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Chapter 1

Introduction

In recent years we have witnessed a growing diffusion of digital devices such

as mobile phones, cameras and surveillance systems capable to produce high

resolution images and videos to be shared on the web. The substantial

improvement of computation power of machines have contributed to an in-

creasing employment of computer vision algorithms to data processing.

In this context, object detection represents one of the most important

tasks and as such has received considerable attention from the research com-

munity. This ability to detect different classes of objects in videos and images

has a remarkable importance in many kinds of applications such as video

surveillance, human-computer interaction, autonomous driving, automated

analysis of media content and automatic media tagging.

1.1 The objective

Object detection has been deeply explored by researchers in recent years,

many approaches have been developed relying basically on the same concept.

Supervised learning frameworks train detection models using labeled image

or video datasets and, depending on the approach, different kinds of features

are extracted from data, such as edges, contours orientations, colors and so

on.

Recent advances in computer vision have shown that Convolutional Neu-

ral Networks (CNN) are able to learn rich feature representations directly

from pixels. More specifically, they have been proven to outperform any

other classifier in image recognition competitions like PASCAL VOC [37],

1



2 Introduction

COCO [88] or Imagenet [115] the last few years. The reasons for CNNs

success are mainly due to their ability to learn features much better than

hand-crafted ones with location and slight transformation invariance. Figure

1.1 shows some examples from the COCO dataset, where detectors should be

able to classify and localize several common classes like train, cows, monitors

and boats.

Figure 1.1: Examples of object classes from COCO dataset.

CNN based detectors usually perform their task by evaluating a subset of

locations in an image rather than using a sliding window approach. For this

reason, approaches estimate the objectness measure have become increas-

ingly popular in the last years, and this is due to the fact that they can be

used as a pre-processing step for an object detector, therefore speeding up

the overall execution time of the whole process.

One of the major challenges about this topic is that the majority of object

proposals are suited just for still images. Therefore, one of the main targets

of this dissertation is to elaborate a solution for generating better proposals

exploiting the temporal coherence of frames.

Moreover, in this thesis we show that it is possible to exploit objectness

to solve another kind of problem that typically harms the performance of
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object detectors, that is the compression of images and videos. Compression

algorithms are designed to reduce perceptual quality loss, according to some

model of the human visual system. In fact, when compressing images several

artifacts appear, like noise or small image structures, and higher frequency

details tend to be eliminated. In Figure 1.2 two different compression quality

factors on the same input are shown, we can easily notice that in the right-

most sample many artifacts are present and details are heavily suppressed

compared to the first one.

Figure 1.2: Examples of compression with different quality factor values:

from left to right 90 and 15.

1.2 Contributions

We present in this thesis a set of approaches to improve the quality of de-

tection and to overcome some problems due to compression of image data.

The contribution of this dissertation is divided into two main branches.

The first part is related to the improvement of object proposal quality

in video frames and it has the aim to generate high confident detection for

video sequences. The interplay of detectors and proposal algorithms has not

been fully analyzed and exploited up to now, although this is a very relevant

problem for object detection in video sequences. For this reason, the quality

of object proposals in the video domain has a remarkable importance to

speed up the execution time of the algorithm and is likely to reduce the

number of false positive outputs. In our approach, we show how to connect,

in a closed-loop, detectors and object proposal generator functions exploiting

the ordered and continuous nature of video sequences, so that detectors show

a good performance using just a few proposals.
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The second part of the thesis is related to improve the quality of detectors

in compressed images and videos. To overcome the problem of compression

in this kind of media, we have studied two different strategies. In the first

place, we have developed an adaptive video coding approach based on a fast

computation of saliency maps, in order to control the quality of frames so

that automatic object detectors can still process the resulting video, im-

proving their detection performance, by preserving the elements of the scene

that are more likely to contain meaningful content. On the other hand, we

show that using a CNN based approach for compression artifacts removal

not only improves the performance of detectors in heavily corrupted images

and videos, but also leads to more pleasant results for the human eye. We

demonstrate that reconstructing very corrupted images gives benefits in both

object detection and text in the wild recognition.

The rest of the thesis is organized as follows. We start with a review

of the state of the art in object detection and object proposals in the first

part of Chapter 2. This section builds a thorough background for the main

theme of this thesis and in particular, we focus our attention on deep learning

based approaches that represent the foundation of most of the study present

in this work. In the remaining part of Chapter 2, we describe the literature

related to image and video compression. In particular, we pay attention to

approaches designed to remove compression artifacts.

Chapter 3 deals with the object proposals improvement in generic video

sequences. The proposed closed-loop approach help detectors to provide

a better output classification and localization due to the improved quality

proposal windows and it’s very efficient. We exploit the temporal coherence

between video frames to combine proposal and detection boxes. In this way,

an object detector needs very few proposal windows to elaborate its final

decision, hence reducing the false positive rate and speeding up the whole

process.

Chapter 4 deals with an adaptive video coding approach for computer

vision-based systems. In this section, we show how to improve video com-

pression for an object detection purpose by reducing the set of irrelevant

information transmitted in the video stream, driving the codec to compress

more the parts that do not contain semantically interesting objects and keep-

ing the relevant regions mostly unaltered. We propose a very fast objectness

estimator approach to build reasonable saliency maps that will be used by

the codec to understand how to behave in the different parts of the frames.
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In Chapter 5 we deal with the problem of data compression from another

point of view. Our objective is to restore compressed images rather than

to act directly on codecs before transmitting the data. We show that using

a generative adversarial network to restore degraded images leads to very

pleasant results and the performance of object detectors improves remarkably

compared to classic image restoration methods.

Finally in Chapter 6 we describe another kind of application for image

restoration. Compression artifacts critically affect even text localization and

text recognition in the wild. We propose a residual convolutional network

that is able to reduce those artifacts, in particular when dealing with very

high compression rates. This approach leads to significant improvements in

text localization, cropped text recognition and end-to-end text recognition.



6 Introduction



Chapter 2

Literature review

In this chapter we review some recent works about the main top-

ics of this dissertation. Most of the existing techniques which

obtained state-of-the-art results for all this tasks are based on

Deep Neural Networks. The first part of this chapter introduces

the problems of object detection and objectness, while the second

part deals with the problem of adaptive video coding. Finally, we

review the literature related to the image restoration area.

2.1 Object Detection

One of the most important and challenging problems in computer vision is

recognizing different objects and localizing them in image. The goal of object

detection is to find the location and scale of all object instances that are

present in an image, hence a detector should be able to determine all object

instances of multiple classes regardless of scale, location, pose, occlusions

and illumination.

Machine learning approaches aim to learn object representation models

With the advance of machine learning techniques, especially the powerful fea-

ture representations and classifiers, many recent approaches regarded object

detection as a classification problem and have achieved significant improve-

ments.

7



8 Literature review

2.1.1 Bag-of-Words Based Approaches

The Bag-of-Words model is probably one of the most popular during the last

decade. [99, 118, 123] This model is known to be pretty simple and efficient,

also very resilient to background clutter. On the other hand, it has some

issues related to those cases where two instances of the same object appear

very close to each other. Furthermore, typically the localization of objects

is not very accurate as in more complex methods.

2.1.2 Coarse to Fine and Boosted Approaches

Viola and Jones [133] describe a method for object localization that has

become really popular in the scientific community. The research of objects

is performed by shifting a template across space and scale extracting Haar

like features. Then a cascade of classifier trained with Adaboost are used to

reject image patches that do not belong to objects. Other approaches based

on booster classifier include [43,64,84,132,141].

2.1.3 Deformable Part Models Approaches

There is a vast literature on deformable models for object detection based

on deformable template models [20, 21] and part-based models [4, 22, 40,

83]. The key idea of this kind of approaches is considering objects as a

collection of parts arranged in a deformable configuration, where each part

identifies the properties of the local appearance of objects and the deformable

framework is composed by spring-like connections between some pairs of

parts. Recent works like [38, 39, 143] have become quite successful since a

coarse-to-fine cascade model has been integrated in the framework to achieve

a more efficient evaluation of the model.

2.1.4 Deep Learning Approaches

State of the art object detection is nowadays achieved by region based con-

volutional neural network methods [34, 47, 48, 112]. R-CNN pioneered this

task by simply applying a pre-trained network to regions. Improved accu-

racy in detection is then achieved fine-tuning the network on object boxes

and learning a bounding box regressor.

More recent approaches [47,112] have applied a similar idea but avoiding a

full computation of the convolutional feature for each region, sharing instead
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a single image feature map for all the evaluated boxes.

Ren et al. [112] presented Faster R-CNN, an integrated approach of pro-

posal and detection computation. Faster R-CNN adds a Region Proposal

Network (RPN) to Fast R-CNN thus exploiting the same convolutional fea-

ture computation pipeline to compute proposals. This approach is efficient

in terms of computation time since it avoids the burden of proposal genera-

tion from an external module, by sharing the features among RPN and Fast

R-CNN detection.

Redmon et al. [111] presented a new approach considering object detec-

tion as a regression problem to spatially separated bounding boxes and as-

sociated class probabilities. A neural network predicts both bounding boxes

and class probabilities directly from full images in one evaluation.

Liu et al. [90] proposed SSD, an approach where the output space of

bounding boxes is discretized into a set of default boxes over different aspect

ratios and scales per feature map location. Furthermore, predictions from

multiple feature maps with different resolutions are concatenated to better

handle objects of different sizes.

2.2 Objectness

The problem of quantifying how likely a part of an image is showing an object

of some class is related to saliency detection. Works in this area typically aim

at predicting salient points of human eye fixation [117] or modeling visual

attention [10]. However, a detector may need to handle objects that are

not visually conspicuous or that do not draw human gaze, thus an object

proposal method should be able to deal also with objects that are not salient.

Desirable properties for an object proposal method are:

• High object detection rate / proposal recall: to avoid discarding

good candidate windows that are not processed by a specific object

detector at a later stage.

• High computational efficiency / low processing time: to allow

using the method in real-time applications or to effectively use it as pre-

processing step in an object detection pipeline. This property is related

to the number of candidate window proposals that are computed.

• Good object generalization: to detect a large number of different

objects, so that proposals can be used with many different specific
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object detectors.

• Good cross-dataset generalization: to maintain an acceptable de-

tection rate on a testing dataset that is different from that of training,

without need of retraining.

• High repeatability: to consistently propose windows on similar im-

age content, despite image perturbation or changes, thus allowing to

exploit proposals for a better training of object detectors [62].

Hosang et al. [62] have very recently presented a comparison of twelve object

proposal methods for images, applying them to Pascal VOC 2007, MS COCO

and ImageNet 2013 datasets, comparing some of these properties.

2.2.1 Spatial Objectness

These methods propose a relatively small number of proposals (e.g. 103–

104) that should cover all the objects of an image, independently from their

class. Typically they rely on low-level segmentation such as the method pro-

posed by Felzenszwalb and Huttenlocher [41], or use their own segmentation

algorithm.

Gu et al. [53] have presented a framework for object detection and seg-

mentation that groups hierarchically segments to detect candidate objects,

evaluating performance using the bounding boxes that encompass these re-

gions.

The method proposed by Alexe et al. [2, 3] uses different cues such as

multi-scale saliency, color contrast, edge density, superpixels segments, loca-

tion and size of the proposal window, combining them in a Bayesian frame-

work.

Enders et al. [31] generate a set of segmentations by performing graph

cuts based on a seed region and a learned affinity function. Regions are

ranked using structured learning based on a mix of a large number of cues.

Uijlings et al. [129] propose a method that requires no parameter learning,

combining exhaustive search and segmentation in a data-driven selective

search. The approach is based on hierarchical grouping of regions, using

color, texture and region features. The work of Manén et al. [93] is similar

in spirit to that of [129], but randomizing the merging process and learning

the weights of the merging function.
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Instead of following a hierarchical approach, the method proposed by

Carreira and Sminchisescu [14] generates sets of overlapping segments, ob-

tained solving a binary segmentation problem, initialized with different seeds.

Segments are ranked by objectness using a trained regressor.

Differently from the methods reported above, the two methods proposed

by Zitnick and Dollár [155], and Cheng et al. [19] do not use image segmen-

tation.

The method of [155], called Edge Boxes, computes a scoring function in a

sliding window fashion. Scoring is performed measuring the number of edges

that exist in the box minus those that are members of contours that overlap

the box’s boundary.

The method of [19] is the fastest approach, as reported in the comparison

of [63], and uses a simple linear classifier over edge features, that is trained

and applied in a sliding window manner. The efficiency of the approach is

due to the use of approximated features, binarized normed gradients that

give the name (BING) of the method.

Following the Convolution Neural Network framework, a few objectness

methods have been built on top of convolutional features. Multibox [34]

approaches exploit a saliency based approach and after classifying an image

they propose a few boxes per class on salient regions.

Different from the fully integrated approach of [112], DeepBox and Deep-

Mask [106] learn to generate windows, or even masks with a deep convolu-

tional architecture. These methods have a higher recall with respect to

EdgeBoxes although they are more than an order of magnitude slower.

2.2.2 Spatio-Temporal Objectness

Objectness proposal in videos is typically cast as a problem of supervoxel

segmentation, although supervoxel evaluation measures - such as those used

in [142] - are reported as not being directly indicative of the performance

of such methods when applied to spatio-temporal objectness proposal [104].

Van den Bergh et al. [131] have addressed the problem by tracking win-

dows aligned with supervoxels, obtained from frame superpixel segmenta-

tion [130], over multiple frames using an online optimization; the proposed

method runs at 30fps on a single modern CPU. Oneata et al. [104] follow

a similar approach, in principle, by segmenting individual frames into a su-

perpixel graph, then computing supervoxels through temporal hierarchical

clustering. Spatio-temporal object detection proposals are based on super-
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voxel segmentation, obtained using a version of the region growing method

of Manén et al. [93] extended to the temporal domain.

Spatio-temporal objectness measures have been used to perform co-localization,

i.e. spatial localization of common objects in a set of videos. Prest et al. [108]

have proposed a fully automatic pipeline to learn object detectors from ob-

ject proposals; segments of coherent motion are extracted from video shots,

and spatio-temporal bounding boxes are fit to each segment, forming video

“tubes” that are then used to train detectors, following a selection process

based on objectness probability. The approach proposed by Joulin et al. [73]

extends the method of image co-localization of [126] to videos, extending

it with temporal terms and constraints, and solves efficiently the resulting

quadratic problem applying the Frank-Wolfe algorithm. Unlike [108], the

method does not use video tubes. Kwak et al. [81] address video object de-

tection as a combination of two processes, i.e. object discovery and tracking,

that complement each other. During discovery, regions containing similar

objects are matched across different videos, while tracking associates promi-

nent regions within each video. Motion statistics of individual regions and

temporal consistency between consecutive regions are used to improve track-

ing and obtain the video tubes for object detection.

Recently, convolutional neural networks have been applied to the prob-

lem of video object detection. Tripathi et al. [128] have proposed a video

object proposal method based on spatio-temporal edge contents, and a deep-

learning based method for video object detection applied to clusters of these

proposals. Class labels are propagated through streaming clusters of spatio-

temporal consistent proposals, speeding up detection by 3× with respect to

per-frame detection. Kang et al. [74] have proposed a framework for video

object detection based on CNNs that detect and track proposals. In a first

stage video tubelets are proposed, combining object detection, to provide

high-confidence anchors to the tracker, and tracking, to generate new pro-

posals and to aggregate detections. In a second stage tubelets are classified

and re-scored through spatial max-pooling and temporal convolution, for

robust box-scoring and for incorporating temporal consistency.

2.3 Video Coding

Traditional adaptive video compression approaches do not consider the se-

mantic content of video and instead adapt compression depending on the
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requirements of the network or device used to deliver video to the end user.

Semantic video compression, instead, alters the video by taking into account

objects [65, 77] or a combination of objects and events [8], using pattern

recognition techniques. Bagdanov et al. [5] have proposed to use im-

age features correlated with downstream detector features, like corners and

edges, to select frame areas to be maintained at higher visual quality and

smoothing the rest. This approach has been applied, as pre-processing step

to H.264 encoding, to surveillance videos. Videos compressed using [5] have a

very low bitrate. Moreover the performance of pedestrian detection is better

on videos compressed with this approach with respect to those compressed

with H.264 at a similar bitrate.

Chen et al. [17] have addressed surveillance video coding, segmenting

moving objects from background using low-rank and sparse decomposition,

and coding the background with a few independent frames, based on their

linear dependency, to further reduce their temporal redundancy. Guo et

al. [54] follow a similar approach, but separating background from moving

objects by learning a background dictionary, and coding motion together

with the reconstruction coefficients of the background.

