@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Malerba F, Paoletti F, Bruni Ercole B,
Materazzi S, Nassini R, Coppi E, et al. (2015)
Functional Characterization of Human ProNGF and
NGF Mutants: Identification of NGF P61SR100E as a
“Painless” Lead Investigational Candidate for
Therapeutic Applications. PLoS ONE 10(9):
€0136425. doi:10.1371/journal.pone.0136425

Editor: Alfred S Lewin, University of Florida, UNITED
STATES

Received: June 8, 2015
Accepted: August 4, 2015
Published: September 15, 2015

Copyright: © 2015 Malerba et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the following
grants: MIUR, project PRIN (#2010N8PBAA_006) to
AC (http://prin.miur.it/); ADDF (grant #20120601) to
AC (https://www.alzdiscovery.org/); and European
Union, project “PAINCAGE” (GA n. 603191) to AC
(http://www.paincage.eu/). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Functional Characterization of Human
ProNGF and NGF Mutants: Identification
of NGF P61SR100E as a “Painless” Lead
Investigational Candidate for Therapeutic
Applications

Francesca Malerba'2®, Francesca Paoletti'?®, Bruno Bruni Ercole', Serena Materazzi®,
Romina Nassini®, Elisabetta Coppi®, Riccardo Patacchini?, Simona Capsoni?,
Doriano Lamba®, Antonino Cattaneo'?*

1 Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita
Levi-Montalcini” Foundation, Rome, Italy, 2 Neurobiology Laboratory of Biology, Scuola Normale Superiore,
Pisa, ltaly, 3 Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of
Florence, Florence, ltaly, 4 Department of Pharmacology, Chiesi Farmaceutici, Parma, Italy, 5 Istituto di
Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

@® These authors contributed equally to this work.
* antonino.cattaneo @sns.it

Abstract

Background

Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, dia-
betic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for
systemic delivery has hampered the clinical applications of NGF due to its potent pro-noci-
ceptive action. A “painless” human NGF (hNGF R100E) mutant has been engineered. It
has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously
described and characterized the neurotrophic and nociceptive properties also of the hNGF
P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However,
the reduced pain-sensitizing potency of the “painless” hNGF mutants has not been
quantified.

Objectives and Results

Aiming at the therapeutic application of the “painless” hNGF mutants, we report on the com-
parative functional characterization of the precursor and mature forms of the mutants hNGF
R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type
hNGF and to hANGF P61S. The mutants were assessed by a number of biochemical, bio-
physical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for
the detection of the P61S-tagged mutants in biological samples has been developed.
Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demon-
strating an expanded therapeutic window with a ten-fold increase in potency.
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Conclusions

This structure-activity relationship study has led to validate the concept of developing pain-
less NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of
hNGF P61S R100E as the best candidate to advance in clinical development. Moreover,
this study contributes to the identification of the molecular determinants modulating the
properties of the hNGF “painless” mutants.

Introduction

Nerve Growth Factor (NGF) is a neurotrophin that acts on peripheral and central neurons,
including sympathetic and sensory neurons and cholinergic neurons of the basal forebrain [1-
4]. In addition to its neuronal targets, NGF has been shown to act on a number of non-neuro-
nal targets, including several brain cells such as astrocytes, oligodendrocytes and microglia,
cells of the immune system, blood vessel endothelial cells and many others [1, 5-8]. Due to its
crucial actions during development and in adult tissues, and thanks to its pleiotropic proper-
ties, NGF holds a great and well validated therapeutic promise. In particular, its potential for
clinical applications has been demonstrated for neurodegenerative disease, such as Alzheimer's
disease, diabetic neuropathies, ophthalmic diseases and dermatological ulcers [9-17].

Notwithstanding the great therapeutic potential, the clinical applications of NGF have been
hampered by its physiologically relevant pro-nociceptive effects [11, 18, 19]. This feature has
severely limited its clinical efficacy as shown by previous clinical trials. In diabetic neuropathy
clinical trial, the systemically delivered doses of NGF had to be reduced below the pharmaco-
logically effective dose, because of the strong pain induced in patients [18]. In addition, when
NGF was intra-cerebroventricularly injected into Alzheimer’s patients, the severe pain induc-
tion called for the interruption of the trial [11].

The R100W point mutation in mature hNGF is linked to the rare human genetic disease
(Hereditary Sensory Autonomic Neuropathy Type V—HSAN V) [20]. In HSAN V patients,
this mutation in the NGFB gene (exon 3, nt C661T) determines the complete loss of pain per-
ception, without affecting most neurological functions [21].

Inspired by the HSAN V mutation in the NGFB gene, we developed a "painless” form of
NGF, namely the mutant hANGF R100E. hNGF R100E maintains, in a variety of cellular assays,
identical neurotrophic and neuroprotective properties as the hNGF wild-type, while displaying
a significant reduced pain-inducing activity in vivo [22].

We also reported on the hNGF P61S mutant, characterized by the replacement of the Pro-
line residue at position 61 of hNGF wild-type with a Serine residue, found in this position in
mouse NGF. hNGF P61S “tagged” molecules are selectively detectable against wild type hNGF,
by the monoclonal antibody 4GA which specifically recognizes hANGF P61S against the back-
ground of wild-type hNGF [23].

Finally, we have also expressed and studied the double mutant, ANGF P61SR100E, which
harbours both features: the painless activity in addition to the tagging point mutation, for its
potential traceability in human biological samples. In fact, the ANGF P61SR100E double
mutant displays a full neurotrophic and neuroprotective activity, while it shows a reduced noci-
ceptive activity in vivo, due to selective alteration of TrkA versus p75NTR receptor mediated
binding and signalling [24, 25].

By having in mind their prospective therapeutic use in a clinical setting, the focus of this
study was a thorough comparative analysis of the different mutants of ANGF, namely hNGF
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R100E, hNGF P61S and hNGF P61SR100E mutants, as precursor and mature forms, based on
their biochemical and biophysical properties, traceability and in vivo pain induction activity.

Materials and Methods

Heterologous E. coli expression and purification of wild-type hNGF and
its mutants

hproNGF wild type (WT) and the mutants were expressed as recombinant proteins in E. coli,
refolded from inclusion bodies, purified, and proteolyitically processed to NGF, as previously
described [26]. The proteins manufacturing method has been optimized for a scale-up produc-
tion from the 1-2 to the 10 liters/batch.

Kinetics of Proteolytic Cleavage

In order to assess the impact of the mutations on the proteolytic cleavage, studies on hproNGF
WT, hproNGF P61S, hproNGF R100E and hproNGF P61SR100E were undertaken. The non-
specific protease trypsin was used, that, as previously reported, cleaves the more accessible
pro-peptide, and leaves NGF undigested under controlled conditions [26, 27]. 110 ug of
hproNGF WT, hproNGF P61S, hproNGF R100E, hproNGF P61SR100E, at the concentration
of 0.6 pg/ml in Sodium Phosphate buffer 50 mM pH 7, were proteolytically digested by trypsin
(Promega Corporation, Madison, USA) at 4°C. The reaction was started adding trypsin at the
ratio of 1:250 (enzyme: substrate). 15 pl of the reaction mixtures were taken at time 0, and
after 0.5, 1, 1.5, 2, 3, 4, 6, 20 hours. For each sample, the reaction was blocked by addition of
Laemmli sample buffer and boiling (10 minutes). All the samples were analyzed by SDS-PAGE.
The experiment was repeated twice on independent samples.

Circular Dichroism (CD) measurements

Quantitative analysis of the far-UV CD spectra provided an estimation of the secondary struc-
tural composition of the various hproNGF and hNGF mutants. CD measurements were carried
out with a JASCO J-810 circular dichroism instrument at 20°C in 50 mM Sodium Phosphate,
pH 7.0. Far-UV CD (185-250 nm) spectra were recorded at protein concentrations of 0.5-1.0
mg/mL in a 0.02 cm demountable quartz cuvette cell, averaged over 8 accumulations (acquisi-
tion time: 1 s). Spectra were buffer corrected. Mean ellipticity values were calculated as previ-
ously reported [26].

Chemical denaturation

In order to characterize the effect of the mutations, the chemical stability of hANGFs and
hproNGFs WT and mutants, was assessed. The changes in intrinsic fluorescence emission
spectra of the ANGF WT and mutants, as a function of the denaturant concentrations, were
evaluated by incubating the proteins in serial dilutions of 8 M Gdm-Cl (Guanidinium Chlo-
ride) in buffer Sodium Phosphate 50 mM pH 7. The samples were incubated at room tempera-
ture (RT) for 20 hours. The protein concentration was 20 ug/mL for hNGFs, and 40 pig/mL
for hproNGFs. The proteins solutions were prepared in the native buffer (Sodium Phosphate
50 mM pH 7) or in the different concentrations of denaturing buffer (0.5-1-1.5-2-2.5-3-3.5-
4-4.5-5-5.5-6 M Gdm-Cl in 50 mM Sodium Phosphate, pH 7).

Fluorescence measurements were performed, with the EnSpire Multimode Plate Reader
Spectrometer Perkin Elmer (Waltham, Massachusetts, USA). The measurements, in duplicate,
were done in Optiplate 96 well plate (Perkin Elmer, Waltham, Massachusetts, USA), contain-
ing 100 ul of protein solution per well. The fluorescence emission spectra were recorded from
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300 to 500 nm, at a speed of 1 nm/s, with 100 flashes, using an excitation wavelength of 280
nm. The experiment was repeated three times for each protein.

All spectra were corrected against the blank spectrum of the corresponding buffer. The data
were normalized, in order to compare the different ANGF mutants. The relative fraction of
native hNGF molecules or the native, mature part of hproNGF, were obtained according to the
following formula:

([_ [D>
(IN - Iz))

o =

Where:

I = fluorescence signal at a certain Gdm-ClI concentration.

Ip or Iy = signal of the denatured or native component at the same Gdm-Cl concentration,
respectively

Ip or Iy were calculated from the linear dependence of the fluorescence of the denatured or
native protein from the concentration of the denaturing medium.

Thermal Denaturation

The thermal denaturation of the mutants by Differential Scanning Fluorimetry (DSF—Ther-
mofluor) was also investigated. Solutions composed of 7.5 pl of 300 x Sypro Orange (Molecular
Probes, Life Technologies, Carlsbad, California, USA) and 17.5 pl of proteins (hNGFs or
hproNGFs) at the concentration of 0.7 mg/ml in Sodium Phospate 50 mM pH 7, were added to
the wells of a 96-well thin-wall PCR plate (Bio-Rad, Hercules, California, USA). Buffer and
Water was added as blank and control sample, respectively. The plates were sealed with Opti-
cal-Quality Sealing Tape (Bio-Rad, Hercules, California, USA) and heated in an iCycler iQ
Real Time PCR Detection System (Bio-Rad, Hercules, California, USA) from 20 to 90° C in
increments of 0.2°C/20 s. Fluorescence changes in the wells of the plate were monitored simul-
taneously with a charge-coupled device (CCD) camera. The wavelengths for excitation and
emission were 485 and 535 nm, respectively. The experiment was repeated three times for each
protein.

In order to compare the transition curves for the set of different proteins, each experimental
set of data was normalized to the transition amplitude that is the difference between the fluo-
rescence intensity at the start and at the maximum of the unfolding transition, respectively
[28].

Data were evaluated by pairwise Student’s T-tests.

Surface Plasmon Resonance (SPR)

In order to gain further insight into the impact of the mutations on the properties of NGF, the
binding profiles of the mutants against a panel of antibodies, used as structural probes, were
characterized by Surface Plasmon Resonance. The binding to TrkA and p75™ ' ® receptors have
been already investigated [25].

