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Abstract

Multilevel models are a key tool for the analysis of clustered data in a

wide range of fields. The paper discusses a handful of critical choices

in multilevel modelling. Some choices are peculiar of the multilevel

setting, like the specification of the multilevel structure of the model,

cluster-mean centering of the covariates, fixed versus random effects,

and the specification of the distribution of the random effects. The

paper also considers some choices which are more complicated in the

multilevel setting, namely sample size requirements, accounting for the

survey design, and handling missing values. Each issue is briefly outlined,

referring to the current literature for details and further discussion.

Keywords: hierarchical data, mixed effects models, random effects,

variance components.
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1. Introduction

Clustered data are often encountered in applied research, e.g. students

nested within schools in cross-section data, and occasions nested within subjects

in panel or longitudinal data. Multilevel models are the main tool for the

analysis of clustered data. Depending on the field, multilevel models are also

known as hierarchical, mixed effects, random effects, random coefficients, or

variance components. Theoretical and practical aspects of multilevel modelling

are presented in several excellent textbooks, including Raudenbush and Bryk

(2002), Goldstein (2011), Snijders and Bosker (2012), Rabe-Hasketh and

Skrondal (2012), Hox et al. (2017). Some alternative methods for clustered

data are discussed by McNeish et al. (2017).

The paper does not intend to systematically review the wide literature on

multilevel models, rather to outline and discuss some critical issues that arise

in their specification.
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To introduce terms and symbols, let us refer to a two-level hierarchy where

level 1 units are indexed by i and level 2 units (clusters) are indexed by j. The

structure can be unbalanced, with clusters of different size nj . In this setting,

the random intercept linear model with one covariate at level 1 and one covariate

at level 2 is

yij = α+ βxij + γzj + uj + eij (1.1)

where yij is the response variable, xij is the level 1 covariate, zj is the level 2

covariate, uj is the level 2 error or random effect, and eij is the level 1 error.

In the base specification, the level 2 errors are independent and identically

distributed (thus homoscedastic) across clusters, with normal distribution:

uj
iid
∼ N(0, σ2

u) (1.2)

The level 1 errors, which are independent of the level 2 errors, are assumed

to be independent and identically distributed (thus homoscedastic) across level

1 units, with normal distribution:

eij
iid
∼ N(0, σ2

e) (1.3)

A further assumption, often not explicitly stated, is the mean independence

of the random effect on the covariates (level 2 exogeneity), namely

E(uj | x1j , x2j , . . . , xnjj , zj) = 0 (1.4)

Exogeneity is needed for unbiased estimation (Ebbes et al. 2004; Kim and Frees,

2007; Grilli and Rampichini, 2011).

Multilevel models are a kind of regression models which are intended to

account for the correlation structure induced by the arrangement of the units.

In any regression model the researcher has to make several choices concerning

the explanatory variables, the functional form, the distribution of the errors, and

so on. The complex nature of a multilevel model complicates the usual choices

and it entails further peculiar choices. The simple random intercept linear model

(1.1) can be extended in many ways to accommodate more complex structures,

for example by adding further random effects (nested or crossed), by relaxing

the level 1 or level 2 homoscedasticity assumptions, by changing the errors

distributions. For the sake of simplicity, the discussion of the critical choices in

multilevel modelling is exemplified with reference to the linear case. However,

the main issues are conceptually similar in non-linear multilevel models.

The rest of the paper is organized as follows. Sections 2-5 discuss choices

which are peculiar to the multilevel setting: specifying the multilevel structure

of the model, cluster-mean centering of the covariates, fixed versus random

effects, and specification of the distribution of the random effects. Sections 6-8
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consider choices which are more complicated in the multilevel setting: sample

size requirements, accounting for the survey design, and handling missing values.

2. Specification of the multilevel structure of the model

There is a wide range of possible multilevel structures. The simplest

structure is nested, also known as hierarchical. In a two-level structure level,

1 units are nested into level 2 units (clusters). A key remark is that in a

multilevel structure the concept of unit is wide: a unit can be a physical

entity (an individual, a mice, a product), an organization (a firm, a school),

a social institution (a family, a cattle), a geographic area. In addition, a

unit can be a measurement, thus panel data models and multivariate models

can be interpreted as instances of multilevel models. For example, panel or

longitudinal data can be seen as two-level nested data with occasions at level

1 and individuals at level 2; a similar idea applies to multivariate data such as

questionnaire surveys, where items are level 1 units and individuals are level 2

units. Panel and multivariate data are peculiar instances of multilevel models

since level 1 units are not exchangeable: for example, questionnaire items i and

i′ are not exchangeable, contrary to students i and i′. In addition, in panel data

occasions are ordered in time, a feature that motivates peculiar modelling choices

such as autocorrelated residuals (e.g. Skrondal and Rabe-Hesketh, 2008).

