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Chapter 1: Introduction 

Nonlinear optical (NLO) microscopy and Raman spectroscopy had been widely used for 

non-invasive and label-free imaging and diagnosis of a great variety of cells and biological 

tissues. In fact, using these optical techniques provides many and important advantages, 

which can be exploited for surgical, clinical and pathological applications.  

Nonlinear excitation provides deep optical sectioning capability in tissues thanks to a great 

variety of molecules and biological structures useful for imaging large tissue areas in a 

relatively short amount of time. This approach is particularly suited for studying tissue 

morphology with high resolution, but without time-consuming and invasive processes that 

are usually adopted for common histopathological routines.  

Raman spectroscopy is based on the inelastic scattering of light, which can be used for 

investigating the rotational-vibrational spectrum of a molecule. Such spectrum is highly 

related to molecular structure so that recording the Raman spectrum of biological tissues 

provides information about their molecular composition in a label-free and non-invasive 

modality. However, this modality require very long acquisition times. 

Therefore, arranging NLO microscopy and Raman spectroscopy in a complementary 

approach could integrate the speed of the former with the specificity of the latter. 

Morphological features, highlighted through NLO imaging, can help identify specific 

regions of interest within the overall sample; then, Raman spectroscopy can be applied for 

detailed evaluation of their composition without requiring very long acquisitions. This 

method could provide a powerful tool for biomedical applications, ranging from pathological 

examination of ex vivo biopsies to in vivo clinical detection of both tumour and non-tumour 

diseases.  

During my PhD, I designed and developed a custom-made multimodal microscope 

combining Fluorescence Lifetime Imaging Microscopy (FLIM), Second Harmonic 

Generation (SHG) microscopy, Two-Photon Excited Fluorescence (TPEF) microscopy and 

Raman microscopy for studying both thin and thick (“bulk”) biological samples. I performed 

several experimental measurements for characterising spatial and temporal resolution of the 

microscope, as well as for calibrating its components. Then, I conducted three research 

studies for demonstrating the capabilities of both NLO and Raman microscopy. Firstly, I 
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used FLIM, SHG and TPEF microscopy for examining ex vivo human carotids affected by 

atherosclerosis. In this framework, multiphoton imaging allowed identifying specific tissues 

within the atherosclerotic plaque, whose presence and size are important data for 

pathological assessment. Secondly, I used Raman spectroscopy for discriminating three in 

vitro melanoma cell lines. The recorded spectra were successfully classified through two 

robust scoring methods. Finally, I combined TPEF and Raman microscopy for studying two 

ex vivo bulk tissue types: human bladder affected by urothelial carcinoma (UC) and 

atherosclerotic aorta obtained from an animal model. This complementary approach proved 

its potential for in vivo applications. In fact, TPEF imaging allowed discriminating healthy 

and diseased tissues based on their morphology, while the recorded Raman spectra reflected 

their molecular composition. 

This thesis is divided in three main parts, as follows:  

 a theoretical discussion on the physical principles at the basis of nonlinear 

microscopy and Raman spectroscopy (chapter 1); 

 a description of the materials and methods, including the characterisation of  the 

experimental setups, and the methods used for data analysis (chapter 2);  

 the results obtained from the characterisation of human atherosclerotic tissues 

(chapter 3), from the discrimination of melanoma cell lines (chapter 4), and from the 

examination of both arterial and urothelial tissues (chapter 5);   

 final consideration and conclusions in chapter 6.  

1.1 Theory of nonlinear optical (NLO) microscopy 

Nonlinear optics describes the behaviour of light in dielectric media wherein the induced 

electric polarization is nonlinearly dependent on the incident electric field [1]. Observing 

such phenomenon requires high peak intensity light sources, e.g. an ultrafast-pulsed laser. In 

fact, at low intensity, the properties of matter are independent from the amplitude of electric 

fields. In such regime, according to the superposition principle, electromagnetic (EM) waves 

pass through materials, or are reflected from borders and interfaces, without interacting each 

other. Instead, pulsed lasers provide sufficiently high peak intensity to change the optical 

properties of matter: EM waves can now interact, exchanging impulse and energy, therefore 

the superposition principle is no longer valid. Such interactions may generate electric fields 
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with different frequencies – e.g. higher harmonic and sum/difference frequencies – with 

respect to the incident radiation.   

NLO microscopy can be divided in two main categories: coherent and incoherent [2]. 

Incoherent microscopy generates optical signals whose phase is random and whose power is 

proportional to the concentration of radiating molecules; fluorescence is such an example. 

Nonlinear fluorescence microscopes are based on the simultaneous absorption of two (Two-

Photon Excited Fluorescence, TPEF [3]) or more photons in the same quantum event. 

Coherent microscopy, instead, produces optical signals whose phase is rigorously prescribed 

by a variety of factors – including the excitation light phase and the geometric distribution 

of the radiating molecules – and whose power is proportional to the nth power of the radiative 

molecules concentration. Coherent nonlinear techniques are based on the generation of a 

new photon by combining two or more incident ones, as occurring in Second-Harmonic 

Generation (SHG [4]), Third-Harmonic Generation (THG [5]) and Coherent Anti-Stokes 

Raman Scattering (CARS [6]).  

Nonlinear microscopy is most often implemented in laser-scanning systems: the focused 

excitation beam is scanned, point-by-point, along all the regions of interest within the 

sample. Thus, the signal of interest is synchronously recorded point-by-point. Nonlinear 

excitation is the main reason for such arrangement. Being second- (or higher) order 

processes, the above-mentioned techniques require high density of light – both in time and 

space – for the excitation to happen, and such condition can be achieved only in the beam 

focus. Therefore, there is no need for spatial filtering in order to eliminate undesired signal 

coming from out-of-focus planes. Nonlinearity has also another consequence: preventing 

phototoxic and photodamaging effects, which are particularly relevant for biological 

samples. In confocal microscopy, by contrast, a very large volume is excited for each 

scanned point, thus requiring a spatial filter in order to detect only signal coming from the 

laser beam focus. Therefore, many points of the sample are excited multiple times, 

increasing the photodamaging risk. Nonlinear techniques, instead, excite only the molecules 

within the focus, leaving unaltered the other parts of the sample – a very important feature 

when imaging living (in vitro or in vivo [7]) organisms. Moreover, such techniques allow an 

increased penetration depth with respect to single-photon imaging. In fact, the scattering of 

EM radiation within biological tissues is approximately proportional to 1/λ2 [8, 9], where λ 

is its wavelength. Such phenomenon results from a combination of both Rayleigh scattering, 
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which is proportional to 1/λ4 (see section 1.2.2), and Mie scattering, which is not strongly 

wavelength dependent. Thus, longer wavelengths are less scattered, allowing deeper 

penetration within the sample. Finally, scattered photon in nonlinear microscopy are unable 

to excite out-of-focus molecules; therefore, as depth increases, the number of scattered 

photons does as well, but without reducing spatial resolution.  

In the following paragraphs, we will discuss the physical theories of the nonlinear optical 

techniques used in my PhD research: Two-Photon Excited Fluorescence, Second-Harmonic 

Generation, and Fluorescence Lifetime Imaging Microscopy.  

1.1.1 Two-Photon Excited Fluorescence (TPEF) microscopy 

An electronic transition can occur following the absorption of a single-photon, but also – as 

theorized by Maria Goeppert-Mayer in 1931 [10] – by simultaneous absorption of two 

photons in the same quantum event, provided that the sum of their energies is resonant with 

the transition. Such phenomenon was first experimentally observed 30 years later, when W. 

Kaiser and C.G.B. Garrett recorded a two-photon transition in a CaF2:Eu2+ crystal by using 

a ruby laser as excitation source [11]. However, the application of two-photon microscopy 

to the study of biological samples was further delayed due to the nonlinear properties of such 

technique, which requires both high spatial and high temporal density of photons. Since the 

pulse duration of the first laser sources was too long (~1 ms), the laser power required for 

observing two-photon transitions would have damaged the sample. Only the development of 

pulsed femtosecond lasers made possible to implement the first laser-scanning two-photon 

microscope by W. Denk, J.H. Strickler and W.W. Web in 1990, and to use it for imaging 

living cells [12]. 

Two-photon absorption 

We will use the time-dependent perturbation quantum theory in order to describe two-photon 

absorption processes. We can consider a fluorescent molecule as unperturbed system, and 

an oscillating EM field as perturbation. The Schrödinger equation of the overall system is:  

(1.1.1)                                                           𝑖ħ 
𝜕𝜓

𝜕𝑡
= 𝐻𝜓 

where ψ and H are the wave function and the Hamiltonian of the system, respectively. The 

last one can be described as the sum of two terms: 
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(1.1.2)                                                       𝐻 =  𝐻0 +  𝜆 𝑉(𝑡)  

where  H0 is the Hamiltonian of the unperturbed system, and λV(t) is the perturbation. 

Therefore, the steady state, perturbation-free Schrödinger equation is:  

(1.1.3)                                                         𝐻0 𝑈𝑛 =  휀𝑛 𝑈𝑛  

where εn and Un are eigenvalues and eigenfunctions of the unperturbed system, respectively.  

The temporal evolution of the last one is described by the state Φ: 

(1.1.4)                                                         𝛷 =  𝑈𝑛 𝑒−𝑖𝜔𝑛𝑡  

where ωn = εn / ħ. Thus, we can use Φ for describing a generic state of the perturbed system 

as linear combination of eigenstates of the unperturbed system:  

(1.1.5)                                                  𝜓 =  ∑ 𝑐𝑛(𝑡) 𝑈𝑛𝑛 𝑒−𝑖𝜔𝑛𝑡  

where cn(t) coefficients can be expressed as a power series of λ: 

(1.1.6)                               𝑐𝑘(𝑡) =  𝑐𝑘
(0)(𝑡) +  𝜆 𝑐𝑘

(1)(𝑡) +  𝜆2 𝑐𝑘
(2)(𝑡)  +  …  

By substituting the equations 1.1.5 and 1.1.6 in the equation 1.1.1, we get the following 

equations:  

(1.1.7)                                                           
𝜕

𝜕𝑡
 𝑐𝑘

(0)(𝑡) = 0              

(1.1.8)                                 
𝜕

𝜕𝑡
𝑐𝑘

(𝑠+1)(𝑡) =  −
𝑖

ħ
 ∑ 𝑐𝑛

(𝑠)(𝑡)𝑉𝑘𝑛(𝑡) 𝑒−𝑖 (𝜔𝑛−𝜔𝑘)𝑡
𝑛   

where Vkn(t) is the matrix element of the perturbation connecting states n and k: 

(1.1.9)    𝑉𝑘𝑛(𝑡) =  ∫ 𝑈𝑘
∗ 𝑉(𝑡) 𝑈𝑛 𝑑3𝑟  

Let us suppose that, at t = 0, the system occupies one eigenstate of H0. If Um is the initial 

state of the system, and if s is set to 0 (first order) in the equation 1.1.8, we obtain the 

following relations for ck coefficients:  

(1.1.10)    𝑐𝑘
(0)(0) =  𝛿𝑘𝑚  

(1.1.11)   
𝜕

𝜕𝑡
 𝑐𝑘

(1)(𝑡) =  
1

𝑖ħ
 𝑉𝑘𝑚(𝑡) 𝑒𝑖𝜔𝑘𝑚𝑡  
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where ωkm = ωk – ωm = (εk – εm) / ħ is the Bohr frequency. By using the coefficients 

expansion (at the first order) in the equation 1.1.6 and integrating the equation 1.1.11, we 

get:  

(1.1.12)                                  𝑐𝑘(𝑇) =  𝛿𝑘𝑚 +  
𝜆

𝑖ħ
 ∫ 𝑉𝑘𝑚(𝑡) 𝑒𝑖𝜔𝑘𝑚𝑡 𝑑𝑡

𝑇

0
  

where T is the time duration of the perturbation. In our case, the perturbing field is an 

oscillating EM field, thus V(t) perturbation can be expressed as:  

(1.1.13)                                       𝑉(𝑡) =  
𝜇𝐸0

2
 𝑒𝑖𝜔𝑡 +  

(𝜇𝐸0)∗

2
 𝑒−𝑖𝜔𝑡 

where E0 is the electric field amplitude, ω is its oscillating frequency and μ is the electric 

dipole moment of the molecule. By substituting the equation 1.1.13 in the equation 1.1.12 

and setting k ≠ m, we get the following expression for ck
(1) coefficients:  

(1.1.14)         𝑐𝑘
(1)(𝑇) =  −

1

2ħ
 [ (𝜇𝐸0)𝑘𝑚  

𝑒𝑖(𝜔𝑘𝑚+𝜔)𝑇−1

𝜔𝑘𝑚+𝜔
 + (𝜇𝐸0)𝑘𝑚

∗  
𝑒𝑖(𝜔𝑘𝑚−𝜔)𝑇−1

𝜔𝑘𝑚−𝜔
 ]  

If the electric field oscillating frequency is close to the Bohr frequency between Uk and Um 

states (i.e. ω ≈ ωkm), then the first term of the equation 1.1.14 is negligible. The square 

module of the ck
(1) coefficient is the probability of finding the system in the Uk state after a 

time T and, after some calculation, its expression become:  

(1.1.15)                               |𝑐𝑘
(1)

(𝑇)|
2

 ≈  
𝐸0

2

ħ2  |𝜇𝑘𝑚
∗ |2  

sin2(
𝜔𝑘𝑚−𝜔

2
 𝑇)

(𝜔𝑘𝑚−𝜔)2    

Dividing by the time T, we get the transition probability per unit of time between Um and Uk 

states, which is the transition probability for single-photon absorption:  

(1.1.16)                                 
|𝑐𝑘

(1)
(𝑇)|

2

𝑇
 ≈  

𝐸0
2

ħ2  |𝜇𝑘𝑚
∗ |2  

sin2(
𝜔𝑘𝑚−𝜔

2
 𝑇)

(𝜔𝑘𝑚−𝜔)2 𝑇
  

In particular, the transition probability depends on (1) the square of the electric field 

amplitude (in our case, of the light intensity) and (2) the square of the matrix element of the 

electric dipole moment between the two involved states.  

The transition from Um state to Uk state can occur also by simultaneous absorption of two 

photons. In order to derive the probability of two-photon absorption, we have to consider the 

second order of the above-described perturbation theory. Let us suppose that an “intermedi- 
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Figure 1.1  Energy level diagrams for single-photon (left) and two-photon (right) absorption. The 

two-photon transition diagram shows the simultaneous absorption of two photons, i.e. the possibility 

to observe a transition between the states Um and Uk through an intermediate virtual state Ui.  

 

ate” virtual state Ui exists, with i ≠ m and i ≠ k, and that Vim and Vik values are different from 

zero. Then, the expression for the first order coefficient for the Ui state is:  

(1.1.17)                                  𝑐𝑖
(1)(𝑇) =  

1

𝑖ħ
 ∫ 𝑉𝑖𝑚(𝑡) 𝑒𝑖𝜔𝑖𝑚𝑡 𝑑𝑡

𝑇

0
 

By substituting s = 1 in the equation 1.1.8, we get the following equation for the second 

order coefficient of the Uk state: 

(1.1.18)                               
𝜕

𝜕𝑡
𝑐𝑘

(2)(𝑡) =  −
𝑖

ħ
 ∑ 𝑐𝑖

(1)(𝑡) 𝑉𝑘𝑖(𝑡) 𝑒𝑖𝜔𝑘𝑖𝑡
𝑖  

By substituting the equation 1.1.17 in the equation 1.1.18, and then integrating it, we get:  

(1.1.19)                 𝑐𝑘
(2)(𝑇) =  

1

(𝑖ħ)2
 ∑ ∫ 𝑉𝑘𝑖(𝑡)𝑒𝑖𝜔𝑘𝑖𝑡 𝑑𝑡

𝑇

0
 ∫ 𝑉𝑖𝑚(𝑡′) 𝑒𝑖𝜔𝑖𝑚𝑡′ 𝑑𝑡′

𝑡

0𝑖  

By substituting the equation 1.1.13 in the equation 1.1.19, we get:  

(1.1.20)                   𝑐𝑘
(2)(𝑇)  =  −

𝐸0
2

4(𝑖ħ)2  ∑ ∫ (𝜇𝑘𝑖 𝑒𝑖𝜔𝑡 +  𝜇𝑘𝑖
∗  𝑒−𝑖𝜔𝑡) 𝑒𝑖𝜔𝑘𝑖𝑡  𝑑𝑡

𝑇

0
 ∫ (𝜇𝑖𝑚 𝑒𝑖𝜔𝑡 +

𝑡

0𝑖

                                                              𝜇𝑖𝑚
∗  𝑒−𝑖𝜔𝑡) 𝑒𝑖𝜔𝑖𝑚𝑡′

 𝑑𝑡′ 

Finally, the square module of the equation 1.1.20 is: 

(1.1.21) |𝑐𝑘
(2)(𝑇)|

2

 =  
𝐸0

4

16 ħ4  |∑ ∫ (𝜇𝑘𝑖 𝑒
𝑖𝜔𝑡 + 𝜇𝑘𝑖

∗  𝑒−𝑖𝜔𝑡) 𝑒𝑖𝜔𝑘𝑖𝑡 𝑑𝑡
𝑇

0
 ∫ (𝜇𝑖𝑚 𝑒𝑖𝜔𝑡 +

𝑡

0𝑖

                                                           𝜇𝑖𝑚
∗  𝑒−𝑖𝜔𝑡) 𝑒𝑖𝜔𝑖𝑚𝑡′ 𝑑𝑡′|

2
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Figure 1.2  Comparison between two excitation volumes. A): single-photon excitation in a 

fluorescein cuvette by focused (NA = 0.16) 488 nm light. B): two-photon excitation in the same 

cuvette using focused (NA = 0.16) femtosecond pulses of 960 nm light [13].  

 

Therefore, two-photon transition probability is proportional to the fourth power of the 

electric field amplitude. At the second order of the perturbation theory, two-photon transition 

probability is proportional to the square of light intensity; single-photon transition 

probability, instead, is linearly proportional to light intensity.  

(1.1.22)    |𝑐𝑘
(2)

(𝑇)|
2

 ∝  𝐼0
2  

Such difference between single- and two-photon transitions is particularly relevant in optical 

sectioning of biological samples – as we will discuss in the following paragraphs.  

Image formation 

When excited by a two-photon transition, a molecule emits fluorescence light, whose 

intensity is proportional to the transition probability. The latter is, in turn, proportional to the 

square of the excitation light intensity (as discussed in the previous section). Therefore, one 

advantage of two-photon excitation – with respect to single-photon absorption – is to reduce 

photobleaching, i.e. the photochemical alteration of fluorescent molecules. In fact, the 

probability of second order processes being very low, excitation requires high density of 

light both in time and in space. Such density is achieved only in a small volume (typically 

of the order of 1 femtolitre) around the focus – as demonstrated in the following section – 

thus only molecules enclosed in that region can be excited. Laser scanning on the focal plane 
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does not affect out-of-focus molecules (see figure 1.2), avoiding photodamaging and other 

phototoxic effects. For the same reason, optical sectioning does not require a spatial filter 

(pinhole) for removing out-of-focus fluorescence – as opposed to confocal microscopy.  

Moreover, as mentioned before, the main advantage of two-photon microscopy consists in 

deeper penetration in turbid samples (as the biological ones) by using longer wavelengths. 

In fact, penetration depth in biological samples is strongly limited due to elastic scattering 

of light, which is proportional to the factor 1/λ4. With respect to single-photon excitation, 

two-photon microscopy uses twice the wavelength, thus reducing scattering and increasing 

penetration. Another limiting factor for penetration depth is absorption, which – for 

biological samples – is typically strong in the visible spectrum and for ultraviolet light. 

However, the same transition that requires single-photon absorption of visible light can be 

excited by two-photon absorption of infrared light, effectively reducing the excitation beam 

absorption. In fact, when scattered by molecules inside the sample, exciting photons do not 

reach the focal volume, thus preventing any out-of-focus excitation. Spatial resolution is, 

therefore, unaffected by increasing depth of the focal plane within a turbid sample.  

For all these reasons, in the last 27 years two-photon microscopy became one of the most 

used tools for studying cells and biological tissues. Let us now calculate the 3D spatial extent 

of a Gaussian beam focus, when it is focused by a high numerical aperture (NA) objective.   

Spatial resolution 

In laser microscopy, the excitation volume dimensions determine spatial resolution. In fact, 

the excitation volume determines the Point Spread Function (PSF) of the optical system, i.e. 

the system optical response to a point light source. The smaller is the PSF Full Width at Half 

Maximum (FWHM), the better is the spatial resolution.  

As shown in the equation 1.1.16, single-photon transition probability is proportional to light 

intensity, meaning that the single-photon excitation volume is determined by the light 

intensity distribution around the focal point. For a confocal microscope, the pinhole – used 

for rejecting out-of-focus fluorescence photons – generates a new PSF in the optical system, 

which is multiplied by the excitation volume PSF. The product between the two PSFs is in 

turn a PSF, whose FWHM is smaller with respect to the initial one.  
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As shown in the equation 1.1.22, two-photon transition probability is proportional to the 

square of light intensity, meaning that the two-photon excitation volume is determined by 

the square of the light intensity distribution around the focal point. Therefore, as discussed 

in the previous section, there is no need for using a pinhole; two-photon spatial resolution is 

already comparable to that one of a confocal microscope.  

We want now to calculate the intensity distribution I(x,y,z) near to the focus of a TEM00 laser 

beam, focused by a circular aperture objective lens. Given a cylindrical coordinate system 

(ρ, z, θ) with the origin in the focus, we can neglect the angular coordinate θ because of 

rotational invariance. Thus, we are interested only in the radial and axial dependence of light 

intensity near the focus. Let us change the dimensional coordinates ρ, z to the dimensionless 

coordinates ν, u defined as: 

(1.1.23)     𝜈 =  
2𝜋𝜌 𝑁𝐴 

𝜆
          

(1.1.24)      𝑢 =  
2𝜋𝑧 (𝑁𝐴)2

𝑛𝜆
 

where NA is the objective lens numerical aperture, λ is the laser wavelength, and n is the 

surrounding medium refractive index. Complex amplitude of the electric field near the focus 

of an aberration-free, circular aperture lens can be expressed [14, 15] as a function of ν, u 

coordinates, as in the following integral: 

(1.1.25)                                      𝐸(𝜈, 𝑢) =  2 ∫ 𝐽0(𝜈𝜌) 𝑒− 
𝑖𝑢𝜌2

2  𝜌 𝑑𝜌
1

0
 

where J0(νρ) is the zero order Bessel function of the first kind. Therefore, we can write the 

intensity distribution near the focal point as follows: 

(1.1.26)                                         𝐼(𝜌, 𝑧) = 𝐼(𝜈, 𝑢) =  𝐼0 |𝐸(𝜈, 𝑢)|2  

where I0 is the electric field intensity near the focal point, i.e. measured at the coordinates ρ 

= z = 0 or ν = u = 0. In order to separately calculate intensity radial and axial distributions, 

we can solve the integral in the equation 1.1.25 by alternatively substituting u = 0 or ν = 0. 

Thus, the intensity radial distribution is equal to:  

(1.1.27)                                        |𝐸(𝜈, 0)|2 =  |2 ∫ 𝐽0(𝜈𝜌) 𝜌 𝑑𝜌
1

0
|

2
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Figure 1.3  A): radial (top-left, red) and axial (top-right, blue) theoretical PSFs for two-photon 

fluorescence, calculated for an objective with NA = 0.75, focusing a laser beam with λ = 740 nm into 

air (n = 1.0003). B): radial (bottom-left, red) and axial (bottom-right, blue) theoretical PSFs for two-

photon fluorescence, calculated for an objective with NA = 0.95, focusing a laser beam with λ = 840 

nm into air. 

 

and the intensity axial distribution equals: 

(1.1.28)                                         |𝐸(0, 𝑢)|2 =  |2 ∫ 𝑒− 
𝑖𝑢𝜌2

2  𝜌 𝑑𝜌
1

0
|

2

 

By solving the two integrals, we get the following expressions: 

(1.1.29)                                                 |𝐸(𝜈, 0)|2 =  |
2 𝐽1(𝜈)

𝜈
|

2

         

(1.1.30)                                                |𝐸(0, 𝑢)|2 =  |
𝑠𝑒𝑛(𝑢/4)

𝑢/4
|

2
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Then we can calculate the radial and axial PSFs for a two-photon transition by squaring the 

last two expressions:  

(1.1.31)                                                    𝑃𝑆𝐹𝑟𝑎𝑑 =  |
2 𝐽1(𝜈)

𝜈
|

4

      

(1.1.32)                                                   𝑃𝑆𝐹𝑎𝑥 =  |
𝑠𝑒𝑛(𝑢/4)

𝑢/4
|

4

 

These two equations describe radial and axial PSFs (PSFrad and PSFax, respectively) for two-

photon excitation. For example, let us consider an objective with NA = 0.75, focusing a laser 

beam with λ = 740 nm into air (n = 1.0003), and another one with NA = 0.95, focusing a 

laser beam with λ = 840 nm into air. Figure 1.3 shows the radial and axial PSFs of the two 

objectives. FWHM of the axial and radial PSFs represent axial and radial spatial resolutions 

of the microscope, respectively. In our case, axial and radial resolution are, respectively, 1.7 

μm and 400 nm for the NA = 0.75 objective; 1.2 μm and 360 nm for the NA = 0.95 objective.  