The experiments were performed with a Biacore 2000 equipment (GE healthcare, Bucking-
hamshire, UK). In all the cases, the experiments were performed on CM5 chips with amine
coupling. The coupling reaction was performed with the specific kit provided by GE healthcare
(Buckinghamshire, UK), according to manufacturer’s instructions. The antibodies (anti
proNGF MAD clone EP1318Y, (Millipore, Darmstadt, Germany), anti NGF MAB 256 (R&D
System, Minneapolis, Minnesota, USA), and anti NGF aD11 [29]) used as ligands were immo-
bilized at a 2000 RU surface concentration of the CM5 chip. The analyte proteins used in all
kinetic experiments were injected in PBS (Phosphate Buffer Saline) added by 5% BSA, and ata
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flow rate of 30 ul/min. The regeneration of the chip was performed in all the cases with a pulse
(10 pl) of 10 mM Glycine pH 1.5. The data analysis was carried out using the BIAevaluation
3.2 Software by Biacore. A 1:1 Langmuir model was assumed, for the evaluation of the kinetic
and equilibrium constants using the BIAevaluation software.

TF1 Proliferation assay

In order to assess the bioactivity of NGF on human receptor TrKA, hNGF WT and mutants
were tested using a TF1 erythroleukemic cells-based proliferation assay. Indeed, TF1 erythro-
leukemic cells express human TrKA and not p75™ '~ [30]. The original protocol by Chevalier
et al. [30], modified by Covaceuszach et al. [23], has been further optimized, as described
below.

Before the assay, TF1 cells were cultured for 1 week, in RPMI-1640 containing 10% fetal
bovine serum (FBS) with 2 ng/ml rhGM-CSF (R&D System, Minneapolis, Minnesota, USA).
Cells for testing were washed, resuspended in RPMI-1640 + 10% FBS to a concentration of
300,000 cells/ml and replated on 96-well microplates (15,000 cells per well, in 50 ml)

60 min after replating, cells were exposed to ANGF WT and mutants (concentration range:
0.1-200 ng/ml) in RPMI-1640 containing 10% FBS. Control wells were included, either con-
taining medium alone, or containing TF1 cells in the absence of NGF (cellular blank). Each
treatment was performed in duplicate.

After a 40 h incubation period, at 37°C, 5% CO2, the medium was changed (50 pl/well
RPMI-1640 containing 10% FBS.

The reagent “CellTiter 96 Aqueous One Step Solution Reagent” (Promega Corporation,
Madison, USA) was thawed for approximately 90 minutes at room temperature, or 10 minutes
in a water bath at 37°C. 20 pl of reagent were pipetted into each well of the 96well plate contain-
ing the cells in 50 pl of fresh culture medium.

The plate was incubated at 37°C for 1-3 hrs in a humidified, 5% CO, atmosphere.

The absorbance at 490nm was recorded using an ELISA Reader (Bio-Rad, Hercules, Califor-
nia, USA) after 1-2-3 hrs.

The assay for each ANGF WT and mutant was repeated for 5 times, in independent experi-
ments, and with different batches of proteins.

The assay generated a dose-response curve, which was interpolated according to the follow-
ing formula:

(Hmux X CNGF)
(C50 4 Cygr)

where:

H is Optical density at 490 nm; Hmax represents the maximum OD reached when the curve
is at saturation; Cygp is the concentration of hANGF mutants; C50 represents the concentration
of hNGF determining half of the maximum effect on cell proliferation (1/2 Hmax). The data
were tested by pairwise Student’s t-test, in all possible combinations, with FDR (False Discov-
ery Rate) multiple testing correction.

In vitro stability test by TF1 Proliferation assay

In order to further assess the stability of ANGF and mutants, the loss of bioactivity after incuba-
tion in different conditions was evaluated.

hNGF WT and the mutants were incubated at different temperature (4°C, 22°C) with the
following time-course:
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- Incubation at 4°C for 1 week or 2 weeks or 4 weeks
- Incubation at 22°C for 1 week or 2 weeks or 4 weeks

Aliquots of 1.5 pg of each protein at the concentration of 0.65 mg/ml were prepared. The
incubations were made by using a temperature controlled water bath.

Loss of bioactivity was also evaluated after freeze and thaw cycles, and after lyophilisation.
In order to carry out the cycles of freeze-thawing (5 or 12 cycles), the frozen aliquots were
thawed and left at room temperature, until the solutions appeared completely unfrozen. They
were refrigerated again in a -20°C fridge for 20 minutes.

The lyophilisation was made using a lyophilizator (Pirani 1001, Edwards, Crawley,
England), according to manufacturer’s instructions. The lyophilized proteins were resuspended
before performing the bioassay.

The in vitro proliferation bio-assay was carried out on TF1 erythroleukemic cells in order to
evaluate the bioactivity. The ANGF WT and mutants, subjected to the previously described
treatments, were always assayed in the presence of the corresponding untreated hNGF as a
control.

The experiments on hANGF WT and mutants were carried out from two to six times.

The dose response curves obtained by TF1 proliferation assay were interpolated as described
in the previous paragraph, and used to derive the Hmax and C50 parameters. The loss of stabil-
ity mostly affected the C50 parameter. Indeed, the TF1 curves were shifted to higher values of
hNGF concentration resulting in half of the maximum effect on cell proliferation (1/2 Hmax).

The AC50 for the different treatments were calculated, using the following formula:

(C50 —C50,,)

A C _ treated
>0 C50

ref

C50treated is the value of C50 obtained from the curve of the protein incubated in the dif-
ferent conditions, C50ref is the value of C50 of the curve corresponding to the untreated
hNGF. The errors were calculated based on the error propagation formulae. The data were
tested by pairwise Student’s t-test, in all possible combinations, with FDR (False Discovery
Rate) multiple testing correction.

Primary culture of rat oligodendrocytes progenitor cells (OPCs) and
differentiation assay

To compare the bioactivity of hANGF mutants to hNGF WT selectively through the neurotro-
phin receptor p75~ "X, purified primary rat oligodendrocytes cultures (OPCs), which express
p75~"R, but not the TrkA receptor [22], have been used. Purified cultured rat OPCs primary
cultures were prepared from brain cortices of postnatal day 1 Wistar rats by mechanical disso-
ciation as described [31]. Cells were grown on poly-D-lysine coated T75 flasks in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 20% fetal bovine serum (FBS), 4 mM
L-glutamine, 1 mM Na-pyruvate, 100 U/ml penicillin, 100 U/ml streptomycin (all products are
from EuroClone, Milano, Italia). After 5-6 days in culture, OPCs growing on top of a confluent
monolayer of astrocytes were detached by 3-4 h horizontal shaking at 37°C. Contaminating
microglial cells were eliminated by a 1 hour pre-shake and by further plating detached cells on
plastic culture dishes for 1 hour. OPCs were then collected by gently washing the dishes and
seeded at a density of 4 x 10* cells/cm” onto poly-DL-Ornithine-coated 13 mm-diameter glass
coverslips placed in 24 multiwell chambers. This method yields an almost pure population
(>99%) of cells of the oligodendrocyte lineage, as no contaminating microglial or neuronal
cells and a very low percentage (<1%) of astrocytes were detected in these cultures when Ibal,
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NeuN or glial fibrillary acid protein (GFAP) immunofluorescence staining, respectively, were
performed (data not shown). OPC cultures were maintained in Neurobasal medium (Life
Technologies, Carlsbad, California, USA) containing 2% B27, 4 mM L-glutamine, 1 mM Na-
pyruvate, 100 U/ml penicillin, 100 U/ml streptomycin, 10 ng/ml platelet derived growth factor
(PDGEF-BB) and 10 ng/ml basic fibroblast growth factor (bFGF; both growth factors were from
PeproTech EC Ltd, London, UK) to promote cell proliferation (proliferating medium: PM).
After 2-3 days in PM, cells were switched to a Neurobasal medium lacking growth factors (dif-
ferentiating medium: DM) in order to allow cell differentiation.

It is known that OPCs, either in culture or in situ, undergo different steps of maturation
identified by specific markers [32-34]. Bipolar NG2+ cells are immature OPCs which undergo
differentiation to become multipolar, post-mitotic pre-oligodendrocytes and acquire O4
+ immunoreactivity. After 3 days in DM, cell media were added with hNGF, hNGF R100E,
hNGF P61S and hNGF P61SR100E (150 ng/ml) and incubated for further 24 h [35], before
immunocytochemistry and viability test.

Immunocytochemistry and viability test

Cells were characterized for developmental-dependent antigen expression by using the NG2
and O4 monoclonal antibodies. At the end of treatment, purified primary OPCs were fixed
with 4% paraformaldehyde in 0.1 M PBS for 20 minutes at RT. The following primary antibod-
ies were diluted in bovine serum dilution buffer (BSDB: NaCl 450 mM, Sodium Phosphate 20
mM, pH 7.4, 15% bovine serum, 0.3% Triton X-100) and incubated for 2.5 h at RT: mouse
anti-NG2 (Millipore, Darmstadt, Germany; 1:500) or mouse anti-O4 (Millipore, Darmstadt,
Germany). Cells were then washed three times with PBS and incubated for 1 h at RT with don-
key anti-mouse secondary antibody (diluted 1:500 in BSDB) conjugated to AlexaFluor 555
(Molecular Probes, Life Technologies, Carlsbad, California, USA). Coverslips were mounted
with Vectashield mounting medium (Vector Laboratories, Cambridgeshire, UK) containing
4’,6-diamidino-2-phenylindole (DAPI) to visualize cell nuclei, and analyzed by using an Olym-
pus BX40 microscope coupled Image Analysis Software (Olympus, Tokyo, Japan). Preliminary
negative control experiments, performed by omitting primary antibody and incubating fixed
cells with the secondary antibody alone, were made for each condition in order to exclude non-
specific binding (data not shown). The number of cells labeled by a specific antibody (mouse
anti-NG2 and mouse anti-O4) in each coverslip was quantified by counting the number of
fluorescent cells in 10 random microscopic fields (20x) and expressed as a percentage over the
total cell number (DAPI + nuclei) in the same field. In each experimental session three cover-
slips for any different condition were evaluated. At least 3 experimental sessions were
performed.

Cell viability was assessed through the 3-(4,5-dimethyl thiazol-2-y1)-2,5-diphenyl tetrazo-
lium bromide (MTT; Sigma-Aldrich, Saint Louis, Missouri, USA). Briefly, cells were plated in a
96 multiwell (10° cells/well) and treated with wild type or mutants at 150 ng/ml, 24 hours).
MTT was added during the last hour of incubation. The medium was then removed and 100 pl
of DMSO added to each well to dissolve the dark blue crystals. Microplates were then read on
microplate reader, using a test wavelength of 550 nm. At least six wells for any given experi-
mental condition were tested. Experiments were run in triplicate.

ELISA system to detect P61S tagged hNGF mutants

In order to selectively detect, in biological fluids, the mutants containing the P61S point muta-
tion from the endogenous hNGF, an ELISA assay has been developed, exploiting the anti-NGF
antibody 4GA [23]. A classical sandwich format has been designed: the anti-NGF 4GA
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antibody [23] was captured on the plastic wells, recombinant human hNGF P61S was used for
a standard calibration. The rabbit anti-NGF polyclonal antibody H-20 (sc-548, Santa Cruz,
Santa Cruz, California, USA) was used as detecting antibody. The secondary antibody was an
HRP conjugated anti-rabbit IgG (Minimum Cross Reactions, Jackson laboratories, West
Grove, Pennsylvania, USA). The assay was carried out by using 4% of milk (Sigma-Aldrich,
Saint Louis, Missouri, USA) in blocking and sample buffers (4% milk in PBS).

