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Abstract: The authors deal with an efficient high- 
speed packet switching fabric suitable for applica- 
tions in future high speed networks. An advanced 
implementation architecture based on shared 
buffers at each input is studied. An important 
result is that the proposed switching fabric 
achieves optimum throughput-mean switching 
delay performance jointly with reduced buffering 
requirements and without having to resort to a 
faster switching fabric. 

1 Introduction 

Future optical-based broadband integrated services 
digital networks (B-ISDNs) will be suitable for the trans- 
mission of information at rates greater than lWMb/s. 
The concept of B-ISDN has undergone considerable dis- 
cussion and evolution. The asynchronous transfer mode 
(ATM) is considered to be the ground on which B-ISDN 
is to be built. In ATM systems, all information to be 
transmitted is organised in ked-size packets named cells. 

ATM networks are characterised by advanced switch- 
ing techniques able to handle multimedia traffic. In par- 
ticular, the fast packet switching (FPS) technique seems 
to be a promising approach for such networks. In any 
FPS switching fabric the cell routing is usually based on 
hardware techniques by making use of the information 
contained in the header of each cell. The main problem 
to be solved is the output conflict which occurs whenever 
two or more cells arrive simultaneously at different 
switch inputs and require to be routed to the same 
output. Only one of these cells achieves routing. In order 
to avoid loss, queueing is necessary for the other to wait 
for the next routings. 

Two classic alternatives to queue the unrouted cells 
are input queueing and output queueing. Switching 
fabrics with input queueing are quite simple in architec- 
ture but unfortunately, the maximum possible through- 
put is bounded at 0.586 due to the head-of-line blocking 
problem [l]. Switching fabrics using output queueing 
avoid this drawback and achieve optimal delay through- 
put performance, in particular the maximum possible 
throughput approaches 1 as the mean arrival rate of cells 
per slot p approaches 1. 

The main problem which arises with output queueing 
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is the requirement of a faster switching fabric. In the 
worst case of N cells that simultaneously require to be 
routed to the same output the switch fabric has to 
operate N times faster than the input-output links. This 
requirement represents the main drawback to a wide- 
spread use of output queueing switching fabrics in high 
speed networks. 

This paper mainly deals with a switching fabric based 
on the multiple queueing approach [2], implemented at 
each input of the switch fabric by means of shared buffers. 

2 A multiple queueing switching fabric with 
shared buffers 

In the switch fabric under consideration (Fig. 1) all the 
cells which arrive at the same input share the same buffer 
(SB) and are logically separated in distinct queues, one 
for each possible output destination. Each memory 
address of the SB can be allotted to any output as the 
occasion demands, not permanently to one particular 
output. This permits a remarkable improvement of the 
cell loss probability over classic switching fabric also 
using output queueing. 

For the switching fabric shown in Fig. 1 whenever a 
cell is stored in an input SB a routing request packet 
(RRP) is broadcast over the associated bus, one for each 
input, to all the output controllers (arbiters in Fig. 1). 
Collisions over the same bus are impossible because at 
almost one cell may arrived per slot at each input port. 
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Fig. 1 Proposed switcfifubric urchitecture (N = 4)  
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Each RRP contains: the address of the switch output to 
which the cell is destined; a single activity bit, to inform 
arbiters about the presence (logic 1) or absence (logic 0) 
of RRPs to be processed at their inputs; and the SB 
address where the cell has been stored. 

At the beginning of each time slot, the path through 
each of the N address filters (AF in Fig. 1 )  is open, ini- 
tially allowing all arriving RRPs to pass through to the 
arbiters. The output address bits for each arriving RRP 
are compared bit-by-bit against the output address of all 
AFs, one for each possible output port. If at any time the 
address of a RRP differs from that of an AF, the further 
progress of the RRP to the arbiter is blocked. That is the 
output of the AF is set at logic 0 for the remainder of the 
time slot. By the end of the output address, the AF will 
have either blocked the RRP, and hence also set its activ- 
ity bit to 0, or allowed to the RRP to continue on to the 
arbiter. Note that even though a portion of the address 
bits of a blocked RRP passing through the filter, these 
bits are no longer processed by the arbiter as the activity 
bit of that RRP has been set to 0. 