1.1.2 Second-Harmonic Generation (SHG) microscopy 

Two-photon absorption is not the only NLO process for imaging biological samples. In fact, 

some biological molecules can be properly excited for generating higher-order harmonics. 

Second-harmonic generation (SHG) consists in a material generating EM radiation with 

twice the frequency of the incident EM field. Such phenomenon was firstly used in 

spectroscopy and later (during the ‘70s) applied for microscopic imaging [16-18]. Recently, 

SHG microscopy has become a powerful tool for imaging cells [19], cell membranes [20], 

tissues [21] and in particular collagen in connective tissues [22].  

SHG is a second-order NLO process occurring in non-centrosymmetric materials with large 

hyperpolarizability. In NLO, a molecule interacts with a driving electric field through both 

its intrinsic electric dipole moment and the induced electric dipole moment. In general, the 

electric dipole moment can be expressed as a power series of the electric field: 

(1.1.33)                                       𝜇 =  𝜇0 +  𝛼𝐸 +  
1

2
 𝛽𝐸2 +  

1

6
 𝛾𝐸3 + ⋯ 

where μ0 is the permanent electric dipole moment; α is the polarizability related to a linear 

process (as single-photon absorption and reflection); β is the first hyperpolarizability, which 

is related to second-order processes (as second-harmonic, sum and difference frequency gen- 
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Figure 1.4  Comparison between the energy level diagrams of two-photon fluorescence (on the left) 

and second-harmonic generation (on the right).  

 

eration); γ is the second hyperpolarizability, which is related to third-order phenomena (as 

light scattering, third-harmonic generation and two- or three-photon absorption).  

Harmonic generation is an optical phenomenon involving coherent radiative scattering, 

whereas fluorescence generation involves incoherent radiative absorption and re-emission 

(figure 1.4). Therefore, fluorescence imaging is based on a completely different mechanism 

from harmonic generation. Moreover, due to its coherent properties, harmonic radiation is 

highly directional and depends critically on the spatial distribution of the emitters within the 

focal volume, thus SHG is a more complex phenomenon to be described than fluorescence. 

In the following paragraphs, we will describe the case of SHG from a particular distribution 

of second-harmonic emitters, excited by a highly focused laser beam (as in high-resolution 

microscopy). 

Single molecule SHG cross section 

In this section, we will determine the SHG cross section of a single molecular scatterer. We 

can approximate a molecule as an elemental dipole radiator, driven by the excitation light 

proportionally to its first hyperpolarizability. Also, for simplicity, let us assume the 

excitation electric field to be linearly polarized along the z axis and let us consider only the 

component βzzz of the hyperpolarizability tensor β. If ω is the excitation light frequency, then 

the induced electric dipole moment at frequency 2ω is equal to:  

(1.1.34)                                                      �⃗�2𝜔 =  
1

2
 𝛽𝑧𝑧𝑧 𝐸𝜔

2  �̂� 
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where Eω is the excitation field amplitude. In far-field approximation, the radiated second-

harmonic field at an angle ψ from the z axis is: 

(1.1.35)                                      �⃗⃗�2𝜔(𝜓) =  − 
𝜔2𝜇2𝜔

𝜋𝜀0𝑐2𝑟
sin(𝜓) 𝑒−𝑖2𝜔𝑡 �̂� 

where ε0 is the vacuum permittivity, c is the speed of light, r is the observation distance from 

the dipole, t is the corresponding delay time. The resulting power per differential solid angle 

at the inclination ψ can be expressed (in photons/second units) as: 

(1.1.36)                                         𝑃2𝜔(𝜓) =  
3

16 𝜋
 𝜎𝑆𝐻𝐺  𝑠𝑖𝑛2(𝜓) 𝐼𝜔

2  

where Iω is the excitation intensity (expressed in photons/second per unit area) and σSHG is 

the SHG cross sections defined as: 

(1.1.37)                                               𝜎𝑆𝐻𝐺 =  
4𝑛2𝜔 ħ𝜔5

3𝜋𝑛𝜔
2  𝜀0

3𝑐5 
 |𝛽𝑧𝑧𝑧|2 

where nω and n2ω are the medium refractive indexes at frequency ω and 2ω, respectively. By 

integrating the equation 1.1.36 over all solid angles, we obtain a simple expression for the 

emitted power in terms of the SHG cross section: 

(1.1.38)                                                      𝑃𝑆𝐻𝐺 =  
1

2
 𝜎𝑆𝐻𝐺  𝐼𝜔

2   

Similarly, we can express the fluorescence power emitted by an electric dipole undergoing 

two-photon excitation as:  

(1.1.39)                                                      𝑃𝑇𝑃𝐸 =  
1

2
 𝜎𝑇𝑃𝐸  𝐼𝜔

2  

where σTPE is the product between the two-photon fluorescence cross section and the 

fluorescence quantum yield [23]. Then, we can express σTPE and σSHG in the same units for a 

direct comparison.  

Therefore, the SHG power - as the two-photon one - is proportional to the square of the 

excitation intensity. As discussed in section 1.1.1, there are three resulting advantages: better 

spatial resolution, deeper penetration in biological samples, and lower probability of 

photobleaching and photodamaging. In fact, since SHG is based on a scattering process, the 

energy transferred to the sample by the incident photons is negligible.  
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Generalized SHG theory 

Let us now consider the SHG emission from a generic spatial distribution of radiating 

dipoles, driven by a focused Gaussian beam.  

The electric field of a highly focused excitation beam with frequency ω, propagating along 

the optical axis z and polarized in a generic direction �̂�, can be expressed as: 

(1.1.40)                            �⃗⃗�(�⃗�) =  −𝑖𝐸𝜔 exp (− 
𝑥2+ 𝑦2

𝑤𝜌
2  − 

𝑧2

𝑤𝑧
2 + 𝑖𝜉𝑧𝑘𝜔) �̂�  

where wρ and wz are the radial and axial beam waists, respectively; �̂� is a unit vector in the 

xy plane; kω = nω/c, where n is the medium refractive index; ξ is the effective reduction in 

the axial propagation vector caused by phase anomaly, or Gouy shift [24]. The resulting local 

second-harmonic dipole moment per unit concentration of emitters is given by: 

(1.1.41)                                      �⃗�2𝜔,𝑖(�⃗�) =  
1

2
 𝐸𝜔

2 (�⃗�) ∑ 〈𝛽𝑖𝑗𝑘〉 �̂�𝑗 �̂�𝑘 𝑗,𝑘  

where 〈βijk〉 is the local ensemble-averaged hyperpolarizability unit density.  

Since SHG is a coherent process, the total power and the angular distribution of the emitted 

radiation depend on how the emitters are spatially distributed within the focal volume. As 

shown in figure 1.5, we can define three unit vectors �̂�, 𝜃, �̂� corresponding to the propagation 

direction, the p polarization direction and the s polarization direction, respectively. These 

three unit vectors are defined by the following expressions: 

(1.1.42)                         �̂� = sin(𝜃) cos(𝜑) �̂� + sin(𝜃) sin(𝜑) �̂� + cos(𝜃) �̂� 

(1.1.43)                        𝜃 = cos(𝜃) cos(𝜑) �̂� + cos(𝜃) sin(𝜑) �̂� − sin(𝜃) �̂� 

(1.1.44)                                           �̂� = − sin(𝜑) �̂� + cos(𝜑) �̂� 

Let us consider first the second-harmonic electric far-field radiated in the direction {θ,φ}, 

hereafter indicated by Θ, from a single isolated emitter located exactly in the focus. It can 

be decomposed in its p and s polarization components:  

(1.1.45)                                 �⃗⃗�2𝜔
(0)(𝛩) = ( 

�⃗⃗�2𝜔
(0)𝑝(𝛩)

�⃗⃗�2𝜔
(0)𝑠(𝛩)

 ) =  
𝜂

𝑟
 𝑀 ∙  �⃗�2𝜔(0) 
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Figure 1.5  Coordinate system. The excitation beam propagates along the z axis. The SHG signal 

propagates along the �̂� direction, defined by {θ,φ}. θ and φ correspond to the p and s polarization 

directions, respectively. 

 

where η = ω2/πε0c
2; r is the far-field propagation distance (rkω ≫ 1) with respect to the 

observer; M is the projection matrix, defined as:  

(1.1.46)                     𝑀 (
𝜃
�̂�

) = (
cos(𝜃) cos(𝜑) cos(𝜃) sin(𝜑) − sin(𝜃)

− sin(𝜑) cos(𝜑) 0
) 

For simplicity, we assumed nω ≈ n2ω. The equation 1.1.45 can now be generalized for 

describing the far-field radiation generated by a collection of emitters with an arbitrary 

concentration distribution, defined by N(�⃗�). 

(1.1.47)                       �⃗⃗�2𝜔(𝛩) =  
𝜂

𝑟
 ∫ 𝑁(�⃗�) 𝑀 ∙  �⃗�2𝜔(�⃗�) 𝑒−𝑖𝑘2𝜔 �⃗� ∙ �̂� 𝑑�⃗� 

where we assumed 〈β〉 to be position-independent. We can now expand N(�⃗�) in its Fourier 

components, defined as: 

(1.1.48)                                  𝑁(�⃗�) =  (
𝑘2𝜔

2𝜋
)

𝑑

 ∫ 𝑁(�⃗�) 𝑒−𝑖𝑘2𝜔 �⃗⃗� ∙ �⃗�  𝑑�⃗� 
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where �⃗� represents a spatial wave vector normalized to k2ω, and d is the dimensionality of 

the emitters distribution. Thus, the total radiated field is given by the coherent summation of 

contributions of the local induced polarization at all points in the space:  

(1.1.49)                               �⃗⃗�2𝜔(𝛩) =  𝑉(𝑑) �⃗⃗�2𝜔
(0)(𝛩) ∫ 𝑁(�⃗�) 𝐴(𝑑)(𝛺, �⃗�)  𝑑�⃗� 

where V(d) is the active SHG “volume” (corresponding to a length, an area or a volume for d 

= 1, 2 or 3, respectively) and A(d) is the “antenna” factor arising from the phased summation 

of the radiated fields from the distributed sources, also dependent on the dimensionality. If 

we define three components of this “antenna” factor as follows  

(1.1.50)                              𝐴𝑥 = exp (
−𝑘2𝜔

2  𝑤𝜌
2 [sin(𝜃) cos(𝜑)− 𝑞𝑥]2

8
)         

(1.1.51)                               𝐴𝑦 = exp (
−𝑘2𝜔

2  𝑤𝜌
2 [sin(𝜃) sin(𝜑)− 𝑞𝑦]2

8
) 

(1.1.52)                                 𝐴𝑧 = exp (
−𝑘2𝜔

2  𝑤𝑧
2 [cos(𝜃)−ξ − 𝑞𝑧]2

8
) 

we can then consider three different cases, corresponding to three different geometries of the 

problem. If the sources are uniformly distributed along a one-dimensional line in the z 

direction (x, y = 0), then: 

(1.1.53)                                                    𝑉(1) =  (
𝜋

2
)

1/2

 𝑤𝑧          

(1.1.54)                                                          𝐴(1) =  𝐴𝑧 

If the sources are distributed on a two-dimensional surface in the yz plane (x = 0), then: 

(1.1.55)                                                     𝑉(2) = (
𝜋

2
) 𝑤𝜌 𝑤𝑧         

(1.1.56)                                                        𝐴(2) =  𝐴𝑦 𝐴𝑧 

If they are distributed in a three-dimensional volume, then: 

(1.1.57)                                                  𝑉(3) =  (
𝜋

2
)

3/2

 𝑤𝜌
2 𝑤𝑧         

(1.1.58)                                                      𝐴(3) =  𝐴𝑥 𝐴𝑦 𝐴𝑧  
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Figure 1.6  Collagen hierarchical organization. Picture taken from [25]. 

 

Finally, the resulting SHG power emitted in the unit of solid angle in the direction Ω is given 

by:  

(1.1.59)                                           𝑃2𝜔(𝛺) =  
1

2
 𝑛휀0𝑐𝑟2 |�⃗⃗�2𝜔(𝛩)|

2
 

We will apply such result in the next paragraph, while discussing the SHG emission from 

collagen. Such topic is particularly important for SHG imaging of a great variety of 

biological tissues.  

SHG from collagen 

Collagen is the main structural protein in the extracellular space of connective tissues in 

animal bodies (figure 1.6). Its basic unit is the tropocollagen, a 300 nm long molecule with 

a diameter of 1.5 nm. Tropocollagen has three subunits (or chains), each one containing 1050 

amino acids, wrapped to form a right-handed triple helix. Tropocollagen molecules arrange 

themselves into collagen fibrils, each one with a diameter ranging from 50 to 200 nm. Fibrils, 

aligned side-by-side, form fibre bundles. SHG emitters are localized in peptide bonds of the 

amino acid chain. Thus, the triple helix molecular structure of collagen causes the SHG 

emitters to be well organized into a helicoidal distribution, resulting in a high degree of 

anisotropy. The latter, together with the high hyperpolarizability within peptide bonds, 

allows imaging collagen fibres through SHG microscopy [26, 27]. 
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Let us consider now two particular geometries of SHG emitters, corresponding to a collagen 

fibre either aligned to the optical axis or lying on the focal plane. For simplicity, in the 

following model we will assume the emitter dipoles to be orthogonal to the fibre axis – 

instead of their more complex helicoidal geometry distribution.  

Let us first consider the case of a collagen fibre aligned to the optical axis. In our model, the 

excitation laser is polarized along the y axis, and the hyperpolarizability of each emitter is 

uni-axial and also directed along the y axis.  

We assume the emitters to be uniformly distributed along the z axis, with constant density 

N1 per unit length. Therefore, by using the formulas derived in the previous paragraph, we 

obtain a distribution in the Fourier space of N(�⃗�) = δ(0). Consequently: 

(1.1.60)                          �⃗⃗�2𝜔(𝛩) =  (
𝜋

2
)

1/2

 𝑤𝑧 �⃗⃗�2𝜔
(0)(𝛩) 𝑁 exp (

−𝑘2𝜔
2  𝑤𝑧

2 [cos(𝜃)− 𝜉]2

8
) 

Then, the SHG power per unit of solid angle is given by: 

(1.1.61)                        𝑃2𝜔(𝛺) =  
𝜋𝑛𝜀0𝑐𝑟2𝑤𝑧

2

4
 𝑁2 |�⃗⃗�2𝜔

(0)(𝛩)|
2

 exp (
−𝑘2𝜔

2  𝑤𝑧
2 [cos(𝜃)− 𝜉]2

4
) 

The resultant SHG radiation power is confined to a forward directed off-axis cone, as 

depicted in figure 1.7. The angular deviation from the optical axis is given by: 

(1.1.62)                                                    𝜃𝑝𝑒𝑎𝑘  ≈  𝑐𝑜𝑠−1(𝜉) 

which also corresponds to the angle with maximum emitted power. In this case, the SHG 

power is proportional to the square of the emitter dipoles (N2) – while TPEF power is 

proportional to N. Such difference arises from the coherent nature of the SHG process. 

Let us consider now the case of the collagen fibre emitter dipoles aligned to the y axis, instead 

of the optical axis. Again, the excitation laser is polarized along the y axis, and the 

hyperpolarizability of each emitter is uni-axial and also directed along the y axis. For 

simplicity, we assume the emitters to be uniformly distributed along the y axis, with constant 

density N per unit of length (as in figure 1.8). In this case, too, the emitters distribution in 

the Fourier space is a one-dimensional δ-function in the qy space. Therefore, the total SHG  
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Figure 1.7  Angular distribution of SHG emitted by a uniform distribution of z-aligned, y-polarized 

dipoles, excited by a z-propagating, y-polarized propagating beam. In a) we plotted its dependence 

from angles θ e φ. In b) we plotted the φ = 0 case. The two peaks showed in b) correspond to the cos-

1(ξ) values. In c) we represented the polar diagram of the SHG emission for the xz plane (black line) 

and for the yz plane (red line); the z direction is reported in abscissa. The calculation was done using 

the following parameters: λ = 840 nm (excitation wavelength), ξ = 0.7 (phase anomaly), wz = 1600 

nm (axial beam waist). Picture taken from [28]. 

 

 

Figure 1.8  Diagram of coordinate system for calculating the total emitted SHG field from a uniform 

distribution of nonlinear emitters along a y-aligned fibre. The excitation light is directed along the z 

axis and polarized along the y axis. Nonlinear induced emitting dipoles are assumed to be y-polarized.  
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Figure 1.9  Angular distribution of SHG emitted by a uniform distribution of y-aligned, y-polarized 

dipoles, excited by a z-propagating, y-polarized propagating beam. In a) we plotted its dependence 

from angles θ e φ. In b) we plotted the φ = π/2 case. SHG emission is equally distributed both in 

forward and backward directions. In c) we represented the polar diagram of the SHG emission for 

the xz plane (black line) and for the yz plane (red line); the z direction is reported in abscissa. The 

calculation was done using the following parameters: λ = 840 nm (excitation wavelength), ξ = 0.7 

(phase anomaly), wz = 350 nm (axial beam waist). Picture taken from [28]. 

 

far-field per unit of solid angle is given by:  

(1.1.63)              �⃗⃗�2𝜔(𝛩) =  (
𝜋

2
)

1/2

 𝑤𝜌 �⃗⃗�2𝜔
(0)(𝛩) 𝑁 exp (

−𝑘2𝜔
2  𝑤𝜌

2 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜑)

8
) 

and the total emitted SHG power per unit of solid angle is equal to:  

(1.1.64)           𝑃2𝜔(𝛺) =  
𝜋𝑛𝜀0𝑐𝑟2𝑤𝜌

2

4
 𝑁2 |�⃗⃗�2𝜔

(0)(𝛩)|
2

 exp (
−𝑘2𝜔

2  𝑤𝜌
2 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜑)

4
) 

The main difference with respect to the previous case consists in the different “antenna” 

factor A, resulting in a different angular distribution (see figure 1.9). 

In general, SHG radiation can be emitted both forward and backward with respect to the 

excitation light direction. The emitted SHG angular distribution depends on the angle 

between the excitation field direction and the hyperpolarizability direction (e.g. the direction 

of the fibrils in the case of collagen). The ratio between the forward-directed and the 

backward-directed SHG signals varies with the same angle, as depicted in figure 1.10. The 

main SHG contribution is usually directed as the excitation light. In the case of the collagen  
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Figure 1.10  SHG forward/backward ratio versus the angle between collagen fibrils and the optical 

axis. Above the graph, the expected angular distribution of SHG emission is reported for different 

angles between the fibrils and the optical axis (the latter is indicated by the black arrow). Picture 

taken from [29]. 

 

SHG emission from tissues, SHG light can be detected in both forward and backward 

directions. 

Thin tissue samples – less than 1 mm thickness – can be studied through both forward and 

backward detection (even if backward signal is usually small). Instead, for samples more 

than 1 mm thick, only backward detection is allowed, since their thickness prevents detecting 

the forward emission. In the latter case, however, forward-emitted SHG signal can be 

backward scattered by the sample molecules, thus enhancing the backward-emitted signal; 

such effect occurs only in highly scattering media, as biological tissues.  

1.1.3 Fluorescence Lifetime Imaging Microscopy (FLIM) 

Since the end of the ‘80s, time-resolved fluorescence spectroscopy has been widely used for 

studying the emission dynamics of fluorescent molecules – as, for example, the time 

distribution of a molecule radiative decay after its excitation to an upper electronic energy 

level [30, 31]. The time extension of such distribution is referred to as the fluorescence 

lifetime of the molecule. Lifetime measurements can yield information on the molecular 

microenvironment of a fluorescent molecule. In general, everything influencing the non-

radiative decay channel width (see figure 1.11) of the molecule – e.g. ionic bonds, oxygen  
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Figure 1.11  Energy diagram for the absorption-emission process. In evidence the two decay rate 

constants Γ and k for radiative and non-radiative decay processes, respectively.  

 

concentration, collisions and energy exchanges with other molecules – can affect its 

fluorescence lifetime.  

At the beginning of the 90’s, this field has been revolutionized by the development of 

fluorescence lifetime imaging microscopy (FLIM [32, 33]). Such technique generates an 

image of the sample based on the mean lifetime measured at each pixel. Fluorescence 

lifetime imaging has been implemented in wide-field [32], confocal [34] and multiphoton 

microscopes [35]. FLIM couples the advantages of fluorescence microscopy and time-

resolved spectroscopy by revealing the spatial distribution of fluorescent molecules together 

with information about their microenvironment. 

Fluorescence mean lifetime 

The fluorescence lifetime of a molecule usually represents its average permanence time in 

the excited state, before decaying to the ground state. If we consider an ensemble of 

molecules, excited by an infinitely short pulse of light, resulting in an initial population N0 

in the excited state, then the decay rate of the latter is: 

(1.1.65)                                                
𝑑

𝑑𝑡
𝑁(𝑡) =  −(𝛤 + 𝑘) 𝑁(𝑡) 

where N(t) is the number of molecules in the excited state at time t, Γ and k are the radiative 

and non-radiative decay rate constants, respectively (see figure 1.11). By integrating the 

equation 1.1.65 with the initial conditions N(t=0) = N0, we obtain: 

(1.1.66)                                                       𝑁(𝑡) =  𝑁0 𝑒−𝑡/𝜏 
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where τ is the excited state lifetime, defined as:  

(1.1.67)                                                            𝜏 =  
1

𝛤+𝑘
 

Therefore, we expect the fluorescence intensity I(t), which is proportional to the excited state 

population, to decay exponentially. In general, the excited state lifetime of a population of 

molecules can be calculated as the ensemble-averaged permanence time of the population in 

the excited state: 

(1.1.68)                                                     〈𝑡〉 =  
∫ 𝑡 𝑁(𝑡) 𝑑𝑡

∞
0

∫ 𝑁(𝑡) 𝑑𝑡
∞

0

 

If N(t) has an exponential decay trend, then: 

(1.1.69)                                                   〈𝑡〉 =  
∫ 𝑡 𝑁0 𝑒−𝑡/𝜏 𝑑𝑡

∞
0

∫ 𝑁0 𝑒−𝑡/𝜏 𝑑𝑡
∞

0

  

and hence:  

(1.1.70)          〈𝑡〉 =  𝜏 

Thus, for an exponential decay, the average permanence time of a molecule in its excited 

state is equal to its fluorescence lifetime. 

Time-Correlated Single Photon Counting (TCSPC) 

There are essentially two methods for calculating the fluorescence lifetime: time domain and 

frequency domain measurements. The first approach is based on exciting the sample with a 

pulse of light and measuring the time dependence of the emitted fluorescence; the second 

one is based on measuring the fluorescence phase shift with respect to a modulated 

excitation.  

Time-correlated single photon counting (TCSPC) is the most common technique used in 

time domain measurements. In fact, as discusses in the previous paragraph, the fluorescence 

emission from an ensemble of molecules excited by a laser pulse has an exponential 

distribution in time. TCSPC can record this distribution by measuring the time delays of 

individual fluorescence photons with respect to the excitation pulse. 
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Let us divide the time period between two excitation pulses in a certain number N of time 

channels, each one with amplitude Δt. The time-channel i corresponds to a mean time delay 

t (measured with respect to the first excitation pulse arrival) and to a certain interval Δt. If 

the average number of photons detected in the ith time channel is �̅�𝑖, which in turn 

corresponds to an average number of detected photoelectrons �̅�𝑖, then: 

(1.1.71)            �̅�𝑖 =  �̅�𝑖  𝑞  

where q is the detector quantum efficiency. If there is a large number of excitation pulses for 

every count registered in the ith channel, then the probability Px(i) of generating �̅�𝑖 

photoelectrons in the same time channel is given by the following Poisson distribution: 

(1.1.72)     𝑃𝑥(𝑖) =  
(�̅�𝑖)𝑥 𝑒−�̅�𝑖

𝑥!
  

with:  

(1.1.73)      ∑ 𝑃𝑥(𝑖) = ∞
𝑥=0 1 

Therefore, the probability of detecting at least one photoelectron per excitation pulse is given 

by: 

(1.1.74)  𝑃𝑥≥1(𝑖) = 1 −  𝑃0(𝑖) =  1 −  𝑒−�̅�𝑖 = 1 − (1 −  �̅�𝑖 +  
�̅�𝑖

2

2
+  … ) 

At very low light levels �̅�𝑖  ≫  �̅�𝑖
2/2 and, hence, the equation 1.1.74 becomes:  

(1.1.75)     𝑃𝑥≥1(𝑖)  ≈  �̅�𝑖 =  �̅�𝑖  𝑞 

Thus, under such conditions, the probability of detecting one or more photon per excitation 

pulse in the ith time channel is proportional to the fluorescence intensity at a delay time t. 