Multilevel models can be extended to accommodate nested structures with

3 or more levels by adding random effects at each level. Sometimes the

phenomenon under study has a hierarchical structure with many levels, for

example, in education it is common to encounter five-level structures (student,

class, school, district, geographic area). In principle, one could account for

all levels by adding corresponding random effects to the model. However,

the inclusion of all the possible levels is not always advisable: indeed, more

complex structures give a finer representation of the phenomenon, but they

entail problems in estimation, especially for levels with few units (see Section

6). In general, to reduce the number of levels it is preferable to discard higher

levels than omit intermediate levels. For example, in a study on peer-effects

the class level must be considered, while the school level could be omitted. In

general, ignoring top hierarchical levels inflates the variance component at the

highest level of the specified model; indeed, this variance component collects all

the sources of variance at higher levels (Tranmer and Steel, 2001). To adjust

for the correlation between classes of the same school it is possible to use robust

standard errors for clustered observations (Rabe-Hesketh and Skrondal, 2006),

with the caveat that this correction has a poor performance when the number

of schools is small (Cameron and Miller, 2015). When the number of top level

units is small, an alternative approach is to use fixed effects at that level, even if

this approach precludes the introduction of covariates at top level (see Section
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4).

Multilevel models can also deal with non-hierarchical structures. Two

important cases are cross-classified and multiple-membership structures.

Cross-classified multilevel models are useful when level 1 units are classified

by two non-nested factors (Browne et al., 2001), for example students classified

by school and neighbourhood (Leckie, 2009). A simple linear additive

cross-classified model is

yijk = α+ βxijk + uj + uk + eijk (2.1)

where yijk is the response of student i, belonging to school j and neighbourhood

k. In model (2.1) it is assumed that the random effects uj and uk are

independent with zero means and distinct variances. Cross-classified models

are useful also in longitudinal studies where units can change their group

membership over time, e.g. repeated measures of student achievement classified

by student and school. In such a case, the level 1 unit is the occasion (wave),

while the classification factors are the student and the school (Luo and Kwok,

2012).

In multiple membership models each level 1 unit may belong to more than

one cluster (e.g. because it moved across the clusters), consequently the random

effects enter the model through weights reflecting the hypothesized contribution

of each cluster to the outcome of the level 1 unit (Browne et al., 2001). For

example, suppose that in a school cycle of 5 years a student spent 4 years in

school A and then moved to school B, where she took a final examination for

assessing the progress during the whole cycle. It is clearly unfair to ascribe the

progress of such a student only to school B, as in a standard multilevel model

(Goldstein et al., 2007). Instead, it is reasonable to assume that the progress

of such a student is due to school A for 4/5 and to school B for 1/5, though

the values of those weights are questionable (Wolff Smith and Beretvas, 2014).

Recently, multiple membership models are used to analyse social network data,

where individuals may belong to several subgroups (e.g. Tranmer et al., 2014,

2016).

Special considerations are needed in repeated cross-sectional surveys, such

as repeated surveys on countries, where a country appears at all surveys, while

sampled individuals within the country are different. The model can be specified

in many ways, for example: (i) a three-level model with individuals nested

within survey, and surveys nested within country, or (ii) a cross-classified model

with individuals cross-classified by country and survey. The implications of

different specifications are discussed in Schmidt-Catran and Fairbrother (2016).

To summarize, the structure to be used in the analysis mainly depends on

the aim of the research and on the sampling design. For most purposes a simple

structure with 2 or 3 levels is appropriate. As usual in statistical modelling, it
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is advisable to keep the model as simple as possible: as remarked by DiPrete

and Forristal (1994), the imagination of the researchers “can easily outrun the

capacity of the data, the computer, and current optimization techniques to

provide robust estimates”.