The basic arbiter configuration can be realised using a 
simple first in first out (FIFO) buffer. Any new arriving 
RRP is stored in the FIFO buffer to form a routing 
requests queue (RQ). 

From the above, it follows that the switching oper- 
ation is performed here in two stages. In stage one, the 
RRP associated with each cell is analysed while in stage 
two the cell itself is transmitted into the output link, 
whenever the associated RRP reaches the head of the 
appropriate RQ. The performance analysis of the switch- 
ing fabric with multiple queueing and SB at each input 
(MQSB switch) discussed above have been derived by 
making use of well known results for the discrete-time 
queueing system [4-71. Let us assume that the arrival 
processes at the N input links, as N independent Ber- 
noulli processes, with the probability of an arrival per 
slot equal to p. Each cell has an equal probability to be 
addressed to any of the other N output links and suc- 
cessive cells require independent routing. 

The N RQs have been modelled as N discrete G/D/l/ 
N/N queueing systems with arrivals in batches of random 
size. The validity of this assumption will be verified later 
by comparing theoretical and simulation results. 

From the previous considerations it follows immed- 
iately that each input queue can be modelled as a Geom/ 
G/1 queueing system with the service time per cell equal 
to the total delay spent by the corresponding RRP in the 
RQ. 

Fixing our attention on a particular input queue (the 
tagged input queue), the imbedded Markov chain 
approach developed in studying the M/G/l model is also 
applicable here for deriving the mean total delay per cell. 
The probability generating function of the number of 
cells in the tagged input queue, assuming equilibrium, is 
derived in Appendix 7.1 as 

where Qo is the probability of having an idle queue and 
A(z) is the probability generating function of the number 
of arrivals during the service period of a customer. We 
have also (Appendix 7.2) 

A(z) = (1 - p + pz)G(l - p + PZ)  (2)  

where G(z) is the probability generating function of the 
waiting time (normalised to the cell duration time) or 
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equivalently in our case, the probability generating func- 
tion of the total time spent by RRPs waiting to reach the 
head of the RQ. 

In deriving an expression for G(z)  it must be taken into 
account that in the case considered, the RRPs may arrive 
at the appropriate RQ in batches of random size [2 ,  5,7]. 
In particular, we assume that RRPs which arrive at the 
R Q  at a same instant are served in a random order while 
RRPs which arrived earlier, are served first on the basis 
of the FIFO discipline. Therefore, the total time spent in 
the RQ waiting for service by any routing request is due 
to the sum of two terms. The first term takes into account 
the time necessary to serve all the RRPs which are 
waiting in the queue at the arrival instant, while the 
second term is an additional delay due to the service of 
the RRPs which arrived at the same instant and were 
randomly selected to be served first. 

Let us assume that k cells are already waiting for 
routing in a particular RQ (the tagged RQ), the probabil- 
ity that a RRP (the tagged RRP) arrives in a batch of size 
i is given by 

(3) 

where a is the probability of having a cell from one of the 
input queues requesting routing to the tagged output 
link. 

The probability generating function of the waiting 
time, on condition that k requests are waiting for routing 
in the tagged RQ and that the tagged RRP arrives in a 
batch of size i is 

1 - 2 '  i - 1  z j + k  

G(z I i, k) = 1 - = - Z' 
j = o  I ( 1  - z )  

Therefore, G(z 1 k) is given by 
N - k  

G(z I k )  = ,E G(z I i, k)P(i I k) 
,=1 

1 - (1 - a + az)N-k 
( N  - k)a(l - z )  

Zk - - 

(4) 

The probability PR(k) of having k RRPs, 0 < k < N - 1, 
in the RQ can be obtained numerically by an application 
of the Markov chain balance equations. Fig. 2 shows an 

/ a0.4 

Fig. 2 
size ( N  = 4) 