This is the general required condition for accurate TCSPC measurements.  

Assuming that the repetition rate of the source is Rs, and the total rate of detected 

fluorescence photons over all delay times is Rd, if the condition: 

(1.1.76)      
𝑅𝑑

𝑅𝑠
 ≡ 𝛼 ≪ 1 

is respected, then the probability of detecting two fluorescence photons per excitation pulse 

is negligible. A value 𝛼 ≤ 0.01 is typically required for TCSPC. Let us now consider a δ-
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function excitation, as we can approximate the pulse of a femtosecond laser. After measuring 

for a time T, the number of counts (i.e. the number of detected fluorescence photons) Yi 

acquired in the ith time channel is given, for a single exponential decay of the fluorescence 

intensity with lifetime τ, by: 

(1.1.77)     𝑌𝑖 =  𝛼 𝑅𝑠 𝑇 
∆𝑡

𝜏
 𝑒−𝑖 ∆𝑡/𝜏 

The equation 1.1.77 demonstrates another advantage of the TCSPC technique: the 

measurement accuracy can be improved by simply increasing the acquisition time T. 

Time resolution 

We assumed the excitation light pulse to be a δ-function in time in order to obtain the 

equation 1.1.77. Such condition is usually accomplished by using mode-locked lasers with 

pulses whose FWHM Δte is much less than the measured fluorescence lifetime τ. However, 

the time resolution is determined by the overall impulse response of the detection system 

(mainly the single photon detector, the timing electronics and the optical components).  

If the impulse response of the ith system component has a FWHM Δti, then the measured 

FWHM Δtm is given by: 

(1.1.78)     ∆𝑡𝑚 ≈  [(∆𝑡𝑒)2  +  ∑ (∆𝑡𝑖)
2

𝑖 ]1/2  

We can now express the measured fluorescence signal F(t) as the convolution product of the 

measured instrumental response function (IRF) R(t) and the theoretical fluorescence 

response function I(t) – i.e. the one we would observe for δ-function excitation.  

(1.1.79)     𝐹(𝑡) =  ∫ 𝑅(𝑡′) 𝐼(𝑡 − 𝑡′) 𝑑𝑡′𝑡

0
  

The IRF 𝑅(𝑡′) is, in turn, the convolution product between the impulse response functions 

of all the system components: 

(1.1.80)   𝑅(𝑡′) = 𝑆(𝑡′) ⊗ 𝐷(𝑡′) ⊗ 𝑂(𝑡′) ⊗ 𝐸(𝑡′) 

where S(t) is the excitation pulse temporal profile; D, O and E are the impulse responses of 

the detector, the optical and the electronic components, respectively. Thus, we can derive 

the theoretical fluorescence response I(t) by experimentally measuring the functions R(t), 

F(t) and then by deconvolving.  
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1.2 Theory of Raman spectroscopy 

The rotational-vibrational spectrum of a molecule is highly related to its geometry, especially 

in the so-called fingerprint region (500-1500 cm-1 or 6-20 µm). Therefore, knowing the 

spectrum (in such region) of a substance allows its identification. In order to do that, there 

are two complementary optical techniques: infrared (IR) absorption spectroscopy, and 

Raman spectroscopy. The latter measures the molecular rotational-vibrational transitions 

using visible (380-700 nm) or near-infrared (700-2500 nm) light. The main advantages of 

this technique are: 

 lasers can be used as light sources – whereas IR spectroscopy requires traditional 

incandescent sources or modern (but more costly/complex) nonlinear ones; 

 instrumentation materials are not required to be transparent to IR radiation; 

 silicon detectors are suitable;  

 the Raman spectrum of water shows no major peaks between 500 and 2500 cm-1, 

while there is a strong absorption in the IR region. Thus, Raman spectroscopy can 

analyse samples with high water content (i.e. biological samples).  

Depending on the desired application, Raman spectroscopy can be implemented in laser-

scanning microscopes (which allow imaging based on spectrum analysis [36]) as well as in 

fibre optic sensors.  

In the following paragraph, we will make a brief digression on the molecular rotational-

vibrational levels. Then we will discuss the Raman effect, the theory behind it and its 

application to the study of biological tissues (as done in my PhD research).  

1.2.1 Roto-vibrational energy structure of diatomic molecules 

A molecule is a system of two or more atoms held together by chemical bonds. If we neglect 

the hyperfine and spin-orbit interactions, the Hamiltonian of such system consists in the 

kinetic energy of nuclei, the kinetic energy of electrons, the attractive potential between 

nuclei and electrons, the repulsive potential between nuclei and the repulsive potential 

between electrons [37]: 
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(1.2.1)   𝐻 =  − ∑
ћ

2

2𝑀𝛼
 ∇𝑅𝛼

2
𝛼 − ∑

ћ
2

2𝑚𝑖
 ∇𝑟𝑖

2
𝑖 − ∑

𝑍𝛼𝑒2

4𝜋𝜖0
 

1

|𝑅𝛼−𝑟𝑖|𝑖,𝛼 +  

+ 
1

2
 ∑

𝑍𝛼𝑍𝛽𝑒2

4𝜋𝜖0
 

1

|𝑅𝛼 − 𝑅𝛽|
𝛼≠𝛽

+  
1

2
 ∑

𝑒2

4𝜋𝜖0
 

1

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

 

where Rα , Zα and Mα are the position, the atomic number and the mass, respectively, of the 

αth nucleus, and ri is the the ith electron position. In order to solve the Schrödinger equation 

of this Hamiltonian, we can introduce the Born-Oppenheimer approximation [38]: a general 

approximation based on the mass (hence, speed) difference between nuclei and electrons. In 

fact, during the time required for nuclei to change their relative position due to vibrations 

and rotations, each electron (being much less massive and much faster than its bounded 

nucleus) can occupy multiple times the positions within the so-called molecular orbital. 

Therefore, while describing the electronic energy structure, we can consider the nuclei to be 

at rest; on the other hand, we can approximate the nuclear rotational and vibrational motions 

as independent of the electrons motion, since it occurs on a much faster time scale. 

In accordance with the hypothesis of electrons instantaneously adapting to nuclear motion, 

let us consider the Hamiltonian as the sum of a nuclear part and an electronic one; for the 

latter, however, nuclear coordinates are parameters (instead of variables). The molecular 

total wave function is thus given by:  

(1.2.2)      𝜓(𝒓, 𝑹) =  𝜑𝑛(𝑹) 𝜓𝑒(𝒓, 𝑹) 

where φn depends only on the nuclear coordinates R, while ψe describes the electronic states 

as a function of electronic coordinates r given for a certain fixed nuclear configuration. For 

a diatomic molecule, the Schrödinger equation of the nuclear wave function is:  

(1.2.3)   [ − 
ћ

2

2𝜇
 ∇𝑅

2  +  
𝐿2

2𝜇𝑅2  +  𝑉𝑀𝑜𝑟𝑠𝑒(𝑅) ] 𝜑𝑛(𝑅) = 𝐸𝑣,𝑙 𝜑𝑛(𝑅) 

where R is the distance between the two nuclei; L is the orbital angular momentum; μ is the 

reduced mass of the two-body system; Ev,l is the energy eigenvalue depending on quantum 

numbers v and l, which describe the vibrational and rotational states of the molecule, 

respectively. The Morse potential VMorse is an approximation for the molecular potential, 

defined as:  
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Figure 1.12  Molecular potential of a diatomic molecule: harmonic approximation 

(green), Morse approximation (blue). Picture taken from [39].  

 

(1.2.4)     𝑉𝑀𝑜𝑟𝑠𝑒(𝑅)  =  𝐷𝑒 (1 + 𝑒−𝑎(𝑅−𝑅𝑒))
2
 

where De is the depth of the potential well (see figure 1.12), Re is the equilibrium internuclear 

distance, and a is a parameter setting the potential curvature. Then, by representing the 

Morse potential via a Taylor series centred at Re and stopping at the second order (harmonic 

approximation), the total energy eigenvalue is equal to: 

(1.2.5)     𝐸𝑣,𝑙  =  ћ𝜔0 (𝑣 +
1

2
) +  𝐵𝑙(𝑙 + 1) 

(1.2.6)    𝜔0  =  √
𝑘

𝜇
  ;   𝐵 =  

ћ
2

2𝜇𝑅𝑒
2   ;   𝑘 =  (

𝜕2 𝑉𝑀𝑜𝑟𝑠𝑒

𝜕𝑅2 )
𝑅=𝑅𝑒

 

The selection rules of the obtained roto-vibronic spectrum are: Δv = ±1, Δl = ±1. As shown 

in the above formulas, the molecular energy levels and the corresponding spacing depend on 

both the reduce mass and the equilibrium internuclear distance – that is, they are specific for 

each molecular type. Moreover, since the constant B is inversely proportional to the 

molecular moment of inertia, the rotational energy contribution is usually very small with 

respect to the vibrational one. Finally, spectra derived from transitions between these energy 

levels are in the IR region (i.e. 400-4000 cm-1).  
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1.2.2 Raman effect 

Let us consider a transparent medium, irradiated by monochromatic light whose frequency 

(ν0) does not match any EM transition of the sample. The incident light mainly passes 

through the sample, unchanged; nonetheless, a very small part is scattered in different 

directions by the molecules. By studying the scattered light, we can find that the major part 

has the same frequency ν0 of the incident field. Such phenomenon is known as Rayleigh (or 

elastic) scattering, whose intensity is proportional to the fourth power of ν0. However, the 

scattered light spectrum shows also other frequencies. If νr is one frequency of the scattered 

light, then the frequency shift νr - ν0 = Δν can be positive (anti–Stokes Raman shift) or 

negative (Stokes Raman shift). Δν is also called Raman frequency, or Raman shift. Being 

independent from the incident frequency ν0, the Raman frequencies reflect the specific 

molecular energy structure of the scatterer that generated them. Raman lines have higher 

intensity for negative Δν; moreover, the intensity associated with positive Δν strongly 

decreases with increasing |Δν|.  

In order to understand this effect, let us consider light as made by photons [40], each one 

with energy hν0 (where h is the Planck constant). The collision with a molecule can 

elastically scatter the photon, leaving its energy unchanged (Rayleigh scattering). 

Nevertheless, collisions can also be inelastic, causing the molecule to undergo a transition 

to a higher energy state; as a result, the photon loses energy and is scattered with a lower 

frequency (negative Δν). On the other hand, if the molecule is already in one excited state, 

the collision can cause a transition to a lower energy state, and the photon is scattered with 

higher frequency with respect to ν0 (positive Δν). Therefore, Raman shifts are related to the 

photon-molecule energy exchanges, which in turn reflect the specific energy transitions 

undergone by the scattering molecules. Moreover, in thermal equilibrium, the population of 

energy levels exponentially decreases with increasing energy. Thus, positive Raman shifts 

are less frequent than negative ones, and their line intensity rapidly decreases with increasing 

|Δν| (figure 1.13).  

Raman shifts correspond to the vibrational or rotational transitions of the scattering 

molecules. While these transitions can be excited through the absorption of IR light, in 

Raman spectroscopy we can observe them – by means of the corresponding frequency shifts 

– in the visible spectrum, which is more convenient. Visible light sources and detectors are  
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Figure 1.13  A typical spectrum of scattered light (A) and the Jablonski diagram of different 

scattering processes (B). A): the Rayleigh line (black) is at the centre, while Stokes (red) and anti-

Stokes (green) bands are on the left and right sides, respectively [41]. B): Rayleigh scattering 

transitions (black) are at the centre, while Stokes (red) and anti-Stokes (green) Raman scattering 

transitions are on the left and right sides, respectively [42]. 

 

generally cheaper and/or simpler than the corresponding IR instrumentation; moreover, 

water absorption is lower in the visible region. 

Quantum mechanical theory of light scattering  

Georg Placzek developed a theory [43] for explaining the Rayleigh scattering and the Raman 

effect by studying how the incident light perturbs the wave function of the scattering 

molecule. In fact, we can define the matrix element of the induced electric dipole moment 

Pnm, corresponding to a transition from the n state to the m state, as follows:  

(1.2.7)      𝑃𝑛𝑚 =  ∫ 𝜓𝑚
∗  𝑃 𝜓𝑛 𝑑𝜏 

where P is the electric dipole moment operator; ψm and ψn are the wave functions of the n 

and m states, respectively; the integral is extended over the whole space. The quantum-

mechanical result of the integral is:  

(1.2.8)     𝑃𝑛𝑚  =  
1

ℎ
 ∑ ( 

𝑀𝑛𝑟 𝑀𝑟𝑚

𝜈𝑟𝑛− 𝜈0
 +  

𝑀𝑛𝑟 𝑀𝑟𝑚

𝜈𝑟𝑚+ 𝜈0
 ) 𝐸𝑟  

where r indicates every energy level of the unperturbed molecule; νrn and νrm are the 

frequencies corresponding to the energy gaps between the states indicated by their 

subscripts; Mrn and Mrm are the corresponding transition dipole moments; E is the electric 
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field of the incident light, whose frequency is ν0. The square module of Pnm determines the 

scattering intensity associated with the n → m transition: 

(1.2.9)    𝐼𝑛𝑚  ∝  (𝜈0 +  𝜈𝑛𝑚)4 |𝑃𝑛𝑚|2  ∝  (𝜈0 +  𝜈𝑛𝑚)4 𝐼 

where I is the incident light intensity, which is proportional to E2. Then, for a system of Nn 

molecules in the initial state n, we can calculate the total intensity by simply multiplying by 

the factor Nn. The frequency of the scattered radiation is ν0 + νnm. The case n = m (thus νnm 

= 0) corresponds to the Rayleigh scattering. The case n ≠ m describes the Raman effect.  

Moreover, the expression of Pnm contains the transition dipole moments from the initial n 

state to all the r states of the unperturbed molecule, and those from all the r states to the final 

m state. However, such transitions do not actually occur during the scattering process. In 

fact, the r states are also called “intermediate levels” of the scattering process; similarly to 

the intermediate levels involved in two-photon absorption, their role is purely virtual. The 

only necessary condition for Raman scattering is that the energy hν0 of the incident photon 

has to be greater than the energy gap Em - En between the initial and the final states of the 

real transition. In fact, since there is no real transition to the r states, ν0 is not required to 

match any absorption frequency of the scattering molecule. We can also note that the 

expression of Pnm involves the products between the transition dipole moments with the r 

subscript, and not the single transition dipole moments. Since the latter can be positive as 

well as negative, terms belonging to different r states may cancel each other and set Pnm to 

zero; in such case, the Raman line is forbidden.  

The intensity of a Raman line depends on the frequency ν0 due to both the factor (ν0 + νnm)4 

and the denominators of the summation shown in the equation 1.2.8. However, for a 

transparent sample, νrn and νrm are ultraviolet (UV) frequencies; by choosing ν0 in the visible 

spectral range (ν0 « νrn , ν0 « νrm), its contribution to those denominators becomes negligible. 

Thus, in such conditions, the Raman intensity Inm becomes linearly proportional to the fourth 

power of the Raman line frequency.  

General theory of Raman scattering polarizability 

The electric polarization P induced in the scattering molecule by the incident light electric 

field E can be described as follows:  
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(1.2.10)     �⃗⃗� =  𝛼 �⃗⃗� 

where α is the molecular polarizability. Since P and E are vectors, α is usually a tensor: it is 

a scalar only when the P and E directions are equal, e.g. for an isotropic molecule. Therefore, 

the tensor is generally defined by nine components: αxx , αxy etc. Since α is a symmetric 

matrix, the off-diagonal elements are bound by the following relations:  

(1.2.11)   𝛼𝑥𝑦  =  𝛼𝑦𝑥  ;   𝛼𝑦𝑧  =  𝛼𝑧𝑦  ;   𝛼𝑧𝑥  =  𝛼𝑥𝑧 

We can use the six remaining components to form the equation of the ellipsoid associated to 

α. In fact:  

(1.2.12) 𝛼𝑥𝑥 𝑥2 +  𝛼𝑦𝑦 𝑦2 + 𝛼𝑧𝑧 𝑧2 +  2𝛼𝑥𝑦 𝑥𝑦 + 2𝛼𝑦𝑧 𝑦𝑧 + 2𝛼𝑧𝑥 𝑧𝑥 = 1 

Since a symmetric matrix is diagonalizable, the off-diagonal terms can be set to zero by 

choosing an appropriate coordinate system.  Then, the equation 1.2.12 takes the form of an 

ellipsoid (A x2 + B y2 + C z2 = 1).  

Moreover, we have to consider the conditions under which the Placzek theory can be applied:  

1. The electronic state of the scattering molecule (in practice, its ground state) has to be 

non-degenerate – which is true in almost all the cases.  

2. Raman scattering is mainly due to electrons, which explains why the energy transfer 

between the incident photon and the molecule depends on its vibrational and 

rotational motions. In fact, such motions influence the electron cloud polarizability, 

which interacts with the incident photon. Moreover, if the incident light frequency ν0 

is greater than the nuclear frequencies, electrons can “follow” it, while nuclei cannot 

(Born-Oppenheimer approximation). Consequently, the polarizability measured for 

each instantaneous nuclei distribution is almost identical to the case of stationary 

nuclei in the same positions. Since rotational-vibrational transition frequencies are in 

the IR spectrum, such condition is satisfied when ν0 belongs to the visible spectrum.  

3. The frequency difference between an electronic absorption band and the incident 

light has to be big with respect to rotational-vibrational frequencies. In practice, it is 

easy to satisfy this condition too.  

Within such limits, the polarizability α is a function of the nuclear coordinates only. 

Therefore, if the nuclei follow a classical periodic motion of frequency νmol, the polarizability 



 
 

38 
 

has the same temporal periodicity. When the electric vector of the incident light oscillates 

with frequency ν0 and polarizes a molecule, the induced electric dipole moment P shows 

beat frequencies ν0 ± νmol. Thus, the positive sign accounts for anti-Stokes Raman shifts, 

while the negative sign for Stokes Raman shifts. However, such classical approach cannot 

explain the intensity difference between Stokes and anti-Stokes shifts. Hence, we need to 

consider a quantum-mechanical point of view. The matrix element Pnm for the n → m 

transition is given by:  

(1.2.13)   𝑃𝑛𝑚  = ( ∫ 𝜓𝑚
∗  𝛼 𝜓𝑛 𝑑𝜏 )𝐸 =  𝛼𝑛𝑚  ∙  𝐸 

In the following paragraphs, we will discuss separately vibrational and pure rotational 

Raman transitions focusing on their intensity and quantum-mechanical selection rules.  

Pure rotational Raman effect 

For an isotropic molecule, no pure Raman effect is allowed. Classically, if the polarizability 

ellipsoid is a sphere (as in the case of an isotropic molecule), the incident light “sees” the 

same polarizability for every angle of rotation of the molecule. Since there is no rotation-

induced modulation of α, there are no resulting beat frequencies. Instead, for a linear 

molecular geometry, the selection rule is ΔJ = ± 2, where J is the total angular momentum. 

We can explain this result also from a classical point of view. For symmetry reasons, one 

main axis of the polarizability ellipsoid lies on the inter-nuclear line. If the molecule rotates 

around an axis perpendicular to such line, the ellipsoid will be in an identical position after 

half a revolution, and then again after a whole revolution. Therefore, the frequency of its 

aspect changing is double the rotation frequency, which corresponds to the quantum-

mechanical selection rule ΔJ = ± 2. 

It is important to stress that pure rotational Raman effect can be observed from molecules 

without a permanent electric dipole moment, which in fact show no rotational absorption in 

the IR and the microwave parts of the EM spectrum. Thus, Raman spectroscopy can be used 

for determining molecular moments of inertia even when absorption techniques are not 

applicable.  

In general, pure rotational Raman frequencies are small: typically between 3 GHz and 3 THz 

(while vibrational Raman frequencies are in the range of 10-100 THz). In order to measure 
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them, a high-dispersion, high-resolution spectrograph is needed. Optical frequencies, 

instead, are in the range of 400-750 THz.  

Vibrational Raman effect 

Vibrational transitions are generally together with rotational ones, thus the resulting Raman 

effect shows a roto-vibronic band. Spectroscopic measurements are usually performed on 

liquid samples, whose rotational energy structure cannot be resolved. However, both 

classical and quantum-mechanics considerations bring to the conclusion that the total 

intensity of an unresolved roto-vibronic spectrum is identical to the intensity calculated for 

averaged (on all the molecular orientations) pure vibrational transitions. Therefore, let us 

consider only vibrational transition dipole moments as follows:  

(1.2.14)    𝑃𝑛𝑚  = ( ∫ 𝜓𝑚
∗  𝛼 𝜓𝑛 𝑑𝑄 )𝐸 

where ψm and ψn are vibrational wave functions, and α is a function of only the nuclear 

coordinates Q. When the nuclear configuration of a molecule is slightly distorted in an 

arbitrary direction, restoring forces come into play; therefore, when released, the molecule 

performs small-amplitude vibrations. In general, nuclei motion seems random and aperiodic; 

nonetheless, classical mechanics demonstrates such complex motion to be composed by a 

finite number of normal modes. For each normal mode, all the nuclei move in phase with 

the same normal frequency of vibration. We can easily calculate the number of such modes: 

if there are N nuclei, there are 3N degrees of freedom. Molecular translations account for 

three of them, and rotations for other three. Thus, there are 3N - 6 degrees of freedom left 

for the relative positions of the nuclei (e.g. for internal molecular motions). This is the 

number of normal modes.  

In general, at equilibrium, the nuclear configuration of a molecule has some symmetry 

elements (e.g. planes of reflection, rotational axes, etc). These elements characterise also the 

symmetry of the electron cloud, which – due to the Coulomb interaction – takes part in the 

restoring forces after a small change in the nuclei position (i.e. a small molecular 

deformation). Consequently, the molecular symmetry properties influences the normal 

modes of vibration. Each mode is described by the corresponding normal coordinates Q, 

which account for the displacements of all the nuclei.  
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In the following paragraph, we will use the Placzek simplified theory of polarizability for 

deriving the intensity and the selection rules of vibrational Raman transitions. 

Placzek simplified theory of polarizability 

In the general theory about polarizability, we considered the tensor α as a function of the 

nuclear coordinates. Therefore, for a particular vibration mode, α is a function of the normal 

coordinates Q. Since the amplitude of these coordinates is small [43], we can represent α via 

a Taylor series. By stopping at the linear term in Q and neglecting the higher powers, we 

find:  

(1.2.15)    𝛼 =  𝛼0 + ( 
𝜕𝛼

𝜕𝑄
 )

0
 𝑄 

where (∂α/∂Q)0 represents how much, at equilibrium (subscript zero), α changes with respect 

to variations in Q. The corresponding matrix element for the n → m transition becomes: 

(1.2.16)  𝛼𝑛𝑚  =  ∫ 𝜓𝑚
∗  𝛼0 𝜓𝑛 𝑑𝑄  + ( 

𝜕𝛼

𝜕𝑄
 )

0
 ∫ 𝜓𝑚

∗  𝑄 𝜓𝑛 𝑑𝑄 

Due to the orthogonality of ψm and ψn, the first term on the right of the equation is zero, 

unless n = m (which corresponds to the Rayleigh scattering). If we consider the vibration to 

be a harmonic oscillation, the second term is zero, unless m = n ± 1 (which corresponds to 

the ground state Raman band of the vibrational mode). According to this simplified theory, 

combination bands (i.e. the excitation of more than one normal modes) and overtone bands 

(i.e. a transition between non-adjacent energy levels) are forbidden: this is the consequence 

of neglecting the higher terms in the Taylor series. In fact, combination and overtone bands 

weakly contribute to the total Raman effect; thus, our approximation is well satisfied.  

Let us consider the Stokes line of a particular mode, e.g. the n → n + 1 transition for a non-

rotating molecule. By knowing [44] the result of the equation 1.2.16, αn,n+1 becomes:  

(1.2.17)    𝛼𝑛,𝑛+1  =  ( 
𝜕𝛼

𝜕𝑄
 )

0
 √

(𝑛+1)ℎ

8𝜋2𝑀𝜈
 

where M and ν are the reduced mass and the ground state frequency of the normal mode. 

