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1 

INTRODUCTION 

1. The adrenal glands: structure, development and function 

The human adrenal glands are multifunctional endocrine organs producing a 

variety of hormones involved in main physiological processes, like the regulation of 

glucose blood levels, the protein turnover, the maintenance of the hydroelectrolytic 

equilibrium as well as the cardiovascular tone, the tissue response to damages and 

infections, the adaptation to stress conditions. They are paired organs located in the 

retroperitoneum at the upper poles of the kidneys, from which they are separated 

by a weak wall of connective tissue, and directly below the diaphragm, to which 

they are attached by the renal fascia. Both the adrenal glands have an irregular 

pyramidal shape, which becomes semilunar and somewhat larger in the left gland. 

They measure approximately 3 cm in width, 5 cm in length and up to 1 cm in 

thickness, with an overall weight ranging from 7 to 10 grams, although this 

parameters can vary depending on age, sex and physiological conditions. Each 

adrenal gland is enclosed within a capsule of fibroblasts and myofibroblasts, 

surrounded by adipose tissue, and is constituted by two distinct parts, each with a 

unique function: the outer adrenal cortex, representing up to 90% of the entire gland 

and synthesizing glucocorticoids, mineralocorticoids and androgens; and the inner 

medulla, producing catecholamines, adrenalin and noradrenalin, in response to a 

direct sympathetic stimulation. The regulation of the hormone synthesis depends on 

both the gland architecture and the enzymatic pool of single cells, as well as on the 

blood supply. This is assured by a rich network of blood capillaries that, departing 

from the superior, the middle and the inferior suprarenal arteries, penetrate the 

capsule and spread from the external cortex to the central medulla. Thus allows to 

strictly control the delivery of steroid hormones to the blood and therefore to 

regulate the activity of the enzymes involved in their synthesis. Venous blood leaves 

the adrenal glands by the suprarenal veins, usually one for each gland: the right 

suprarenal vein, draining into the inferior vena cava, and the left suprarenal vein, 

draining into the left renal vein (Fig. 1). There are also subcapsular and medullary 

lymphatic plexus that drain to the lumbar and para-aortic lymph nodes (Dobbie & 

Symington, 1966). 
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A rich innervation is also present, with the majority of nerve plexus located in the 
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Schematic representation of the embryological adrenal development (
Flück, 2008) and of adult and fetal adrenal cortex morphology of (B; Mesiano & Jaffe, 1997).
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acetylcholine on the adrenergic receptors. This so called “fight or flight” response, it 

induces many physiological effect requiring energy (such as increased heart rate, 

blood pressure and blood glucose levels, with a general reaction of the sympathetic 

nervous system), which is supplied by substrates derived from glycogen- and 

lipolysis induced by catecholamines themselves in liver, muscle and adipose tissue. 

The first step for catecholamines synthesis is the conversion of tyrosine to L-

dihydroxyphenylalanine (L-DOPA) by the tyrosine hydroxylase, which is regulated 

by a negative noradrenalin feedback. L-DOPA is further decarboxylated to 

dopamine which enters the chromaffin granules, where it is converted to 

noradrenalin by the phenylethanolamine-N-methyltransferase (PNMT). 

Noradrenalin is then released into the cytoplasm by exocytosis and it is converted to 

adrenalin, which enters the granules again, by an ATP-mediated transport, to be 

stored in cells (Fig. 5).Catecholamine secretion is regulated by the sympathetic 

nervous system: the neurotransmitter acetylcholine stimulates the cholinergic 

receptors expressed by chromaffin cells with consequent cell depolarization, 

voltage-dependent Ca2+ channel activation and calcium influx, thus inducing the 

exocytosis of secretory vesicles and the release of their content. Through the blood 

circulation, catecholamines reach their target organs where they are metabolized by 

monoamine oxidases (MAO) and catechol-O-methyltransferases (COMT) (Molina, 

2004).  

Figure5. Schematic representation of the biosynthesis and metabolism of catecholamines. 
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2. Adrenocortical carcinoma 

Primary adrenocortical carcinoma (ACC) is a rare endocrine malignancy 

affecting the adrenal cortex (De Lellis et al, 2004) presenting high heterogeneity and 

aggressiveness, often with an unfavorable outcome. Despite immunohistochemical 

and molecular studies have identified novel biomarkers of diagnostic and 

prognostic relevance, the discrimination between malignant and benign forms 

remains challenging, the molecular mechanism underlying the pathology has still to 

be fully elucidated and the available therapeutic options show limited specificity 

and efficacy. The integration between different methodologies of study may lead to 

a better understanding of the tumor biology and behavior, thus offering the 

potential for classifying the neoplasm and for identifying new therapeutic targets to 

develop a more personalized approach to treat patients. 

 

2.1. Epidemiology 

Among adrenal tumors, that are very common in the general population (4-7% 

incidence) and prevalently diagnosed as nonfunctional adrenal adenomas (ACAs) 

(Young, 2007), adrenocortical carcinoma is quite rare. The estimated incidence is 0.5-

2 per million cases per year in adults, (Kebebew et al, 2006; Golden et al, 2009, 

Fassnacht et al, 2013; Kerkhofs et al, 2013), with a median age of diagnosis in the fifth 

to sixth decades and a female-to-male ratio of 1.5-2.5:1 (Luton et al, 1990; 

Michalkiewicz et al, 2004; Fassnacht & Allolio, 2009). However, a bimodal age 

distribution can be described, as a first peak of occurrence is observed in the first 

decade of life (Wooten & King, 1993; Wasserman et al, 2012). Pediatric ACC shows 

an incidence of 0.2% of all childhood cancers (Miller et al, 1995), with a prevalence in 

children younger than 5 years and older than 10 years (53% and 37%, respectively) 

(Wieneke et al, 2003). A specific population of children in Southern Brazil represents 

an exception, showing an incidence of ACC 10-15 time greater (Michalkiewicz et al, 

2004; Pianovski et al, 2006a) that has been related to the presence of a specific single 

germline mutation in the gene encoding p53 (TP53, p.R337H) (Latronico et al, 2001; 

Ribeiro et al, 2001; Seidinger et al, 2011). 

The majority of adrenocortical carcinomas occurs sporadically, but multiple well-

defined genetic syndromes have been associated with an increased susceptibility to 
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ACC. The most common is Li-Fraumeni syndrome (LFS), a familial disease caused 

by germline mutations of TP53, which associates with an increased susceptibility to 

neoplasms like breast cancer, leukemia, brain tumors and sarcomas (Li &Fraumeni, 

1969). Among these, approximately 3-10% of LFS-associated cancers in children are 

ACC (Wagner et al, 1994; Varley et al, 1999;Rodriguez-Galindo et al, 2005), whilst in 

adults the prevalence of TP53 mutation ranges from 3 to 7% (Herrmann et al, 2012; 

Raymond et al, 2013a). Beckwith-Wiedemann syndrome (BWS) also increases the 

risk for ACC, which can occur, mostly during childhood, in 5-15% of cases 

(Wiedemann, 1983; Lapunzina, 2005). The genetics of this disease bases on the 

alteration of DNA methylation of the 11p15 locus, which harbors the IGF2 and 

CDNKC genes and the nontranslated RNA H19 (Weksberget al, 2005), generally 

leading to the loss of the maternal locus and to the amplification of the paternal one 

(Barlaskar & Hammer, 2007). Multiple endocrine neoplasia type 1 (MEN1) is due to 

inactivating mutations of MEN1 gene and classically associates with 

hyperparathyroidism, neuroendocrine tumors, pituitary adenomas and adrenal 

lesions in 20-55% of cases (Waldmann et al, 2007). Among these, roughly 10% are 

distinct adrenal tumors, with a 1.4% overall rate of ACC (Gatta-Cherifi et al, 2012). 

Alterations in mismatch repair genes and microsatellites instability are hallmarks of 

Lynch syndrome, which increases the risk of malignancies in patient, with an 

occurrence of ACC in 3% of cases (Raymond et al, 2013b). To a less extent, ACC 

associates also with Familial Adenomatous Polyposis (FAP), neurofibromatosis type 

1 and Werner syndrome (Else, 2010). More recently, ACC has been also reported in 

patients with Carney Complex (Anselmo et al, 2012; Morin et al, 2012) and, even if 

very rarely, described in conjunction with congenital adrenal hyperplasia (CAH) 

(Bauman & Bauman, 1982; Barzon et al, 2007). 

 

2.2. Clinical features and presentation 

There are three typical clinical scenarios in which ACC can be discovered in 

adults: approximately 40-60% of cases present the signs and symptoms of hormone 

excess (hypercortisolism, virilization in women, feminization in men) due to the 

presence of functional tumors, which generally associate with a rapidly progressive 

Cushing’s syndrome (Luton et al, 1990;Abiven et al, 2006; Fassnacht & Allolio, 2009; 

Ishikura et al, 2010). The second common clinical presentation is represented by 
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nonspecific symptoms related to the mass growth, such as early satiety, abdominal 

fullness and flank or abdominal pain, when a nonfunctional tumor is present (Luton 

et al, 1990; Fassnacht & Allolio, 2009). In these cases, systemic symptoms can be also 

present (fever, weight loss, anemia, anorexia) and distant metastases can occur, 

principally in lung, liver and bones (Abiven et al, 2006; Libel et al, 2007). Finally, 

roughly 20-30% of ACCs are incidentally discovered during imaging for other 

unrelated medical issues (Fassnacht & Allolio, 2010; Else et al, 2014a). 

ACCs are generally unilateral large tumors, measuring more than 5-6 cm and 

with a weight higher than 100 grams; however, in some cases smaller tumors can 

show malignant features, like loss of homogeneity, presence of foci and irregular 

edges. Grossly, they may appear encapsulated or adherent to or infiltrating the 

surrounding structures, with the cut surface ranging from brown to yellow 

depending on the cell lipid content. Fibrous tissue bundles often separate the tumor 

mass in lobules, hemorrhage and necrosis are commonly present and vascular 

invasion can also be observed. The histological evaluation shows a less ordered 

architecture compared to benign adenomas: compact cells predominate, arranging 

in trabecular and diffuse patterns, and mitotic activity, often with atypical forms, 

can be usually seen. Blood vessel and capsule invasion are commonly observed and, 

together with distant metastases, they define malignancy (McNicol, 2008; Else et al, 

2014) (Fig. 6). 

Figure 6. Gross presentation (A) and histological sections of ACC with the typical observed features: 
an hypercellular population showing tumor necrosis, solid growth pattern, abundant eosinophilic 
cytoplasm and mitotic figures is present (B, C, H) compared to ACA (D). Malignancy is defined by 
direct invasion of the tumor capsule (E) and blood vessels (F, G). Adapted from Else et al, 2014a. 
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Adrenocortical carcinomas typically exhibit a large degree of intratumor 

heterogeneity, as well as different mitotic/proliferative capacity: in fact, numerous 

areas and nodules with different histological phenotypes can be commonly 

observed. Three distinct variants of ACC has been described: the oncocytic variant, 

characterized by large and pleomorphic cells with abundant granular and 

eosinophilic cytoplasm (Erlandson & Reute, 1991; Macchi et al, 1998; Hoang et al, 

2002; Song et al, 2004; Ohtake et al, 2010; Wong et al, 2011); the myxoid variant, 

presenting extracellular deposits of myxoid material (Brown et al, 2000; Suresh et al, 

2005; Karim et al, 2006; Raparia et al, 2008; Papotti et al, 2010; Hsieh et al, 2011; Zhang 

et al, 2011; Sheng et al, 2012); and the sarcomatoid variant, in which spindle cell areas 

or specialized sarcomatous component are present (Coli et al, 2010). 

 

2.3. Diagnosis and classification 

The diagnosis of adrenocortical carcinoma needs investigation of clinical, 

biological and imaging features before surgical intervention and pathological 

examination after tumor removal.  

Since signs and symptoms can vary among patients and part of ACCs are 

incidentally discovered, a preoperative biochemical evaluation, consisting in blood 

and urine measurement of steroid hormones potentially produced by the tumor, is 

suggested for suspected ACC. This allows to establish or exclude the presence of 

hormone excess (glucocorticoids, mineralcorticoids, androgens), to confirm the 

adrenocortical origin of the tumor and to define the malignancy of the lesion 

(particularly in the presence of androgen or estrogen production). Moreover, the 

steroid hormone assessment provides molecular markers for further patient follow-

up and surveillance and can indicate the necessity for post-surgical replacement 

therapy (Else et al, 2014a). Remarkably, urine steroid analysis may represent a new 

potential approach to discriminate ACCs from ACAs since a differential steroid 

precursor and metabolite profile can be observed in malignant versus benign 

tumors (Arlt et al, 2011). In addition, metanephrine urinary and blood level 

assessment can support differential diagnosis from pheochromocyoma. 

Traditional imaging techniques, such as contrast-enhanced computed 

tomography (CT) or Magnetic Resonance Imaging (MRI), are the instrumental 
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choice for initial diagnosis and staging of an adrenal mass basing on tumor size, as 

well as for follow-up, since they allow to detect recurrence and metastasis 

(Bharwani et al, 2011). Functional imaging, performed by Positron Emission 

Tomography(PET) with FDG ([18F]fluorodeoxyglucose) or MTO ([11C]metomidate), 

may also be used to confirm the diagnosis of malignancy or the cortical origin of the 

lesions (Minn et al, 2004; Zettinig et al, 2004). 

The best validating score used as standard for the diagnosis of malignancy in 

adrenal tumors still remains the Weiss system with its modifications (Weiss, 1984; 

Aubert et al, 2002; Lau & Weiss, 2009). It is based on the microscopically evaluation 

of the following nine morphologic items concerning tumor architecture, nucleus and 

invasion: 

− nuclear grade 
− mitotic rate (>5 per 50 high-powered field) 
− atypical mitotic figures 
− eosinophilic tumor cell cytoplasm (>75% of tumor cells) 
− diffuse architecture (>33% of tumor) 
− necrosis 
− venous invasion 
− sinusoidal invasion 
− capsular invasion 

Each item scores 1 when present and the sum of all positives items defines the final 

score. A score ≥ 3 represents the threshold to classify adrenal tumors as ACCs, since 

they often behave in a malignant fashion, with recurrence or metastases in roughly 

80% of cases. Instead,  tumors with a score lower than 2 can be classify as ACAs; 

however the diagnosis of tumors with a score of 2/3remains challenging: in fact, 

sometimes tumors not classified as ACC can develop a malignant behavior (Pohlink 

et al, 2004) and, conversely, some tumors diagnosed as ACC do not behave as 

predicted (Giquel et al, 2001; Lucon et al, 2002). Also, in case of oncocytic or myxoid 

ACC variants the Weiss system results inadequate in defining malignancy (Papotti 

et al, 2010; Duregon et al, 2011; Wong et al, 2011). 

Considering the limitations and criticisms of the Weiss scoring, attemps have 

been made to refine its criteria and to improve diagnosis accuracy (Volante et al, 

2009). Among these, the disruption of reticular network, assessed by reticulin 

histochemical staining, seems to specifically discriminate ACCs from ACAs 
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(Duregon et al, 2013a). In addition, many immunohistochemical methods have been 

developed to improve the differential diagnosis of ACC, mainly focusing on tumor 

cell proliferation and mitotic count. The most widely used is the Ki67 proliferation 

index (Cattoretti et al, 1992;Morimoto et al, 2008). Tumors with a Ki67 ≥ 5% are 

generally considered ACC. Since some ACCs can show a loss of adrenocortical 

differentiation, a battery of immunostains can aid in confirming the adrenocortical 

origin of the tumor, such as α-inhibin (Arola et al, 2000), calretinin (Zhang et al, 

2008), synaptophysin, melanA (MART-1) (Ghorab et al, 2003), SF-1 (Sbiera et al, 2010; 

Duregon et al, 2013b).Furthermore, other molecular markers, like the combined 

expression of the microRNA miR483-3p and Smad4, have been investigated and 

confirmed as potential diagnostic complements to the Weiss score, particularly in 

case of borderline tumors (Wang et al, 2014). 

Tumor size, lymph nodes involvement and the presence of distant metastases are 

the parameters commonly used for adrenocortical carcinoma staging, based on the 

traditional TNM (Tumor, Node, Metastasis) classification system (MacFarlane, 1958; 

Sullivan et al, 1978), modified in 2004 by the World Health Organization (WHO) and 

Union for International Cancer Control (UICC) (De Lellis et al, 2004) and further 

revised by the European Network for the Study of Adrenal Tumors (ENSAT) 

(Fassnacht et al, 2009). This system defines 4 stages for ACC (Tab. 1): tumors strictly 

localized to the adrenal gland are considered as stage I (≤ 5 cm diameter) and II (> 5 

cm diameter); infiltration in the surrounding tissue or involvement of locoregional 

lymph nodes characterize the stage III, whereas stage IV is defined by the presence 

of distant metastases.  

 

 

 

 

 

 

 

 

Table 1. TNM classification systems (UICC/WHO versus  ENSAT modifications)  for ACC staging. 
T1, tumor ≤ 5 cm; T2, tumor > 5 cm; T3, tumor infiltration into surrounding tissue; T4, tumor invasion 
into adjacent organs or venous tumor thrombus (ENSAT classification). N0, negative lymph nodes; N1, 
positive lymph node(s). M0, no distant metastases; M1, presence of distant metastases. 

STAGE 
UICC/WHO 

(2004) 
ENSAT 
(2009) 

I T1, N0, M0 T1, N0, M0 

II T2, N0, M0 T2, N0, M0 

III 
T3, N0, M0 
T1-2, N1, M0 

T1-2, N1, M0 
T3-4, N0, M0 

IV 
T1-4, N0-1, M1 
T3-4, N1, M0 
T4, N0, M0 

T1-4, N0-1, M1 
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A recent study from ENSAT suggested to move stage III tumors to stage IV when 

lymphonodes are compromised (Libé et al, 2015); moreover, stage IV has been 

proposed to be further stratified in a, b, c subgroups. In fact, the proposed staging 

combined with grading, R status, age and symptom parameters (GRAS 

classification) have been shown to refine the prognostication of the tumor 

classification (Libé et al, 2015). 

 

2.4. Prognosis and predictive markers 

Despite ACC prognosis is generally unfavorable, with a median survival less 

than 12 months in advanced stage (Sidhu et al, 2004; Kebebew et al, 2006), a marked 

difference among patient exists for disease progression, recurrence and overall 

survival, thus mainly being due to the pathology heterogeneity. In fact, even in case 

of advanced disease, survival can range from few months to several years and an 

exceptional prolonged survival (> 10 years) has been observed in a restricted subset 

of patients with recurrent and metastatic ACC (Hermsen et al, 2008). Age at 

diagnosis, increased cortisol production, as well as the tumor growth rate, correlate 

with a decreased overall survival (Abiven et al, 2006; Assié et al, 2007; Berruti et al, 

2014; Else et al, 2014b). Also, it has been shown that an increased intra-abdominal fat 

associates with worsening survival (Miller et al, 2012). 

