Rn
g,

ˆ
Rn
g; λ



=
[
(1− λ) λ

m(1− λ)

(ˆ
Rn
g

) p
np+1

+ λ

(ˆ
Rn
g

) p
np+1

]np+1
p

= λ
np+1
p

(
m+ 1
m

)np+1
p
(ˆ

Rn
g

)
=
ˆ
Rn
h.

The other implication is based on the application of Proposition 4.1.2 to the functions
h, f0, g0 mentioned above and given by (3.43), with p and pn defined as (4.15) and (4.16).
First we have to prove the necessary condition (4.18). In this case (4.9) reads:

[(ˆ
Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np+1
p

=

(´Rn f0
)p(

1
m+1

)np +
(´

Rn g0
)p(

m
m+1

)np
1/p

.
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The latter is equivalent to[(ˆ
Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np+1

= Λ
( 1
m+ 1

)
, (4.19)

where Λ : (0, 1) −→ (0,+∞) is the function

Λ(z) = z−np
(ˆ

Rn
f0

)p
+ (1− z)−np

(ˆ
Rn
g0

)p
.

First suppose p ∈ (0,+∞). We show that in this case Λ attains its minimum value
only for

z =
(´

Rn f0
) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

and the minimum coincides with
[(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

]np+1
. Therefore (4.19) can

be expressed as follows

Λ

 (´
Rn f0

) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

 = min
z∈(0,1)

Λ(z) = Λ
( 1
m+ 1

)
, thus

1
m+ 1 =

(´
Rn f0

) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

, (4.20)

and consequently (see (3.44))

m =
(´

Rn g0´
Rn f0

) p
np+1

= λ

1− λ

( ´
Rn g´
Rn f

) p
np+1

.

For the sake of completeness here we write briefly the computations to derive the behaviour
of Λ, and its minimum value in particular. Its derivative is

Λ′(z) = −np · z−np−1
(ˆ

Rn
f0

)p
+ np · (1− z)−np−1

(ˆ
Rn
g0

)p
.

Then Λ is clearly increasing (dividing by np > 0) if

(1− z)−np−1
(ˆ

Rn
g0

)p
> z−np−1

(ˆ
Rn
f0

)p
, (4.21)

i.e. (1− z
z

)np+1
<

(´
Rn g0´
Rn f0

)p
, namely

1
z
< 1 +

(´
Rn g0´
Rn f0

) p
np+1

=
(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1(´

Rn f0
) p
np+1

.
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Then Λ attains its minimum only for

z =
(´

Rn f0
) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

.

Replacing this value we check that the minimum attained by Λ coincides with[(´
Rn f0

) p
np+1 +

(´
Rn g0

) p
np+1

]np
(´

Rn f0
) np2
np+1−p

+

[(´
Rn f0

) p
np+1 +

(´
Rn g0

) p
np+1

]np
(´

Rn g0
) np2
np+1−p

=
[(ˆ

Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np
·
[(ˆ

Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]

=
[(ˆ

Rn
f0

) p
np+1

+
(ˆ

Rn
g0

) p
np+1

]np+1

.

In the case p ∈ (−1/n, 0) the same considerations hold, replacing "minimum" by
"maximum" and "increasing" by "decreasing", since p < 0 implies (dividing by np < 0)
that (4.21) holds if and only if Λ is decreasing. Therefore we get (4.18) again.

Moreover replacing (4.18) and (3.43), (4.17) follows from (4.5), (4.6) and (4.7). The
p-concavity of ϕ is a consequence of (4.8) and (4.18). Indeed, for every x1, x2 ∈ Rn such
that ϕ(x1) > 0 and ϕ(x2) > 0, (4.8) takes the form

ϕ

(
x1 +mx2

1 +m

)
≥
[(´

Rn f0
)p
ϕ(x1)p +m−np

(´
Rn g0

)p
ϕ(x2)p

]1/p
(m+ 1)−n ·

(´
Rn h

)

=

[(
1

m+1

)−np (´
Rn f0

)p
ϕ(x1)p +

(
m
m+1

)−np (´
Rn g0

)p
ϕ(x2)p

]1/p

[(´
Rn f0

) p
np+1 +

(´
Rn g0

) p
np+1

]np+1
p

i.e.,

being t = 1/(m+ 1), it holds

ϕ (tx1 + (1− t)x2) ≥
[
t−np

(´
Rn f0

)p
ϕ(x1)p + (1− t)−np

(´
Rn g0

)p
ϕ(x2)p

]1/p[(´
Rn f0

) p
np+1 +

(´
Rn g0

) p
np+1

]np+1
p

.

Replacing (4.20) we conclude that

ϕ (tx1 + (1− t)x2) ≥

[(´
Rn f0

)p− np2
np+1 ϕ(x1)p +

(´
Rn g0

)p− np2
np+1 ϕ(x2)p

]1/p

[(´
Rn f0

) p
np+1 +

(´
Rn g0

) p
np+1

]1/p

=

 (´
Rn f0

) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

· ϕ(x1)p +
(´

Rn g0
) p
np+1(´

Rn f0
) p
np+1 +

(´
Rn g0

) p
np+1

· ϕ(x2)p
1/p
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= [tϕ(x1)p + (1− t)ϕ(x2)p]1/p .

Summarizing, ϕ satisfies

ϕ (tx1 + (1− t)x2) ≥Mp (ϕ(x1), ϕ(x2); 1− t) for every x1, x2 ∈ Rn.

Moreover ϕ is a continuous function, being (−1/n)−concave (thanks to Proposition
4.1.2). Therefore ϕ is a p-concave function and we have proved Theorem 4.3.1.

4.3.2 Case p = +∞
Let us analyse the equality case in the BBL inequality for the extremal index p = +∞.
We proceed in the same way as in the case p ∈ (−1/n,+∞) \ {0}, obtaining the +∞-
concavity of the involved functions. We argue by applying again Proposition 4.1.2, this
time for the functions p ∈ H+

2 and pn given by

p(u, v) =M+∞(u, v;λ), pn(u, v) =


[
u1/n + v1/n

]n
if uv > 0,

0 if uv = 0.

Let λ ∈ (0, 1), h, f, g nonnegative (with positive finite integrals) satisfying (3.35) for
p = +∞, i.e. h, f0, g0 satisfy (3.37), where f0, g0 are given by (3.41). Suppose that
equality holds in the BBL of index p = +∞, i.e.

ˆ
Rn
h =M1/n

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
;

this is equivalent to (see the proof of Proposition 3.4.3)
ˆ
Rn
h = pn

(ˆ
Rn
f0,

ˆ
Rn
g0

)
=
[(ˆ

Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n
,

so we can apply Proposition 4.1.2 to the functions h, f0, g0. Let m ∈ (0,+∞) be the
coefficient given by Proposition 4.1.2: the condition (4.9) states:[(ˆ

Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n

= max
{

(m+ 1)n
(ˆ

Rn
f0

)
,

(
m+ 1
m

)n (ˆ
Rn
g0

)}
.

Setting t = 1/(m+ 1) it trivially becomes[(ˆ
Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n

= max
{
t−n

(ˆ
Rn
f0

)
, (1− t)−n

(ˆ
Rn
g0

)}
.

We show, arguing by contradiction, that the latter identity imply

t =
(´

Rn f0
)1/n(´

Rn f0
)1/n +

(´
Rn g0

)1/n , (4.22)
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whence, thanks to (3.42),

m = 1− t
t

=
(´

Rn g0´
Rn f0

)1/n

= λ

1− λ

( ´
Rn g´
Rn f

)1/n

. (4.23)

Indeed if

t >

(´
Rn f0

)1/n(´
Rn f0

)1/n +
(´

Rn g0
)1/n , we have 1− t <

(´
Rn g0

)1/n(´
Rn f0

)1/n +
(´

Rn g0
)1/n ,

hence

(1− t)−n
(ˆ

Rn
g0

)
>

[(´
Rn f0

)1/n +
(´

Rn g0
)1/n]n

´
Rn g0

·
(ˆ

Rn
g0

)
.

Thus

max
{
t−n

(ˆ
Rn
f0

)
, (1− t)−n

(ˆ
Rn
g0

)}
>

[(ˆ
Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n
,

which contradicts the previous identity. Likewise

t <

(´
Rn f0

)1/n(´
Rn f0

)1/n +
(´

Rn g0
)1/n yields t−n

(ˆ
Rn
f0

)
>

[(ˆ
Rn
f0

)1/n
+
(ˆ

Rn
g0

)1/n
]n
,

leading to the same contradiction.
For every x1, x2 ∈ Rn such that ϕ(x1) > 0 and ϕ(x2) > 0, condition (4.8) means

ϕ

(
x1 +mx2

1 +m

)
≥

max
{(´

Rn f0
)
ϕ(x1),m−n

(´
Rn g0

)
ϕ(x2)

}
(m+ 1)−n ·

(´
Rn h

)

=
max

{(
1

m+1

)−n (´
Rn f0

)
ϕ(x1),

(
m
m+1

)−n (´
Rn g0

)
ϕ(x2)

}
[(´

Rn f0
)1/n +

(´
Rn g0

)1/n]n i.e.

ϕ (tx1 + (1− t)x2) ≥
max

{
t−n

(´
Rn f0

)
ϕ(x1), (1− t)−n

(´
Rn g0

)
ϕ(x2)

}
[(´

Rn f0
)1/n +

(´
Rn g0

)1/n]n ,

where t = 1
m+1 . Using (4.22) we deduce

ϕ (tx1 + (1− t)x2) ≥ max {ϕ(x1), ϕ(x2)} .

Moreover ϕ is a continuous function, being (−1/n)−concave (thanks to Proposition
4.1.2). Therefore ϕ is (+∞)-concave, i.e. it is a positive constant in its support, which
is a convex compact set of positive measure. Finally (4.5), (4.6) and (4.7) state that
h, f0, g0 coincide (almost everywhere) up to homotheties, where m is given by (4.23).
Recalling (3.41) we have proved the following claim.
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Proposition 4.3.2 (Equality conditions for BBL inequality of index p = +∞).
Let λ ∈ (0, 1), f, g, h : Rn −→ [0,+∞) with positive finite integrals such that

h((1− λ)x+ λy) ≥ max {f(x), g(y)} for all x, y ∈ Rn.

Then equality holds in BBL inequality, i.e.
ˆ
Rn
h =M1/n

(ˆ
Rn
f,

ˆ
Rn
g ;λ

)
,

if and only if there exist b ∈ Rn, and a (+∞)-concave function ϕ such that a.e.

(1− λ)n
(ˆ

Rn
f

)
ϕ(x) = f

(
x

1− λ

)
= g

(
mx+ b

λ

)
= h ((m+ 1)x+ b)

where

m = λ

1− λ

( ´
Rn g´
Rn f

)1/n

.

In particular ϕ is constant in its convex compact support of positive measure, namely
there exists a convex body K such that almost everywhere

ϕ(x) = χK(x)
|K|

.

Consequently also f, g, h are constant functions in their respective supports, which preserve
the same properties of K.

4.3.3 Case p = −1/n
At last we deal with the equality case for the BBL inequality of index −1/n. This case
is the simplest one with regard to the development of the conditions (4.9) and (4.8) of
Proposition 4.1.2. We proceed in the same way of the previous cases, that is with the
application of Proposition 4.1.2, this time for the function p ∈ H+

2 given by

p(u, v) =
[
u−1/n + v−1/n

]−n
,

with the corresponding pn(u, v) = min {u, v}, as we have seen in the proof of Corollary
3.4.3, case (iv).

In the previous case of BBL inequalities, the equality in BBL, by means of (4.9),
determines uniquely the coefficient m provided in Proposition 4.1.2. It depends on the
fixed constants λ, n, p,

´
Rn f,

´
Rn g: see (4.14), (4.18), (4.23), respectively for p = 0, p ∈

(+∞,−1/n) \ {0} , p = +∞. Thanks to these formulas of m we were able to deduce the
p-concavity of the involved functions.