The induced transition moment and the line intensity are given by: 

(1.2.18)    𝑃𝑛,𝑛+1  =  𝛼𝑛,𝑛+1  ∙ 𝐸 



 
 

41 
 

(1.2.19)    𝐼𝑛,𝑛+1  ∝  (𝜈0 −  𝜈 )4 |𝑃𝑛,𝑛+1|2 

Thus, the Raman line intensity depends on the derivative tensor α΄ = (∂α / ∂Q)0. Two 

invariant quantities (whose values are not affected by changes in the coordinate system 

orientation of the molecule) are related to the derivative tensor:  

(1.2.20)    �̅�΄  =  
1

3
 (𝛼𝑥𝑥

΄  +  𝛼𝑦𝑦
΄  +  𝛼𝑧𝑧

΄ ) 

(1.2.21)  𝛾΄2  =  
1

2
 [(𝛼𝑥𝑥

΄ − 𝛼𝑦𝑦
΄ )

2
+  (𝛼𝑦𝑦

΄ − 𝛼𝑧𝑧
΄ )

2
+  (𝛼𝑧𝑧

΄ −  𝛼𝑥𝑥
΄ )

2
+  6 (𝛼𝑥𝑦

΄2 + 𝛼𝑦𝑧
΄2 +  𝛼𝑧𝑥

΄2 )]     

Thus, the intensity of the light scattered by an irradiated molecule is a function of such 

quantities: 

(1.2.22)  𝐼𝑛,𝑛+1  ∝  (𝜈0  −  𝜈 )4  
(𝑛+1)ℎ

8𝜋2𝑀𝜈
 
𝐸2

45
 [ 45 �̅�΄2 +  13 𝛾΄2 ] 

At room temperature, the majority of scattering molecules is in the lowest vibrational state 

(n = 0). However, some molecules are in the higher states, for which there is a greater 

intensity (proportional to n + 1) of the scattered light. Therefore, considering Boltzmann 

statistics (regarding the particle distribution on energy levels), the intensity of the Raman 

line is given by: 

(1.2.23)  (𝐼𝑛,𝑛+1)𝑜𝑠𝑠  =  𝐾 𝐼0  
(𝜈0 − 𝜈 )4

𝑀𝜈 (1 − 𝑒−ℎ𝜈/𝑘𝐵𝑇)
 [ 45 �̅�΄2 +  13 𝛾΄2 ] 

where K is a constant and I0 (which is proportional to E2) is the incident light intensity. In 

the following paragraph, we will discuss the applications of the Raman effect to the study of 

biological samples.  

Application of Raman scattering to the study of cells and biological tissues  

Being a non-invasive technique, in recent years Raman spectroscopy has been extensively 

used for analysing biological tissues (e.g. skin, lung, stomach, colon, bladder and arteries 

[45-49]) as well as for discriminating different cell types and studying cellular biology [50-

53]. One of its main advantages consist in detecting small molecular or biochemical changes 

within cells/tissues in few seconds, thus proving to be a powerful tool for clinical 

applications [54]. In fact, Raman spectra represent the “fingerprints” of the molecules within 

the examined sample: detected peaks and their intensities indicate the presence and the 
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relative abundancy of specific molecules. This technique, for example, can be used to 

discriminate healthy biological materials from diseased ones.  

However, the probability of Raman scattering is extremely low. In particular, for biological 

tissues, it is several orders of magnitude smaller than the excited fluorescence emission. 

Therefore, it is necessary  

 to minimize the fluorescence contribution with respect to the Raman signal;  

 to separate the former from the latter by means of computational techniques [55].  

For tissues, fluorescence excited by IR radiation is much lower than fluorescence excited by 

visible light. Moreover, longer wavelengths allow deeper penetration in the sample. 

However, Raman intensity is proportional to the fourth power of the excitation frequency, 

thus visible laser sources provide higher signals than IR laser sources. In general, there is a 

trade-off between these three factors. Nonetheless, for wavelengths longer than 1000 nm, 

there is greater absorption by water, which reduces the signal-to-noise ratio (SNR) and the 

penetration depth. In addition, the detection efficiency of charge-couple devices (CCD) 

significantly declines above 900-950 nm [56]. Based on such considerations, proper laser 

sources for Raman spectroscopy of biological tissues emit in the NIR; excitation 

wavelengths are typically chosen between 780 nm and 830 nm.  

For studying a thin layer of living cells, on the contrary, there is no need for reaching high 

penetration depths. Moreover, cell culture glass-bottom dishes show strong 

photoluminescence when excited at 785 nm, which completely obscures the fingerprint 

region of the Raman spectrum [57]. Thus, by taking into account the above-mentioned 

frequency dependence, a better Raman-to-fluorescence signal can be achieved by using a 

visible laser source. In addition, when the incident laser frequency is close in energy 

(resonance) to an electronic transition of the molecule under examination, the vibrational 

modes associated with the excited electronic state are enhanced [58]. As a result, Raman 

scattering intensities increase by a factor 102-106; such effect is known as Resonance Raman 

(RR [59]). In order to exploit RR, the excitation wavelength has to be in the visible range 

[60]. Therefore, for all these reasons, a typical wavelength choice for studying cell biology 

is 532 nm [61-63].  
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1.3 Conclusions 

In this chapter, we discussed the theory of two-photon absorption, second-harmonic 

emission and Raman spectroscopy, and the basic principles underlying fluorescence lifetime 

measurements.  

Regarding TPEF, we found that, at the second order of the quantum perturbation theory, the 

two-photon transition probability is proportional to the square of the excitation light 

intensity. Moreover, the spatial resolution of a two-photon transition is comparable to that 

one of a confocal microscope, but without the need of a spatial filter. Finally, we described 

a theoretical approach for calculating radial and axial PSFs for two-photon fluorescence.  

Then, we described a generalized theory for SHG emission from a population of emitting 

molecules. We found that, due to the coherence of the SHG process, the emitted SHG power 

scales with the square of the molecule number. The angular distribution of the emitted SHG 

light strongly depends on the spatial distribution of the emitting molecules within the focal 

volume; in the particular case of one-dimensional distributed molecules, it depends on the 

angle between the emitting dipoles and the optical axis. SHG typically shows a larger signal 

contribution in forward direction, thus it is usually forward detected; however, in highly 

scattering media (as tissues), it can be backward detected by taking advantage of the 

backscattered forward-emitted SHG photons.  

Regarding FLIM measurements in the time domain, we demonstrated that TCSPC is a 

powerful method for measuring fluorescence decay functions at low fluorescence light level. 

The accuracy of such technique can be enhanced by increasing the acquisition time, and its 

time resolution depends only on the response of optical and electronics components. 

Finally, we described the rotational-vibrational energy levels of a molecule and discussed 

the theory of the Raman effect, which is related to the transitions between them. Being an 

optical, non-invasive technique, Raman scattering has a great potential for studying 

biological samples and providing tools for clinical applications. In this regard, we also 

discussed the proper choice of the excitation source for two kinds of samples: tissues and 

cells. In general, a NIR wavelength is more convenient for studying tissues, while a visible 

wavelength is better for studying cells.  
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All these concepts will be recalled and applied in chapter 2, while describing the procedures 

adopted for characterising and calibrating the experimental setups.  
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Chapter 2: Materials and methods 

2.1 Experimental setups 

During my PhD, I designed and developed a custom-made multimodal microscope 

combining two-photon microscopy and Raman spectroscopy; then I used it in two separate 

studies (see chapters 3 and 5). A further study (see chapter 4) was conducted by using a 

commercial Raman microscope (XploRA INV, Horiba, Kyoto, Japan). In this section, I will 

describe both the experimental setups and report the adopted procedures for their calibration 

and characterisation.  

2.1.1 Custom-made multimodal microscope 

I contributed to the realization and the development of an optical, laser-scanning microscope 

for TPEF, FLIM, SHG and Raman microscopy. Such system allows spectroscopy and 3D 

imaging of both thin and “bulk” biological samples. It consists in four major parts – laser 

source, optical scanning system, mechanical components and detection system – placed on 

an optical table and on a vertical breadboard. A detailed description of the developed 

experimental setup, together with drawings and pictures, is provided below. 

Laser source, optical scanning and detection systems 

The excitation source is a Ti:Sapphire laser (Mira900F, Coherent, Santa Clara, CA, USA) 

either emitting 140 fs pulses at a 76 MHz repetition rate or a continuous wave beam. Its 

wavelength is tuneable – by means of a micrometre that controls the rotation of a birefringent 

wave plate – between 700 nm and 980 nm. Its pump is a frequency-doubled Nd:YAG laser 

(Verdi V10, Coherent, Santa Clara, CA, USA) emitting at 532 nm. As shown in figure 2.1A, 

the output beam passes through a collimating telescope (lenses L1 and L2, f = 50 mm, placed 

in a 4f configuration). An electronic shutter S (SH05, Thorlabs, Newton, NJ, USA) regulates 

the laser illumination time of the sample. The beam power is adjusted by a polarization-

based system, consisting of a half-wave plate λ/2 and a polarizing beam splitter (PBS). A 

motorized device (NSR1, Newport, Irvine, CA, USA) rotates the plate, which in turn rotates 

the polarization of the electric field, causing only a part of it to be transmitted by the PBS. 

Then, a quarter-wave plate λ/4 changes the excitation field polarization from linear to 

circular (at the sample) and compensates for the polarization ellipticity introduced by other  
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Figure 2.1  Experimental setup of the custom-made multimodal microscope. A): optical scheme. B) 

and D): pictures of the upper and lower parts of the vertical breadboard, respectively. C): picture of 

the custom-made F# matcher placed in front of the monochromator. 

 

optical elements. The transmitted beam goes to a scanning system mounted on a vertical 

breadboard, based on two galvanometric mirrors – Gx and Gy (VM500, GSI Lumonics, 

Karlsruhe, Germany) – and an optical relaying telescope between them (L3 and L4 lenses,  

f = 60 mm, 4f configuration). In particular, the choice L3 and L4 lenses was done by 

considering that longer focal lengths make the beam alignment easier, but also require bigger 
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lens diameter and longer optical path (i.e. more space on the vertical breadboard). On the 

other hand, shorter focal lengths make the alignment more difficult, while requiring smaller 

lenses and allowing a more compact optical scheme. In this case, an adequate solution 

consisted in two lenses with 50.8 mm diameter and 60 mm focal length. Other two lenses 

(the scanning lens SL, with 50 mm focal length, and the tube lens TL, with 200 mm focal 

length) expand the beam to about 1.5 cm diameter in order to overfill the back-aperture of 

the objective, and reduce the scanning angle by a factor of 4. Then, the laser beam travels 

through a dichroic mirror D1 (FF685-Di02, Semrock, Rochester, NY, USA) before being 

focused on the sample by the objective Ob1. Two piezoelectric motors – P725.4CL and M-

687 (Physik Instrumente, Karlsruhe, Germany) – ensure high-precision controlled 

movement of the objective along the optical axis (Z) and of the sample across a radial plane 

(XY), respectively. There is also a manual linear stage (M-126.M0, Physik Instrumente, 

Karlsruhe, Germany) for a grossly axial (Z) positioning of the objective. 

The light emitted from the sample is detected either forward and/or backward. Fluorescence 

and second-harmonic light are backward-collected by the same objective used for excitation 

and reflected by the D1 dichroic mirror, which has a 665 nm cut-off wavelength. The epi-

detection system consists of three photomultiplier (PMT) tubes: two detectors H7422 

(Hamamatsu, Hamamatsu City, Japan) and one high-speed PMT for photon counting PMH-

100 (Becker-Hickl, Berlin, Germany). As shown in figure 1A, each detector is fixed to 30 

mm “cage” cube (DFM1/M, Thorlabs, Newton, NJ, USA) that allows quick 

mounting/replacing of optical filters and dichroic mirrors in prealigned configurations. In 

order to focus the optical signal at the entrance of each PMT, a lens with a very short focal 

length (30 mm) is placed inside each connecting tube between the detector and the 

corresponding cube. In fact, considering that the detection is performed in non-descanning 

mode (the “confocal” point is scanned in the image plane), this lens allows maintaining the 

“confocal” point always within the sensible area of the detector. For example, combining 

this lens with a 20× objective having 200 mm reference focal length produces a 3× 

magnification: thus, laser scanning a 500 μm size area on the sample results in a 1.5 mm size 

scanned area on the image plan. Of course, a shorter focal length would further reduce the 

size of the scanned area on the detector aperture, but such advantage typically comes together 

with a smaller lens diameter – which in turn reduces the light collected by the lens itself. 

Since the sensible area of each detector has ~1 cm diameter, there is no need for smaller 
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magnification; moreover, the diameter of L5, L6 and L7 lenses perfectly fits the connecting 

tube size, maximising light collection. Finally, the three cubes are fixed together through a 

set of steel rods. All these arrangements were chosen for providing a very compact 

mechanical structure for SHG, TPEF and FLIM detection. In fact, second-harmonic light is 

reflected by the dichroic mirror D2 (FF452-Di01, Semrock, Rochester, NY, USA), passes 

through a narrow band-pass filter and is detected by the first H7422 detector. Fluorescence 

passes through both the 452 nm dichroic and a large band-pass filter; then is reflected by a 

removable mirror M6 (DFM1/M-E02, Thorlabs, Newton, NJ, USA) and detected by the 

second H7422 photomultiplier. Alternatively, fluorescence signal can be detected using the 

PMH-100, and then processed by a single photon counting FLIM board SPC-730 (Becker-

Hickl, Berlin, Germany) for time-resolved analysis.  

Forward-emitted SHG is collected by the objective Ob2, whose position is adjusted by two 

manual translation stages: M-126.M0 and AKT-120 (Physik Instrumente, Karlsruhe, 

Germany) for Z and XY positioning, respectively. SHG is reflected by the dichroic mirror 

D3 (FF685-Di02, Semrock, Rochester, NY, USA), filtered by another narrow band-pass 

filter and focused by another lens L8 (with 30 mm focal length) into the sensible area of a 

third H7422. Instead, forward-emitted Raman signal is reflected by a removable mirror 

(DFM/M-P01, Thorlabs, Newton, NJ, USA) placed after the objective Ob2, and then focused 

by the collector lens CL into the tip of an optical fibre bundle. At the distal end of the fibre 

bundle, light comes out from 24 fibres arranged in two lines within an MTP connector. The 

latter is connected to a ferrule, which in turn arranges the fibres in one vertical line at the 

entrance of a custom-made F# matcher. The latter consists of two mirrors (M10-11) and two 

lenses (L9-10, with 75 mm and 150 mm focal lengths, respectively) placed in 4f 

configuration with respect to the ferrule output. I designed these scheme for increasing the 

beam F# from the optical fibre bundle by a factor of 2; thus, the typical F# of silica fibres 

(~2) is matched with the input of the subsequent monochromator (F# ~4). As result, the F# 

matcher projects the image of the 24 fibres onto the monochromator slit while reducing both 

stray light and losses in collection efficiency. Finally, Raman signal enters the 

monochromator (Oriel Cornerstone 260, Newport, Irvine, CA, USA), where it is diffracted 

by a 1200 lines/mm grating and detected by a CCD camera (Andor DU401A, Andor 

Technology, Belfast, Northern Ireland, UK). In order to reduce thermal noise, the CCD is 

cooled to -80 °C by an external liquid cooler and a Peltier cell. Since Raman measurements 
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are performed with 785 nm wavelength excitation, there are three additional optical filters 

in the setup. First, a narrow band-pass filter (FF01-780/12, Semrock, Rochester, NY, USA), 

placed before the dichroic D1, for “cleaning” the excitation wavelength from any spurious 

contribution; second, a long-pass filter (LPD01-785 RU, Semrock, Rochester, NY, USA), 

placed after the objective Ob2, for preventing the excitation beam from entering the optical 

fibre bundle; finally, a notch filter (NF03-785E, Semrock, Rochester, NY, USA), placed in 

the optical fibre bundle tip.  

Mechanical components 

The experimental setup is placed onto two metallic breadboards – a horizontal one (1800 

mm × 1200 mm) and a vertical one (1200 mm × 750 mm) – with M6 threaded grids, whose 

spacing is 25 mm. Two set-square-shaped supports fix the vertical breadboard to the 

horizontal one, which in turn stands on a granite optical table, sustained by four reinforced 

concrete legs. A neoprene substrate – 1 cm thickness – placed between the horizontal 

breadboard and the table dampens mechanical vibrations.  

As already mentioned, the P725.4CL and M-687 piezoelectric motors move (respectively) 

the objective and the sample with submicron accuracy. The objective is grossly positioned 

by the M-126.M0 manual stage. In order to place these components according to the vertical 

architecture of the microscope, I designed some proper mechanical components: a shelf for 

the M-687 motor, and a holder for the P725.4CL and M-126.M0 stages (figure 2.2A and B, 

respectively). In order to do so, I used a Computer-Aided Design (CAD) software, 3D 

Autodesk Inventor [64]. Thereafter, all the components were made of aluminium alloy by 

the mechanical workshop of the Italian National Institute of Optics (INO).  

The shelf consists of a rectangular ring (length: 360 mm; width: 237 mm; height: 15 mm), 

two “big” set-square-shaped supports (length: 258 mm; width: 50 mm; height: 170 mm; 

thickness: 15 mm) and two “small” ones (length. 185 mm; width: 15 mm; height: 135 mm; 

thickness: 15 mm). Four screws fix the M-687 motor to its shelf. For holding the objective, 

two mechanical pieces are needed: a plate (width: 50 mm; height: 70 mm; thickness: 10 mm) 

for fixing the M-126.M0 stage to the vertical breadboard, and a T-shaped mount (length: 130  
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Figure 2.2  3D drawings of the shelf (A) and the holder (B), which support the XY and Z motorized 

and manual stages, respectively. 

 

mm; width: 50 mm; height: 45 mm; thickness: 10 mm) – fixed to the manual stage itself – 

which holds the P725.4CL motor and the objective.  

Calibration and characterisation 

Several experimental measurements and protocols were implemented for characterising 

spatial and temporal resolution of the microscope, as well as for calibrating some of its 

components. I will report them in the following paragraphs.  

Calibration of the scanning system 

As already mentioned, the scanning system is based on two galvanometric mirrors: one 

moves the excitation beam along the X-axis, the other along the Y-axis. The inputs received 

by the mirrors are voltage signals: a greater amplitude produces a larger angle of rotation 

(with respect to the equilibrium position of the mirror). Thus, images are acquired by point-

by-point (i.e. pixel-by-pixel) detection of the signal collected during the scanning, and their 

field of view (FOV) depends on the maximum voltage applied to each galvanometric mirror. 

In order to determine the FOV dimensions – i.e. to calibrate the mirrors response in function 

of the applied voltage – I moved a fluorescent object (by using the XY motorized stage) 

while imaging it. A calibration factor was calculated by measuring how much the image of 

the object was displaced as a function of its physical changes of position (as reported from 

the position sensor of the XY stage).  
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Figure 2.3  QDs TPEF images acquired at three equally spaced positions (marked progressively in 

red, green and blue) of the XY motorized stage. A) and B): three images of a QD, acquired with a 

40× objective at 5 µm steps. C) and D): three images of a QD, acquired with a 20× objective at 2 

µm steps. E) and F): three images of a QD, acquired with a 10× objective at 5 µm steps. 

 

For this procedure, I chose to image a quantum dot (QD) with 50 nm diameter. Therefore, I 

placed a water (n = 1.33) solution containing QDs on a microscope slide. The QDs sticked 

to the glass surface, and a proper concentration was set in order to have few of them per 

FOV. Then I moved the slide via the XY stage at small (2-5 µm) steps, while looking at the 

corresponding QD displacements (measured in terms of pixels) within the observed FOV, 

as shown in figure 2.3. By calculating the calibration factor between image displacements 

and physical ones, FOV dimensions were simply derived. Consequently, I obtained a 

voltage-to-FOV calibration.  



 
 

52 
 

Since the FOV depends on the magnification of the excitation objective, I did such procedure 

for three objectives: Plan-Apochromat 10× (Carl Zeiss, Oberkochen, Germany; NA = 0.45, 

WD = 2 mm), Plan-Apochromat 20× (Nikon, Shinjuku, Tokyio, Japan; NA = 0.75, WD = 1 

mm) and Plan-Apochromat 40× (Carl Zeiss; NA = 0.95, WD = 0.25 mm).  

Spatial resolution 

In two-photon microscopy, the size of the excitation beam focus determine the spatial 

resolution (as discussed in section 1.1.1). Since the QDs used in the previous section are 

much smaller than the spatial resolution of the microscope, they can be used also for 

measuring the PSF. Thus, I did the 3D TPEF imaging of a QD for two wavelength/objective 

sets: 740 nm excitation and 20× objective (NA = 0.75); 840 nm excitation and 40× objective 

(NA = 0.95). After setting the FOV dimensions (9 µm for the first set, 15 µm for the second 

one) and choosing the number of pixels (512 × 512 for each image), a Z-scan of the QD was 

done by moving the objective at 0.2 µm steps. I used the software ImageJ [65] for measuring 

both the radial intensity profile of the QD fluorescence emission and, for each step of the Z-

scan, the total number of emitted photons. Finally, by plotting the latter as a function of the 

Z-position, I obtained the axial intensity profile of the QD fluorescence emission.  

The results are shown in figure 2.4. The radial and axial intensity profiles represent, 

respectively, the radial and axial point spread functions (PSFs) of the two-photon 

microscope. The data points of each profile are fitted to a Gaussian function, whose FWHM 

represents the spatial resolution. At 740 nm, with NA = 0.75, the obtained FWHM of the 

radial and axial PSFs are (630 ± 20) nm and (4.3 ± 0.2) µm, respectively. At 840 nm, with 

NA = 0.95, the obtained FWHM of the radial and axial PSFs are (410 ± 30) nm and (3.3 ± 

0.2) µm, respectively. The uncertainty of each result is given by the nominal spatial 

resolution: for radial results, by the size of each image pixel; for axial results, by the size of 

each Z-scan step.  

By doing the calculation described in section 1.1.1, we can compare these finding with those 

derived from the theory of two-photon microscopy. At 740 nm, with NA = 0.75 and n = 

1.33, the FWHM of the theoretical radial and axial PSFs are 400 nm and 2.2 µm, 

respectively. At 840 nm, with NA = 0.95 and n = 1.33, the FWHM of the theoretical radial 

and axial PSFs are 360 nm and 1.6 µm, respectively. Thus, the presented results are in line 

with those predicted by the theory: when comparing the two wavelength/objective sets, the  
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Figure 2.4  Axial (left) and radial (right) PSFs measured from TPEF emission from a water solution 

containing QDs (50 nm diameter). A) and B) graphs show the results obtained with 740 nm excitation 

and NA = 0.75. C) and D) graphs show the results obtained with 840 nm excitation and NA = 0.95. 

Each graph shows the collected data points (black squares), the corresponding Gaussian fit (black 

solid line) and the theoretical PSF (dashed line; blue for axial PSFs, red for radial ones).  

 

objective with higher NA results in better spatial resolution – despite being used with a 

longer excitation wavelength. 

Temporal resolution 

The temporal resolution of a time-correlated single photon counting (TCSPC) system is 

given by the instrumental response function (IRF). The latter – as discussed in section 1.1.3 

– is the convolution product between the impulse response functions of all the system 

components. In order to measure the IRF of FLIM detection, we can approximate it as the 

system temporal response to a very short (in time) signal: for example, SHG emission. In 

fact – as discussed in section 1.1.2 – harmonic generation involves coherent radiative 

scattering, which is an instantaneous process. Moreover, since the expected temporal 

resolution (hundreds of picoseconds) is about 1000 times bigger than the temporal FWHM  
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Figure 2.5  IRF of the FLIM detection system. The data points (black squares) represent the time-

resolved SHG signal intensity emitted by collagen. A Gaussian function (black line) fits the data. 

The top-left picture shows a bundle of collagen fibres imaged through SHG microscopy. 

 

of a laser pulse (140 fs), the latter can be considered a δ-function in time. Thus, by exciting 

second-harmonic emitters with a laser pulse, the temporal FWHM of the resulting SHG 

signal can be approximated as the effective IRS of the detection system.  

For this measurement, I set the laser wavelength to 840 nm and then used the FLIM detection 

system for imaging a sample of collagen (which emit a strong SHG signal). In order to detect 

only the second-harmonic emission, I placed a narrow band-pass filter (FF01-420/10, 

Semrock, Rochester, NY, USA) before the PMH-100 detector. Finally, the time-resolved 

signal emitted from collagen was plotted (see figure 2.5) and fitted to a Gaussian function. 

Its FWHM is (150 ± 50) ps – where the uncertainty is given by the nominal temporal 

resolution of the measurement (12500 ps / 256 time channels). Such result is consistent with 

the IRF of the FLIM detector, whose data sheet certifies it is 150 ps.  

Half-wave plate calibration  

As already mentioned, the laser power can be adjusted by rotating a half-wave plate (λ/2) 

placed before a PBS. In order to calibrate this polarization-based system, I measured – with  
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Figure 2.6  Calibration curve of the laser power as a function of the half-wave plate rotation, plotted 

both on linear (A) and logarithmic (B) scales. The laser power, reported on the vertical axis, is 

normalized to the maximum measured value; error bars are smaller than the plotted data points (black 

dots). The plate orientation, reported on the horizontal axis, is expressed in degree.   