2.3.1 Saliency Based Methods

Visual saliency deals with properties and qualities of items that stand out

with respect to their neighbors, and typically arises from contrasts in terms of

color, luminance, motion, etc. Works in this area typically aim at predicting

salient points of human eye fixation [117] or modeling visual attention [10].

Because of this relation with the human visual system and its attentional

model, saliency has been used to identify parts of images or video frames

that are to be compressed lightly, to preserve their visual content.

Use of saliency maps for video coding has been proposed by Gupta et

al. [56], where low-level and high-level saliency features are combined and

used to perform a non-uniform bit allocation over video frames. Since com-

putation of these saliency maps is expensive the authors propose to use a

shot-detection method to select a reduced number of frames for this compu-

tation. Hadizadeh and Bajić [57] have proposed to add a saliency distortion

term in the rate distortion optimization (RDO) processing of H.264/AVC, to

improve the coding quality of regions of interest (ROI). Saliency is computed

with an extended version of the Itti-Koch-Niebur saliency model [68], with an

improved temporal saliency that accounts for camera motion. The proposed
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RDO is ∼ 3 times slower than the standard approach. Li et al. [85] have

proposed the use of saliency maps in H.265/HEVC coding to drive the quan-

tization parameter of the coding units. An initial map is computed using

graph-based visual saliency [12], then a Markovian algorithm concentrates

saliency in a few locations, followed by a Gaussian filtering.

Differently from [17,54] the proposed approach can be applied to standard

video coding such as H.264 or H.265. Differently from [57, 76, 85, 156] the

proposed approach does not compute a saliency that attempts to mimic the

human visual system; instead, our saliency exploits objectness measures in

to order to obtain a better performance with object recognition algorithms.

2.4 Image Restoration

Removing compression artifacts has been addressed in the past. There is a

vast literature of image restoration, targeting image compression artifacts.

The vast majority of the approaches can be classified as processing based [15,

24, 42, 86, 140, 144, 149, 152] and a few ones are learning based [29, 94, 125,

137]. In the following we will briefly review image processing methods and

learning based methods. We will also cover other works solving different

image transformation tasks which are related to our problem. Finally we

will state our contributions in relation to existing state of the art.

2.4.1 Processing Based Methods

This class of methods typically relies on information in the DCT domain.

Foi et al. [42] developed SA-DCT, proposing to use clipped or attenuated

DCT coefficients to reconstruct a local estimate of the image signal within

an adaptive shape support. Yang et al. [144], apply a DCT-based lapped

transform directly in the DCT domain, in order to remove the artifacts pro-

duced by quantization. Zhang et al. [152], fuse two predictions to estimate

DCT coefficients of each block: one prediction is based on quantized values

of coefficients and the other is computed from nonlocal blocks coefficients

as a weighted average. Li et al. [86] eliminate artifacts due to contrast en-

hancement, decomposing images in structure and texture components, then

eliminating the artifacts that are part of the texture component. Chang et

al. [15] propose to find a sparse representation over a learned dictionary from

a training images set, and use it to remove the block artifacts of JPEG com-
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pression images. Dar et al. [24] propose to reduce artifacts by a regularized

restoration of the original signal. The procedure is formulated as a regular-

ized inverse-problem for estimating the original signal given its reconstructed

form, and the nonlinear compression-decompression process is approximated

by a linear operator, to obtain a tractable formulation. The main drawback

of these methods is that they usually over-smooth the reconstructed image.

Indeed it is hardly possible to add consistent details at higher frequencies

with no semantic cues of the underlying image.

2.4.2 Learning Based Methods

Following the success of deep convolutional neural networks (DCNN), a

learning driven paradigm has recently emerged in the artifact removal lit-

erature. The basic idea behind applying a DCNN to this task is to learn

an image transformation function that given an input image will output a

restored version. Training is performed by generating degraded versions of

images which are used as samples for which the ground truth or target is

the original image. The main advantage of learning based methods is that,

since they are fed with a large amount of data they may estimate accurately

an image manifold, allowing an approximated inversion of the compression

function. This manifold is also aware of image semantics and does not rely

solely on DCT coefficient values or other statistical image properties. Dong

et al. [29] propose artifact reduction CNN (AR-CNN) which is based on their

super-resolution CNN (SRCNN); both models share a common structure, a

feature extraction layer, a feature enhancement layer, a non-linear mapping

and a reconstruction layer. The structure is designed following sparse coding

pipelines. Svoboda et al. [125] report improved results by learning a feed-

forward CNN to perform image restoration; differently from [29] the CNN

layers have no specific functions but they combine residual learning, skip ar-

chitecture and symmetric weight initialization to get a better reconstruction

quality.

2.4.3 Other Image Transformation Tasks

Similar approaches have been devised, to target different image transforma-

tion problems, such as image super-resolution [13, 23, 72, 82], style-transfer

[45, 72] and image de-noising [150]. Zhang et al. [150] have recently ad-

dressed the problem of image denoising, proposing a denoising convolutional
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neural networks (DnCNN) to eliminate Gaussian noise with unknown noise

level and showing that residual learning (used in a single residual unit of

the network) and batch normalization are beneficial for this task. The pro-

posed network obtains promising results also on other denoising tasks such

as super resolution and JPEG deblocking. Gatys et al. [45] have shown that

optimizing a loss accounting for style similarity and content similarity it is

possible to keep the semantic content of an image and alter its style, which is

transferred from another source. Johnson et al. [72] propose a generative ap-

proach to solve style transfer, building on the approach of [45]. Their method

improves in terms of performance with respect of [45], since the optimization

is performed beforehand, for each style, it is possible to apply the transfor-

mation in real-time. Interestingly, with a slight variation on the learning,

their method also can solve super-resolution. Kim et al. [78] use a deeper

architecture [122] trained on residual images applying gradient clipping to

speed-up learning. Bruna et al. [13] addressed super-resolution learning suf-

ficient statistics for the high-frequency component using a CNN, Ledig et

al. [82] used a deep residual convolutional generator network, trained in an

adversarial fashion. Dahl et al. [23] propose to use a PixelCNN architecture

for super-resolution task, applying it to magnification of 8× 8 pixel images.

Human evaluators have indicated that samples from this model look more

photo realistic than a pixel-independent L2 regression baseline.



Chapter 3

Spatio-Temporal Closed-Loop

Object Detection

Object detection is one of the most important tasks of computer

vision. It is usually performed by evaluating a subset of the possi-

ble locations of an image that are more likely to contain the object

of interest. Exhaustive approaches have now been superseded by

object proposal methods. The interplay of detectors and proposal

algorithms has not been fully analyzed and exploited up to now,

although this is a very relevant problem for object detection in

video sequences. We propose to connect, in a closed-loop, detec-

tors and object proposal generator functions exploiting the ordered

and continuous nature of video sequences. Different from track-

ing we only require a previous frame to improve both proposal and

detection: no prediction based on local motion is performed, thus

avoiding tracking errors. We obtain 3 to 4 points of improvement

in mAP and a detection time that is lower than Faster R-CNN,

which is the fastest CNN based generic object detector known at

the moment.

3.1 Introduction

Object detection is one of the most important tasks of computer vision and

as such has received considerable attention from the research community.

Typically object detectors identify one or more bounding boxes in the image

17
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containing an object and associate a category label to it. These detectors

are specific for each class of objects, and for certain domains exist a vast

literature of specialized methods, such as face detection [25, 96, 148] and

pedestrian detection [28,46].

In recent years the objectness measure, that quantifies how likely an

image window is containing an object of any class [2], has become popular

[3,19,32,109,129]. The popularity of objectness proposal methods lies in the

fact that they can be used as a pre-processing step for object detection to

speed up specific object detectors.

The idea is to determine a subset of all possible windows in an image

with a high probability of containing an object, and feed them to specific

object detectors. Object proposals algorithms perform two main operations:

generate a set of bounding boxes and assign an objectness score to each box.

The window proposal step is typically much faster than the exhaustive

evaluation of the object detector. Considering that a “sliding window” de-

tector has typically to evaluate 106 windows, if it is possible to reduce this

number to 103–104, evaluating only these proposals, then the overall speed is

greatly improved. In this sense objectness proposal methods can be related

to cascade methods which perform a preliminary fast, although inaccurate,

classification to discard the vast majority of unpromising proposals [62]. Re-

ducing the search space of object bounding boxes has also the advantage of

reducing the false positive rate of the object detector.

The great majority of methods for objectness proposal have dealt with

images, while approaches to video objectness proposal are oriented toward

segmentation in supervoxels [142], deriving objectness measures from the

“tubes” of superpixels that form them [104,131]. This process is often com-

putationally expensive and requires to process the whole video.

In this chapter we present a novel and computationally efficient spatio-

temporal objectness estimation method, that takes advantage of the tem-

poral coherence of videos. The proposed method exploits the sequential

nature of videos to improve the quality of proposals based on the available

information on previous frames determined by detector outputs. We define

this approach as closed-loop proposals, since we exploit not only the current

frame visual feature but also the proposals evaluated on a previous frame.

Integrating the output of objectness proposals with object detection, we ob-

tain a higher detection rate when computing spatio-temporal objectness in

videos and we also improve the detection running time.
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Figure 3.1: Schemes of: (a) typical objectness/detection pipeline; (b) our

spatio-temporal objectness interaction. In our method window proposals

are passed to the detector at time t and the detector output obtained at

time t− 1 is fed back to the proposal algorithm to improve window ranking.

This approach reduces the number of proposals w.r.t. typical pipeline.

We point out that our approach is different from tracking and is not

based on any form of it. Object tracking, especially in the multi-target

setting, is usually addressed using object detectors and some data association

strategy that can be either causal [11] and non-causal [97]. In the proposed

approach we exploit the temporal coherence of sequences causally, but we do

not estimate motion of objects, either implicitly or explicitly. Moreover, our

end goal differs from the one of tracking, that is to precisely locate an object

instance in order to keep its identity correct as long as possible. Our goal

is to enhance the quality of object proposals so to improve both detection

quality and speed.



20 Spatio-Temporal Closed-Loop Object Detection

3.2 The proposed method

The method is based on the intuition that since objectness proposals are

used as a pre-processing step followed by object detection, it is possible to

exploit the joint statistics of window proposals and detections to compute

spatio-temporal objectness in a video sequence, improving both detection

rate and speed. Detection accuracy is improved by eliminating possible false

detections, while processing speed is improved by selecting a reduced number

of areas to be tested by the detector.

Typically window proposal methods require 103 windows to cover more

than 90% of the objects shown in an image. In case objects are very small the

number of proposals may become 104. Considering video frame sequences, it

is natural to use the detection of an object to improve the next proposal, since

objects will likely be in about the same position in the next frame. Based

on this consideration, we propose a feedback model accounting for spatio-

temporal consistency of detections and window proposals over time, that

re-ranks object proposals based on the overlap with detections and detector

scores obtained in the previous frame. Using the outcome of a detector

on a frame reduces the number, and improves the quality, of the proposals

in a later frame. On the other hand those proposals are used to speed

and improve the quality of detection in the following frame. In contrast to

classical object detection pipelines, shown in Fig. 3.1a, our approach exploits

previous frame detections to improve proposals. As shown in Fig. 3.1b,

providing the detection as a feedback will allow to select a reduced number

of higher quality proposals.

Given a video sequence with T frames, consider a set of object proposals

W := {w1(1), . . . , wP (1), . . . , w1(T ), . . . , wP (T )} (3.1)

for the ease of notation we assume the proposal method computes a fixed

amount of proposals P for each frame, but this is not a fixed requirement.

Considering the task of detecting objects from multiple classes, a set of

modelsM will be trained to output a vector of |M| scores for every window.

A detector C (F,w,M) : F × R4 → R|M| is a function evaluating a proposal

for a frame F according to some set of models M and image features F .

Given a proposal wi(t) the detector C will associate it to a score vector

si(t) ∈ R|M|.
Let Dt be the set of scored proposals at time t defined by the tuples
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di(t) := 〈wi(t), si(t)〉. The final set of detections Dt is obtained preserving

tuples di such that

||sign(si(t)− τM)||1 > 0 (3.2)

and performing non maximal suppression [47], where τM is a model specific

threshold vector on the soft-max per class output. To obtain detection win-

dows useful for proposal re-ranking, we want to retain only the ones that

have been assigned to at least one object class. This condition is ensured

by the strict positivity of the L1-norm of the signs of thresholded classifier

outputs vector as expressed by Eq. 3.2.

An object proposal method can be seen as a function, P (w,F ) : F×R4 →
R evaluating the probability that a given window w in a frame F contains

an object, independently from the object category, namely p(object|w).

For a given frame at time t, our goal is to induce an ordering on set Wt

of proposals, exploiting information of previously evaluated ones d(t − 1) ∈
Dt−1, thus defining the ordered set P̂t := {ŵ1(t), . . . , ŵP (t)} such that

p(object|ŵi(t)) > p(object|ŵi−1(t)) (3.3)

p(object|ŵi(t)) > p(object|wi(t)), i < θ (3.4)

The new ranking should keep the objectness property, defined by Eq. 3.3,

meaning that highly ranked windows are more likely to contain an object

than lowly ranked ones. According to Eq. 3.4, our re-ranked set P̂t should

have a better ranking than Wt, meaning that, in the first θ windows, the

probability of finding an object for the i-th window of our re-ranked set P̂t
is higher than for the same-rank window in Wt.

We can define the likelihood of finding a generic object on the whole

frame at time t as

Lo =

|Wt|∑
i=1

p(object|wi) (3.5)

and similarly

L̂o =

|P̂t|∑
i=1

p(object|ŵi) (3.6)

Considering that P̂t is a re-ordered version of Wt and that |Wt| = |P̂t|,
it is true that L̂o = Lo. However, if Equation 3.3 and Equation 3.4 hold, a
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more interesting result is obtained considering only a subset of the proposals;

with the improved ranking we have that, for a K < θ, in a truncated sum

LKo =
∑K
i=1 p(object|wi):

L̂Ko > LKo . (3.7)

This means that we can evaluate a set of lower cardinality K instead of the

full proposal set without compromising the chance of finding the objects we

are seeking with our classifier. Evaluating less proposals also means reducing

the chance of finding false detections. This is an important benefit of our

model that is useful to reduce the computational complexity and also to

improve the accuracy of classifiers.

Since object detectors are trained to output a maximal score when the

evaluated windows have high overlap with ground truth object windows, we

can exploit detector scores as proxies of the probability of finding an object

in the area occupied by an evaluated window wi.

Therefore to obtain the new set of proposals P̂ we link the detector and

the proposal functions in a causal manner. Consider a set of N detections

di(t− 1) ∈ Dt−1, obtained from a frame at time t− 1, and a set of proposals

in frame at time t, it is possible to compute a spatio-temporal objectness at

time t using for proposal window wk(t):

ôk(t) =ok(t)+

α

|M|∑
m=1

N∑
i=1

IoU (wk(t), di(t− 1)) · sim(t− 1)
(3.8)

where ok(t) represents the objectness score and

IoU (w, d) =
area (w ∩ d)

area (w ∪ d)
(3.9)

is the overlap measure of the windows computed according to the PASCAL

overlap criterion [35]. Term si is obtained via soft-max normalization there-

fore is comparable across classes without further calibration.

The IoU term makes sure that si can increase the objectness score of a

proposal only if the detection window and the proposal window are overlap-

ping, weighting the increase in objectness score by the overlap.

Finally, α is a parameter that weights the two parts of the function, and

its optimal value is dependent on the dataset and the performance of the
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proposal algorithm that is used. In the following experiments we tuned this

parameter by cross-validation, maximizing detection rate with 1000 propos-

als (DET@1000) for each dataset and object detector used.

The function of Eq. 3.8, is composed by two parts:

• Objectness measure. The objectness score computed using a spatial

objectness measure obtained from an object proposal algorithm such

as BING or EdgeBoxes.

• Feedback Term. This term combines two terms via multiplication: i)

the overlap measure IoU(·, ·) accounting for the fact that proposal win-

dows that have larger overlap with detection windows are more likely

to contain the objects detected in the next frame, and the higher the

overlap the higher the probability of this; ii) the detection score sim
accounting for the fact that not all detection windows really contain

objects, and this is more likely for windows with a low detector confi-

dence score. Thus detection windows with higher detector confidence

are to be weighted more, to rank higher the objectness windows that

contain objects.

Using the spatio-temporal objectness measure of Eq. 3.8 allows to greatly

reduce the number of object proposal windows.