Instead in the case p = −1/n the corresponding condition (4.9) will not provide
informations about m. Remarkably in this case the equality in BBL forces f and g to
have the same integral. In other words one can easily prove that (4.9) in this case is
equivalent to

´
Rn f =

´
Rn g. Precisely it holds
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Proposition 4.3.3 (Equality conditions for BBL of index −1/n).
Let λ ∈ (0, 1), f, g, h : Rn −→ [0,+∞) with positive finite integrals such that

h((1− λ)x+ λy) ≥M−1/n (f(x), g(y);λ) for all x, y ∈ Rn. (4.24)

Then equality holds in BBL inequality, i.e.
ˆ
Rn
h = min

{ˆ
Rn
f,

ˆ
Rn
g

}
, (4.25)

if and only if ˆ
Rn
f =
ˆ
Rn
g

and simultaneously there exist a (−1/n)-concave function ϕ, m ∈ (0,+∞), b ∈ Rn such
that almost everywhere(ˆ

Rn
f

)
· ϕ(x) = (1− λ)−n · f

(
x

1− λ

)
(4.26)

=
(
m

λ

)n
· g
(
mx+ b

λ

)
= (m+ 1)n · h ((m+ 1)x+ b) .

Proof. One implication is trivial: if the function f, g, h satisfy (4.26) then
´
Rn f =´

Rn g =
´
Rn h, hence (4.25) holds. The opposite implication relies on the application of

Proposition 4.1.2 to the functions h, f0, g0, where f0, g0 are defined as in (3.45). After
showing that the integrals of f and g coincide, (4.26) follows immediately from (4.5),
(4.6) and (4.7). Condition (4.9), setting t = 1/(m+ 1), states:

min
{ˆ

Rn
f,

ˆ
Rn
g

}
=
[
t

(ˆ
Rn
f

)−1/n
+ (1− t)

(ˆ
Rn
g

)−1/n
]−n

i.e. M−∞
(ˆ

Rn
f,

ˆ
Rn
g; 1− t

)
= M−1/n

(ˆ
Rn
f,

ˆ
Rn
g; 1− t

)
.

Thus
´
Rn f =

´
Rn g. Finally the (−1/n)-concavity of ϕ is ensured by Proposition 4.1.2.

Notice that the latter proposition may be seen as a generalization of Theorem 4.1.1
to the functions f and g whose integrals coincide with a value not necessarily equal to 1
(differently from Theorem 4.1.1).

About equality in BBL inequality of index −1/n, we note that the necessary condition
ˆ
Rn
f =
ˆ
Rn
g

is not entirely new in literature. Indeed very recently Balogh and Kristály in the
paper [4], concerning equality case in BBL in the generalized framework of Riemannian
manifolds, proved (we refer to Theorem 3.1, condition (iii)) that equality in BBL of index
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p = −1/n implies
´
Rn f =

´
Rn g, assuming that h, f, g : Rn −→ [0,+∞) are non-zero

compactly supported integrable functions satisfying (4.24). The generality of their result
is considerable, because it holds not only in Euclidean spaces but in the wide context
of Riemannian manifolds. On the other hand their statement requires the compactness
of the support sets of the involved functions, differently from Proposition 4.3.3. Their
approach is based on an estimate for the Borell-Brascamp-Lieb deficit

δ
(−1/n)
λ (f, g, h) =

´
Rn h

min
{´

Rn f,
´
Rn g

} − 1 ≥ 0,

which is achieved by using the theory of optimal mass transportation and a quantitative
version of Lemma 3.1.1.
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Chapter 5

Known stability results for BBL
inequalities

The aim of this chapter is to present some stability results concerning BBL inequalities,
in order to introduce our new stability results, proved in [43] and described in detail in
Chapter 7.

To our knowledge, the existing literature before [43] consists of only four works. We are
referring to [2, 3, 12], in which stability results of PL inequality for log-concave functions
are established, and to [30], where the authors prove quantitative BBL inequalities in
the class of p-concave functions for p > 0. The aim of the research presented in this
thesis has been that of finding stability results for BBL inequalities which do not require
any assumption about the power concavity of the involved functions, while instead the
closeness to power concavity is one of the objective of our stability result.

Let us introduce, in chronological order, the main statements of [2, 3, 12, 30], giving a
brief idea of their proofs.

5.1 Stability for PL inequality
The first stability results, due to Ball and Böröczky, regard the PL inequality. The
authors in [2, 3] investigated the stability of the following version of PL inequality, which
is simply Proposition 3.1.4 for λ = 1/2.

Proposition 5.1.1 (PL inequality, λ = 1/2).
Let f, g, h be nonnegative measurable functions defined in Rn such that

h

(
x+ y

2

)
≥
√
f(x)g(y) for all x, y ∈ Rn. (5.1)

Then ˆ
Rn
h ≥

√ˆ
Rn
f ·
ˆ
Rn
g. (5.2)
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In Section 4.2 we have characterized the equality case of the latter proposition if the
integrals of h, f, g are finite and positive. Indeed Proposition 4.2.1 states that equality
holds in (5.2) only if (see (4.11) for λ = 1/2) there exist b ∈ Rn, and a log-concave
function ϕ such that a.e.

2−n · ϕ(x) = f(2x)´
Rn f

= g(2x+ 2b)´
Rn g

= h(2x+ b)√´
Rn f ·

´
Rn g

. (5.3)

In other words h is a log-concave function and it is easy to check that (5.3) gives

f(t) = ah(t+ b), g(t) = a−1h(t− b), where a =

√√√√´Rn f´
Rn g

.

Ball and Böröczky proved in [2] the stability of PL inequality (5.2) for n = 1, in the
special class of log-concave functions.

Theorem 5.1.1 (Theorem 1.2 in [2]). There exists a positive absolute constant c with
the following property. If h, f, g are log-concave functions defined in R with finite positive
integrals satisfying (5.1) and such that

ˆ
R
h ≤ (1 + ε)

√ˆ
R
f ·
ˆ
R
g (5.4)

for a certain ε > 0, then there exist a > 0, b ∈ R such that
ˆ
R
|f(t)− ah(t+ b)| dt ≤ c · ω(ε) · a ·

ˆ
R
h,

ˆ
R

∣∣∣g(t)− a−1h(t− b)
∣∣∣ dt ≤ c · ω(ε) · a−1 ·

ˆ
R
h,

where
ω(ε) = ε1/3 |ln ε|4/3 . (5.5)

Remark 5.1.2. The estimate in latter theorem is probably not sharp: in fact the authors
conjecture an optimal estimate of order ε. They also admit that it is not clear if the
assumption of log-concavity is really necessary to derive a stability estimate of the PL
inequality.

Let us summarize the idea to prove Theorem 5.1.1. It can be assumed that f, g are
log-concave probability distributions with zero mean. After deducing some fine properties
of log-concave probability distributions holding in dimension 1, the authors study the one-
dimensional case by exploiting the mass transportation of the distributions. In particular
they translate the condition (5.4) into an integral estimate for the transportation map
T : Supp f −→ Supp g defined by the identity

ˆ x

−∞
f(t) dt =

ˆ T (x)

−∞
g(t) dt.
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This estimate, through other delicate estimates regarding the transportation map, allows
to control the L1 distance between f and g and hence to obtain Theorem 5.1.1.

Extending this kind of result to higher dimension is a rather delicate problem.
In [3] Ball and Böröczky extended Theorem 5.1.1 to higher dimensions for even log-
concave functions. The restriction to such a class of functions is crucial. Indeed the
underlying idea is to apply a refined version of the BM inequality proved by Figalli, Maggi
and Pratelli, to the convex and origin-symmetric (thanks to the evenness) superlevel sets
of the involved functions. This version involves the notion of relative asymmetry (2.15)
for convex bodies, which reduces to the Lebesgue measure of their symmetric difference,
since these convex bodies are origin-symmetric. This is the heuristic reason why, after
integration, such approach leads to the same kind of L1 estimate between the initial
functions as in dimension n = 1. Precisely they prove the following

Theorem 5.1.2 (Theorem 4.1 in [3]). There exists a positive constant c(n) (depending
only on the dimension n) with the following property: if h, f, g are even log-concave
functions on Rn with finite positive integrals satisfying (5.1) and

ˆ
Rn
h ≤ (1 + ε)

√ˆ
Rn
f ·
ˆ
Rn
g,

for a certain ε > 0, then there exists a > 0 such that
ˆ
Rn
|af(x)− h(x)| dx ≤ c(n) ·

√
ω(ε) ·

ˆ
Rn
h

ˆ
Rn

∣∣∣a−1g(x)− h(x)
∣∣∣ dx ≤ c(n) ·

√
ω(ε) ·

ˆ
Rn
h

where ω(ε) is defined as in (5.5).

In fact this generalization has been obtained arguing by slices, that is considering
the corresponding superlevel sets of the functions f, g, h and applying consequently a
stability version of the BM inequality. For t > 0, let

Φt = {x ∈ Rn : f(x) ≥ t} , Ψt = {x ∈ Rn : g(x) ≥ t} , Ωt = {x ∈ Rn : h(x) ≥ t} .

Let r, s > 0; then the assumption (5.1) yields the inclusion

1
2Φr + 1

2Ψs ⊆ Ω√rs,

provided that Φr,Ψs are nonempty sets. Hence the BM inequality states∣∣∣Ω√rs∣∣∣1/n ≥ 1
2 |Φr|1/n + 1

2 |Ψs|1/n .

By assumptions of Theorem 5.1.2, the superlevel sets Φt,Ψt,Ωt are origin-symmetric
convex bodies to whom we apply a variant of Proposition 2.5.2, i.e. a stability version of
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the BM inequality for convex bodies in terms of their homothetic distance A(·, ·) given
in (2.15). Since the functions are even, their superlevel sets are origin-symmetric: this
convenient structure allow to simplify considerably the estimate provided. Indeed if
J = L ∈ Kn are origin-symmetric and |J | = |L| the infimum in (2.15) is attained for
x =o (the origin of the coordinate system) and µ = 1, thus

A(J, L) = |J∆L|
|J |

.

In this way it is possible to estimate the closeness of the corresponding superlevel sets in
terms of their symmetric difference. Further estimates concerning these superlevel sets,
combined with the application of the one dimensional Theorem 5.1.1 to the functions

F (t) = |Φt| , G(t) = |Ψt| , H(t) = |Ωt| ,

lead to the proof of Theorem 5.1.2.

Bucur and Fragalà proved some refinements of the PL inequality in their work [12],
which is linked to the mentioned papers of Ball and Böröczky. These refinements consist in
the addition of an extra-term depending on a distance modulo translations d and hold on
suitable classes F of functions on n variables. By this we mean that d : F×F −→ [0,+∞)
is a symmetric function satisfying the triangular inequality, and such that

d(f, g) = 0 if and only if f(x) = g(x+ b) for some b ∈ Rn.

For example (see Proposition 3.2 in [12]) the function

d(f, g) = inf
b∈R

ˆ
R
|f(x)− g(x+ b)| dx (5.6)

is a distance modulo translation on

A =
{
f ∈ L1 (R; [0,+∞)) :

ˆ
R
f = 1, f is log-concave

}
. (5.7)

Among the improved versions of the PL inequality, we mention the quantitative version
obtained for log-concave functions using the one-dimensional result by Ball and Böröczky,
i.e. Theorem 5.1.1. By following Theorem 5.1.1 and the proof of the n-dimensional PL
inequality by induction on n (cf. [29], Theorem 4.2), in [12] Bucur and Fragalà improved
the PL inequality for f, g belonging to suitable classes of L1 (Rn; [0,+∞)). One of the
main result in in [12] can be written in the following way.