The three major criteria to define the disease free survival for localized ACCs and 

the overall survival for metastatic carcinomas are represented by the complete 

surgical resection (R0), the ACC grading (related to the proliferation index) and the 

staging. Tumors completely resected associate with a 5-year survival ranging from 

16 to 55%, whereas this percentage decreases to 5% and the median survival to 12 

months in case of incomplete tumor removal (Schulick& Brennan, 1999; Paton et al, 

2006; Bilimoria et al, 2008; McCauley & Nguyen, 2008; Erdogan et al, 2013). Tumor 

staging is mandatory to assess prognosis, since ACCs with stage I-II  have a better 

outcome than stage III and IV, according to different series (Icard et al, 2001; 

Fassnacht et al, 2009; Lughezzani et al, 2010; Kerkhofs et al, 2013, Libé et al, 

2015).Finally, the proliferation index, such as the percentage of Ki67 and the mitotic 

count, can aid in defining ACC prognosis: in fact, Ki67 has been found to represent 

a single factor predicting recurrence in localized ACCs after R0 resection 
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(Beuschlein et al, 2015) and to be an important prognostic parameter of overall 

survival in stage IV ACCs (Libé et al, 2015); high tumor grade, defined as more than 

20 mitoses per HPF, represents another unfavorable prognostic factor (Miller et al, 

2010; Else et al, 2014b). As reported above, a combination of the new proposed 

staging, grading, R status, age and symptom parameters resulted in a more robust 

prognostication (Libé et al 2015). 

Global gene expression analysis have identified several potential biomarkers that 

could aid in improving diagnosis and prognosis in addition to the classical 

histological parameters. Transcriptome studies (de Reynies et al, 2009; Giordano et 

al, 2009; Laurell et al, 2009; Assié et al, 2010) have described different expression 

profiles discriminating ACCs from ACAs, and identified molecular characteristics 

able to stratify ACC patients into two subgroups, namely clusters C1A and C1B, 

associated with different outcomes: the C1B group presents a marked better 5-year 

survival rate and a transcription signature characterized by the expression of genes 

related to cell metabolism, intracellular transport, apoptosis and differentiation. 

Instead, the poor outcome group C1A generally presents an increased expression of 

transcriptional control and cell cycle-associated genes and high histologic grade, as 

well as TP53 and CTNNB1 mutations (Ragazzon et al, 2010; Ip et al, 2015). Moreover, 

a combination of three genes (BUB1B, PINK1, DLG7) seems to be predictive of 

clinical outcome, identifying subgroups of ACC with different free-disease and 

overall survival regardless to disease stage and grade (de Reyniès et al, 2009; 

Fragoso et al, 2012). DNA methylation and microRNAs expression can also 

discriminate two ACC subgroups with different outcomes, and hypermethylation 

was associated with poor survival (Barreau et al, 2013; Assié et al, 2014). Other 

factors have been reported as associated with poor prognosis in ACC patients, 

including overexpression of pituitary tumor transforming gene 1 (PTTG1) (Demeure 

et al, 2013), low expression of transforming growth factor β signaling mediator 

SMAD and GATA6 (Parviainen et al, 2013) and cyclin E overproduction (Tissier et al, 

2004). 
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2.5. Molecular pathology 

The rarity and heterogeneity of adrenocortical carcinoma are the main 

challenging aspects to be faced in order to elucidate the molecular mechanisms 

underlying the disease evolution, from the onset to the development and 

progression. Once the molecular mechanisms have been elucidated it might be 

possible to develop new specific diagnostic and prognostic tools, as well as to 

improve patient follow-up and treatment. Over recent decades a number of studies 

have identified different biomarkers with diagnostic and prognostic impact by 

employing various approaches. Molecular studies based on the assessment of 

candidate genes led to the elucidation of the genetics of rare syndromes associated 

with adrenocortical tumors, as well as to the identification of the major molecular 

pathways altered in ACC. The recent advent of high-throughput methodologies, 

including genome-wide sequencing, exome sequencing, transcriptome, miRNome 

and methylome, allowed to identify subgroups of tumor characterized by distinct 

and specific genetic markers, molecular pathway activation patterns and clinical 

behavior. Moreover, the dysregulation of signaling pathways involved in 

organogenesis and homeostatic maintenance of the adrenal cortex seems to also 

play a pivotal role in adrenocortical disease. 

 

2.5.1. Genetics 

Adrenocortical tumors show a complex landscape of genetic alterations which 

are cumulative towards malignant transformation. ACCs are particularly 

characterized by a high degree of chromosomal instability, one of the main 

hallmarks of cancer (Hanahan & Weinberg, 2011) which leads to a rapid 

accumulation of somatic mutations (the mutator phenotype phenomenon) (Loeb, 

2011), thus contributing to the disease progression (acceleration of the mutagenesis 

process and acquiring of selective advantage) and the development of resistance to 

therapy. The genetic dissection of ACC, including the identification of genomic 

aberrations, specific gene expression profiles, mutations and epigenetic alterations, 

allowed to define the molecular signature of malignant transformation of 

adrenocortical cells and a better classification of adrenocortical carcinomas. 
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� Chromosomal aberrations 

The first characterization of the gross morphological observation of ACC was 

performed thanks to karyotyping studies, demonstrating the presence of a large 

number of chromosomal aberrations, such as segmental duplications, 

rearrangements and aberrant chromosomes. Further cytogenetic and flow 

cytometry studies corroborated these findings, demonstrating that most ACCs 

exhibit aneuploidy/polyploidy compared to ACAs, which are almost always 

diploid (Klein et al, 1985; Bowlby et al, 1986; Limon et al, 1987; Marks et al, 1992). 

Clonal studies have shown that ACCs are mostly of monoclonal origin, whereas 

ACAs can be both monoclonal and polyclonal (Beuschlein et al, 1994; Gicquel et al, 

1994; Blanes & Diaz-Cano, 2006), thus suggesting the hypothesis of a multistep 

process for adrenocortical tumorigenesis, in which a growth advantage of some 

clones is established: the starting event may be the proliferation of a polyclonal cell 

population triggered by paracrine/endocrine stimuli, with a successive 

accumulation of mutations that are thought to accelerate the neoplastic progression 

of normal cells toward benign lesions and, eventually, to carcinoma (Bernard et al, 

2003; de Fraipont et al, 2005).  

With the advent of the Comparative Genomic Hybridization (CGH) techniques 

these studies were extended to the sub-chromosomal levels, revealing a complex 

pattern of chromosomal aberrations in ACCs compared to ACAs, with multiple 

regions of gains and losses (Kjellman et al, 1996; Zhao et al, 1999; Dohna et al, 2000; 

Sidhu et al, 2002; Gruschwitz et al, 2010; Barreau et al, 2012), that were shown  to 

often harbor oncogenes and oncosuppressor genes, respectively. Chromosomal 

gains were frequently observed at chromosomes 4, 5, 9, 12 and 19, while 

chromosomal losses were most commonly seen at chromosomes 1p, 17p, 22, 2q, 11q. 

The presence of genetic aberrations in ACC were correlated with tumor size 

(Kjellman et al, 1996; Zhao et al, 1999; Sidhu et al, 2002), thus corroborating the 

hypothesis that they may cumulate during the neoplastic progression. Microsatellite 

studies have also allowed to demonstrate that ACCs frequently present allelic losses 

(Loss Of Heterozigosity, LOH) or disequilibrium in the TP5317p13 region (85%), the 

MEN1 11q13 locus (92%) and the Carney Complex 2p16 region (90%) (Kjellman  et 

al, 1996; Gicquel et al, 2001). Some other alterations (amplifications at chromosomes 

6q, 7q and 12q, and losses in chromosomes 3, 8, 10p, 16q and 19q) were associated 

with a decreased overall survival in ACC patients (Stephan et al, 2008). In a more 
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recent study, a higher-resolution CGH array was used to assess the diagnostic and 

prognostic value of chromosomal abnormalities in adrenocortical tumors (Barreau et 

al, 2012): alterations were observed more frequently in ACCs (44%) compared with 

ACAs (10%) and chromosomal gains at 5, 7, 12, 16, 19 and 20 and losses at 13 and 22 

were confirmed. Within these regions a group of genes, including fibroblast growth 

factor 4 (FGF4), cyclin-dependent kinase 4 (CDK4) and cyclin E1 (CCNE1), was 

identified to be potentially involved in adrenocortical tumorigenesis. Frequent gains 

at 9q34 region, which includes the Steroidogenic Factor 1 (SF-1), were also found in 

adenomas: the same region was previously shown to be gained in pediatric ACCs 

(Figueiredo et al, 1999; James et al, 1999; Pianovski et al, 2006b). According to  mRNA 

overexpression and strong immunostaining, SF-1 was suggested to be involved in 

adrenal tumorigenesis (Figueiredo et al, 2000; Almeida et al, 2010). Moreover, 

Barreau et al (2012) developed a diagnostic tool to differentiate ACCs from ACAs 

(100% sensitivity, 83% specificity) by using a combination of DNA copy number 

estimates at six loci (5q, 7p, 11p, 13q, 16q, and 22q). Chromosome 1, 5, 7 and 22 were 

further confirmed as discriminating between adenomas and carcinomas (Ronchi et 

al, 2013), while frequent recurrent copy number variations (CNVs) at 5p15 and 

deletions at 22q12.1 have been recently identified (Juhlin et al, 2015). Notably, these 

regions contain TERT and ZNRF3 genes respectively, the latter being the most 

commonly altered gene in ACC (Assié et al, 2014; Juhlin et al, 2015; Zheng et al, 

2016). 

� Gene mutations 

Although adrenocortical carcinoma commonly occurs sporadically, it can manifest 

in the setting of some rare heritable genetic syndromes which have been well 

defined at the level of their genetic basis, contributing to the identification of driver 

gene mutations relevant to the molecular pathogenesis of ACC. 

TP53 and the 17p13 locus. The chromosomal region 17p13 harbors the gene 

encoding the oncosuppressor p53, which mainly acts by halting the cell cycle 

and/or inducing apoptosis and senescence in response to DNA damage or other 

stress stimuli. It represents one of the most frequently mutated gene in human 

cancer (Hollstein et al, 1991; Vogelstein et al, 2000; Suzuki & Matsubara, 2011), with 

both tumor-specific mutations of TP53 gene and alterations of the negative 



Introduction 

18 

regulators of the p53 protein, thus leading to the final effect of inactivation of the 

oncosuppressor signaling pathway. Germline mutations of TP53 are found in about 

70% of patients with Li-Fraumeni syndrome, which associates with an increased 

susceptibility to ACC. For this reason, the presence of TP53 alterations have been 

investigated in sporadic ACCs. A specific germline mutation in the exon 10 of TP53 

gene (p.R337H) was found in the Southern Brazilian population and it is present in 

up to 90% of ACC patients, with the higher prevalence in children (Latronico et al, 

2001; Ribeiro et al, 2001). While germline TP53 mutations are rare in adult ACC 

patients, somatic mutations have been described in 25-70% of cases (Reincke et al, 

1994; Barzon et al, 2001a; Libè et al, 2007; Waldmann et al, 2012) and LOH at the 

17p13 locus can be described in more than 50% of cases (Gicquel et al, 2001; Soon et 

al, 2008a). According to these findings, TP53 inactivation has been proposed to 

follow the classic Knudson’s two-hit hypothesis for a tumorsuppressor gene, in 

which both alleles are inactivated: in the presence of a germline or somatic TP53 

mutation, a second genetic event, such as a promoter region methylation or LOH, 

determines the inactivation of the second allele. However, since TP53 point 

mutations and 17p13 LOH do not completely overlap, an alternative inactivating 

mechanism has to be involved. More recently the presence of somatic TP53 

inactivation has been demonstrated to represent a molecular signature of ACC and 

to correlate with poor outcome in patients (Ragazzon et al, 2010). Furthermore, also 

the presence of some less common variants of TP53 polymorphisms have been 

associated with a poor outcome in adult ACC patients (Ignaszak-Szczepaniak et al, 

2006; Heinze et al, 2014). The relatively high frequency of TP53 mutations in ACC 

(~15%) has been confirmed in other recent studies investigating the genomic 

landscape of ACC (De Martino et al, 2013; Assié et al, 2014; Ragazzon et al, 2014; 

Juhlin et al, 2015; Zheng et al, 2016), which identified other cell cycle-related genes 

also altered in ACC, including the oncosuppressors CDKN2A and RB1 and the 

oncogenes MDM2 and CDK4. These findings indicate that a global impairment of 

the cell-cycle regulation constitutes a key element in sustaining cancer cell 

proliferation in ACC. 
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 Wnt/β-catenin-related genes. Familial Adenomatous Polyposis (FAP) or 

Gardner's Syndrome, is characterized by the development of multiple colonic 

polyps and is caused by germline inactivating mutations of the APC gene (Nishisho 

et al, 1991; Half et al, 2009). It has been demonstrated that, in many cases, it leads to 

the development of bilateral adrenocortical nodular hyperplasia, general non-

functional and benign, although ACCs have also been described (Marshall et al, 

1967; Marchesa et al, 1997; Kartheuser et al, 1999; Smith et al, 2000; Bläker et al, 2004; 

Gaujoux et al, 2010). APC is a downstream regulator of the Wnt pathway, a network 

of proteins involved in regulating fundamental cell processes during embryogenesis 

and tissue morphogenesis and homeostasis, such as migration, proliferation, 

differentiation, survival, stem cell self-renewal and fate (Moon et al, 2004; Kim et al, 

2013). Wnt signalization is mediated by the interaction between a Wnt ligand and a 

Frizzled family receptor expressed on cell membrane, thus inducing a reaction chain 

which results in the inactivation of the β-catenin destruction complex. This latter is a 

multiprotein complex, constituted by APC protein, axin and GSK3-β enzyme which 

constitutively phosphorilates β-catenin, addressing it toward a proteasome-

mediated degradation. The β-catenin still present in the cytosol localizes at the cell 

membrane, being part of adherent junctions in epithelial tissues. Once the pathway 

is activated,  β-catenin is stabilized and accumulates in the cytoplasm, from which it 

is further translocated to the nucleus, where it acts as a transcriptional factor, 

regulating the expression of target genes (Fig. 8). In Gardner’s syndrome, APC loss 

causes an abnormal constitutional activation of the Wnt pathway, leading to tumor 

development in many organs, including adrenals. A constitutively activated Wnt 

signalization has been frequently observed in many types of cancer (Karim et al, 

2004), associating with cell proliferation, cell motility, epithelial-to-mesenchymal 

transition and resistance to apoptosis (Kim et al, 2013). 

Although in sporadic ACTs somatic APC mutations are rare events (Gaujoux et al, 

2010), CTNNB1 (β-catenin) activating mutations have been found in both ACAs and 

ACCs (Tissier et al, 2005;Gaujoux et al, 2008;Masi et al, 2009) and the up-regulation of 

β-catenin was confirmed by immunohistochemical nuclear staining (Tissier et al, 

2005). CTNNB1isone of the main driver genes in ACC (10-16%), but other factors 

that are part of the Wnt/β-catenin pathway seem to be involved in adrenal 

carcinoigenesis (De Martino et al, 2013; Assié et al, 2014; Juhlin et al, 2015; Zheng et 

al, 2016):in particular, the ZNRF3 gene, encoding a negative regulator of the Wnt/β-
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controlling gene transcription, also through epigenetic mechanisms (Feng et al, 2017 

in press). Interestingly, other genes involved in histone modification (MLL, MLL2, 

and MLL4) and chromatin remodeling (ATRX, DAXX)has been found altered in 

ACC (Zheng et al, 2016), suggesting a role for epigenetic deregulation in 

adrenocortical carcinogenesis. 

PRKAR1A gene. Protein Kinase cAMP-dependent Type 1 Regulatory Subunit α 

(PRKAR1A) is the main mediator of cAMP signaling (Bossis & Stratakis, 2004) and 

the presence of mutations of its gene is one of the main cause of the Carney 

Complex Syndrome (Kirschner et al, 2000). PRKAR1A has been also demonstrated to 

be involved in endocrine tumorigenesis (Bertherat, 2001) and, particularly, in the 

adrenal tumor development: LOH of 17q22–24, the locus harboring the PRKAR1A 

gene, was found in 23% of ACAs and 53% of ACCs and direct sequencing of 

PRKAR1A gene revealed inactivating mutations in 10% of ACAs, with parallel 

decrease of mRNA and proteins levels (Bertherat et al, 2003). In a more recent study, 

PRKAR1A inactivating mutations were also found in ACCs (11%) (Zheng et al, 

2016), thus expanding the role of PKA signaling in adrenocortical malignancy 

development. 

� Epigenetics 

In the last two decades has been widely demonstrated that the presence of cancer-

specific mutations is not sufficient to exhaustively explain the mechanisms 

underlying tumor development and progression. Epigenetic changes, including 

DNA methylation and microRNA expression dysregulation, are thought to play a 

central role in almost every step of tumorigenesis and tumor evolution, and a 

complex relationship between genetics and epigenetics seems to exists to final 

determine the acquisition of hallmark properties of cancer (Timp & Feinberg, 2013; 

Chatterjee et al, 2017 in press). Particularly for what concerns tumor aggressiveness, 

the dynamism of epigenetics marks appears to better reflect and to potentially 

sustain the phenotypical transitions taking place during cancer cell invasion and 

metastasis. Epigenetic studies of ACC revealed the presence of specific methylation 

and microRNA profiles which allows to better classify the malignancy, with both 

diagnostic and prognostic significance. 
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among 27˙578 CpG sites analyzed, 212 CpG islands in promoter regions of genes 

involved in regulating cell cycle, apoptosis and transcription, were found 

significantly hypermethylated in ACCs compared to ACAs and normal tissues 

(Fonseca et al, 2012). From a third study comes a further confirmation of ACC-

specific hypermethylation in promoter regions, also correlating with prognostic 

features in patients (Barreau et al, 2013). Furthermore, two subgroups of ACC were 

identified: a "CIMP (CpG Island Methylator Phenotype)-high" group, showing high 

methylation levels associated with TP53 inactivation; and a "CIMP-low" group, 

characterized by lower methylation and Wnt signaling activation. These findings 

indicate that different mechanisms are responsible for the transcriptional 

dysregulation and that ACCs with similar phenotype can be heterogeneous 

concerning the molecular mechanisms related to tumorigenesis. More recently, the 

prognostic value of CpG island methylation of some candidate genes has been 

confirmed to be an independent predictor for recurrence and death in ACC, 

together with the classic clinical parameters  (Jouinot et al, 2017). 