 

an optical power meter (S120C, Thorlabs, Newton, NJ, USA) – the laser power passing 

through the PBS for different orientations of the half-wave plate.  

The results are shown in figure 2.6. The laser power has a sinusoidal behaviour (2.6A) in 

function of the plate orientation, as expected from rotating the polarization of the incident 

electric field. Moreover, this system allows a decrease in beam intensity of three orders of 

magnitude (2.6B).  

Measurement of TPEF intensity dependence from laser power 

As discussed in section 1.1.1, the two-photon transition probability is proportional to the 

square of the excitation intensity. In order to verify that I am measuring optical signals 

excited by a two-photon process, I measured the TPEF emission of an autofluorescent plastic 

slide (92001, Chroma Technology, Bellows Falls, VT, USA) for different values of the laser 

power – i.e. for different orientations of the half-wave plate, as explained in the previous 

paragraph. The fluorescence emission intensity was detected though a PMT (as described at 

the beginning of this section).  

Figure 2.7 shows the fluorescence intensity collected at different laser powers. The quadratic 

trend expected from the theory is a very good approximation of the experimental data: the 

latter are fitted to a power function, whose exponent is found to be (1.99 ± 0.07).  
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Figure 2.7  TPEF intensity as a function of the laser power. The acquired data (black squares) are 

fitted with a power function (cyan line). The exponent resulting from the fit is equal to (1.99 ± 0.07); 

such value is consistent with the quadratic trend expected from the theory (section 1.1.1).  

 

Measurement of flat-field deviation  

Ideally, each point of the observed FOV should receive the same amount of laser power; 

thus, laser-scanning a uniform sample should produce an equally uniform output image (i.e. 

a flat-field image). However, imaging larger FOVs requires greater scanning angles, which 

in turn may cause losses of laser power due to the limited size of the objective aperture. In 

fact, before being focused onto the sample, the excitation beam is partially cut by the edges 

of the objective. As result, image edges are darker than its centre and the maximum FOV 

size is limited by this effect. Thus, in order to estimate the deviation of the microscope 

scanning system from perfect flat-field illumination, I recorded the TPEF emission of an 

autofluorescent plastic slide (the same one used in the previous paragraph) while imaging a 

500 × 500 μm2 FOV with a 10× objective.  

Figure 2.8 shows the average fluorescence intensity profile of the recorded image. The 

recorded intensity is approximately constant (within 10% from the maximum value) in a 

330-μm-size area, and decreases ~20% at the edges of the image with respect to the centre. 

Moreover, the intensity losses at the edges are approximately linear: 1% loss every 8 μm. 

Based on these results, flat-field correction was not considered necessary for applying the  
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Figure 2.8  Fluorescence intensity profile of a TPEF image (500 × 500 μm2 FOV) acquired with a 

10× objective from a uniform autofluorescent plastic slide. The intensity profiles recorded on the 

major axes of the image were averaged and normalized to the maximum intensity value.  

 

image analysis techniques described in the following section 2.2.1. In particular, the study 

reported in chapter 3 is based on the analysis of images recorded from the uniform-

illumination-area of the same objective used for this measurement.  

Single photon counting regime 

TCSPC consists in measuring the arrival time of single photons of a weak light signal with 

respect to a pulsed excitation with high-repetition frequency. In proper conditions, the 

probability to detect one photon during one period of the signal is very low. Moreover, as 

discussed in section 1.1.3, the probability of detecting two or more photons per excitation 

pulse is negligible. Consequently, the fluorescence decay curve can be reconstructed by 

detecting single photons, measuring their temporal delay with respect to the excitation pulse, 

and making a statistics on the arrival time of individual photons.  

Therefore, this technique can be successfully adopted when the signal intensity lays within 

a proper range. On one hand, above a certain intensity level, the probability of detecting two 

photons per single excitation pulse increases and cannot be neglected anymore. Since the  
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Figure 2.9  Fluorescence lifetime calibration. The horizontal axis reports the ratio between the 

number of detected fluorescence photons per second (fluorescence rate) and the number of laser 

pulses per second (laser rate). The vertical axis reports the corresponding values of the measured 

mean fluorescence lifetime.  

 

TCSPC electronics can detect only one photon per pulse because of dead time, the second 

photon is missed, causing the measured fluorescence lifetime to be underestimated (i.e. 

lower than the actual one). On the other hand, when fluorescence intensity decreases, the 

SNR decreases too. Under a certain intensity level, noise affects so much the fluorescence 

decay curve that the measurement is no more reliable.   

In order to estimate the proper signal range for the collected intensity, I measured the lifetime 

of an autofluorescent plastic slide (the same one used in the two previous paragraphs), 

excited using different values of the laser power – and, therefore, of the fluorescence 

intensity. The slide contains a chromophore (fluorescein isothiocyanate, FITC) whose 

fluorescence decay can be approximated with a single exponential function. In this regard, 

an alternative calibration sample could have been a water solution of FITC, but its 

preparation requires high precision pH control and reproducibility. Thus, the plastic slide 

was preferred for providing reproducible measurements, and for being ready-to-use and 

compatible with the mechanical mounting on  the XY stage.  

The collected intensity can be expressed in terms of the ratio between the fluorescence rate 

and the laser rate (as done in figure 2.9). The former is the number of detected fluorescence 
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photons per second, while the latter is the number of laser pulses per second; the TCSPC 

electronics measures both of them. Thus, I measured the fluorescence mean lifetime (τm) at 

different fluorescence-rate-to-laser-rate ratios. The procedure adopted for FLIM analysis 

will be described in details in section 2.2.1.  

The results are shown in figure 2.9. Fluorescence lifetime of FITC is known in literature, but 

only for water solutions; thus, we cannot compare the measured value and the tabulated one. 

We know from the theory of TCSPC that the fluorescence-rate-to-laser-rate ratio has to be 

much lower than 1. In practice, TCSPC typically works when such ratio is below 0.01. In 

fact, I verify that the measured fluorescence lifetime is underestimated when the ratio is 

greater than 0.008. On the other hand, when the ratio is smaller than 0.002, noise decreases 

the measurement precision, resulting in larger uncertainty (error bars). In the range between 

these two values, I found the fluorescence lifetime of the slide to be constant and equal to 

(5.209 ± 0.015) ns. Therefore, I always verified the fluorescence-rate-to-laser-rate ratio to 

be within such range of values when taking FLIM measurements on biological samples.  

Spectrograph calibration 

Raman signal is forward collected and sent to a monochromator, where it is diffracted by a 

1200 lines/mm grating and detected by a CCD camera. The diffracted light is detected by 

the pixels of the camera according to the Bragg’s law:  

(2.1.1)     𝑛 𝜆 =  𝑑 [sin 𝜃0 + sin 𝜃] 

where n is a positive integer (the diffraction order); λ is the diffracted wavelength; d is the 

spacing between the lines on the grating; θ0 is the angle of the incident light with respect to 

the normal of the grating; θ is the angle of the diffracted light with respect to the normal. 

The grating can be rotated in order to change the angle θ0 and select the desired spectral 

range. In general, for small values of θ, the relation between wavelengths and angles can be 

approximated as linear (sin(θ) ≈ θ) over the observed spectral range.  

The CCD consists in a rectangular array of 1024 × 256 pixels; in particular, the diffraction 

angles are distributed across the longer side of the detector. Hence, I did a spectral calibration 

for assigning the corresponding wavelength to each one of the 1024 pixels. In order to do 

that, I recorded the emission spectrum of a Neon-Argon glow lamp (figure 2.10A). Its emis- 
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Figure 2.10  A): emission spectrum of a Neon-Argon glow lamp, acquired with the Raman detection 

setup of the custom-made microscope. The horizontal axis reports the CCD pixels, while the vertical 

axis reports the corresponding number of collected photons. The wavelength of each emission peak 

is annotated in red and expressed in nm. B): the graph reports the wavelength of each emission peak 

as a function of its corresponding position (pixel) on the camera. The data (black squares) are fitted 

with a sinusoidal function (red line), which is approximately linear – as expected by the Bragg’s law 

for small angles.   

 

sion lines are narrow and well-known in literature [66], thus I was able to assign the 

corresponding wavelength to each recorded peak. Then, I plotted the emission wavelengths 

as a function of the corresponding pixels and – according to the Bragg’s law – I used a 

sinusoidal fitting (figure 2.10B). As expected, the fitting function is approximately linear in 

the small angle range. Such procedure allowed calibrating the wavelength of the recorded 

signals for each camera pixel.  

Excitation laser wavelength calibration 

As discussed in section 1.2.2, Raman shifts (i.e. the frequency difference between excitation 

frequency and scattered ones) correspond to vibrational or rotational transitions of a 

scattering molecule. Hence, they are independent from the excitation wavelength/frequency. 

Therefore, in order to compare Raman spectra acquired with different excitation 

wavelengths, Raman shifts are usually reported in wavenumbers (measured in cm-1) instead 

of wavelengths (measured in nm). In fact, the relation between a Raman shift (RS) and its 

corresponding wavelength is:  

(2.1.2)    𝑅𝑆(𝑐𝑚−1) = (
1

𝜆𝑒𝑥(𝑛𝑚)
−

1

𝜆(𝑛𝑚)
) 107  
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Figure 2.11  Raman spectrum of paracetamol. The horizontal axis reports the detected wavelengths, 

while the vertical axis reports the corresponding (normalized) number of collected photons. The 

Raman shift of each peak is annotated in blue and expressed in cm-1. 

 

where λex is the excitation wavelength, and λ is the scattered wavelength, both expressed in 

nm units. Different excitation wavelengths produces different scattered wavelengths, but 

same wavenumbers.  

In order to calculate the Raman shift corresponding to a scattered wavelength, it is necessary 

to know the excitation source wavelength. The latter is typically calibrated using well-known 

Raman shifts of a calibration substance, e.g. paracetamol. In fact, equation 2.1.2 can be 

rewritten as:  

(2.1.3)     𝜈𝑒𝑥 =  𝜈 + 𝑅𝑆 

where 𝜈𝑒𝑥 = 107/λex(nm) is the absolute wavenumber (in cm-1 units) corresponding to the 

excitation wavelength, and 𝜈 = 107/λ(nm) is the absolute wavenumber corresponding to the 

scattered wavelength. Therefore, peak positions in the measured spectrum are converted 

from wavelength to absolute wavenumbers, and the reference values for the corresponding 

Raman shift are added. This yields the absolute wavenumber of the excitation laser, which 

in turn can be reconverted to wavelength. Thus, such procedure provides an estimate of the 

excitation wavelength.  
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Peak 

wavelength 

(nm) 

Absolute 

wavenumber 

(cm-1) 

Raman 

shift  

(cm-1) 

Excitation absolute 

wavenumber  

(cm-1) 

Excitation 

wavelength 

(nm) 

     
 

826.62 12097 652 12749 784.38 

830.68 12038 711 12749 784.38 

836.71 11952 797 12749 784.38 

840.98 11891 858 12749 784.38 

848.92 11780 969 12748 784.44 

858.93 11642 1106 12748 784.44 

863.67 11579 1169 12747 784.50 

868.55 11513 1237 12750 784.31 

871.71 11472 1279 12750 784.31 

875.25 11425 1324 12749 784.38 

879.09 11375 1372 12747 784.50 

893.73 11189 1562 12751 784.25 

900.75 11102 1648 12750 784.31 

     
 

Table 2.1  Columns from left to right: wavelengths of the detected Raman peaks, their absolute 

wavenumbers, the corresponding Raman shifts (known from literature), the absolute wavenumber of 

the excitation source (obtained by summing the latter two columns), and its wavelength.  

 

Therefore, I set the laser wavelength to 785 nm through its micrometre, and then I acquired 

the Raman spectrum of paracetamol powder (figure 2.11) placed on a quartz slide. Raman 

shifts of paracetamol are well-known in literature [67], thus I was able to assign them to the 

corresponding recorded peaks. Table 2.1 reports the calculations for calibrating the 

excitation wavelength, and the latter was found to be (784.38 ± 0.13) nm. Such value is 

consistent with the accuracy (~1 nm) of the micrometre that allows setting the laser 

wavelength.  

2.1.2 Commercial Raman microscope 

The commercial microscope used for Raman measurements is an XploRA INV (Horiba, 

Kyoto, Japan) is an inverted, confocal Raman microscope. This commercial setup consists 

of three lasers with different wavelengths (532, 638 and 785 nm) and powers (20-25 mW for 

the firsts two, 180-200 mW for the third one), an optical system for delivering the excitation  
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Figure 2.12  Picture of the XploRA INV microscope (A) and its representative optical scheme (B).  

 

light on the sample (figure 2.12) and a spectrograph. The microscope is remotely controlled 

via PC software (LabSpec6, Horiba, Kyoto, Japan).  

Raman measurements are performed in epi-detection configuration. The inverted 

configuration of the system is particularly suited for studying cell cultures. In addition, two 

white-light sources allow for wide field epi- and trans- illumination imaging, respectively.  

Description of the Raman system 

A removable mirror (RM) selects the excitation source. The laser power can be adjusted by 

rotating a variable neutral-density filter (ND) between six discrete positions, corresponding 

to 0.1%, 1%, 10%, 25%, 50% and 100% of the maximum power. A dichroic mirror (D) 

reflects the laser toward the excitation objective (Ob). Before the latter, there is a scanning 

system based on two galvanometric mirrors (Gx and Gy), allowing for Raman signal 

acquisition by either a single point or from an arbitrary scanned area within the sample. The 

acquired signal is backward-collected, passes through the dichroic and a pinhole (PH), and 

finally enters the spectrograph. The pinhole diameter can be adjusted between three sizes 

(100, 300 and 500 µm) for alternatively increasing the spatial resolution or the collected 

signal. Moreover, there is a slit at the entrance of the spectrograph: its width can be adjusted 

among three sizes (100, 200 and 300 µm) for increasing/decreasing the spectral resolution.  
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Figure 2.13  A) and B): emission spectra of a Neon-Argon glow lamp, acquired in two distinct 

spectral ranges (541-654 and 804-996 nm, respectively) with the Xplora INV microscope. The 

horizontal axis reports the CCD pixels, while the vertical axis reports the corresponding normalized 

number of collected photons. The wavelength of each emission peak is annotated in green (A) or red 

(B) and expressed in nm. C) and D): each graph reports the wavelength of the emission peaks as a 

function of their corresponding positions (pixels) on the camera. The data (black squares) are fitted 

with a sinusoidal function (green or red, respectively) which is approximately linear – as expected 

by the Bragg’s law for small diffraction angles. 

 

Inside the spectrograph, light is diffracted by a grating and detected by a CCD camera. The 

spectrograph has four gratings with different spacing (600, 1200, 1800 and 2400 lines/mm).  

Calibration 

In order to calibrate this experimental setup, I did the same procedures previously described 

for calibrating the Raman detection system of the custom-made microscope. I will report 

them in the following paragraphs.  
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Spectrograph calibration 

I recorded the emission spectrum of a Neon-Argon glow lamp in two spectral ranges: 541-

654 nm (corresponding to 313-3506 cm-1 for 532 nm excitation) and 804-996 nm 

(corresponding to 301-2699 cm-1 for 785 nm excitation). I assigned the corresponding 

wavelengths to the recorded peaks, I plotted them as a function of the corresponding pixels 

and I used a sinusoidal fitting. Figure 2.13 shows the results.  

 

Figure 2.14  A) and B): Raman spectra of paracetamol acquired with 532 and 785 nm excitation, 

respectively. The horizontal axis reports the detected wavelengths, while the vertical axis reports the 

corresponding normalized number of collected photons. The Raman shift of each peak is annotated 

in green (for 532 nm excitation) or red (for 785 nm excitation) and expressed in cm-1. 
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Excitation laser wavelength calibration 

I acquired the Raman spectrum of paracetamol powder, placed on a glass coverslip, with two 

laser wavelengths: 532 and 785 nm (figure 2.14A and B). I assigned to the main emission 

peaks their corresponding Raman shifts (known from literature). Then, for both 

measurements, I used the same procedure previously described for determining the 

excitation wavelength. The results are: (532.0 ± 0.2) nm, (785.1 ± 0.3) nm. Thus, such 

findings are consistent with the specifications provided by the XploRA producer.  

 

 

Figure 2.15  Graphical user interface of the FLIM data analysis software (SPCImage). Top-left: 

greyscale TPEF intensity image. Top-centre: false colour image showing the fluorescence mean 

lifetime τm (red colour corresponds to 100 ps, blue colour to 2600 ps). Top-right: τm histogram. 

Bottom-centre: time-resolved fluorescence signal (blue dots) recorded on the pixel indicated by the 

cross-shaped cursor. The software calculates the instrumental response function (green line), 

performs a deconvolution between the latter and the acquired signal, and finally performs a 

biexponential fitting (red line) of the data points. These data were obtain through FLIM acquisition 

on a human carotid cross-section. 
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2.2 Methods for data analysis 

In this section, I will describe different data analysis methods applied to multiphoton images 

and to Raman spectra. Then, after reporting the samples used during my PhD and their 

preparation (section 2.3), I will explain how such methods were applied to analyse the 

acquired data (section 2.4). 

2.2.1 Analysis of multiphoton images 

Extraction of fluorescence mean lifetime  

For analysing the mean fluorescence lifetime, I used the software SPCImage 4.9.7 (Becker-

Hickl, Berlin, Germany). As shown in figure 2.15, this software shows the time-resolved 

fluorescence signal collected for each pixel of the FLIM image. The software automatically 

evaluates the IRF and performs a deconvolution between the latter and the time-resolved 

detected signal (see section 1.1.3). Finally, an exponential decay function fits the 

deconvoluted data points. More in detail, a biexponential fitting allows separating two decay 

components: a fast one (i.e. with shorter mean lifetime) and a slow one (i.e. with a longer 

mean lifetime). Thus, for each image pixel, time-resolved fluorescence intensity can be 

approximated according to the following equation:  

(2.2.1)    
𝐼(𝑡)

𝐼0
=  𝑎1 𝑒−𝑡/𝜏1 +  𝑎2 𝑒−𝑡/𝜏2 

where I0 is the fluorescence intensity collected over all the temporal channels, τ1 is the fast 

component, τ2 is the slow component, a1 and a2 are their respective coefficients (whose ratio 

a1/a2 reflects the relative abundance of the fast component over the slow one). Therefore, 

the fluorescence mean lifetime τm calculated at a given pixel is given by: 

(2.2.2)     𝜏𝑚 =  
𝑎1 𝜏1+ 𝑎2 𝜏2

𝑎1+ 𝑎2
 

SPCImage calculates all these parameters (τ1, τ2, τm, a1 and a2) for each image pixel. 

Moreover, it generates a histogram for each parameter, reporting the distribution of its values 

within the image: the horizontal axis reports the parameter values (grouped in class intervals, 

whose width can be freely chosen) and the vertical axis reports the number of pixels where 

such values were recorded. For example, a peak at 1500 ps (with 10 ps interval width) in the 

distribution of τm indicates that the mean fluorescence lifetime of most molecules in the im- 
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Figure 2.16  False colour FLIM images. A-D): τ1, τ2, a1/a2, τm images and distribution histograms, 

respectively. The colour range of each parameter is listed as follows: for τ1, 100-1600 ps; for τ2, 800-

3800 ps; for a1/a2, 0-8; for τm, 100-2600 ps. Each histogram has 100 class intervals. These data were 

obtain through FLIM acquisition on a human carotid cross-section. 

 

aged area is comprised between 1495 ps and 1505 ps. The software generates also a false 

colour image for each parameter, where every colour corresponds to a different value of the 

parameter itself; moreover, the higher the fluorescence intensity, the brighter the image.  

In conclusion, each FLIM image provides four distributions – τ1, τ2, τm, a1/a2 (figure 2.16) – 

and the corresponding false colour images.  

Analysis of SHG images through Fast Fourier Transform (FFT) 

The Fast Fourier Transform (FFT [68]) is an algorithm for calculating the Discrete Fourier 

Transform (DFT) and its inverse function. DFT transforms a function from time (or space) 

domain to frequency (or spatial frequency) domain, and vice versa.  

FFT can be applied to image analysis: in fact, the distribution of image spatial frequencies 

can be used for characterising the geometry of the observed structures. This technique is 

particularly useful for monitoring the organization of collagen fibres observed in SHG im- 
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Figure 2.17  SHG image (left) showing collagen fibres, and its FFT profile (right). As expected, the 

major axis of the FFT ellipsis is orthogonal to the main direction of collagen fibres: the former is 

bottom-right to top-left oriented, while the latter are bottom-left to top-right aligned.  

 

ages [69]. For example, a bundle of aligned fibres results in a FFT image showing high 

intensity values along a direction orthogonal to the direction of fibres themselves. In such 

case, the FFT intensity profile is elliptic (figure 2.17). On the contrary, if collagen fibres are 

randomly oriented, the FFT image shows a circular intensity profile.  

Therefore, acquiring a SHG image and determining the eccentricity of its FFT intensity 

profile allows characterising the anisotropy of collagen fibres within the examined tissue. 

The anisotropy level is given by the minor-to-major axis ratio (“aspect ratio”) of the elliptic 

FFT profile. If the sample is perfectly isotropic, the FFT aspect ratio is equal to 1; if the 

sample is totally anisotropic, the ratio is 0.  

Analysis of TPEF images through Grey Level Co-occurrence Matrix (GLCM) 

The co-occurrence matrix is a simple and well-known tool for analysing monochromatic 

images (as the one shown in figure 2.17), providing information on the spatial relations 

between their pixel intensity values. In fact, the Grey Level Co-occurrence Matrix (GLCM) 

compares the grey level of a pixel with the one of its neighbours at a certain distance (offset).  

In order to describe such procedure, let us consider a practical example, as the one reported 

in figure 2.18. Panels A) and B) show a greyscale image with four grey levels (0, 1, 2 and 3) 

and its corresponding numerical matrix, respectively. As shown in panel C), we can generate  
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Figure 2.18  The figure [70] shows the procedure for calculating the GLCM elements. A): greyscale 

image with four grey levels: 0, 1, 2 and 3. B): numerical matrix corresponding to the image. C): 

structure of GLCM (4 × 4 matrix) calculated for offset = 1 pxl. This example investigates the 

following relation: “reference pixel on the left, pixel to be compared on the right” (or “right-to-left”). 

D): GLCM of the top image, for offset = 1 pxl and for “right-to-left” pixel relation.  

 

a new square matrix, whose dimension (4 × 4) is given by the number of grey levels in the 

original image. Known as GLCM, such matrix investigates the relation between grey levels 

of different pixels in the original image; each pair of examined pixels is at a fixed offset from 

one another. In this example, the offset is 1 pxl and the relation is: “reference pixel on the 

left, pixel to be compared on the right” (or “right-to-left”). Therefore, cell (0,0) reports the 

number of times a pixel with intensity 0 is immediately on the right of a pixel with intensity 

0. Cell (0,1) reports the number of times a pixel with intensity 1 is immediately on the right 

of a pixel with intensity 0. Etc. Panel D) shows all the GLCM elements obtained from this 

procedure. Then, in order to consider all the possible directions, a GLCM routine usually 

calculates other three matrices (left-to-right, bottom-to-top, top-to-bottom) for the same 

offset. Finally, the four matrices are averaged. 
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Statistical methods based on GLCM detect the repetition of a certain pattern within the 

original image. One of them is correlation (Cor), which analyses the correlation between the 

intensity values of GLCM elements. In fact, let us consider an image with N grey levels. We 

can generate its N × N GLCM, whose elements are pi,j (where i and j are the row and column 

indexes, respectively). After pi,j normalization between 0 and 1, GLCM correlation is 

calculated as follows: 

(2.2.3)      𝐶𝑜𝑟 =  ∑  𝑝𝑖,𝑗  
(𝑖− 𝜇𝑖) (𝑗− 𝜇𝑗)

√(𝜎𝑖
2) (𝜎𝑗

2)

𝑁−1
𝑖,𝑗=0  

where μi, μj are defined as: 

(2.2.4)      𝜇𝑖 =  ∑  𝑗 𝑝𝑖,𝑗
𝑁−1
𝑗=0  

(2.2.5)       𝜇𝑗 =  ∑  𝑖 𝑝𝑖,𝑗
𝑁−1
𝑖=0  

and σi, σj are defined as:  

(2.2.6)     𝜎𝑖 =  √∑  𝑝𝑖,𝑗  (𝑗 − 𝜇𝑖)2𝑁−1
𝑗=0   

(2.2.7)     𝜎𝑗 =  √∑  𝑝𝑖,𝑗  (𝑖 − 𝜇𝑗)
2𝑁−1

𝑖=0  

In practice, the GLCM correlation routine valuates the similarity between every pixel of the 

original image and the neighbour pixels placed at a certain offset. A GLCM is generated for 

each offset, and then the corresponding GLCM correlation is calculated according to the 

equation 2.2.7. We finally obtain a correlation function depending on the offset (figure 2.19). 