Proposition 5.1.3 (Theorem 3.1 and Proposition 3.2, [12]).
Let 0 < λ < 1, f, g, h be nonnegative functions defined in Rn such that

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn.
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If f, g belong to the subclass An of L1 (Rn; [0,+∞)), corresponding to A (5.7) (see
Corollary 2.3 in [12]), then

ˆ
Rn
h dx ≥ [1 + ψλ (dn(f, g))]

(ˆ
Rn
f dx

)1−λ (ˆ
Rn
g dx

)λ
,

where dn is the distance modulo translations on An, corresponding to d (5.6) (see Corollary
2.3 in [12]) and ψλ : [0,+∞) −→ [0,+∞) is a continuous increasing function such that
ψλ(0) = 0. Precisely ψλ(t) is the inverse function on [0,+∞) of the function

c(λ)t1/3 |ln t|4/3 (1 + t),

being c = c(λ) a suitable positive constant.

5.2 Stability for BBL inequalities of index p > 0
The stability of the BBL inequalities of index p > 0 has been recently investigated
by Ghilli and Salani [30]. They strengthen, in two different ways, the BBL inequality
(Theorem 3.1.1) of index p > 0 in the class of p-concave compactly supported functions.
Their main result (Theorem 4.1) is a stability result for BBL inequality of index p > 0
and some consequent quantitative version of Theorem 3.1.1, provided that f, g are p-
concave compactly supported functions. With "quantitative" it means that (3.2) can be
strengthened in terms of some distance between the functions f, g: precisely in term of
some distance between their support sets

Ω0 = Supp(f), Ω1 = Supp(g).

Here the used distance are: H0 (Ω0,Ω1), given in (2.14), and A (Ω0,Ω1), introduced in
(2.15).

The crucial idea relies on an estimate of the measures of Ω0 and Ω1, provided in the
following Theorem 4.1 (which can be considered the main result in [30]).

Theorem 5.2.1 (Theorem 4.1 in [30]).
Let 0 < λ < 1, p > 0, 0 ≤ f, g, h ∈ L1(Rn) such that

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn.

Assume furthermore that f, g are p-concave functions with convex compact supports Ω0

and Ω1 respectively, and let Ωλ = (1− λ)Ω0 + λΩ1. If for some 0 < ε < (2n)−
p+1
p it holds

ˆ
Ωλ
h(x) dx ≤M p

np+1

(ˆ
Ω0

f(x) dx,
ˆ

Ω1

g(x) dx ;λ
)

+ ε, (5.8)

then
|Ωλ| ≤ M1/n (|Ω0|, |Ω1|;λ)

[
1 + η

p
p+1
]

(5.9)
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where

η ≤ 2

n+M p
np+1

(ˆ
Ω0

f(x) dx,
ˆ

Ω1

g(x) dx ;λ
)−1

 .
This statement is meaningful: if we are close to equality in the BBL inequality, i.e.

condition (5.8) holds, then the measure of the Minkowski combination Ωλ is close to
M1/n (|Ω0,Ω1;λ|). In other words the closeness (5.8) to equality in the BBL inequality
(regarding the functions f, g) yields the closeness (5.9) to equality in the BM inequality
(regarding the corresponding support sets Ω0,Ω1). Then the leading idea is to apply
existing quantitative results for the classical BM inequality: precisely Propositions 2.5.1
and 2.5.2, described in Section 2.5 and actually written in terms of the two mentioned
distances H0 (Ω0,Ω1) and A (Ω0,Ω1). This leads to the following quantitative versions
of Theorem 3.1.1.

Theorem 5.2.2 (Theorems 1.2-1.3 in [30]).
Let 0 < λ < 1, p > 0, 0 ≤ f, g, h ∈ L1(Rn) such that

h((1− λ)x+ λy) ≥Mp(f(x), g(y);λ) for all x, y ∈ Rn.

Assume furthermore that f, g are p-concave functions with convex compact supports Ω0
and Ω1 respectively, and let Ωλ = (1− λ)Ω0 + λΩ1. Then, if H0 (Ω0,Ω1) or A (Ω0,Ω1) is
small enough, it holds respectively

ˆ
Ωλ
h(x) dx ≥M p

np+1

(ˆ
Ω0

f(x) dx,
ˆ

Ω1

g(x) dx ;λ
)

+ βH0 (Ω0,Ω1)
(n+1)(p+1)

p

or ˆ
Ωλ
h(x) dx ≥M p

np+1

(ˆ
Ω0

f(x) dx,
ˆ

Ω1

g(x) dx ;λ
)

+ δA (Ω0,Ω1)
2(p+1)
p

where β is a constant depending only on n, λ, p,
´

Ω0
f,
´

Ω1
g, and on the diameters and

the measures of Ω0 and Ω1, and δ is a constant depending only on n, λ, p,
´

Ω0
f,
´

Ω1
g,

and on the measures of Ω0 and Ω1.
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Chapter 6

Stability for a strengthened
one-dimensional BBL inequality

6.1 Introduction
We study stability issues for some one-dimensional integral inequalities, in particular for
the extremal case p = −1 of the BBL inequalities. In this case, when near equality is
realized, we prove that the involved functions must be L1-close to be quasiconcave.

As motivated in Chapter 3 the Borell-Brascamp-Lieb inequalities (stated in Theorem
3.1.1) play a crucial role among all the integral inequalities, since they can be recognized
as the functional versions of the Brunn-Minkowski inequality.
The equality conditions for (3.2) have been determined in Chapter 4 using Theorem 4.1.1
due to Dubuc [23].

In this chapter we deal only with the one-dimensional case, i.e. n = 1. Thus let
us restate the BBL inequality for the extremal index p = −1, including its equality
condition, provided in Proposition 4.3.3 with n = 1. The equality conditions in this case
are particularly simple.

Proposition 6.1.1 (BBL inequality with n = 1 and p = −1). Let 0 < λ < 1, let
f, g, h : R −→ [0,∞) be integrable functions with nonempty compact supports such that

h((1− λ)x+ λy) ≥M−1(f(x), g(y);λ) for every x, y ∈ R.

Then ˆ
R
h dx ≥ min

{ˆ
R
f dx,

ˆ
R
g dx

}
. (6.1)

Moreover equality holds in (6.1) if and only if
ˆ
R
f dx =

ˆ
R
g dx
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and there exist m ∈ (0,+∞), b ∈ R, and a (−1)-concave function ϕ such that a.e. x ∈ R

ϕ(x) = 1
1− λ · f

(
x

1− λ

)
= m

λ
· g
(
mx+ b

λ

)
= (m+ 1) · h ((m+ 1)x+ b) .

In [23] Dubuc proved also a strengthened one-dimensional version of Theorem 3.1.1
under the additional assumption that the involved functions have the same L∞ norm.

Proposition 6.1.2 (Theoreme 9 in [23]).
Let ϕ,ψ, θ : R −→ [0,+∞) belong to L1(R) and satisfy

θ(x+ y) ≥ min {ϕ(x), ψ(y)} a.e. (x, y) ∈ R2. (6.2)

Moreover suppose that ϕ and ψ have the same L∞-norm. Then
ˆ
R
θ(x) dx ≥

ˆ
R
ϕ(x) dx+

ˆ
R
ψ(x) dx. (6.3)

Notice that the smallest function satisfying assumption (6.2) is the so-called quasisup-
convolution of ϕ and ψ, namely the function denoted by θ−∞ and given by

θ−∞(z) = sup {min {ϕ(x), ψ(y)} : x+ y = z} , z ∈ Rn

(from a geometric point of view, θ−∞ is the function whose superlevel sets are the
Minkowski addition of the corresponding superlevel sets of ϕ and ψ). Then (6.2) and
(6.3) can be condensed in

ˆ
R
θ−∞(x) dx ≥

ˆ
R
ϕ(x) dx+

ˆ
R
ψ(x) dx. (6.4)

As we said, Dubuc investigates the rigidity of BBL inequalities, and he gives ex-
plicit necessary and sufficient conditions for equality to hold in (6.4). Later on we will
state precisely these conditions (see Proposition 6.1.3). For the moment, let us just
say that equality in (6.4) holds only if the functions ϕ,ψ are essentially quasiconcave,
i.e. if they coincide almost everywhere with two functions whose superlevel sets are convex.

When dealing with a rigid inequality, a natural question arises about the stability
of the equality case; here the question at hand is the following: if we are close to equal-
ity in (6.4), must the functions ϕ and ψ be close (in some suitable sense) to quasiconcavity?

Regarding the BBL inequalities, the investigation of stability issues in the case p = 0
was started by Ball and Böröczky in [2, 3] and related results are in [12]. The case
p > 0 has been faced in [30]. The results of [30], as well as the quoted results for p = 0,
hold only in the restricted class of p-concave functions. New stability results for BBL
inequalities in Rn, without concavity assumptions, have been recently obtained in [43],
again for a positive index p > 0.
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To our knowledge, no stability result has been yet proved in the case p < 0.

Here, as we said, we want to prove a stability result for Proposition 6.1.2, showing
that near equality in (6.3) is possible only if the involved functions ϕ,ψ are nearly
quasiconcave, with respect to L1 distance. Precisely, the main result of this chapter is
the following.

Theorem 6.1.1. Let ϕ,ψ, θ as in Proposition 6.1.2 and let

S = ‖ϕ‖∞ = ‖ψ‖∞ .

Assume that there exist R > 0, ε > 0 such that Supp(ϕ) ∪ Supp(ψ) ⊆ [−R,R] and
ˆ
R
θ(x) dx ≤

ˆ
R
ϕ(x) dx+

ˆ
R
ψ(x) dx+ ε. (6.5)

Then there exist two quasiconcave functions ϕ̃ε, ψ̃ε : R −→ [0, S] such that

min
{ˆ

R
(ϕ̃ε(x)− ϕ(x)) dx,

ˆ
R

(
ψ̃ε(x)− ψ(x)

)
dx

}
≤ 2 (R+ S)

√
ε . (6.6)

Moreover

lim
ε→0

max
{ˆ

R
(ϕ̃ε(x)− ϕ(x)) dx,

ˆ
R

(
ψ̃ε(x)− ψ(x)

)
dx

}
= 0 . (6.7)

The proof of the above theorem is based on the Cavalieri formula (1.1) and on the
stability result for the BM inequality given in Proposition 2.6.1, properly applied to
the superlevel sets of the involved functions. As a corollary we will get an asymptotic
stability for the one-dimensional BBL inequality of index p = −1 (see Corollary 6.3.1 in
Section 6.3).

The chapter is organized as follows: in Section 6.2 we prove Theorem 6.1.1, while Sec-
tions 6.3 and 6.4 contain some consequences of Theorem 6.1.1, in particular a quantitative
stability result for a special class of functions.

We recall some notation from [23]. Let x ∈ Rn and A a measurable subset of Rn: the
lower density of A at the point x, denoted with d∗(x,A), is the infimum of the collection
of numbers

lim inf
k→+∞

|A ∩ Pk|
|Pk|

where {Pk}k∈N is a sequence of n-dimensional rectangles (i.e. products of n-intervals of
positive length) containing x such that diam(Pk) converges to 0 for k → +∞. The lower
density set of A is given by

A∗ = {x ∈ Rn : d∗(x,A) = 1} . (6.8)

By construction the set A∗ is measurable with

|A∗| = |A| . (6.9)
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Given a measurable function ϕ : Rn −→ [−∞,+∞], the previous definition allows us to
define a measurable function ϕ∗ : Rn −→ [−∞,+∞], defined as

ϕ∗(x) = sup {t ∈ R : (x, t) ∈ (End(ϕ))∗} , (6.10)

where End(ϕ) = {(x, t) ∈ Rn × R : t ≤ ϕ(x)}. Property (6.9) implies ϕ = ϕ∗ a.e..

Now we can precisely state the necessary and sufficient equality conditions for (6.3).
Therefore we reformulate Proposition 6.1.2, giving the exact statement of Theoreme 9
in [23].

Proposition 6.1.3 (Theoreme 9 in [23]). Let ϕ,ψ, θ : R −→ [0,+∞) belonging to L1(R)
such that

θ(x+ y) ≥ min {ϕ(x), ψ(y)} a.e. (x, y) ∈ R2. (6.11)

Moreover suppose that
‖ϕ‖∞ = ‖ψ‖∞ .