3. Cluster mean centering of the covariates

When data have a hierarchical structure, a level 1 covariate can vary both

within and between clusters. In general, a covariate xij can be written as:

xij = (xij − xj) + xj

where xj = (1/nj)
∑nj

i=1 xij is the cluster mean. The deviation from the cluster

mean (xij − xj) varies only within clusters, whereas the cluster mean xj varies

only between clusters. Consequently, the variance of xij is decomposed into the

sum of level 1 and at level 2 variances.

The two components (xij − xj) and xj may have a different effect on the

response yij . In order to disentangle such effects, these two components must

be inserted as distinct covariates into the model. Since the within component is

the raw covariate centered with respect to the cluster mean, this kind of model

specification is known as cluster mean centering.

To sketch the issue, let us consider a two-level linear model with a single

continuous covariate xij ,

yij = α+ βwithin(xij − xj) + βbetweenxj + uj + eij (3.1)

The within and between effects are conceptually different. The within effect

βwithin is the slope in the regression of (yij − yj) on (xij − xj), i.e. the effect at

the individual level. On the other hand, the between effect βbetween is the slope

in the regression of yj on xj , i.e. the effect at the cluster level. The difference

δ = βbetween − βwithin is the so called contextual effect, which can be directly

estimated if model (3.1) is reparametrized as follows:

yij = α+ βwithinxij + δxj + uj + eij (3.2)

The contextual effect δ summarizes the effect of the context on the individual,

which is of central interest in fields such as epidemiology and education.

If the contextual effect δ is not null, but the cluster mean xj is omitted from

model (3.2), the model is wrongly specified and the regression coefficient of xij is

not interpretable. This can be seen as a problem of level 2 endogeneity: indeed,

in such a case the covariate xij is correlated with the random effect uj (Ebbes

et al., 2004; Kim and Frees, 2007; Grilli and Rampichini, 2011).

In model (3.2) the estimator of the within-effect βwithin is unbiased, while
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the estimator of the contextual effect δ could still be biased if the cluster mean

xj is correlated with the random effect uj . If the researcher is interested in the

estimation of the contextual effect δ, a possible solution is the use of instrumental

variables (Castellano et al., 2014). Otherwise, the researcher interested solely

in the estimation of the within effect βwithin can fit model (3.1) or model (3.2),

interpreting only βwithin and ignoring the other regression coefficients. The same

estimate of βwithin can be obtained by fitting a model with only the centered

covariate (e.g. Raudenbush and Bryk, 2002):

yij = α+ βwithin(xij − xj) + uj + eij (3.3)

Note that models (3.1) and (3.2) give the same estimate of the cluster variance

σ2
u, while model (3.3) yields a higher estimate, since the between-component of

the covariate is absorbed by the random effect uj .

Cluster mean centering is discussed in many textbooks and papers (e.g.

Paccagnella, 2006; Enders and Tofighi, 2007). This issue is still source of

misunderstandings, e.g. Kelley et al. (2017) and the related comment by Bell

et al. (2017).

4. Fixed versus random effects

The random effect uj in model (1.1) is a random variable representing

unobserved factors acting at level 2 (similarly, eij represents unobserved factors

acting at level 1). Alternatively, unobserved factors acting at level 2 can be

treated as unknown fixed quantities, i.e. fixed effects: in such a case the random

variable uj is replaced by a set of parameters, say α1, . . . , αJ , where J is the

number of clusters.

The main problem with the random effect approach is the risk of

misspecification: indeed, a wrong specification of the conditional distribution

of the random effect given the covariates may yield biased inferences. It is

therefore crucial to check the assumptions on the random effect and possibly

adopt alternative specifications (Snijders and Berkhof, 2008; Drikvandi et al.,

2017). For example, the correlation of the random effect with a level 1 covariate

can be solved by introducing the corresponding cluster mean (see Section 3).

Nonetheless, the analyst can never be sure that the adopted specification is

correct.

The fixed effects approach eliminates the mentioned risk of misspecification

because there is no need to specify a probability distribution, nor to assume

that the effects are uncorrelated with the covariates (exogeneity). A noteworthy

feature is that the fixed effects αj absorb all the between variation: consequently,

the covariates can only explain the within variation, thus the regression

coefficients are the within effects, regardless of cluster mean centering.
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However, the fixed effects approach has several drawbacks. First, it

does not allow to include cluster-level covariates: the technical reason is

perfect collinearity, while an intuitive explanation is that the fixed effects fully

account for the between-cluster variability, so there is no scope for cluster-level

explanatory variables. In many fields, the main research question is to find

out factors explaining the role of the context on the individual outcome, e.g.

how teaching style affects pupil achievement. In this case, the impossibility to

include cluster-level covariates is a serious limitation, precluding to answer the

research question.