In general, high correlation value at a certain offset reflects a periodic structure (whose 

period is equal to that offset) in the original image.  

We can derive a parameter from the correlation function of an image: the correlation length. 

The latter is calculated by fitting the correlation function with an exponential decay. But if 

the correlation function cannot be fitted properly, we can approximate the correlation length 

as the offset where the function is equal to 0.5 (as a sort of correlation half-life). In 

conclusion, GLCM correlation provides information about structural regularity within an 

image.  
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Figure 2.19  GLCM correlation function of the SHG image shown in figure 2.16. One GLCM was 

calculated for each offset between 0 and 32 pxl, and then averaged for all directions. Finally, GLCM 

correlation was calculated for each GLCM. The graph shows the obtained values as a function of the 

corresponding offset, which is expressed as distance between pixels. The dotted line represents a 

correlation value equal to 0.5 (“half-life” of the correlation function). The corresponding abscissa, 

determined by the blue line on the right, is the correlation length.  

 

2.2.2 Analysis of Raman spectra 

Fluorescence signal subtraction through polynomial fitting 

The Raman effect in biological tissues is very weak: approximately, only one Raman photon 

is generated out of 108-109 excitation photons [56, 71], while fluorescence signal is some 

orders of magnitude greater (one out of 105-106, depending on the sample and the excitation 

wavelength). Then, considering that the fluorescence emitted by a biological tissue is broad, 

the Raman spectrum appears as a series of small peaks “on the top” of the fluorescence 

spectrum. Therefore, an automated method for removing fluorescence signal is necessary.  

For biomedical applications, polynomial fitting is the most simple, convenient and (hence) 

used technique for such purpose. In fact, spectral-resolved fluorescence signal can be 

mathematically modelled as a polynomial function, whose order is chosen for properly 

removing the fluorescence baseline from the recorded signal, without subtracting the Raman 

peaks. Fourth to sixth order polynomials typically provide the best fitting [55]. On one hand, 

lower orders may not fit properly the baseline, creating artefacts; on the other hand, higher  
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Figure 2.20  Fluorescence signal subtraction through the Vancouver Raman Algorithm routine. Top-

left: raw spectrum acquired from an agar sample. Top-right: data selected for the analysis according 

to the chosen settings. Bottom-left: 4th grade polynomial fitting (black line) of fluorescence signal. 

Bottom-right: Raman spectrum obtained by subtracting the polynomial function. 

 

orders may remove also Raman peaks. In fact, the nth order polynomial can remove as many 

relative maxima/minima as the zeros of its derivative function, i.e. up to (n – 1).  

The most sophisticated algorithms for fluorescence removal use automated iterative routines 

in order to consider these problems. Vancouver Raman Algorithm is one of them (figure 

2.20). The advantages [55, 72] of this software are:  

 reduced computational time with respect to other methods;  

 suppression of the artificial peaks on both ends of the analysed spectrum that may be 

introduced by other methods; 

 less dependency on the choice of the polynomial order.  

An alternative to polynomial fitting is Shifted Excitation Raman Difference Spectroscopy 

(SERDS). This technique takes advantage of the different spectral behaviour between 

fluorescence and Raman scattering: a small shift in the excitation wavelength causes an equal 
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shift in the Raman peaks, while leaving unchanged the fluorescence spectrum. Thus, the 

fluorescence signal can be removed by subtracting two spectra acquired with slightly 

different laser wavelengths. However, the resulting SNR is usually low [73]. In recent years, 

this technique has been improved by adopting a tuneable laser, allowing a continuous 

modulation of the excitation wavelength at a certain frequency. Thus, a large number of 

spectra (typically, one hundred) can be recorded, each one with a different excitation 

wavelength. Such approach sensibly increases the SNR [74]. Its main disadvantage consists 

of long acquisition times: a single spectrum is sufficient for polynomial fitting, while SERDS 

requires one spectrum for each excitation wavelength. 

Data analysis through Principal Component Analysis (PCA)  

Principal Component Analysis (PCA) is a simple and nonparametric method for extracting 

the most relevant information from a dataset by reducing its dimensions, which makes easier 

its analysis [75, 76]. Collected data consist in series of measurements for each dimension of 

the observed phenomenon; however, they usually contain noise. In fact, some data may be 

redundant. Therefore, if we represent the dataset as a matrix with respect to the basis of 

observed dimensions, then PCA transforms such matrix with respect to a new basis that 

contains only the most relevant information.   

If we take N measurements for each one of the M physical dimensions observed, then the 

dataset is a M × N matrix (X0). By subtracting the mean of each series (�̅�𝑖) from all the 

acquired data of the corresponding series (xij, with j = 1, 2…N), we obtain a new M × N 

matrix X. Then, the covariance matrix CX of the new dataset is given by: 

(2.2.8)     𝑪𝑿 =  
1

𝑁 − 1
 𝑿 𝑿𝑇 

At this point, we can calculate the eigenvalues and eigenvectors of CX (which has M rows 

and M columns). The eigenvectors (E1, E2…EM) represent the relations between different 

series of measurements – i.e. between data observed from different dimensions – while the 

corresponding eigenvalues express their significance. The higher the eigenvalue, the more 

significant the relation; for this reason, the eigenvectors corresponding to the highest 

eigenvalues are called principal components of the dataset. The PCA routine puts the 

eigenvectors in order of significance and discards the ones with lowest eigenvalues. A new 

matrix P is created from the remaining K eigenvectors: 
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(2.2.9)     𝑷 = (𝐸1  𝐸2  …  𝐸𝐾) 

Thus, P has M rows and K columns. Finally, we can use the principal components for 

obtaining a new K × N dataset Y: 

(2.2.10)     𝒀 =  𝑷𝑇 𝑿 

Y contains only the most relevant data, since the PCA process re-expresses the original 

dataset by getting rid of its redundancy.  

PCA has been widely applied to the study of Raman spectral dataset [46, 77-80]. In such 

particular application, we typically have N acquired spectra, each one consisting in M data 

points (corresponding to as many spectral channels of the detector). Once calculated the 

principal components (typically the first two or three eigenvectors of the covariance matrix), 

each acquired spectrum can be expressed as a linear combination of them: 

(2.2.11)    𝑆0
(𝑖)

=  ∑ 𝑐𝑗
(𝑖)

 𝐸𝑗
𝑁
𝑗=1  

(2.2.12)    𝑆(𝑖) =  ∑ 𝑐𝑗
(𝑖)

 𝐸𝑗
𝐾
𝑗=1  

where S0
(i) is ith spectrum of the original dataset, cj

(i) is the coefficient (or score) related to 

the jth principal component (Ej), and S(i) is the ith spectrum of the new dataset. Therefore, 

each spectrum is specifically identified by its coefficients cj
(i). Moreover, the new spectra – 

being re-expressed only as a function of the most important components – show a better 

signal-to-noise ratio (SNR).  

Data analysis through Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) is a computing system made up of a number of simple, 

highly interconnected processing elements (called nodes or neurons) working in unison to 

solve specific problems. Basically, it is an information processing algorithm that is broadly 

inspired by the biological nervous system [81]. In fact, the textbook explanation of ANNs 

[82] typically use a very simplified description of biological neurons in order to stress the 

analogy with their artificial counterparts. The former are brain cells that communicate via 

short-lived electrical signals, and each one is connected to thousands of others. Therefore, a 

biological neuron is constantly receiving a multitude of incoming signals, which – broadly 

speaking – are processed by the cell. If the resulting signal exceeds a threshold, then the neu- 
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Figure 2.21  General scheme of an ANN. Neurons (portrayed as circles) are arranged in layers: the 

first layer provides the inputs to be processed by the neurons of the following layers. The final layer 

produces the network output. Picture taken from [83]. 

 

ron generates a voltage impulse in response, which in turn is transmitted to other neurons. 

In particular, in determining whether an impulse should be produced or not, some incoming 

signals produce (via neurotransmission) an inhibitory effect, whereas others are excitatory 

and promote impulse generation. The brain processes information through such architecture.  

An ANN is characterised by a similar organisation. As shown in figure 2.21, its neurons are 

arranged in layers. Each neuron of a certain layer receives inputs from all the neurons of the 

previous layer; after processing such data, its output is sent in turn to all the neurons of the 

following layer. Within the single neuron, the received inputs are weighted and summed 

together; the output depends on the result being below/above a certain value. In fact, the 

response function fj of the jth neuron is given by:  

(2.2.13)    𝑓𝑗(𝒙) = 𝐾(∑ 𝑤𝑖𝑗 𝑔𝑖(𝒙)𝑁
𝑖=1 ) 

where x is the input dataset of the network; N is the number of neurons in the previous layer; 

gi is the response function of the ith neuron of the previous layer; wij is the weight given to gi 

by the jth neuron; K is the activation function of the jth neuron, defining its output. Typically, 

K is a binary function, whose value is determined by comparing the summation result with 

a threshold.  Therefore, the first layer of the network provides data to be analysed, which are 

processed by the intermediate (hidden) layers; at the end, the last layer produces the final 
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output of the network. In this way, the incoming information is “collectively” processed by 

the neurons.  

ANNs are typically configured for specific applications, such as pattern recognition or data 

classification, through a learning process. As learning in biological systems involves 

adjustments to the connections (synapses) between neurons, so it does in ANNs. Let us 

consider the case of supervised learning: an iterative process instructs the ANN to recognize 

certain features from a training dataset. In order to obtain the desired output, the weights wij 

of each single neuron are step-by-step adjusted through backward propagation of errors. In 

general, the weights of the (t + 1)th iteration are modified according to the following 

equation: 

(2.2.14)  𝑤𝑖𝑗(𝑡 + 1) =  𝑤𝑖𝑗(𝑡) +  𝜂 (
𝜕𝐶

𝜕𝑤𝑖𝑗
)

𝑡

+  𝜉(𝑡) 

where η is the learning rate, which influences the speed and quality of learning; C is the cost 

function, which measures the error (i.e. the difference between desired and obtained 

outputs); ξ is a stochastic term. The iterative process stops when the error (i.e. the derivative 

of C) tends to zero.  

In conclusion, ANNs provide an analytical alternative to conventional techniques, which are 

often limited by strict assumptions of normality, linearity, variable independence [84] etc. 

In fact, such approach has the ability to implicitly detect a great variety of complex nonlinear 

relationships between variables [85]. For these reasons, ANNs have been applied in many 

fields and, in particular, to the study of Raman spectra [86-88]. In the case of supervised 

learning, for example, the network is trained to classify – through the output of a numerical 

code – each input spectrum belonging to the examined dataset.  

2.3 Sample preparation 

In the following paragraphs of this section, I will describe the samples used during my PhD 

and the procedures adopted for their preparation. 

2.3.1 Human carotids 

Atherosclerosis consists of the deposition and accumulation of fatty material and formation 

of plaques on the arterial wall (see chapter 3). In order to study such disease, human carotid 

ex vivo tissues affected by atherosclerotic plaques were imaged with NLO microscopy.  
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The carotids used for this analysis were excised during surgical procedures on five patients 

with atherosclerosis. The samples were fixed in formalin, embedded in paraffin and sliced 

with a microtome. Two slices were obtained from each specimen and examined with sagittal 

optical sectioning geometry: one was processed and labelled with H&E staining for common 

histopathological routine, and the other was left blank and placed on a glass microscope slide 

in order to be imaged with the custom-made multimodal microscope. In this way, I directly 

compared the acquired images with the corresponding histopathology results.  

2.3.2 In vitro cell cultures 

Malignant melanoma (MM) is a skin cancer characterised by strong aggressiveness and high 

mortality rate. The most frequent oncogenic mutations implicated in the development of MM 

affect either BRAF or NRAS genes (see chapter 4). In order to discriminate these tumour 

cell types, I acquired their Raman spectra by means of the XploRA INV microscope.  

Three in vitro cell cultures were grown in incubator, each one of a different melanoma cell 

type: SKMEL28 (BRAF-mutated), SKMEL2 (NRAS-mutated) and wild-type (WT, i.e. 

without BRAF and NRAS mutations). Cells grew in glass-bottom dishes (MatTek, Ashland, 

MA, USA) with fetal bovine serum (FBS). The serum was removed and substituted with a 

phosphate-buffered saline (PBS) solution immediately before Raman measurements.  

2.3.3 Tissue biopsies 

The custom-made multimodal microscope can be used for studying both thin tissue slices 

(e.g. those described in section 2.3.1) and thick bulk samples. During my PhD, I tested such 

microscope on two tissues of the latter type: human bladder and rabbit aorta.  

Human bladder  

Urothelial carcinoma (UC) is a tumour affecting bladder (see chapter 5). Healthy and tumour 

tissues were excised during surgical procedures (Transurethral Resection of Bladder 

Tumours, TURBT) on a patient who had been diagnosed with UC. Each sample was 

immediately stored in formalin solution. Before measurements, I washed it in PBS and fixed 

it between a microscope slide and a coverslip (both made of quartz).  
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Rabbit aorta 

Three New Zealand male, adult white rabbits were subjected to a cholesterol-rich diet in 

order to induce atherosclerosis. The animal were then sacrificed, and their aortas were 

excised through surgery. The specimens, containing the atherosclerotic plaques, were stored 

in formalin solution. As described in the previous paragraph, the samples were washed in 

PBS and sandwiched between a quartz slide and a coverslip immediately before 

measurements. 

2.4 Data acquisition and analysis 

In this section, I will report the procedures adopted for acquiring and analysing data.  

2.4.1 Human atherosclerotic tissues 

I set the Ti:Sapphire laser to mode-locking (i.e. pulsed) emission at 840 nm wavelength. 

Then I imaged human carotid samples through FLIM, TPEF and SHG microscopy. For such 

measurements, I used the 10× objective already mentioned in this chapter.   

TPEF and SHG microscopy 

TPEF and SHG images were simultaneously recorded with 20 μs/pxl dwell time, 500 × 500  

μm2 FOV and 512 × 512 pxl2 resolution. For each technique, there was a different optical 

filter placed in front of the corresponding PMT: a large band-pass filter FF01-510/84 

(Semrock, Rochester, NY, USA) for TPEF, a narrow band-pass filter FF01-420/10 

(Semrock, Rochester, NY, USA) for SHG. TPEF and SHG mappings of each sample were 

reconstructed by attaching images recorded from adjacent positions. These large-FOV 

multiphoton images were compared to the corresponding images of H&E stained tissue 

sections. The histopathological examination identified four main tissue types: angiogenesis 

and inflammation, fibrous cap, calcification, necrosis (see chapter 3). In addition, fibrous 

cap tissues were classified as thin- or thick- depending on their thickness (below or above 

0.5 mm [89], respectively), a parameter related to plaque stability. For each one of these 

tissues, regions of interest (ROIs) sizing 128 × 128 pxl2 were cut out from the recorded 

images, and then analysed (as described below). For backward-detected TPEF and SHG 

image analysis, I selected 73 ROIs for thick fibrous cap, 40 for thin fibrous cap, 14 for 
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calcification, 125 for necrosis and 75 for angiogenesis and inflammation. For forward-

detected SHG image analysis, I selected 36 ROIs for lipid deposition and 38 for fibrous cap.   

I combined multiple methods for analysing and characterising atherosclerotic tissues. 

TPEF/SHG ratio was calculated for all the pixels and averaged for each ROI. I studied TPEF 

ROIs, selected from all plaque tissues, by calculating their GLCMs by means of a MATLAB 

(Mathworks, Natick, MA, USA) routine [25]. Then, for each image, the GLCM correlation 

length was calculated using a custom-made program for LabVIEW (National Instruments, 

Austin, TX, USA). I selected SHG ROIs from thin and thick fibrous cap tissues, and 

calculated their FFT using an ImageJ built-in routine [90]. Then image anisotropy was 

evaluated by means of the aspect ratio of its FFT profile. Such parameter, corresponding to 

the minor-to-major axis ratio of the elliptic FFT profile, was calculated by considering the 

ratio of the two eigenvalues of the covariance matrix, as described in [91]. I also calculated 

the GLCM correlation length of these ROIs.  In addition, the average forward-to-backward 

(F/B) ratio of SHG emission was calculated from selected lipid deposition and fibrous cap 

ROIs.  

FLIM 

I acquired FLIM images from all tissue types, with 200 × 200 μm2 FOV, 128 × 128 pxl2 

spatial resolution, and temporal resolution of 256 channels over 12.5 ns TAC characteristic. 

Two sets of optical filters were (alternatively) placed in front of the PMH-100 detector: one 

consisting of a single filter FF01-470/28 (Semrock, Rochester, NY, USA) and the other one 

of two filters – FF500-Di01 and FF01-510/84 (Semrock, Rochester, NY, USA) – in cascade. 

Thus, for both spectral ranges, I recorded 10 ROIs from fibrous cap (both thin- and thick-) 

regions, 10 from calcification, 10 from necrosis and 10 from angiogenesis and inflammation. 

FLIM data analysis was done through SPCImage, as explained in section 2.2.1. Therefore, 

from each image and for each spectral range, I obtained the distributions of four lifetime 

parameters: τ1, τ2, τm, a1/a2. First, I calculated the mean of each distribution, and then I 

obtained a mean value for each parameter, tissue type and spectral range.  

2.4.2 Melanoma cells 

I selected the 532 nm excitation laser of the commercial Raman setup and acquired 50 

spectra for each cell type (SKMEL2, SKMEL28, WT) from as many cell nuclei. Acquisition 
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was performed by scanning an area (5 µm diameter) centred on each observed nucleus for 

120 seconds. Spectra were recorded between 300 and 1900 cm-1 by the 1800 lines/mm 

grating. I used a Plan-Apochromat 60× objective (Nikon; NA = 1.27, WD = 0.17 mm).  

Since both the glass-bottom dish and the PBS solution gave background signal, I processed 

each acquired spectrum for removing such spurious contribution. Then I used the Vancouver 

Raman Algorithm for removing the fluorescence baseline and, finally, the resulting Raman 

spectra were analysed through PCA. Additionally, I processed them also with an ANN 

routine (Neural Network Pattern Recognition, NNPR) based on MATLAB. The aim of both 

these approaches is to provide an automated classification for newly acquired spectra of cells 

whose type is unknown.  

2.4.3 Bulk tissue samples 

Combined TPEF-Raman acquisitions were performed in the same way on both human 

bladder and rabbit aorta samples through the custom-made multimodal microscope. I set the 

Ti:Sapphire wavelength to 785 nm, switching between mode-locked and continuous wave 

emission for TPEF and Raman measurements, respectively. I used the same 10× objective 

already mentioned in this chapter. 

Human bladder 

TPEF signal was detected in the 468-552 nm spectral range. 12 images (300 × 300 µm2, 512 

× 512 pxl2, 20 μs/pxl) were recorded from as many tissue regions: 6 from healthy bladder 

and 6 from UC. Then, for each region, I acquired a Raman spectrum by scanning its central 

area (100 µm size) for 120 seconds.  

Rabbit aorta 

The same procedure described in the previous paragraph was adopted also for studying rabbit 

aorta. TPEF images and Raman spectra were recorded from 6 arterial tissue regions affected 

by cholesterol deposition.  
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Chapter 3: Nonlinear imaging for the diagnostics 

of atherosclerosis 

3.1 Introduction 

Coronary heart disease (CHD) is the most common type of heart disease, killing over 

370’000 people annually in the United States [92].  CHD is caused by atherosclerosis: a 

slow, progressive accumulation of cholesterol, fatty substances, cellular waste products, 

macrophages, calcium and fibrin in the artery wall, which can generate plaques [93, 94]. 

Several risk factors (systemic hypertension, obesity, cigarette smoking, inactivity, etc) 

predispose such condition, but hypercholesterolemia is an absolute prerequisite [95]. 

Moreover, high cholesterol is often associated with Western diet and lifestyle, which involve 

eating foods with high content in saturated fats and not getting enough physical exercise. 

Thus, complications of atherosclerosis are the most common causes of death in Western 

societies [96]. In fact, once the plaque is set, its substances may stimulate the production of 

other cells in the innermost layer of the arterial wall; at the same time, fat and connective 

tissue build up within and around it. This process finally results in hardening and narrowing 

of arteries, and in partially or totally blocking the blood flow. However, the mayor risk 

related to atherosclerosis consists in sudden rupture of vulnerable plaques [97]. This event 

delivers thrombotic material within blood and may have life-threatening effects, such as 

heart attack or stroke, when a coronary or a brain artery is occluded. Therefore, assessing 

both presence and vulnerability of atherosclerotic plaques at an early stage is extremely 

important in order to decide a proper treatment of the disease. In this regard, plaque stability 

is highly correlated to its composition [98]. Stable plaques are rich in smooth muscle cells 

and show a thick fibrous cap, while unstable ones are characterised by the presence of a large 

necrotic core, calcification, macrophages, few smooth muscle cells, and a thin cap.  

The severity of atherosclerosis is generally assessed by histopathological examination of 

tissue biopsy. Although the standard hematoxylin/eosin (H&E) stain can be used for arterial 

tissue diagnostics, specific stains such as Van Gieson (for collagen) or Oil Red-O (for lipids) 

are more suitable to discriminate plaque depositions from arterial connective tissue and to 

distinguish the most abundant plaque components, such as cholesterol. Despite its 

popularity, histopathological examination is limited in terms of achievable contrast for con- 



 
 

84 
 

 

Figure 3.1  Figure A): location of the heart in the body. Figure B): a normal coronary artery with 

normal blood flow. The inset image shows a cross-section of a normal coronary artery. Figure C): a 

coronary artery narrowed by an atherosclerotic plaque. The plaque buildup limits the flow of oxygen-

rich blood through the artery. The inset image shows a cross-section of the plaque-narrowed artery. 

Picture taken from [99].  

 

nective tissue and requires a relatively long tissue processing and staining procedures. 

Immunohistochemistry is a more specific technique for selectively imaging target molecules 

through specific stains, but such staining processes are even more time-consuming and 

costly. In general, diagnostic methods are limited to morphological analysis of the examined 

tissues, whereas an exhaustive characterisation requires a morpho-functional approach. 

In this framework, NLO microscopy is a valid, label-free alternative to standard 

histopathological methods [100, 101]. In fact, specific contrast between collagen fibre 

bundles – which are highly concentrated in the fibrous cap – and lipids can be generated 

using NLO imaging by taking advantage of the signal provided by tissue endogenous 

fluorophores. Moreover, the combination of different NLO techniques in a multimodal 

scheme allows obtaining both morphological information (similarly to standard 

histopathological methods) and functional information on the examined tissue [102-104]. 

Such morpho-functional approach can be applied to study both thin and bulk tissue samples 
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and, in the latter case, potentially without the need for an excision. Therefore, NLO 

microscopy represents a powerful tool for tissue characterisation and pathology assessment. 

In particular, TPEF microscopy is useful for imaging lipids and elastic fibres [105]; FLIM 

allows the characterisation of various tissue regions based on the fluorescence lifetime [106]; 

SHG microscopy provides background-free imaging of anisotropic biological molecules 

with large hyperpolarizability, such as collagen [107] and cholesterol [108].  

Therefore, I combined TPEF, FLIM and SHG microscopy for characterising atherosclerotic 

arterial tissues obtained from human carotid ex vivo specimens. 

3.2 Materials and methods 

3.2.1 Sample preparation 

As explained in section 2.3.1, I studied five formalin-fixed, paraffin-embedded human 

carotid artery slices, cut with sagittal optical sectioning geometry and placed on a 

microscope slide. Also, from each carotid, an additional slice was prepared, processed and 

labelled with H&E staining for common histopathological routine. This study was conducted 

according to the tenets of the Declaration of Helsinki. 

3.2.2 Data acquisition and processing 

For this research line, I used the custom-made multimodal microscope described in section 

2.1.1. After setting the laser to mode-locking emission at 840 nm, TPEF and SHG images 

were simultaneously recorded with 500 × 500 μm2 FOV in two separate spectral ranges: 

468-552 nm and 415-425 nm, respectively. Then, images recorded from adjacent positions 

were attached together in order to obtain a multiphoton mapping of each sample. Figure 3.2 

shows a comparison between TPEF and SHG mappings with their corresponding H&E 

stained counterparts. Four main tissue types were recognized by histopathological 

examination: angiogenesis and inflammation, fibrous cap, calcification, necrosis. These 

tissues were highlighted by coloured insets in figure 3.2. In particular, the colour-code was 

blue for angiogenesis and inflammation, green for fibrous cap, yellow for necrotic tissue, 

and red for calcification. Finally, FLIM images with 200 × 200 μm2 FOV were recorded 

specifically from these tissue types and from two spectral ranges: 456-484 and 500-552 nm. 
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Figure 3.2  Comparison between combined TPEF/SHG mappings of two carotid specimens affected 

by atherosclerosis and their corresponding histopathological results. A) and C): wide-field images of 

H&E stained slices. Histopathological annotation was done through coloured squared insets: blue for 

angiogenesis and inflammatory tissue, green for fibrous cap, yellow for necrotic tissue, red for 

calcification. B) and D): false-colour images merging TPEF (marked in red) and SHG (marked in 

green) mappings. B) and D) mappings were obtained by stitching 12 × 13 and 14 × 13 images, 

respectively. Each single image was acquired with 500 × 500 μm2 FOV and 512 × 512 pxl2 resolution.  