MicroRNAs. MicroRNAs (miRNAs) are a class of evolutionary conserved, small 

(18-25 nucleotides) non-coding RNAs that post-transcriptionally regulate gene 

expression by directly targeting mRNAs: they specifically bind the mRNA 3′-UTR 

regions, affecting their stability and translation, or, as recently demonstrated, they 

may target protein coding and 5'-UTR regions (Vasudevan, 2012). After being 

synthesized into the nucleus, miRNAsare exported to the cytosol and act within 

multiproteic effector complexes, the so-called RNA-induced silencing complexes 

(RISCs), which are guided through complementary base pair to their targets (Fabian 

et al, 2010; Czech & Hannon, 2011). Several miRNAs have been identified as 

regulators of genes involved in crucial biological processes, including 

organogenesis, hematopoiesis, cell development, proliferation and invasion, and 

miRNA dysregulation, such as overexpression or deletion, has been associated with 

initiation and development of many types of tumor (Lujambio & Lowe, 2012; 

Markopoulos et al, 2017; Fang et al, 2017): in fact, genomic instability andaberrations 

of mechanisms related to miRNA processing and epigenetic regulation have been 

described as involved in miRNA expression deregulation (Fig. 10) (Calin et al, 2004; 

Lin & Gregory, 2015). Furthermore, miRNA profiling has been shown to be 

potentially used as tumor biomarker easily available, since miRNAs can be directly 
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the pro-apoptotic proteins BCC3/PUMA, thus protecting cells from apoptosis 

(Veronese et al, 2010). Similar observations were further made also in the human 

adrenocortical carcinoma cell line NCI-H295R (Ozata et al, 2011), confirming the role 

of miR-483-3p as apoptotic regulator. Among the overexpressed miRNAs, high 

miR-210 was also associates with ACC aggressiveness and poor prognosis (Duregon 

et al, 2014) and it results of particular interest since it plays a crucial role in cell 

response to hypoxia (Chan et al, 2012), one of the major cancer hallmark. miR-195 is 

another main deregulated miRNA in ACC, particularly showing down-regulation 

which significantly associates with poor overall survival (Soon et al, 2009). Evidence 

suggests that it promotes apoptosis while inhibits proliferation, as demonstrated 

also in NCI-H295R cells (Ozata et al, 2011). miR-195 has been found down-regulated 

also in childhood ACC together with miR-99a and miR-100, the latter ones having as 

targets several components of the IGF1 signaling pathway (Doghman et al, 2010). A 

specific group of miRNAs belonging to the imprinted DLK1/MEG3 cluster 

(consisting of multiple maternally expressed noncoding RNA genes and paternally 

expressed protein-coding genes) were found down regulated in non-aggressive 

ACC compared to the aggressive ones (Chabre et al, 2013; Assié et al, 2014). 

Deregulated expression of a set of specific miRNAs, including some of the previous 

ones, and their ability to define malignancy have been recently validated (Koperski 

et al, 2017). Other studies have investigated the role of miRNA-processing enzyme 

in ACC tumorigenesis and a significant overexpression of TARBP2, DICER1 and 

DROSHA transcripts has been described in ACC (Caramuta et al, 2013). Another 

regulator of miRNA biogenesis, namely LIN28, has been found underexpressed in 

aggressive ACC compared to their benign counterparts (Faria et al, 2015): this is a 

RNA-binding protein which blocks miRNA processing by Drosha in the nucleus 

and Dicer in the cytosol (Tsialikas & Romer-Seibert, 2015). Finally, miRNAs have 

been evaluated as ACC prognosis markers in different studies assessing the 

circulating miRNA levels in ACC patient blood, either plasma or serum (Chabre et 

al, 2013; Patel et al, 2013; Szabo et al, 2014; Salvianti et al, 2017), and several miRNAs 

differentially expressed in ACC and ACA have been identified: has-miR-483-p5 

levels increase in ACC patients and correlate with tumor stage and prognosis, also 

differentiating non-aggressive from aggressive carcinomas; on the other hand, low 

levels of hsa-miR-195 can discriminate between adenomas and carcinomas, being 

predictive of recurrence risk in ACC patients and confirming the previous data on 
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tumor samples. In addition, some other circulating miRNAs have been described, 

such as the down-regulated hsa-miR‐335 (Chabre et al, 2013) and the overexpressed 

hsa-miR‐100, hsa-miR‐181b, hsa-miR‐184, hsamiR‐210 (Szabo et al, 2014) and hsa-

miR‐34a (Patel et al, 2013). Although the global impact of miRNA deregulation on 

ACC pathogenesis and evolution has to be fully elucidated (Igaz et al, 

2015;Cherradi, 2016) and further validation studies are needed, miRNAs might 

represent promising non-invasive biomarkers for adrenocortical malignancy. 

� Integrated genomic characterization of ACC 

Studying the genomics of adrenocortical tumors at different levels has provided 

several markers able to define a molecular malignancy signature, allowing to better 

discriminate ACC from ACA and to be predictive for patient outcome. Globally, 

they revealed a modulation of gene expression leading to the alteration of pivotal 

signaling pathways regulating cell cycle, chromosomal maintenance, cell survival, 

inflammation, immunity. So far, integrating genomics of ACC allowed to 

discriminate different subgroups that correlate with specific phenotype and 

prognosis (Faillot & Assié, 2016). Moreover, by combining different genomic 

approaches (whole genome sequencing, exome sequencing, SNP array, DNA 

methylation analysis, mRNA expression array, miRNA sequencing), a 

comprehensive "omics"-based ACC classification has been generated in two 

independent international cohorts (Assié et al, 2014; Zheng et al, 2016), which 

concordantly identified two main molecular subgroups of ACC, one counting the 

most aggressive tumors (C1A cluster), and the other defining the most indolent 

forms (C1B cluster), confirming what shown in the previous studies. A third 

molecular subgroup, associating with an intermediate prognosis, could be defined 

between the two. Globally, the two studies confirmed that chromosomal instability 

is the main signature of ACC, with LOH of the IGF2 locus (11p15) as the most 

frequent. The assessment of copy-number alterations and LOH revealed recurrent 

high-level amplifications of TERT, TERF2, CCNE1 and CDK4 and deletions of 

ZNRF3, CDKN2A, RB1. An additional deletion peak was detected at the 

chromosomal locus related to the long noncoding RNA LINC009. Exome and RNA 

sequencing defined the driver events in ACC: both studies identified TP53, CTNNB1 

and MEN1 as the most frequently mutated genes, together with DAXX (Assié et al, 

2014) and PRKAR1A and RPL22 (Zheng et al, 2016). Collectively, gene alterations 
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(mutations, high-amplifications, deletions) result in affecting three major pathways 

in ACC: β-catenin pathway (cell growth and proliferation), p53/Rb signaling (cell 

cycle regulation) and chromatin remodeling (epigenetic regulation). DNA 

methylation profiles were able to well defined the ACC subgroups, particularly 

associating with patient prognosis: the molecular group with the better outcome 

resulted as non-CIMP, while the higher aggressive ACCs presented 

hypermethilation of CpG island in gene promoters (CIMP), with a further 

discrimination between CIMP-high and CIMP-low (Assié et al, 2014; Zheng et al, 

2016). Finally, also miRNA expression profiles were able to discriminate different 

groups of ACC associated with different patient outcome. These results indicate that 

a specific ACC classification might be used to integrate the molecular signature with 

the classical clinical and pathological parameters, thus improving not only the 

diagnosis and prognosis accuracy, but also the global management of ACC patients, 

with the possibility of developing new personalized therapies (Fig. 11). 

Figure 11. Potential ACC re-classification resulting from the integration of the specific molecular 
features with the classical clinical and pathological parameters. Adapted from Armignacco et al, 
2017. 
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2.5.2. Cell signaling pathways: the cross-link between the normal 

homeostatic adrenal maintenance and neoplasia 

Tissue development and homeostatic maintenance are strictly regulated by 

specific factors and molecular mechanisms. This is even more true for the adrenal 

cortex, in which a morphological and functional differentiation has to be maintained 

between the three zones throughout life. The normal adrenal homeostasis is 

mediated by a stem/progenitor cell population which has been demonstrated to be 

located in the peripheral capsular and subcapsular compartment and that is 

responsible for the whole adrenal cortex replenishment, with a centripetally 

displacement of cells toward the cortico-medullary boundary (Vinson, 2003; Kim et 

al, 2009; King et al, 2009; Huang et al, 2010; Wood & Hammer, 2011; Freedman et al, 

2013; Vidal et al, 2016). Notably, the dysregulation of the signaling pathways 

underlying adrenal organogenesis and homeostasis are the same mainly involved in 

adrenocortical disease, including IGF2, Wnt and Protein Kinase A (PKA) pathways, 

as well as telomere protection and maintenance mechanisms, that have been found 

to be implicated in both adrenal function and dysfunction (Penny et al, 2017). 

 IGF2/IGF-1R. As previously described, IGF2 is one of the most common up-

regulated genes in adrenocortical carcinoma, but it is also highly expressed in the 

fetal adrenal (Voutilainen & Miller, 1988; Rainey et al, 2001). IGF2 is part of the IGF 

family of ligands (counting also IGF1) and, together with the IGF receptors (IGF1-R, 

IGF2-R and insulin receptor isoform A, IR-A), the IGF binding proteins (IGFBP 1-6) 

and the IGF binding proteins proteases, constitutes the IGF signaling pathway. The 

interaction between the secreted ligand IGF2 and the IGF-1R activates the 

downstream AKT/PI3K and MAPK signaling to regulate cell metabolism, 

differentiation, proliferation and apoptosis (Kha & Lackner, 2010) (Fig. 12). In 

human adrenal, the IGF pathway mediates ACTH-induced prenatal growth, as well 

as fetal and adult steroidogenesis and homeostatic maintenance (Han et al, 1992; 

l'Allemand et al, 1996; Mesiano & Jaffe, 1997). The main role of IGF2 lies in fetal 

development, and the evidence that IGF2 expression rapidly drops after birth 

(Bolgorosky et al, 2009) suggests a possible mechanisms of fetal/embryonic program 

reactivation in ACC, with the establishment of a paracrine/autocrine mitogenic 

effect of the IGF2/IGF1-R axis, as also observed in ACC cell lines (Logié et al, 1999). 

In association with IGF2, also IGFBP2 results increased in ACC and correlates with 
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complex inducing the expression of two specific target genes, DAX1 (Dosage-

sensitive sex reversal, Adrenal hypoplasia congenita critical region on the X 

chromosome, gene 1) and inhibin-α, which are involved in regulating adrenal 

development and adrenocortical cell stem niche maintenance (Parker & Schimmer, 

1997; Parker et al, 2002; Gummow et al, 2003; El-Khairi et al, 2011; Scheys et al, 2011). 

Moreover, SF-1 also interacts with the GATA transcription factors: GATA-4, which 

regulates, in the fetal adrenal, the expression of gene related to steroidogenesis 

(inhibin-α, CYP17, StAR) (Tremblay & Viger, 2003) and that, under LH control, 

drives gonadal differentiation (Looyenga & Hammer, 2006); and GATA-6, which 

induces adrenal differentiation and regulates the expression of steroidogenesis 

enzymes (StAR, CYP11A1, CYP17) in the adult gland (Jimenez et al, 2003; Tremblay 

& Viger, 2003). Deregulation of these factors may play a role in adrenal 

tumorigenesis: in fact, increased GATA-4 mRNA and protein expression have been 

described in both ACAs and ACCs, while GATA-6 seems to be down-regulated, 

mainly in carcinomas (Barbosa et al, 2004; Kiiveri et al, 2004; Kiiveri et al, 2005). 

Indeed, SF-1 seems to play an important role in adrenocortical proliferation 

(Figueiredo et al, 2000; Doghman et al, 2007; Almeida et al, 2010): it has been shown 

an overexpression in pediatric ACCs, also related to frequent gains of its 

chromosomal region 9q34 (Figueiredo et al, 1999; James et al, 1999; Pianovski et al, 

2006b), and SF-1 immunostaining allows to identify cell adrenocortical origin with 

high diagnostic accuracy, as well as high prognostic value (Sbiera et al, 2010; 

Duregon et al, 2013b).  

 As previously illustrated, Wnt/β-catenin is one of the main cell signaling 

pathways altered in ACC, mostly resulting in the up-regulation of the β-catenin 

trascriptional activity. The Wnt pathway presents a complex degree of regulation, 

which includes ligand availability, secretion of different types of frizzled receptor 

inhibitors and autocrine regulation of Wnt ligands. More recently, a key regulation 

system involving the R-spondin-ZNRF3/RNF43 signaling module has been 

described (Fig. 13): ZNRF3 and RNF43 are membrane E3 ligases which negatively 

regulate Wnt by promoting ubiquitination and degradation of Wnt receptors; R-

spondin proteins (RSPO1-4), instead, serve as antagonists of ZNRF3/RNF43, 

suppressing their inhibitory action. In cancer cells, the maintenance of a sustained 

Wnt/β-catenin signaling requires to overcome ZNRF3/RNF43-mediated feedback 
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WNT-induced carcinogenesis, whereas a decrease in PKA activity associates with 

higher levels of WNT-related gene expression, thus favoring the acquisition of 

malignant features (Drelon et al, 2016). 

Other growth factors. The Fibroblast Growth Factors (FGFs) constitute another 

family of ligands commonly involved in development, homeostasis and repair 

processes, as well as in cancer (Carter et al, 2015). They can activate several different 

pathways depending on cell context, including Ras/MAPK (cell proliferation and 

differentiation), PI3K/AKT (anti-apoptotic signaling) and PKC (cell migration) 

(Turner & Grose, 2010). Studies in mice revealed that FGF signaling is essential for 

both fetal adrenal development and adult gland growth (Guasti et al, 2013) and it 

has been proposed that their signalization may be implicated in ACC biology, since 

some expression profile analysis have identified an enrichment of FGFR1 and 

FGFR4 receptors in ACCs compared to ACAs (de Fraipont et al, 2005; Laurell et al, 

2009; Brito et al, 2012). Indeed, b-FGF2 seems to be the best candidate to be 

evaluated in adrenocortical tumors, as it is highly expressed in adrenal tissue and it 

has been showed to have a powerful mitogenic action in fetal and adult adrenal cell 

cultures (Mesiano et al, 1991; Feige et al, 1998), as well as in the adrenocortical cell 

line NCI-H295R (Boulle et al, 2000). 

The Transforming Growth Factor-β1(TGF- β1) is another modulator of cell growth 

involved in the regulation of fetal and adult adrenal. A decreased expression of its 

mRNA has been observed in ACC, whereas it is not true for its receptor (Bocuzzi et 

al, 1999; Arnaldi et al, 2000). 

The Epidermal Growth Factor Receptor (EGFR) is a tyrosine kinase-coupled 

receptor which mediates a signalization involved in the regulation of cell fate, 

proliferation, survival, cell cycle control, differentiation and motility through the 

Ras/Raf/Mek/Erk pathway (Shields et al, 2000). Immunohistochemistry studies 

have shown that EGFR overexpression is almost ubiquitous in ACCs (Kamio et al, 

1990; Edgren et al, 1997; Adam et al, 2010), even if frequency of somatic activating 

mutations is low. Recently, it has been shown that co-inhibiting EGFR and IGF-1R 

signaling significantly decrease cell proliferation and viability (Xu et al, 2016). 

Telomeres, TERT and TERF2 expression. The adrenal gland acquires its final 

structure and function thanks to a remodeling process of the fetal zone soon after 
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birth and throughout childhood, in which a balance between proliferation, 

apoptosis and differentiation is established in order to reach the steroidogenic cell 

number sufficient to sustain the global function of the gland. Normal cells can 

replicate within a limited number of division, after that they enter a quiescent phase, 

the so-called "replicative senescence". This phenomenon is due to the telomere 

shortening at the chromosome ends: their function of stabilizing chromosomes and 

protecting their ends from nuclease activity and DNA damage response (de Lange, 

2004; Verdun & Karlseder, 2007) is progressively lost, driving cells toward 

quiescence. However, cells with a high proliferative rate, such as stem/progenitor 

cells, germ cells or neoplastic cells, can avert telomeres shortening by activating the 

enzyme telomerase. This is a ribonucleoprotein complex consisting of a protein 

component TERT (Telomerase Reverse Transcriptase), with reverse transcriptase 

activity, and a ribonucleotide subunit TERC (Telomerase RNA Component), which 

serves as a template for telomere elongation, catalyzing the extension in the 5'→3' 

direction (Bekaert et al, 2004; Cohen et al, 2007; Shay, 2016). Telomerase and telomere 

maintenance play a pivotal role in adrenal homeostasis, with increased telomerase 

expression and telomere length in populations supposed to be part of the adrenal 

stem niche (Else, 2009). Instead, normal adult adrenal cells lose telomerase activity 

and telomeres shorten every division, thus inducing a decline of the cell replicative 

potential (Yang et al, 2001). Nevertheless, it has been demonstrated that restoring 

telemerase activity by transfecting cells with the hTERT subunit prevents telomeres 

from shortening and induces a rapid cell proliferation; contrarily, when neoplastic 

cells are deprived from telomerase, they progressively lose their malignant 

properties (Sun et al, 2004). Notably, the investigation of the telomere length 

maintenance mechanism (TMM) in adrenal tumors demonstrated that malignant 

tissues present at least one TMM compared to benign tumors and normal adrenal, 

as also confirmed in adrenocortical cell lines (Else et al, 2008). Moreover, it has been 

shown that ACCs have a significantly higher telomerase activity compared to ACAs 

and it correlates with tumor dimension (Mannelli et al, 2000). The role of telomeres 

in the etiology of adrenocortical neoplasia is even more supported by the recent 

ACC genomic characterization (Assié et al, 2014; Pinto et al, 2015; Zheng et al, 2016): 

TERT has been identified as one of the candidate driver genes showing frequent 

high-level amplifications, together with current focal amplifications of TERF2 
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(Telomeric Repeat Binding Factor 2), thus indicating that this key stem cell pathway 

is strongly involved in promoting cancer cell survival. 

 

2.6. Therapeutic approaches 

Despite the recent advances in the understanding of ACC molecular 

pathophysiology, as well as in multimodality treatment, the curative options for this 

malignancy still remain limited to the complete surgical resection, aided by 

adjuvant therapies aimed to decrease the chance of recurrence. In case of 

unresectable or metastatic ACC, when tumor aggressive behavior frequently 

associates with an extremely poor prognosis, all therapy is considered as a palliative 

to improve patient quality of life and minimize side effects related to antineoplastic 

therapies. However, the assessment of ACC genomic landscape could provide new 

insights into the genetic and biologic heterogeneity of the tumor, thus allowing to 

identify a set of new potential therapeutic targets exploitable for the development of 

more specific and effective drugs.  

 

2.6.1. Surgery 

Complete surgical resection (R0) is the treatment of choice for localized ACCs, 

with particular attention to preserve the tumor capsule intact in order to avoid 

cancer cells dissemination. Preoperative evaluation, including biochemical 

evaluation and imaging, and operative planning are pivotal to assure the best 

outcome. The optimal surgical approach needs considerations about tumor 

dimension and secretion, lymph nodes involvement and invasion of adjacent 

organs, depending on the single case (Else, 2014).  Open adrenalectomy (OA) with 

lymph node dissection is regarded as the standard treatment for ACC (Bellantone et 

al, 2015), especially in case of infiltrating tumor or suspected lymph nodes. 

Laparoscopic adrenalectomy (LA) may also be performed in case of stage I-II ACCs 

with a diameter < 8-10 cm, even if the choice between OA and LA remains 

controversial considering the data obtained from retrospective series investigating 

surgery efficacy and safety (Gonzalez et al, 2005; Brix et al, 2010; Leboulleux et al, 

2010; Miller et al, 2010; Porpiglia et al, 2010). However, it has to be considered that, 

despite also in patients with metastatic disease surgery seems to improve survival 
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(Livhits et al, 2014), even after complete resection the recurrence rate remains 

between 19 and 34% basing on tumor stage, often with metastases occurring 

(Bellantone et al, 1997; Schulick & Brennan, 1999; Icard et al, 2001). 

 

2.6.2. Mitotane adjuvant treatment 

Due to the high rate of local recurrence, surgery is routinely followed by 

adjuvant treatment with the adrenolytic drug mitotane [1-(o-chlorophenyl)-1-(p-

chlorophenyl)-2,2-dichloroethane, o,p'-DDD]: this is a synthetic derivative of the 

insecticide DDT (dichlorodiphenyltrichloroethane) and it is the only drug approved 

by the U.S. Food and Drug Administration and European Medicine Executive 

Agency for the treatment of adrenocortical carcinoma (Schteingart et al, 2005). 