Then ˆ
R
θ(x) dx ≥

ˆ
R
ϕ(x) dx+

ˆ
R
ψ(x) dx. (6.12)

In addition equality holds in (6.12) if and only if the functions ϕ∗, ψ∗ and θ∗ (defined as
in (6.10)) are quasiconcave and θ∗ is the quasisupconvolution of ϕ∗, ψ∗, i.e

θ∗(z) = sup {min {ϕ∗(x), ψ∗(y)} : x+ y = z} .

For the sake of completeness, let’s see a sketch of the proof of Dubuc. The idea of
his proof, namely the use of the Cavalieri formula and the consequent application of the
one-dimensional BM inequality for the superlevel sets of the involved functions, is the
first ingredient of the proof of Theorem 6.1.1. The second one will be a careful use of
Proposition 2.6.1.

A sketch of the proof of Proposition 6.1.3. We use similar notations as Dubuc. Let S be
the common value of the L∞-norms of ϕ and ψ, i.e.

S = ‖ϕ‖∞ = ‖ψ‖∞ .

For every t ∈ [0, S], we set

A(t) = {x : ϕ(x) ≥ t} , B(t) = {x : ψ(x) ≥ t} , C(t) = {x : θ(x) ≥ t}

and denote respectively with F (t), G(t), H(t) the Lebesgue measure of the superlevel sets
A(t), B(t), C(t). As explained in Dubuc’s proof, the assumption (6.11) implies

A(t)∗ +B(t)∗ ⊆ C(t)∗ ∀ t ∈ [0, S] (6.13)

where A(t)∗, B(t)∗, C(t)∗ are the lower density sets (see (6.8)) of A(t), B(t), C(t) (in
particular they are measurable and have respectively the same measure of A(t), B(t), C(t)).
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The assumption ‖ϕ‖∞ = ‖ψ‖∞ ensures that the superlevel sets A(t), B(t) are nonempty
at least for t < S, so their Minkowski sum in (6.13) is well-defined and nonempty.

Then, using (6.13) and applying the Brunn-Minkowski inequality (2.2) (n = 1), we
get

F (t) +G(t) = |A(t)∗|+ |B(t)∗| ≤ |A(t)∗ +B(t)∗| ≤ H(t) ∀ t ∈ [0, S]. (6.14)

Since Cavalieri formula (1.1) implies
ˆ
R
ϕ(x)dx =

ˆ S

0
F (t)dt,

ˆ
R
ψ(x)dx =

ˆ S

0
G(t)dt,

ˆ
R
θ(x)dx ≥

ˆ S

0
H(t)dt, (6.15)

we deduce the thesis (6.12), thanks to (6.14).
Now suppose that equality holds in (6.12), i.e.

ˆ
R
θ(z) dz =

ˆ
R
ϕ(x) dx+

ˆ
R
ψ(y) dy.

This means (thanks to (6.14) and (6.15)) that

F (t) +G(t) = H(t) ∀ t ∈ [0, S].

Lusternik [38] showed that this condition necessarily implies that A(t)∗, B(t)∗ are intervals
and

A(t)∗ +B(t)∗ = C(t)∗.

Therefore ϕ∗, ψ∗ are quasiconcave and θ∗ is their quasisupconvolution. Vice versa, if
ϕ∗, ψ∗ are quasiconcave and θ∗ is their quasisupconvolution, then equality in (6.12) holds
trivially.

6.2 The proof of Theorem 6.1.1
Let us use the same notation as in the proof of Proposition 6.1.3. The assumption (6.5)
can be rewritten as follows:ˆ S

0
H(t) dt ≤

ˆ S

0
F (t) dt+

ˆ S

0
G(t) dt+ ε,

or equivalently ˆ S

0
[H(t)− F (t)−G(t)] dt ≤ ε. (6.16)

For every t ∈ [0, S], we define the nonnegative (thanks to (6.14)) measurable function

E(t) = H(t)− F (t)−G(t).

Furthermore, we fix δ > 0 and set Eδ = {t ∈ [0, S] : E(t) ≥ δ}. Thus, thanks to (6.16)

ε ≥
ˆ S

0
E(t) dt ≥

ˆ
Eδ

E(t) dt ≥ δ |Eδ| ,
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whence
|Eδ| ≤

ε

δ
. (6.17)

If ε is small enough (ε < Sδ), obviously it holds |Eδ| < S, i.e. Eδ is a proper subset of
[0, S] (i.e. [0, S] \ Eδ = ECδ is non empty).
If t ∈ ECδ then H(t) < F (t) +G(t) + δ, which means

|A(t)∗ +B(t)∗| < |A(t)∗|+ |B(t)∗|+ δ. (6.18)

Then we set
s(δ) = sup {t ∈ [0, S] : δ ≤ min {|A(t)∗| , |B(t)∗|}} ,

and
t(δ) = S − s(δ), (6.19)

and observe that
lim
δ→0

t(δ) = 0 .

If t ∈ ECδ ∩ [0, s(δ)), then (6.18) holds with δ ≤ min {|A(t)∗| , |B(t)∗|}, so we can apply
Proposition 2.6.1 getting

|conv (A(t)∗) \A(t)∗| ≤ δ, |conv (B(t)∗) \B(t)∗| ≤ δ. (6.20)

Now we are ready to define the nonnegative function ϕ̃ : R −→ [0, S] (we omit the
subindex ε for simplicity) by means of its superlevel sets {x : ϕ̃(x) ≥ t} (for t ≥ 0), that
we denote with Ã(t). We set

{x : ϕ̃(x) ≥ t} = Ã(t) := conv (A(t)∗) 0 ≤ t ≤ S.

Having defined all its superlevel sets Ã(t), the function ϕ̃ is uniquely determined.
Clearly ϕ̃ is quasiconcave, since Ã(t) is convex for every t. Moreover ϕ̃ ≥ ϕ and
ˆ
R

(ϕ̃(x)− ϕ∗(x)) dx =
ˆ

[A(s(δ))∗]C
(ϕ̃(x)− ϕ∗(x)) dx+

ˆ
A(s(δ))∗

(ϕ̃(x)− ϕ∗(x)) dx.

By Cavalieri formula we have
ˆ

[A(s(δ))∗]C
ϕ̃(x) dx =

ˆ s(δ)

0

∣∣∣Ã(t) ∩ [A(s(δ))∗]C
∣∣∣ dt,

ˆ
[A(s(δ))∗]C

ϕ∗(x) dx =
ˆ s(δ)

0

∣∣∣A(t)∗ ∩ [A(s(δ))∗]C
∣∣∣ dt,

so ˆ
[A(s(δ))∗]C

(ϕ̃(x)− ϕ∗(x)) dx

=
ˆ s(δ)

0

∣∣∣Ã(t) ∩ [A(s(δ))∗]C
∣∣∣− ∣∣∣A(t)∗ ∩ [A(s(δ))∗]C

∣∣∣ dt
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ˆ s(δ)

0

∣∣∣(Ã(t) \A(t)∗
)
∩ [A(s(δ))∗]C

∣∣∣ ≤ ˆ s(δ)

0

∣∣∣Ã(t) \A(t)∗
∣∣∣ dt

ˆ
Eδ∩[0,s(δ))

∣∣∣Ã(t) \A(t)∗
∣∣∣ dt+

ˆ
EC
δ
∩[0,s(δ))

∣∣∣Ã(t) \A(t)∗
∣∣∣ dt.

In the first integral, we can use the information (6.17) on the measure of Eδ, and the
obvious inclusions(

Ã(t) \A(t)∗
)
⊆ Ã(t) ⊆ Ã(0) ⊆ Supp(ϕ̃) ⊆ [−R,R],

obtaining
ˆ
Eδ∩[0,s(δ))

∣∣∣Ã(t) \A(t)∗
∣∣∣ dt ≤ ˆ

Eδ

2R dt ≤ 2R |Eδ| ≤ 2Rε
δ
.

For the second integral, thanks to (6.20), we deduce that
ˆ
EC
δ
∩[0,s(δ))

∣∣∣Ã(t) \A(t)∗
∣∣∣ dt =

ˆ
EC
δ
∩[0,s(δ))

|conv (A(t)∗) \A(t)∗| dt

≤
ˆ
EC
δ
∩[0,s(δ))

δ dt ≤ δ
∣∣∣ECδ ∣∣∣ ≤ δS.

Then it holds ˆ
[A(s(δ))∗]C

(ϕ̃(x)− ϕ∗(x)) dx ≤ 2Rε
δ

+ δS. (6.21)

On the other hand we haveˆ
A(s(δ))∗

(ϕ̃(x)− ϕ∗(x)) dx ≤ |A(s(δ))∗| · t(δ). (6.22)

Indeed it holds ˆ
A(s(δ))∗

(ϕ̃(x)− ϕ∗(x)) dx =
ˆ
A(s(δ))∗

(ϕ̃(x)− s(δ)) dx

≤
ˆ
A(s(δ))∗

(S − s(δ)) dx = |A(s(δ))∗| · t(δ).

Finally (6.21) and (6.22) imply
ˆ
R

(ϕ̃(x)− ϕ∗(x)) dx =
ˆ

[A(s(δ))∗]C
(ϕ̃(x)− ϕ∗(x)) dx+

ˆ
A(s(δ))∗

(ϕ̃(x)− ϕ∗(x)) dx

≤ 2Rε
δ

+ δS + |A(s(δ))∗| · t(δ).

Choosing δ =
√
ε, we get

ˆ
R

(ϕ̃(x)− ϕ∗(x)) dx ≤ (2R+ S)
√
ε+

∣∣A(s(
√
ε))∗

∣∣ · t(√ε), (6.23)
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which is an infinitesimal function for ε→ 0.
Defining the quasiconcave function ψ̃ similarly, i.e.{

x : ψ̃(x) ≥ t
}

= B̃(t) := conv (B(t)∗) 0 ≤ t ≤ S.

we get the same L1 estimate: then (6.7) holds. Finally observe that, by definition (6.19)
of t(δ), at least one among A(s(δ))∗ and B(s(δ))∗ has measure less than or equal to δ.
Without loss of generality suppose

|A(s(δ))∗| ≤ δ , (6.24)

then (6.22) gives ˆ
A(s(δ))∗

(ϕ̃(x)− ϕ(x)∗) dx ≤ δS. (6.25)

Therefore we get (6.6) using (6.21) and (6.25) with the choice δ =
√
ε:

ˆ
R

(ϕ̃(x)− ϕ∗(x)) dx =
ˆ

[A(s(δ))∗]C
(ϕ̃(x)− ϕ∗(x)) dx+

ˆ
A(s(δ))∗

(ϕ̃(x)− ϕ∗(x)) dx

≤ 2R
√
ε+
√
ε · S +

√
ε · S.

6.3 Some corollaries
As you may have noticed, assumption (6.2) does not coincide (and it is not directly
comparable) with (3.1) when p = −∞.
On the other hand, fixed λ ∈ (0, 1), let ϕ,ψ, θ given by Proposition 6.1.2 and consider
the related functions f, g : R −→ [0,+∞) defined as

f(z) = ϕ ((1− λ)z) , g(z) = ψ (λz) .

Then assumption (6.2), through the change of variables

x = (1− λ)x, y = λy,

is equivalent to

θ((1− λ)x+ λy) ≥ min {f(x), g(y)} for every x, y ∈ R,

namely θ, f, g satisfy exactly (3.1) with p = −∞, and (6.3) becomes
ˆ
R
θ(x) dx ≥ (1− λ)

ˆ
R
f(x) dx+ λ

ˆ
R
g(x) dx,

that is (3.2) with p = +∞ (recall that here n = 1). Hence, Proposition 6.1.2 says:

if θ((1− λ)x+ λy) ≥M−∞(f(x), g(y)), then
ˆ
R
θ ≥M1

(ˆ
R
f,

ˆ
R
g;λ

)
, (6.26)
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provided that ‖f‖∞ = ‖g‖∞.
Thanks to the monotonicity of means, it is then clear as Proposition 6.1.2 is a

refinement of Theorem 3.1.1: a weaker assumption, a stronger conclusion! But with the
additional hypothesis ‖f‖∞ = ‖g‖∞.