The concentrations and the incubation times of the reagents are as follows:

- Anti-NGF 4GA antibody: 2 pg/ml, coated overnight at 4°C in Carbonate buffer;
- Blocking buffer: 4 hours at room temperature;

- Calibration curve and samples: overnight at 4°C (duplicates);

- Primary antibody: concentration 1:200, 6 hours at room temperature;

- Secondary antibody: concentration 1:7000, 1 hour at room temperature.

The reaction was revealed using TMB (Sigma-Aldrich, Saint Louis, Missouri, USA), which
gave rise to a colorimetric reaction in 20 minutes. The reaction was stopped by the addition of
sulphuric acid 1 M and the Optical Absorbance was read at 450 nm by an ELISA reader (Bio-
Rad, Hercules, California, USA).

In order to confirm the specificity of the assay and the absence of cross-reactivity between
the hANGF P61S or hNGF P61SR100E mutants and wild-type NGF from various species, the
calibration curve was also carried out using mouse NGF, rat NGF and human NGF as
calibrators.

In order to assess the applicability of the ELISA to measure the hANGF P61S mutant into bio-
logical samples, some validation tests were carried out on homogenized brain tissues, from
wild-type mice and rats. In the case of the mouse samples, the ELISA assay was carried out on
a pool of animals, while in the case of rats, single animals were individually analyzed, and sig-
nals were averaged. Animal experiments were carried out according to Italian legislation (DL
116/92) and European Communities Council Directive (86/609/EEC). The tissues from mice
are dissected from the wild type strain described in Tiveron et al.[36]. The experiments with
rats were conducted under the permit (number CBS-1611, Scuola Normale Superiore, Pisa)
approved by the Italian National Committee for animal research.

In order to evaluate the background effect of biological matrixes, two different concentra-
tions of the recombinant hANGF P61S mutant were spiked in the mice and rat brain tissues. For
each assay, the samples were analyzed in duplicate and the measured values were compared
with the theoretical values expected from the spiking, to obtain the recovery percentage.

The test was performed by different operators (10 assays), in order to assess the reproduc-
ibility of the assay.

The calibration curve was also carried out by using hANGF P61SR100E as calibrator, and the
assay was performed as described above, in order to validate the assay also with the double
mutant.

In vivo study of the nociceptive effects

Animal experiments were carried out according to Italian legislation (DL 116/92) and Euro-
pean Communities Council Directive (86/609/EEC). Studies were conducted under the permit
(number 143/2008-B, University of Florence) approved by the Italian National Committee for
animal research. CD1 mice (male, 25-30 g, Harlan Laboratories, Indianapolis, Indiana, USA)
were used for nociceptive tests. Mice were housed in a temperature- and humidity-controlled
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vivarium (12 h dark/light cycle, free access to food and water). Behavioral experiments were
performed in a quiet, temperature-controlled room (20 to 22°C) between 9 a.m. and 5 p.m. by
an operator blinded to the status of drug treatment. Different groups of mice were used for
mechanical allodynia and hot hyperalgesia behavioral measurement. At the end of the experi-
ments, animals were sacrificed with a high dose of intraperitoneal (i.p.) sodium pentobarbital
(200 mg/kg). For each experimental group 4-6 mice have been assigned. Experiments were run
in triplicate.

Mice were injected i.pl. with 20 pl of different doses of ANGF WT (0.1, 1, 4 and 10 ug/paw)
or hNGF R100E, hNGF P61S and hNGF P61SR100E mutants (all 1, 4 and 10 pg/paw) diluted
in isotonic saline (0.9% NaCl) and the pro-nociceptive effects of ANGF WT were compared to
that of hNGF R100E, hNGF P61S and hNGF P61SR 100E mutants. Control mice were injected
with 20 pl of isotonic saline. Behavioral measurements were performed before (baseline, BL)
and 1, 3 and 5 hours after i.pl. injection for mechanical allodynia and 1, 3 and 5 hours after i.pl.
injection for hot hyperalgesia.

Mechanical allodynia. Mechanical allodynia was quantified as paw withdrawal threshold
in response to a mechanical stimulus of increasing strength, using manual von Frey filaments
(Ugo Basile, Varese, Italy) and the up-and-down paradigm as previously described [37].
Briefly, mice (6-8 for each experimental group) were placed in transparent Plexiglas chambers
(30x30cm) with a wire net floor, 30 minutes before the experiment. Mechanical nociceptive
threshold was determined before (basal level threshold, BL) and after (1, 3, 4, and 5 hours) dif-
ferent treatments. The 50% mechanical paw withdrawal threshold (in g) response was then cal-
culated from these scores, as described [38].

Thermal hyperalgesia. Hot hyperalgesia was assessed in mice before (BL) and at selected
time points (1, 3 and 5 hours) after i.pl. injection of wild type or mutant hNGF by placing ani-
mals on a hot plate (Ugo Basile, Varese, Italy) with temperature adjusted to 50 + 0.1°C [39].
The latency to the first hind paw licking or withdrawal was taken as an index of nociceptive
threshold. The cut-off time was set at 30 seconds, to avoid paw damage. The paw withdrawal
latency to the first response was reported as mean of two different trials.

Results
E. coli expression and purification of wild-type hNGF and its mutants

All the analysis reported here were performed on the short form of recombinant human
proNGF, namely hproNGF25 (according to the nomenclature in Paoletti et al. [27], see S1 Fig).
For the sake of brevity, throughout the manuscript the protein is simply named as hproNGF,
followed by the specific mutation.

hNGF WT and its mutants were produced in E.coli as recombinant proteins, and purified
after proteolytic cleavage from their corresponding proNGF precursors, as described [26, 27].
The expression and growth conditions were scaled up. The purity for ANGF and for all the
mutants was estimated to be at least 95% by SDS-PAGE overloading. The scaling-up procedure
delivered higher yields for almost all the mutants (Table 1).

Table 1. Yield (mg of protein/Liter of culture) of NGF and proNGF after scaling-up process.

Protein Scale of culture(L) Yield ProNGF (mg/L) Yield NGF (mg/L)
hNGF 10 35 16
hNGF P61S 10 24 12
hNGF R100E 10 9.3 1.6
hNGF P61S R100E 10 8.3 3.5

doi:10.1371/journal.pone.0136425.1001
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Fig 1. Kinetics of proteolytic cleavage of proNGF WT and mutants. Representative SDS-PAGE of
hproNGF WT (panel A), hproNGF P61S (panel B), hproNGF P61SR100E (panel C), hproNGF R100E (panel
D) digested by trypsin. The lanes correspond to aliquots of the reaction mixtures, taken at time 0 (immediately
after trypsin addition) and after 0.5, 1, 1.5, 2, 3, 4, 6, 20 hrs. The loading position of the molecular weight
marker is indicated by M.

doi:10.1371/journal.pone.0136425.g001

Kinetics of Proteolytic Cleavage

Proteolytic studies on hproNGFs (hproNGF WT, hproNGF P61S, hproNGF R100E and
hproNGF P61SR100E) were undertaken, in order to detect possible differences in the stability
of the mutants and to assess whether the R100E mutation affects the proteolytic cleavage. Dif-
ferent proteases are known to cleave proNGF [40, 41]. In the present study, the unspecific pro-
tease trypsin was used, that, as previously reported, cleaves the more accessible pro-peptide,
and leaves NGF undigested under controlled conditions [26, 27].

hproNGF WT was highly resistant to proteolytic cleavage, its digestion to NGF being com-
pleted after 20 hours. During the incubation, a decrease in intensity of the hproNGF WT band
and a concomitant increase in the intensity of the hNGF one, were evident. A pattern of cleav-
age intermediates, with molecular weights in the 17 kDa to 25 kDa range, was also reported
(Fig 1).

The hproNGF P61S digestion profile differed from that of hproNGF WT, because the bands
corresponding to the precursor and to the intermediates forms, gradually decreased upon incu-
bation time. Indeed, the hproNGF P61S band completely disappeared after 3 hours, while for
hproNGF WT, the bands corresponding to the precursor and to the intermediates forms per-
sisted after 6 hours of incubation. A 23 kDa band, that likely corresponds to a stable intermedi-
ate, was observed in the digestion profile of hproNGF P61S after 6 hours (Fig 1).

The hproNGF R100E and hproNGF P61SR100E mutants digestion profiles, showed a stable
and well represented intermediate of 17 kDa which completely disappeared within 4 hours in
the hproNGF R100E, and within 2 hours in the hproNGF P61SR100E digestion profiles,
respectively (Fig 1). The digestion of hproNGF P61SR100E was completed after 4 hours.
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The hproNGF R100E band disappeared already after 0.5 hours, with the concomitant
appearance of the ANGF R100E. It is important to notice that ANGF R100E, but none of the
other mature NGF proteins, was further cleaved by trypsin (Fig 1).

Overall, the different hproNGFs mutants showed different digestion kinetics and a distinct
time-dependent accumulation of stable intermediates. In particular, hproNGF WT and
proNGF P61S appeared to be similarly quite resistant to proteolytic cleavage, while hproNGF
R100E and hproNGF P61SR100E were cleaved more rapidly, with hNGF R100E being the only
mutant which digestion also proceeded on the mature form.

Circular Dichroism (CD) studies

The overall folding of the various hproNGF and hNGF mutants was evaluated by estimating
the secondary structural features from the far-UV circular dichroism spectra.

On the whole, ANGF and hproNGF mutants showed spectra in good agreement with those
previously published [26, 27]. It is, however, interesting to notice some distinct features of
these spectra.

It was apparent that the ANGF WT and hNGF P61S spectra completely overlapped, while
both differed from the hANGF R100E and hNGF P61SR100E spectra. The main differences (Fig
2A) were in the position and intensity of the minimum around 202-207 nm, and in the near
UV region around 225-230nm. These changes likely reflect small rearrangements in the sec-
ondary structure elements of the protein, as a result of the RI00E mutation. Indeed, the charge
inversion is expected to disrupt ionic and hydrogen bonding interactions with the spatially
neighbouring residues.

In the case of the hproNGF mutants, the differences were less marked, although a variation
in the intensity of the minimum at 200-205 nm was still visible (Fig 2B).

Interestingly, the difference spectra between the corresponding hproNGFs and hNGFs
mutants, that should represent the secondary structure contribution of the pro-peptides, were
not completely overlapping (Fig 2C). The difference spectra of hproNGF WT and hproNGF
P61S pro-peptides almost overlapped, while both differed from the difference spectra of the
hproNGF R100E and hproNGF P61SR100E mutants, that instead were very similar one to the
other. This feature allowed to hypothesize that although the RI00E mutation resides in the
mature domain of the protein, it influences the arrangement of the whole proNGF domain.
Indeed, the R100E mutation is located quite close in space to residue W21 in mature NGF that
in turn has been suggested to interact with the pro-peptide [25, 27, 42].

In conclusion, it appears that the mutation P61S shows a very limited influence on the sec-
ondary structure of mature NGF, while the RI00E mutation has a greater impact by likely
affecting the secondary structure of the pro-peptide moiety.

Chemical and thermal stability analysis of NGF mutants

In order to further characterize the effect of the mutations, the chemical and thermal stability
of the hNGFs and hproNGFs mutants, were assessed.