 

The regions of interest (ROIs) of each tissue were selected from FLIM, TPEF and SHG 

images, and then analysed (as described in section 2.4.1) in order to obtain the following 

parameters: 

 TPEF/SHG ratio of ROIs selected from all regions;  
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 GCLM correlation length of TPEF ROIs selected from all regions; 

 GLCM correlation length and FFT aspect ratio of SHG ROIs selected from thin and 

thick fibrous cap regions; 

 F/B ratio of SHG ROIs selected from lipid deposition and fibrous cap regions; 

 lifetime parameters (τ1, τ2, τm, a1/a2) selected from all regions and obtained for two 

spectral ranges (456-484 and 500-552 nm).  

3.3 Results and discussion 

3.3.1 Multiphoton mappings 

As shown in figure 3.2, TPEF and SHG mappings of the examined carotid specimens show 

a good agreement with the corresponding white-light images taken from H&E stained 

histological sections. SHG signal (marked in green) originates from collagen and cholesterol, 

and it might be used for highlighting the fibrous cap. On the other hand, SHG signal is almost 

absent within both calcification and necrotic regions, where TPEF signal (marked in red) 

dominates. H&E stained images, instead, show relatively higher concentration of 

hematoxylin in angiogenic and inflamed or calcified tissues, while necrosis and fibrous cap 

are targeted though eosin. Thus, without the need of any specific stain, multiphoton imaging 

can provide high-resolution information (complementary to the histopathological results) 

about the fibrous cap size and the molecular composition of different tissues, which might 

be exploited for the purpose of discriminating among them. 

3.3.2 SHG-based analysis 

Backward-detected SHG ROIs, selected from thin and thick fibrous cap regions, were 

analysed using two different robust scoring methods, aimed at determining anisotropy (FFT) 

and correlation length (GLCM).  

In fact, the FFT intensity profile of a ROI is elliptic, whereas its eccentricity depends on the 

anisotropy level of the image: if all the observed objects are arranged along a privileged 

direction, the FFT ellipse appears very elongated and its minor-to-major axis ratio (aspect 

ratio) is close to 0. Instead, high isotropy images have circular FFT profiles and aspect ratios 

close to 1. Therefore, FFT analysis was used for characterising the geometrical orientation 

of SHG emitters (collagen, cholesterol) at a supramolecular scale within the fibrous cap. For 

example, a bundle of aligned collagen fibres decreases the aspect ratio, while randomly dis- 
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Figure 3.3  Mean values and standard errors (SEs) of A) FFT aspect ratio and B) GCLM correlation 

length, obtained by analysing SHG images acquired from thin and thick fibrous cap regions.  

 

tributed cholesterol clusters tend to increase it. In this regard, I tried to estimate if the 

thickness of the fibrous cap correlates to its anisotropy level. The FFT aspect ratio was 

calculated and used as a score for isotropy/anisotropy of each ROI. The average results for 

thin and for thick fibrous cap regions are reported in a bar graph in figure 3.3A. The values 

obtained from the two regions were found to be not statistically different at the 0.05 level 

after a two-sample statistical t-test (p = 0.05) analysis, meaning that the alignment of 

collagen fibres and the cholesterol distribution in the fibrous cap may not depend on its size.  

Therefore, such feature cannot be exploited to assess the risk of plaque rupture.  

Further characterisation was provided by the GLCM correlation function, which evaluates 

how much the grey level of each pixel correlates to that of its neighbours as a function of the 

inter-pixel distance. In fact – as explained in section 2.2.1 – the GLCM correlation length 

can be taken as a measure of a typical length for structures with periodicity: if the image has 

a periodic structure, a certain value of the neighbour index shows high correlation value. In 

this case, I used such parameter for measuring the typical length scale of supra-molecular 

assemblies of SHG emitters (i.e. collagen fibres and cholesterol formations). The GLCM 

correlation length represents the typical fibre diameter or cluster size observed in the 

examined SHG image. Therefore, I calculated the correlation length for each ROI and 

averaged for both thin and thick fibrous cap regions. The results are reported in a bar graph 

in figure 3.3B. Again, the values obtained from the two regions were found to be not statis- 
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Figure 3.4  A): Mean values and SEs of the SHG F/B ratio measured from fibrous cap (green bar) 

and lipid deposition (blue bar) regions. B): SHG F/B mapping, showing both fibrous cap (green 

square) and deposition (blue square) regions.   

 

tically different at the 0.05 level after a two-sample statistical t-test (p = 0.05) analysis. Thus, 

the typical size of collagen fibres and cholesterol clusters seems unrelated to fibrous cap 

thickness. In general, the findings based on FFT and GLCM analysis may indicate that 

fibrous cap regions maintain same anisotropy and organization of their second-harmonic 

emitters, regardless of their thickness and (as explained in the introduction of this chapter) 

of the related plaque vulnerability. 

Then, I used the forward-backward SHG ratio as a parameter for analysing the ROIs selected 

from fibrous cap and lipid deposition regions. In fact, as discussed in section 1.1.2, the 

angular distribution of SHG emission depends on the geometry of its emitters. Consequently, 

the F/B SHG ratio in these tissues depends on the presence and spatial organization of 

collagen and cholesterol contents; in particular, such parameter can be used as a way to 

compare their relative abundancy in the examined regions. Thus, the average F/B ratio was 

calculated for each ROI and averaged for each tissue type (figure 3.4). F/B SHG ratios 

calculated from fibrous cap regions were found to be significantly lower with respect to those 

ones calculated within deposition regions; the values obtained from the two tissue types were 

found to be statistically different at the 0.05 level after a two-sample statistical t-test (p = 

0.05) analysis. 

These results seems to reflect different cholesterol-to-collagen content ratios of the two 

regions. In fact, cholesterol plaques are known to generate higher F/B SHG ratio than colla- 



 
 

90 
 

 

Figure 3.5  GLCM correlation length (A) and TPEF/SHG (B) mean values and SEs obtained from 

all tissue types: fibrous cap (green), calcification (red), necrosis (yellow), angiogenesis and 

inflammation (cyan). 

 

gen fibres in normal arterial wall [101]. Since the fibrous cap is mainly made of collagen 

fibres, while cholesterol is a major component of atherosclerotic plaques, the obtained results 

may be interpreted in terms of their relative abundancies in the examined tissues. 

3.3.3 TPEF-based analysis 

TPEF imaging takes advantage of intrinsic fluorescent molecules such as lipids, collagen 

and elastic fibres for providing label-free imaging of biological tissues. In order to highlight 

morphological differences between the examined tissues, TPEF ROIs were analysed through 

the GLCM method. The results are shown in Figure 3.5A: GLCM correlation length is lower 

in fibrous cap, and higher in calcification regions. All regions are found to be statistically 

different at the 0.05 level after a two-sample statistical t-test (p = 0.05) analysis, except for 

the comparison between the fibrous cap ROIs and the angiogenesis and inflammation ROIs. 

These findings might be explained in terms of typical diameter of collagen fibres and size of 

calcium/lipid agglomerates, as suggested in [109].  

The TPEF/SHG ratio of the examined atherosclerotic tissues was calculated in order to take 

advantage of their different molecular composition. As shown in Figure 3.5B, TPEF/SHG 

ratio in fibrous cap is significantly lower than in other regions, and it is higher in necrosis. 

All regions were found to be statistically different at the 0.05 level after a two-sample 

statistical t-test (p = 0.05) analysis, except for the comparison between the calcification ROIs 

and the angiogenesis and inflammation ROIs. High values of the TPEF/SHG ratio found in 
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fibrous cap ROIs are related to the higher collagen content found in these ROIs and, 

therefore, to a higher SHG emission. On the other hand, necrotic tissue is known to emit 

increased autofluorescence with respect to normal tissue [110-113]. 

Thus, a combination of GLCM correlation length and TPEF/SHG ratio provides insights 

about both morphological and molecular information of the examined tissues, allowing 

discrimination among all of them.  

3.3.4 Fluorescence lifetime analysis 

FLIM microscopy allows further analysis of plaque molecular composition based on the 

analysis of fluorescence decay dynamics. Time-resolved intrinsic fluorescence signal was 

recorded from all tissue types and then analysed for obtaining the corresponding decay 

parameters after deconvolution and fitting (figure 3.6). Moreover, two spectral ranges – 456-

484 and 500-552 nm – were chosen for detecting fluorescence of (respectively) collagen 

[114] and lipids [115], close to their corresponding fluorescence emission peaks.  

Mean and SE of each parameter are reported in figure 3.7 for 456-484 nm and 500-552 nm 

spectral ranges, respectively. Different tissue types are characterised by significant 

differences in lifetime parameters measured in both spectral ranges, particularly the short 

component τ1 at 456-484 nm and the mean lifetime τm at 500-552 nm. Although a clear 

justification of these results cannot be provided in this framework, a possible explanation 

may be given considering the difference in terms of fluorescence lifetime between collagen 

and lipids. In fact, higher values of mean lifetime measured in fibrous cap are consistent with 

a longer fluorescence lifetime of collagen with respect to lipids [106, 109]. 

Differences in the molecular composition (above all, the collagen-to-lipid ratio) of the 

examined tissues can be observed also by comparing each parameter values obtained from 

the two spectral ranges. Fibrous cap parameters remain almost unchanged between the two 

spectral ranges, while the other tissues show significant shifts. Such findings can be 

discussed by considering that:  

 collagen fluorescence is detected not only in the 456-484 nm, but also in the            

500-552 nm range; 

 the lipid content in fibrous cap is relatively small.  
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Figure 3.6  TPEF mapping (B) of a human carotid specimen, FLIM images recorded from different 

tissue types, and distributions of lifetime parameters for all the examined tissues. A), C), D) and E): 

false colour τm images (200 × 200  μm2 FOV, 128 × 128 pxl2) acquired at 456-484 nm from fibrous 

cap (green square), necrosis (yellow) and angiogenesis and inflammation (blue). F) and G): τ1 

distributions at 456-484 nm and τm distributions at 500-552 nm, respectively.  

 

Therefore, the fibrous cap fluorescence emission recorded in both spectral ranges is mainly 

due to collagen. The fluorescence lifetime of fibrous cap reflects only its collagen content, 

and thus it does not change when measured at 456-484 nm or 500-552 nm. Instead, the other 

tissues – calcification, necrosis, angiogenesis and inflammation – show diversified 

molecular contents (collagen, calcium, lipids and other fluorescent molecules) with different 

relative abundancies. In their cases, the fluorescence detected at 456-484 nm and that one 

detected at 500-552 nm are typically generated from different fluorophores, resulting in 

different lifetime values (i.e. the observed shifts between the two spectral ranges). Hence,  
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Figure 3.7  A-D) and E-H): mean values and SEs of each FLIM parameter distribution recorded in 

the 456-484 nm and 500-552 nm spectral ranges, respectively. Each coloured line connects a pair of 

bars being statistically different at the 0.05 level after a two sample statistical t-test (p = 0.05) 

analysis. 
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the presented approach, based both on spectral- and time-resolved information about 

fluorescence emission, provides additional tools for characterising atherosclerotic tissues. 

3.4 Conclusions 

In this study, combined FLIM, TPEF and SHG microscopy was used for characterising 

human carotid ex vivo specimens affected by atherosclerosis. Thin tissue slices were 

examined using sagittal optical sectioning geometry in order to obtain images comparable 

with histopathological examination.  

I used image analysis techniques (FFT, GLCM) and scoring methods (F/B SHG ratio, 

TPEF/SHG ratio) for studying morphological and physiological features of atherosclerotic 

tissues. Organization and size of both collagen fibres and cholesterol clusters within fibrous 

cap regions were analysed, finding no significant differences related to fibrous cap thickness. 

On the other hand, organization and molecular types of SHG emitters were found to be very 

different between the lipid deposition of the plaque and the fibrous cap.  Then, I measured 

the typical size of supramolecular formations – such as collagen fibres and calcium/lipid 

agglomerates – within four tissue types having different histopathological features: 

calcification, necrosis, fibrous cap, angiogenesis and inflammation. This datum can be 

integrated with additional information on the molecular composition of each tissue, which 

was provided by measuring the ratio between TPEF and SHG emission. Combined together, 

these parameters allowed discriminating all the examined regions. Finally, while TPEF and 

SHG imaging proved to be useful tools for plaque characterisation, the analysis of FLIM 

images provided more detailed information on the various tissue types having different 

histopathological features. Depending on both the molecular content and the environment of 

the examined tissue, fluorescence lifetime parameters were used for successfully 

discriminating all regions because of their different composition.  

In conclusion, the presented imaging techniques and image analysis methods allowed 

analysing and discriminating the atherosclerotic tissue types normally identified for 

histopathological diagnosis. Therefore, combining FLIM, TPEF and SHG microscopy might 

represent a powerful complement, and could become a valid alternative, to standard 

histopathological methods for diagnosing and staging atherosclerosis.  
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Chapter 4: Classification of Melanoma cell lines 

through Raman spectroscopy 

4.1 Introduction 

Malignant melanoma (MM) is the most dangerous form of skin cancer, due to its strong 

aggressiveness and the high mortality rate in case of late diagnosis: five-year survival rates 

for patients with metastatic disease are below 10% [116, 117]. MM develops when 

unrepaired DNA damages to skin cells – most often caused by ultraviolet radiation from 

sunshine – trigger mutations (i.e. genetic defects) that lead the melanocytes to multiply 

rapidly and form a malignant tumour [118]. In particular, the most frequent oncogenic 

mutations involve BRAF and NRAS genes (approximately 50% and 20% of all melanomas, 

respectively [119, 120]); mutations in more than one of these genes are seldom found 

concurrently in the same tumour.  

Clinical treatment of MM consists of a combination of surgery, traditional cytotoxic 

chemotherapy, targeted therapies, and immune-based therapies. The response to both 

conventional chemotherapy and targeted agents depends on the specific mutation involved 

in the carcinogenesis. Therefore, assessing the gene mutation type is extremely important 

for proper clinical treatment of the disease. Current methods of melanoma mutation analysis 

are based on DNA sequencing [121] or polymerase chain reaction (PCR [122]); however, 

these techniques are destructive and take a long time (hours).  

Raman spectroscopy is a possible alternative to the standard methods. It provides a fast, non-

destructive, label-free optical tool for studying living cells [50, 123] and, specifically, for 

detecting the cancer ones [124-126]. In fact, the spectrum of scattered light from observed 

cells reflects the vibration modes (the “fingerprints”) of their molecules. Thus, Raman 

spectroscopy could be used for investigating the molecular composition of different cell 

types, highlighting their differences.  

Therefore, I used a commercial Raman microscope (XploRA INV, Horiba, Kyoto, Japan) 

for studying in vitro melanoma cells with specific mutations of either BRAF or NRAS genes.  
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4.2 Materials and methods 

4.2.1 Sample preparation 

As explained in section 2.3.2, I studied three in vitro melanoma cell cultures, each one of a 

different cell type: SKMEL28 (BRAF-mutated), SKMEL2 (NRAS-mutated) and wild-type 

(WT, neither BRAF- or NRAS-mutated). During each measurement, a glass-bottom dish 

(MatTek, Ashland, MA, USA) containing the cell culture with PBS solution was imaged and 

analysed with the Raman microscope. 

4.2.2 Data acquisition and processing 

For this study, I used an XploRA INV (Horiba, Kyoto, Japan) inverted, confocal Raman 

microscope (see section 2.1.2). In order to acquire a Raman spectrum from each cell nucleus 

under investigation, a 5 µm size area centred on the nucleus was scanned with the 532 nm 

excitation laser. The scattered light was backward collected and detected between 300 and 

1900 cm-1. 50 Raman spectra were recorded for each cell type (150 in total).   

The acquired spectra were processed for removing both the spectral contributions of glass-

bottom dishes [57] and PBS, and the fluorescence emission from the sample. The resulting 

Raman spectra were analysed through PCA in order to obtain the coefficients of the first six 

principal components (see equation 2.2.12). A classification method was developed based 

on linear combinations of such coefficients. In addition, the Neural Network Pattern 

Recognition (NNPR) routine was used for generating an alternative classification algorithm.  

4.3 Results and discussion 

4.3.1 Background and fluorescence removal 

Glass is known [57] to give a spectral contribution to Raman spectra for 532 nm excitation 

wavelength. Also, by comparing the Raman spectra acquired on a MatTek dish with and 

without PBS, I verified that the latter shows a large Raman peak around 1550-1750 cm-1 

(figure 4.1A). In order to remove such contributions, I normalized the “raw” Raman 

spectrum of each cell nucleus and simply subtracted the normalized Raman spectrum of both 

glass-bottom dish and PBS. Following such operation, the resulting Raman spectra of 

melanoma cells were further processed: the fluorescence baseline was automatically 

removed by a 5th grade polynomial fitting routine, performed through the Vancouver Raman  
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Figure 4.1  A): comparison between the Raman spectra acquired on a glass-bottom dish with and 

without PBS solution. B): raw Raman spectra acquired from 50 nuclei of SKMEL2 mutated cells. 

C): wide field epi-illumination images of SKMEL2 mutated cells, obtained with a white-light source. 

D): Raman spectra of 50 nuclei of SKMEL2 mutated cells obtained by removing glass, PBS 

background, and fluorescence baseline from the raw acquired data.  

 

Algorithm. As explained in section 2.2.2, the latter is an algorithm for automated 

fluorescence background removal (though polynomial fitting) from the recorded Raman 

spectra; in addition, the software allows for smoothing the raw data by applying a Gaussian 

filter. Figure 4.1D shows the Raman spectra resulting from the whole process; the spectral 

range was restricted to 600-1800 cm-1, i.e. to the fingerprint region, where all the relevant 

peaks are.  

4.3.2 Cell type classification through PCA  

Figure 4.2A shows the mean Raman spectrum of each cell type. As expected from literature 

[124], these Raman spectra shows very small differences, meaning that most of the recorded  
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Figure 4.2  A): mean Raman spectra of WT (blue), SKMEL2 (green) and SKMEL28 (red) cell types, 

each one obtained by averaging 50 recorded spectra. B): scatter plot reporting the PC4 (horizontal 

axis) and PC5 (vertical axis) coefficients of each recorded spectrum (blue points = WT; green = 

SKMEL2; red = SKMEL28). C) and D): plotting of the first six PCs. Data are vertically shifted for 

better visualization. 

 

spectral data is “redundant”. Only a small part of the observed spectrum contains the 

information needed for discriminating tumour cell types. PCA can be used to extract such 

information from the dataset, consisting of 150 Raman spectra recorded from WT, SKMEL2 

and SKMEL28 cells. In fact, as explained in section 2.2.2, the PCA routine calculates the 

principal components (PCs) of the dataset, which – in this framework – contain the most 

important spectral features of the recorded Raman spectra (figures 4.2C and D). Usually, the 

first two or three PCs contain all the relevant information (i.e. the major Raman peaks), while 

the remaining PCs account only for noise and redundant/unnecessary data. However, since 

the spectral differences between the three cell types are small, I analysed the first six PCs. 

Therefore, a recorded spectrum of the dataset can be expressed as a linear combination of 
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the first six PCs, each one being “weighted” with a certain coefficient (PC1 coefficient, PC2 

coefficient, etc). From an algebraic point of view, these coefficients are projections of the  

 

 

Figure 4.3  Classification of SKMEL2, SKMEL28 and WT spectra through a scoring system based 

on PCA coefficients. SKMEL2 (green squares), SKMEL28 (red rounds) and WT scores (blue 

triangles) are calculated with two formulas: (A) PC5 – PC3; (C and E) PC3 + PC4 – (2 × PC5). Each 

graph shows a threshold (black line) separating the two examined cell types. The ROC curve of each 

classifier is shown on the right (B, D and F) reporting the corresponding AUC value.  



 
 

100 
 

recorded spectrum (which is a 1D vector) along the calculated PCs (which are 1D vectors, 

too).  

PCA coefficients are usually plotted into 2D graphs, like the one shown in figure 4.2B: 

horizontal and vertical axes report the values of two different coefficients (PC4 and PC5, 

respectively) and each data point corresponds to one recorded spectrum. Ideally, by plotting 

the proper PCA coefficients, data points belonging to different classes (i.e. different cell 

types) should flock into spatially separated “clusters”. However, in this case, SKMEL2, 

SKMEL28 and WT data points cannot be easily separated. Thus, I tested a more complex 

approach. A score can be assigned to each spectrum by combining its PCA coefficients 

through simple operations (addition/subtraction). This method aims to find a proper 

combination that allows discriminating different cell types based on the scores of their 

spectra. In fact, if a score is above (or below) a certain threshold, the corresponding spectrum 

is classified into a specific cell type. For example, a classification formula combining PC3 

and PC5 was found to differentiate scores belonging to WT and SKMEL2 spectra (figure 

4.3A). Moreover, a classifier based on PC3, PC4 and PC5 allowed discriminating SKMEL28 

from both SKMEL2 (figure 4.3C) and WT (figure 4.3E) spectra. Figures 4.3B, D and F show 

the Receiver Operating Characteristic (ROC) of each classifier, whose Area Under the Curve 

(AUC) measures its classification accuracy. The AUC of the SKMEL2/WT classifier is 68%; 

for SKMEL28/SKMEL2, it is 93%; for SKMEL28/WT, it is 97%. 

The rationale behind this method is that PCs are spectral profiles containing the most 

relevant Raman peaks of the acquired spectra. By considering only few PCs, redundant and 

noisy information is discarded from the original dataset. Moreover, a proper combination of 

the remaining PCs generates a spectral profile that shows only specific Raman peaks. For 

example, figure 4.4 shows a comparison between SKMEL28 and WT mean Raman spectra 

and the PCs combination used for discriminating these two cell types. While the three 

spectral profiles have many peaks in common, there are also significant differences. In fact, 

the PCs combination contains only the information required for highlighting molecular 

differences between SKMEL28 and WT: some of their Raman peaks are missing in the PC-

derived spectrum because they are not useful for discriminating this two cell types. Finally, 

the scoring method described in the previous paragraph is equivalent to projecting 

SKMEL28 and WT Raman spectra along the PC-derived spectral profile – i.e. to simply 

calculating their scalar products with the latter. In other words, different scores reflect differ-  
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Figure 4.4  Comparison between the mean Raman spectra of SKMEL28 (red) and WT (blue) 

melanoma cells and the spectral profile obtained by combining the PCs used for the classification 

formula (black). The scoring system consists in projecting each cell Raman spectrum along the PC-

based spectral profile, i.e. by calculating their scalar products. The figure shows the average 

SKMEL28 and WT scores obtained through the following classifier: PC3 + PC4 – (2 × PC5). 

 

ent intensities of the Raman peaks shown in the PCs combination. Since those peaks are 

associated to specific molecules, the two cell types can be analysed based on their molecular 

contents.   

The results show that SKMEL28 (i.e. BRAF-mutated cells) Raman spectra can be 

successfully discriminated from SKMEL2 (NRAS-mutated) and WT (neither BRAF- or 

NRAS-mutated) spectra by the presented method. Hence, the PCs obtained from the current 

dataset could be used to classify also newly acquired spectra from unknown melanoma cells. 

In fact, each new spectrum can be assigned a score through a simple projection along the 

PC-derived spectral profiles already found in this study; when compared to the 

corresponding threshold, such number provides an automated classification.  

On the other hand, the comparison between SKMEL2 and WT scores provides low 

classification accuracy (< 70%). Such finding implies either that the molecular differences 

between these two cell types are very small, or that more PCs should be included in PCA 

analysis and scoring. In the first case, Raman spectroscopy may not be a reliable tool for 

discriminating SKMEL2 from WT melanoma cells. In the second case, the problem requires  
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Figure 4.5  A): scheme of the NNPR tool structure. Input data (150 Raman spectra, each one made 

of 1362 points) are sent to a hidden layer consisting of 100 neurons. Their response function products 

are sent to an output layer, consisting of 3 neurons, which processes such data and finally produces 

a 3-digit classification code. Then the software verifies if the latter is correct; otherwise, neuron 

response functions are modified and the entire process is repeated. B): NNPR results. The percent 

error (%E) indicates the fraction of samples (i.e. spectra) which are misclassified. A value of 0 means 

no misclassifications, while 100 indicates maximum misclassifications. In this case, no sample of 

whatever category (training, validation or testing) was misclassified. 

 

a deeper and/or alternative analysis. For such reason, I tried to classify the same Raman 

dataset via an Artificial Neural Network (ANN). 