Mitotane shows a relative specificity for the zona fasciculata and reticularis of the 

adrenal cortex, where it exerts its cytotoxic function following the metabolization 

into the metabolites 1,1-(o,pdichlorodiphenyl)-2,2dichloroethene (o,p′DDE) and 1,1-

(o,pdichlorodiphenyl)acetic acid (o,p′DDA) (Martz &  Straw,1980; Cai et al, 1995a, 

1995b). Active mitotane metabolites inhibit the adrenocortical steroidogenic 

pathways, mainly targeting enzymes involved in cortisol metabolism, such as StAR 

and the cholesterol side-chain cleavage enzymes CYP11A1 and CYP11B1 (Cai et al, 

1997; Lindhe et al, 2002; Lin et al, 2012). In cells, mitotane is able to decrease cell 

proliferation and cortisol secretion (Lindhe & Skoseid, 2010) and it is thought to act 

primarily by affecting the mitochondrial function, altering mitochondrial 

respiratory chain activity and thereby inducing an apoptotic process (Sinsheimer & 

Freeman, 1987; Hescot et al, 2013; Poli et al, 2013). The endoplasmic reticulum has 

been recently identified as another key target of mitotane (Sbiera et al, 2015). 

However, the exact pharmacological mechanism of its antitumor action remains to 

be fully elucidated, despite it has been also investigated by microarray and 

proteomic techniques (Stigliano et al, 2008; Zsippai et al, 2012; Lehmann et al, 

2013).Some studies have identified a functional relation between the expression of 

the RRM1 (Ribonucleotide Reductase Large Subunit 1) gene and mitotane 

sensitivity in adrenocortical carcinoma cell lines (Volante et al, 2012; Germano et al, 

2015), hypothesizing that RRM1 may interfere with mitotane metabolism. However, 

this mechanism still remains to be clarified. 



Introduction 

38 

Mitotane adjuvant treatment administered soon after surgery has been shown to 

significantly improve the median tumor-free survival in patients with completely 

resected ACC (Terzolo et al, 2007; Terzolo et al, 2012; Fassnacht et al, 2013). However 

some evidence indicates that only a subgroup of patients may benefit, probably the 

one with cortisol-producing tumors (Bertherat et al, 2007). Contrarily, the efficacy of 

mitotane in case of not completely resected, metastasized or recurrent ACC is well 

established and mitotane response, measured as stable disease or partial remission 

after the treatment, is observed in only 25-30% of patients (Else, 2014).The major 

factor influencing the therapy response is represented by the target plasma 

concentration of mitotane, ranging from 14 to 20 mg/l: several studies showed that 

patients with advanced ACC who reached mitotane plasma levels higher than 14 

mg/l have less recurrence and a prolonged recurrence-free and overall survival 

(Terzolo & Berruti, 2008; Hermsen et al, 2011; Terzolo et al, 2013). Thus, monitoring 

mitotane plasma concentration is of great importance for the therapy management. 

However, mitotane doses usually used to reach the therapeutic window often 

associates with a range of significant toxicity, which commonly leads to 

gastrointestinal, neurological, metabolic and endocrine adverse effects (Else, 2014), 

thus inducing drug withdrawal in some cases. For advanced ACC, multiple 

combination regimen have been investigated, particularly the EDP (Etoposide, 

Doxorubicine, Cisplatin) plus mitotane (Berruti et al, 1998) and the Streptozotocin 

plus mitotane (Khan et al, 2000), the first one currently being the standard treatment 

option (FIRM-ACT phase III trial, Fassnacht et al, 2012). However, the improvement 

of disease control with polychemotherapy remains quite modest and 

chemoresistance often develops. Notably, mitotane has been shown to strongly 

induce P450-34A (CYP34A) (Kroiss et al, 2011; Chortis et al, 2013), a drug-

metabolizing microsomal enzyme expressed in liver and gut: this may lead to 

significant drug interaction, decreasing the efficacy of combination strategies and 

partially explaining the development of chemoresistance. 

 

2.6.3. Radiotherapy 

Historically, ACC was considered resistant to radiotherapy and the use of this 

treatment remains controversial considering efficacy versus side effects related to 

the normal tissue toxicity in proximal radiosensitive structures, such as kidneys, 
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stomach, intestine and spinal cord (Milgrom & Goodman, 2012). However, 

advances in radiotherapy techniques, particularly the possibility to modulate the 

radiation intensity, have made the treatment safer and promising results have been 

obtained in ACC patients in both adjuvant and palliative settings (Fassnacht et al, 

2006; Hermsen et al, 2010; Sabolch et al, 2011, 2015; Habra et al, 2013). Studies in vitro 

suggest a possible synergistic inhibition of cell growth by the combination of 

irradiation and mitotane administration (Cerquetti et al, 2008). Nevertheless, the 

radiotherapy efficacy still needs to be firmly established. 

 

2.6.4. Targeted therapy 

The limited effectiveness of the traditional available therapies for ACC has led to 

explore new modes of treatment, starting from the molecular alterations described 

for this malignancy to be exploited as pharmacological targets (Costa et al, 2016). 

Tyrosine-Kinase (TK) receptors and their downstream effectors mediating the main 

signaling pathways altered in ACC were the most promising molecular targets (Fig. 

15), and many studies have been performed to investigate the efficacy of different 

inhibitors. The most data concern the IGF-1R antagonists: among all, linsitinib (OSI-

906), a small molecule inhibitor of both IGF-1 and insulin receptor, generated great 

expectation basing on early clinical results (Barlaskar et al, 2009). Despite it reached 

a phase III trial, it has been prematurely stopped since it did not show any 

improvement of overall survival compared to placebo (Fassnacht et al, 2015). A 

possible explanation may be the previous exposure of most of the enrolled patients 

to mitotane, thus activating CYP3A4 and affecting linsitinib efficacy. Also, IGF-1R 

may not be a major driver in adrenocortical carcinoma and other compensatory 

growth-promoting pathways can activate. All the other previous trials with IGF-1R 

inhibitors, including the antibodies Figitumumab and Cixutumumab, were 

precociously stopped due to the lack of response (Haluska et al, 2010; Naing et al, 

2011). However, the IGF-2 pathway remains of great interest since one of its 

downstream components, the mammalian target of rapamycin (mTOR), has been 

shown to be a potential therapeutic target in ACC (Doghman et al, 2010; De Martino 

et al, 2014). Particularly, targeting mTOR together with other effectors of 

proliferation signaling seems to be the best way to avoid the activation of 

compensatory growth pathways (De Martino et al, 2012; Doghman & Lalli, 2012; 
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sorafenib, sunitinib and bevacizumab, have been tested in ACC but, again, with no 

meaningful clinical benefits (Wilhelm et al, 2004; Wortmann et al, 2010; Berruti et al, 

2012; Kroiss et al, 2012; O'Sullivan et al, 2014). More recently, the TK receptor c-Met, 

activated by the Hepatocyte Growth Factor (HGF), has been shown to associate with 

ACC growth and chemoresistance development; moreover, pharmacologically 

targeting this pathway, such as with the use of cabozantinib, an inhibitor of both 

VEGFR and c-Met, allows to significantly suppress cell proliferation and tumor 

growth (Phan et al, 2015). 

Steroidogenesis represents another target of interest in the development of new 

therapies for ACC. The nuclear transcription factor SF-1, which plays a critical role 

in adrenal development and growth, has been shown to induce both proliferation in 

adrenocortical carcinoma cells and tumor growth in vivo (Doghman et al, 2007); on 

the other hand, SF-1 inverse agonists are able to inhibit proliferation in SF-1 

expressing cells (Doghman et al, 2009). Such results, together with evidence of SF-1 

overexpression in ACC tumor samples (Sbiera et al, 2010) and the identification of 

new SF-1-related genes (Mizutani et al, 2015), indicate the potential use of this factor 

as a novel therapeutic target. Another target involved in steroid biosynthesis is 

represented by the Acetyl-CoA acetyltransferase 1 (ACAT1), the enzyme catalyzing 

cholesterol ester formation: a phase I trial (NCT01898715) is currently ongoing to 

investigate a ACAT1 inhibitor (ATR-101-001) in patients with advanced ACC (Aung 

et al, 2015). Intracellular cholesterol availability is crucial for steroidogenesis, so 

disrupting cholesterol uptake could have therapeutic potential in ACC. A promising 

approach seems to be the use of synthetic high-density lipoprotein (HDL) 

nanoparticles inhibiting cholesterol transporters (Subramanian et al, 2016). 

Basing on recent advances in unraveling ACC molecular pathophysiology, new 

potential pharmaceutical target are coming out: Wnt/β-catenin pathway is one of 

the best candidates, and pre-clinical data support the use of anti-Wnt monoclonal 

antibody in many types of cancer (He et al, 2004). So far, no clinical trials with Wnt 

inhibitors have been performed yet, but there is evidence that the small-molecule 

inhibitor PKF115-584 decreases proliferation in ACC cells in vitro (Doghman et al, 

2008) and that silencing β-catenin results in cell proliferation decrease, cell cycle 

alteration and apoptosis induction (Gaujoux et al, 2013). Another strategy could be 

targeting the immune system: interleukin-13 receptor alpha2 (IL-13Ra2) has been 
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found overexpressed in ACC compared to ACAs and normal adrenals (Jain et al, 

2012) and a phase I study has been recently conducted with systemic interleukin-13-

Pseudomonas exotoxin in metastatic ACC patients, with 1 patient out of 5 reaching 

a stable disease for more than 5 months before progression. (Liu-Chittenden et al, 

2015). Other three clinical trials are currently enrolling patients to investigate the 

immunotherapy inhibition of lymphocyte programmed cell death protein 1 (PD-1) 

in adrenocortical carcinoma (NCT02673333, NCT02720484 and NCT02720484). 

 A reliable approach to identify new therapeutic compounds to treat ACC may be 

the use of drugs already approved for other diseases, mainly those demonstrated to 

also exert an anti-neoplastic effect. Among all, some pharmacological classes of 

antidiabetics, such as thiazolidinediones (TZDs) and metformin, have been widely 

investigated for their potential effect on solid tumors, for both cancer prevention 

and therapy (Tuccori et al, 2017), and different studies have described some 

effectiveness also in ACC.  

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-gamma 

(PPARγ) agonists approved for the treatment of metabolic syndrome and type 2 

diabetes, since they are able to improve insulin sensitivity, as well as to regulate 

adipocyte differentiation and fat redistribution (Myazaki et al, 2002). In addition, 

TZDs have been shown to exert anti-cancer effects and accumulating evidence 

suggests a parallel PPARγ-independent action, with a selective inhibition of IGF-1R 

signaling (Mughal et al, 2017). TZDs, particularly Rosiglitazone and Pioglitazone, 

seem to be effective also in ACC, since they are able to decrease adrenocortical 

cancer proliferation and invasiveness, as well as to induce cell differentiation and 

apoptosis (Betz et al, 2005; Ferruzzi et al, 2005; Cantini et al, 2008; Luconi et al, 2010; 

Cerquetti et al, 2011). Moreover, they seem to affect steroidogenesis by inhibiting 

CYP11B2 enzyme expression and aldosterone production (Uruno et al, 2011). 

However, the exact molecular mechanism still needs to be fully elucidated. 

Metformin is the first-line therapy in the treatment of type 2 diabetes mellitus, 

acting as insulin-sensitizer and glucose-lowering. In addition, it has been 

demonstrated to reduce tumor incidence in diabetic patients (Evans et al, 2005; 

Decensi et al, 2010; Monami et al, 2011; Johnson & Bowker, 2011) and ongoing 

clinical trials are currently testing metformin efficacy in cancer prevention and 

therapy (Pollak, 2013; Quinn et al, 2013; https://clinicaltrials.gov). Poli et al. 
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investigated the role of metformin in ACC treatment, showing a significant effect in 

reducing cell proliferation both in vitro and in vivo, mediated by metformin 

inhibition of the IGF2/IGF-1R signaling and a concomitant activation of the intrinsic 

apoptosis pathway (Poli et al, 2016). The global effect likely impairs mitochondria 

and cancer cell metabolism, as also confirmed in a more recent study analyzing the 

transcriptome and metabolome of ACC H295R cells treated with metformin 

(Udhane et al, 2017). Furthermore, the anti-cancer effect of metformin has been 

proven in a clinical case of metastatic and chemoresistent ACC (Brown et al, 2017), 

thus providing new evidence for using this drug as a potential therapeutic adjuvant 

in adrenocortical carcinoma treatment. 

The identification of novel biomarkers would help in developing more effective 

therapeutic strategies for adrenocortical carcinoma. Few studies have analyzed the 

proteomic profile of ACC (Yang et al, 2013; Kjellin et al, 2014; Poli et al, 2015), 

identifying protein patterns differentially expressed in ACC compared to ACA and 

normal adrenal tissues. Calreticulin, a Ca2+ binding protein involved in processes 

such as cell adhesion, autoimmunity and heat shock, has been identified as 

overexpressed in ACC compared to ACA and shows significant correlation with 

tumor stage (Yang et al, 2013). Other proteins identified as differentially expressed 

in ACC mostly associate with mitochondrial function and glucose metabolism 

(Kjellin et al, 2014; Poli et al, 2015), suggesting that a shift toward aerobic glycolysis 

occurs also in adrenocortical carcinoma and tahat mithocondria play a crucial role in 

adrenal tumorigenesis. Moreover, also proteins involved in cytoskeletal 

organization and cell migration, such as adenylyl cyclase-associated protein 1 (CAP-

1) and Fascin-1 have been found overexpressed in ACC (Poli et al, 2015). Taken 

together, these findings could drive the development of novel specific ACC 

therapies. 

 

2.7. Experimental models of ACC 

Developing new specific and effective treatment for adrenocortical carcinoma 

still remains challenging, not only for the lack of well-defined molecular targets, but 

also because just few cell lines are currently available and very often novel 

therapeutic strategies showing promising results in vitro fail when translated into 
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the clinics. This is due to the patient heterogeneity and the specific therapeutic 

response of individual tumors on one hand, and to the acquisition of genomic and 

phenotypic alterations during long-term cell culture expansion on the other, thus 

resulting in a significant variability between different laboratories, particularly 

when these same cells are used to generate xenograft models (Hantel et al, 2016). 

However, getting proper preclinical models is crucial for the screening of new 

drugs.  

One of the first established cell model of ACC is represented by the SW-13 

adrenocortical cell, that were derived from a small cell carcinoma in the adrenal 

cortex (Leibovitz et al, 1973). Nevertheless, they do not show any steroid production 

and the adrenocortical origin of the primary tumor has been repeatedly questioned. 

 The most widely used human ACC cell line is the NCI-H295R: it has been 

established from an invasive primary adrenocortical carcinoma and further 

characterized for adrenal steroid production and tumorigenicity in nude mice 

(Gazdar et al, 1990; Logié et al, 2000), showing the ability to reproduce the 

morphological features of the original patient tumor. NCI-H295R xenografts 

provided a good model for the dysregulated IGF2/IGF1R pathway typically 

observed in ACC (Barlaskar et al, 2009; Hantel et al, 2012). They have been also used 

after β-catenin inactivation using a doxycyclin (Dox) inducible shRNA plasmid to 

study in vivo the role of Wnt/ β-catenin signaling in adrenocortical tumorigenesis 

and progression (Gaujoux et al, 2013), as well as for preclinical evaluation of therapy 

regimens (Doghman & Lalli, 2013; Hantel et al, 2014) and for the development of 

new therapeutic strategies (Gaujoux et al, 2013; Hantel et al, 2012; Szabó et al, 2014). 

More recently, a mouse xenograft model of metastatic adrenocortical carcinoma has 

been established: SF-1-inducible H295R cells tagged with both firefly luciferase and 

GFP were generated to perform intrasplenic injection in mice followed by 

splenectomy, thus inducing metastases traceable by chemoluminescence (Morin et 

al, 2017). 

The selection taking place during the multiple in vitro passages grossly changes 

the cancer cell biological properties. Thereby, the research in this field is now 

focusing on the development of patient-derived tumor xenograft (PDTXs), that 

could allow to reproduce the patient's specific tumor features, actually reflecting 

ACC heterogeneity (Hantel et al, 2016). Accordingly, a model of adult ACC (both 
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xenograft and cell line) has been recently obtained from a PDTX referred as MUC-1 

(Hantel et al, 2016). Also, a pediatric tumor model of ACC (SJ-ACC3) has been 

established by implanting the tumor tissue of a 11-years old patient into immuno-

incompetent mice, eventually obtaining a reproducible xenograft model showing 

the patho-morphological features of the original patient tumor (Pinto et al, 2013).  

Interestingly, a transgenic mouse model of metastatic adrenocortical cancer has 

been recently generated through the specific adrenocortical expression of SV40 large 

T-antigen, which selectively inactivates p53 in the adrenocortex, thus resulting in a 

spontaneous development of metastatic adrenal tumor after 8 months (Batisse-

Leigner et al, 2017). 
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3. Beyond the tumor mass: the role of tumor microenvironment 

in sustaining tumor progression 

A growing tumor mass can be considered as a dynamic "pseudoorgan" consisting 

of heterogeneous cancer and stromal cell populations, among which an active 

molecular and metabolic interaction is continuously established, thus contributing 

to favor the adaptation of cancer cells to different challenging conditions linked to 

tumor growth, such as physical pressure, oxidative stress, changes in nutrient and 

oxygen availability, immune surveillance. The features and behavior of the tumor 

surrounding environment significantly contribute to disease progression, allowing 

cancer cells for reprogramming their metabolism, dynamically adapting to a 

variable and somewhat hostile microenvironment and eventually acquiring the 

ability to successfully metastasize to distant sites. This is a complex process that 

primarily depends on tumor heterogeneity, which is due on both unique 

combinations of genetic and epigenetics alterations within the tumor cell 

populations, and on the ability of cancer cells to engage different metabolic 

strategies to overcome different tricky environmental conditions. These alterations 

allow cancer cells to acquire self-sufficiency in growth signals and a limitless 

replicative potential on one hand, and to become resistant to antigrowth signals and 

to programmed cell death on the other one, meanwhile developing the ability to 

induce angiogenesis and eventually invade the surrounding tissues to further 

metastasize. The so called "oncometabolism" has now entered among the defining 

hallmarks of cancer (Hanahan & Weinberg, 2011; Fouad & Aanei, 2017): tumor cell 

metabolic flexibility underlies the balance between energy-producing and energy-

consuming processes to manage the need for essential nutrients (Pavlova & 

Thompson, 2016). Glucose represents a key fuel source and its uptake is usually 

increased in cancer cells: it is preferentially metabolized through glycolysis, that can 

be both anaerobic, when the molecular oxygen is limiting (for example, in the core 

of hypoxic areas of the tumor mass distant from the peripheral blood vessels) and 

aerobic, during the establishment of the "Warburg effect" (Warburg et al, 1927), 

which allows to rapidly produce ATP and to divert the glycolytic intermediates into 

various biosynthetic pathways, thus sustaining cell proliferation. Glutamine 

metabolism also supplies essential substrates for cancer growth, providing both the 

carbon intermediates for the assembly of macromolecules and the reduced nitrogen 
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for the de novo biosynthesis of nitrogen-containing compounds, including 

nucleotides, glucosamine-6-phosphate and essential amino acids. Mitochondria-

dependent oxidative phosphorylation (OXPHOS) is also used to produce ATP 

starting from glucose, fatty acids or glutamine and serves alongside glycolysis to 

fulfill the high anabolic demand of tumor cells (Obre & Rossignol, 2015). Moreover, 

tumor cells can utilize alternative opportunistic modes to acquire nutrients from the 

environment, such as macropinocytosis of extracellular proteins, engulfment and 

digestion of living cells (“entosis”) and phagocytosis of apoptotic products (Pavlova 

& Thompson, 2016). Such distinct metabolic strategies can vary depending on 

specific surrounding conditions but also on tumor type, referring to both tissue 

origin and cancer subtypes (Elia et al, 2016). In addition, the specific supportive 

tumor microenvironment is emerging as a crucial driver of cancer progression: 

stromal cells are recruited through paracrine stimuli produced by cancer cells and 

are induced to alter their metabolism to in turn fuel cancer growth. Thus, a system 

of dynamic reciprocal interactions between tumor and its TME is constantly 

established.  