At first, the chemical denaturation was investigated. hNGFs and hproNGFs mutants, were
incubated with increasing concentrations of Gdm-Cl as a denaturant, and the fluorescence
emission spectra measured. The fluorescence intensity maximum changed as a function of
increasing Gdm-Cl concentration (see Fig 3A and 3B for hANGFs and hproNGFs respectively-
the fraction of native protein is reported as a function of the Gdm-Cl concentration).

hNGF WT showed the classical sigmoidal shape curve associated with a two-state unfolding.
Unexpectedly, the different mutants behaved very differently. All the mutants showed initially,
at low Gdm-Cl concentrations (0-1.5M), an increase in the emission fluorescence intensity,
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(green), R100E (yellow) hNGF (panel A), hproNGF (panel B) and pro-peptide (obtained by subtracting the

NGF curve from the proNGF one) (panel C).
doi:10.1371/journal.pone.0136425.g002
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protein is plotted as a function of Gdm-Cl concentration. The inset in Panel A shows an alternative
normalization, obtained to consider the anomalous behaviour of the mutants that show an increase in the
emission fluorescence intensity at low Gdm-Cl concentrations (0—1.5M). The data were normalized assuming
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that the mutants, unlike hNGF WT, are in a fully folded state (Fraction folded = 1) at 0.5M Gdm-Cl (instead of
that at OM Gdm-Cl) and allow to better compare all the proteins at a glance.

doi:10.1371/journal.pone.0136425.g003

reaching higher values than those measured in the absence of Gdm-Cl (Fig 4A). Subsequently
the signal decreased following a sigmoidal shape until the fully denatured state is reached (at
6M Gdm-Cl-fraction folded protein = 0). This unusual behaviour at low Gdm-Cl concentra-
tion could be explained in terms of the likely electrostatics interactions occurring between the
proteins and Gdm-Cl [43-45]. Thus, at low denaturant concentration, the ionic nature of
Gdm-Cl increases the stability of the protein, by masking its intra- and intermolecular electro-
static interactions, as observed for the hNGF P61S, hNGF R100E and hNGF P61SR100E
mutants. This behaviour was reported for model proteins designed with intra- and intermolec-
ular predominating electrostatic repulsive rather than attractive interactions [43]. At increasing
concentrations, on the contrary, Gdm-Cl exerts its expected denaturant activity, and the intra-
and intermolecular electrostatic interactions are no longer significant.

The hNGF mutants exhibited a sigmoidal shape at higher Gdm-Cl concentrations and even-
tually unfolded (see Fig 3A). For this reason, we also analyzed the data according to a different
data normalization, where we assumed that the mutants, unlike ANGF WT, were in a fully
folded state (Fraction folded = 1) at 0.5M Gdm-Cl instead of that at OM Gdm-Cl, (see inset in
Fig 3A). This representation allowed to better compare the behaviour of all the proteins at a
glance. The stabilizing effect at low Gdm-Cl concentration was not significant for ANGF P61S
and hNGF P61SR100E, whereas it was highly significant for ANGF R100E (Fig 3A).

Therefore, the mutations introduced in hNGF proteins have an effect on the overall electro-
static potentials of the protein, the RI00E mutation showing the maximum destabilizing effect,
which is partly counteracted by the concomitant presence of the P61S mutation (see Fig 3A), as
apparent in the ANGF P61SR100E mutant. These effects, however, do not necessarily imply an
overall protein destabilization. In fact, all the mutants showed to have a comparable point of
inflection of their respective denaturation curves (Table 2).

The hproNGFs mutants showed a more homogeneous behaviour, with no significant
changes in the curve shapes. The occurrence of two inflection points, as already reported [26,
27] reflects the denaturation of the pro-peptide as the first event, followed by unfolding of the
mature moiety. For the normalization of the hproNGF curves, it was assumed that the NGF
moiety is the reference, and therefore a value equal to 1 was assigned to the Gdm-Cl concentra-
tion corresponding to the plateau after the first denaturation event, corresponding to a fully
folded mature NGF. The mutations did not have a significant effect on the shift in the position
of the first inflection point in the hproNGF series, while they had a significant effect in the posi-
tion of the second one, as shown in Table 2. It is noteworthy that for all mutants, the denatur-
ation point corresponding to the unfolding of the mature NGF, in the context of proNGF, had
a significant shift versus higher Gdm-CI concentrations when compared to the mature hNGFs,
thus confirming a stabilizing effect of the pro-peptide on the mature part of the protein, as
already reported [46, 47].

The thermal denaturation of the mutants was also investigated, by Differential Scanning
Fluorimetry (DSF—Thermofluor). As shown in Fig 4A, the mutations had a small although
significant destabilizing effect (P<0,01) effect on the melting temperature of the hANGF pro-
teins, when compared to the hNGF WT, with the double mutant showing a higher effect
(Table 3).

The R100E mutation had a destabilizing effect also on the hproNGFs mutants when com-
pared to the hproNGF WT (P<0,01), even though smaller than in the case of the mature pro-
teins, (Fig 4B), while the P61S mutation seemed to even have an increased stabilizing effect.
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Table 2. Inflection points extrapolated by the chemical denaturation profiles of human NGF and proNGF Wild Type and mutants.

hNGF WT hNGF P61S hNGF R100E hNGF P61S R100E
inflection point (M) 3.0 2.8 3.2 3.0
hproNGF WT hproNGF P61S hproNGF R100E hproNGF P61S R100E
inflection point 1 (M) 1.5 15 1.0 1.0
inflection point 2 (M) 4 3.8 4.2 3.2

doi:10.1371/journal.pone.0136425.t002

Notably, not all the samples showed a double transition that likely corresponds to a two-step
denaturation mechanism, i.e. the unfolding of the pro-peptide as the first event, followed by
the unfolding of the mature part. The results might be apparently counterintuitive. However, it
should be taken into consideration that the DSF assay makes use of the Sypro Orange dye that
is known to bind to the hydrophobic surfaces of the proteins. Therefore, the highly flexible
pro-peptide might be prone to interact with the dye giving rise, during the initial unfolding
event, to unusual denaturation profile curves (Fig 4B).

TrkA-dependent and p75-dependent bioassays: TF1 Proliferation assay
and Oligodendrocytes differentiation assay

The receptor specific biological activity of the ANGF mutants was comparatively evaluated by
two cellular assays: the proliferation assay using TF1 human erythroleukemic cells, and the dif-
ferentiation assay of primary rat oligodendrocytes, in order to confirm the consequences on
the biological activity of the NGF mutations on TrkA-mediated biological activity and to add
knowledge on the effects of the double mutation on p75™'® activity.

In order to compare the bioactivity of hNGFs on TrkA receptor, ANGF WT and hNGF
mutants were tested using the TF1 erythroleukemic cells-based proliferation assay. This
human cell line expresses human TrkA receptor in the absence of detectable p75™ '~ [30]. NGF
induces autophosphorylation of TrkA and substitutes for granulocyte-monocyte colony-stimu-
lating factor (GM-CSF) to trigger the proliferation of TF1 cells. Thus, the assay provides a
quantitative measure of NGF activity and potency via human TrKA receptors.

Each hNGF protein, tested by this quantitative TF1 bioassay, exhibited a characteristic dose
response curve (Fig 5). Moreover, as evident from the small error bars in Fig 5, for each mutant
there was a high consistency between different protein batches and different experiments. We
conclude that the TF1 bioassay can be considered a biological and quantitative “fingerprint”
for each mutant.

Table 4 reports the maximal TF1 proliferation induced by the various hNGFs mutants
(Hmax) and the NGF concentration determining a half maximum effect on cell proliferation
(C50), calculated from the curves interpolating the experimental points. The data were tested
by pairwise Student’s t-test, in all possible combinations, with FDR multiple testing correction.
Hmax values exhibited a p value <0.05 for all the pairs analyzed, while the only significant dif-
ference (p<0.05) in the C50 pairs analyzed was that between hNGF P61S and hNGF R100E.

Table 3. Melting Temperature (Tm) extrapolated by the thermal denaturation profiles of human NGF and proNGF Wild Type and mutants.

hNGF WT hNGF P61S hNGF R100E hNGF P61S R100E
Tm (°C) 721 +£0.2 70.6 £ 0.1 70.4 £ 0.1 65.5+ 0.6
hproNGF WT hproNGF P61S hproNGF R100E hproNGF P61S R100E
Tm (°C) 70.8+0.1 749+0.1 69.5+0.4 68.4 £0.2

The values are averages of the different experiments. The errors represent standard deviations.

doi:10.1371/journal.pone.0136425.t003
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hNGF WT treatment in TF1 cells resulted in a strong proliferative response. The hANGF P61S
treatment yielded a response ANGF WT-alike by exhibiting a similar C50 value, but a lower
Hmax value. The painless mutant ANGFR100E showed a drop in Hmax. hNGF P61SR100E
exhibited an intermediate action in between those of the hNGF P61S and hNGF R100E mutants.

To compare the bioactivity of ANGF mutants to hANGF WT selectively through the neuro-
trophin receptor p75™ ' %, purified primary rat oligodendrocytes cultures (OPCs), which

Table 4. Parameters extrapolated by the interpolation of the TF1 proliferation curves of human NGF
wild type and mutants.

Protein Hmax (nm)? Cso (ng/mL)°
hNGF WT 25+ 0.1 50+£1.3
hNGF P61S 2.0+ 0.1 43+1.3
hNGF R100E 1.5+£0.1 10921
hNGF P61S R100E 1.8+0.1 8.1+1.7

& Hmax is the maximum OD reached when the curve is saturated.

PC50 represents the concentration of h(NGF determining half of the maximum effect on cell proliferation.
The values represent the average of the calculated Hmax and C50 parameters. The errors are standard
deviations.

doi:10.1371/journal.pone.0136425.t004
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Fig 6. hANGF WT and mutants bioactivity on in vitro differentiation of purified primary rat OPCs. Panel A: Immunolabelling of primary purified OPC
cultures grown for 24 hours in control conditions or in the presence of ANGF WT or its mutants (R100E, P61S, P61S R100E; all compounds are 150 ng/ml).
Cell nuclei are marked with DAPI (blue). Scale bar: 50 um. hNGF increases the percentage of undifferentiated NG2+ cells (left panels: in red) and decreases
the percentage of O4+ pre-oligodendrocytes (right panels: in red), indicating that NGF inhibits OPC differentiation. The same effect is observed when cells
were growth in the presence of the hNGF mutant P61S but not of R100E nor P61S R100E. Panel B. Quantification of the percentage NG2+ (upper panel)
and O4+ (lower panel) OPCs in all different experimental conditions. Three coverslips per experiment were performed in each experimental group. Ten
random microscopic fields (20x) per coverslip were evaluated. Experiments were run in triplicate. *P<0.05 vs CTL, #P<0.05 vs hNGF, One-way ANOVA
followed by Newman-Keuls post-test. Panel C. None of the compounds tested (all 150 ng/ml; 24 hours exposure) induced toxicity in rat OPC cultures.

doi:10.1371/journal.pone.0136425.g006

express p75™ '\, but not the TrkA receptor [22], were used. hNGF, by activating p75™ ', inhib-
its OPCs differentiation [22, 40], therefore we investigated whether ANGF mutants were able
to signal through p75™"® by measuring OPCs differentiation. OPCs spontaneously differenti-
ate from immature, proliferating, NG2+ cells, versus O4+ post-mitotic pre-oligodendrocytes.
Thus, an increase in the percentage of NG2+ cells, or a decrease in the percentage of O4+ cells
in comparison to control conditions, indicates inhibition of OPCs differentiation.

First, by using immunocytochemistry in rat OPC primary cultures we confirmed that expo-
sure to ANGF WT (150 ng/ml, 24 hours) increased the percentage of undifferentiated NG2
+ cells and decreased the percentage of O4+ pre-oligodendrocytes, indicating that ANGF inhib-
its OPCs differentiation, concurring with previous reports [22] (Fig 6). Then, we evaluated the
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effect of the various mutants and we observed that exposure to hNGF P61S (150 ng/ml, 24
hours) produced similar effects to ANGF WT on OPCs differentiation, enhancing the percent-
age of the undifferentiated NG2+ cells in comparison to the untreated control group (Fig 6).
Furthermore, this inhibitory effect was absent when OPCs were grown in the presence of
hNGF R100E or hNGF P61SR100E mutants (both 150 ng/ml, 24 hours) (Fig 6). In fact, as
expected by their lower binding affinity for the p75™'® with respect the wild-type form [25],
the mutants hNGF R100E and hNGF P61SR100E were similarly inactive in inhibiting OPC dif-
ferentiation since the percentage of either NG2+ or O4+ cells observed in the presence of these
mutants was unchanged as compared to controls (Fig 6). MTT viability assay revealed that
none of the proteins tested, either wild-type or mutants, did induce any toxicity in rat OPC pri-
mary cultures (Fig 6). Thus, the present data demonstrate that both hANGF R100E and hNGF
P61SR100E mutants show a similar reduced ability to inhibit OPCs differentiation as com-
pared to the ANGF WT.