Discrete Markou chain state transition diagram for a RQ of 

example of the Markov chain to be considered when 
N = 4. The final results are 

PR(k - 1 )  - aK-l.i P,(k - i )  - 'k-1. I 

i = t  %,a 
P d k )  = 

ak, 0 

2 < k < N - 1  (7) 
with P,(O) determined to verify the following equation 

N - 1  

x - P R ( k )  = 1 
k = O  
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and the terms ai. (Fig. 2), given by 

(9) 

Therefore, the probability generating function of the 
waiting time G(z) can be derived as a function of a as: 

N - 1  

k = O  
qZ) = qZ I k)PR(k) 

In deriving an expression for a we define: A,,, as the 
overall number of RRPs arrived at all the RQs at the 
beginning of the mth time slot; and F, as the number of 
free input queues at the beginning of the mth time slot. 

According to our assumptions, an input queue is free 
at the rnth time slot if it is idle or if the cell at its head has 
been selected to be routed at the beginning of the 
(m - 1)th time slot. It is evident that an arrival at a R Q  
must come only from a free input queue. It follows that 

P { A ,  = j }  = . Nor)l(l - Na)”” ( 1 1 )  (3 
Therefore, the mean number of arrivals is 

A,,,(FJ = F, N a  (12) 
Letting H, denote the number of RRPs in the tagged 
RQ, we can write 

F ,  = N - H ,  ( 1 3 )  

P = N - f j  (14) 

Therefore, in a steady state condition 

where the mean number of RRPs in the tagged R Q  can 
be derived as 

N - l  

E7 = nP,(n) (15) 
Il=0 

By assuming equilibrium we also have: 

( N  - m N a  = N p  (16) 
Hence 

Eqn. 17 defines a nonlinear equation in a. Solving this 
equation numerically it is possible to determine a. 

Starting from the previous considerations, it is shown 
in Appendix 3 that the mean delay per cell (normalised to 
the cell duration time) for the FIFO selection policy is 

Fig. 3 shows T as a function of p for different values of N. 
It is evident that the maximum possible throughput 
approaches 1 as p approaches 1. Simulation results have 
been also reported in Fig. 3 to highhght the good agree 
ment. 

0.2 0.4 0.6 O B  1 .o 
P 

Fig. 3 
- mnlyticalrnulta 

simuletionrnults 

Mean normalised total delay 

The simulation results shown herein have been 
obtained by means of simulation programs based on the 
SIMSCRIPT programming language [3 ] .  Confidence 
intervals for the simulation results have been derived by 
the method of independent replications. The simulation is 
run J independent times and J estimates are thus 
obtained for each performance measure of interest (i.e. 
mean switching delay or cell loss probability) [8]. Each 
set of J values thus represents J independent samples of 
the parameter to be estimated and standard statistical 
techniques can be used to derive the confidence interval 
[ 9 ] .  In our simulation approach we have set J equal to 
10. The confidence intervals for the simulation results so 
obtained are very tight and, therefore they are not quoted 
in the figures. 

Fig. 4 shows T as a function of p for the single 
queueing on inputs and for the proposed multiple 
queueing on inputs in comparison with that obtained 
by using the output queueing approach [4, 17-J It is 
evident in this figure that the proposed multiple queueing 
approach achieves the same performance as the output 
queueing approach without resorting to a more complex 
switching fabric [l, 181. 

N - 1  3 Finite buffer analysis 1 k[k - 1 + 4 N  - k - l)]PR(k) 
The case of a SB of finite capacity is now considered. A 
parameter that is of particular interest in this case. is the 
cell loss probability. Unfortunately, for the switching 
system under consideration, the analtyical evaluation of 
the cell loss probability leads to a queueing problem that 
is too complex to be solved in a closed form. However, 
an approximation of the cell loss probability can be 
derived. The validity of this approximation will be veri- 
fied later by comparing analytical and simulation results. 