Moreover, under this extra assumption, we can trivially derive a weak stability result
for the BBL inequalities. For example, for the extremal case p = −1, through the relation
M1(a, b;λ) ≥M−1(a, b;λ) ≥ min {a, b}, we explicitly get the following.

Corollary 6.3.1. Let λ ∈ (0, 1), Λ = min{λ, 1− λ}, f, g, h : R −→ [0,+∞) belonging
to L1(R) such that

h((1− λ)x+ λy) ≥M−1 (f(x), g(y);λ) a.e. (x, y) ∈ R2.

Assume
‖f‖∞ = ‖g‖∞ = S > 0

and that there exist R > 0, ε > 0 such that Supp(f) ∪ Supp(g) ⊆ [−R,R] and
ˆ
R
h(x) dx ≤ min

{ˆ
R
f(x) dx,

ˆ
R
g(x) dx

}
+ ε. (6.27)

Then ∣∣∣∣ˆ
R
f(x) dx−

ˆ
R
g(x) dx

∣∣∣∣ ≤ ε

Λ (6.28)

and there exist two quasiconcave functions f̃ε, g̃ε : R −→ [0, S] such that

min
{ˆ

R

(
f̃ε − f

)
,

ˆ
R

(g̃ε − g)
}
≤ 2 (R+ S)

Λ
√
ε.

Moreover
lim
ε→0

max
{ˆ

R

(
f̃ε − f

)
,

ˆ
R

(g̃ε − g)
}

= 0 . (6.29)

Observe that (6.28) is trivial, since by (6.26) it holds
ˆ
R
h dx ≥M1

(ˆ
R
f dx,

ˆ
R
g dx;λ

)
,

so (6.27) implies

M1

(ˆ
R
f(x) dx,

ˆ
R
g(x) dx;λ

)
−min

{ˆ
R
f(x) dx,

ˆ
R
g(x) dx

}
≤ ε,

which easily leads to (6.28).
Corollary 6.3.1 is however not satisfying especially because, in relation to the equality

conditions found by Dubuc, we expect in this case to obtain some closeness of the involved
functions to (−1)-concavity.
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6.4 A truly quantitative result
Because of (6.7) and (6.29), Theorem 6.1.1 and Corollary 6.3.1 are not truly quantitative
results, but they give only an asymptotic stability. However, in certain cases, we
can improve Theorem 6.1.1 (and consequently also Corollary 6.3.1), proving a genuine
quantitative version of Proposition 6.1.2. To do this, we need to explicitly estimate the
term t(

√
ε) in (6.23). This is possible for instance when

lim
t→S

min {|A(t)|, |B(t)|} = ` > 0 .

In this case, indeed, we have t(δ) = 0 for δ < ` (see (6.19)).
More in general, to have a truly quantitative refinement of the inequality by Dubuc,

it is sufficient that there exist L ≥ 1 such that
1
L
|B(t)| ≤ |A(t)| ≤ L|B(t)| ∀ t ∈ [0, S] . (6.30)

Indeed in this case (6.24) also implies

|B(s(δ))∗| ≤ Lδ ,

whence we have ˆ
B(s(δ))∗

(
ψ̃(x)− ψ(x)∗

)
dx ≤ δSL,

and finally, with the choice δ =
√
ε, we arrive toˆ

R

(
ψ̃(x)− ψ(x)∗

)
dx ≤ 2R

√
ε+
√
ε · S +

√
ε · SL.

We have so proved the following.

Theorem 6.4.1. In the same assumptions and notation of Theorem 6.1.1, assume
furthermore that (6.30) holds for some L ≥ 1 for t ∈ [0, S]. Then

max
{ˆ

R
(ϕ̃(x)− ϕ(x)) dx,

ˆ
R

(
ψ̃(x)− ψ(x)

)
dx

}
≤ (2R+ S + SL)

√
ε , (6.31)

where ϕ̃ and ψ̃ are respectively the quasiconcave envelopes of ϕ∗ and ψ∗.

Notice that (6.30) is satisfied if

ψ(Lx+ x0) ≤ ϕ(x) ≤ ψ
(
x

L
+ x1

)
for some x0, x1 ∈ Rn.

Moreover notice that we can obviously obtain from Theorem 6.4.1 a quantitative
version of Corollary 6.3.1.

Finally, let us say that we conjecture that the quantitative estimate (6.31) holds in
general, also without the extra assumption (6.30), and that the exponent 1/2 of ε is
optimal.
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Chapter 7

New stability results for BBL
inequalities of index p > 0

7.1 Introduction
In this final chapter we report and summarize the results obtained in [43].

In particular we investigate stability issues for the Borell-Brascamp-Lieb inequalities
of index p > 0, proving that when near equality is realized, the involved functions must
be L1-close to be p-concave and to coincide up to homotheties of their graphs, according
to Theorem 4.3.1 as regards the equality case (i.e. ε = 0 in Theorem 7.1.1).

We deal only with the case p > 0 and, to avoid triviality, throughout this final chapter
we will assume (if not otherwise explicitly declared) that f, g ∈ L1(Rn) are nonnegative
compactly supported functions (with supports Supp(f) and Supp(g)) such that

F =
ˆ
Rn
f dx > 0 and G =

ˆ
Rn
g dx > 0 .

Let us restate a version of the BBL inequality including its equality condition (provided
in Theorem 4.3.1) in the case

p = 1
s
> 0 ,

adopting a slightly different notation.
Proposition 7.1.1 (BBL inequalities, index p = 1/s > 0).
Let s > 0 and f, g be as said above. Let λ ∈ (0, 1) and h be a nonnegative function
belonging to L1(Rn) such that

h((1− λ)x+ λy) ≥
[
(1− λ)f(x)1/s + λg(y)1/s

]s
(7.1)

for every x ∈ Supp(f), y ∈ Supp(g). Thenˆ
Rn
h dx ≥M 1

n+s
(F,G;λ) . (7.2)
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Moreover equality holds in (7.2) if and only if there exists a (1/s)-concave function ϕ
such that

ϕ(x) = a1 f(b1x− x1) = a2 g(b2x− x2) = a3 h(b3x− x3) a.e. x ∈ Rn,

for some x1, x2, x3 ∈ Rn and suitable ai, bi > 0 for i = 1, 2, 3, explicitly computable
by (4.17) and (4.18) with p = 1/s > 0.

In Chapter 5 we have introduced the main stability results about BBL inequalities.
The investigation of stability issues in the case p = 0 was started by Ball and Böröczky
in [2, 3] and related results are in [12]. The general case p > 0 has been very recently
faced in [30]. But, as already noticed Chapter 5, the results of [30], as well as the quoted
results for p = 0, hold only in the restricted class of p-concave functions, hence answering
only a half of the question. Here we want to remove this restriction, proving that near
equality in (7.2) is possible if and only if the involved functions are close to coincide up
to homotheties of their graphs and they are also nearly p-concave, in a suitable sense.
But before stating our main result in detail, we need to introduce some notation: for
s > 0, we say that two functions v, v̂ : Rn → [0,+∞) are s-equivalent if there exist µv > 0
and x ∈ Rn such that

v̂(x) = µsv v

(
x− x
µv

)
a.e. x ∈ Rn. (7.3)

Now we are ready to state our main result, which regards the case s = 1/p ∈ N. Later
(see Section 7.3) we will extend the result to the case 0 < s ∈ Q in Corollary 7.3.1 and
finally (see Corollary 7.4.1) we will give a slightly weaker version, valid for every s > 0.

Theorem 7.1.1. Let f, g, h as in Proposition 7.1.1 with

0 < s ∈ N .

Assume that ˆ
Rn
h dx ≤M 1

n+s
(F,G ;λ) + ε (7.4)

for some ε > 0 small enough.
Then there exist a 1

s -concave function u : Rn −→ [0,+∞) and two functions f̂ and ĝ,
s-equivalent to f and g in the sense of (7.3) (with suitable µf and µg given in (7.20))
such that the following hold:

u ≥ f̂ , u ≥ ĝ,

ˆ
Rn

(u− f̂) dx +
ˆ
Rn

(u− ĝ) dx ≤ Cn+s

 ε

M 1
n+s

(F,G ;λ)

 , (7.5)

where Cn+s(η) is an infinitesimal function for η −→ 0 (whose explicit expression is given
later, see (7.6)).
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Notice that the function u is bounded, hence as a byproduct of the proof we obtain
that the functions f and g have to be bounded as well (see Remark 7.2.1).
The proof of the above theorem is based on the proof of the BBL inequality described in

Section 3.3.3 and due to Klartag [36], which directly connects the BBL inequality to the
Brunn-Minkowski inequality, and the consequent application of the recent stability result
for the BM inequality by Figalli and Jerison [25], stated in Proposition 2.6.3, which does
not require any convexity assumption of the involved sets. Indeed [25] is the first paper,
at our knowledge, investigating on stability issues for the Brunn-Minkowski inequality
outside the realm of convex bodies. Noticeably, Figalli and Jerison ask therein for a
functional counterpart of their result, pointing out that "at the moment some stability
estimates are known for the Prékopa-Leindler inequality only in one dimension or for
some special class of functions [2, 3], and a general stability result would be an important
direction of future investigations.". Since BBL inequality is the functional counterpart of
the Brunn-Minkowksi inequality [43] can be considered a first answer to the question by
Figalli and Jerison.

Remark 7.1.2. As already said, the proof of our main result is based on Proposition 2.6.3
and now we can give the explicit expression of the infinitesimal function Cn+s of Theorem
7.1.1:

Cn+s(η) = ησn+s(τ)

ωs τNn+s ,
, (7.6)

where ωs denotes the measure of the unit ball in Rs.
Instead of Proposition 2.6.3, we will usually apply Corollary 2.6.4, which does not

require the normalization constraint about the measures of the involved sets A and B.

The link between BM and BBL inequalities is well known and it is the topic of
Section 3.2. Briefly, every BBL inequality implies easily BM inequality applying the BBL
inequality to the characteristic functions f = χA, g = χB, h = χ(1−λ)A+λB.

The opposite implication, for the BBL inequalities of positive index, can be proved
using the proof due to Klartag [36], which is particularly useful for our goals. This proof
has been presented in Section 3.3.3. Let n, s ∈ N, and f : Rn −→ [0,+∞) a fixed function
belonging to L1 (Rn) and with nonempty support. We recall the definition and the main
properties ( (3.21), (3.22), ecc.) of the fundamental set Kf,s, associated to the function
f . Kf,s is defined as

Kf,s =
{

(x, y) ∈ Rn+s = Rn × Rs : x ∈ Supp(f), |y| ≤ f(x)1/s
}
.

Notice that Kf,s is convex if and only if f is (1/s)-concave (that is for us a function f
having compact convex support such that f1/s is concave on Supp (f)). Moreover, a very
useful property is (3.22) i.e.

|Kf,s| =
ˆ

Supp(f)
ωs ·

(
f(x)1/s

)s
dx = ωs

ˆ
Rn
f(x) dx,
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where ωs is the volume of the s-dimensional ball of radius one. In this way, the integral
of f coincides, up to the constant ωs, with the volume of Kf,s.
Remember the definition (3.20) of the function hs,λ (to simplify the notation we will
denote it with hλ), that is the smallest function satisfying (7.1). Using the property
(3.22) combined with the key identity (3.23) i.e.

Khλ = (1− λ)Kf + λKg,

in Section 3.3.3 we have proved Proposition 7.1.1 as a direct application of the BM
inequality, first for the case s ∈ N.

Then (see the second proof of Section 3.3.3) we generalized it to a positive rational
index

s = t

q

with coprime integers t, q > 0, using the auxiliary function f̃ : Rnq −→ [0,+∞) defined
in (3.25) as

f̃(x) = f̃(x1, ..., xq) =
q∏
j=1

f(xj),

where x = (x1, ..., xq) ∈ (Rn)q. By construction, (3.26) holds i.e.
ˆ
Rnq

f̃ dx =
(ˆ

Rn
f dx

)q
.