 

3.1. The tumor microenvironment: a metabolic cooperation 

and competition in a complex cell and molecular network 

In solid cancers, the tumor microenvironment (TME) constitutes a complex 

network of cells and soluble factors and comprises two main components, that are 

present in variable proportion depending on tumor location and stage: a cell 

component, including fibroblasts, myofibroblasts, mesenchymal stem cells (MSCs), 

adipocytes, pericytes, endothelial cells and cells of haematopoietic origin, both 

lymphoid (T cells, B cells, natural killer cells) and myeloid cells (macrophages, 

neutrophils and myeloid-derived suppressor cells); and the extracellular matrix 

(ECM), composed of collagens, glycoproteins and proteoglycans, scaffolding and 

maintaining the tissue architecture. The neovasculature developing within the 

tumor bulk is also part of the TME structure (Fig. 16). However, it is larger in size e 

less organized compared to its normal counterpart and fails to deeply penetrate the 

tumor, thus resulting in a progressive deprivation of oxygen and energy precursors 

from the periphery toward the core of the mass. The resultant hypoxia and 
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nutritional stress in turn drive a metabolic remodeling in both cancer and neighbor 

host cells, thus creating a pro-tumorigenic TME, mainly characterized by the 

lowering of the extracellular pH due to H+ and lactate released in the extracellular 

compartment (Chiche et al, 2010; Peppicelli et al, 2017). In fact, hypoxic cancer cells 

metabolizing glucose through anaerobic glycolysis produce and secrete lactate, 

which is thereby available for well-oxygenated cancer cells, fueling their 

mitochondrial metabolism. This system is regulated by the expression of 

appropriate intake/release transporters, particularly the lactate exporter 

monocarboxylate transporter 4 (MCT4), whose expression is increased in hypoxic 

tumor regions, and the importer MCT1, up-regulated in normoxic cells (Sonveaux et 

al, 2008). This kind of symbiotic metabolism is also established between cancer and 

surrounding cells (Gupta et al, 2017), making lactate one of the main soluble factors 

acting within this crosstalk (Romero-Garcia et al, 2016): according to the Warburg 

effect, cancer cells produce and secrete large amounts of lactate in the extracellular 

microenvironment, where it can be picked up by cancer-associated fibroblasts 

(CAFs) and MSCs and used as energy source (Koukourakis et al, 2006). The opposite 

process has also been described (Pavlides et al, 2009): tumor cells induce CAFs to 

divert their metabolism toward aerobic glycolysis (namely the "reverse Warburg 

effect"), thereby secreting pyruvate and lactate, which in turn can be consumed by 

Figure 16. Schematic representation of the tumor microenvironment components. MSCs: mesenchymal 
stem cells; CAFs: cancer-associated fibroblasts; MDSCs: myeloid-derived suppressor cells; NK: natural 
killer cells; CSCs: cancer stem cells; ECM: extracellular matrix. Adapted from McCuaig et al, 2017. 
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cancer cells through Krebs cycle and OXPHOS (Chiarugi & Cirri, 2016). The 

presence of high amounts of lactate in the microenvironment results in lowering the 

extracellular pH to 6.0–6.5, thus contributing to acidosis and stimulating malignant 

progression of cancer cells: acidosis, in fact, induces the activation of matrix 

metalloproteinases (MMPs), a family of endopeptidases capable of degrading and 

remodeling the ECM, aiding cell migration and invasion (Kato et al, 2007). In 

addition, lactic acidosis stimulates angiogenesis through the activation of the 

VEGF/VEGFR2 signaling pathway and of endothelial cells, thus promoting tube 

formation (Xu et al, 2002; Hunt et al, 2007; Vegran et al, 2011; Porporato et al, 2012). 

The increased lactic acid production, together with the limited availability of 

nutrients and hypoxia, contributes to the metabolic competition in the TME, which 

particularly affects the tumor-infiltrating immune cell antitumor function, resulting 

in immune suppression: T cell proliferation, differentiation and activation is 

inhibited (Dang et al, 2011; Wang et al, 2014; Chang et al, 2015; Ho et al, 2015; Brand 

et al, 2016) and tumor-associated macrophages (TAMs) are polarized toward the 

pro-tumorigenic M2 phenotype (Colegio et al, 2014; Laoui et al, 2014). 

In addition to lactate transferring, cancer cells are also able to get other essential 

nutrients from the microenvironment (Lyssiotis & Kimmelman, 2017 in press), 

including glutamine, one of the most utilized amino acid: a phenomenon termed 

"glutamine addiction" has been described for cancer cells, which decrease glutamine 

synthesis whereas increase the up-take and catabolism of glutamine produced by 

stromal cells, mainly CAFs and adipocytes (Wise & Thompson, 2010; Ko et al, 2011; 

Lyssiotis et al, 2013; Son et al, 2013; Meyer et al, 2016; Yang et al, 2016). Globally, the 

amino acid metabolism is altered in the TME, as observed for alanin, tryptophan, 

arginin and cysteine (Platten et al, 2012; Zhang et al, 2012; Salimian Rizi et al, 2015; 

Sousa et al, 2016). 

Highly aggressive cancer cells have been shown to have a characteristic pattern 

of lipid deposition, which associates with the presence of several alterations in lipid- 

and cholesterol-associated pathways (Beloribi-Djefaflia et al, 2016): they can either 

increase the up-take of exogenous lipids and lipoproteins or up-regulate their 

endogenous biosynthesis. Moreover, an increased exogenous fatty acid uptake and 

consumption through the fatty acid β-oxidation is also observed, strongly 

contributing to survival and metastatic spreading of cancer cells. Lipid molecules, in 

fact, not only represent a carbon sink, but are also energy-rich molecules that can 
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support cancer growth in a nutrition deprived environment. Within the TME setting 

lipid can be provided as free fatty acids by adipocytes as a result of a metabolic 

reprogramming: in fact, cancer-associated adipocytes are prompted to up-regulate 

lipolysis and release fatty acids, that can be used by cancer cells for both energy 

production and lipid biosynthesis (Romero et al, 2015). Concomitantly, this process 

assures to maintain the terminal electron chain and ATP production in the hypoxic 

TME, as well as to sustain the glycolytic flux thanks to NADP+ generation (Liu et al, 

2010; Santos & Schulze, 2012). 

In addition to the basic molecular building block, non-cancer cells are able to 

release, mainly through the activation of autophagy mechanisms, larger molecules 

such as dipeptides (Chaudhri et al, 2013) and exosomes, small exocytotic vesicles 

containing nutrient cargo, including amino acids, fatty acids and tricarboxylic acid 

cycle metabolites (Zhao et al, 2016; Achreja et al, 2017), that can be used by cancer 

cells to address their biosynthetic and bioenergetic needs. A similar symbiotic 

process has also been described for entire organelles, particularly the transfer of 

mitochondria and/or mitochondrial DNA from the stromal to the cancer cells, 

(Spees et al, 2006; Tan et al, 2015; Moschoi et al, 2016).  

 

3.2. Focusing on the adipose tumor microenvironment: cancer-

associated adipocytes and adipose stem cells  

In recent years, the significant role of adipocytes and adipose progenitors as 

active players in the tumor microenvironment has been demonstrated for many 

types of solid and hematological malignancies: far from being just passive 

bystanders, adipose cells secrete various factors that can mediate both local and 

systemic effects, with particular implication for tumor initiation and growth, as well 

as for local invasion and metastasis. This is due to the establishment of a dynamic 

adipocyte-cancer cell crosstalk that leads to phenotypical and functional changes of 

both cell types, further enhancing tumor progression (Duong et al, 2017). 

Adipose tissue represents one of the main component of the human body and, 

depending on its biological functions, it can be classified into two main types: the 

white adipose tissue (WAT), localized subcutaneously and surrounding visceral 

organs, which is specialized in storing energy and constitutes an important 
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endocrine organ, regulating insulin sensitivity and lipid metabolism; and the brown 

adipose tissue (BAT), which can be found in paracervical and supraclav

regions and mainly regulates thermogenesis in response to food intake and cold 

, 2009; Virtanen et al, 2009). This two types of adipose tissue also differ 

for their morphological features (Fig. 17): WAT has a highly complex cellular 

consisting of mature adipocytes and stroma-vascular

adipocytes, fibroblasts, pericytes, endothelial cells and immune cells (Eto 

2009). Due to their size, adipocytes are considered as the major component of WAT 

characterized by the presence of a unique large intracellular lipid droplet 

constitutes the primary site of energy storage. On the other hand, 

cells with multiple lipid droplets, rich in mitochondria and located in 

and vascularized depots. BAT adipocytes are specialized in heat 

generation by thermogenesis and lipid oxidation and specifically express the 

mitochondrial Uncoupling Protein 1 (UCP1) (Cristancho & Lazar, 2011; Cinti, 2012; 

Gurmaches & Guertin, 2014). A third type of adipocytes have been recently 

described, namely brite or beige, which predominantly reside in 

but share some common features with brown adipocytes, such 

as the expression of UCP-1, the multilocular morphology, increasing

after exposure to cold or exercise or (Harms & Seale, 2013; Lee et al

several « atypical » adipose tissue depots exist, including the one which can be 

found in the bone marrow: its adipocytes possess unique profiles ascribable to beige 

like adipocytes (Naveiras et al, 2009; Scheller et al, 2015).

Schematic representation of the differential morphology of white and brown adipocytes. L: 
lipids; N: nucleus; M: mitochondria. Adapted from Villarroya et al, 2005. 
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Reciprocal transformation between the different types of adipose tissue in 

response to a variety of metabolic and environmental challenges have been 

described (Giordano et al, 2014). Therefore, adipose tissue constitutes a dynamic 

organ with a great capacity to adapt its extent depending on the energy status of the 

organism and in response to different pathophysiological conditions (Pellegrinelli et 

al, 2016). Besides its basal function of energy storing, WAT works as an endocrine 

organ, secreting hormones, growth factors, chemokines, pro-inflammatory 

molecules and adipokines, that play a critical role in modulating tumor 

microenvironment: in fact, they mediate many biological processes through both 

local and distant effect that can contribute to tumor growth, differentiation and 

progression. Due to the adipose tissue distribution in different organs, adipocytes 

can often be found in close contact with cancer cells in many tumor types, such as 

breast, colon, renal, prostate and ovarian cancer among others, and such a 

neighborhood commonly associates with a more aggressive tumor behavior (Finley 

et al, 2009; Nieman et al, 2011; Wang et al, 2012; Zhang et al, 2016). Increasing 

evidence, in fact, confirms the establishment of an active crosstalk between adipose 

tissue and cancer cells: the adipocytes closer to malignant cells undergo profound 

phenotypic and functional alterations, such as a decrease in cell number and size 

compared to those distant from the tumor mass. Moreover, at the tumor center, an 

increased ratio of fibroblast-like cells can be observed, thus suggesting a process of 

trans- or de-differentiation of adipocytes induced by cancer cells (Dirat et al, 2011; 

Tan et al, 2011). Consistently, adipocytes co-cultured in vitro with cancer cells show 

delipidation and loss of adipose specific markers such as adiponectin, FABP4 and 

hormone-sensitive lipase (HSL), but they have also been shown to acquire some 

CAF-associated markers (Bochet et al, 2013). In addition, alterations of adipocyte 

secretome have been described, notably the up-regulation of osteopontin, matrix 

metalloproteinase 11 and inflammatory cytokines, such as TNF-alpha, IL-6 and IL-

1β (Ribeiro et al, 2012). Conversely, the secreting adipokines, as well as the released 

fatty acids, are transferred to cancer cells, where they are able to stimulate adhesion, 

migration, and invasion and to sustain energy production, respectively (Nieman et 

al, 2013). Finally, this reciprocal crosstalk results in the local production of specific 

chemokines that can influence immune and inflammatory responses. In particular, 

immune-tolerant macrophages displaying anti-inflammatory responses are 
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recruited, thus contributing to a more favorable microenvironment for tumor 

growth (Sturtz et al, 2014). 

The characteristic plasticity of the adipose tissue is due to the presence of 

adipose-derived stem cells (ASCs) within the stromal vascular fraction, which 

constitute the multipotent progenitor pool of adipose tissue, retaining the stem 

potential to differentiate toward different cell lineages, such as adipogenic, 

osteogenic, condrogenic, myogenic, cardiomyogenic and neurogenic-like cell types 

(Baglioni et al, 2009; Gwak et al, 2009; Zayan et al, 2010). Besides their central role in 

maintaining tissue homeostasis and providing the reservoir of regenerative cells, 

ASCs also influence the tumor microenvironment through the expression and 

secretion of growth factors, cytokines, chemokines and inflammatory factors, thus 

contributing to preserve cancer hallmarks and promoting cancer progression (Ilmer 

et al, 2014; Freese et al, 2015). 

 

3.2.1. The role of mature adipocytes in cancer progression 

Several in vitro and in vivo studies indicate that, in the TME setting, adipocytes 

are modified by cancer cells and acquire metabolic and functional characteristics 

distinct from those of their naïve counterpart. The so called cancer-associated 

adipocytes (CAAs) are then able to support and promote tumor growth, as shown 

in the case of different tumor types, including breast (Elliott et al, 1992; Manabe et al, 

2003), ovarian (Nieman et al, 2011), prostate (Tokuda et al, 2003; Moreira et al, 2015), 

colon (Amemori et al, 2007) cancer and melanoma (Kwan et al, 2014). This 

interaction is mainly mediated by the production and release of different factors by 

CAAs (Fig. 18). They mainly consist of fatty acids and adipokines, the latter ones 

constituting a class of pleiotropic molecules, such as leptin, adiponectin, insulin-like 

growth factor 1 (IGF-1) and hepatocyte growth factor (HGF), implicated in many 

physiological or pathological processes, including cell survival and proliferation, as 

well as cancer invasion and metastasis. 

� CAAs support tumor growth 

Several models of crosstalk between adipocyte and cancer cells have largely 

reported a tumor growth-promoting effect, which seems to mainly be mediated by 
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the interaction of adipokines with their receptors expressed by tumor cells. Leptin is 

a peptide hormone that, besides its neuroendocrine function in controlling food 

intake, can impact a wide range of biological processes, including angiogenesis, 

bone formation and modulation of immune response. Evidence supports the 

potential role for this adipocyte-secreted factor in tumorigenesis: in fact, its receptor 

(Ob-R) is found highly expressed in many cancers, and several in vitro studies 

showed that leptin can induce cancer cell proliferation via activation of ERK1/2 and 

JNK pathways (Garofalo & Surmacz, 2006). On the other hand, it has been observed 

that the production of adiponectin, another major adipokine involved in the 

regulation of glucose levels and fatty acid oxidation, is reduced in CAAs, thus also 

contributing to cancer cell proliferation. In fact, adiponectin acts by mediating 

antiangiogenic and tumor growth-limiting effects that are opposite to those of 

leptin, such as activation of AMPK, inhibition of PI3K/Akt and ERK1/2 pathways, 

down-regulation of leptin-induced STAT3 phosphorylation, inhibition of NF-kB and 

Wnt/β-catenin signaling and decrease of ROS production (Dalamaga et al, 2012). 

Thus, the leptin:adiponectin ratio seems to be the major factor influencing tumor 

growth. Adipocytes also produce growth factors, particularly IGF-1 and HGF, 

which are able to promote cell growth and survival through the binding to their 

specific receptors expressed by tumor cells. The IGF1/IGF-1R interaction, which 

activates the growth-inducing PI3K/Akt and ERK pathways, has been shown to 

regulate breast cancer cell growth (D'Esposito et al, 2012), whereas HGF seems to 

mediate a paracrine interaction between adipocytes and tumor cells expressing the 

c-Met receptor, thus promoting tumor progression, as observed in breast and 

ovarian cancer (Rahimi et al, 1994; Takayama et al, 1997; Edakuni et al, 2001; Wong et 

al, 2001). 

 
Figure 18. Schematic representation of the crosstalk and the reciprocal functional influence between 
adipocytes and cancer cells within the TME. Adapted from Park et al, 2014. 
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As already mentioned, cancer cells are capable to induce a metabolic shift from 

oxidative phosphorylation to glycolysis in cancer-associated fibroblast as well as in 

the other cells of the tumor stroma, resulting in the production of lactate and 

pyruvate, factors that sustain cancer metabolism and proliferation. This process may 

represent one of the mechanisms by which adipocytes are able to fuel cancer 

growth, since they have been shown to release lactate through the monocarboxylate 

transporters, particularly under hypoxic conditions (Pérez de Heredia et al, 2010). 

However, lipids seem to be the main source of energy provided by adipocytes to 

cancer cells: as described in different types of solid cancers, CAAs appear smaller in 

size and with a decreased lipid content, thus suggesting that a lipolytic process is 

induced by cancer cells, finally resulting in adipocyte delipidation and release of 

free-fatty acids (FFAs), which can be in turn metabolized by tumor cells through β-

oxydation (Dirat et al, 2011; Nieman et al, 2011, 2013; Park et al, 2014; Balaban et al, 

2017; Wang et al, 2017; Wen et al, 2017). The existence of such an active exchange of 

FFAs between tumor cells and CAAs is supported by the observation of an 

increased level of free acid-binding proteins (FABPs) in several cancers, including 

breast, prostate, ovarian and colorectal carcinomas (Guaita-Esteruelas et al, 2017 in 

press).  

The dynamism of modifications and interactions taking place within the tumor 

microenvironment requires a steady supply of oxygen and nutrients to assure 

tumor growth and expansion. Angiogenesis is a crucial process for supplying 

oxygen and nutrient delivery to the tumor mass. This process is tightly regulated by 

both tumor and stromal cells, including adipocytes: they can actively participate in 

angiogenic modulation through the direct production of the classical angiogenic 

factors (i.e. VEGFA) (Mick et al, 2002) or the release of leptin, which has been shown 

to directly promote proliferation and differentiation of endothelial cells and to up-

regulate VEGF in cancer cells (Gonzalez-Perez et al, 2010, 2013). 