1 + P [  ‘=’ [ N - 1  

2N - p 2 + 
N - 1  

( N  + k - l)aPR(k) 
k - 0  

(18) 
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( N  - k - 1xN - k - 2)c12PR(k) 

N - 1  
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We start our analysis by considering SBs of infinite 
size. Unfortunately, it was shown in Reference 19 that the 
number of cells forming the logical queue for a particular 

a 

0 02 0 4  0 6  0 8  1.0 
P 

Fig. 4 

B input queueing 
b 

Mean total delay comparison (N = 16) 

oulput queueing and multiple queueing 

output is not independent of the number of cells forming 
the other N - 1 logical queues. To simplify our analysis, 
we consider the overall number of cells stored in the SB 
as sum of N independent identically distributed (i.i.d.) 
random variables n i ,  denoting the number of cells 
forming the queue for output i (1 < i < N) .  Note that t h s  
simplified approach is consistent with that used in Refer- 
ence 17 for deriving the performance of a switch fabric 
with a completely shared (output) buffering. Under this 
assumption, it is shown in Appendix 7.4 that the prob- 
ability generating function of n, is 

m 

(19) 
k = O  

where B(z) is the probability generation function of the 
number of cells in one of the N logcal queues, 40') is the 
probability of having j cells in a logical queue, and q,(k) is 
the probability of having k cells stored in the SB. In 
deriving an expression for B(z) we again resort to the 
imbedded Markov chain approach. The imbedded 
Markov chain to be considered is shown in Fig. 5 where 

Fig. 6 
input queue 
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Discrete Markov chain transition diagram for multiple queueing 

the instants of service completion have been assumed as 
the imbedded points. In this figure the terms ai are 
defined as 

ai = f (T)(p/N)i(l - p/N)"-'p(m) (20) 
m = 1  

where p(m) denotes the probability of the cell at the head 
of the queue having a service time equal to m (slots). 

Fig. 6 shows, as an example, the probabilities of the 
service time for the case N = 16 and p = 0.8. The terms 

c 4 6  

I 

service tirne,cells 

Fig. 6 Service time probability (N = 16, p = 0.8) 

q(k) can be derived as 

1 - a ,  
q(k) = - q(k - 1) - ai q(k - i )  

a0 i = 2  a, 
2 < k < N - 1  (22) 

with, as usual, q(0) defined to verify the following equa- 
tion 

k = O  

Therefore, it is possible to numerically derive the prob- 
ability of having n cell stored in the SB. In our approach 
we approximate the cell loss probability PB for a SB of 
capacity L (cells) as the probability of having a number of 
cell greater than L stored in a SB of infinite size. Figs. 7-9 
show the derived approximation in comparison with the 
cell loss probability achieved by using the output 
queueing approach as a function of the buffer size (cells) 
for different values of p. These figures clearly point out 
that the proposed MOSB switch outperforms the clas- 
sical output queueing switch. In Fig. 10 our approx- 
imation is compared with the simulation results for the 
case N = 16 and p = 0.9. It is evident in this figure that 
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our approximation is tight for low values of the cell loss 
probability (typically, the values of interest). 

buffer size, cells 

Fig. 7 
~ MQSBswitch 

Cell loss probability comparison (N = 8) 

output qucueiug switch _ _ _ _  

1 

5 10 15 20 
buffer size, cells 

Fig. 8 
- MQSBrwitch 
_ _ _ _  outpul queueing switch 

Cell loss probability comparison (N = 16) 

4 Performance comparison with tho knockout 
switch 

The knockout switch was proposed in Reference 20 for a 
pure packet-switched environment. This type of switch 
uses one broadcast input bus from every input port to all 
output ports as shown in Fig. 11. By means of packet 
filters, each knockout concentrator receives only the cells 
for the associated output. The knockout concentrator 
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uses a suitable algorithm to select up to L cells from the 
N incoming links to the knockout concentrator. The 
selected cells are stored in and removed from the output 
shared buffer according to the order of their arrival by 
means of the shifter equipment. 

lo-' 

-2 
10 ; 