Another drawback of the fixed effects approach is the incidental parameter

problem arising in non-linear models, yielding inconsistent estimators of all the

parameters (e.g. Wooldridge, 2010). A possible solution is given by conditional

maximum likelihood, which is used for example in the conditional logit model.

Skrondal and Rabe-Hesketh (2014) discuss the conditional logit model in the

framework of panel data, showing that it gives consistent estimators even for

some non-ignorable missing data mechanisms.

In some applications, the researcher is interested in predicting cluster-specific

effects, e.g. effectiveness of schools or hospitals. In those situations, the random

effects model is preferable since it allows to rely on empirical Bayes (shrunken)

residuals to make efficient predictions of cluster-specific effects, especially for

small clusters (Snijders and Bosker, 2012).

Another point in favour of random effects is that they allow many extensions

that are impossible or tricky with the fixed effects approach, such as spatially

correlated effects or slopes varying across clusters (Bell and Jones, 2015).

A final consideration in the choice between fixed and random effects pertains

to the kind of desired inference. In fact, fixed effects are used for inference on the

clusters in the data. On the other hand, random effects allow to make inference

on a population of clusters, assuming that the clusters in the data are a random

sample from such a population (Snijders and Bosker, 2012). Nonetheless, it may

be reasonable to use random effects even if the data include all the clusters of

the population (e.g. all the European countries) since random effects yield a

more parsimonious description of the observed variability among clusters.

5. Specification of the distribution of the random effects

In a two-level setting, the standard assumptions for the distribution of the

random effects are: (i) independence across clusters; (ii) identical distribution

across clusters; (iii) normal distribution. If those assumptions are tenable,

model estimation and interpretation are straightforward. However, there are

situations where one or more of these assumptions are not reasonable, so they

should be relaxed.

In some settings, the assumption that the random effects are independent



14 L. Grilli, C. Rampichini

across clusters is questionable, for example when the clusters are adjacent

geographic areas. Indeed, in fields such as disease mapping (Besag et al., 1991)

and small area estimation (Rao, 2003) the models have spatially correlated

random effects. In the literature on multilevel models, correlated random effects

are uncommon. Nonetheless, Browne and Goldstein (2010) considered multilevel

models where the higher-level random effects are linked by a suitable correlation

structure to be estimated. This is relevant in educational effectiveness, where

the performances of nearby schools may be correlated.

The assumption that the random effects have identical distribution across

clusters implies constant cluster variance (homoscedasticity), which is too

restrictive in some settings. Heteroscedasticity across strata of clusters (e.g.

private vs public schools) is handled by stratum-specific random effects (Sani

and Grilli, 2011). Heteroscedasticity depending on continuous covariates can

be specified by adding random coefficients to level 2 covariates (Snijders and

Bosker 2012, Sect. 8.2), or by specifying a linear model for the logarithm of the

cluster variance, as in the mixed location scale model of Hedeker et al. (2012).

The assumption of normal distribution for the random effects can be

overcome in several ways ranging from two extremes: (i) a continuous

parametric non-normal distribution, and (ii) an arbitrary discrete distribution

with locations and masses to be estimated. For a review see Grilli and

Rampichini (2015).

Random effects with a discrete distribution are useful especially for three

purposes: (i) checking the shape of the distribution of the random effects

and identifying level 2 outliers (i.e. clusters with an extreme value of the

random effect); (ii) relaxing the parametric assumption on the distribution

of the random effects; and (iii) classifying the clusters, e.g. classifying the

schools according to their effectiveness, or the individuals according to their

time patterns.

From a different perspective, a model with random effects having a discrete

distribution can be interpreted as a latent class multilevel model (Vermunt,

2003), where the clusters are assumed to belong to latent classes with common

unobserved components. In this framework, the choice of the number of latent

classes is a difficult task (Lukociene et al., 2010). A promising procedure to

classify clusters with data-driven selection of the number of classes is represented

by Dirichlet process mixtures (Heinzl and Tutz, 2013). An alternative approach

to select the number of classes is based on regularization techniques (Tutz and

Oelker, 2016).