� CAAs promote cancer invasion and metastasis 

Besides their role in controlling tumor cell proliferation and survival, growth factors 

and cytokines released within the TME strongly contributes to tumor cell migration 

and invasion, orchestrating the complex cascade of events underlying dissemination 

and metastasization (Odenthal et al, 2016). In this setting, adipocytes seem to play a 

crucial role, contributing to the remodeling of extracellular matrix and promotion of 
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tumor homing. Several in vitro models showed that the presence of CAAs is able to 

increase the invasive ability of cancer cells in different types of solid tumors, and 

this is mostly mediated by the secretion of soluble factors (Dirat et al, 2011; Tan et al, 

2011; Ribeiro et al, 2012; Bochet et al, 2013; Moreira et al, 2015). The most abundantly 

adipocyte-secreted cytokines are represented by interleukin 6 (IL-6), IL-8 and 

monocyte chemotactic protein-1 (MCP-1): they are produced at high levels by CAAs 

and determine the establishment of a chronic inflammatory state in the tumor-

surrounding adipose tissue, which promotes tumor dissemination, as well as cancer 

cell homing and seeding at distant organs (Finley et al, 2009; Dirat et al, 2011; 

Nieman et al, 2011; Pramanik et al, 2013; Laurent et al, 2016). In addition, leptin 

secretion also seems to contribute to cancer cell migration and invasion via IL-18 

expression and secretion (Li et al, 2016) and to affects both innate and adaptive 

immunity, thus facilitating the immunomodulatory mechanisms allowing tumor 

escape (Delort et al, 2015). Furthermore, fatty acid transfer between CAAs and 

cancer cells via exosome secretion has been shown to further sustain migration and 

invasion (Lazar et al, 2016). 

Besides adipokines and growth factors, adipocytes also produce some of the 

components of the ECM, which undergoes significant structural and molecular 

remodeling during tumor progression, driving cell migration. In particular, CAAs 

have been shown to up-regulate their secretion of collagen VI under cancer cell 

induction (Iyengar et al, 2005) and to produce a number of MMPs, predominantly 

MMP-11 (Chavey et al, 2003), which is actively involved in cancer migration and 

invasion (Zheng et al, 2016). MMp-11 also seems to directly affect adipocyte 

functions by negatively regulating adipogenesis and enhancing de-differentiation, 

thus leading to the accumulation of fibroblast-like cells in the tumor 

microenvironment (Andarawewa et al, 2005). 

 

3.2.2. The role of ASCs in cancer development, growth and 

progression 

As discussed above, adipose tissue is a rich source of ASCs, which are part of the 

ubiquitously distributed mesenchymal stem cells (MSCs), constituting the pool of 

stem and progenitor cells responsible for tissue homeostasis, repair and 

regeneration. To exert such a function, MSCs are recruited by the local 
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microenvironment, being able to migrate along chemoattractant gradients (Ilmer et 

al, 2014). As already discussed, in the tumor microenvironment an exchange of 

soluble factors is dynamically established, thus facilitating the recruitment of 

immunomodulatory components and stromal cells of various origin, contributing to 

some of the hallmarks of cancer, such as angiogenesis, invasion and metastasis, and 

apoptosis resistance. There is increasing evidence that ASCs might be crucial in 

supporting cancer development and progression, influencing and being influenced 

by the tumor microenvironment (Freese et al, 2015). Many studies, in fact, showed 

that ASCs recruited to the TME can differentiate toward different cell types, such as 

endothelial cells, vascular complexes and tumor stroma, facilitating cancer cell 

growth (Muehlberg et al, 2009; Kucerova et al, 2011; Chandler et al, 2011, 2012; 

Nowicka et al, 2013). CXCL12 (also known as stromal-derived factor-1 - SDF-1) and 

its receptor CXC Receptor-4 (CXCR4) axis might be involved in driving ASC 

migration and incorporation into the TME. As recently shown, high levels of 

CXCL12 in the TME can attract CXCR4-positive immune and stromal cells to the 

tumor site to assist tumor development (De Palma et al, 2005; Orimo et al, 2005; Jin et 

al, 2006; Du et al, 2008; Beider et al, 2014). The other way round, CXCL12 secreted by 

ASCs in the TME strongly promotes tumor proliferation, migration and invasion 

through multiple signaling pathways triggered by the interaction with CXCR4 

expressed by cancer cells (Zhao et al, 2010; Ji et al, 2013). CXCL12 is a homeostatic 

chemokine normally controlling hematopoietic cell trafficking, adhesion, immune 

surveillance and development through the interaction with its cognate receptor 

CXCR4, a member of the seven-transmembrane domain G-protein–coupled receptor 

(GPCR) superfamily. Both are overexpressed in various cancer types and their 

interaction leads to the activation of intracellular pathways regulating cell survival, 

proliferation and chemotaxis, such as MAPK, PI3K/AKT, NF-kB (Guo et al, 2016) 

(Fig. 19). In addition, such interaction has been correlated with angiogenesis and 

EMT induction, promoting cancer metastasis (Guo et al, 2016). Moreover, CXCL12 is 

physiologically expressed by mesenchymal stroma niches in different organs, 

including liver, lung and bone marrow, where CXCR4-positive cancer cells can be 

recruited to initiate metastasis (Guo et al, 2016). Recently it has been shown that 

CXCL12 can also bind CXCR7 with high affinity (Ghanem et al, 2014), thus 

mediating different potential effects than CXCR4: CXCR7 overexpression has been 

reported in different cancer types (Hattermann et al, 2010; Deutsh et al, 2013; Hu et  
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, 2014; Wu et al, 2015; Shi et al, 2017), promoting cancer development 
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growth (Pinilla et al, 2009; Walter et al, 2009; Devarajan et al, 2012; Welte et al, 2012; 

Scherzed et al, 2013; Reggiani et al, 2017). 

Finally, ASCs seem to be crucial in regulating the immunomodulatory 

mechanisms allowing tumor cells for thwart immune surveillance: they inhibit 

natural killer (NK) cell activation and suppress B-cell functions (Bochev et al, 2008) 

and secrete various cytokines, including IL-4, IL-10, IL-8, TGF-β, which contribute to 

regulate T cell activity and to create a tumor microenvironment characterized by 

specific modulation of inflammation, thus promoting tumorigenic activity 

(Razmkhah et al, 2010). 
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4. Tumor progression and metastatic colonization: circulating 

tumor cells as biomarkers of tumor evolution 

The main cause of cancer-related death in patients is represented by metastasis: 

cells from primary tumors acquire the ability to disseminate through the blood 

circulation and to colonize distant organs, giving rise to a systemic disease and 

making treatments ineffective in most of the cases. Differently from what originally 

hypothesized, the acquisition of metastatic traits is an early event in the 

evolutionary story of a tumor, since invasive and motile cells can enter the 

circulation and seed distant organs long before a tumor is diagnosed, and the 

presence of metastatic disease at diagnosis almost always associates with poor 

prognosis, as well as development of chemoresistance. Current evidence suggests 

that metastasis-initiating cells are pre-selected within the primary tumor through 

genetic and, predominantly, epigenetic changes, undergoing further selection under 

the stress pressure related to tissue invasion, immune surveillance or hypoxia. This 

is consistent with the observation that metastasis share some genomic traits 

compared to their primary tumor and support the hypothesis that a clonal 

expansion in the primary tumor itself gives rise to metastasis-competent cells, that 

continue to evolve in parallel during their dissemination to distant organs (Klein, 

2009; Greaves & Maley, 2012; Vanharanta & Massagué, 2013; Gundem et al, 2015; 

Naxerova & Jain, 2015). 

Experimental and clinical observations indicate that metastatic colonization is a 

highly inefficient process, in which only a minority of the cells shed by the tumors 

can survive and form macrometastases. This is due to multiple obstacles that 

circulating tumor cells (CTCs) have to face before reach and seed a distant site, 

including escaping their primary microenvironment and invading the surrounding 

tissue, successfully entering the circulation, adapting to a new microenvironment 

and surviving in a latent dormancy state, to eventually break out as an overt 

metastasis (Fig. 20) (Massagué & Obenauf, 2016). Therefore, the metastatic process 

follows multiple steps and shows a number of bottlenecks driving the fate of the 

most aggressive cells: in the early phases, cytoskeletal rearrangements, combined 

with ECM remodeling and interactions with the supportive tumor niche, allow 

cancer cells to invade and migrate through the stroma. In response to various 

signaling factors released by the surrounding stromal cells, cancer cells can undergo 
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achieved and a residual disease is left behind. This is mainly due to the capability of 

tumor cells to adapt their intracellular pathways under the stress of therapy, 

expressing a large number of secreted factors (known as therapy-induced 

secretome) able to protect the drug-sensitive cells and to selectively stimulate the 

drug-resistant minority (Holohan et al, 2013). Therefore, preventing metastasis 

rather than treat them would be more effective in high-risk patients. In this scenario, 

liquid biopsy represents the new frontier for cancer early diagnosis, prognosis and 

treatment. This is a minimally invasive procedure carried out during a standard 

blood draw, accessing different types of tumor material, including CTCs, cell-free 

DNA of tumor origin (ct-DNA), RNA and exosomes, feasible for molecular 

characterization. Analyzing this material may allow to profile the single patient 

tumor evolution, consistently with the idea of personalized medicine. 

 

4.1. Biology, detection and clinical implications of circulating 

tumor cells 

Circulating tumor cells can be considered as a surrogate of tumor sample that 

and reflect tumor evolution during progression and metastatic potential, as well as 

the effectiveness and progression of systemic therapies, allowing for monitoring 

patients during the follow up or after surgery of during treatment. Indeed, CTCs 

have been proposed as real-time "liquid biopsy", since they could allow to profile 

the disease complexity at any stage of tumor progression (Alix-Panabières & Pantel, 

2013). Several new high-throughput technologies have been developed to analyze in 

very deep detail the functional and phenotypic traits of heterogeneous cell 

populations at the single-cell level. This has largely simplified the study of CTC 

biology, improving the knowledge about the mechanisms underlying their ability to 

disseminate and providing new information to make cancer treatment more 

relevant and patient-centric. 

 

4.1.1. CTC Biology 

As already mentioned, CTCs have to overcome a number of physiological 

hurdles to escape their primary site and enter the blood flow. According to the most 

widely recognized theory, cells undergo EMT to actively dissociate from the 
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primary tumor and enter the blood vessels (Pantel & Speicher, 2016), under 

paracrine signals coming from the surrounding microenvironment. Cytoskeletal 

changes, together with the loss of tight and adherens junctions, underlie the loss of 

cell polarity and enable epithelial cells to become more invasive and motile (Joosse 

et al, 2015). This process typically associates with the down-regulation of epithelial 

markers, such as EpCAM and E-cadherin, the alteration of keratin expression and 

the up-regulation of mesenchymal markers, such as vimentin. The concomitant up-

regulation of matrix metalloproteinases (MMPs) contributes to facilitate migration 

through the local ECM and intravasation (Lamouille et al, 2014). This is consistent 

with the observation that CTCs with mesenchymal traits predict poor outcome and 

resistance to standard chemotherapy (Aktas et al, 2009; Yu et al, 2013; Krawczyk et al, 

2014; Li et al, 2017). However, the role of EMT in CTCs is still unknown: on one 

hand, tumor cells undergoing EMT seem to be more resistant against share stress 

(Mitchell & King, 2013), whereas on the other one, several studies have correlated 

the overexpression of EpCAM to an increased risk of metastasis and reduced 

survival (Cimino et al, 2010; Spizzo et al, 2011) and have demonstrated the 

prognostic relevance of EpCAM-positive CTCs (Rack et al, 2014; Janni et al, 2016). It 

might be possible that these cells have some degree of co-expression of epithelial 

and mesenchymal markers, consistent with their plasticity (Alix-Panabières et al, 

2017). Indeed, increasing evidence indicates that CTCs represent heterogeneous cell 

populations (Lapin et al, 2017; Lindsay et al, 2017). This is consistent with the fact 

that cancer EMT occurs through a spectrum of intermediate states, from the full 

transition taking place at the tumor invasive front to the complete absence in the 

main tumor bulk (Nieto et al, 2016). Thus, CTCs may derived from cells that 

underwent EMT in the primary tumor or may acquire intermediate EMT 

phenotypes in circulation, allowing for cell survival.  

In addition to single CTCs, CTC clusters, namely circulating tumor microemboli 

(CTM), can also be found in patients' blood: they are groups of 2 to more than 50 

cells able to extravasate and generally correlate with very poor clinical outcome 

(Hou et al, 2012; Aceto et al, 2014, 2015; Au et al, 2016). They are thought to have 

greater metastatic potential and to provide a survival advantage to single cells, since 

their cell junctions may help to avoid anoikis (Paoli et al, 2013). In addition, single 

CTCs or clusters can aggregate with platelets, thus facilitating extravasation and 
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protecting cell from mechanical stress and immune surveillance (Strilic & 

Offermanns, 2017). Moreover, CTCs are able to suppress T-cell proliferation and 

cytokine production by expressing PD-L1 (Mazel et al, 2015; Nicolazzo et al, 2016; 

Anantharaman et al, 2016).  

Despite all these survival strategies, CTCs remain a rare event: they persist in the 

circulation for an estimated time of 1.0-2.4 hours (Meng et al, 2004) and can be 

detected in a range of 1-10 cells per millions (106–107) of surrounding normal 

peripheral mononuclear blood cells in the circulation of patients with advanced 

disease (Alix-Panabieres et al, 2012). Thus, isolation and characterization remain 

challenging, particularly in order to determine the traits underlying cell 

heterogeneity and to identify the specific markers of metastatic properties. 

 

4.1.2. CTC isolation and characterization 

Over the past two decades, many techniques have been developed for CTC 

detection and novel strategies are continuously proposed to improve isolation yield. 

CTC enrichment relies on two main approaches: the use of label-dependent 

techniques, exploiting the detection of surface marker through immunoselection; 

and the application of label-independent techniques based on unique mechanical 

and physical differences of CTCs when compared to the blood cells, including size, 

deformability and electrical properties (Fig. 21) (Joosse et al, 2015; Salvianti et al, 

2016). 

The most widely used technology is represented by the CELLSEARCH® system 

(Veridex, USA), which is based on the immunomagnetic capture of EpCAM-

expressing cells, identifying as CTCs cells positive for nuclear DAPI (4′,6-diamidino-

2-phenylindole) and cytokeratins, and negative for CD45 (lymphocyte marker). This 

system allows CTCs automatic count and it has been approved by the USA FDA for 

the use of CTC enumaration as prognostic marker in metastatic breast, colon and 

prostate cancers (Cristofanilli et al, 2005; Cohen et al, 2008; de Bono et al, 2008). 

Although this is the only clinically validated platform for CTC analysis, analogous 

EpCAM-based systems are also available (Nagrath et al, 2007; Talasaz et al, 2009; 

Saucedo-Zeni et al, 2012). However, all these methods show the intrinsic bias of the  
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lack of univocal CTC biomarkers: EpCAM itself is not expressed by all tumor types 

and, as previously described, a subset of epithelial cancer cells undergo EMT, likely 

losing the expression of this epithelial marker. Alternatively, several approaches 

relying on physical properties of cells have been developed, such as the use of 

density gradient centrifugation, which allows to separate cells on the basis of the-

sedimentation coefficient (Low & Wan Abas, 2015). Size-based methods, instead, 

exploit the dimensions of CTCs, which are generally bigger than the other blood 

cells, with a diameter ranging from 17 to 52 µm. Among all filtration devices, those 

employing microfilters with a selective porous membrane (8 µm pore diameter), 

represent a relatively simple way to obtain an enriched pool of cells within a single 

processing step, preserving cell integrity for CTC identification and further 

characterization (Vona et al, 2000; Desitter et al, 2011). In addition, CTC clusters can 

also be separated this way. However, this approach shows some drawbacks, 

including the loss of smaller tumor cells, the risk of filter clogging due to high 

concentration of blood cells and the requirement of CTC detachment from the 

membrane to perform downstream analysis. Other methods combining cell size and 

microfluidics have been developed (Hou et al, 2013; Sollier et al, 2014), as well as 

size- and deformability-based technologies (Tan et al, 2009, 2010; Che et al, 2017). 

Moreover, a chip for the specific isolation of CTC cluster is available, based on the 

separation by different flow speed  compared to single cells (Sarioglu et al, 2015). 

Figure 21. Schematic representation of CTC detection approaches and downstream applications for 
molecular characterization. Adapted from Cabel et al, 2017. 
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CTC identification and enumeration are commonly performed  by morphologic 

investigation together with fluorescence immunocytochemistry (ICC). However, 

conventional microscopic examination is cost- and time-consuming, whereas 

automated cell image capturing and analysis systems present filter set limitations 

(Joosse et al, 2015). The use of multiplex PCR could help in targeting the numerous 

tumor-associated mRNA transcripts, such as EMT-associated and stem cell markers 

for CTC identification (Kasimir-Bauer et al, 2012). Another strategy is represented by 

the enumeration and analysis of proteins specifically secreted by viable tumor cells 

(EPISPOT, EPithelial Immuno SPOT) through a system of fluorochrome-labeled 

antibodies targeting the proteins of interest (Alix-Panabieres et al, 2007; Alix-

Panabieres, 2012). 

CTC enrichment and identification represents the first step to eventually obtain 

single cells suitable for molecular and functional characterization, since simple 

enumeration does not to reflect the complexity of genetic and epigenetic changes 

occurring during tumor progression. Many strategies have been applied for this 

purpose (Shapiro et al, 2013; Navin, 2014), including manual low-throughput 

micromanipulation and laser-capture microdissection, flow cytometry and the most 

recently developed semiautomated DEParray (Di-Electro-Phoretic Array; Silicon 

Biosystems, Italy) system (Peeters et al, 2013). Once isolated, CTCs can be analyzed 

for chromosomal rearrangements or changes in gene copy number by using 

techniques such as interphase fluorescence in situ hybridization (FISH) and array-

CGH (comparative genome hybridization). Additionally, next generation DNA 

sequencing can be performed to study the CTC genome-wide mutation spectrum 

(Heitzer et al, 2013; Carter et al, 2017). Other traditional techniques have been 

applied to CTC characterization, such as RNA in situ hybridization, multiplexed 

quantitative PCR and gene expression microarray (Smirnov et al, 2005; Xi et al, 2007; 

Payne et al, 2012; Yu et al, 2013); moreover, the increasing feasibility of the advanced 

single-cell expression profiling approaches are now allowing to shed new light on 

CTC clonal evolution and heterogeneity (Sandberg, 2013; Lohr et al, 2014; Wang et 

al, 2014; Miyamoto et al, 2015). A question remain about how and when such 

techniques will become predictive, specific and inexpensive enough to be adopted 

for the routinely clinical practice. 
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Due to CTC rarity, their functional characterization still remains technically 

challenging. Cell line and organoid culture have been established with low 

efficiency and are available only for a handful of cancers (e.g. Cayrefourcq et al, 

2015). CTC functionality has been tested both in culture and in vivo in mouse 

xenograft models, measuring the invasive and metastatic properties of isolated cells 

(Baccelli et al, 2013; Friedlander et al, 2014), as well as the response to 

chemotherapeutics (Hodgkinson et al, 2014; Yu et al, 2014; Khoo et al, 2016). 

However, further studies are needed to standardize the current culture techniques 

and in vivo strategies. 

 

4.1.3. Clinical validity and utility of CTCs 

The diagnostic, prognostic and predictive value of CTC has been investigated in 

various cancer types, demonstrating a clinical validity for CTC detection and 

characterization, at least in some solid tumors (Cabel et al, 2017).  