In vitro stability of ANGF WT and the mutants by TF1 Proliferation assay

In order to further assess the stability of WT and mutants hNGF, the loss of bioactivity follow-
ing incubation of the proteins in different conditions was evaluated. This experiment was car-
ried out also to provide indications for the experimental handling of ANGF and mutants in
research activities and in a future clinical use as drugs.

hNGF WT and mutants were incubated at different temperature (4°C, 22°C) with the time-
course described in the Materials and Methods section, and their bioactivity was tested using
the TF1 erythroleukemic cells-based proliferation assay. Using the same biological readout, the
bioactivity was also evaluated after 5 and 12 freeze and thaw cycles, and after lyophilisation.

The dose response curves obtained by TF1 proliferation assay were interpolated, and Hmax
and C50 values were obtained. C50 was the parameter more affected by the loss of stability.
Indeed, the TF1 curves appeared shifted to higher value of ANGF concentration determining
half of the maximum effect on cell proliferation (1/2 Hmax).

In order to measure the differences in stability between hNGF and mutants after each treat-
ments, a comparison of the AC50 values is shown in Fig 7 and in Table 5. The reference curve
exhibits a AC50 value equal to 0, so that AC50 values higher than 0 indicate that the stability of
the NGF sample tested was affected.

The hNGF R100E mutant exhibited a high destabilization in all the treatments. This was
evident from the experimental points that did not fit with the theoretical dose-response curves,
exhibiting high errors (see S2 Fig). In the case of the treatment at 4°C for 4 weeks, the AC50
value could not be calculated due to the fact that the data points of the 4 weeks at 4°C incuba-
tion could not be interpolated (see S2 Fig). Due to this behaviour, the AC50 values correspond-
ing to hNGF R100E for: 4°C at 2 and 4 weeks incubation, 22°C at 4 weeks incubation and 12
freeze-thaw treatment, cannot be treated by the statistical analysis and were thus excluded.
Otherwise, when possible, the data were analysed by pairwise Student’s t-test, in all possible
combinations, with FDR multiple testing correction.

The AC50 data corresponding to 1 week incubation at 4°C and 22°C were not reported in
the histogram since the proteins stability did not significantly change with the exception of
hNGF R100E. In general, the temperature treatments at 4°C did not affect significantly the sta-
bility of all the mutants. ANGF P61SR100E appeared to be slightly destabilized after the incuba-
tion at 22°C for 2 weeks, when compared to both ANGF WT and hNGF P61S. hNGF R100E
exhibited the highest AC50 in almost all the conditions This indicates a significant destabiliza-
tion of the protein in these conditions, despite the significativity could not be calculated by the
statistical test carried out (see S2 Fig)
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compared to hNGF P61S. Circles represent the samples with a p<0.05 when compared to hANGF P61SR100E.

doi:10.1371/journal.pone.0136425.9007

Table 5. A comparison of the AC50 values concerning the in vitro stability test of human NGF Wild type and the mutants.

Reference 4°C—2 4°C—4 22°C—2 22°C—4 5 Freeze-thaw 12 Freeze-thaw  Lyophilization
curve weeks weeks weeks weeks cycles cycles
hNGF WT 0.00 £ 0.27 0.70+0.27 0.38+0.29 0.74 £ 0.39 3.66 + 0.91 1.10+0.33 1.74 £ 0.48 0.30 £ 0.25
hNGF P61S 0.00 £ 0.32 0.79 £ 0.58 1.30 £ 0.73 0.46 + 0.31 1.61 £ 0.55 0.78 £ 0.26 2.32+0.72 0.00+0.17
hNGF R100E 0.00 £ 0.19 6.49 £ 2.21 N.A. 7.52 +4.22 62.03 + 437 6.00 + 1.36 62.17 + 194 0.32 £ 0.21
hNGF 0.00 £ 0.21 4.02+1.12 9.02+2.32 2.76 £ 0.88 5.62 £+ 3.79 1.36 + 0.38 3.35% 0.63 0.59 £ 0.34

P61SR100E

In order to measure the differences in stability between hNGF and the mutants after the treatments (4°C and 22°C incubation, freeze-thaw cycles,
lyophilization) a comparison of the AC50 values was evaluated. The reference curve, corresponding to the hNGF or the mutant untreated, exhibits a AC50
value equal to 0, so that AC50 values higher than 0 indicate that the stability of the NGF sample tested was affected. The AC50 for the different
treatments were calculated using the formula indicated in the Materials and Methods section. The errors were calculated based on the error propagation
formulae. The hNGF R100E mutant exhibits in two treatments high error values (in bold). This is due to the fact that the experimental points corresponding
to those treatments did not fit with the theoretical curve, causing high errors. This behavior indicates a strong destabilization of the protein (see S2 Fig).

doi:10.1371/journal.pone.0136425.1005
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The freeze-thawing cycles did not affect significantly the stability of the ANGF WT, P61S.
hNGF P61SR100E was slightly destabilized after 12 freeze-thawing cycles when compared to
hNGF WT and hNGF P61S, while hNGF R100E was highly destabilized in both the treatments.
Finally, the lyophilisation treatment did not affect significantly the bioactivity of all the pro-
teins, and it could be used as a procedure to better store all the mutants, in particular ANGF
RI1000E, mostly affected by all the treatment tested.

In conclusion, ANGF WT and P61S were not destabilized significantly by the treatments,
whereas hNGF P61SR100E appeared slightly less stable than hNGF WT and P61S in some of the
tested condition. On the other hand, hNGF R100E stability was mostly affected by temperature
and freeze and thaw cycles. These data further validate the previously discussed biochemical and
biophysical characterization, highlighting the role of structural stability on their bioactivity.

Binding affinity analysis of NGF mutants: Surface Plasmon Resonance

In order to gain further insights into the impact of the mutations on the properties of NGF, the
binding profiles of the mutants against a panel of antibodies, as structural probes, were charac-
terized by Surface Plasmon Resonance. The binding to TrkA and p75™ ' receptors have been
already investigated [25]. Two different anti-NGF antibodies (mAb 256 R&D System and mAb
oD11 [29]), and one anti-proNGF antibody (Millipore, Darmstadt, Germany), were used, in
order to verify whether differences in the biophysical and biological behaviour of the various
hNGEF proteins are reflected also in their interaction kinetic with well established antibody
binding partners.

From the binding curves (Fig 8), major differences, in the intensities and in the interaction
kinetics, were apparent (S3 and S4 Figs, S1 Table), which well compared to those of the hNGFs
with both anti-NGF monoclonal antibodies. The binding curves of ANGF WT and hNGF P61S
to anti-NGF antibodies were almost overlapping. The hNGF R100E showed a significant
impact on its interaction with the anti-NGF antibodies. The hANGF P61SR100E mutant
behaved in an intermediate way, indicating that the P61S mutation could somehow mitigate
the effects of the R100E mutation. As reported in Tables 6 and 7, the differences in the binding
curves reflect differences in the affinity (Kp values), the hNGF R100E mutant having a lower
affinity than the other mutants.

The hproNGFs mutants interacted with different kinetics and different affinities against
anti-NGF and anti-proNGF antibodies, respectively (Table 7, Fig 8, S3-S5 Figs, S1 and S2
Tables). In general, the hproNGFs had lower affinities for the anti-NGF antibodies, than the
corresponding hNGFs, as already reported for the interaction between anti-NGF mAb aD11
and mouse proNGF [27, 48]. The proNGFs mutants showed very similar affinities for the anti-
proNGF antibody (Table 7), despite some significant differences in their kinetic profiles (see
Fig 9 and S5 Fig).

These data provides additional support to the finding that the pro-peptide has an intra-
molecular interaction with the mature moiety that in turn influences the interactions of the
mature NGF with its specific partners (be it receptors or antibodies). In line with this, the SPR
data confirmed an effect of the R100E mutation also on the proNGF domain, even if the muta-
tion is located within the mature NGF moiety. Finally, these data confirmed that the impact of
the mutations on hNGFs and hproNGFs is different, depending on the mutation, being greater
for the RI00E mutation.

ELISA assay to detect hANGF P61S “tagged” mutants

An immunoassay, able to selectively measure P61S tagged NGF molecules in biological fluids,
against the background of endogenous hNGF, was developed. In the optimal format, the anti-
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NGF 4GA MADb was captured on the plastic wells, the hNGF P61S was used for the standard
calibration curve (between 0,15 and 5 ng/ml) and the rabbit anti-NGF polyclonal antibody
H20 (Santa Cruz) was used as the detecting antibody. The curve was interpolated linearly and
the analytical sensitivity of the assay was established to be 0.15 ng/ml (Fig 10).

In order to confirm the specificity of the assay and the selectivity between hNGF P61S and
NGF WT from various species, the calibration curve was carried out using hNGF P61S, as well as
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Fig 8. SPR kinetic analysis of NGF and mutants. SPR kinetic analysis of the binding of ANGF WT (blue), hNGF P61S (red), hANGF P61SR100E (yellow),
hNGF R100E (green) to the anti-NGF antibodies R&D MAB 256 (panel A) and aD11 (panel B). For each panel, the displayed curves correspond to the higher
concentration of the analyte, both for ANGF WT and mutants, in order to compare the neurotrophins on the same antibody. The detailed SPR kinetics are

shown in S3-S5 Figs.

doi:10.1371/journal.pone.0136425.9008
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Table 6. Summary of the binding affinities of human NGF wild type and the mutants for the MAb anti-
NGF: R&D (MAB 256) and aD11[29] in Surface Plasmon Resonance binding experiments (NGF con-
centration range: 0.1-100 nM).

MAD anti-NGF R&D MAD anti-NGF aD11
h-NGF WT Kp=1.5nM Kp < pM
h-NGF P61S Ko =2nM Kb < pM
h-NGF R100E Ko =5nM Kp =7 pM
h-NGF P61SR100E Kp=1nM Kp =7 pM

doi:10.1371/journal.pone.0136425.t006

mouse, rat and human NGF (Fig 10). The experiment confirmed that ANGF P61S, but not hANGF
WT, mouse NGF (mNGF) and rat NGF (rNGF) gives rise to a significant antibody binding, It is
important to note that previous studies demonstrated that the anti-NGF MAb 4GA also binds
mouse NGF (which has Proline in position 61, like the human P61S mutant) [27] in a direct
ELISA format. However in the sandwich assay format presented here, the primary antibody H20
(Santa Cruz) used, specifically binds hNGF. Therefore the antibodies combination used in this
sandwich ELISA format, (one, 4GA, specific for the P61S mutation and the second, H-20, specific
for human NGF), ensures the specific detection of the P61S tagged molecules versus other forms
(hNGF WT or mNGF or rNGEF). Thus, therapeutic traceable NGF could be discriminated,
against the background of endogenous unmodified NGF in preclinical and clinical studies.

In order to assess the applicability of the ELISA to quantitatively detect the hANGF P61S
tagged mutants in biological samples, a set of validation tests were carried out using mouse or
rat brain homogenates. Two different concentrations of the recombinant hNGF P61S were
spiked into mouse and rat brain tissues, to evaluate the background effect of the biological sam-
ple. For each assay, the samples were analyzed in duplicate and the measured values were com-
pared to the theoretical values of the spiking, to obtain the recovery percentage (Table 8). The
interference of the biological sample can be considered irrelevant, as shown from the recovery
percentages indicated in Table 8, both for mice and rats brain tissues.