The main differences of the proposed method with respect to previous

approaches can be summarized as follows. Differently from the [81, 108]

video object proposal methods, and from the video object detection meth-

ods of [74,128], the proposed method does not perform any tracking although

it is possible, in principle, to track the P̂ proposal windows to obtain video

tubes. However, experimental results show that even without this additional

processing it is possible to outperform the methods of [74, 81, 108] on two

standard datasets. Differently from [73, 81, 108] the proposed method is su-

pervised, as [74]. Differently from [128], that extends EdgeBoxes from image

object proposals to videos exploiting temporal edge responses, the proposed

method is based on image objectness measures, and the temporal aspect

is included in Eq. 3.8. This allows to choose different proposal methods,

e.g. depending on the needed speed or performance.
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Figure 3.2: Average box detector score varying box rank on Youtube Objects.

Proposals obtained with our method have higher scores in average and highly

scored proposal have higher rank with respect to the baselines.
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Figure 3.3: Sample frames from the 10 classes from YouTube Objects dataset

with the 10 highest ranked boxes. Baselines are presented in odd columns

and our improved closed-loop proposal on even columns. Each box is repre-

sented as an overlapping transparent red box on the image. Our closed-loop

proposal are more concentrated and accurate with respect to baseline meth-

ods.
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3.3 Experimental Evaluation

In the following experiments we evaluate the performance of the proposed

method on videos, comparing it with three fast state-of-the art methods –

BING1, Edge Boxes2 and Region Proposal Networks used by Faster R-CNN3

– in terms of detection rate and speed. The method has been tested on the

YouTube Objects dataset (YTO) [108], commonly used to test video object

detection and proposal methods, and on the ILSVRC 2015 VID dataset [1],

commonly used to test video object detection.

The YouTube Objects dataset (YTO) [108] contains 10 classes and con-

sists between 9 and 24 videos for each class; to eliminate issues due to video

compression artifacts 570,000 decompressed frames are provided. We report

the results, in terms of localization metric (CorLoc) [26] that is typically

used for evaluation on YTO; this experimental setup allows to compare the

proposed method with the approaches of Prest et al. [108], Joulin et al. [73],

Kwak et al. [81] and Kang et al. [74].

The ILSVRC 2015 VID dataset release used is the initial one, containing

30 object classes and consisting of 3 splits: a training set of 1952 fully-

labeled video snippets with a length between 6 to 5213 frames per snippet;

a validation set of 281 fully-labeled video snippets with a length between

11 to 2898 frames per snippet; a test set of 458 snippets whose ground

truth annotation is not publicly available. We report the results, in terms

of mean average precision (mAP), on the validation set; this experimental

setup allows to compare the proposed method with the approach of Kang et

al. [74].

The ILSVRC 2015 DET dataset comprises the fully annotated synsets

from 200 basic level categories selected to provide various challenges such

as object scale, level of image clutterness and average number of object

instances.

We used Fast R-CNN as object detector using the implementation from

[112]. For the YouTube Objects dataset our model has been trained using

the Faster R-CNN framework starting from the pre-trained network named

VGG CNN M 1024 [16], fine-tuning both the classifier and the region pro-

1We used the code publicly available at http://mmcheng.net/bing/
2We used the code publicly available at http://research.microsoft.com/en-us/

downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/
3We used the code publicly available at https://github.com/rbgirshick/

py-faster-rcnn

http://mmcheng.net/bing/
http://research.microsoft.com/en-us/downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/
http://research.microsoft.com/en-us/downloads/389109f6-b4e8-404c-84bf-239f7cbf4e3d/
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
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posal net on PASCAL VOC 2007, since the YouTube Objects dataset object

classes are a subset of the PASCAL VOC 2007 dataset.

For the ILSVRC 2015 VID dataset we trained the model using the pre-

trained network named VGG 16 [122] as a starting point, fine-tuning both

the classifier and the region proposal on the whole ILSVRC 2015 DET train-

ing set and some additional images from the training set of the ILSVRC 2015

VID dataset, choosing the ratio of 4 : 1 between DET and VID sets.

Faster R-CNN learns a Region Proposal Network (RPN) and an object

detector which is architecturally equivalent to Fast R-CNN. Therefore the

object detector weights are transferable to Fast R-CNN on which Faster R-

CNN is based on. Indeed we used the same object detector weights in both

frameworks. We refer to the detector as Faster R-CNN when we used Fast

R-CNN and RPN as proposal sharing the weights, as referred by Ren et

al. [112], and we refer to Fast R-CNN when proposals are computed exter-

nally.

3.3.1 Spatio-temporal objectness performance

In this set of experiments we evaluate the performance of the proposed

spatio-temporal objectness method in terms of proposal correct localization.

The analysis of the behavior of our re-ranking process is shown in Fig. 3.2.

We report the score of the detector on boxes of each rank, averaged over all

frames and classes – we do not consider the scoring of detectors of classes

different from the one present in the ground truth. This experiment shows

that our boxes have a higher average detector score, meaning they are more

precisely located on the object; moreover it can be seen how the highly scored

boxes are all concentrated in the first 30-50 proposal while for the baseline

methods they are more spread along the tail of the curve. A first qualitative

glance at how our closed-loop spatio-temporal proposal improves over static

baselines can be given in Fig. 3.3. It is clear, in this subset of frames, that

our method increases the accuracy and quality of proposals generated by all

baselines.

In Fig. 3.4 we evaluate the performance of proposals alone in terms of

CorLoc on YTO. In this experiment we do not test if objects are correctly

classified but only if proposal bounding boxes overlap with objects of any

class. We compare all open-loop baselines and our closed-loop proposals

with the method proposed by Oneata et al. [104]. The method of [104] has a

performance close to BING, when using very few windows, but as the number
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Figure 3.4: Trade-off between detection rate and number of window pro-

posals for the YouTube Objects dataset. Comparison between the proposed

method with temporal information using Fast R-CNN object detector, the

proposed method without temporal information and the method of Oneata

et al. [104]. The proposed spatio-temporal objectness measure greatly im-

proves the performance w.r.t. image based objectness.
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Method Avg.

Prest et al. [108] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5

Joulin et al. [73] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0

Kwak et al. [81] 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7

Kang et al. [74] 94.1 69.7 88.2 79.3 76.6 18.6 89.6 89.0 87.3 75.3 76.8

RPN Closed-Loop 70.7 76.0 70.2 93.2 76.5 88.6 87.4 84.4 81.4 67.9 79.6

RPN 48.5 56.3 55.7 61.2 68.7 69.6 62.2 80.5 34.0 53.6 59.0

EdgeBoxes Closed-Loop 87.8 94.8 81.7 95.1 84.3 97.5 78.0 61.0 94.8 76.8 85.2

EdgeBoxes 71.9 72.9 75.6 86.4 52.2 91.1 79.5 62.3 74.2 71.4 73.8

BING Closed-Loop 71.1 87.5 54.2 90.3 80.0 92.4 89.0 85.7 79.4 69.6 79.9

BING 35.2 55.2 42.0 55.3 67.8 54.4 46.5 64.9 25.8 50.0 49.7

Table 3.1: Localization performances on the YTO dataset. We run all pro-

posal methods with 10 windows per frame in the baseline and Closed-Loop

(CL) version.

of window proposals increases this is reverted. Our closed-loop proposal

ranking obtains very high recall even with few tens of windows compared

with open-loop baselines. Note that even if proposal recall is predictive

of detector accuracy [62] evaluating detectors on proposals is necessary to

assess the final detection result. This analysis is reported in the following

Sect. 3.3.2.

Moreover, it has to be noted that the method of [104] is dominated by the

LDOF optical flow computation and roughly requires 15 seconds to process

each frame, instead of the 0.16 required by EdgeBoxes, 0.017 required by

BING and 0.006 by RPN. Note that RPN timing is reported on a high-end

GPU (NVIDIA Titan X) while BING, EdgeBoxes and the timing from [104]

are reported using a single-core implementation on a 3.6 GHz CPU.

In Tab. 3.1 we compare with previously published methods [73,74,81,108].

Our method is above the state-of-the art reported by Kang et al. [74]. Note

that our method and the one by Kang et al. both use an algorithm trained

with object class supervision, while [73,81,108] are unsupervised.

3.3.2 Detection performance on video

In the following set of experiments we evaluate the closed-loop object de-

tector on videos. We perform several comparisons to assess the behavior of

our technique using three state-of-the art proposals EdgeBoxes, BING and

RPN. We focus on the former since it runs in under 200ms per frame and it

obtains state-of-the art results in terms of recall and detection accuracy [62].
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We also evaluate the quality of our approach using BING which is less per-

formant in terms of recall and detection accuracy but has a much lower

run-time; indeed BING proposals can be computed in less than 20ms on

modern CPUs. Finally we test our strategy with Faster R-CNN, the fastest

and most performing detector tested on still images [112].

First we assess the effect of the number of evaluated proposals on detec-

tion accuracy. In Figure 3.5 it is clear that even with a very low number of

proposals, as low as 30 per frame, we can obtain a mAP figure that is similar

or better than the open-loop baselines using one order more of proposals.

The best performing proposal method on YTO is EdgeBoxes. Faster R-

CNN is the second best. BING performs the worst but is surprisingly close

to Faster R-CNN. Note that our closed-loop detection improves all three

open-loop baselines.

As it can be seen from Fig. 3.5 our method improves the detection accu-

racy on both datasets, reducing false positives and selecting a set of higher

quality proposals for the detector down stream. In this experiment we show

how reducing the set of windows to a very compact set, 30 windows per

frame, we are able to perform as well or better than with the full set of non

re-ranked windows with the further benefit of speeding up the computation.

Considering the curves in Fig. 3.2 the RPN proposal appears to be the

best although in term of detection is outperformed by EdgeBoxes. This

happens because EdgeBoxes provides a better recall covering a higher per-

centage of objects in frames as is measured in Fig. 3.4. Being EdgeBoxes

dataset agnostic it is likely that RPN is suffering from overfitting with re-

spect to PASCAL VOC 2007, on which it is trained. We believe that this

behavior depends on the fact that the model used on YTO has not been

tuned on video frames. Instead, on ILSVRC we trained the detectors using

frames from the DET and the VID training subsets. We believe that this

improved performance is due to the additional tuning of the CNN on this

larger set of data which also comprises video frames.

In Tab. 3.2 we report a comparison on YTO of our closed-loop detector

using 50 proposals computed from BING, EdgeBoxes and using Faster R-

CNN with the respective baselines.

Our method obtains from 3 to 4 points increase in term of mean average

precision. We improve on all classes except for “boat”, that is the hardest

class to detect. In this case the detection feedback has not enough quality

to obtain a good re-ranking of proposals, therefore the exhaustive proposal
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Proposal mAP

RPN Closed-Loop 68.3 72.7 44.3 88.8 58.3 60.2 71.5 69.1 77.3 58.6 66.9

RPN 58.6 63.6 47.2 85.3 53.4 60.8 67.1 65.5 67.5 52.3 62.1

EB Closed-Loop 72.7 81.3 58.6 90.5 64.8 63.0 65.3 62.5 79.7 66.0 70.4

EB 71.3 75.2 59.2 86.2 54.1 62.5 65.9 62.7 78.8 60.7 67.6

BING Closed-Loop 62.2 79.7 50.0 84.3 53.3 56.9 69.5 66.2 76.4 62.5 66.1

BING 56.6 74.9 51.3 82.6 53.3 61.0 66.7 65.2 68.4 59.9 64.0

Table 3.2: Comparison of open-loop and closed-loop proposals on YouTube

Objects dataset using Fast R-CNN as a detector with 50 boxes. Using less

or more boxes per frame resulted with worst or equal performance for all

proposals in open- and closed-loop setting.

Method

Kang [74] 72.7 75.5 42.2 39.5 25.0 64.1 36.3 51.1 24.4 48.6 65.6 73.9 61.7 82.4 30.8 34.4

RPN Closed-Loop 74.8 59.3 44.8 35.9 37.0 56.7 31.9 54.3 26.2 74.1 58.1 91.8 53.3 63.5 57.1 23.5

RPN 61.8 55.4 42.8 26.9 35.4 56.5 23.8 52.2 26.6 71.9 46.9 92.3 51.0 76.4 57.3 24.8

EB Closed-Loop 44.3 56.4 50.6 17.3 25.1 61.8 16.4 45.9 26.0 72.7 53.0 36.2 60.9 76.1 55.4 16.3

EB 54.2 38.1 22.5 14.3 20.8 46.2 13.0 54.2 21.0 63.4 51.1 58.0 39.7 33.7 19.5 0.2

BING Closed-Loop 29.1 35.9 37.4 23.2 22.5 46.1 15.6 35.1 16.3 54.6 58.2 44.7 50.4 72.1 49.5 9.6

BING 16.2 36.2 29.3 18.5 16.5 42.0 11.2 31.9 9.5 45.7 57.0 30.6 46.2 62.9 22.6 3.3

mean AP

Kang [74] 54.2 1.6 61.0 36.6 19.7 55.0 38.9 2.6 42.8 54.6 66.1 69.2 26.5 68.6 47.5

RPN Closed-Loop 68.7 0.0 66.7 15.2 19.1 73.1 34.9 29.2 34.1 85.1 59.4 72.1 36.6 62.0 50.0

RPN 68.2 0.0 61.0 14.5 20.6 64.3 37.6 3.3 34.0 86.6 59.8 73.1 35.9 57.9 47.3

EB Closed-Loop 67.4 0.0 55.2 20.9 35.9 65.0 27.8 0.1 33.0 84.3 63.3 81.4 16.4 42.4 43.6

EB 30.7 0.0 59.0 5.4 40.8 74.9 25.5 0.0 18.4 74.5 60.2 73.7 5.5 30.3 35.0

BING Closed-Loop 60.4 0.0 52.7 8.6 29.0 49.9 3.6 0.3 28.0 68.2 41.4 62.7 12.8 34.7 35.1

BING 56.4 0.0 48.9 3.1 26.0 47.8 2.6 1.7 15.0 66.6 28.4 56.0 5.7 24.9 28.8

Table 3.3: Comparison of our method with Kang et al. [74] on ILSVRC VID

dataset using 20 boxes per frame. Closed-Loop improves the map of RPN

on 20, EB on 25 and BING on 28 out of 30 classes. Moreover our approach

using RPN improves over the current state-of-the art.

evaluation may perform better.

Our method is able to increase the detection performance by reducing

the amount of false positives per frame since it process a set of proposal

with a high likelihood of containing an object.

Tab. 3.3 reports results of our method applied to RPN, EB and BING

baselines on the validation set from ILSVRC 2015 VID using just 20 win-

dows per frame. It can be observed that our closed-loop approach improves

for most of the 30 classes. The only severe issues are on the “monkey” and

“squirrel” classes. These classes are the most challenging and the detection

quality is not adequate to provide any benefit in the loop. Interestingly we

can boost the mAP on “squirrel” from 3.3 to 29.6 for RPN. Another chal-
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lenging class is “lion”, on this class our method obtains a high improvement

for EB and BING, while on RPN we have a similar result. Out of 30 classes,

closed-loop improves RPN on 20, EB on 25 and BING on 28. Finally, our

Faster R-CNN model (RPN) using closed-loop improves over Kang et al. [74]

using just 20 window proposals per frame. In our preliminary experiments,

training only on frames from DET reported a lower mAP, e.g. 41.0 for RPN

closed-loop. We believe that the distribution of visual features in video,

mostly because of blur and compression artifacts differs from the one in still

images, and adding a small amount, i.e. a 4 : 1 ratio, of VID frames to the

training set helps fine-tuning the CNN and the proposal network, and leads

to an improvement of almost 10 mAP points.

Our algorithm is based mainly on the re-ranking process expressed in

Eq. 3.8, where the only free parameter is α. We show how the value of α in-

fluences detection performance for different proposal algorithms and amount

of evaluated windows in Figure 3.6. The alpha parameter appears to corre-

late negatively with the amount of windows evaluated. Our understanding

of this behavior is that since the set of feedback windows Dt−1 is the signal

from which we obtain our information, if this signal is weak the feedback

term must compensate this lack of information. Finally the behavior of α

depends on the distribution of objectness scores ok which can differ quite

significantly between the analyzed methods.

In real-time applications such as automotive or visual surveillance it is

likely not possible to analyse a stream at 30 frames per second, therefore a

certain frame drop will occur causing the video to be processed at a lower

frame rate. We are interested in analysing the performance of our approach

in this more realistic setting. To assess the behavior of a closed-loop proposal

we test it dropping frames, meaning that instead of using the frame before

the one to be analysed as a source for detection windows di(t − 1), we use

di(t− n), n ∈ [2, 15].

In Fig. 3.7 we show how much detection accuracy of our method degrades

if the source of detection windows is farther in time with respect to the

current frame. It can be seen that our closed-loop method always performs

better than its open-loop baseline.