In the context of repeated measures, discrete random effects or latent classes

are the core of Growth Mixture Models (Muthén, 2004; Palardy and Vermunt,

2010) and Latent Markov Models (Bartolucci et al., 2011).
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6. Sample size requirements

A multilevel model requires enough level 2 units (clusters) in order to obtain

accurate estimates. The minimum depends on the type of model (linear vs

non-linear, random intercept vs random slope), on the average size of the clusters

and on the true parameter values. Ten clusters may be enough in a favourable

situation, like a linear random intercept model with only level 1 covariates

estimated on a data set with large clusters. However, the case study at hand is

often far from this favourable situation. Note that the number of clusters poses

a limitation on the number of cluster-level covariates: for example, a model

with 8 cluster-level covariates fitted on a sample with 10 clusters has 2 degrees

of freedom at the cluster level, yielding inaccurate estimates of cluster-level

parameters.

The sample size requirements are different depending on the target of

inference. The less demanding target is to get accurate point estimates of level

1 regression coefficients: in favourable situations 10 clusters of size 2 may be

enough. More clusters (say 30 or 50) are needed for accurate estimation of

variance components and standard errors. The requirement is higher for models

with random slopes. These results are showed e.g. in Bell et al. (2012) and the

references therein. For non-linear models (e.g. binary responses) more clusters

are needed for accurate inference (e.g. Schoeneberger, 2016).

In cross-country surveys the sample size (citizens) is large, but the number

of clusters (countries) is small. This case has received attention in the recent

literature (Stegmueller, 2013; Bryan and Jenkins, 2015).

To deal with few clusters in the frequentist context, inference for the

linear model can be adjusted using restricted maximum likelihood estimation

(REML) with a Kenward-Roger correction (McNeish, 2017). Otherwise, a

straightforward solution is to specify a fixed effects model, with the limitations

highlighted in Section 4.

An alternative approach to handle few clusters is to fit a random effects

model with Bayesian methods, which do not rely on asymptotics (Browne and

Draper, 2006). The Bayesian approach is powerful, yielding accurate estimates

even for a small number of clusters and properly accounting for all the sources

of uncertainty. However, it entails computational difficulties and it requires a

difficult choice of the priors of the parameters describing the distribution of

the random effects (Gelman, 2006; Grilli et al. 2015). The comparison of

the performance of different approaches dealing with few clusters is the issue of

several studies (e.g. Stegmueller, 2013; Elff et al., 2016; McNeish and Stapleton,

2016).

The cluster size is less relevant than the number of clusters (McNeish, 2014).

Clusters of size 2 are usually enough for a linear random intercept model;

even clusters with a single unit are not an issue, as long as they are not too
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many (say more than a half). However, small clusters worsen cluster-specific

inferences, for example, the precision of Empirical Bayes predictions of random

effects. Moreover, data with small clusters carry limited information on the

variance-covariance structure at level 2, so random slopes are likely to be not

significant.

The design of multilevel studies requires several choices, depending on the

inferential target and the available budget (Snijders and Bosker, 2012, ch. 11).

The main objective is to determine the sample size needed at each hierarchical

level to have sufficient power and precision for the effects of interest. The optimal

allocation of sample units is complicated by the fact that sampling level 1 units

within an already selected cluster is usually less expensive than sampling in

a new cluster. Special considerations arise in case of multilevel randomized

studies, where randomization can be applied at the individual level or at the

cluster level (Moerbeek and Teerenstra, 2016).

7. Accounting for the survey design

Multilevel data are often collected through complex survey designs with

stratification and multi-stage sampling. The question is whether the model

specification or the estimation procedure should explicitly account for the

survey design. A first consideration pertains the type of desired inference:

descriptive inference deals with estimation and testing of descriptive parameters

of the surveyed population (e.g. the proportion of pupils who fail a specific

test in math), whereas analytic inference deals with estimation and testing

relationships among variables without reference to the surveyed population –

the aim is to generalize to a larger population, which may be hypothetical and

is usually rather vaguely defined (e.g. a study on peer effects does not refer

to a precisely defined population). Statistical modelling, including multilevel

modelling, aims at analytic inference, which requires a model-based approach

rather than a design-based approach: therefore, the sampling design needs to

be taken into account only to the extent it affects model fitting (mainly, point

estimates and standard errors).