The test (10 assays) was performed by different operators and the results were highly repro-
ducible, (see standard deviation in Fig 10).

The ELISA was carried out also using hNGF P61SR100E for the calibration curve, confirm-
ing the same sensitivity and reproducibility.

We conclude that this immunoassay can be exploited to determine the biodistribution of
the hNGF mutants containing the traceable tag P61S into mice and rat brain tissue, in preclini-
cal studies.

Pain sensitivity activity of wild type versus mutant forms of ANGF

In order to evaluate and compare the pro-nociceptive activity of the various hNGFs, WT and
mutants were injected in the hind-paw of adult CD1 mice and the associated mechanical

Table 7. Summary of the binding affinities of human proNGF wild type and the mutants for the MAb
anti-NGF: R&D (MAB 256) and aD11 [29] and the MAb anti-proNGF Millipore (clone EP1318Y) in Sur-
face Plasmon Resonance binding experiments (proNGF concentration range: 0.1—100 nM).

MADb anti-NGF R&D MADb anti-NGF aD11 MADb anti-proNGF Millipore

h-proNGF WT Kp =30 nM Kp =4 nM Kp =5nM
h-proNGF P61S Kp = low Kp=4nM Kp=7nM
h-proNGF R100E Kp =3 uM Kp =20 nM Kp=7nM
h-proNGF P61SR100E Kp=1nM Kp=4nM Kp=3nM

doi:10.1371/journal.pone.0136425.t007
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R&D MAB 256 (panel A), aD11 (panel B), and the anti-proNGF antibodies Millipore clone EP1318Y (panel
C). For each panel, the displayed curves correspond to the higher concentration of the analyte, both for
hproNGF WT and mutants, in order to compare the proneurotrophins on the same antibody. The detailed
SPR kinetics are shown in the S3-S5 Figs.

doi:10.1371/journal.pone.0136425.g009

allodynia and heat hyperalgesia were studied. In a previous paper we showed that ANGF WT
and the hNGF P61S mutant evoked a time-dependent and dose-dependent mechanical allody-
nia which was maximal 5 hours after treatments and at the highest dose of 4 ug/20 pl/paw,
while the same dose of hANGF R100E and of the double mutant hANGF P61SR100E evoked a
reduced allodynia [24]. Here, an additional dose of all mutants have been tested. First, we con-
firmed that, while ANGF WT and hNGF P61S were already active at the dose of 1 ug/20 y, the
mutants hNGF R100E and hNGF P61SR100E at the dose of 4 ug/20 pl failed to induce pro-
nociceptive effects (Fig 11A). Remarkably, while hNGF WT induced mechanical allodynia at

1 pg/20 pl/paw dose (Fig 11 and S6 Fig), the same level of pain was achieved only in response
to 10-fold higher concentrations of ANGF R100E or hNGF P61SR100E mutants (10 ug/20 pl/
paw).

Controlateral paw showed no significant change in withdrawal thresholds (data not shown).
Thus we concluded that both hNGF mutants show a reduced capacity to evoke mechanical
allodynia even at a higher dose that what shown before.

Thermal hyperalgesia was assessed by using hot plate assay. In a previous study we showed
that the intraplantar (i.pl.) injection of 4 ug/20 pl of ANGF WT induced thermal hyperalgesia
from 3 to 5 hours after the injection, while ANGF R100E did not [22]. No data were available
for the double mutant hNGF P61SR100E. Here, we measured the hot thermal hyperalgesia
evoked by i.pl. injection of wild type or mutant hNGFs, including the double mutant, not only
after the injection of 4 ug/20 pl, but analyzing a dose dependent effect during time. ANGF
induced thermal hyperalgesia from 3 to 5 hours after the injection of 4 and 10 pg/20 ul, ANGF
P61S evoked a dose-dependent thermal hyperalgesia, which was significant already at the dose
of 1 pg/20 pl and maximal at 10 ug/20 ul (Fig 11B). The mutant hANGF R100E showed thermal
hyperalgesia only at the highest dose used (10 pg/20 pl) (Fig 11B). Similarly, the double mutant
hNGF P61SR100E produced a significant pro-nociceptive effect only at the highest dose of
10 pg/20 pl (Fig 11B).

These data underline that hANGF P61SR100E mutant shows a markedly reduced pro-noci-
ceptive activity as compared to ANGF WT and hNGF P61S.

Discussion

We have previously designed and characterized a hNGF mutant with a reduced nociceptive
action, inspired by HSAN V, a rare human genetic disease of congenital insensitivity to pain.
This form of hANGF, namely hNGF R100E, shows a reduced nociceptive action, maintaining
the neurothrophic activity. We also investigated two more mutants, namely the hANGF P61S,
that is selectively detectable against ANGF WT, by using a specific monoclonal antibody, and
hNGF P61SR100E, a double mutant, that harbors, beside the painless mutation, the "tagging"
mutation that could provide the property of being traceable in biological samples [22-25].

In our previous paper [24], based on the pharmacological efficacy in rescuing phenotype in
mice models of neurodegeneration, it was suggested that the mutant ANGF P61SR100E could
be considered a therapeutic lead candidate for further development. We now report the struc-
ture-activity relationships of the mutants, in both their precursor and mature forms, by putting
special emphasis on the properties that a molecule should exhibit in order to be developed as
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doi:10.1371/journal.pone.0136425.9g010
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Table 8. Validation test to evaluate the interference of biological samples on the ELISA assay (mice and rat brain tissues).

Spiking of hANGF P61S tagged (ng/ml) Mice Brain Tissue Rat Brain Tissue
Recovery % (average of 3 samples) CV% Recovery % (average of 22 samples) CV%
25 112 10 156 18
0.625 88 68 88 38

doi:10.1371/journal.pone.0136425.t008

therapeutic candidate by taking a more systematic comparative approach, and studying a num-
ber of properties, such as:

- stability as determined by biochemical, biophysical and cellular experimental read-outs;

- structural impact of the mutations based on biophysical measurement both on the mature
and the precursor forms

- responsiveness to the TrkA and p75™'® receptors in cellular models
- algesic properties upon injection in vivo

Finally, in order to exploit the fundamental traceability property of the P61S mutation, a
robust and sensitive immunoassay for the detection of mutants in biological samples was
developed.

The stability of the mutants was evaluated, with respect to ANGF WT, by different biochem-
ical/biophysical approaches. Besides the results obtained by thermal stability, in which small
differences were observed, it is clear that the P61S mutation does not affect the stability of the
protein significantly. On the contrary, the mutation R100E shows a greater destabilization, as
seen both in the rate of proteolytic cleavage as well as in the chemical denaturation. The ANGF
P61SR100E exhibits an intermediate behavior, highlighting the stabilizing influence of the
P61S mutation, which partially mitigates the effect of R1I00E mutation.

In order to gain further insights in the stability properties of hANGF and mutants, the loss of
bioactivity after different treatments has been exploited by using a quantitative biological read-
out. From the comparison of the AC50 value, ANGF WT and P61S appeared not destabilized
significantly by the treatments, while ANGF P61SR100E was slightly less stable than ANGF WT
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Fig 11. Painful effect induced by hNGF WT or mutants. Pooled data of the mechanical allodynic response (A) and the thermal (hot) hyperalgesic
response (B) evoked by intraplantar (i.pl.) injection (20 pl) of ANGF WT, hNGF R100E, hNGF P61S, hNGF P61S R100E or their vehicle (Veh, isotonic
saline), measured 5 hours post-treatment. Data are mean + sem of at least n = 4 mice per group; *P<0.05 vs. Veh or ANGF WT 0.1 pg or ANGF P61S 0.1 pg;
#P<0.05 vs. ANGF WT 1 pg or hANGF P61S 0.1 pg; §P<0.05 vs. hNGF WT 10 pug or hNGF P61S 10 pg. One-way ANOVA followed by Bonferroni post-test.

doi:10.1371/journal.pone.0136425.g011
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and P61S. On the contrary, ANGF R100E stability was greatly affected by all the treatments.
These data support the reported biochemical/biophysical studies, and also highlight that a
striking difference in their stability has been detected in a cellular context between hNGF
R100E and hNGF P61SR100E.

The far-UV circular dichroism results confirmed the differences between the mutants,
reflected in different secondary structure composition of the proteins. From the structural
point of view, it appears that the P61S mutation shows a very limited influence on the overall
structure of mature hNGF, while the R100E mutation has a greater effect, also affecting the sec-
ondary structure of the pro-peptide moiety.

The tridimensional structure of human NGF (PDB (Protein Data Bank): lwww and Fig 12)
highlights the residue R100 to be engaged in an electrostatic interaction (salt bridge) with the
neighbouring residue D93. The Arginine to Glutamic Acid substitution in the described
mutants introduces a local repulsive interaction that may alter the overall loop conformation.

The biophysical characterization also pinpointed differences between the hproNGF R100E
and hNGF R100E. Although the mutation resides on the mature protein, the position is close
enough to the region of NGF comprising residue W21, that in turn has been suggested to inter-
act with the pro-peptide [27, 42]. Therefore, we reasoned that a change in the loop conforma-
tion carrying R100E in the mature protein might influence also the interaction with the pro-
peptide. Indeed, our structural studies confirmed that there is a significant interaction between
the pro-peptide and the mature domains of murine NGF [46] and that this interaction is prob-
ably accounting for the differences observed in the wild-type and mutant proteins, both in
their mature and precursor forms. Our structure-activity relationship analysis provides there-
fore novel insights into the molecular determinants modulating the properties of ANGF
mutants.

The receptor specific biological activity of the ANGF mutants was comparatively evaluated
by two cellular assays: the proliferation assay on TF1 human erythroleukemic cells, and the dif-
ferentiation assay of primary rat oligodendrocytes, in order to dissect the mutants functional
signalling through the TrkA or the p75™ '~

The biological activity of the mutants, evaluated using the TF1 assay differs significantly.
hNGF WT is the most effective in inducing proliferation in TF1 cells, as expected. ANGF P61S
is comparable to hANGF WT in its ability to induce TF1 cells proliferation in a dose/dependent
manner, exhibiting a similar C50 value, but a lower Hmax. The painless mutant ANGF R100E
shows a decreased Hmax and increased C50 values, even if the C50 is still in the range of low
NGF concentrations. hANGF P61SR100E exhibits an intermediate action, as shown by the
Hmax and C50 values, falling between those of the hNGF P61S and hNGF R100E mutants.

Moreover, in oligodentrocyte differentiation assay, we found that ANGF WT causes an
increase of the percentage of undifferentiated NG2+ cells and a consequent decrease of the per-
centage of O4+ pre-oligodendrocytes, indicating that hNGF inhibits OPCs differentiation. The
effect was absent when OPCs were grown in the presence of ANGFR100E or hNGF
P61SR100E. These data show that the single and double R100E mutants are similarly impaired
in their ability to engage p75™ ' %, a property of relevance for their receptor signalling profile.

Finally, we extended the studies on the pro-nociceptive effects of the various mutants in
mouse. In this experimental setting we measured the ability of both the mutants, ANGF R100E
and hNGF P61SR100E, to induce pro-nociceptive effects, mechanical allodynia and thermal
hyperalgesia, compared to hNGF and hNGF P61S, respectively. We observed that both hNGF
R100E and hNGF P61SR100E were significantly less potent than hNGF WT and hNGF P61S
to elicit mechanical allodynia and thermal hyperalgesia, respectively.