Furthermore Supp f̃ = (Supp f)× ...× (Supp f) = (Supp f)q .

Next we show another way to generalize Proposition 7.1.1 to a positive rational index
s. The idea is to apply again the Brunn-Minkowski inequality to sets that generalize
those of the type (3.21). What follows, which will useful later, is a slight variant of the
proof of Theorem 2.1 in [36], i.e. a slight variant of the second proof Section 3.3.3.
Remark 7.1.3. As just done, from now on we write Aq to indicate the Cartesian product
of q copies of a set A. Let A,B be nonempty sets, q > 0 be an integer, µ a real. Clearly

(A+B)q = Aq +Bq, (µA)q = µAq.

Recall that
s = t

q

with integers t, q > 0 that we can assume are coprime.
Given an integrable function f : Rn −→ [0,+∞) not identically zero, we define the
nonempty measurable subset of Rnq+t

Wf,s = Kf̃ ,t =
{

(x, y) ∈ (Rn)q × Rt : x ∈ Supp(f̃), |y| ≤ f̃(x)1/t
}

(7.7)
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=

(x1, ..., xq, y) ∈ (Rn)q × Rt : xj ∈ Supp(f) ∀ j = 1, ..., q, |y| ≤
q∏
j=1

f(xj)1/t

 .
We notice that this definition naturally generalizes (3.21), since in the case of an integer
s > 0 it holds s = t, q = 1, so in this case f̃ = f and Wf,s = Kf .

As for Kf,s, for simplicity we will remove systematically the subindex s and write
Wf in place of Wf,s if there is no possibility of confusion. Clearly

|Wf | =
ˆ

Supp(f̃)
ωt ·

(
f̃(x)1/t

)t
dx = ωt

ˆ
Rnq

f̃(x) dx = ωt

(ˆ
Rn
f(x) dx

)q
(7.8)

where the last equality is given by (3.26).
Moreover we see that Wf is convex if and only if f̃ is 1

t -concave (that is, if and only if f
is 1

s -concave, see Lemma 7.3.1 later on). Next we set

W = (1− λ)Wf + λWg . (7.9)

Finally, we notice that, by (3.23), we have

W = Kh̃t,λ,t
,

where h̃t,λ is the (1/t, λ)-supremal convolution of f̃ and g̃ as defined in (3.20). In
other words, W is the set made by the elements (z, y) ∈ (Rn)q × Rt such that z ∈
(1− λ) Supp(f̃) + λ Supp(g̃) and

|y| ≤ sup
{
(1− λ)f̃(x)1/t + λg̃(x′)1/t :

z = (1− λ)x+ λx′, x ∈ Supp(f̃), x′ ∈ Supp(g̃)
}
.

(7.10)

Lemma 7.1.2. With the notations introduced above, it holds

W ⊆Whλ ⊆Wh ,

where hλ is the (1/s, λ)-supremal convolution of f ,g, and h is as in Proposition 7.1.1.

Proof. The second inclusion is obvious, since h ≥ hλ by assumption (7.1). Regarding the
other inclusion, first we notice that (7.7) and Remark 7.1.3 yield

Whλ =
{

(z, y) ∈ (Rn)q × Rt : z ∈ Supp(h̃λ), |y| ≤ h̃λ(z)1/t
}

=
{

(z, y) ∈ (Rn)q × Rt : z ∈ ((1− λ) Supp(f) + λ Supp(g))q , |y| ≤ h̃λ(z)1/t
}

=
{

(z, y) ∈ (Rn)q × Rt : z ∈ (1− λ) Supp(f̃) + λ Supp(g̃), |y| ≤ h̃λ(z)1/t
}
,

where h̃λ is the function associated to hλ by (3.25). To conclude it is sufficient to compare
this with the condition given by (7.10).
For every z ∈ (1− λ) Supp(f̃) + λ Supp(g̃) consider

sup
{

(1− λ)f̃(x)1/t + λg̃(x′)1/t
}

= sup

(1− λ)
q∏
j=1

f(xj)1/t + λ
q∏
j=1

g(x′j)1/t

 ,
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where the supremum is made with respect to x ∈ Supp(f̃), x′ ∈ Supp(g̃) such that
z = (1− λ)x+ λx′. Corollary 3.3.3 then implies

sup
{

(1− λ)f̃(x)1/t + λg̃(x′)1/t
}
≤ sup


q∏
j=1

[
(1− λ)f(xj)1/s + λg(x′j)1/s

]1/q
≤

q∏
j=1

{
sup

[
(1− λ)f(xj)1/s + λg(x′j)1/s

]1/q}
=

q∏
j=1

{
hλ
(
(1− λ)xj + λx′j

)1/qs
}

= h̃λ
(
(1− λ)x+ λx′

)1/t = h̃λ(z)1/t,

having used the definition (3.25) in the penultimate equality. Therefore if

|y| ≤ sup
{

(1− λ)f̃(x)1/t + λg̃(x′)1/t
}
,

that is if (z, y) ∈W by (7.10), then

|y| ≤ h̃λ(z)1/t ,

i.e. (z, y) ∈Whλ . This concludes the proof.

We are ready to prove the BBL inequality in the version of Proposition 7.1.1, which
holds for any positive real index s (and in fact also for s = 0). This proof represent an
alternative way to prove Theorem 2.1 in [36].

Proof of Proposition 7.1.1 for s ≥ 0.
Assume first that s > 0 is rational and let s = t

q with t, q coprime positive integers.
Thanks to (7.9) we can apply Theorem 2.1.1 to Wf , Wg (that are nonempty measurable
subsets of Rnq+t), so

|W |
1

nq+t ≥ (1− λ) |Wf |
1

nq+t + λ |Wg|
1

nq+t ,

where |W | possibly means the outer measure of the set W . On the other hand Lemma
7.1.2 implies |Wh| ≥ |W |, thus

|Wh|
1

nq+t ≥ (1− λ) |Wf |
1

nq+t + λ |Wg|
1

nq+t .

Finally the latter inequality with the identity (7.8) is equivalent to

ω
1

nq+t
t

(ˆ
Rn
h dx

) q
nq+t
≥ ω

1
nq+t
t

[
(1− λ)

(ˆ
Rn
f dx

) q
nq+t

+ λ

(ˆ
Rn
g dx

) q
nq+t

]
.

Dividing by ω
1

nq+t
t we get (7.2), since

q

nq + t
= q

q(n+ s) = 1
n+ s

is exactly the required index. The case of a real s > 0 (and also s = 0) follows in the
same way of the second proof of Section 3.3.3.
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7.2 The proof of the main result (Theorem 7.1.1)
The idea is to apply the result of Figalli-Jerison, more precisely Corollary 2.6.4, to the
sets Khλ ,Kf ,Kg, and then translate the result in terms of the involved functions. We
remember that with hλ we denote the function hs,λ given by (3.20). We also recall that
we set F =

´
f and G =

´
g.

Since h ≥ hλ by assumption (7.1), we have

Kh ⊇ Khλ . (7.11)

Thanks to (3.22), assumption (7.4) is equivalent to

ω−1
s |Kh| ≤ ω−1

s

[
(1− λ) |Kf |

1
n+s + λ |Kg|

1
n+s
]n+s

+ ε ,

which, by (7.11), implies

|Khλ | ≤
[
(1− λ) |Kf |

1
n+s + λ |Kg|

1
n+s
]n+s

+ εωs. (7.12)

If ε is small enough, by virtue of (3.23) we can apply Corollary 2.6.4 to the sets
Khλ ,Kf ,Kg and from (7.12) we obtain that they satisfy assumption (2.19) with

δ = εωs
M 1

n+s
(|Kf | , |Kg| ;λ) = ε

M 1
n+s

(F,G;λ) .

Then, if δ ≤ e−Mn+s(τ), there exist a convex K ⊂ Rn+s and two homothetic copies
K̂f and K̂g of Kf and Kg such that

|K̂f | = |K̂g| = 1,
(
K̂f ∪ K̂g

)
⊆ K, (7.13)

and ∣∣∣K \ K̂f

∣∣∣+ ∣∣∣K \ K̂g

∣∣∣ ≤ τ−Nn+s

 ε

M 1
n+s

(F,G;λ)

σn+s(τ)

. (7.14)

Remark 7.2.1. Since |K̂f | = |K̂g| = 1, (7.14) implies that the convex set K has finite
positive measure. Then it is bounded (since convex), whence (7.13) yields the boundedness
of Kf and Kg which in turn implies the boundedness of the functions f and g. For
simplicity, we can assume the convex K is compact (possibly substituting it with its
closure).

In what follows, we indicate with (x, y) ∈ Rn ×Rs an element of Rn+s. When we say
(see just before (7.13)) that K̂f and K̂g are homothetic copies of Kf and Kg, we mean
that there exist z0 = (x0, y0) ∈ Rn+s and z1 = (x1, y1) ∈ Rn+s such that

K̂f = |Kf |−
1

n+s (Kf + z0) and K̂g = |Kg|−
1

n+s (Kg + z1) .
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Clearly, without loss of generality we can take z0 = 0.
To conclude the proof, we want now to show that, up to a suitable symmetrization,

we can take y1 = 0 (i.e. the translation of the homothetic copy K̂g of Kg is horizontal)
and that the convex set K given by Figalli and Jerison can be taken of the type Ku for
some 1

s -concave function u.
For this, let us introduce the following Steiner type symmetrization in Rn+s with

respect to the n-dimensional hyperspace {y = 0} (see for instance [13]). Let C be a
bounded measurable set in Rn+s, for every x ∈ Rn we set

C(x) = C ∩ {x = x} = {y ∈ Rs : (x, y) ∈ C}

and
rC(x) =

(
ω−1
s |C(x)|

)1/s
. (7.15)

Then we define the S-symmetrand of C as follows

S(C) =
{

(x, y) ∈ Rn+s : C ∩ {x = x} 6= ∅, |y| ≤ rC(x)
}
. (7.16)

We notice that S(C) is obtained as union of the s-dimensional closed balls of center (x, 0)
and radius rC(x), for x ∈ Rn such that C ∩ {x = x} is nonempty. Thus, fixed x, the
measure of the corresponding section of S(C) is

|S(C) ∩ {x = x}| = ωsrC(x)s = |C(x)| . (7.17)

We describe the main properties of S-symmetrization, for bounded measurable susb-
sets of Rn+s:
(i) if C1 ⊆ C2 then S(C1) ⊆ S(C2) (obvious by definition);
(ii) |C| = |S(C)| (consequence of (7.17) and Fubini’s Theorem) so the S-symmetrization
is measure preserving;
(iii) if C is convex then S(C) is convex (the proof is based on the BM inequality in Rs
and, for the sake of completeness, is given in Appendix 1).

Now we symmetrize K, K̂f , K̂g (and then replace them with S(K),S(K̂f ),S(K̂g)).
Clearly

S(K̂f ) = K̂f ,

S(K̂g) = S
(
|Kg|−

1
n+s (Kg + (x1, y1))

)
= |Kg|−

1
n+s (Kg + (x1, 0)) .

Moreover, (iii) implies that S(K) is convex and by (i) and (7.13) we have

(S(K̂f ) ∪ S(K̂g)) ⊆ S(K) .

The latter, (7.14) and (ii) imply

∣∣∣S(K) \ S(K̂f )
∣∣∣+ ∣∣∣S(K) \ S(K̂g)

∣∣∣ ≤ τ−Nn+s

 ε

M 1
n+s

(F,G;λ)

σn+s(τ)

. (7.18)

Finally we notice that S(K) is a compact convex set of the desired form.
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Remark 7.2.2. Consider the set Ku associated to a function u : Rn → [0,+∞) by (3.21)
and let x ∈ Rn, z = (x, 0) ∈ Rn+s, µ > 0 and

H = µ (Ku + z) .