In a model-based approach the sampling design is a nuisance that can be

accommodated in several ways: (i) by the model, i.e. the stages of sampling

define the hierarchical levels having random effects, and the design variables

enter as covariates; (ii) by the estimation algorithm, i.e. any unit is weighted

by the inverse of the inclusion probability, separately for each hierarchical level;

(iii) by the standard errors, i.e. robust (sandwich) estimators of the standard

errors are exploited to account for clustering and stratification.

Approach (i) is in principle straightforward, but a model fully accounting

for the sampling design may become unduly complicated. Therefore, it can

be convenient to account for the sampling design by the estimation algorithm
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(weighting) and/or by robust standard errors. In practice, hybrid approaches

are feasible: for example, a stratified three-stage design can be accommodated

by a two-level random intercept model fitted by weighted estimation, with

robust standard errors accounting for stratification and top-level clustering

(Rabe-Hesketh and Skrondal, 2006). The consequences of ignoring stratification

and clustering are investigated by Stapleton and Kang (2016).

It is worth to note that weighted estimation in multilevel modelling requires

knowledge of the inclusion probabilities at each hierarchical level, e.g. for a

two-level model of pupils within schools it is necessary to know the inclusion

probability of each school and the inclusion probability of each pupil conditional

on the school being sampled.

The use of sampling weights affects the properties of the estimators in two

conflicting ways: reduction of the bias and inflation of the variance. Ignoring the

sampling weights yield biased estimates only if the survey design is informative,

namely the inclusion probabilities are related to the model errors. On the other

hand, the variance usually increases for most parameters (the increase tends to

be large if the weights are highly variable). In practice, it is difficult to decide

if weighting is convenient. A preliminary step is the analysis of the sampling

design and the data to find clues of possible biases. Then it is recommended to

compare weighted and unweighted estimates: a formal test (global or separately

for each parameter) can be derived following the principle of the Hausman

test, though the test may be unreliable due to the difficulty in the estimation

of the covariance matrix of the weighted estimator. Alternatively, weighted

and unweighted estimates can be compared with indexes of informativeness

(Asparouhov, 2006; Grilli et al., 2016).

A final warning is that weighted estimators work poorly with a low number

of clusters at the top level (Primary Sampling Units), say less than 30. In

those situations also cluster-robust standard errors are likely to be unsatisfactory

(Cameron and Miller, 2015). When clusters have large sizes, like in cross-country

research, a solution could be a two-step approach (Achen, 2005) where weighted

estimation is performed separately for each cluster.

A thorough treatment of weighting in multilevel modelling, covering both

theoretical and technical issues, is in Chapter 14 of Snijders and Bosker (2012).

8. Handling missing values

In applied research missing values are a common issue. The naif approach

of using only the observed data (listwise deletion) is not advisable for two main

reasons: (i) listwise deletion reduces the sample size, and thus the statistical

power, and (ii) listwise deletion yields biased estimates unless the missing

mechanism is MCAR (Missing Completely At Random), namely the probability

of a missing value does not depend on the complete data (Seaman et al., 2013).
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In most applications it is reasonable to assume that the missing mechanism

is MAR (Missing At Random), i.e. conditionally on the observed data the

probability of a missing value does not depend on the unobserved data (Seaman

et al., 2013). In such a case, the main approaches to deal with missing values

are full information maximum likelihood (FIML) and multiple imputation (MI).

The FIML approach is theoretically appealing, but it is feasible only in special

situations. On the other hand, the MI approach is very flexible and it can be

effectively generalized to a wide range of situations.

Multilevel analysis raises special issues. In particular, missing values on the

covariates can be both at level 1 and at level 2, and missing values can alter

the variance components and the correlations. Multiple imputation has been

extended to the multilevel setting to deal with these special issues, following

two main approaches: joint modelling and fully conditional specification (FCS),

also known as multivariate imputation by chained equations (MICE). See

Snijders and Bosker (2012), van Buuren (2012), Carpenter and Kenward (2013),

Goldstein et al. (2014), Mistler and Enders (2017), Enders et al. (2017). The

performances of several approaches are compared by Grund et al. (2018).

Other methods to deal with missing values in the multilevel framework

include MI through latent class models (Vidotto et al., 2015) and the full

Bayesian approach (Erler et al., 2016).
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