Thus, we characterized a set of ANGF mutants with therapeutic potential, aimed at the
design of new clinical protocols for the treatment of different kind of diseases, such as

receptors, respectively.
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R100 D93

Fig 12. NGF crystallographic structure showing the mutation. NGF crystallographic structure (PDB ID: 1Twww, in blue) in which the mutated Arginine
(R100) and the neighbouring Aspartic Acid (D93), engaged in a ionic bridge, are highlighted in red. Fig 12 has obtained using Pymol [49].

doi:10.1371/journal.pone.0136425.9012

Alzheimer's disease, diabetic neuropathies, ophthalmic diseases and dermatological ulcers,
where the neurotrophic effects of NGF could be exploited, by avoiding the nociceptive side
effects induced by the neurotrophin.

Summing up the results of our previous studies with those presented in this study, we can
confirm that, among the different designed mutants, the most promising candidate to advance

PLOS ONE | DOI:10.1371/journal.pone.0136425 September 15,2015 29/34



@’PLOS ‘ ONE

NGF P61SR100E: A Painless NGF for Therapeutic Applications

towards clinical trials is ANGF P61SR100E. Compared with the ANGF R100E, hNGF
P61SRI100E is characterized by a higher expression level in the production as recombinant pro-
tein, by a better ability in induce TF1 proliferation, and by a higher stability.

The observed lower stability of hNGF R100E with respect to hNGF P61R100E rationalize
our previous findings described in Capsoni et al. [22, 24], in which we reported that hNGF R100E
was less effective than NGF61/100 in rescuing Alzheimer phenotype in AD11 mouse model.

hNGF P61SR100E, moreover, exhibits about 10 fold lower potency in eliciting pain in mouse
with respect to hNGF WT and hNGF P61S, a reduction in nociceptive sensitization similar to
that shown by hNGF R100E. Present promising in vivo data, although obtained in mouse, suggest
that the use of the hNGF P61SR100E could increase the therapeutic window for NGF in man. It
could be possible, however, that while animal experiments showed less pronociceptive effect, the
same might not occur in humans. Further studies with human material may thus be helpful to
better understand the nociceptive effects of the hANGF painless, even if the genetic inspiration of
these mutants from the pain insensitivity HSANV disease predicts that this protein will also be
less painful in humans. In any case, these results provide a strong ground towards performing
clinical studies in man. Indeed, the large phase 3 diabetic neuropathy NGF clinical trial failed
because the threshold of the administered hNGF W'T, that provoked pain in patients, coincided
with the minimal pharmacologically effective dose (1 pg/kg) [18]. The hNGF P61SR100E admin-
istration could permit to reach the pharmacologically effective dose avoiding nociceptive effect in
that therapeutic indication, but, by extension, likely also in other indications as well.

Last but not least, the ANGF P61SR100E mutant, has the additional benefit of being trace-
able, since the tagging P61S mutation can be recognized by the specific MAb 4GA antibody. To
exploit this property, a specific and highly sensitive ELISA assay for the detection of the trace-
able hNGF P61S mutants in biological samples has been developed. The novel immunoassay
could allow high sensitivity measurement of ANGF P61S mutants in biological fluids, in order
to track the administered hNGF P61S mutants in preclinical and clinical studies. This feature
would then permit to monitor bio-distribution of the drug and precisely define its correct ther-
apeutic window, preventing side effects.

Supporting Information

S1 Fig. Human pre-proNGF aminoacid sequence. The cDNA sequence for human pre-
proNGEF is reported (UniProt entry P01138).The signal sequence is indicated in italics; the pro-
peptide in normal text; mature NGF is indicated in bold. The furin cleavage site is marked as
double underline. The sequence of proNGF25 is highlighted by the red box. Position 61 of the
mutation P61S is indicated in blue. Position 61 of the mutation R100E is indicated in green.
(DOCX)

S2 Fig. hANGF R100E TF1 dose-response curves of in vitro stability test. TF1 dose-response
curves of the mutant hANGF R100E after incubation at 4°C (2 weeks green triangles, 4 weeks
empty circles) and freeze-thaw cycles (5 freeze-thaw orange circles, 12 freeze-thaw red squares)
with respect of the untreated control (blue squares). Where possible, the curves were fitted
(continuous lines). All the treatments shown in the graph, strongly affected the stability of the
mutant hANGF R100E, as evident from the curve shapes. The experimental points referred to
the incubation of 4 weeks at 4°C failed to be interpolated with a dose-response curve

(DOCX)

$3 Fig. Kinetics of binding of NGF and proNGF mutants over MAb R&D. Detailed SPR
binding kinetics of the neurotrophins over the anti-NGF antibody R&D MAb 253. A- h-NGF;
B- h-proNGF; C- h-NGF P61S; D- h-proNGF P61S; E- h-NGF R100E; F- h-proNGF R100E;
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G- h-NGF P61SR100E; H- h-proNGF P61SR100E. Concentrations used, from top to bottom:
100, 50, 25, 6.3,3.1, 1.6, 0.8, 0.4, 0.2, 0.1 nM.
(DOCX)

$4 Fig. Kinetics of binding of NGF and proNGF mutants over MAb aD11. Detailed SPR
binding kinetics of the neurotrophins over the anti-NGF antibody MAb oD11. A- h-NGF; B-
h-proNGF; C- h-NGF P61S; D- h-proNGF P61S; E- h-NGF R100E; F- h-proNGF R100E; G-
h-NGF P61SR100E; H- h-proNGF P61SR100E. Concentrations used, from top to bottom: 100,
50, 25,6.3,3.1,1.6,0.8,0.4,0.2, 0.1 nM.

(DOCX)

S5 Fig. Kinetics of binding of NGF and proNGF mutants over MAb Millipore clone
EP1318Y. Detailed SPR binding kinetics of the neurotrophins over the anti-NGF antibody MAb
Millipore clone EP1318Y. A- h-proNGEF; B- h-proNGF P61S; C- h-proNGF R100E; D- h-proNGF
P61SR100E. Concentrations used, from top to bottom: 100, 50, 25, 6.3, 3.1, 1.6, 0.8, 0.4, 0.2, 0.1 nM.
(DOCX)

S6 Fig. Painful effect induced by ANGF WT and mutants. A) Time- and dose-dependent
mechanical allodynic response evoked by intraplantar (i.pl.) injection (20 ul) of hANGF WT,
hNGF R100E(left panel) and hNGF P61S, hNGF P61SR100E (right panel) or their vehicle
(Veh, isotonic saline). Each point represents the mean + sem of n>4 mice; “P<0.05 vs. Veh or
hNGF P61S (0.1 pg). One-way ANOVA followed by Bonferroni post-test. B) Time- and dose-
dependent thermal (hot) hyperalgesic response induced by i.pl. Injection of ANGF WT, hNGF
RI00E (left panel) or hANGF P61S and hNGF p61S R100E (right panel) and their Veh. Each
point represents the mean + sem of n>4 mice; *P<0.05 vs. Veh or hNGF WT (4 pg) or hNGF
P61S (1 pg). One-way ANOVA followed by Bonferroni post-test.

(DOCX)

S1 Table. Kinetics data of NGF and proNGF WT and mutants. Summary of the kinetic con-
stants of human NGF and proNGF WT and mutant, for the MAb anti-NGF R&D System
(MAB 256), the MAD anti NGF aD11 and the MAb anti-proNGF Millipore (clone EP1318Y),
extrapolated by the Surface Plasmon Resonance binding experiments.

(DOCX)

$2 Table. Comparison between NGF and proNGF Kp, constant. Summary of the binding
affinities of human NGF and proNGF WT and mutants for the MAD anti-NGF: R&D (MAB
256) and aD11 and the MAb anti-proNGF Millipore (clone EP1318Y) in Surface Plasmon Res-
onance binding experiments.

(DOCX)

Acknowledgments

We are grateful to Dr. Ivan Arisi (EBRI) for the regression analysis on the TF1 cellular assay
and for the advice in statistical analysis.

We thank Dr. Fabiola Moretti and her group (CNR) for the access to the EnSpire Multi-
mode Plate Reader Spectrometer Perkin Elmer.

Author Contributions

Conceived and designed the experiments: AC DL FP FM. Performed the experiments: FM FP
BBE SM RN EC SC. Analyzed the data: FM FP SM RN EC RP SC DL AC. Contributed
reagents/materials/analysis tools: FM FP BBE. Wrote the paper: FM FP AC DL SM.

PLOS ONE | DOI:10.1371/journal.pone.0136425 September 15,2015 31/34


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136425.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136425.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136425.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136425.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136425.s008

@’PLOS ‘ ONE

NGF P61SR100E: A Painless NGF for Therapeutic Applications

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

Levi-Montalcini R. The nerve growth factor 35 years later. Science, 1987. 237(4819): p. 1154-62.
PMID: 3306916

Dreyfus CF. Effects of nerve growth factor on cholinergic brain neurons. Trends Pharmacol Sci, 1989.
10(4): p. 145-9. PMID: 2665246

McAllister AK. Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life
Sci, 2001. 58(8): p. 1054—60. PMID: 11529498

Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sen-
sory neurons. Nature, 1989. 337(6205): p. 362—4. PMID: 2911387

Aloe L, Levi-Montalcini R. Mast cells increase in tissues of neonatal rats injected with the nerve growth
factor. Brain Res, 1977. 133(2): p. 358-66. PMID: 902100

Bischoff SC, Dahinden CA. Effect of nerve growth factor on the release of inflammatory mediators by
mature human basophils. Blood, 1992. 79(10): p. 2662—9. PMID: 1586715

DiMarco E, Albanese E, Benso S, Beatrice F, Cancedda R, Toma S. Expression of epidermal growth
factor receptor and transforming growth factor alpha in human larynx carcinoma. Cancer Lett, 1992. 65
(3): p. 189-99. PMID: 1516034

Raychaudhuri SK, Raychaudhuri SP, Weltman H, Farber EM. Effect of nerve growth factor on endothe-
lial cell biology: proliferation and adherence molecule expression on human dermal microvascular
endothelial cells. Arch Dermatol Res, 2001. 293(6): p. 291-5. PMID: 11480588

Bernabei R, Landi F, Bonini S, Onder G, Lambiase A, Pola R, et al. Effect of topical application of
nerve-growth factor on pressure ulcers. The Lancet, 1999. 354(9175): p. 307.

Landi F, Aloe L, Russo A, Cesari M, Onder G, Bonini S, et al. Topical treatment of pressure ulcers with
nerve growth factor: a randomized clinical trial. Ann Intern Med, 2003. 139(8): p. 635—-41. PMID:
14568851

Eriksdotter Jonhagen M, Nordberg A, Amberla K, Ba&ckman L, Ebendal T, Meyerson B, et al. Intracereb-
roventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement Geriatr
Cogn Disord, 1998. 9(5): p. 246-57. PMID: 9701676

Olson L, Backlund EO, Ebendal T, Freedman R, Hamberger B, Hansson P, et al. Intraputaminal infu-
sion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease. One-year
follow-up of first clinical trial. Arch Neurol, 1991. 48(4): p. 373-81. PMID: 2012510

Generini S, Tuveri MA, Matucci Cerinic M, Mastinu F, Manni L, Aloe L. Topical application of nerve
growth factor in human diabetic foot ulcers. A study of three cases. Exp Clin Endocrinol Diabetes,
2004. 112(9): p. 542—4. PMID: 15505764

Bonini S, Lambiase A, Rama P, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for
neurotrophic keratitis. Ophthalmology, 2000. 107(7): p. 1347-51; discussion 1351-2. PMID: 10889110

Lambiase A, Aloe L, Centofanti M, Parisi V, Bao SN, Mantelli F, et al. Experimental and clinical evi-
dence of neuroprotection by nerve growth factor eye drops: Implications for glaucoma. Proc Natl Acad
SciU S A, 2009.