CTC count, mainly based on the use of the CELLSEARCH® technology, has been 

investigated as diagnostic in early non-metastatic cancers: most of the studies 

reported very low CTC detection rate, depending on the limited specificity and 

sensitivity on the technique (Loh et al, 2014; van Dalum et al, 2015; Bidard et al, 

2016). The ISET filtration system, instead, showed better performances in lung 

cancer early detection and differential diagnosis (Ilie et al, 2014; Fiorelli et al, 2015). 

On the contrary, high level of evidence showed a strong prognostic value for CTC 

count determined by CELLSEARCH®: in both metastatic and non-metastatic 

cancers, particularly breast, colon, prostate and lung cancer, elevated baseline CTC 

count represents an independent prognostic factor for both overall survival and 

free-progression survival (Cabel et al, 2017). Moreover, several reports suggest a 

predictive value for CTC detection in monitoring the efficacy of therapies: 

particularly in metastatic breast, colon and prostate cancers, a decreased CTC count 

after treatment associates with better prognosis (Cristofanilli et al, 2004; Cohen et al, 

2008; de Bono et al, 2008; Hou et al, 2012; Bidard et al, 2014; Goldkorn et al, 2014). 

However, CTC analysis remains still limited when applied to non-metastatic 

cancers, due to the low rate of CTC detection and to the significance to be 

attributable to their presence in non-invasive stages of tumors. 
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Although its clinical validity, CTC detection has not been approved for the 

routinely clinical practice, since a clinical utility, meaning an improvement in 

patient's outcome, has not yet been validated. Several ongoing clinical trials are 

investigating the utility of CTC in the therapeutic decision, basing on CTC count 

and variation, as well as on the presence of molecular processes and biomarkers 

specifically related to CTCs or to the metastatic spread (Cabel et al, 2017). The 

improvement in the sensitivity of CTC detection techniques and the development of 

in vitro (CTC cultures) and in vivo xenograft models for drug screening will be 

crucial to finally launch CTCs in the clinical practice. 

 

4.2. CTCs in adrenocortical carcinoma 

To date, only one preliminary study has been performed to assess the presence of 

circulating tumor cells in the peripheral blood of patient with adrenocortical 

carcinoma compared with benign adenomas (Pinzani et al, 2013). In a cohort of 24 

patients (14 ACC and 10 ACA), CTCs were isolated by using the ScreenCell® 

filtration device and detected in all ACC samples, unlike in ACA samples, thus 

indicating the potential use of CTC detection for the differential diagnosis of 

adrenocortical tumors. Adrenocortical origin of isolated cells was confirmed by 

immunocytochemistry performed against typical neuroendocrine markers, such as 

synaptophysin and MART-1/MelanA, but also against the more adrenocortex-

specific Steroidogenic Factor-1 (SF-1) (Fig. 22). CTC count in pre-surgical and post-

surgical samples of ACC patients revealed that surgery significantly affects the 

number of CTCs (Fig. 23A), even if no significant correlation with the length of 

follow-up was evident. When patient clinical features were considered, a 

Figure 22. CTC detection in blood samples 
from ACC patients. A–F: Hematoxylin/eosin 
staining was performed on filters to identify 
and count CTCs on the basis of established 
morphological criteria (cell size > 16 µm; 
nucleocytoplasmic ratio > 50%; irregular 
nuclear shape; hyperchromatic nucleus; 
basophilic cytoplasm. Positivity related to 
MART-1 (G), synaptophysin (H), and SF-1 (I) 
immunocytochemistry confirmed CTC 
adrenocortical origin. Adapted from Pinzani 
et al, 2013. 
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statistically significant linear correlation was found only with the tumor diameter 

(R2=0.362; R=0.602; P=.023; n=14), while no correlation was present with the other 

parameters analyzed, such as Ki67, age, stage and Weiss score. Moreover, CTC 

number were significantly higher in patients with metastatic disease (Fig. 23B). 

 

 

Although limited by the small cohort of patients analyzed, this preliminary study 

suggests that CTCs may be a useful marker in aggressive/metastatic ACC for both 

prognosis and monitoring of progression and response to treatments. Therefore, in 

the setting of non-invasive liquid biopsy, CTCs could provide meaningful 

information to elucidate the metastatic process and the different molecular and cell 

factors involved. The possibility to investigate gene and protein expression, as well 

as epigenetic changes, starting from single-cell samples, would help in identifying 

specific biomarkers associated with CTC heterogeneity and metastasizing potential 

(Salvianti & Pinzani, 2017; Siravegna et al, 2017). This knowledge may aid the 

development of more effective treatments specifically targeting the metastatic 

disease. Moreover, information provided by CTC analysis could be complemented 

by additional genomic information coming from cell-free circulating tumor DNA, 

which has been recently demonstrated to be detectable in blood sample also in ACC 

(Creemers et al, 2017). Thus, the "liquid biopsy" analysis would provide a more 

comprehensive understanding of ACC heterogeneity and patient-related disease 

progression. 

Figure 23. A): Absolute values of CTC count 
evaluated in ACC patients show a significant 
decrease of CTC number after surgery in 
samples collected during follow-up compared 
to pre-surgery samples. B): Stage and diameter 
were used to stratify ACC patient (n=14) in two 
classes, using stage 4 or diameter median value 
as cut-off. Adapted from Pinzani et al, 2013. 
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OBJECTIVES 

Molecular features underlying adrenocortical carcinoma heterogeneity and 

evolution are just being unraveling, showing that driver gene mutations, epigenetic 

alterations and dysregulation of signaling pathways related to cell survival, growth 

and proliferation, play a crucial role in determine malignancy. However, even if 

molecular alterations are essential to provide a survival and growth advantage to 

cancer cells within the tumor mass, they cannot exhaustively enucleate the 

mechanisms by which malignant cells acquire the ability to migrate and metastasize 

to distant sites, thus allowing cancer progression. The adaptation of cell metabolism 

to dynamically changing environmental conditions related to tumor evolution 

represents a key hallmark of cancer. Tumor microenvironment constitutes the ideal 

soil to establish a constant crosstalk between tumor and stromal cells, thus inducing 

reciprocal metabolic and functional alterations, eventually supporting tumor 

growth and progression. Studying the dynamics of such interactions would help in 

elucidating cancer biology and developing more effective targeted therapies 

addressing cancer-microenvironment crosstalk. Since adrenal glands present a 

substantial component of adipose tissue, the interactions with the surrounding 

adipose microenvironment may play a pivotal role in adrenocortical tumorigenesis 

and ACC progression, as widely described for other tumor types, where cancer cells 

are in close contact with adipocytes. 

The first objective of this thesis (Results - Part I) was to reproduce in vitro a 

system of reciprocal interactions between the adrenocortical tumor cell line NCI-

H295R and the human adipose-derived stem cells (ASCs) or in vitro differentiated 

adipocytes in order to evaluate: 

i. the paracrine effects of the adipose component on H295R cell behavior, 

including variations of cell proliferation and motility/migration ability; 

ii. the influence of H295R cells on ASC proliferation, gene expression and ability 

to effectively differentiate toward a white mature and functional adipocyte 

phenotype 

iii. the potential cell signaling pathways and factors involved in this reciprocal 

interaction. 
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The second part of the thesis (Results - Part II), instead, investigates the 

possibility to isolate and characterize circulating tumor cells (CTCs) in blood 

samples from patients with adrenocortical carcinoma, in order detect specific 

molecular features to be compared with those of the primary tumor, allowing to 

track tumor evolution and progression. Particularly, the objectives included: 

i. the collection of blood samples from ACC patients, possibly at different time 

points during the follow-up, for CTC isolation, identification and 

enumeration;  

ii. the cytological analysis of CTCs to confirm their adrenocortical origin; 

iii. the design of an experimental workflow to obtain CTC DNA to perform 

downstream analysis with techniques such as targeted next generation 

sequence (NGS) and digital-droplet PCR (ddPCR) and to confirm the presence 

of the original mutations previously found in the primary lesions. 
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RESULTS 

PARTI I - Investigating the crosstalk between adrenocortical 

carcinoma cells and adipose microenvironment 

 

Materials and methods 

� Cell cultures. The human adrenocortical carcinoma cell line H295R was 

obtained from the American Type Culture Collection (ATCC) and cultured in 

DMEM/F-12 medium with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin-100 

µg/ml streptomycin and a mixture of insulin/transferrin/selenium (ITS) (Sigma-

Aldrich). Human primary adipocyte-derived stem cells (ASCs) were isolated from 

the stromal vascular fraction (SVF) derived from subcutaneous adipose tissue 

biopsies as described elsewhere (Baglioni et al, 2009): briefly, adipose tissue biopsies 

underwent mechanic and enzymatic processing until obtaining the SFV, which was 

plated and, after having removing the non-adherent contaminating cells, cultured in 

DMEM with 20% FBS, 2 mM L-glutamine, 100 U/ml penicillin-100 µg/ml 

streptomycin and 1 µg/ml amphotericin-B (Sigma-Aldrich). All cells were incubated 

at 37°C in a humidified 5% CO2 atmosphere. 

� Co-culture system. H295R and ASCs where co-cultured in the setting of 

different experiments by using a specific tissue culture inserts for 6-well plates 

having a porous membrane with 0,4 µm diameter pores (ThinCertTM, Greiner Bio-

One), thus allowing to maintain the two cell types separated, while the medium 

soluble components can be exchanged (Fig. R1). H295R cells and ASCs were seeded, 

except where differently indicated, in the cell culture inserts (105cells/insert) and in 

the well (8×104) respectively, each in its own complete medium. At the starting time 

of the co-culture, the inserts containing H295R were transferred into the wells 

containing ASCs and all cells were grown in DMEM plus 10% FBS. H295R and 

ASCs cultured alone in the same conditions of the co-cultured ones were used as 

relative controls for each type of assay. 
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� Viable cell count. H295R and ASCs seeded in the co-culture system were 24 

hour starved and put together to start the co-culture. At different  time points (0, 1, 

2, 3, 6, 9 days) cells were trypsinized and counted by an haemocytometer, after dead 

cell exclusion with trypan blue staining. The mean number of viable cells was 

obtained by counting four replicates in at least three different experiments. 

� Glucose up-take measurement. H295R and ASCs, co-cultured or grown alone 

for 7 days, were washed twice with PBS and incubated overnight in serum free and 

low glucose (0,55 mM) medium. After PBS wash, cells were incubated with Hepes 

buffer (140 mM NaCl, 20 mM Hepes-Na pH 7.4, 2,5 mM MgSO4, 1 mM CaCl2, 5 

mM KCl) containing 2-deoxy-[3H]D-glucose [1µCi/µl] (Perkin-Elmer) for 10 

minutes at 37°C. Cells were then washed with cold PBS and were lysed in 100 mM 

NaOH for 1 hour at 37°C. After resuspension of samples in Insta-Gel Plus cocktail 

(Perkin-Elmer), radioactivity was measured on a scintillation beta counter. 

� Evaluation of conditioned media. Conditioned media related to 72 hour 

mono- or co-culture of both H295R and ASC were assessed to quantify glucose, 

lactic acid and cortisol content by using a routinely detection method at the central 

analysis laboratory (Azienda Ospedaliero Universitaria Careggi, Florence). 

� Transmission electron microscopy. After 7 day mono- or co-culture, H295R 

and ASCs were trypsinized and centrifuged at 1200 rpm for 5 minutes. Pellets were 

fixed in cold 2.5% glutaraldehyde and 2% formaldehyde in 0.1 M sodium cacodylate 

buffer (pH 7.4) for 1 h at room temperature, and post-fixed in cold 1% osmium 

Figure R1. Schematic representation of the described co-culture system 
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tetroxide in 0.1 M phosphate buffer (pH 7.4) for 1 h at room temperature. Pellets 

were dehydrated in graded acetone, passed through propylene oxide, and 

embedded in epoxy resin. Ultrathin sections were stained with gadolinium acetate 

and alkaline bismuth subnitrate and examined under a JEM 1010 electron 

microscope (Jeol) at 80 kV. 

� In vitro adipocyte differentiation and lipid content quantification. ASCs 

were seeded onto glass coverslips in 6-well plates (5×104 cells/well) and cultured, 

alone or together with H295R (105 cells/insert), in the presence of adipogenic 

medium (DMEM plus 10% FBS, 0,5 mM 3-isobutyl-1-methylxanthine, 1 mM 

dexamethasone, 10 mM insulin and 1µM rosiglitazone - DIM cocktail). ASCs 

cultured in DMEM with 10% FBS were used as negative control. After 10 day 

differentiation, the intracellular lipid content was measured by AdipoRedTM assay 

according to the manufacturer’s instructions. Fluorescence emission was measured 

by 485/572 nm excitation/emission. The specific absorbance related to the 

differentiated adipocytes was calculated as fold increase on the unspecific 

absorbance related to the undifferentiated ASCs. Coverslips were finally mounted 

on microscope slides in the presence of ProLong® Gold antifade reagent with DAPI 

(Thermo Fisher Scientific Inc.) and the fluorescence related to the lipid droplets was 

acquired with a Leica DM4000 epifluorescence microscope (Leica Microsystems 

GmbH). This same protocol was slightly modified to obtain in vitro differentiated 

mature adipocytes suitable for co-culture with H295R: ASCs were cultured for 7 

days in the presence of DIM cocktail and then cultured alone or in the presence of 

H295R for additional 9 days in complete DMEM/F12. The same experimental 

procedure already described was used for measuring the intracellular lipid content 

and to acquire fluorescence images. 

� SDS-PAGE and Western Blot Analysis. After 7 day mono- or co-culture, 

cells were lysed in RIPA buffer (20 mM Tris pH 7.4, 150 mM NaCl, 0,2 mM EDTA, 1 

mM OVA, 0,5% Triton-100 in ddH2O) supplemented with phosphatase and 

protease inhibitors. After protein measurement by Coomassie method, equal 

amounts of proteins for each sample (30 µg) were separated by SDS–PAGE and 

transferred onto PVDF membranes (Immobilon, Merck Millipore). Each membrane 

was incubated overnight at 4°C with primary antibodies, at the appropriate 
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dilutions, against the following proteins: IGF-1Rβ, Fascin-1, RhoA, GAPDH, Actin, 

GLUT-1, GLUT-4, SDF-1/CXCL12 (Santa Cruz Biotechnology, Inc.), phospho-

p44/42 MAPK (Thr202/Tyr204) and p44/42 ERK1/2 (Cell Signalling Technology, 

Inc.), FAK (GeneTex, Inc.), MEK-1 (EDM-Millipore), Actin α-Smooth Muscle (clone 

1A4; A2547; Sigma-Aldrich). The further peroxidase-secondary IgG incubation 

(1:2000 dilution) (Sigma-Aldrich) was performed at room temperature for 1,5 hours. 

Image acquisition and densitometric analysis were performed with Quantity One 

software on a ChemiDoc XRS instrument (BIO-RAD). All Western blots were 

repeated in at least 3 independent experiments. GAPDH or Actin were used as 

internal loading control to normalize protein expression. 

� RNA extraction, reverse transcription and quantitative real-time PCR. 

RNA extraction from H295R, ASCs and mature adipocytes, co-cultured or grown 

alone for 7 days, was performed using the RNeasy Mini Kit (Qiagen) according to 

the manufacturer's instructions. Briefly, pellets of cells, collected by trypsinization 

and centrifugation, were resuspended in RTL-1% β-mercaptoethanol buffer, added 

with 70% ethanol, column purified through sequential centrifugation steps and 

finally eluted in 50 µl RNase-free H2O. RNA concentration was assessed on a 

Nanodrop spectrophotometer (Thermo Fisher Scientific). For each RNA sample, 

cDNA was obtained by performing reverse transcription PCR starting from 250 ng 

RNA in 50 µl final volume reaction (Taqman RT-PCR kit; Applied Biosystems) using 

the following cycling conditions: 10 minutes at 25°C, 30 minutes at 48°C, 3 minutes 

at 95°C, hold 4°C. Further quantitative real-time PCR was carried out using primers 

and probes for the following genes: BMI-1, Nanog, OCT-4, Leptin, AdipoQ, FABP4, 

HSL, IL-8, IGF2, IGF1R, LepR, DPP4, CXCR7, CXCL12, IL-6, MCP-1, HSD11β1, 

GAPDH (Taqman Gene Expression Assay; Applied Biosystems). RT-PCR reactions, 

performed in triplicate for each gene, were carried out in 12,5 µl final volume on a 

ABI Prism 7900 Sequence Detector (Applied Biosystems) with the following cycling 

conditions: 15 seconds at 95°C plus 1 minute at 60°C for 40 cycles. The amount of 

target genes, normalized to the endogenous reference gene (GAPDH) and related to 

a calibrator (Stratagene), was calculated by 2-∆∆Ct.  

� Wound healing assay. H295R cultured alone or in co-culture with ASCs for 7 

days were trypsinized, seeded in a 12-well plate (1.5x106 cells/well) and grown up 
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to confluence. A sterile plastic 10 µl pipette tip was used to scratch the confluent 

cells monolayer in each well to generate a cell-free zone and, after a wash in PBS to 

eliminate the detached cells, fresh medium was added and cells were incubated for 

48h. In each well, migration was assessed under an inverted light microscope and 

quantified using a specific tool (MRI Wound Healing Tool) of the ImageJ software at 

designated time points, i.e. 0, 24 and 48 hours post-scratch. The percentage of 

migration rate was expressed as (1 −  residual area)/(initial area) × 100. 

� Invasion assay. The cell invasion assay was performed with a basement 

membrane-coated CytoSelectTM 24-well cell invasion assay kit (Cell Biolabs), 

according to the manufacturer's instructions. Briefly, H295R cells, previously 

cultured alone or co-cultured with ASCs for 7 days, were trypsinized and plated in 

the upper chamber of the invasion plate (3x105 cells/well) in serum free culture 

medium. Complete culture medium (DMEM/F12 plus 10% FBS) was added to the 

lower chamber. Cells were incubated for 48h at 37°C in 5% CO2 atmosphere. The 

non-invasive cells were then removed from the inside of the inserts, that were then 

transferred to a clean well containing a Cell Stain Solution and incubated for 10 min 

at room temperature. The inserts were washed in water, allowed to air dry and 

transferred to an empty well containing an Extraction Solution. After 10 min 

incubation on an orbital shaker, samples were transferred to a 96-well microtiter 

plate and the OD 560 nm was measured in a microplate reader (VICTOR multilabel 

plate reader; Perkin-Elmer). The OD 560 nm value related to the Extraction Solution 

alone was used as the background subtraction factor. The assay was repeated in 

three different co-culture experiments. 

� Immunofluorescence. H295R cells were seeded on glass coverslips in 6-well 

plates (105 cells/well) and cultured alone or together with ASCs grown in cell 

culture inserts (8×103cells/insert). After 7 days, H295R were fixed in 4% PFA, 

permeabilized in 0,2% PBS-Tryton and incubated with the ActinGreen™ 488 

ReadyProbes® Reagent (Thermo Fisher Scientific, Inc.) for 40 minutes to stain F-

actin cytoskeleton. Coverslips were then mounted on microscope slides in the 

presence of ProLong® Gold antifade reagent with DAPI (Life Technologies). 

Fluorescence was acquired with a Leica DM4000 epifluorescence microscope (Leica 
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Microsystems GmbH). Coverslips incubated with only 5% PBS-horse serum were 

used as negative controls. 