3.3.3 Execution speed

In Tab. 3.4 we report timing and mAP for our proposed closed-loop object

detection method compared with the open-loop baselines. Our closed-loop
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Proposal Detector Time/frame Speed-up mAP GPU

RPN Closed-Loop Faster R-CNN 56 ms 34% 66.9 yes

RPN Faster R-CNN 75 ms 67.0 yes

EB Closed-Loop Fast R-CNN 206 ms 21% 70.3 no

EB Fast R-CNN 250 ms 69.2 no

BING Closed-Loop Fast R-CNN 63 ms 70% 65.6 no

BING Fast R-CNN 107 ms 65.6 no

Table 3.4: Timing of our Closed-Loop proposals combined with Fast R-CNN

detector, also compared with region proposal networks (RPN) and Faster R-

CNN detector. The GPU flag indicates whether the proposal set is generated

using GPU. Detection is always performed on GPU.

method is able to produce a significant speed-up without loosing detection

accuracy; for EdgeBoxes we even obtain a better mAP with our closed-loop

proposal with respect to the open-loop baseline.

The gain in speed is higher for faster proposals since the full set of pro-

posal has always to be computed before re-ranking and we can only reduce

the amount of windows to be evaluated by the object detectors later in the

pipeline.

3.4 Conclusion

In this chapter we presented a novel closed-loop proposal strategy to be used

on video sequences for object detection. Existing object proposal methods

do not exploit the temporal ordering of frames. To the best of our knowledge

we are the first to analyse and exploit the interplay between object detection

and proposals. We show that our closed-loop strategy to generate proposals

can improve speed and accuracy at the same time.

Our model is general and can be applied to any object detection pipeline

on videos, which is based on window evaluation. We reported results using

three state of the art object proposals in conjunction with Faster R-CNN,

which is the fastest and most accurate object detector available. We mea-

sured a consistent improvement in proposal correct localization, detection

accuracy and overall speed. The main limitation of our approach is consti-

tuted by the performance of the object detectors. If the open-loop detection

quality is poor, the feedback can not provide any benefit.
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Finally our method exploits the information of detectors in a causal man-

ner and is robust to frame drop, thus providing ground for real-time appli-

cations.
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Figure 3.5: Detection accuracy with different proposals techniques and de-

tectors on YouTube Objects and ILSVRC VID. Our Closed-Loop proposal

improves mean average precision with respect to all baseline proposals. The

gain is larger for a little amount of windows (10-50)



36 Spatio-Temporal Closed-Loop Object Detection

alpha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
A

P

0.6

0.62

0.64

0.66

0.68

0.7

10 boxes

20 boxes

30 boxes

50 boxes

100 boxes

(a) EdgeBoxes

alpha

0 0.5 1 1.5 2

m
A

P

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

10 boxes

20 boxes

30 boxes

50 boxes

100 boxes

(b) BING

alpha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
A

P

0.4

0.45

0.5

0.55

0.6

0.65

10 boxes

20 boxes

30 boxes

50 boxes

100 boxes

(c) Faster R-CNN

Figure 3.6: Effect of parameter α on detection accuracy for EdgeBoxes and

BING varying the amount of proposals.
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Chapter 4

Video Compression for Object

Detection Algorithms

Video compression algorithms have been designed aiming at pleas-

ing human viewers, and are driven by video quality metrics that

are designed to account for the capabilities of the human visual

system. However, thanks to the advances in computer vision sys-

tems more and more videos are going to be watched by algorithms,

e.g. implementing video surveillance systems or performing au-

tomatic video tagging. This chapter describes an adaptive video

coding approach for computer vision-based systems. We show

how to control the quality of video compression so that automatic

object detectors can still process the resulting video, improving

their detection performance, by preserving the elements of the

scene that are more likely to contain meaningful content. Our

approach is based on computation of saliency maps exploiting a

fast objectness measure. The computational efficiency of this ap-

proach makes it usable in a real-time video coding pipeline. Ex-

periments show that our technique outperforms standard H.265 in

speed and coding efficiency, and can be applied to different types

of video domains, from surveillance to web videos.

39
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4.1 Introduction

Video streaming applications that require transmission of a high number

of streams to some central server, have to deal with issues such as limited

bandwidth channels or a bandwidth bottleneck on the server itself. Some

examples are video surveillance networks, UHF video streaming networks

connecting dash cams installed in police cars, or streams transmitted from

wearable devices or smartphones. All these applications require to transmit

videos with a reasonable high-quality for further processing by vision-based

systems, e.g. to identify anomalous activities, detect and identify persons,

and detect objects. A way to improve the video compression methods cur-

rently used is to reduce the amount of irrelevant information transmitted in

the video stream, compressing more the parts that do not contain seman-

tically interesting objects. Typically this is performed by computing visual

saliency maps based on some model of the human visual system.

Differently from this approach our method is designed to compute a bi-

nary saliency map designed for computer vision-based systems, considering

the case of a system that performs automatic object detection. To this end

we propose a fast objectness measure, that quantifies how likely an image

window is containing an object of any class [2]. An objectness saliency

map is computed from window proposals, and it is combined with H.265

quantization parameter map. We propose a method to learn a map that

indicates to the codec which parts of the frame are relevant for a computer

vision algorithm, combining a semantic and a low-level cue, maintaining also

the perceptual quality for human viewers. Detector performance improves

especially for low bitrates (∼ 1k–2k Kb/s), while for similar bitrates our

compression method preserves perceptual quality of relevant regions better

than standard codecs. An additional result is that the proposed method is

much faster than standard video coding.

4.2 Extremely Fast Object Proposals

The method is based on the intuition that image structure can be represented

effectively with corner response that is binary by definition and does not

require any approximation.

Each proposal window, selected with a sliding window approach, is scored
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using a linear objectness model w:

sl = 〈w,bl〉 (4.1)

where sl is the filter score and bl is the binary visual feature, and l = (i, x, y)

is the location, size and position of the window. The objectness score used

is:

ol = qi · sl + ri (4.2)

and is computed on a reduced set of window proposals from each size

i, obtained through non-maximal suppression. This accounts for the fact

that certain sizes are less likely to contain object instances. Training process

requires to train w in a first stage and then qi and ri for each quantized

dimension i in a second stage.

4.2.1 Visual feature

In this work we propose to use corners, that can be extracted robustly and

with a very low computational cost, and are natively binary. In particular,

we use the AGAST algorithm [92], that is faster than FAST [114] algorithm

and adapts itself to content of an image while processing it, without requiring

a specific training. The basic idea of this class of detectors is to use the center

of a circular area to determine if the nearby pixels that are darker or lighter

describe a segment, without having to evaluate all the pixels. Typically

FAST and AGAST use a mask composed by 16 pixels around a central point,

but it is possible to obtain acceptable results using masks of 12 and 8 pixels

(Fig. 4.1). To avoid accessing all the mask pixels an accelerated segment test

(AST) is performed, i.e. a pixel is considered a corner if there are at least S

connected pixels in the circle that are darker or lighter of a threshold based

on the value of the center. This criterion defines a threshold that can be

used to change the detector sensitivity. This features are extremely fast to

compute since they only require integer comparisons and the traversal of a

decision tree which can be stopped as soon as one of the AST conditions

fails to be satisfied.

Corners are extracted from different versions of the original image, ob-

tained by resizing the original image with different aspect ratios [19], and

are used to compute our features in 8 × 8 windows of these images. The

computed maps are binary vectors b ∈ {0, 1}64 where a pixel has value 1 if

it contains a corner and 0 otherwise. To efficiently evaluate the scoring func-

tion in Eq. 4.2, which depends on the dot product 〈w,bl〉, Hare et al. [58]
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have shown that the vector w ∈ R64 can be approximated by iteratively

projecting it to a base of Nw vectors aj:

w ≈
Nw∑
j=1

βjaj. (4.3)

Finally the scoring function sl in Eq. 4.2 can be efficiently computed

using:

〈w, b〉 =

Nw∑
j=1

βj

(
2
〈
a+
j ,bl

〉
− |bl|

)
(4.4)

that, after storing a and b as 64bit integers in memory, is evaluated very

efficiently only with bitwise AND and bit counts. In practice we set Nw = 2

as in [58].

Computational cost

The time required to extract the low-level features used in the proposed ap-

proach, i.e. image corners, is dependent on the content itself of each image

and on the threshold used by AGAST. In general it is slightly faster than

computing the gradient. This phase is not dominant w.r.t. the overall exe-

cution time. The main improvements in terms of speed, compared to BING,

are in the lower number of operations required to compute the features in

the 8 × 8 windows, and the calculation of the objectness measure. Table

4.1 shows the average number of atomic operations required for the different

steps of the method proposed in this chapter, compared to that of BING.

Figure 4.1: Masks of 8, 12 and 16 pixels used in AGAST.
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BITWISE FLOAT INT, BYTE

SHIFT |,& CNT + × +,- min

AGAST 0 0 0 0 0 5–13 0

Get feature 2 3 0 0 0 0 0Our method

Score 0 2 3 1 2 2 0

Gradient 0 0 0 0 0 9 2

Get feature 12 12 0 0 0 0 0BING

Score 0 8 12 1 2 8 0

Table 4.1: Average number of atomic operations for computing objectness

of each image window at different stages: calculate low-level features (gra-

dient or AGAST), extract method features, and get objectness score. The

proposed method requires less operations in each stage.

4.3 Coding with learned saliency

SVM

SAL

QP

OBJ

Figure 4.2: Our system pipeline. Binary saliency maps are predicted using

[19, 113, 124] fused with our learned model. The final binary map is shown

rightmost.

The goal of the proposed approach is to learn a saliency map that can

drive compression of video frames in a way that is friendly for computer vi-

sion algorithms. The map is based on few features that are fast to compute,

so to allow the application of the method to tasks that require real-time

coding such as surveillance. Features are also related to the task of a com-

puter vision-based system; in particular we have addressed the problem of

object detection, that can be useful for both surveillance and automatic

video tagging. This means that the map should indicate which part of the

frame contains an object of interest for the algorithm. A secondary goal is to

preserve visual quality, in terms of human visual system, for these objects.
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Our method is based on modern video coding algorithms, specifically we

use H.265, and the open source implementation x265 as practical reference

implementation, but it can be applied also to H.264. Compression quality

can be controlled with different strategies, e.g. using variable bitrate (VBR),

constant bitrate (CBR) or with a constant rate factor (CRF); these ap-

proaches allocate the bits to different granularity levels of video, then reach

the preallocated budget while encoding by adjusting the quantization pa-

rameter (QP) [9]. In particular, x265 trades distortion for bitrate, following

different strategies, that typically adopt psycho-visual options that improve

the perceived visual quality (e.g. favoring wrong motion over blur, or preserv-

ing the energy of the reconstructed patch). This approach is geared towards

preserving the image appearance as much as possible. If the coded video

has to be principally consumed by a machine we only need to keep the video

quality good enough for the task at hand to be completed successfully. The

video created with our approach is completely H.265 compliant and requires

no changes in the decoder.

We propose to generate a binary saliency map, created according to the

quadtree partitioning of the coding tree unit (CTU), indicating whether

keeping the originally estimated QP or setting QP to the maximum value 51

(highest compression) [124]. We take into account i) our proposed objectness

saliency map, ii) motion map, iii) visual saliency map and iv) QP map, and

propose to combine them to predict a binary map. The objectness map is

directly related to the task of the computer vision system that will consume

the video, i.e. object detection, while motion and saliency map are used to

weight how much visually conspicuous are the objects in the scene; finally,

the QP map account for visual features such as texture and also for the

secondary goal of the proposed approach, that is to obtain visually pleasant

objects for the possible human viewers. Fig. 4.2 shows a schema of the

proposed approach.

More formally, let us consider a video frame t, a patch of N × N pix-

els centered at location (x, y), and Mi, i = 1 . . . 4 maps listed above. We

define the operator NNN (x, y,M) that extracts the vector [Mi(x −N, y −
N) . . .Mi(x+N, x+N)] concatenating the values of a neighborhood of size

N ×N centered on (x, y).

We learn a function f(x)→ [0, 1] using a RBF kernel k(xi,xj) = exp(−γ||xi−
xj ||2) setting γ and C by five-fold cross validation.

Positive samples are patches whose center belong to detected objects,
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while negative patches are sampled from the background. Patch samples

can be collected in an unsupervised manner by running an object detector

with a high threshold on few frames; as an example on Town Centre we

collect ∼ 4000 samples using just 2 frames.

Each saliency map Mi is normalized to zero mean and unit variance.

In the following we review the maps, extracted with known algorithms,

that we combine to create the proposed objectness-based saliency map.

Objectness Saliency Map Considering a set of object proposals Sk ⊆ S
we can define an objectness saliency map Mk by accumulating how many

proposals of Sk are present in each frame at each position. Let us denote

Stk the set of proposals Sk at frame t. For every pixel p = (x, y) of frame t,

we compute the corresponding objectness saliency map value M t
k(p) as the

count of proposals enclosing this position:

M t
k =

∑
s∈St

k

Ψs (4.5)

where for each proposals s ∈ Stk we define the function of pixels p in an

image:

Ψs(p) =

{
1 if p ∈ s
0 otherwise

(4.6)

The map M(x, y, t) represents at any moment of the video, how much

each pixel is relevant with respect to the set Sk. The more proposals overlap

in one position the more likely this pixel belongs to an object and is there-

fore relevant for video coding. Our fast objectness proposal measure has

been used, because of its low computational cost that makes it amenable for

inclusion in a real-time compression system.

Motion Map It is simply the difference, pixel by pixel, of two consecutive

frames.

Visual Saliency Map To consider the visually salient elements of the

scene, we have selected the Fast and Efficient Saliency (FES) map [113],

based on estimating saliency of local feature contrast in a Bayesian frame-

work. Again, its good computational performance make it usable in a real-

time context.
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QP Saliency Map This map is the quadtree representation of the QP

values used in the CTU of the HEVC encoder. QP values are computed over

16× 16 pixels by the x265 encoder. This saliency is related to the energy of

each patch considered.

4.4 Experiments

4.4.1 Execution speed

To evaluate the influence of the different operations performed by the pro-

posed method, presented in Sect. 4.2.1, we compare the execution time of

the proposed method w.r.t. BING and Edge Boxes. Table 4.2 reports speed

in terms of frames per second (FPS), while varying the training set, except

for Edge Boxes that does not require it. Experiments have been performed

on a laptop PC with Intel i5-3210M dual core CPU @ 2.5 GHz on the Town

Center dataset. The difference in speed measured for the proposal methods

trained with different training sets is due to the different number of window

sizes used at test time, that is based on the number of windows of different

aspect ratio and size seen during training. In fact, training a window pro-

posal method on VOC 2007 will produce extremely generic proposals with a

large variation in scale and aspect ratio, while training it on a dataset with

smaller variations in scale and aspect ratio, such as Caltech5K, will produce

less variations. Caltech30K, again contains a wider variation in scales than

Caltech5k, therefore requiring the method to evaluate more windows at test

time; of course this has as a beneficial effect on detection rate as can be seen

in Figures 4.3 and 4.4. The proposed method is ∼ 4 times faster than BING,

and ∼ 20− 40 times faster than Edge Boxes.

Since the feature used in our method requires to determine a threshold to

compute the corners, we have performed an analysis of the variation in terms

of speed and detection rate while changing threshold values. If the threshold

is too low then AGAST will perform less and less early rejections, thus

slowing the feature computation stage of the method, while if the threshold

is too high we can expect to have less proposals. An excessive number of

features is also detrimental for window proposals, since many corners will

not be really associated to objects.

Fig. 4.5 reports the speed, in terms of frames per second, while varying

the threshold. Extracting very few corners,by increasing the thresholds,
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Figure 4.3: Trade-off between detection rate and number of window pro-

posals for the Caltech dataset. Comparison between BING [19] and the

proposed method, trained with PASCAL VOC 2007, Cal- tech 5000 frames

and Caltech 30000 frames.

speeds up the process. Fig. 4.6 reports the detection rate at different speed

– that depends on the threshold used in AGAST. This figure shows that high

detection rates can be achieved within a relatively large range of threshold

values. These figures have been obtained using the Town Center dataset.

4.4.2 Visual Quality

We evaluate structural similarity index (SSIM) [138], a visual quality metric

that models the perception of compression artifacts, and the average log

miss rate for a pedestrian detection scenario typical of surveillance videos.