-3 
10 I 

a m :  
10 i 

-& 

\ ,  \ 
5 10 15 20 

buffer size.cells 

Cell loss probability comparison (N = 32) Fig. 9 
- MQSBswitch 
_ _ _ _  output queueing awitch 

t 15 20 
1 o-'~ 5 10 

buffer size. cells 

Fig. 10 
~ uppcrbound 

Cell loss probability comparison (JI = 0.9) 

simulated mulls 

To permit a fair comparison between the knockout 
switch performance and that obtained through the switch 
fabric discussed in Section 3, it is necessary to derive the 
mean switching delay and the cell loss probability 
attained by the knockout switch. We start our analysis 
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by deriving an expression for T. By means of the knock- 
out concentrator the probabilities of arrivals are modified 
as 

(24) a i = ( r ) a i ( l  -a)'-' i = o , 1 ,  ..., L -  1 

a i=O i = L + l , L + 2 ,  ..., N 
1 I 

N inputs I 1 

I bus interface 
! N:L I 
i I knockout concentrator I 
I i 
! I 

output 
Fig. 11 

where we have assumed a reduction from N to L and a 
equal to p/N. The probability generating function (PGF) 
results in 

Basic structure ofknockour switch 

L 
A(z) = ziai 

i = 0  

Following a standard approach in queueing analysis [6, 
201 we obtain the PGF for the steady queue size as 

with the term q(0) derivable by eqns. 21-23 where the 
terms ai is given by eqns. 24-26. 

We are interested in deriving an expression for the 
total switching delay. In performing our analysis we 
model the knockout switch as a classical switch with 
output queueing [4, 173 i.e. as a discrete G/D/l queueing 
system with arrivals in batches of random sizes [SI. This 
leads us to assume that all cells arriving at the same 
output queue in a time slot are served in random order. 
However, all cells arriving in earlier time slots are served 
first, according to the FIFO selection policy, within 
batches. It thus follows that the mean switching delay has 
three components: 

(i) The cell service time, equal to one time slot 
(ii) The time (ul) that must have elapsed before our cell 

reaches the head of the queue to be served 
(iii) The time (u2) necessary to serve the cells which 

arrived in the same batch, but which were selected to be 
served first 
Starting from the previous considerations it was found 
[4, 171 that the mean normalised switching delay results 
in 

Fig. 12 shows the parameter T as a function of p for 
N = 64 and L = 8. 

0 0.2 04 06  0.8 1.0 
P 

Fig. 12 
OfpforN = 6 4 a n d L = 8  

Normalised switching delay for knockout switch as afunction 

~ analytical results 
simulation results 

The analytical evaluation of the cell loss probability is 
the subject of the remainder of this section. A cell may be 
lost in the knockout switch when it arrives in a batch of 
size greater that L and loses the knockout competition, 
or when it successfully passes through the knockout con- 
centrator and finds the output buffer full. From above it 
follows that 

where q(0) is derivable from eqns. 21-23 with the arrival 
probabilities defined as 

a, i + j < M  

Z a k  i + j = M + l  
a,, = 

for L > M ,  likewise for L < M 

0 j 7 L  

k = j  E a k  i + j = M + l  j < L  

Figs. 13 and 14 show P ,  as a function of the buffer size 
M for different values of N and p. The mean switching 
delay can be also derived for the case of a finite buffer 

' E  

am 

15 20 25 30 35 60 
5- 

16, 10 
buffer size. packets 

Fig. 13 
output bufler sizefor N = 16, L = 8 and diffment udues ofp 

Cell loss probability for knockout switch as a function of 
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size.. The parameter T can be obtained by the Little 
formula as 

plexity of the SB for the MQSB switch (input) and the 
knockout switch (output). In particular, in deriving the 
implementation complexity of the knockout switch we 
have used the approach outlined in Reference 20. Fig. 16 
and Table 1 clearly highlight the advantages of the 

5 i 4 i )  
7,=1+- 

P(1 - P B )  (33) MQSB switch over the knockout switch. 
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F 
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buffer size, pockets 