Then
H = Kv

(the set associated to v by (3.21)) where

v(x) = µsu

(
x− x
µ

)
. (7.19)

From the previous remarks, we see that the sets S(K̂f ) and S(K̂g) are in fact
associated via (3.21) to two functions f̂ and ĝ, such that

S(K̂f ) = Kf̂ , S(K̂g) = Kĝ ,

and f̂ and ĝ are s-equivalent to f and g respectively, in the sense of (7.3), with

µf = (ωsF )
−1
n+s , µg = (ωsG)

−1
n+s . (7.20)

We notice that the support sets Ω0 and Ω1 of f̂ and ĝ are given by

Ω0 = {x ∈ Rn : (x, 0) ∈ S(K̂f )} , Ω1 = {x ∈ Rn : (x, 0) ∈ S(K̂g)}

and that they are in fact homothetic copies of the support sets of the original functions
f and g.

Now we want to find a 1
s -concave function u such that S(K) is associated to u via

(3.21). We define u : Rn −→ [0,+∞) as follows

u(x) =
{
rK(x)s if x ∈ Rn : (x, 0) ∈ S(K),
0 otherwise ,

and prove that
Ku = S(K) . (7.21)

First notice that

Supp(u) = {x ∈ Rn : (x, 0) ∈ S(K)} . (7.22)

Indeed we have {z ∈ Rn : u(z) > 0} ⊆ {x ∈ Rn : (x, 0) ∈ S(K)}, whence Supp(u) =
{z ∈ Rn : u(z) > 0} ⊆ {x ∈ Rn : (x, 0) ∈ S(K)}, since the latter is closed. Vice versa
let x such that (x, 0) ∈ S(K). If rK(x) > 0 (see (7.15)) then x ∈ Supp(u) obviously.
Otherwise suppose rK(x) = 0, then, by the convexity of S(K) and the fact that S(K) is
not contained in {y = 0}, evidently

[(U \ {x}) ∩ {z ∈ Rn : rK(z) > 0}] 6= ∅
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for every neighborhood U of x, i.e. x ∈ Supp(u).

By the definition of u and (3.21), using (7.22), we get

Ku =
{

(x, y) ∈ Rn × Rs : x ∈ Supp(u), |y| ≤ u(x)1/s
}

=
{

(x, y) ∈ Rn × Rs : (x, 0) ∈ S(K), |y| ≤ u(x)1/s
}

= {(x, y) ∈ Rn × Rs : (x, 0) ∈ S(K), |y| ≤ rK(x)} = S(K) .

Therefore we have shown (7.21) and from the convexity of K follows that u is a 1
s -concave

function. Being Ku ⊇
(
Kf̂ ∪Kĝ

)
, clearly

Supp(u) ⊇ (Ω0 ∪ Ω1) , u ≥ f̂ in Ω0, u ≥ ĝ in Ω1 .

The final estimate can be deduced from (7.18). Indeed, thanks to (3.22), we get∣∣∣Ku \Kf̂

∣∣∣ = |Ku| −
∣∣∣Kf̂

∣∣∣ = ωs

ˆ
Rn

(u− f̂) dx,

and the same equality holds for |Ku \Kĝ|. So (7.18) becomes

ˆ
Rn

(u− f̂) dx +
ˆ
Rn

(u− ĝ) dx ≤ ω−1
s τ−Nn+s

 ε

M 1
n+s

(F,G;λ)

σn+s(τ)

,

that is the desired result.

7.3 A generalization to the case s positive rational
We explain how Theorem 7.1.1 can be generalized to a positive rational index s.
Given f : Rn −→ [0,+∞) and a positive integer q, we consider the auxiliary function
f̃ : Rnq −→ [0,+∞) given by (3.25), i.e.

f̃(x) = f̃(x1, ..., xq) =
q∏
j=1

f(xj),

with x = (x1, ..., xq) ∈ (Rn)q. Clearly f is bounded if and only if f̃ is bounded. We study
further properties of functions of type (3.25).

Lemma 7.3.1. Let q ∈ N, α > 0, let ũ : Rnq −→ [0,+∞) be a function of the type (3.25).
Then ũ is α-concave if and only if the function u : Rn −→ [0,+∞) is (qα)-concave.
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Proof. Suppose first that ũα is concave. Fixed λ ∈ (0, 1), x, x′ ∈ Rn, we consider the
element of Rnq which has all the q components identical to (1−λ)x+λx′. From hypothesis
it holds

ũα
(
(1− λ)x+ λx′, ..., (1− λ)x+ λx′

)
≥ (1− λ)ũα (x, ..., x) + λũα

(
x′, ..., x′

)
,

i.e. (thanks to (3.25))

uqα
(
(1− λ)x+ λx′

)
≥ (1− λ)uqα(x) + λuqα(x′).

Thus uqα is concave. Vice versa assume that uqα is concave, and fix λ ∈ (0, 1), x =
(x1, ..., xq), x′ =

(
x′1, ..., x

′
q

)
∈ (Rn)q. We have

ũα
(
(1− λ)x+ λx′

)
=

q∏
j=1

uα
(
(1− λ)xj + λx′j

)
=

q∏
j=1

[
uqα

(
(1− λ)xj + λx′j

)]1/q

≥
q∏
j=1

[
(1− λ)uqα(xj) + λuqα(x′j)

]1/q
≥

q∏
j=1

(1− λ)1/quα(xj) +
q∏
j=1

λ1/quα(x′j)

= (1− λ)
q∏
j=1

uα(xj) + λ
q∏
j=1

uα(x′j) = (1− λ)ũα(x) + λũα(x′),

where the first inequality holds by concavity of uqα, while in the second one we have used
Corollary 3.3.3 with aj = (1− λ)1/quα(xj), bj = λ1/quα(x′j). Hence uα is concave.

Lemma 7.3.2. Let q > 0 integer and u ≥ f ≥ 0 in Rn. Then

ũ− f̃ ≥ ũ− f.

Proof. The proof is by induction on the integer q ≥ 1. The case q = 1 is trivial, because
in such case ũ = u, f̃ = f, ũ− f = u− f . For the inductive step assume that the result

is true until the index q, and denote with ˜̃u, ˜̃f,˜̃u− f the respective functions of index
q + 1. By the definition (3.25)(

˜̃u− ˜̃f
)

(x1, ..., xq+1) = ũ(x1, ..., xq)u(xq+1)− f̃(x1, ..., xq)f(xq+1),

˜̃
u− f(x1, ..., xq+1) = ũ− f(x1, ..., xq) · (u− f)(xq+1).

These two equalities imply (
˜̃u− ˜̃f

)
(x1, ..., xq+1)

= ˜̃
u− f(x1, ..., xq+1)− ũ− f(x1, ..., xq) · [u(xq+1)− f(xq+1)] +

+ ũ(x1, ..., xq)u(xq+1)− f̃(x1, ..., xq)f(xq+1)
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≥˜̃
u− f(x1, ..., xq+1)−

(
ũ− f̃

)
(x1, ..., xq) [u(xq+1)− f(xq+1)]

+ ũ(x1, ..., xq)u(xq+1)− f̃(x1, ..., xq)f(xq+1)

= ˜̃
u− f(x1, ..., xq+1) + f(xq+1)

[
ũ(x1, ..., xq)− f̃(x1, ..., xq)

]
+ f̃(x1, ..., xq) [u(xq+1)− f(xq+1)]

≥˜̃
u− f(x1, ..., xq+1),

having used the inductive hypothesis and the assumption u ≥ f ≥ 0.

Corollary 7.3.1. Given an integer n > 0, λ ∈ (0, 1), s = t
q with t, q positive integers,

let f, g ∈ L1(Rn) be nonnegative compactly supported functions such that

F =
ˆ
Rn
f dx > 0 and G =

ˆ
Rn
g dx > 0.

Let h : Rn −→ [0,+∞) satisfy assumption (7.1) and suppose there exists ε > 0 small
enough such that (ˆ

Rn
h dx

)q
≤
[
M 1

n+s
(F,G ;λ)

]q
+ ε. (7.23)

Then there exist a 1
t -concave function u′ : Rnq −→ [0,+∞) and two functions

f̂ , ĝ : Rnq −→ [0,+∞), t-equivalent to f̃ and g̃ (given by (3.25)) in the sense of (7.3)
with

µf̃ = ω
−1
nq+t
t F

−1
n+s , µg̃ = ω

−1
nq+t
t G

−1
n+s ,

such that the following hold:

u′ ≥ f̂ , u′ ≥ ĝ,

ˆ
Rnq

(u′ − f̂)dx+
ˆ
Rnq

(
u′ − ĝ

)
dx ≤ Cnq+t

 ε

M 1
nq+t

(F q, Gq ;λ)

 . (7.24)

Proof. We can assume h = hλ. Since f and g are nonnegative compactly supported
functions belonging to L1(Rn), thus by (3.25) f̃ , g̃ are nonnegative compactly supported
functions belonging to L1(Rnq). The assumption (7.23) is equivalent, considering the
corresponding functions f̃ , g̃, h̃ : Rnq −→ [0,+∞) and using (3.26), to

ˆ
Rnq

h̃ dx ≤
[
(1− λ)

(ˆ
Rnq

f̃ dx

) 1
nq+qs

+ λ

(ˆ
Rnq

g̃ dx

) 1
nq+qs

]nq+qs
+ ε

i.e.
ˆ
Rnq

h̃ dx ≤M 1
nq+t

(F q, Gq ;λ) + ε. (7.25)
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We notice that the index qs = t is integer, while nq is exactly the dimension of the space
in which f̃ , g̃, h̃ are defined.

To apply Theorem 7.1.1, we have to verify that f̃ , g̃, h̃ satisfy the corresponding
inequality (7.1) of index qs. Given x1, ..., xq ∈ Supp(f), x′1, ..., x′q ∈ Supp(g), let x =
(x1, ..., xq) ∈ Supp(f̃), x′ = (x′1, ..., x′q) ∈ Supp(g̃). By hypothesis, we know that f, g, h
satisfy (7.1), in particular for every j = 1, ..., q

h
(
(1− λ)xj + λx′j

)
≥
[
(1− λ)f(xj)1/s + λg(x′j)1/s

]s
.

This implies

q∏
j=1

h
(
(1− λ)xj + λx′j

)
≥

 q∏
j=1

[
(1− λ)f(xj)1/s + λg(x′j)1/s

]s

≥

(1− λ)

 q∏
j=1

f(xj)

1/qs

+ λ

 q∏
j=1

g(x′j)

1/qs

qs

, (7.26)

where the last inequality is due to Corollary 3.3.3. By definition of (3.25), (7.26) means
that for every x ∈ Supp(f̃), x′ ∈ Supp(g̃) we have

h̃
(
(1− λ)x+ λx′

)
≥
[
(1− λ)f̃(x)1/qs + λg̃(x′)1/qs

]qs
,

i.e. the functions f̃ , g̃, h̃ : Rnq −→ [0,+∞) satisfy the hypothesis (7.1) with the required
index qs = t. Therefore we can apply Theorem 7.1.1 and conclude that there exist a
1
t -concave function u′ : Rnq −→ [0,+∞) and two functions f̂ , ĝ, t-equivalent to f̃ and g̃,
with the required properties. The estimate (7.5), applied to (7.25), implies

ˆ
Rnq

(u′ − f̂) dx +
ˆ
Rnq

(
u′ − ĝ

)
dx ≤ Cnq+t

 ε

M 1
nq+t

(F q, Gq ;λ)

 .

Remark 7.3.2. Assume F = G and, for simplicity, suppose that f̂ = f̃ , ĝ = g̃ in Corollary
7.3.1 (as it is true up to a t-equivalence). Moreover assume that the 1

t -concave function
u′ : Rnq −→ [0,+∞), given by Corollary 7.3.1, is of the type (3.25), i.e. u′ = ũ where
u : Rn −→ [0,+∞) has to be 1

s -concave by Lemma 7.3.1. In this case Corollary 7.3.1
assumes a simpler statement, which naturally extends the result of Theorem 7.1.1. Indeed
(7.24), thanks to Lemma 7.3.2, becomes

ˆ
Rnq

ũ− f dx +
ˆ
Rnq

ũ− g dx ≤ Cnq+t

 ε

M 1
nq+t

(F q, Gq ;λ)

 , i.e.
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[ˆ
Rn

(u− f) dx

]q
+
[ˆ

Rn
(u− g) dx

]q
≤ Cnq+t

 ε

M 1
nq+t

(F q, Gq ;λ)

 . (7.27)

Unfortunately the function u′ constructed in Theorem 7.1.1 is not necessarely of the
desired form, that is in general we can not find a function u : Rn −→ [0,+∞) such that
u′ = ũ (a counterexample can be explicitly given). Then our proof can not be easily
extended to the general case s ∈ Q to get (7.27).