Furthermore to evaluate how the method generalizes we evaluated mean

average precision (mAP) of generic object detectors on videos downloaded

from YouTube. We compare these metrics with many baselines comprised

the standard x265 codec for different bitrates.
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Figure 4.4: Trade-off between detection rate and number of win- dow propos-

als for the Town Center dataset. Comparison between BING [19] and the

proposed method, trained with PASCAL VOC 2007, Caltech 5000 frames

and Caltech 30000 frames.

Surveillance Videos We used Town Centre [7] composed by a 5 minutes

HD video, recorded at 1920 × 1080 @ 25 fps from a fixed camera, showing

people walking in the street of a town, with 71,500 ground truth annotations

of persons;

In the first experiment, we have compared the proposed method with

a number of baselines. The original video has been compressed with the

proposed method and with the baselines. We processed the resulting videos

with the ACF pedestrian detector [27] and its detection results have been

compared with the ground truth annotations. The baselines are: i) the x265

implementation of H.265 ; ii) a combination of QP map and motion map; iii)

a combination of QP map with visual saliency computed with the method

proposed by Walter and Koch [134]; iv) a combination of QP map, motion

map and visual saliency by Walter and Koch; v) a combination of QP map,

motion map and FES visual saliency.

It has to be noted that using the visual saliency of [134] results in a
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Method FPS

BING VOC 17.22

Our VOC 51.64

BING Cal5K 24.38

Our Cal5K 93.78

BING Cal30K 19.20

Our Cal30K 46.94

Edge Boxes 2.82

Table 4.2: Speed comparison of the proposed method w.r.t. BING; proposals

are generated for the Town Center dataset, methods are trained with differ-

ent datasets. The proposed method is ∼ 4 times faster. Experiments have

been carried on using an Intel i5-3210M CPU @ 2.5 GHz

computational cost that is higher than 150 ms; thus the combinations that

use [134] are not suitable for applications that have constraints on processing

time.

Fig. 4.7 reports the average log miss rate of the person detector; the

lower the value the better the performance of the detector. The improve-

ment with respect to the x265 baseline is due to the reduction of false de-

tections, that are eliminated by the increased compression of non relevant

parts of the frame. Comparison with the other baselines shows that adding

the objectness-based map improves over other visual saliencies.

Fig. 4.8 evaluates the visual quality of the areas of interest for the detec-

tor, using the SSIM measure. The improvement obtained by the proposed

approach is due to the fact that the encoder is able to better allocate the

bits to the areas of interest, rather than distributing them also to the back-

ground. The comparison with the other saliency maps, that also beat the

performance of standard x265, shows that the objectness measure better

selects the elements of interest.

YouTube Videos For this experiment we used YouTube Objects [108],

commonly used to test video object detection methods for different types of

objects, evaluating the proposed approach on 10 classes of objects, from cats

to trains, to asses the capability to generalize. Since the YouTube Objects

dataset videos have typically been captured with non fixed cameras, the



50 Video Compression for Object Detection Algorithms

2 4 6 8 10 12 14
30

40

50

60

70

80

90

100

110

120

Threshold

F
P

S

 

 

Our Cal5k

Our Cal30k

Our VOC

Figure 4.5: Trade-off between speed, expressed in terms of FPS, and AGAST

threshold. The curves refer to different objectness methods trained with

PASCAL VOC 2007, Caltech 5000 and Caltech 30000, tested on the Town

Center dataset.

motion map is not useful, and it has not been used in this experiment.

Given the sparsity of ground truth annotations of YouTube Objects (usu-

ally just 1-2 frames per video), we have annotated 1500 objects. The method

has been compared to a standard H.265 compression.

Object detections have been computed using Faster R-CNN [112], on the

videos compressed with the proposed approach and with the baseline. We

used the VGG-16 model, pretrained on Imagenet and fine-tuned on PAS-

CAL VOC2007 [112]. No tuning of the detector has been performed on the

YouTube Objects dataset.

Fig. 4.9 reports the mean average precision for the 10 object classes of

YouTube object. Again, similarly to the previous case, the improvements of

the detection can be attributed to the reduction of false positives.

Computational costs Another advantage of our method is in the re-

duction of computational costs in video encoding. In Figure 4.10 we show

per-frame encoding time of our approach compared to H.265. We show the
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tion rate @ 1000 proposals. The curve has been obtained test- ing a model

trained with Caltech 5000 on the Town Center dataset.

timing for three presets of increasing quality and varying the CRF. As ex-

pected for both approaches a lower CRF implies more encoding time, setting

on average higher QPs, thus leading to less sparse quantized coefficients for

each CU.

This behavior is afflicting H.265 more than our adaptive coding algo-

rithm. Frame blocks, predicted to be irrelevant, by our learned binary

map, are quantized with the lowest quality. This mainly affects two aspects.

Firstly the DCT coefficients will be mostly zero, leading to a less expensive

coding later in the pipeline. Secondly, residues after block matching will be

even more sparse and thus coded more efficiently.

Our method is more than two times faster than standard H.265 in coding

video frames. This improvement is consistent for all H.265 presets.
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Figure 4.7: Detection Average Log Miss rate varying bitrate on Town Centre

(lower is better).

4.5 Conclusions

We proposed a method for adaptive video coding based on a learned saliency.

Our novel saliency drives video compression in order to preserve the appear-

ance without damaging the performance of object detectors. Detector per-

formance improves especially for low bitrates (∼ 1k–2k Kb/s). We also show

that for similar bitrates our compression method preserves perceptual qual-

ity of relevant regions better than standard codecs. Finally we also found

that our codec is more than two times faster than standard H.265.
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Chapter 5

Removing Compression

Artifacts with Generative

Adversarial Networks Enhances

Image Semantics

Image compression is a need that arises in many circumstances.

Unfortunately, whenever a lossy compression algorithm is used,

artifacts will manifest. Image artifacts, caused by compression

tend to eliminate higher frequency details and in certain cases

may add noise or small image structures. There are two main

drawbacks of this phenomenon. First, images appear much less

pleasant to the human eye. Second, computer vision algorithms

such as object detectors may fail to recognize categories. Remov-

ing such artifacts, means recovering the original image from a

perturbed version of it. This means that one ideally should in-

vert the compression process thorough a complicated non-linear

image transformation. We propose an image transformation ap-

proach based on a feed-forward fully convolutional residual net-

work model. We show how this model can be optimized tradi-

tionally using two losses as baselines. A structural similarity loss

(SSIM) and a mean squared error loss (MSE). Finally, we re-

formulate the problem in a generative adversarial (GAN) frame-

work. Our GAN is able to produce images with more photoreal-

55
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istic details than MSE or SSIM based networks. We describe a

novel training procedure based on sub-patches and devise a novel

testing protocol to evaluate restored images quantitatively. We

show that our approach can be used as a pre-processing step for

object detection in case images are degraded by compression to a

point that state-of-the art detectors fail. In this task, our GAN

method obtains better performance than MSE or SSIM trained

networks.

5.1 Introduction

Every day billions of images are shared on the web, and many more are pro-

duced and kept on private systems as mobile phones, cameras and surveil-

lance systems. To practically store and transmit these images it is necessary

to compress them, in order to reduce bandwidth and storage requirements.

Apart from a few cases where compression has to be lossless, e.g. medical

imaging or technical drawings, the algorithms used are lossy, i.e. they result

in a more or less strong loss of content fidelity with respect to the original

image data, to achieve a better compression ratio. A typical use case in

which a high compression is desirable is that of web images, in which image

files must be kept small to reduce web page latency and thus improve user

experience. Another case is that of wireless cameras, in particular mobile

and wearable ones, that may need to limit power consumption reducing the

energy cost of image transmission applying strong compression. Also in tasks

such as entertainment video streaming, like Netflix, there is need to reduce

as much as possible the required bandwidth, to avoid network congestions

and to reduce costs. Since user experience is also affected by image qual-

ity, compression algorithms are designed to reduce perceptual quality loss,

according to some model of the human visual system. In fact, when com-

pressing images several artifacts appear as shown in Fig. 5.1. These artifacts

are due to the different types of lossy compressions used. Considering JPEG,

the most common algorithm used nowadays, these artifacts are due to the

chroma subsampling (i.e. dropping some color information of the original

image) and the quantization of the DCT coefficients; these effects can be

observed also in MPEG compressed videos, that is basically based the same

schema with the addition of motion compensation and coding.

So far, the problem of compression artifact removal has been treated
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(a) (b)Figure 5.1: Left: A JPEG compressed image with two highlights of de-

graded regions. Right: our reconstruction where both regions are consis-

tently sharper and most artifacts are removed. Best viewed in color on

computer screen.

using many different techniques, from optimizing DCT coefficients [152] to

adding additional knowledge about images or patch models [89]; however

the very vast majority of the many works addressing the problem have not

considered convolutional neural networks (CNN). To the best of our knowl-

edge CNNs have been used recently to address artifact reduction only in two

works [29,125], while another work has addressed just image denoising [150].

These techniques have been successfully applied to a different problem of

image reconstruction, that is super-resolution, to reconstruct images from

low resolution, adding missing details to down-sampled images [82].

In this work we address the problem of artifact removal using convo-

lutional neural networks. The proposed approach can be used as a post-

processing technique applied to decompressed images, and thus can be ap-

plied to different compression algorithms such as JPEG, WebP, JPEG2000,

intra-frame coding of H.264/AVC and H.265/HEVC. Compared to super res-

olution techniques, working on compressed images instead of down-sampled

ones, is more practical, since it does not require to change the compression

pipeline, that is typically hardware based, to subsample the image before its
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coding; moreover, camera resolutions have increased during the latest years,

a trend that we can expect to continue.

To evaluate the quality of reconstructed images, after artifact removal,

there is need to evaluate both subjective and objective assessments. The

former are important since most of the time a human will be the ultimate

consumer of the compressed media. The latter are important since obtaining

subjective evaluations is slow and costly, and the goal of objective metrics is

to predict perceived image and video quality automatically. Peak Signal-to-

Noise Ratio (PSNR) and Mean Squared Error (MSE) are the most widely

used objective image quality/distortion metrics. However, they have been

criticized because they do not correlate well with perceived quality measure-

ment [136]. Considering that the human visual system is highly adapted

for extracting structural information from a scene, a framework for quality

assessment based on the degradation of structural information, called Struc-

tural Similarity index (SSIM), has been introduced in [138]. Finally, we can

expect that more and more viewers will be computer vision systems that

automatically analyze media content, e.g. to interpret it in order to per-

form other processing. To consider also this scenario we have to assess the

performance of computer vision algorithms when processing reconstructed

images.

In this work we show how deep CNNs can be used to remove compres-

sion artifacts by directly optimizing SSIM on reconstructed images, showing

how this approach leads to state-of-the-art result on several benchmarks.

However, although SSIM is a better model for image quality than PSNR

or MSE, it is still too simplistic and insufficient to capture the complexity

of the human perceptual system. Therefore, to learn better reconstructive

models, we rely on a Generative Adversarial Network where there is no need

to specify a loss directly modeling image quality.

We have performed different types of experiments, to assess the diverse

benefits of the different types of networks proposed in this chapter, using

subjective and objective assessments. Firstly, we show that not only SSIM

objective metric is improved, but also that performance of object detectors

improve on highly compressed images; this is especially true for GAN artifact

removal. Secondly, according to human viewers our GAN reconstruction has

a higher fidelity to the uncompressed versions of images.

We make the following contributions. We define a deep convolutional

residual generative network [59], that we train with two strategies. Similarly
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to [125] our network is fully convolutional and is therefore able to restore

images of any resolution. Differently from Svoboda et al. [125] we avoid

MSE loss and we use a loss based on SSIM, this improves results perceptu-

ally. Nonetheless, as also happening in the super-resolution task, networks

trained to optimize the MSE produce overly smoothed images; this behavior

unfortunately is also present in our SSIM trained feed-forward network.

Generative adversarial networks [51], are instead capable of modeling

complex multi-modal distributions and are therefore known to be able to

generate sharper images. We propose an improved generator, trained in

an adversarial framework. To the best of our knowledge we are the first

proposing GANs to recover from compression artifacts. We use a condi-

tional GAN [98], to allow the generator to better model the artifact removal

task. An additional relevant novelty of this work is the idea of learning the

discriminator over sub-patches of a single generated patch to reduce high

frequency noise, such as mosquito noise, which instead arises when using a

discriminator trained on the whole patch.

Finally, we propose a novel approach to evaluate the effectiveness of image

restoration algorithm by analyzing the performance of object detectors on

reconstructed images. We evaluate two tasks: object detection and object

mask proposal generation. Our evaluation framework allows to obtain useful

insights on the behavior of our method in conjunction with modern object

detection frameworks.

5.2 Compression Artifacts

To understand the possible compression artifacts generated by a compression

algorithm let us review the basic processing used in JPEG compression.

First, the bitmap image is converted to the Y CrCb color space, to handle

separately the luminance information Y and the color information encoded

in the Cr and Cb components. Since the human visual system is able to

discriminate the brightness of an image much more finely than its color

information, the Cr-Cb components are spatially subsampled. The next

step is to split the downsampled pixels in the image into 8× 8 pixel blocks,

that are transformed using a Discrete Cosine Transform (DCT), to allow

to handle separately low and high frequencies. The DCT coefficients are

quantized, reducing the high frequency values, to obtain a vector of values

that can be more easily compressed. This is done using lossless techniques



60
Removing Compression Artifacts with Generative Adversarial

Networks Enhances Image Semantics

such as RLE and Huffman coding.

Considering JPEG, the most common artifacts and distortions introduced

are:

• blurring: this results from loss of high frequency signal components.

• ringing, i.e. introduction of spurious signal: this happens near sharp

transitions in the image regions. It is due to the loss of high frequency

components due to coarse quantization of high frequency components

(e.g. DCT coefficients). This occurs also in wavelet-based JPEG-2000

compression and in MPEG compression. It is more annoying for human

viewers than blurring [120].

• texture deviation: due to the loss of fidelity in mid-frequency compo-

nents, resulting in granular noise.

• blocking structures: this effect is due to the separation of the image in

8× 8 pixel blocks, resulting in visible block edges at high compression

rates. This happens also in MPEG video compression.

• posterizing, i.e. loss of color detail: depending on the color subsampling

schema used, this results in loss of continuous tone gradation, that is

transformed in abrupt changes..

Examples of these compression artifacts are shown in Fig. 5.2, where

details of high quality images are compared to those of low quality high

compression images.

5.3 Methodology

In the compression artifact removal task the aim is to reconstruct an image

IRQ from a compressed input image ILQ. In this scenario, ILQ = A
(
IHQ

)
is

the output image of a compression algorithm A with IHQ as uncompressed

input image. Typically compression algorithms work in the YCrCb color

space (e.g. JPEG, H.264/AVC, H.265/HEVC), to separate luminance from

chrominance information, and sub-sample chrominance, since the human

visual system is less sensitive to its changes. For this reason, in the following,

all images are converted to YCrCb and then processed.

We describe IRQ, ILQ and IHQ by real valued tensors with dimensions

W × H × C, where C is the number of image channels. Certain quality
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Figure 5.2: Examples of compression artifacts. Top row: hi quality images;

bottom row: low quality compressed images. Left : ringing artifacts (see

chimney and roof); Center : texture deviation (see noise in black/yellow

stripes); Right : posterization (see lack of smooth sky gradient); Blocking is

visible in both left and right images. Best viewed in color and zoomed in.
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metrics are evaluated using the luminance information only; in those cases

all the images are transformed to gray-scale considering just the luminance

channel Y and C = 1. Of course, when dealing with all the YCrCb channels

C = 3.

An uncompressed image IHQ ∈ [0, 255]W×H×C is compressed by:

ILQ = A
(
IHQ, QF

)
∈ [0, 255]W×H×C (5.1)

using a compression function A, and using some quality factor QF in the

compression process. The task of compression artifacts removal is to provide

an inverse function G ≈ A−1QF reconstructing IHQ from ILQ:

G
(
ILQ

)
= IRQ ≈ IHQ (5.2)

where we do not include the QF parameter in the reconstruction algorithm,

since it is desirable that such function is independent from the compression

function parameters.

To achieve this goal, we train a convolutional neural network G
(
ILQ; θg

)
with θg = {W1:K ; b1:K} the parameters representing weights and biases of

the K layers of the network. Given N training images we optimize a custom

loss function lAR by solving:

θ̂g = arg min
θ

1

N

N∑
n=1

lAR
(
IHQ, G

(
ILQ, θg

))
(5.3)

Removing compression artifacts can be seen as an image transformation

problem, similarly to super-resolution and style-transfer. This category of

tasks is conveniently addressed using generative approaches, i.e. learning a

fully convolutional neural network (FCN) [91] able to output an improved

version of some input. FCN architectures are extremely convenient in image

processing since they perform local non-linear image transformations, and

can be applied to images of any size. We exploit this property to speed-up

the training process: since the artifacts we are interested in appear at small

scales (close to the block size), we can learn from smaller patches, thus using

larger batches.