Fig. 14 
output buffi size for N = 64, L = 8 and diffment values of p 

Cell loss probability for knockout switch as a f i r i o n  of 

Fig. 15 shows T as a function of p for N = 64 and differ- 
ent values of the buffer size M. Fig. 16 shows P ,  as a 
function of the buffer size for p = 0.9 in comparison with 
its values attained for the MQSB switch. An imple- 
mentation complexity comparison in terms of the total 
number of gates is given in Table 1. The values reported 
in Table 1 do not account for the implementation com- 

l'i 

6 M=20 I 
0 0.2 0.4 0.6 0.8 10 

P 
Fig. 16 
of p ,  for N = 64, L = 8 and diffirent values ofoutput bu& size 

Normalised switching delay for knockout switch as afunction 
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knockovt switch (N=32:L=8) 

MQSB swltch (N=32) 
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Fig. 16 
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Table 1 : Implementation complexity comparison 

Inputs/outputs Knockout switch MQSB switch 
N L = 8  (gates/output) 

(gates/output) 

16 21 28 80 
32 4256 180 
64 851 2 320 

128 17024 640 

Different output queueing switching fabrics with com- 
pletely shared buffering have been proposed recently. In 
References 17 and 21 the completely shared buffering is 
obtained by increasing the switch fabric size. The switch- 
ing fabric proposed in References 17 and 21 permits one 
to save on the total amount of buffering needed to 
achieve a specified cell loss probability, but the required 
increase in the size of the switch fabric may become unac- 
ceptable for some applications. A switching fabric with 
input and output buffering has been also proposed [22]. 
With respect to the classical input queueing approach, 
the joint input-output queueing approach permits a 
number of cells greater than one to be routed to the 
desired output per time slot. However, the maximum 
value of this number is less than N, in the case of a 
N x N switching fabric, making it possible to reduce the 
speed-up in the switching operation in comparison with 
the classical implementation of the output queueing. 
With respect to the switching fabric proposed in Refer- 
ence 22, the MQSB switch permits us to save on the total 
amount of buffering and to reduce the implementation 
complexity. Another switching fabric based on a two- 
stage switching approach similar to that used in the 
MQSB switch is the staggering switch described for a 
special application in Reference 23. In the staggering 
switch the two stages of the switching operation are 
named the scheduling stage and the switching stage, 
respectively. Each of the stages is implemented by means 
of a nonblocking switching fabric. Considering an N x N 
switching fabric, the scheduling stage is an N x M non- 
blocking switch while the switching stage is an M x N 
nonblocking switch, with M 3 N .  The scheduling stage is 
connected to the switching stage by M delay lines. The 
scheduling stage distributes the cells arriving at the 
switch inputs to the delay lines to avoid two cells arriving 
at the switching stage being destined for the same output. 
In comparison with the staggering switch, the MQSB 
switch again exhibits a lower implementation complexity 
and achieves a better performance. We can validate this 
affirmation with an example. Let us consider a 16 x 16 
staggering switch with M = 16 at p = 0.8. The cell loss 
probability PE results equal 1.2 x where for the 
MQSB switch with SBs of size 8 (cells) PE is equal to 

6 Conclusions 

In this paper a novel switching fabric suitable for applica- 
tions in future high speed networks has been described 
and analysed. An important result is that the optimum 
delay-throughput performance can be achieved, without 
having to resort to a switch fabric which runs N times 

2.8 10-5. 
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faster than the input and output links. A performance 
comparison with the knockout switch and other switch- 
ing fabrics has been also presented to highlight the better 
performance of the MQSB switch. 
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7 Appendix 

7.1 Derivation of probability generating function 

In this Appendix the probability generating function Q(z)  
of the number of customers in a Geom/G/l queueing 
system is derived. Time is divided into slots of equal 
length. We assume that arrivals are characterised by a 
Bernoulli process with the probability of having an 
arrival per slot equal to p and that the service discipline 
is any nonpreemptive work conserving discipline. Non- 
preemptive means that once a customer enters service, he 
reaches service completion before a new customer is 
selected to be processed. The method of imbedded 
Markov chains [5, 6, 10-151 can be used to derive Q(z). 