7.4 A stability for s > 0
To complete the paper, we give a (weaker) version of our main stability result Theorem
7.1.1 which works for an arbitrary real index s > 0. For this, let us denote by [s] the
integer part of s, i.e. the largest integer not greater than s. Obviously [s] + 1 > s ≥ [s],
whereby (by the monotonicity of p-means with respect to p, i.e. Mp(a, b;λ) ≤Mq(a, b;λ)
if p ≤ q) for every a, b ≥ 0, λ ∈ (0, 1)

[
(1− λ)a

1
s + λb

1
s

]s
≥
[
(1− λ)a

1
[s]+1 + λb

1
[s]+1

][s]+1
, (7.28)

[
(1− λ)a

1
n+s + λb

1
n+s
]n+s

≥
[
(1− λ)a

1
n+[s]+1 + λb

1
n+[s]+1

]n+[s]+1
.

We arrive to the following corollary for every index s > 0.

Corollary 7.4.1. Given s > 0, λ ∈ (0, 1), let f, g : Rn −→ [0,+∞) be integrable
functions such that ˆ

Rn
f dx =

ˆ
Rn
g dx = 1 . (7.29)

Assume h : Rn −→ [0,+∞) satisfies assumption (7.1) and there exists ε > 0 small enough
such that ˆ

Rn
h dx ≤ 1 + ε. (7.30)

Then there exist a 1
[s]+1 -concave function u : Rn −→ [0,+∞) and two functions f̂ and

ĝ, ([s] + 1)-equivalent to f and g in the sense of (7.19) (with µf = µg =
(
ω[s]+1

) −1
n+[s]+1 )

such that
u ≥ f̂ , u ≥ ĝ,

and ˆ
Rn

(u− f̂) dx +
ˆ
Rn

(u− ĝ) dx ≤ Cn+[s]+1(ε).
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Proof. We notice that the assumption (7.1) (i.e. the hypothesis of BBL inequality of
index 1/s), through (7.28), implies that for every x ∈ Supp(f), y ∈ Supp(g)

h ((1− λ)x+ λy) ≥
[
(1− λ)f(x)

1
[s]+1 + λg(y)

1
[s]+1

][s]+1
,

i.e. the corresponding hypothesis of BBL for the index 1
[s]+1 . Therefore, thanks to the

assumptions (7.29) and (7.30), it holds
´
h ≤ 1 + ε = M 1

n+[s]+1
(
´
f,
´
g;λ) + ε, so we

can apply directly Theorem 7.1.1 using the integer [s] + 1 as index. This concludes the
proof.

Remark 7.4.2. If we do not use the normalization (7.29) and want to write a result for
generic unrelated F =

´
f and G =

´
g, we can notice that assumption (7.30) should be

replaced by ˆ
Rn
h dx ≤M 1

n+[s]+1
(F,G;λ) + ε .

On the other hand, thanks to assumption (7.1), we can apply the corresponding BBL
inequality and obtain ˆ

Rn
h dx ≥M 1

n+s
(F,G;λ).

Then we would have

M 1
n+s

(F,G;λ) ≤M 1
n+[s]+1

(F,G;λ) + ε .

The latter inequality is possible only if F and G are close to each others, thanks to the
stability of the monotonicity property of p-means, which states

M 1
n+[s]+1

(F,G;λ) ≤M 1
n+s

(F,G;λ),

with equality if and only if F = G. In this sense the normalization (7.29) cannot be
completely avoided and the result obtained in Corollary 7.4.1 is weaker than what desired.
Indeed notice in particular that it does not coincide with Theorem 7.1.1 even in the case
when s is integer, since [s] + 1 > s in that case as well.

7.5 Appendix 1
To conclude our digression we show that the S-symmetrization, introduced in Remark
7.2.1, preserves the convexity of the involved set (that is the property (iii) therein).
We use the notations of Remark 7.2.1, in particular we refer to (7.15) and (7.16), and
remember that C is a bounded measurable set in Rn+s. We need the following preliminary
result, based on the Brunn-Minkowski inequality in Rs.
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Lemma 7.5.1. If C is convex, then for every t ∈ (0, 1) and every x0, x1 ∈ Rn such that
C(x0), C(x1) are nonempty sets, it holds

(1− t)rC(x0) + trC(x1) ≤ rC((1− t)x0 + tx1).

Proof. By defintion of (7.15)

rC(x0) = ωs
−1/s|C(x0)|1/s, rC(x1) = ωs

−1/s|C(x1)|1/s, thus

(1− t)rC(x0) + trC(x1) = ω−1/s
s

[
(1− t)|C(x0)|1/s + t|C(x1)|1/s

]
. (7.31)

Since C is convex, we notice that C(x0), C(x1) are (nonempty) convex sets in Rs such
that

(1− t)C(x0) + tC(x1) ⊆ C((1− t)x0 + tx1). (7.32)

Applying BM inequality (i.e. Theorem 2.1.1) to the sets C(x0), C(x1) ⊂ Rs, (7.31)
implies

(1− t)rC(x0) + trC(x1) ≤ ω−1/s
s |(1− t)C(x0) + tC(x1)|1/s

≤ ω−1/s
s |C((1− t)x0 + tx1)|1/s = rC((1− t)x0 + tx1),

where in the last inequality we use (7.32).

Proposition 7.5.1. If C is convex then S(C) is convex.

Proof. Let t ∈ (0, 1), and let P = (x0, y0), Q = (x1, y1) be two distinct points belonging
to S(C), i.e. C(x0), C(x1) are nonempty sets and

|y0| ≤ rC(x0), |y1| ≤ rC(x1). (7.33)

We prove that

(1− t)P + tQ = ((1− t)x0 + tx1, (1− t)y0 + ty1) ∈ S(C).

By assumptions and (7.32) the set C((1− t)x0 + tx1) is nonempty. Furthermore by the
triangle inequality, (7.33) and Lemma 7.5.1 we obtain

|(1− t)y0 + ty1| ≤ (1− t) |y0|+ t |y1| ≤ (1− t)rC(x0) + trC(x1) ≤ rC((1− t)x0 + tx1).

Then (1− t)P + tQ ∈ S(C), i.e. S(C) is convex.
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7.6 Appendix 2: stability of BBL inequalities for power
concave functions

Let n, s ∈ N f, g : Rn −→ [0,∞) bounded functions with nonempty compact supports
that satisfy the assumptions of Theorem 7.1.1. The first fundamental step in its proof
is the application of the Figalli and Jerison’s stability result for the Brunn-Minkowski
inequality (Proposition 2.6.3) to the measurable sets Kf ,Kg,Khλ ⊂ Rn+s. This choice is
justified by quality of this BM stability result is its applicability to nonempty measurable
sets, without any topological or convexity assumptions. On the other hand, we can
similarly make use of the quantitative stability results of BM inequality, introduced in
Section 2.5, that instead require the convexity of the involved sets. We are referring to
the Propositions 2.5.1 and 2.5.2, the first due to Groemer [31] and the second due to
Figalli, Maggi, Pratelli [26,27]. They are respectively written in terms of the distance
H0 (2.14) and of the relative asymmetry A (2.15) of the involved convex bodies. From
now on suppose that Kf ,Kg are compact and convex sets having positive measure: thus
they are the convex bodies to which we apply Propositions 2.5.1 and 2.5.2. Our aim
in this paragraph is to use these two propositions to deduce two new stability results
for BBL inequalities of index 1/s > which hold when the involved functions f, g are
1/s-concave. As already observed in the first paragraph, Kf is convex if and only if f is
1
s -concave (that is for us a function f having compact convex support such that f1/s is con-
cave on Supp (f)). If Supp(f) is compact, then Kf is bounded if and only if f is bounded.

Let us apply the quantitative BM inequalities stated in 2.5.1 and 2.5.2 in order to
deduce the announced stability results for the BBL inequality of index 1/s (with s ∈ N).

Corollary 7.6.1. Given n, s positive integers, λ ∈ (0, 1), let f, g : Rn −→ [0,∞) be
1
s -concave functions with compact supports Ω0 and Ω1 respectively, such that

ˆ
Ω0

f dx > 0, and
ˆ

Ω1

g dx > 0.

Let h : Rn −→ [0,∞) that satisfies (7.1), and suppose there exists ε ≥ 0 such that

ˆ
Rn
h dx ≤

[
(1− λ)

(ˆ
Rn
f dx

) 1
n+s

+ λ

(ˆ
Rn
g dx

) 1
n+s
]n+s

+ ε. (7.34)

Then

H0(Kf ,Kg) ≤

 ε

ηn+s

[
(1− λ)

(ˆ
Rn
f dx

) 1
n+s

+ λ

(ˆ
Rn
g dx

) 1
n+s
]−n−s

1
n+s+1

,

where ηn+s is given as in (2.16).

Proof. Without loss of generality h = hλ: indeed if h satisfies (7.1) then h ≥ hλ, so (7.34)
holds for h = hλ (by monotonicity of integral). As already observed in the beginning of
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the third paragraph, the assumption (7.34) is equivalent to the condition (7.12), i.e.

|Khλ | ≤
[
(1− λ) |Kf |

1
n+s + λ |Kg|

1
n+s
]n+s

+ εωs.

The sets Kf ,Kg ⊂ Rn+s are convex, since f and g are 1
s -concave functions. Moreover

by hypothesis f, g are also bounded, therefore Kf ,Kg are bounded sets. We can assume
that Kf ,Kg are also closed (up to consider their closure, that are larger convex sets
having the same measure), so Kf ,Kg are compact convex sets (clearly with nonempty
interior, because they have positive measure: see (3.22)). Thus we can apply Proposition
2.5.1 that, by means of (3.23), becomes

|Khλ | ≥
[
(1− λ) |Kf |

1
n+s + λ |Kg|

1
n+s
]n+s (

1 + ηn+sH0(Kf ,Kg)(n+s+1)
)
.

The latter with (7.12) implies[
(1− λ) |Kf |

1
n+s + λ |Kg|

1
n+s
]n+s

· ηn+sH0(Kf ,Kg)(n+s+1) ≤ εωs,

and using (3.22) we conclude.

Similarly, using this time Proposition 2.5.2 we deduce the following.

Corollary 7.6.2. Given n, s positive integers, λ ∈ (0, 1), let f, g : Rn −→ [0,∞) be
1
s -concave functions with compact supports Ω0 and Ω1 respectively, such that

ˆ
Ω0

f dx > 0, and
ˆ

Ω1

g dx > 0.

Let h : Rn −→ [0,∞) that satisfies (7.1), and suppose there exists ε ≥ 0 such that

ˆ
Rn
h dx ≤

[
(1− λ)

(ˆ
Rn
f dx

) 1
n+s

+ λ

(ˆ
Rn
g dx

) 1
n+s
]n+s

+ ε.

Then

A(Kf ,Kg) ≤ θn+s

√√√√ ε · C
(n+ s)

[
(1− λ)

(ˆ
Rn
f dx

) 1
n+s

+ λ

(ˆ
Rn
g dx

) 1
n+s
]−n−s

,

where

C = max
{

λ

1− λ,
1− λ
λ

}
·

max
{(´

Rn f dx
) 1
n+s ,

(´
Rn g dx

) 1
n+s

}
min

{(´
Rn f dx

) 1
n+s ,

(´
Rn g dx

) 1
n+s

} ,
and θn+s is a positive constant depending on dimension n + s with polynomial growth
(see (2.17)).
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