We propose a generator architecture that can be trained with direct su-

pervision or combined with a discriminator network to obtain a generative

adversarial framework. In the following we detail the network architectures

that we have used and the loss functions devised to optimize such networks

in order to obtain high quality reconstructions.
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5.3.1 Generative Network

In this work we use a deep residual generative network, which contains just

blocks of convolutional layers and LeakyReLU non-linearities.

The architecture, shown in Fig. 5.3, is inspired by [59]. Specifically,

we use convolutional layers with 3 × 3 kernels and 64 feature maps. Each

convolutional layer is followed by a LeakyReLU activation. To reduce the

overall number of parameters and to speed up the training time, we first use

a convolution with stride 2 to obtain the feature maps half the original size,

and finally we employ a nearest-neighbor upsampling as suggested in [103]

to get the feature maps with original dimensions. We apply a padding of 1

pixel after every convolution, in order to keep the image size across the 15

residual blocks. We use replication as padding strategy in order to moderate

border artifacts.

We add another convolutional layer after the upsampling layer to mini-

mize potential artifacts generated by the upsampling process. The last layer

is a simple convolutional layer with one feature map followed by a tanh acti-

vation function, in order to keep all the values of the reconstructed image in

the range [−1, 1] making the output image comparable with the input which

is rescaled so to have values in the same range.

5.3.2 Loss Functions for Direct Supervision

In this section we deal with learning a generative network with a direct super-

vision, meaning that the loss is computed as a function of the reconstructed

image IRQ and the target original image IHQ. Weights are updated with a

classical backpropagation.

Pixel-wise MSE Loss

As a baseline we use the Mean Squared Error loss (MSE):

lMSE =
1

WH

W∑
x=1

H∑
y=1

(
IHQx,y − IRQx,y

)2
. (5.4)

This loss is commonly used in image reconstruction and restoration tasks [29,

94, 125]. This kind of approach has shown to be effective to recover the low

frequency details from a compressed image, but on the other hand most of

the high frequency details are suppressed.
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Figure 5.3: Architecture of Generator Network indicating with n the number

of filters and with s the stride value for each Convolutional Layer.

SSIM Loss

The Structural Similarity (SSIM) [138] has been proposed as an alternative

to MSE and Peak Signal-to-Noise Ration (PSNR) image similarity measures,

which have both shown to be inconsistent with the human visual perception

of image similarity. Given images I and J , SSIM is defined as follows:

SSIM (I, J) =
(2µIµJ + C1) (2σIJ + C2)

(µ2
I + µ2

J + C1) (σ2
I + σ2

J + C2)
(5.5)

We optimize the training of the network with respect to the structural
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similarity between the uncompressed images and the reconstructed ones.

Since the SSIM function is differentiable, we can define the SSIM loss as:

lSSIM = − 1

WH

W∑
x=1

H∑
y=1

SSIM
(
IHQx,y , I

RQ
x,y

)
(5.6)

Note that we minimize−SSIM
(
IHQ, IRQ

)
instead of 1−SSIM

(
IHQ, IRQ

)
since the gradient is equivalent.

5.3.3 Generative Adversarial Artifact Removal

The generative network architecture, defined in Sect. 5.3.1 can be used in an

adversarial framework, if coupled with a discriminator. Adversarial train-

ing [51] is a recent approach that has shown remarkable performances to

generate synthetic photo-realistic images in super-resolution tasks [82]. The

aim is to encourage a generator network G to produce solutions that lay on

the manifold of the real data by fooling a discriminative network D. The

discriminator is trained to distinguish reconstructed patches IRQ from the

real ones IHQ. To condition the generative network, we feed as positive

examples IHQ|ILQ and as negative examples IRQ|ILQ, where ·|· indicates

channel-wise concatenation. For samples of size N ×N ×C we discriminate

samples of size N ×N × 2C.

Discriminative Network

Our discriminator architecture uses convolutions without padding with single-

pixel stride and uses LeakyReLU activation after each layer. Every two lay-

ers, except the last one, we double the filters. We do not use fully connected

layers. Feature map size decreases as a sole effect of convolutions reaching

unitary dimension at the last layer. A sigmoid is used as activation function.

The architecture of the discriminator network is shown in Fig.5.4.

The set of weights ψ of the D network are learned by minimizing:

ld =− log
(
Dψ

(
IHQ|ILQ

))
− log

(
1−Dψ

(
IRQ|ILQ

))
(5.7)

Discrimination is performed at the sub-patch level, as indicated in Fig. 5.4,

this is motivated by the fact that compression algorithms decompose images
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Figure 5.4: Architecture of Discriminator Networks indicating with n the

number of filters for each Convolutional Layer. White squares indicate real

(IHQ) or generated patches (IRQ), while purple ones are their respective

compressed versions ILQ.

Figure 5.5: Left: reconstruction without sub-patch strategy. Right: our

sub-patch strategy reduces mosquito noise and ringing artifacts.

into patches and thus artifacts are typically created within them. Since we

want to encourage to generate images with realistic patches, IHQ and IRQ

are partitioned into P patches of size 16× 16 and then they are fed into the

discriminative network. In Figure 5.5 it can be seen the beneficial effect of

this approach in the reduction of mosquito noise.

Perceptual Loss

Following the contributions of Dosovitskiy and Brox [30], Johnson et al. [72],

Bruna et al. [13] and Gatys et al. [44] we use a loss based on perceptual

similarity in the adversarial training. The distance between the images is
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not computed in image space: IHQ and IRQ are initially projected on a

feature space by some differentiable function φ, then the Euclidean distance

is computed between the feature representation of the two images:

lP =
1

WfHf

Wf∑
x=1

Hf∑
y=1

(
φ
(
IHQ

)
x,y
− φ

(
IRQ

)
x,y

)2
(5.8)

where Wf and Hf are respectively the width and the height of the feature

maps. The model optimized with the perceptual loss generates reconstructed

images that are not necessarily accurate according to the pixel-wise distance

measure, but on the other hand the output will be more similar from a

feature representation point of view.

Adversarial Patch Loss

In the present work we used the pre-trained VGG-19 model [122], extracting

the feature maps obtained from the second convolution layer before the last

max-pooling layer of the network. We train the generator using the following

loss:

lAR = lP + λladv. (5.9)

Where ladv is the standard adversarial loss:

ladv = − log
(
Dψ

(
IRQ|ILQ

))
(5.10)

clearly rewarding solutions that are able to “fool” the discriminator.

5.4 Experiments

5.4.1 Implementation Details

All the networks have been trained with a NVIDIA Titan X GPU using

random patches from MS-COCO [88] training set. For each mini-batch we

have sampled 16 random 128× 128 patches, with flipping and rotation data

augmentation. We compress images with MATLAB JPEG compressor at

multiple QFs, to learn a more generic model. For the optimization pro-

cess we used Adam [79] with momentum 0.9 and a learning rate of 10−4.

The training process have been carried on for 70, 000 iterations. In order to
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ensure the stability of the adversarial training we have followed the guide-

lines described in [116], performing the one-sided label smoothing for the

discriminator training.

5.4.2 Dataset and Similarity Measures

We performed experiments on two commonly used datasets: LIVE1 [119]

and the validation set of BSD500 [95] using JPEG as compression. For a fair

comparison with the state-of-the art methods, we report evaluation of PSNR,

PSNR-B [146] and SSIM measures for the JPEG quality factors 10, 20, 30

and 40. We further evaluate perceptual similarity through a subjective study

on BSD500. Finally we use PASCAL VOC2007 [36] and MS-COCO [88] to

benchmark object detector performance for different reconstruction algo-

rithms.

PASCAL VOC2007 is a long standing small scale benchmark for object

detection, it comprises 20 classes for a total of roughly 11K images.

We use Microsoft Common Objects in Context (MS-COCO) [88] dataset,

that contains 80 object classes and a total of more than 300K images. We

used the 20.000 images in the test-dev.

5.4.3 Feature Maps Error

The first quantitative analysis we conduct is to understand if features com-

puted using modern deep convolutional neural networks are affected, and

how much, when an image is compressed. Another effect we quantify is how

this variation in feature values is moderated if we apply artifact removal

techniques. These results have been obtained running an object detection

network based on Faster R-CNN [112] and comparing layer output for com-

pressed and original images.

We run the following test, for every quality factor and method involved

in our study, we compute the mean relative error of each layer:

εl =

∣∣φl (IRQ)− φl (IHQ)∣∣
φl (IHQ)

(5.11)

where φl(·) are feature maps for layer l.

Results are reported in the plots of Fig. 5.6, that show the mean relative

error, averaged over all layers, for different QF values. For higher QF values

JPEG compression affects little, but noticeably feature map values. The
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Figure 5.6: Mean relative error, averaged over all layers, for different QF

and artifact removal techniques (the lower, the better). The proposed GAN

restoration approach with L1 loss obtains the smallest error; using VGG loss

still improves over AR-CNN.



70
Removing Compression Artifacts with Generative Adversarial

Networks Enhances Image Semantics

variation is closer to 30% for QF=60, and applying reconstruction methods

on high quality images, as expected, does not produce any benefit. Clearly,

when QF become smaller all reconstruction techniques help in generating

images with feature maps closer to the original one, with GANL1
obtaining

the best results and becoming effective from QF=50. The novel GAN ap-

proach obtains better results than AR-CNN also using VGG loss, but it is

particularly effective when using L1 loss for QF ≥ 20.

In Fig. 5.7 we analyze the behavior for all feature maps, reporting the

mean relative error for all the layers and different QF values. It is interesting

to note that the first and last layers are less affected, while the ones that

exhibit the most relative error are conv3 2 and conv4 2. As also shown

in Fig. 5.6, applying reconstruction is not beneficial for QF=60, while for

other QF values it can be seen that the error is reduced for all layers, and

specifically for the ones which are most affected. Notably, highest average

relative errors can reach 100% ∼ 150%.
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(a): JPEG (b): AR-CNN [29]
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(c): GANL1 (d): GANVGG

Figure 5.7: Mean relative error, for all layers, for different QF and artifact

removal techniques (the lower, the better); the proposed GAN approach with

L1 loss obtains the least error.



5.4 Experiments 71

5.4.4 Comparison with State-of-the-Art

We first evaluate the performance of our generative network trained without

the adversarial approach, testing the effectiveness of our novel architecture

and the benefits of SSIM loss in such training. For this comparison we have

reported the results of our deep residual networks with skip connections

trained with the baseline MSE loss and with the proposed SSIM loss. We

compare our performance with the JPEG compression and three state-of-

the-art approaches: SA-DCT [42], AR-CNN from Dong et al. [29] and the

work described by Svoboda et al. [125]. In Table 5.1 are reported the results

of our approaches on BSD500 and LIVE1 datasets compared to the other

state-of-the-art methods for the JPEG restoration task. The results confirm

that our method outperforms the other approaches for each quality measure.

Specifically, we have a great improvement of PSNR and PSNR-B for the

networks trained with the classic MSE loss, while as expected the SSIM

measure improves a lot in every evaluation when the SSIM loss is chosen for

training.

Regarding GAN, we can state that the performance is much lower than

the standard approach from a quality index point of view. However, the

generated images are perceptually more convincing for human viewers, as

it will be shown in Sect. 5.4.7, in a subjective study. The combination of

perceptual and adversarial loss is responsible of generating realistic textures

rather than the smooth and poor detailed patches of the MSE/SSIM based

approaches. In fact, MSE and SSIM metrics tend to evaluate better more

conservative blurry averages over more photo realistic details, that could be

added slightly displaced with respect to their original position, as observed

also in super-resolution tasks [23].

5.4.5 Object Detection

We are interested in understanding how a machine trained object detector

performs depending on the quality of an image, in term of compression ar-

tifacts. Compressed images are degraded, and object detection performance

degrades, in some cases even dramatically when strong compression is ap-

plied. In this experiment we use Faster R-CNN [112] as detector and report

results on different versions of PASCAL VOC2007; results are reported in

Tab. 5.3. As an upper bound we report the mean average precision (mAP)

on the original dataset. As a lower bound we report performance on images
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Figure 5.8: Qualitative results shown on two complex textured details.

JPEG compression introduces severe blocking, ringing and color quantization

artifacts. AR-CNN is able to slightly recover but produces a blurry result.

Our reconstruction is hardly discernible from the original image.
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Table 5.1: Average PSNR, PNSR-B and SSIM results on BDS500 and

LIVE1. Evaluation using luminance.

QF Method
LIVE1 BSD500

PSNR PSNR-B SSIM PSNR PSNR-B SSIM

10 JPEG 27.77 25.33 0.791 27.58 24.97 0.769

SA-DCT [42] 28.65 28.01 0.809 - - -

AR-CNN [29] 29.13 28.74 0.823 28.74 28.38 0.796

L4 [125] 29.08 28.71 0.824 28.75 28.29 0.800

Our MSE 29.45 29.10 0.834 29.03 28.61 0.807

Our SSIM 28.94 28.46 0.840 28.52 27.93 0.816

Our GAN 27.29 26.69 0.773 27.01 26.30 0.746

20 JPEG 30.07 27.57 0.868 29.72 26.97 0.852

SA-DCT [42] 30.81 29.82 0.878 - - -

AR-CNN [29] 31.40 30.69 0.890 30.80 30.08 0.868

L4 [125] 31.42 30.83 0.890 30.90 30.13 0.871

L8 [125] 31.51 30.92 0.891 30.99 30.19 0.872

Our MSE 31.77 31.26 0.896 31.20 30.48 0.876

Our SSIM 31.38 30.77 0.900 30.79 29.92 0.882

Our GAN 28.35 28.10 0.817 28.07 27.76 0.794

30 JPEG 31.41 28.92 0.900 30.98 28.23 0.886

SA-DCT [42] 32.08 30.92 0.908 - - -

AR-CNN [29] 32.69 32.15 0.917 - - -

Our MSE 33.15 32.51 0.922 32.44 31.41 0.906

Our SSIM 32.87 32.09 0.925 32.15 30.97 0.909

Our GAN 28.58 28.75 0.832 28.5 28.00 0.811

40 JPEG 32.35 29.96 0.917 31.88 29.14 0.906

SA-DCT [42] 32.99 31.79 0.924 - - -

AR-CNN [29] 33.63 33.12 0.931 - - -

Our MSE 34.09 33.40 0.935 33.30 32.18 0.921

Our SSIM 33.82 33.00 0.937 33.04 31.72 0.924

Our GAN 28.99 28.84 0.837 28.61 28.20 0.815

compressed using JPEG with quality factor set to 20 (6, 7× less bitrate).

Then we benchmark object detection on reconstructed versions of the com-

pressed images, comparing AR-CNN [29], our generative MSE and SSIM

trained generators with the GAN. First of all, it must be noted that the

decrease in the overall mAP measured on compressed images with respect to

the upper bound is large: 14.2 points. AR-CNN, MSE and SSIM based gen-

erators are not recovering enough information yielding around 2.1, 2.4 and

2.5 points of improvements respectively. As can be observed in Table 5.3 our
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Codec Compressed GAN

WebP .601 .641

JPEG2000 .587 .616

BPG .623 .644

Table 5.2: Object detection performance (mAP) of our method on other

codecs on VOC2007 for similar bitrate.

GAN artifact removal restores the images in a much more effective manner

yielding the best result increasing the performance by 7.4 points, just 6.8

points less than the upper bound.

Experiments on VOC2007

As a first experiment we test how our Patch Loss affects the artifact re-

moval process. We run two object detection experiments. As a baseline we

train our GAN using a Full Patch discriminator and we compare it with the

discriminator described in Figure 5.4. Our GAN trained with a full patch

discriminator obtains .605 mAP on VOC2007, while our sub-patch discrimi-

nator leads to .623 mAP. The Sub-Patch loss accounts for 1.8% mAP points,

highlighting the importance of this novel method.

Smaller networks such as AR-CNN [29], are able to achieve reasonable,

yet lower, results with respect to our approach. We therefore test a smaller

GAN with 7 residual layers to see how much the depth of the network is

relevant to obtain quality results. Our GAN recovers 8% mAP points while

[29] only adds 3%, when dealing with object detection on compressed images.

The smaller network gains 6% mAP point leading to .611, which is still

better than [29] but worse than the full network, showing that, as noted

for classification tasks [59,122], network depth matters also for compression

artifact removal and image restoration.