Q(4 
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In particular, the imbedded points are assumed as the 
instants of service completion for customers. Let q1 be the 
number of customers in the system just after the service 
completion of the ith customer and let Q, be the number 
of customers entering the system during the service of the 
ith customer, we have 

qi+ 1 qi - U(q3 + Qi+ 1 (34) 

where U(qJ is 

1 i f q , > o  
= 0 otherwise (35) 

The probability generating function of the stationary dis- 
tribution of qi can be defined as 

m 

Q(z) = n k z k  
k = O  

In eqn. 36 we have used the independence of qi and ai. If 
we define A(z)  to be the probability generating function 
of the number of arrivals during a service period of a 
customer, from eqn. 36 we have 

(37) 
where Qo denotes the probability of having an idle 
system. Hence eqn. 1 follows immediately from eqn. 37. 

72 Derivation of e q n .  2 
Let A(z) be the probability generating function of the 
number of arrivals during a service period of a cell. For 
the discrete queueing system defined in Section 2 we have 

N 

= j =  C(1 1 - p + pzy’bj 

= B(l - p + P Z )  

where 

N 
B(z) = b j z j  

j =  1 
(39) 

is the generating function of the service time distribution 

The cell service time for the Geom/G/l queueing 
system defined in Section 2 is given by the cell transmis- 
sion time on the outgoing link (one slot) plus the total 
time the PRR spends in the appropriate RQ waiting for 
service. Let G(z)  be the generating function of the PRR 
waiting time distribution {gi} we have 

Ibjl. 

B(z) = zG(z) (40) 
Hence, from eqns. 38 and 40 we easily obtain eqn. 2. 

7.3 Derivation of e q n .  18 
The generating function Q(z)  defined by eqn. 1 allows us 
to find the moments of the distribution of the number of 
cells in the queue. We start our analysis by writing eqn. 1 
as 

(41) Q(z)Cz - 4 z ) I  = Qo NzXz - 1) 
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Differentiating eqn. 41 successively we have 

Q'(z)CA(z) - zl + Q(z)CA'(z) - 11 
= - Qo A(z) + Qo(1 - ~)A'(z )  

= - 2Qo A'(z) + Qo(1 - z)A"(z) 

(42) 

(43) 

Q"(z)[A(z) - Z] + 2Q'(z)[A'(z) - 13 + Q(z)A"(z) 

where C(z) and C"(z) denote the first and second deriv- 
ative of C(z) with respect to z. 

We let z = 1, since A(1) = P(1) = 1 and the mean 
number of cells in the queue is equal to Q( 1) we have 

where E[c] denotes the mean value of c. 
The unknown term Qo in eqn. 44 can be derived 

through eqn. 34. Under the assumption that a steady- 
state condition exists, by taking expections on both sides 
of eqn. 34 we have 

hence 

ECu(q)l = ECal = A'(1) (46) 
The term I&) defined by eqn. 35 in a steady-state condi- 
tion can be considered as the indicator function of the 
event that the number of cells in the queue is greater than 
0. Accordingly we have 

ECu(q)l= 1 - Qo (47) 

Therefore, eqn. 44 can be rewritten as 

(48) 
A"( 1) 

2[1 - A'(l)] ECqI = A'(1) + 
with A'(1) and A"(1) derived by successively differentiat- 
ing eqn. 2 and setting z = 1. By using the Little formula 
from eqn. 48 we obtain eqn. 18. 

7.4 Probability generating function of n, 
Let us consider N independent identical Geom/G/l 
queueing systems and let I be the probability of an 
arrival at one of these N queueing systems. The event of 
an arrival at a particular queueing system is assumed to 
be independent of arrivals at the other N - 1 queueing 
systems. The overall number of cells in the N queues 
under a steady-state condition can be defined as a s u m  of 
N independent and identically distributed random vari- 
ables as 

n, = n, + n, + ... + nN (49) 

each term n, in eqn. 49 denotes the number of cells in the 
queue i. Let us assume that the generating function of n, 
as Bdz) and of each n, as Bxz). Recalling that: 

(i) The N random variables ni are independent identic- 
ally distributed random variables, hence 

Biz) = B(z) for all i (50) 
(ii) the generating function of a sum of independent 

random variables is the product of generating functions 
Thus we can easily derive eqn. 19 from eqns. 49 and 50. 
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