4.3.3 Cell type classification through NNPR  

As discussed in section 2.2.2, an ANN is a computing system made up of interconnected 

processing elements (neurons). Neural Network Pattern Recognition (NNPR) is an ANN 

routine in MATLAB for generating a classification algorithm. The network is instructed via 

supervised learning to recognize certain features from a dataset of samples and to use them 

for generating the desired output (i.e. a correct classification of the input data). Using NNPR 

is very simple and fast. The software automatically creates a 3-layer network (figure 4.5A): 

an input layer for receiving the samples to be analysed; a hidden layer, whose number of 

neuron can be selected, for processing the input data; an output layer for generating a 

classification code. The NNPR tool iterates this process until the classification of all input 

data cannot be further improved. Moreover, the dataset is divided into three categories:  

 training – these samples train the network, which is adjusted according to the errors 

made in classifying them; 
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 validation – these samples are used to validate the network, and to halt training when 

their classification stop improving; 

 testing – these samples have no effect on the network training and so provide an 

independent measure of its performance. 

Finally, the NNPR routine compiles a classification algorithm based on the trained network. 

Therefore, I loaded 150 Raman spectra (50 for each cell type) and the corresponding 

classification codes (1-0-0 for SKMEL2, 0-1-0 for SKMEL28, 0-0-1 for WT) into the NNPR 

tool. 70% (104 spectra) of the dataset was used for training, 15% (23) for validation and the 

remaining 15% (23) for testing. After setting the hidden layer to have 100 neurons, the output 

layer generated a 3-digit code for each processed Raman spectrum. As shown in figure 4.5B, 

all the 150 spectra were successfully classified. Such result suggests that Raman 

spectroscopy is capable of detecting molecular differences between SKMEL28, SKMEL2 

and WT cells. This conclusion seems to be confirmed by the 100% success rate of NNPR in 

classifying the testing category, which represents exactly an independent test.  

However, since the number of sample is quite limited, an additional test was performed in 

order to further validate this analysis. I ran the network with only 120 Raman spectra 

(“learning set”), leaving out 10 spectra for each cell type. At the end of the NNPR routine, I 

tried the resulting classification algorithm on the remaining 30 spectra (“testing set”). Then, 

four more trials were made by changing every time the spectra used for learning and testing. 

This approach is similar to the leave-one-out cross-validation (LOOCV) technique, which 

iteratively leaves one sample out of the training process and uses it as a test for validating 

the classification accuracy. Table 4.1 reports the success rate of the five trials. On average, 

the learning set and testing set spectra were classified with 100% and 96% success rate, 

respectively.  

4.4 Conclusions 

In this study, I recorded the Raman spectra of three melanoma mutated cell types (SKMEL2, 

SKMEL28 and WT). I proposed a procedure for removing fluorescence and background 

signals from the raw acquired data, and then I developed a classification method based on 

PCA. The three cell types were discriminated though a scoring system, which reflects the 

intensity of specific Raman shifts. Therefore, Raman spectroscopy proved to be a useful tool  
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 Learning  

set (ALL)  

Testing set 

SKMEL2 

Testing set 

SKMEL28 

Testing set  

WT 

Testing set 

(ALL) 

Trial n°1 100.0% 

 

100.0% 90.0% 100.0% 96.7% 

Trial n°2 100.0% 90.0% 90.0% 90.0% 90.0% 

Trial n°3 100.0% 100.0% 100.0% 100.0% 100.0% 

Trial n°4 100.0% 90.0% 90.0% 100.0% 93.3% 

Trial n°5 100.0% 100.0% 100.0% 100.0% 100.0% 

Average 100.0% 96.0% 94.0% 98.0% 96.0% 

 

Table 4.1  Success rates of the NNPR algorithm in classifying the “learning set” and “testing set” 

samples (120 and 30 Raman spectra, respectively). The spectra of the two sets were rearranged for 

five times, as well as the number of classification trials. The success rates of SKMEL2, SKMEL28 

and WT spectra from the testing set are reported both separately and aggregated. The bottom row 

reports the average success rates of the five trials. 

 

for recognition of BRAF and NRAS mutations. Then, in order to improve the classification 

accuracy, I tried an alternative approach based on a neural network routine. In fact, ANNs 

have the ability to automatically detect complex nonlinear relationships between variables. 

Not only the network had succeeded in correctly classifying all the Raman spectra, but also 

an additional set of trials confirmed the reliability of such outcome.  

In conclusion, this study validates the capability of Raman spectroscopy in detecting 

molecular differences between melanoma cell types. Specific mutations of BRAF and NRAS 

genes were successfully discriminated, which is a very important clinical datum to be known 

for properly treating the disease. Therefore, being an optical, label-free and non-destructive 

technique, Raman spectroscopy provides a fast and effective alternative to the standard 

methods for classifying mutated melanoma cells.   
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Chapter 5: Combined two-photon                        

and Raman microscopy  

5.1 Introduction 

Both TPEF and Raman microscopy proved to be valuable tools for analysing biological 

samples, as reported in chapter 3 for two-photon imaging of atherosclerotic tissues, and in 

chapter 4 for the detection of melanoma cell mutations through Raman spectroscopy. 

However, applying the latter for imaging biological tissues may require a huge amount of 

time: typical acquisition times for Raman maps can be in the order of ~10 s per point (or 

longer), resulting in total measurement times in the order of hours or days [127]. An 

ingenious way to circumvent such problem consists in arranging TPEF and Raman 

techniques in a complementary approach, capable of providing a fast, label-free and non-

invasive alternative to standard histopathological methods. In fact, NLO microscopy can be 

used for studying tissue morphology and detecting (in a relatively short amount of time) 

specific regions of interest within very large areas. Then, each one of such regions can be 

scanned for recording its average Raman spectrum, which provides detailed information 

about its molecular composition. In this way, the speed of two-photon imaging is integrated 

with the specificity of Raman spectroscopy. This approach can be applied to the study of a 

wide variety of tumour or non-tumour diseases. Hence, I applied both TPEF microscopy and 

Raman spectroscopy (combined in the same custom-made multimodal microscope described 

in section 2.1.1) to the study of both urothelial carcinoma (UC) and atherosclerosis. In this 

thesis, thick (bulk) specimens were examined using en face optical sectioning geometry for 

attaining results comparable with potential in vivo measurements.  

5.1.1 Urothelial carcinoma (UC) 

Bladder cancer is a disease involving uncontrolled growth of cells in the urinary bladder: as 

more of such cells develop, they can form a tumour and spread to other areas of the body 

[128]. The most common type of bladder cancer is UC, which – depending on its growth 

pattern – can be classified as papillary or flat. UCs are also divided between invasive and 

non-invasive, as they can (respectively) grow deep into the bladder wall or they can be 

limited to the bladder lining. Finally, they are described as high- or low-grade, depending on 

their degree of architectural and cytological abnormalities [129]. 
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Figure 5.1  Comparison between TPEF mapping of a human bladder specimen affected by UC and 

its corresponding histopathological result. A): wide-field image of H&E stained slice. 

Histopathological annotation was done through coloured insets: green for carcinoma in situ, yellow 

for healthy chorion. B): TPEF mapping obtained by stitching 6 × 4 images. The fluorescence signal 

was detected in the spectral range 468-552 nm. Each single image was acquired from a formalin-

fixed, paraffin-embedded slice with 400 × 400 μm2 FOV and 512 × 512 pxl2 resolution, using an 

excitation wavelength of 740 nm.  

 

Presence, invasiveness and grade of UC are generally diagnosed by histopathological 

examination, which requires the sampling of several tissue biopsies through a transurethral 

resection. However, this methodology is highly invasive, and requires a relatively long tissue 

processing and staining procedure. Moreover, since bladder cancer is characterised by very 

high recurrence rate [130], its clinical management is very expensive. In this framework, 

combining NLO microscopy and Raman spectroscopy is a valuable alternative for high-

resolution imaging [131] and diagnostics [132] of tissues. In fact – as discussed in the 

previous chapters – NLO microscopy techniques are useful for investigating tissue 

morphology (see figure 5.1). In particular, TPEF imaging takes advantage of intrinsic 

fluorescent molecules (contained both in cells and in the extracellular matrix) such as 
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NADH, tryptophan, keratins, melanin, elastin, cholecalciferol and others [133], allowing the 

comparison of cell nuclei dimension between healthy and tumour tissues. On the other hand, 

the molecular composition of a tissue can be studied in detail through Raman spectroscopy: 

tumour and healthy cells may be discriminated based on the spectral shape and peaks of their 

Raman spectra.  

5.1.2 Atherosclerosis 

Atherosclerosis is a cardiovascular disease in which degenerative material (macrophages, 

lipids, calcium, fibrous connective tissue, etc) accumulates in the inner layer of the arterial 

wall. A detailed description of this pathology was given in chapter 3.  

NLO microscopy and Raman techniques had been widely used for studying atherosclerotic 

tissues [100, 105, 134]. SHG, TPEF and CARS microscopy, for example, allowed to image 

and investigate collagen, cholesterol and, in general, lipid-rich contents [101, 104]. The 

application of Raman spectroscopy has been proved successful as well [135, 136], since it 

provides discrimination between normal arterial wall and lipid-rich deposition plaque. 

Therefore, a combined NLO-Raman microscopic approach has great potential for in vivo 

label-free detection and non-invasive vulnerability assessment of atherosclerotic plaques.  

5.2 Materials and methods 

5.2.1 Sample preparation 

Since the custom-made multimodal microscope can be used for studying both tumour and 

non-tumour diseases, I applied its capabilities on both UC and atherosclerosis. In fact, with 

respect to these pathological conditions, two bulk tissue types were investigated: human 

bladder and rabbit aorta.  

Healthy and tumour urothelial tissues were excised through Transurethral Resection of 

Bladder Tumours (TURBT) surgery from UC patients. I fixed each sample between a 

microscope slide and a coverslip, both made of quartz (in order to avoid spurious Raman 

contributions).  

Similarly, the atherosclerotic aortas of three New Zealand male, adult white rabbits were 

excised through surgery. Then, I prepared each specimen in the same way described above.  
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5.2.2 Data acquisition and processing 

The experimental setup used for this study is the custom-made multimodal microscope, 

whose laser wavelength was set to 785 nm. TPEF images (300 × 300 μm2 FOV, 512 × 512 

pxl2 resolution, 468-552 nm spectral range) were obtained when the Ti:Sapphire laser was 

set to pulsed emission. Then, after switching the laser to continuous wave emission, Raman 

spectra (650-1750 cm-1 spectral range, 120 s acquisition time) were recorded by scanning 

the squared central portion (100 μm size) of each TPEF image. Such procedure was 

performed on both the human bladder and rabbit aorta examined samples. In particular, 6 

combined TPEF-Raman acquisitions were done on healthy bladder, other 6 on diseased 

bladder, and 6 on diseased aorta. 

The recorded Raman spectra were processed through the Vancouver Raman Algorithm 

software (see section 2.2.2) for separating the Raman signal from the fluorescence emission 

of the sample. The routine used a 5th order polynomial function in order to fit the 

fluorescence baseline. Finally, by subtracting the latter from the raw data, I obtained the 

corresponding Raman spectrum.  

5.3 Results and discussion 

5.3.1 Combined TPEF-Raman measurements on human bladder 

Figure 5.2 reports the TPEF images and mean Raman spectra recorded from normal (i.e. 

healthy) and tumour urothelial specimens.  

Multiphoton imaging can be used for highlighting morphological features in healthy and 

diseased tissues. For example, as known from literature [137], a tumour cell nucleus is 

usually bigger than a normal cell nucleus (figures 5.2H-M). Such feature is a key indicator 

of malignancy, commonly used in standard histopathological examination. Thus, TPEF 

provides the same information attainable through H&E staining, but in a label-free modality.  

Moreover, healthy and diseased Raman spectra show significant differences between their 

spectral profiles. In particular, UC shows two main peaks around 900 and 1400-1500 cm-1, 

whereas normal bladder does not. The first band is typically associated with amino acids 

(such as proline [138]), while the second corresponds to proteins (such as collagen) and 

lipids [139]. Since UC is characterised by higher levels of amino acids and by an increased  
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Figure 5.2  A-C) and E-G): TPEF images (300 × 300 μm2 FOV, 512 × 512 pxl2 resolution) of healthy 

and tumour bladder tissues, respectively. D): comparison between the mean Raman spectra recorded 

from normal (blue line) and diseased (red line) tissues. Each Raman spectrum was obtained by 

scanning and averaging the signal emitted from the central portion (blue and red squares) of TPEF 

images. H, L) and I, M): cropped TPEF images (75 × 75 μm2 FOV, 128 × 128 pxl2 resolution) of 

normal and tumour cells in urothelial tissues, respectively.  
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production in the majority of lipid classes [140], the peaks observed in the tumour spectrum 

may reflect the altered metabolism of bladder cancer. Detecting changes in the products of 

metabolic activity by using an optical tool such as Raman spectroscopy could be a huge 

improvement with respect to other methods, like mass spectrometry (MS) and 

immunohistochemistry (IHC). All these techniques provide molecular characterisation of 

the examined tissues; however, the MS procedure destroys the sample, while IHC has many 

limitations. In fact, IHC requires the use of specific markers, and hence tissue fixation and 

processing; moreover, there are significant bias related to execution and results 

interpretation. In contrast, Raman spectroscopy does not affect the specimen, is label-free 

and its results can be obtained through automated data processing. 

5.3.2 Combined TPEF-Raman measurements on rabbit aorta 

Figure 5.3 reports the TPEF images and mean Raman spectra recorded from bulk 

atherosclerotic tissues. Since the internal layer (tunica intima) of each artery was fully 

covered by thick lipid deposition, it was not possible to image the underlying arterial wall 

with en face optical section geometry. Thus, comparing healthy and diseased arterial tissues 

required a cross-section imaging geometry (see below).  

TPEF microscopy takes advantage of the presence of intrinsic fluorophores such as lipids 

(e.g. cholesterol) and elastic fibres (collagen, elastin) within the sample. Therefore, it can be 

used for imaging both atherosclerotic plaques and arterial walls: the former are lipid-rich 

depositions, while the latter consist mainly of collagen fibres. These tissues have very 

different morphological features: the plaque is characterised by isotropic distribution of lipid 

clusters (figure 5.3A-C and E-G), while the arterial wall shows a bundle of collagen and 

elastic fibres aligned in the same direction. As demonstrated in a previous study [109], 

GLCM correlation and FFT analysis are valuable tools for discriminating the deposition 

from the wall. In fact, the correlation length measures the typical size of lipid clusters and 

the diameter of collagen fibres, while the aspect ratio analyses the anisotropy level of 

organized fibres and disorganized lipid formations.  

The Raman spectrum of lipid deposition shows many peaks (figure 5.3D) and the most 

intense Raman band (1400-1500 cm-1) corresponds to the presence of cholesterol [141]. This 

result can be compared to previous Raman measurements performed on a thin cross-section 

of rabbit aorta (figure 5.4A). In fact, a thin slice of aorta was placed on a microscope quartz  
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Figure 5.3  A-C) and E-G): TPEF images (300 × 300 μm2 FOV, 512 × 512 pxl2 resolution) recorded 

from atherosclerotic plaques of rabbit aorta. D): mean Raman spectrum recorded from lipid 

depositions and obtained by scanning and averaging the signal emitted from the central portion (red 

squares) of TPEF images.  

 

slide for observation with cross-section geometry – which is typically adopted in 

histopathological examination. Then, I used the XploRA INV (Horiba, Kyoto, Japan) 

commercial microscope for recording the Raman spectra of normal arterial wall and lipid 

deposition regions (figure 5.4B) within the examined slice. I found that lipid deposition 

spectra recorded from both bulk and thin tissue samples are consistent and well correlated.  
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Figure 5.4  A): TPEF mapping (6 × 6 images, each one acquired with 500 × 500 μm2 FOV and 512 

× 512 pxl2 resolution) of rabbit aorta cross-section. Coloured insets indicate arterial wall (blue) and 

lipid deposition (red) regions. B): mean Raman spectra recorded from arterial wall (blue) and lipid 

depositions (red) regions of rabbit aorta.  

 

Moreover, strong spectral differences can be observed between the arterial wall and the 

atherosclerotic plaque. In particular, the recorded spectra have very different profiles around 

1250 cm-1: the arterial wall shows a peak associated with collagen [142], while the lipid 

deposition does not. In this regard, it is interesting to note that the bulk sample spectrum in 

figure 5.3D shows a small peak at the same Raman shift. In fact, non-descanning detection 

excludes the possibility of using a pinhole for removing out-of-focus photons. Therefore, the 

Raman signal generated from the sample is detected not only from the focal plane (i.e. from 

the plaque superficial layer imaged in figure 5.3), but also from deeper layers – such as the 

underlying arterial wall. Thus, the latter may give a contribution to the recorded Raman 

spectrum. These results could provide important insights for potential in vivo applications. 

The ratio between the Raman intensity at 1450 cm-1 (corresponding to both collagen and 

cholesterol contents) and the intensity at 1250 cm-1 (collagen) could indicate the presence of 

a plaque. Moreover, the lipid-to-collagen ratio being correlated to plaque stability [115], this 

approach based on Raman spectroscopy could be used for vulnerability assessment.  

5.4 Conclusions 

I used a custom-made multimodal microscope that combines two-photon imaging and 

Raman spectroscopy for studying and characterising both tumour and non-tumour diseases. 
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These techniques proved to be fast, label-free and non-invasive optical tools for analysing 

morphology and molecular composition of biological tissues.  

I found that TPEF allows discriminating between healthy and tumour urothelial tissues based 

on nuclear size, in a good agreement with corresponding histopathological examination. 

Moreover, Raman spectra of UC shows an increased presence of lipids and amino acids with 

respect to normal bladder, reflecting an altered metabolism of the tumour with respect to the 

healthy tissue.   

Similarly, combined TPEF-Raman microscopy was used for imaging atherosclerotic tissues 

and investigating their composition. In fact, significant morphological differences can be 

highlighted through multiphoton microscopy: normal arterial wall is characterised by well-

aligned collagen fibres, while plaque deposition shows a “grainy” pattern consisting mainly 

of lipids. Differences between the two tissue types were observed also from the molecular 

point of view using Raman spectroscopy: the Raman bands of lipids and collagen can be 

easily identified, and their intensity ratio may be a valuable tool for assessing the severity of 

atherosclerosis.  

Therefore, combined two-photon and Raman microscopy provides a powerful alternative to 

standard histopathological methods. TPEF imaging allows fast detection of sensible (e.g. 

diseased) areas within the examined specimen, while Raman spectroscopy can be used for 

diagnosing them with high sensitivity and specificity. Moreover, by examining bulk samples 

with en face geometry, the presented results are comparable with potential in vivo 

measurements, paving the way for a non-invasive detection of the studied diseases.  

 

 

 

 

 

 

 



 
 

114 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

115 
 

Chapter 6: Conclusions  

Combined FLIM, TPEF and SHG microscopy was used for characterising human carotid ex 

vivo specimens affected by atherosclerosis. This approach provided high-contrast images 

comparable with histopathological examination, highlighting many and useful 

morphological and physiological features for assessing plaque vulnerability. In fact, TPEF 

and SHG allowed evaluating the organisation and size of calcium/lipids agglomerates and 

collagen fibres within different atherosclerotic tissues, paving the way for discriminating 

different atherosclerotic tissues through a classification algorithm based on such features. 

This approach allowed not only the detection of fibrous cap regions, but also the 

discrimination of necrotic, calcified and inflammatory tissues within plaque depositions. 

FLIM imaging added further and complementary information by examining differences in 

fluorescence lifetime of the examined tissues, due to their environment and molecular 

composition. Thus, all tissue types were discriminated based on their averaged fluorescence 

lifetime parameters. Therefore, the presented method provides a faster and label-free 

alternative to the standard histopathological techniques commonly applied for the 

examination of tissue biopsies.  

In another study, Raman spectroscopy was used for in vitro discrimination of melanoma 

mutated cell types. Since the medical treatment of MM targets the specific mutation involved 

in the carcinogenesis, this research aimed to provide an additional tool for clinical routine. 

The analysis of the recorded Raman spectra required removing fluorescence and background 

signals from the raw data, and then applying two high-level classification methods for 

differentiating MM mutations. This approach resulted in high-performing classification 

accuracy. This study, by successfully discriminating MM mutations through optical probing, 

without any labelling procedure, proved the potential benefits of applying Raman 

spectroscopy for clinical detection of tumour diseases. In fact, the results obtainable with 

such methodology could assist the clinicians in choosing a proper therapy for their patients.   

Finally, combined two-photon imaging and Raman spectroscopy were used for studying and 

characterising both human bladder affected by UC and atherosclerotic aorta obtained from 

an animal model. These bulk samples were examined with en face optical geometry in order 

to produce results comparable with potential in vivo measurements. Arranging these 

techniques in a complementary approach combines the fast imaging capability of NLO with 
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the high-specificity of Raman spectroscopy, providing a thorough tool for analysing both 

morphology and molecular composition of biological tissues. In fact, TPEF allowed 

discriminating between healthy and tumour urothelial tissues based on nuclear size – in a 

good agreement with corresponding histopathological examination – while Raman 

spectroscopy revealed the altered metabolism of UC (in terms of increased production of 

lipids and amino acids) with respect to normal bladder. These features are extremely 

important for early detection of the tumour; moreover, the measurements performed for 

observing them could be done in vivo. Similarly, combined TPEF-Raman microscopy was 

used for imaging atherosclerotic tissues excised from rabbit aorta, and investigating their 

composition. In fact, multiphoton microscopy highlighted strong morphological differences 

between the normal arterial wall and the plaque deposition. Raman spectroscopy provided a 

stark contrast as well by reflecting mainly the collagen and lipid contents that differentiate 

these tissues. Thus, the presented results could help detecting atherosclerotic plaques at early 

stages. Moreover, the Raman bands of lipids and collagen can be used for evaluating their 

relative abundancies within the examined region, which could be a relevant datum for 

assessing the severity of atherosclerosis and urging the surgery of vulnerable plaques.  

In conclusion, combined NLO-Raman microscopy proved to be not only a fast, label-free 

and non-invasive alternative to standard histopathological methods, but also a powerful tool 

for clinical diagnosis – with potential life-saving and cost-effective applications. Also, this 

approach could be further improved by adding other techniques (see chapter 7) for obtaining 

additional morpho-functional information. In fact, improving the capabilities of multimodal 

microscopes with respect to their clinical application will be a driving factor for future ability 

of early disease detection and treatment, with large and positive impacts on our society.  
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Chapter 7: Future perspectives 

The presented study shows the successful application of multimodal microscopy to different 

clinical problems but, more importantly, it opens the door to a great number of exciting and 

diversified developments in the near future.  

The custom-made multimodal microscope can be easily adapted for new purposes. For 

example, simply adding a motorised polarising filter before the excitation objective would 

allow polarisation-resolved measurements of SHG signal. Also, by using resonant scan 

mirrors or acousto-optic modulators for laser beam deflection, both scan accuracy and 

imaging speed would increase. A major improvement could be provided by substituting the 

excitation source with an ultrafast, broadly tunable laser with phase-locked dual output: this 

step would allow the implementation of additional techniques – such as CARS, THG and 

SRS – for providing other fast, high-resolution and label-free contrast mechanisms.  

Thus, the spectrum of possible applications could increase dramatically. There are many 

tissues and diseases, involving alterations in collagen or myelinated fibres and lipid-rich 

structures, that can be studied though the above-mentioned techniques: cornea 

(keratoconus), brain (focal cortical dysplasia), blood cells (malaria), peripheral nervous 

system (lipidosis, diabetes), etc. Moreover, FLIM, TPEF and SHG could be used for 

investigating other ex vivo specimens (such as melanocytic lesions and breast cancer) as well 

as for in vivo monitoring of the metabolism of standard animal models (mouse, zebrafish).  

There is room to improve data analysis, too. For instance – as shown in chapter 3 – 

multiphoton imaging can measure many parameters for each point of the examined area: 

TPEF/SHG and SHG F/B ratios, lifetime parameters, GLCM correlation length, etc. PCA 

could be used for analysing the whole set of these variables, discarding noise and redundant 

information, and then discriminating different tissues. Moreover, well-known methods such 

as Multivariate Curve Resolution (MCR) and Partial Least Square Discriminant Analysis 

(PLS-DA) could be applied to spectral analysis. MCR is able to recognise the molecular 

constituents that contribute to recorded Raman spectra, while PLS-DA is commonly used 

for discriminating different categories. These methods could help interpreting tissue 

composition as well as providing their classification based on spectral information.  
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Therefore, there is still a lot to be done in the following years for exploiting all the 

opportunities given by multimodal microscopy, and for exploring all its possible 

applications. In addition, the current development of multiphoton endoscopes is opening the 

way for clinical diagnosis and monitoring of a wide range of diseases though NLO 

microscopy – a step that could result in a relevant advance in photonics  technology for 

medical diagnostics.  
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