Our GAN artifact removal process recovers impressively on cat (+16.6),

cow (+12.5), dog (+18.6) and sheep (+14.3), which are classes where the

object is highly articulated and texture is the most informative cue. In

these classes it can also be seen that MSE and SSIM generators are even

deteriorating the performance, as a further confirmation that the absence of

higher frequency components alters the recognition capability of an object

detector. To assess the effect of color we report the use of GAN using only

luminance (GAN-Y). Using lP defined as in Eq. 5.8 is important, switching
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to a simpler L1 loss (GAN-L1) we obtain much lower performance. Our

GAN trained with a full patch discriminator obtains .605 mAP, while our

sub-patch discriminator leads to .623 mAP, highlighting its importance.

In Fig. 5.9 we analyze the effects of different compression levels, changing

the quality factor. GAN is able to recover details even for very aggressive

compression rates, such as QF=10. In Fig. 5.9 it can be seen how GAN

always outperform other restoration algorithms. The gap in performance is

reduced when QF raises, e.g QF=40 (4, 3× less bitrate).

Finally, since there are many modern codecs available nowadays we also

test our method for different codecs, which not always share artifact behavior

with JPEG. In particular we considered WebP, JPEG2000 and BPG. We

tuned all codecs to obtain the same average bitrate on the whole VOC2007

dataset of the respective JPEG codec using a QF of 20. Results are reported

in Table 5.2, and show that our novel approach is effective also for all these

compression algorithms.

JPEG 20 0.587 0.692 0.516 0.434 0.350 0.673 0.71 0.559 0.334 0.559 0.579

AR-CNN [29] 0.641 0.686 0.523 0.413 0.367 0.702 0.742 0.530 0.363 0.574 0.607

MSE 0.647 0.696 0.512 0.406 0.409 0.713 0.750 0.542 0.386 0.546 0.614

Our SSIM 0.655 0.706 0.513 0.417 0.411 0.713 0.746 0.555 0.387 0.538 0.615

Our GAN-Y 0.657 0.696 0.547 0.461 0.354 0.719 0.708 0.673 0.380 0.653 0.605

Our GAN-L1 0.644 0.750 0.524 0.421 0.427 0.691 0.755 0.667 0.402 0.616 0.597

Our GAN 0.666 0.753 0.565 0.475 0.395 0.727 0.770 0.725 0.403 0.684 0.602

Original 0.698 0.788 0.692 0.559 0.488 0.769 0.798 0.858 0.487 0.762 0.637

mAP

JPEG 20 0.532 0.691 0.665 0.638 0.260 0.482 0.434 0.707 0.570 0.549

AR-CNN [29] 0.581 0.724 0.661 0.658 0.313 0.499 0.526 0.712 0.578 0.570

Our MSE 0.595 0.713 0.668 0.664 0.310 0.485 0.522 0.676 0.600 0.573

Our SSIM 0.596 0.720 0.666 0.663 0.308 0.482 0.532 0.668 0.598 0.574

Our GAN-Y 0.681 0.738 0.661 0.662 0.290 0.608 0.544 0.722 0.600 0.598

Our GAN-L1 0.679 0.749 0.666 0.664 0.309 0.543 0.587 0.655 0.613 0.598

Our GAN 0.718 0.753 0.707 0.670 0.303 0.625 0.586 0.712 0.611 0.623

Original 0.790 0.802 0.757 0.763 0.376 0.683 0.672 0.777 0.667 0.691

Table 5.3: Object detection performance measured as mean average precision

(mAP) on PASCAL VOC2007 for different reconstruction algorithms. Bold

numbers indicate best results among reconstruction approaches.

Experiments on MS-COCO

In Figure 5.10 we show how mean Average Precision (mAP) varies on the MS-

COCO test set. When aggressive compression is used GANL1
and GANVGG
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Figure 5.9: Mean average precision (mAP), for different Quality Factors

(QF), and restoration approaches, on PASCAL VOC2007.

get the best results, while the simpler AR-CNN is less effective. For higher

QF values we do not observe such difference, if AP is measured on all 80

classes. Interestingly, looking at classes separately we can see that for certain

classes compression artifacts degrade more AP. This is shown in Tab. 5.4,

where we report the 5 classes that obtain the highest and the lowest im-

provements in performance using GANVGG. It can be noticed that among

the 5 classes that obtain the largest improvements there are several animals

(e.g. cat, dog, bear, etc.): this is due to the reconstruction of finer details like

fur obtained using the proposed GAN approach.

We measure, for each class, how much the drop in average precision

depends from image corruption. In Fig. 5.11 we show, for all the analyzed

QF values, a scatter plot of ∆APc and εc for each class c. Where

∆APc =
APHQc −APRQc

APHQc

(5.12)

is the relative drop in average precision when detection is performed on

original images (IHQ) and restored images (IRQ), with a special case of

JPEG, when image reconstruction is not performed at all and

εc =
1

|L|
∑
l∈L

εcl (5.13)

is the error averaged over the set of layers L for a class c. The lower the
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Figure 5.10: Mean Average Precision on MS-COCO varying the QF (the

higher, the better). For aggressive compression rates GAN methods get the

best results. For QFs higher than 30 variation is minimal.
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QF=5 QF=10 QF=15

Highest

5 gains

pizza 0.249 cat 0.259 cat 0.203

bear 0.215 bear 0.253 couch 0.128

firehydrant 0.208 elephant 0.210 dog 0.116

giraffe 0.201 dog 0.171 bear 0.113

elephant 0.200 toilet 0.147 toilet 0.097

Lowest

5 gains

hairdrier 0.000 train 0.000 train -0.006

handbag 0.002 hairdrier 0.001 bus -0.001

toaster 0.004 toaster 0.004 hairdrier 0.000

book 0.004 book 0.007 scissors 0.001

spoon 0.009 handbag 0.008 carrot 0.002

QF=20 QF=30 QF=40

Highest

5 gains

cat 0.135 cat 0.053 tv 0.025

couch 0.092 couch 0.036 cat 0.024

bear 0.072 mouse 0.031 couch 0.015

dog 0.067 toilet 0.028 mouse 0.014

toilet 0.059 microwave 0.026 laptop 0.013

Lowest

5 gains

giraffe -0.005 train -0.016 train -0.021

keyboard -0.004 bus -0.014 firehydrant -0.020

baseballbat -0.001 giraffe -0.014 broccoli -0.012

train -0.001 baseballbat -0.013 elephant -0.010

bicycle 0.001 broccoli -0.012 bear -0.010

Table 5.4: Most and least affected classes in term of AP for different QF

values when using GANVGG method to eliminate compression artifacts.

∆APc, the better the performance of the classifier and of the reconstruction

algorithm.

As shown in Fig. 5.11, there is an interesting correlation between feature

map error and AP drop per class. Indeed, the error presented by feature

maps, negatively affects performance in term of average precision, in case no

reconstruction is applied. Interestingly when using our GAN based methods

it can be seen that feature map error is still present, but with little correlation

with ∆AP , even for extremely aggressive compression rates (e.g. QF=5, 10).

This means that even if reconstructed images are different from original ones,

their appearance, in term of semantic content understanding, is improved.
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Figure 5.11: AP drop correlation with average error for different QF and

methods. GAN based methods attain lowest error and AP drop.

5.4.6 Segmentation Mask Proposal

In this experiment we analyze the performance of the generation of mask

proposals for an image. These proposals should precisely segment objects in

a scene. Mask proposals can be used to derive bounding boxes to be fed to an

object detector. Mask proposals, once evaluated by a classifier, can be used

to label image pixels with categories. Differently from semantic segmenta-

tion, modern benchmarks evaluate not just the label correctness pixel-wise

but also instance-wise, meaning that multiple people close-by should not be

assigned a single “person” mask.
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Method

Also in this experiment we use a recent method based on deep neural net-

works, i.e. SharpMask [107]. This approach is based on a previous method,

proposed by the same authors named DeepMask [106], which learns to gen-

erate a binary mask jointly optimizing two logistic regression losses: a patch-

wise object presence loss and a pixel-wise mask loss. Mask loss is inactive

when an object is not present inside the patch. SharpMask proposes a re-

finement process able to improve 10-20% in object mask accuracy. Both

methods use a pre-trained VGG-16 network to extract features.

We test SharpMask [107], with the same protocol described in Sect. 5.4.5.

We measure performance in term of Average Recall for 10 proposals. This

means that we average object recall over a set of intersection over union

values, and report looking only at the first 10 proposals of every image

(AR@10). Similarly to results reported in Sect. 5.4.5 we have GANVGG

obtaining the best performance in recovering from artifacts. This behavior

is consistent for all QFs. Images compressed with a QF higher than 40

exhibit little loss in AR@10.

5.4.7 Subjective evaluation

In this experiment we evaluate how images processed with the proposed

methods are perceived by a viewer, comparing in particular how the SSIM

loss and the GAN-based approaches preserve the details and quality of an

image. We have recruited 10 viewers, a number that is considered enough

for subjective image quality evaluation tests [139]; none of the viewers was

familiar with image quality evaluation or the work presented in this chapter.

Evaluation has been done following a DSIS (Double-Stimulus Impairment

Scale) setup, created using VQone, a tool specifically designed for this type

of experiments [102]: subjects evaluated the test image in comparison to the

original image, and graded how similar is the test image to the original, using

a continuous scale from 0 to 100, with no marked values to avoid choosing

preferred numbers. We have randomly selected 50 images from the BSD500

dataset, containing different subjects, such as nature scenes, man-made ob-

jects, persons, animals, etc. For each original image both an image processed

with the SSIM loss network and the GAN network have been shown, ran-

domizing their order to avoid always showing one of the two approaches in

the same order, and randomizing also the order of presentation of the tests
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Figure 5.12: Average Recall for 10 proposals per image for different QF and

methods. Performance at low QFs for GAN based methods is superior.

for each viewer. The number of 50 images has been selected to maintain

the duration of each evaluation below half an hour, as suggested by ITU-

R BT.500-13 recommendations [69] (typical duration was ∼ 20 minutes).

Overall 1,000 judgments have been collected and final results are reported

in Table 5.5 as MOS (Mean Opinion Scores) with standard deviation. Re-

sults show that the GAN-based network is able to produce images that are

perceived as more similar to the original image. A more detailed analysis

of results is shown in Fig. 5.13, where for each image is reported its MOS

with 95% confidence. It can be observed that in 90% of the cases the images

restored with the GAN-based network are considered better than using the

SSIM-based loss. Fig. 5.14 shows two examples, one where GAN performs

better (see the texture on the elephant skin) and one of the few where SSIM

performs better (see the faces).
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Table 5.5: Subjective image quality evaluation in terms of Mean Opinion

Score(MOS) on BSD500.

Method MOS std. dev.

Our SSIM 49.51 22.72

Our GAN 68.32 20.75

Image ID

0 10 20 30 40 50

M
O

S

0

10

20

30

40

50

60

70

80

90

100

GAN

SSIM

Figure 5.13: MOS values, with 0.95 confidence, for all the 50 images used in

the subjective evaluation.



5.5 Conclusion 83

G
ro

un
d 

T
ru

th
S

S
IM

G
A

N

Figure 5.14: Samples of BSD500 validation set used in our subjective eval-

uation. Left column: best result for the GAN approach, right column: best

result for the SSIM approach.

5.5 Conclusion

We have shown that it is possible to remove compression artifacts by trans-

forming images with deep convolutional residual networks. Our baseline

generative network trained using SSIM loss obtains state of the art results

according to standard image similarity metrics. Nonetheless, images recon-

structed as such appear blurry and missing details at higher frequencies.

These details make images look less similar to the original ones for human

viewers and harder to understand for object detectors. We therefore propose
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a conditional Generative Adversarial framework which we train alternating

full size patch generation with sub-patch discrimination.

We have extensively analyzed the behavior of deep CNN based algorithms

when processing images that are compressed, evaluating results at different

compression levels. As expected artifacts appearing even at moderately com-

pression rates modify feature maps. This phenomenon is shown to correlate

with errors in semantic tasks such as object detection and segmentation.

We have shown a high drop in performance for classes where texture is an

important cue and entities are deformable and articulated, such as cats and

other animals.

Human evaluation and quantitative experiments in object detection show

that our GAN generates images with finer consistent details and these details

make a difference both for machines and humans.



Chapter 6

Reading Text in the Wild from

Compressed Images

Reading text in the wild is gaining attention in the computer vi-

sion community. Images captured in the wild are almost always

compressed to varying degrees, depending on application context,

and this compression introduces artifacts that distort image con-

tent into the captured images. In this paper we investigate the

impact these compression artifacts have on text localization and

recognition in the wild. We also propose a deep Convolutional

Neural Network (CNN) that can eliminate text-specific compres-

sion artifacts and which leads to an improvement in text recog-

nition. Experimental results on the ICDAR-Challenge4 dataset

demonstrate that compression artifacts have a significant impact

on text localization and recognition and that our approach yields

an improvement in both – especially at high compression rates.

6.1 Introduction

An extremely desirable feature of wearable vision systems is the ability to

interpret text present in the observed scene. Reading text in the wild is of

paramount importance to help visually impaired people navigating complex

areas, such as streets, shopping malls and airports. An interesting scenario is

multi-lingual visual reading, which enables real-time text translation. Read-

ing text is a challenging task which is usually composed of two steps. Simi-
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larly to object detection, text reading consists of localizing text patches and

then recognizing their content. Accurately performing both tasks is usually

possible using computationally demanding deep Convolutional Neural Net-

works (CNNs). This demand in computation power conflicts with real-time

wearable system requirements, unless images can be processed remotely. Un-

fortunately streaming images may present difficulties in narrow bandwidth

situations. Moreover, wireless cameras systems, especially in the case of

battery operated ones, may need to limit power consumption reducing the

energy cost of image transmission applying strong compression.

Since user experience is also affected by image quality, compression al-

gorithms are designed to reduce perceptual quality loss, according to some

model of the human visual system. In fact, when compressing images sev-

eral artifacts appear. These artifacts are due to the different types of lossy

compressions used. Considering JPEG, the most common algorithm used

nowadays, these artifacts are due to the chroma subsampling (i.e. dropping

some color information of the original image) and the quantization of the

DCT coefficients; these effects can be observed also in MPEG compressed

videos, that is basically based the same schema with the addition of mo-

tion compensation and coding. Indeed, compression artifacts do reduce the

performance of text recognition algorithms, affecting both localization and

recognition.

Deep convolutional neural networks (DCNN) have become the basic ap-

proach for many computer vision tasks [80, 91, 112] and are of course the

state-of-the art technique for text recognition [6, 70]. However, impercepti-

ble pixel variations are known to alter image classification results, as shown

by Goodfellow et al. [52]. The authors of this work computed adversarial ex-

amples by adding a tensor computed in a way to steer the classifier decision.

These adversarial images are perceptually identical to the human eye but

the network they were made for will output a mistaken classification result

with high confidence. Therefore there is compelling evidence that even small

changes in images can indeed impair DCNN recognition capability. These

results lead us to believe that compression artifacts will also have a negative

impact on recognition results.

In this chapter, we analyze issues related to end-to-end text recognition

in the wild in the presence of compression artifacts. We show that both

localization and recognition are affected by image compression and we pro-

pose a solution to improve text recognition performance in the presence of
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Figure 6.1: Examples of compression artifact removal. Odd columns: com-

pressed images with compression artifacts; even columns: results of the pro-

posed system. Best viewed in color and zoomed in.

compression artifacts. We show that it is possible to learn a deep convolu-

tional neural network that removes image artifacts and improves end-to-end

text recognition in the wild. Adding this network does not require to change

the compression pipeline, nor to re-train the text detection network. In Fig-

ure 6.1 we illustrate the types of compression artifacts our system is able to

remove.

6.2 Related Work

Detecting and recognizing text in natural images has received consider-

able attention in the computer vision community. Comprehensive surveys

for scene text detection and recognition are given in [145, 154]. Classical

text detection approaches based on connected components and sliding win-

dows [18,33,66,100,101,105,147] are fairly robust techniques. However, CNN

classifiers have recently led to significant improvements [60, 67, 70, 135] with

notable increase in accuracy compared to previous techniques.

Despite the immense success of CNN models for tasks such as character

classification and word-spotting, once text regions are localized the problem

of unconstrained text recognition still poses significant challenges. To this

end, Jaderberg et al. [70] proposed to use a CNN able to recognize words
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from an extensive lexicon and generic object proposals. However employ-

ing generic object proposals is not optimal when text is to be detected, as

demonstrated in [49]. Furthermore, the authors of [50] proposed instead a

text-specific object proposal method based on generating a hierarchy of word

hypotheses computed with a region grouping algorithm.