Lambiase A, Coassin M, Tirassa P, Mantelli F, Aloe L. Nerve growth factor eye drops improve visual
acuity and electrofunctional activity in age-related macular degeneration: a case report. Ann Ist Super
Sanita, 2009. 45(4): p. 439—42. PMID: 20061666

Lambiase A, Rama P, Bonini S, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for cor-
neal neurotrophic ulcers. N Engl J Med, 1998. 338(17): p. 1174-80. PMID: 9554857

Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went
right, and what does the future hold? Int Rev Neurobiol, 2002. 50: p. 393—-413. PMID: 12198818

Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci, 2006.
29: p. 507-38. PMID: 16776595

Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G, et al. A mutation in the nerve
growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet, 2004. 13(8): p. 799—
805. PMID: 14976160

de Andrade DC, Baudic S, Attal N, Rodrigues CL, Caramelli P, Lino AM, et al. Beyond neuropathy in
hereditary sensory and autonomic neuropathy type V: cognitive evaluation. Eur J Neurol, 2008. 15(7):
p. 712-9. doi: 10.1111/j.1468-1331.2008.02172.x PMID: 18498365

Capsoni S, Covaceuszach S, Marinelli S, Ceci M, Bernardo A, Minghetti L, et al. Taking pain out of
NGF: a "painless" NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neu-
rotrophic activity. PLoS One, 2011. 6(2): p. e17321. doi: 10.1371/journal.pone.0017321 PMID:
21387003

PLOS ONE | DOI:10.1371/journal.pone.0136425 September 15,2015 32/34


http://www.ncbi.nlm.nih.gov/pubmed/3306916
http://www.ncbi.nlm.nih.gov/pubmed/2665246
http://www.ncbi.nlm.nih.gov/pubmed/11529498
http://www.ncbi.nlm.nih.gov/pubmed/2911387
http://www.ncbi.nlm.nih.gov/pubmed/902100
http://www.ncbi.nlm.nih.gov/pubmed/1586715
http://www.ncbi.nlm.nih.gov/pubmed/1516034
http://www.ncbi.nlm.nih.gov/pubmed/11480588
http://www.ncbi.nlm.nih.gov/pubmed/14568851
http://www.ncbi.nlm.nih.gov/pubmed/9701676
http://www.ncbi.nlm.nih.gov/pubmed/2012510
http://www.ncbi.nlm.nih.gov/pubmed/15505764
http://www.ncbi.nlm.nih.gov/pubmed/10889110
http://www.ncbi.nlm.nih.gov/pubmed/20061666
http://www.ncbi.nlm.nih.gov/pubmed/9554857
http://www.ncbi.nlm.nih.gov/pubmed/12198818
http://www.ncbi.nlm.nih.gov/pubmed/16776595
http://www.ncbi.nlm.nih.gov/pubmed/14976160
http://dx.doi.org/10.1111/j.1468-1331.2008.02172.x
http://www.ncbi.nlm.nih.gov/pubmed/18498365
http://dx.doi.org/10.1371/journal.pone.0017321
http://www.ncbi.nlm.nih.gov/pubmed/21387003

@’PLOS ‘ ONE

NGF P61SR100E: A Painless NGF for Therapeutic Applications

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. Development of a non inva-
sive NGF-based therapy for Alzheimer's disease. Curr Alzheimer Res, 2009. 6(2): p. 158-70. PMID:
19355851

Capsoni S, Marinelli S, Ceci M, Vignone D, Amato G, Malerba F, et al. Intranasal "painless" human
Nerve Growth Factor [corrected] slows amyloid neurodegeneration and prevents memory deficits in
App X PS1 mice. PLoS One, 2012. 7(5): p. €37555. doi: 10.1371/journal.pone.0037555 PMID:
22666365

Covaceuszach S, Capsoni S, Marinelli S, Pavone F, Ceci M, Ugolini G, et al. In vitro receptor binding
properties of a "painless" NGF mutein, linked to hereditary sensory autonomic neuropathy type V. Bio-
chem Biophys Res Commun, 2010. 391(1): p. 824-9. doi: 10.1016/j.bbrc.2009.11.146 PMID:
19945432

Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R. The pro-sequence facilitates fold-
ing of human nerve growth factor from Escherichia coli inclusion bodies. Eur J Biochem, 2001. 268
(11): p. 3296-303. PMID: 11389732

Paoletti F, Covaceuszach S, Konarev PV, Gonfloni S, Malerba F, Schwarz E, et al. Intrinsic structural
disorder of mouse proNGF. Proteins, 2009. 75(4): p. 990—1009. doi: 10.1002/prot.22311 PMID:
19089979

Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interac-
tions that promote protein stability. Nat Protoc, 2007. 2(9): p. 2212-21. PMID: 17853878

Cattaneo A, Rapposelli B, Calissano P. Three distinct types of monoclonal antibodies after long-term
immunization of rats with mouse nerve growth factor. J Neurochem, 1988. 50(4): p. 1003—-10. PMID:
2450170

Chevalier S, Praloran V, Smith C, MacGrogan D, Ip NY, Yancopoulos GD, et al. Expression and func-
tionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells.
Blood, 1994. 83(6): p. 1479-85. PMID: 8123839

Coppi E, Maraula G, Fumagalli M, Failli P, Cellai L, Bonfanti E, et al. UDP-glucose enhances outward K
(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17
receptor in oligodendrocyte precursors. Glia, 2013. 61(7): p. 1155-71. doi: 10.1002/glia.22506 PMID:
23640798

Sontheimer H, Perouansky M, Hoppe D, Lux HD, Grantyn R, Kettenmann H. Glial cells of the oligoden-
drocyte lineage express proton-activated Na+ channels. J Neurosci Res, 1989. 24(4): p. 496-500.
PMID: 2557457

Sontheimer H, Trotter J, Schachner M, Kettenmann H. Channel expression correlates with differentia-
tion stage during the development of oligodendrocytes from their precursor cells in culture. Neuron,
1989. 2(2): p. 1135-45. PMID: 2560386

Kettenmann H, Blankenfeld GV, Trotter J. Physiological properties of oligodendrocytes during develop-
ment. Ann N'Y Acad Sci, 1991. 633: p. 64—77. PMID: 1724138

Bernardo A, Greco A, Levi G, Minghetti L. Differential lipid peroxidation, Mn superoxide, and bcl-2
expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress.
J Neuropathol Exp Neurol, 2003. 62(5): p. 509-19. PMID: 12769190

Tiveron C, Fasulo L, Capsoni S, Malerba F, Marinelli S, Paoletti F, et al. ProNGF\NGF imbalance trig-
gers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in
transgenic mice. Cell Death Differ, 2013. 20(8): p. 1017-30. doi: 10.1038/cdd.2013.22 PMID:
23538417

Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol, 1980. 20: p.
441-62. PMID: 7387124

Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia
in the rat paw. J Neurosci Methods, 1994. 53(1): p. 55-63. PMID: 7990513

Ferreira J, Campos MM, Araujo R, Bader M, Pesquero JB, Calixto JB. The use of kinin B1 and B2
receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by
kinins at the spinal level. Neuropharmacology, 2002. 43(7): p. 1188-97. PMID: 12504926

Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins.
Science, 2001. 294(5548): p. 1945-8. PMID: 11729324

Bruno MA, Cuello AC. Activity-dependent release of precursor nerve growth factor, conversion to
mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A,
2006. 103(17): p. 6735-40. PMID: 16618925

Kliemannel M, Golbik R, Rudolph R, Schwarz E, Lilie H. The pro-peptide of proNGF: Structure forma-
tion and intramolecular association with NGF. Protein Sci, 2007. 16(3): p. 411-9. PMID: 17242381

PLOS ONE | DOI:10.1371/journal.pone.0136425 September 15,2015 33/34


http://www.ncbi.nlm.nih.gov/pubmed/19355851
http://dx.doi.org/10.1371/journal.pone.0037555
http://www.ncbi.nlm.nih.gov/pubmed/22666365
http://dx.doi.org/10.1016/j.bbrc.2009.11.146
http://www.ncbi.nlm.nih.gov/pubmed/19945432
http://www.ncbi.nlm.nih.gov/pubmed/11389732
http://dx.doi.org/10.1002/prot.22311
http://www.ncbi.nlm.nih.gov/pubmed/19089979
http://www.ncbi.nlm.nih.gov/pubmed/17853878
http://www.ncbi.nlm.nih.gov/pubmed/2450170
http://www.ncbi.nlm.nih.gov/pubmed/8123839
http://dx.doi.org/10.1002/glia.22506
http://www.ncbi.nlm.nih.gov/pubmed/23640798
http://www.ncbi.nlm.nih.gov/pubmed/2557457
http://www.ncbi.nlm.nih.gov/pubmed/2560386
http://www.ncbi.nlm.nih.gov/pubmed/1724138
http://www.ncbi.nlm.nih.gov/pubmed/12769190
http://dx.doi.org/10.1038/cdd.2013.22
http://www.ncbi.nlm.nih.gov/pubmed/23538417
http://www.ncbi.nlm.nih.gov/pubmed/7387124
http://www.ncbi.nlm.nih.gov/pubmed/7990513
http://www.ncbi.nlm.nih.gov/pubmed/12504926
http://www.ncbi.nlm.nih.gov/pubmed/11729324
http://www.ncbi.nlm.nih.gov/pubmed/16618925
http://www.ncbi.nlm.nih.gov/pubmed/17242381

@’PLOS ‘ ONE

NGF P61SR100E: A Painless NGF for Therapeutic Applications

43.

44,

45.

46.

47.

48.

49.

Monera OD, Kay CM, Hodges RS. Protein denaturation with guanidine hydrochloride or urea provides
a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci,
1994. 3(11): p. 1984-91. PMID: 7703845

Tanaka Y, Tsumoto K, Umetsu M, Nakanishi T, Yasutake Y, Sakai N, et al. Structural evidence for gua-
nidine-protein side chain interactions: crystal structure of CutA from Pyrococcus horikoshii in 3 M guani-
dine hydrochloride. Biochem Biophys Res Commun, 2004. 323(1): p. 185-91. PMID: 15351719

Mande SC, Sobhia ME. Structural characterization of protein-denaturant interactions: crystal structures
of hen egg-white lysozyme in complex with DMSO and guanidinium chloride. Protein Eng, 2000. 13(2):
p. 133—41. PMID: 10708653

Paoletti F., Malerba F, Kelly G, Noinville S, Lamba D, Cattaneo A, et al. Conformational plasticity of
proNGF. PLoS One, 2011. 6(7): p. €22615. doi: 10.1371/journal.pone.0022615 PMID: 21818348

Kliemannel M, Weininger U, Balbach J, Schwarz E, Rudolph R. Examination of the slow unfolding of
pro-nerve growth factor argues against a loop threading mechanism for nerve growth factor. Biochemis-
try, 2006. 45(11): p. 3517—-24. PMID: 16533032

Paoletti F, Malerba F, Ercole BB, Lamba D, Cattaneo A. A comparative analysis of the structural, func-
tional and biological differences between Mouse and Human Nerve Growth Factor. Biochim Biophys
Acta, 2015. 1854(3): p. 187-97.

Delano, The PyMOL Molecular Graphics System. DeLano Scientific.

PLOS ONE | DOI:10.1371/journal.pone.0136425 September 15,2015 34/34


http://www.ncbi.nlm.nih.gov/pubmed/7703845
http://www.ncbi.nlm.nih.gov/pubmed/15351719
http://www.ncbi.nlm.nih.gov/pubmed/10708653
http://dx.doi.org/10.1371/journal.pone.0022615
http://www.ncbi.nlm.nih.gov/pubmed/21818348
http://www.ncbi.nlm.nih.gov/pubmed/16533032