In addition, Fully Convolutional Networks (FCNs) [91] have recently at-

tracted considerable attention from the robust reading community [55, 61,

153]. FCN-based methods replace fully-connected layers with convolutional

layers which allows them to preserve coarse spatial information which is

essential for text localization tasks. The authors of [151] integrated seman-

tic labeling by FCN with MSER to provide a natural solution for handling

text at arbitrary orientations. In parallel work [153] designed a character

proposal network based on an FCN which simultaneously predicts “charac-

terness” scores and refines the corresponding locations. The “characterness”

score is used for proposal ranking. Moreover, in [6] the authors improved the

text proposal pipeline by fusing FCN outputs and the TextProposals of [50]

in order to achieve higher recall with a less time consumed.

Inspired by Fully-Convolutional Networks [91] and [111], [55] propose a

text localization network as an extreme variant of Hough voting. More-

over, [121] and [153] employed an FCN model in order to detect text ori-

entation in natural scene images. Despite the significant achievements of

recent research on general object detection [90,110–112], these methods are

not appropriate for localizing text regions for several reasons. Typically the

bounding box of a word/text line has much larger aspect ratio than common

objects. TextBoxes [87] re-purposes the SSD detector [90] for word-wise

text localization. Furthermore [127] follows the idea of Region Proposal

Networks [112] and proposes a Connectionist Text Proposal Network which

improves accuracy for text localization tasks and also is compatible with

multiple scales, aspects, and languages.

In this chapter we exploit the efficient, high recall text localization pipeline

from [6]. We concentrate on analyzing the effect image compression artifacts

have on localization and end-to-end scene text recognition in the wild.

6.3 Methodology

In this section we describe the general problem of compression artifacts in

images of text, the problem of reading text in the wild, and our approach to
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removing compression artifacts from text images.

6.3.1 Reading text in the wild

In this work we use the pipeline of [6] to generate the text proposals as a

prerequisite for text recognition. Afterwards, we apply the DictNet word

classifier [70] to recognize the content of text regions. The pipeline of [6] is

based on a Fully Convolutional Network for text detection and the TextPro-

posals algorithm from [50].

Fully Convolutional Networks for text detection

We trained a Fully Convolutional Network (FCN) inspired by [91] for the

task of text detection by fine-tuning a VGG16 network pre-trained on Ima-

geNet [122]. Fine-tuning was performed for 1000 iterations using Caffe [71]

on the ICDAR-Challenge4 training-set. Afterwards, we used the FCN to

generate heatmaps indicating the degree of “textness” at each pixel in the

original, compressed and reconstructed images of the ICDAR-Challenge4 test

set. At this stage it was evident that the FCN was sensitive to details lost

(and artifacts introduced) during the compression process. In Figure 6.2 we

demonstrate the improvement of detecting text regions after reconstructing

the compressed images.

The TextProposal algorithm

To generate candidate text regions we use the TextProposal algorithm of [50].

which generates the proposals based on clustering process over individual re-

gions. In this approach the first phase over-segments the input image in order

to obtain a set of connected components. Afterwards, it performs several

bottom-up agglomeration processes. In the end, there is a ranking strat-

egy for prioritizing each text proposal. We used the original TextProposals

implementation of [50].1

Once we have the ranked list of TextProposals, we fuse the TextProposals

with the FCN heatmaps described in the previous section in order to suppress

false positive text proposals. As in [6], we sum the FCN probabilities in each

TextProposal box and use a threshold of 0.14 to suppress boxes containing

a sum total “textness” of less than this.

1http://github.com/lluisgomez/TextProposals
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Figure 6.2: Improvement in text detection after reconstructing compressed

images. In this figure we illustrate the original images and their correspond-

ing heatmaps for the original, compressed, and reconstructed (in order, from

left to right).

Text recognition

The main purpose of text recognition in this work is to demonstrate its sen-

sitivity to compression artifacts and quantify how our CNN reconstruction

approach helps compensate for them. For recognition, we use the state-of-

the-art CNN DictNet word classifier of [70] to read the cropped words. The

word classifier net [70] consists of five convolutional and three fully connected

layers. The first two fully-connected layers have 4k units and the final fully-

connected layer has the same number of units as number of words in the

dictionary (90k words).

To evaluate text recognition independently of text localization, we per-

form a series of experiments on cropped text words from the ICDAR-Challenge4

test set. We feed the cropped original, compressed (at varying quality fac-

tors), and reconstructed images to the DictNet word classifier. To evaluate

end-to-end text recognition performance, and thus to measure localization

and recognition performance, we use FCN+TextProposals pipeline described

above and feed all TextProposal boxes passing the threshold to the DictNet

classifier.
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6.3.2 Restoring images with CNNs

The general problem of image restoration, i.e. computing a recovered image

IRQ from a low quality image ILQ, that in turn can be produced processing

a high quality original image IHQ so that ILQ = P (IHQ), can be divided in

several different problems. If P is a “lossy” image compression algorithm,

then the problem is to eliminate the compression artifacts introduced by the

compression.

An image IHQ ∈ [0, 255]W×H×C is processed by a compression algorithm

A:

IC = A
(
IHQ, QF

)
∈ [0, 255]W×H×C (6.1)

using some quality factor QF in the compression process.

Image transformation can be used to attempt to recover from image ar-

tifacts. To transform a compressed image into a version in which artifacts

are removed or reduced, a function is applied pixelwise. Recent advances

suggest that this task should be tackled by training a convolutional neural

network from compressed and uncompressed image pairs.

Architecture

The full pipeline of the approach, both in training and testing phases is

depicted in Figure 6.3 In this work we use a deep residual network composed

of convolutional layers and ReLU non-linearities as activation function. Since

the network performs a pixelwise transformation, the input and the output

images have the same dimensions W ×H ×C where W , H and C represent,

respectively, width, height and the number of channels of the images. We

use 5 residual blocks consisting of 2 convolutional layers, which have 3 × 3

kernels and 64 feature maps and padding of 1 pixel to maintain the same

image size. The last part of the network is a convolutional layer with a tanh

activation function.

Training

Training is performed with direct supervision. The loss is computed as a

function of the reconstructed image IRQ and the original image IHQ. Learn-

ing the transformation from compressed images to high quality ones requires

training the weights and biases of the convolutional kernels. We minimize the

Mean Squared Error (MSE) loss between the original uncompressed image
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Table 6.1: Our fully convolutional network architecture. In all our experi-

ments we have used 5 residual blocks.

Layer Feature Map Size

Input IC W ×H × C
Convolution 3× 3, ReLU W ×H × 64

Convolution 3× 3, ReLU W ×H × 64

Element-Wise Sum W ×H × 64

... ...

Convolution 3× 3, ReLU W ×H × 64

Convolution 3× 3, ReLU W ×H × 64

Element-Wise Sum W ×H × 64

Convolution 3× 3, ReLU W ×H × C
Output IRQ W ×H × C

and the network output:

LMSE =
∥∥IHQx,y − IRQx,y ∥∥2 . (6.2)

This loss is widely used in image restoration tasks and has been shown to

be effective at reconstructing low-level details, such as edges and contours,

that are very prominent in text patches.

The networks were trained on an NVIDIA Titan X GPU using patches

from the ICDAR-Challenge 4 training set. All images were compressed with

MATLAB JPEG compressor at 10, 20 and 30 QF. For the optimization

process we used Adam [79] with momentum 0.9 and a learning rate of 10−4.

Training was performed for 50, 000 iterations.

For each mini-batch we sampled 8 random 48 × 48 patches without any

data augmentation, using two different sampling strategies. In the first case,

the network was fed with patches randomly selected from anywhere in the

whole training image. In the second strategy we selected just the patches

belonging to the text regions in order to specialize the network to reconstruct

text degraded by the compression process.
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6.4 Experiments

We used the ICDAR-Challenge 4 [75] as the benchmark dataset in our exper-

iments2. This challenge focuses on incidental scene text, referring to scene

text that appears in the scene without the user having taken any specific

prior action to cause its appearance or to improve its positioning or qual-

ity in the frame. While focused scene text (explicitly photographed by the

user) is the expected input for applications such as translation on demand,

incidental scene text represents another wide range of applications linked to

wearable cameras or massive urban captures where the acquisition process

is difficult or undesirable to control. This challenge for the task of local-

ization and end-to-end has 1000 images for training and a 500 images for

testing that can be used for evaluation of specific tasks through submitting

results online to the Robust Reading Competition portal. For the task of

text recognition, which considers only the cropped words of scene images,

there are 4468 images for training and 2077 images testing.
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images.
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Table 6.2: Text recognition results on the ICDAR-Challenge4 dataset. We

report the Correctly Recognized Words (CRW) and the Average Normalized

Edit Distance (AED). All performance is measured case insensitive, and

images were reconstructed using the CNN trained with the cropped patch

sampling strategy.

QF CRW AED

Original - 49.16% 25.09%

JPEG 10 31.05% 38.50%

Reconstructed 10 32.07% 37.61%

JPEG 20 39.58% 31.28%

Reconstructed 20 39.96% 31.14%

JPEG 30 43.43% 28.35%

Reconstructed 30 43.96% 28.30%

6.4.1 Text localization results

In this experiment we compare the ranked list of proposals from [6] on com-

pressed, reconstructed and original images in order to demonstrate the im-

provement from our reconstruction CNN (with both sampling strategies).

The comparison of text proposal on compressed and reconstructed images is

shown in Figure 6.4. This plot shows the recall of text regions (at IoU 0.5)

over a range of considered proposals.

These results show that compression has a significant effect on text box

recall. We also see that both CNNs (cropped and whole image sampling)

are able to improve recall performance – especially when about 1000 or more

proposals are considered. We also see that cropped image sampling performs

slightly better than whole image sampling. In all subsequent experiments

we use the CNN trained with the cropped patch sampling strategy.

6.4.2 Text recognition results

In this experiment we consider cropped words from scene images. We com-

pare the results of text recognition using the CNN word classifier of [70]. The

main purpose of this experiment is to explore how compressed images affect

text recognition independently of localization. The results of text recognition

experiment are demonstrated in Table 6.2.

2https://www.rrc.cvc.uab.es

https://www.rrc.cvc.uab.es
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Table 6.3: End-to-end results measured in Precision, Recall, and Hmean on

the ICDAR-Challenge4 dataset. Images were reconstructed using the CNN

trained with the cropped patch sampling strategy.

QF Precision Recall Hmean

Original - 37.60 % 87.85 % 52.66 %

JPEG 10 25.57 % 87.19 % 39.54 %

Reconstructed 10 28.74 % 87.54 % 43.28 %

JPEG 20 33.12 % 88.32 % 48.18 %

Reconstructed 20 33.61 % 88.69 % 48.74 %

JPEG 30 36.64 % 87.88 % 51.72 %

Reconstructed 30 36.59 % 87.76 % 51.65 %

From these results we see that JPEG compression has a significant effect

on word recognition. At high compression rates, our CNN improves both

CRW and AED by about 1%. At lower compression rates the improvement

is less significant, but our CNN for reconstruction still has a positive impact

on performance.

6.4.3 End-to-end results

To perform a comprehensive experiment on compressed and reconstructed

images we have also considered the end-to-end recognition task. This mea-

sures the overall improvement in localization and recognition for recon-

structed images. For this experiment we only considered the top 2,000

proposals in the ranking list of each image set in order to accelerate the

evaluation process. The results of our end-to-end experiment are given in

Table 6.3.

Again, at high compression rates our network leads to significant im-

provement in all three metrics. We see that the combination of improved

localization and improved recognition leads to much better end-to-end recog-

nition results. However, at lower compression rates the improvement is less

evident. The test images in the ICDAR-Challenge4 dataset are compressed

to about QF 30, and this is why the improvement of our CNN saturates

at this point as the performance of both JPEG and Reconstructed images

approaches that on the Original images.
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Figure 6.5: Examples of cropped text reconstruction. The leftmost column

shows compressed versions of cropped text at QF 10, the second column

is the reconstruction using the whole image sampling strategy, the third

shows the reconstruction using the cropped text sampling strategy and the

rightmost column is the ground truth.

6.4.4 Qualitative results

In figure 6.5 we show some examples of compressed, reconstructed, and orig-

inal images containing text. We see that compression does have a significant

impact on text quality. Both CNNs (with cropped and whole image sam-

pling) significantly improve the visual quality of text in the image.

6.5 Conclusion and future work

In this chapter we explored the effect JPEG compression artifacts can have

on text localization and recognition in the wild. Our experimental results
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demonstrate that JPEG compression has a significant effect on text local-

ization and recognition. We also described a simple CNN architecture that

is able to reconstruct compressed images and, especially at high compres-

sion rates, is able to improve text localization, cropped text recognition, and

end-to-end text recognition results.

For future work we are interested in training our network using high-

quality original images, since the ICDAR-Challenge4 images are already sig-

nificantly compressed. We are also interested in training our CNN network

for compressed image restoration on significantly more images than whose

available in ICDAR-Challenge4. We expect both of these to significantly

improve the impact our restoration has on text recognition.



Chapter 7

Conclusion

This thesis makes a contribution to the field of object detection. Designing

strong end-to-end detectors is often a complex task, hence we have explored

different solutions to overcome such difficulties. We have proposed meth-

ods and techniques for detection improvement both for objects and text in

images and videos, focusing on generating better quality proposals in video

sequences. Moreover, moving toward the compressed domain we have tackled

the problem of detection from different points of view, obtaining promising

results in both cases.

7.1 Summary of contribution

The major contributions are summarized below:

• In Chapter 3, we presented a novel method for quality improvement

of window proposals in video sequences. We have studied and ana-

lyzed the interaction between object detections and proposals. We have

shown that our approach is generic, every kind of proposal and detec-

tor can be plugged in for a video sequence. Our experiments report a

significant improvement in window correct localization, detection ac-

curacy and execution speed of the whole framework. Furthermore, we

have proved that our approach is robust for video sequences in which

frame drop is present since we process the detector output in a casual

manner.

• In Chapter 4, we proposed an approach for semantic video coding by

99
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learning saliency maps. Our novel saliency guides the codec to process

a video frame depending on the importance of the region. To achieve

such objective, we have developed a very fast object proposal method

to select that critic parts of frames which quality has to be preserved.

We have shown that, despite the relevant drop of the video sequences

bit-rate, our approach not only does not affect the performance of

object detectors, but we can even observe some cases of false positive

reduction.

• In Chapter 5, we described a generative adversarial solution to recon-

struct compressed images. We showed that our sub-patch discrimi-

nation approach is able to hallucinate high frequency details to make

reconstructed images look similar to the original ones for the human

eye and also objects are easier to be detected by automatic algorithms.

We have also conducted an extensive analysis on the behavior of neural

networks on compressed images. We observed that compression arti-

facts unavoidably modify feature maps, and this behavior correlates

with precision errors in semantic tasks. We have proved that recon-

structing degraded images with our approach leads to a significant

reduction in the correlation of semantic and feature maps error.

• In Chapter 6, we have followed the previous research direction of re-

constructing compressed images and we have shown that such artifacts

influence meaningfully text localization and recognition tasks. We have

implemented a simple residual neural network with a custom loss to

restore the corrupted frames and we observed that the approach is

able to improve text detector performance, in particular at very high

compression rates.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. L. Galteri, L. Seidenari, M. Bertini and A. Del Bimbo, ”Spatio-Temporal

Closed-Loop Object Detection,” in IEEE Transactions on Image Processing,

vol. 26, no. 3, pp. 1253-1263, March 2017. [DOI: 10.1109/TIP.2017.2651367]

Submitted

1. L. Galteri, L. Seidenari, M. Bertini and A. Del Bimbo, “2017 Removing

Compression Artifacts with Generative Adversarial Networks Enhances Im-

age Semantics”, IEEE Transactions on Image Processing, 2017. (Submitted)

2. L. Galteri, L. Seidenari, M. Bertini and A. Del Bimbo, “2017 Video Com-

pression for Object Detection Algorithms”, Pattern recognition letters, 2017. (Sub-

mitted)

International Conferences and Workshops

1. L. Galteri, L. Seidenari, M. Bertini and A. Del Bimbo. “Deep generative

adversarial compression artifact removal”, in Proc. of International Confer-

ence on Computer Vision (ICCV), Venice (Italy), 2017.

1The author’s bibliometric indices are the following: H -index = 1, total number of

citations = 2 (source: Google Scholar on Month October, 2017).
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2. L. Galteri, D. Bazazian, L. Seidenari, M. Bertini, A. D. Bagdanov, A.

Nicolau, D. Karatzas, A. Del Bimbo. “Reading Text in the Wild from Com-

pressed Images”, in Proc. of International Conference on Computer Vision

Workshop (ICCVW), Venice (Italy), 2017.
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