� ELISA assay. The conditioned medium related to ASCs cultured alone or 

together with H295R for 9 days was analyzed with an ELISA kit for the detection of 

human SDF-1a (CXCL12A) (Thermo Scientific™ Pierce™), according to the 

manufacturer's instructions. Briefly, samples were incubated in the assay plate 

containing the anti-SDF-1a antibody for 2,5 hours at room temperature. After 

washings, samples were incubated with the biotinylated antibody for 1 hour at 

room temperature. Subsequent streptavidin-reagent and TMB substrate  incubation 

were performed before measuring the OD 450/550 nm on a microplate reader 

(VICTOR multilabel plate reader; Perkin-Elmer). Each point was performed at least 

four times in at least three different experiments. Sample absorbance values were 

interpolated on a standard curve to obtain the relative concentrations. The assay 

sensitivity was 80 pg/ml. Each value was normalized on the relative cell number. 

� Statistical analysis. Statistical analysis was performed using SPSS 22.0 software 

(SPSS, Inc.). The Kolmogorov–Smirnov test was used to verify the normal 

distribution of data, expressed as mean ± SE. Student’s t test was applied for 

comparison of two classes of data. A P < 0,05 value was considered as statistically 

significant. 
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Results 

 
1) Cell proliferation and morphology of both H295R and ASCs are 

altered during co-culture 

An in vitro co-culture system was set up to assess the reciprocal influence of H295R 

adrenocortical cancer cells and human adipose-derived stem cell (ASCs) on cell 

behavior and characteristics. The use of specific 6-well inserts with a porous 

membrane allowed for culturing the two cell types in the same medium, avoiding 

direct cell contact but maintaining a constant exchange of soluble factors between 

the two compartments.  

First, H295R and ASCs were co-cultured up to 9 days and monitored at designated 

time points (0, 2, 3, 7, 9) to assess whether a variation in the proliferation rate was 

induced compared to the single cultures. Further gene and protein expression 

analysis was performed to investigated the possible intracellular pathways 

involved. Microscopy observation allowed to evaluate morphological variations. 

 H295R co-cultured with ASCs showed a significant increased in cell proliferation 

at day 9 co-culture, compared to H295R cultured alone, evaluated at the same time 

point (8.60 vs. 6.21-fold) (Fig. R2, A), indicating that a pro-proliferative signaling is 

triggered in the presence of ASCs. Western blot analysis was performed on protein 

samples extracted from H295R after 7 day mono- or co-culture in order to 

investigate whether the IGF-1R/MAPK signaling, which sustains the proliferative 

autocrine loop in adrenal cancer,  was involved in mediating such proliferation gain. 

Although the expression of the IGF1 receptor was not altered, a significant increase 

of MEK and p-ERK expression was observed, indicating an up-regulation of this 

intracellular  signaling when ASCs are present. Moreover, at the same time point, 

cells in co-culture showed a significant increase in glucose uptake (1.26-fold), 

measured by incorporation of 2-deoxy-[3H]D-glucose, thus indicating a higher 

metabolic activity of H295R stimulated by ASCs (Fig. R2, B, C). 

Under conventional light microscope observation, H295R co-cultured with ASCs 

appeared differently distributed on the well surface compared with H295R cultured 

alone: unlike the wide, foci-presenting clusters typically observed in our H295R 

cultures, cells formed smaller spaced clusters and acquired a well defined sharp 

shape (Fig. R3), thus suggesting a variation in cell-cell contact dynamics (Fig. R3).  
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Figure R2. The pro-proliferative effect of ASC co-culture on H295R. A) H295R alone (H295R) or co-
cultured with ASCs (H295R+ASC) were assessed for cell proliferation at the indicated time points (2, 3, 
6 and 9 days) by direct cell count. The proliferative rate was calculated as fold increased versus T0. 
Glucose uptake measurement (B) and Western Blot analysis of IGF-1R, MEK1, total ERK and pERK 
expression (C) were compared in cell samples derived from H295R after 7 day mono- or co-culture. For 
Western Blot analysis, GAPDH was used as internal loading control. Both protein expression and 
glucose up-take were calculated as fold increase versus H295R alone. Data are expressed as the mean ± 
SE in at least three independent experiments. * P < 0,05; ** P < 0,001, H295R+ASCs vs. H295R. 

Figure R3. H295R cultured with ASCs show a different distribution compared to the control.

Representative images of H295R cultured alone (A) or in the presence of ASCs (B). Original 
magnification: X10. 
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Transmission electron microscopy was also performed on ultrathin cell sections to 

evaluate H295R ultrastructure following the two culture conditions. The main 

difference was represented by a dramatic decrease of lipid droplets in H295R 

cultured in the presence of ASCs compared to H295R mono-colture (Fig. R4), thus 

indicating a possible increase in lipid metabolism. 

 

 

 

 Proliferative and morphological aspects were concomitantly evaluated in ASCs 

after mono- or co-culture in the setting of the same experiments described above for 

H295R. ASC proliferation was assessed at the same designated time points and a 

statistically significant increase in the proliferative rate was observed starting from 

day 6 co-culture (3.49 vs. 2.69-fold), with a significant difference at day 9 (10.12 vs. 

3.85-fold) (Fig. R5, A). Also for ASCs, glucose up-take was significantly increased in 

co-culture compared to control ASCs (2.06-fold) (Fig. R5, B), indicating that the 

presence of H295R induces ASCs to enhance glucose metabolism. Consistently, the 

insulin-independent glucose transporter GLUT-1 appeared up-regulated in ASCs 

co-cultured with H295R compared to ASCs alone, as assessed by Western Blot 

analysis (Fig. R5, B, inset). Due to their mesenchymal stem origin, ASCs express a 

set of specific markers, including Bmi-1, Nanog and Oct-4, which associate with the 

stem potential maintenance. Following co-culture, the expression of all the three 

stem genes was significantly decreased (2.8, 3.1 and 1.3-fold, respectively) compared 

to control ASCs, as assessed by Taqman assay (Fig. R5, C). This suggests that soluble 

factors secreted by tumor cells and exchanged within the co-culture system are able 

Figure R4. H295R ultrastructure modifications after co-culture. Representative images of control 
H295R (A) and H295R co-cultured for 7 days with ASCs (B) showing a considerable loss of lipid 
droplets (arrow). Scale bars = 5 µm. 
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to recruit and induce ASC increased proliferation as well as commitment toward 

adipose lineage, likely acquiring a phenotype metabolically more prone to sustain 

cancer cell growth. Consistently with this hypothesis, a considerable over-

expression of αlpha-Smooth Muscle Actin (α-SMA), a protein specifically 

indentifying myofibroblast-like cells, was detected by Western Blot analysis in 

protein samples extracted from ASCs cultured for 7 days with H295R compared to 

the control (Fig. R5, D).  

 

 

Figure R5. The presence of H295R prompts ASC proliferation and drives ASC differentiation 

toward a myofibroblast-like phenotype. A) ASCs alone (ASC) or co-cultured with H295R (ASC+ 
H295R) were assessed for cell proliferation at the indicated time points (2, 3, 6 and 9 days) by direct 
cell count. The proliferative rate was calculated as fold increased versus T0. Glucose uptake 
measurement and Western Blot analysis of GLUT-1, GLUT-4 and α-SMA expression (B, D) were 
compared in cell samples derived from ASCs after 7 day mono- or co-culture. For Western Blot 
analysis, GAPDH or Actin were used as internal loading control. Both protein and gene expression (C) 
were calculated as fold increase versus ASCs alone. Data are expressed as the mean ± SE in at least 
three independent experiments. * P < 0,05; ** P < 0,001, ASCs+H295R vs. ASCs. 
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A macroscopic change in cell morphology was observed under light microscopy 

cultured with H295R compared to the controls: they appeared more 

densely distributed into the well and showed a more elongated shape, starting to 

form cell bundles (Fig. R6).  
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Figure R7. ASC ultrastructure shows substantial changes after co-culture. Representative images of 
ASCs cultured alone (A; zoom in: B) or in the presence of H295R (C; zoom in: D, E) for 7 days. 
Different fields with the same original magnification were digitally merged to reconstruct a wider 
cell portion. N=nucleus; M=mitochondria; RER=rough endoplasmic reticulum; Ly=lysosome; 
G=Golgi cisternae; L= lipid droplet. Scale bars = 2 µm (A, C) and 1 µm (B, D, E). 
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2) H295R cell migration and invasion ability is gained in the presence 

of ASCs 

Once ascertained that a reciprocal interaction is established between the two cell 

types in co-culture, we focused on cancer cell features in order to investigate 

whether the presence of ASCs could affect cancer cell motility and migration. H295R 

ability to heal an induced wound was assessed by wound healing assay after 7 day 

co-culture with ASCs. The percentage of migrating cells, evaluated at 24 and 48 

hour post-scratch, was significantly higher in H295R previously co-cultured with 

ASCs compared to the control (Fig. R8, A, B). Moreover, the same H295R stimulated 

by ASCs showed also a statistically significant higher capacity to migrate through a 

basement membrane compared to H295R cultured alone, as assessed by a specific 

invasion assay (Fig. R8, C).  

Figure R8. H295R migration and invasion ability is gained after ASC co-culture. A) Quantification 
of the scratched areas was carried out by using the ImageJ MRI-Wound Healing Tool and the 
percentage of migrating cell was calculated as following: (1 −  residual area)/(initial area) × 100. B) 
Representative images of wound healing assay at 0 and 48 hour post-scratch in H295R previously 
cultured alone or in the presence of ASCs for 7 days. Original magnification: X5. C) Invasion was 
assessed by specific a colorimetric assay and the invasion index was calculated as fold increase vs. 
H295R. Data are expressed as the mean ± SE in at least three independent experiments. * P < 0,05; ** 
P < 0,001, H295R+ASC vs. H295R. 
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We further performed Western blot assay to assess the expression of proteins 

associated with cell migration, particularly Focal Adhesion Kinase (FAK), RhoA and 

Fascin-1, which are involved in the formation of lamellipodia, filopodia and focal 

adhesion structures. H295R co-cultured with ASCs showed a statistically significant 

increased expression in all the three proteins compared to the control (Fig. R9, A). 

Also, we evaluated the actin cytoskeleton organization by performing 

immunofluorescent staining of F-actin: H295R cultured in the presence of ASCs 

showed an altered morphology compared to H295R cultured alone, acquiring a 

more elongated and polarized shape. Moreover, their cytoplasmic stress fibers 

appeared less defined and F-actin seemed to form focal structures rather than 

homogeneously distribute along the plasma membrane (Fig. R9, B). This suggests 

that a cytoskeletal re-organization supporting cancer cell migration is induced 

during co-culture. 

 

3) The presence of H295R impairs ASC ability to efficiently 

differentiate toward mature white adipocytes 

Focusing on the other cell compartment of our co-culture system, we evaluated the 

functional properties of ASCs when cultured in the presence of H295R compared to 

ASC mono-colture. As already mentioned, ASCs constitute the stem reservoir for 

the adipose tissue. Under appropriate stimulation, they are able to differentiate 

toward white adipocytes, with a substantial change in cell morphology, gene 

expression and adipokine secretion. To assess this property in our system, we 

cultured ASCs, alone or together with H295R, in the presence of a specific medium 

inducing adipogenic differentiation. After 10 days, we analyzed the expression of 

specific markers related to adipose functionality, such as Adiponectin (AdipoQ), 

FABP4 and Hormone Sensitive Lipase (HSL) genes: H295R co-culture drastically 

reduced the  expression of all the three genes in the obtained differentiated 

adipocytes, as showed by Taqman assay (Fig. R10, A). As adipocyte differentiation 

correlates with the amount of intracellular lipids stored in typical triglyceride 

droplets, we evaluated the lipid content in adipocytes induced to differentiate in the 

presence or not of H295R. Quantification of cell triglyceride content by AdipoRed 

assay showed that adipocytes obtained during H295R co-culture significantly  
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decreased their lipid content compared to the control (Fig. R10, B), thus indicating 

that the presence of cancer cells affects the ability of ASCs to efficiently differentiate 

toward mature adipocytes, which instead achieve an intermediate state between 

undifferentiated ASCs and mature adipocyte. Consistently, images of the same 

Figure R9. Expression of migration-related proteins and F-actin immunofluorescent staining in 

H295R after mono- or co-culture. A) Western blot analysis of FAK, RhoA and Fascin-1 were 
performed on cell lysates of H295R cultured alone (H295R) or together with ASCs (H295R+ASC) for 7 
days. Densitometric quantification of protein bands was carried out using GAPDH as internal loading 
control. Data are expressed as the mean ± SE in at least three independent experiments. * P < 0,05; ** P 
< 0,001. B) Representative images of immunofluorescence performed on H295R after mono- or co-
colture stained for the F-actin cytoskeleton (green). DAPI staining (blue) was used to visualize cell 
nuclei. Original magnification: X100; zoom in: X2. 
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acquired by epifluorescence microscopy revealed a considerable 

difference in lipid droplet size: while ASCs cultured alone produced adipocytes 

with larger lipid droplets stuffing the entire cytoplasm, adipocytes differentiated 

cultured with H295R showed significantly smaller lipid droplet

the morphology of adipocytes differentiated during co

be consistent with that of brown adipocytes (see Introduction, chapter 3

evidence in the literature that the induction of white adipose tissue (WAT) 

play an important role in cancer (Kir et al, 2014; Petr

Figure R10. The presence of H295R affects ASC ability to efficiently differentiate toward mature 

Taqman assay was performed on cell samples from ASCs, used as ne
control, and adipocytes differentiated in vitro from ASCs alone (ADIPO) or co
(ADIPO+H295R) for 10 days. Gene expression related to AdipoQ, FABP4 and HSL was calculated as 
fold increase vs. ASCs. AdipoQ- and FABP4-fold increase refer to the left Y axis, whereas HSL fold 
increase to the right one. B) Adipocyte lipid content, assessed by AdipoRed assay, was calculated as 
fold increase vs. ASC, whose value = 1 is indicated by the white dashed line. Data are expres
mean ± SE in at least three independent experiments. * P < 0,05; ** P < 0,001, ADIPO+H295R vs. 
ADIPO. C) Representative images of AdipoRed-related fluorescence staining intracellular lipid 
droplets (green) in samples from ASC (negative control), ADIPO and ADIPO+H295R. Cell nuclei were 
counterstained with DAPI (blue). Original magnification: X20. 
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Singh et al, 2016), one could speculate that a similar process could take place in our 

co-culture system. In support of this hypothesis, we found that adipocytes 

differentiated in vitro in the presence of H295R express the Uncoupling Protein 1 

(Ucp-1) gene compared to ASCs used as negative control (19.92 ± 5.04-fold; P < 

0.05). However, further analysis is needed to confirm such a differentiation shift 

from WAT to BAT characteristics. 

 

4) The potential molecular interaction underlying H295R/ASCs 

crosstalk 

As already described, our co-culture system allows the two cell types to interact 

thanks to the exchange of soluble molecules through the porous membrane 

separating the two compartments. Therefore, one of the main purposes was to 

investigate the factors produced and secreted by both ASCs and H295R potentially 

involved in their crosstalk.  

Metabolic adaptation is one of the key process occurring within the tumor 

microenvironment, with lactate playing a central role in mediating tumor/stroma 

cross-interaction and in sustaining tumor progression (see Introduction, chapter 3). 

Basing on the results obtained on cell proliferation during co-culture, we assessed 

the concentration of glucose and lactic acid in the conditioned media of cells co-

cultured or cultured alone for 72 hours, in order to evaluate whether a metabolic 

change toward aerobic glycolysis was occurring. In our in vitro reproduced 

microenvironment, we measured decreased glucose levels, accordingly with the 

previously observed increase of glucose up-take in both cell types; instead, lactic 

acid concentration significantly increased, particularly in the media related to co-

cultured ASCs (Tab. R1). This suggests on one hand that the H295R-induced higher 

proliferation in co-cultured ASCs may rely on a metabolic shift toward glycolysis; 

on the other one, that the augmented proliferation of H295R in co-culture could be 

fueled by lactate produced by ASCs and released into the medium. However, 

further investigation is needed to confirm the role of lactate in H295R/ASCs co-

culture system. 
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Other soluble factors specifically produced by ASCs or H295R, and involved in 

potentially prompting cell proliferation, were further investigated. Among all the 

adipokines produced by ASCs, leptin and interleukin-8 (IL-8) have been associated 

with increased cancer proliferation, migration and invasion (Delort et al, 2015; Wang 

et al, 2015; Cao et al, 2016). Accordingly, gene expression analysis of cell samples 

from ASCs co-cultured with H295R for 7 days revealed a statistically significant 

increment of both leptin and IL-8, a cytokine involved in upregulation of leptin 

production, compared to the control (Fig. R11, A). A concomitant increase of leptin 

receptor (Ob-R) gene expression was observed in H295R in the same co-culture 

setting compared to H295R cultured alone (Fig. R11, B). Moreover, the same H295R 

in co-culture showed a decreased expression of both IGF2 and its receptor, IGF-1R 

(Fig. R11, B). Thus, the Leptin/Ob-R signaling may underlie the increased 

proliferation of cancer cells in our system, indeed activating a pro-proliferative 

pathway alternative to the IGF2 paracrine-autocrine loop typically up-regulated in 

adrenocortical carcinoma (Cantini et al, 2008). 

To elucidate the molecular mechanisms underlying the higher motility/migratory 

ability of H295R when co-cultured in the presence of ASCs, we investigated the 

SDF-1 (CXCL12)/CXCR4/CXCR7 axis in our system, since it is one of the main 

activated pathways within the TME, sustaining tumor proliferation, migration and 

invasion (see Introduction, chapter 3). We assessed the level of gene and protein 

expression of the chemokine SDF-1, as well as its secretion, in ASCs co-cultured 

with H295R for 7 days compared to the control: differently from what expected, 

SDF-1 gene expression was decreased after co-culture (Fig. R12, A), as well as 

protein expression (Fig. R12, B). 

Table R1. Glucose and lactic acid content in conditioned media from mono- and co-cultures. 

Immuno-enzymatic assay was performed to meseaure glucose and lactic acid concentration in 
conditioned media from both ASCs and H295R cultured alone or in co-culture. The absolute 
concentration was normalized on the relative cell number and expressed as fold increase vs. the mono-
colture. * P < 0.05, co-culture vs. mono-culture condition. 
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Figure R11. Potential molecular crosstalk underlying cancer cell proliferation. A) Leptin and IL-8 
gene expression was assessed by Taqman assay in cell samples derived from 7 day ASC mono- (ASC) 
or co-culture (ASC+H295R). The relative expression level was calculated as fold increase vs. ASC. B) 
Gene expression of Ob-R, IGF2 and IGF-1R in H295R cultured alone (H295R) or together with ASCs 
(H295r+ASC) for 7 days, was calculated as fold increase vs. H295R. Data are expressed as the mean ± 
SE in least three independent experiments. * P < 0.05; ** P < 0.001, co-culture vs. mono-culture. 

 

However, when assessed in the conditioned media, the levels of the secreted SDF-1 

were significantly higher in ASCs co-cultured compared to ASCs cultured alone 

(Fig. R12, C). Thus, we hypothesized that, in the setting of the co-culture, high 

amount of secreted SDF-1 induce a negative loop inhibiting the further production 

of SDF-1 by ASCs. In addition, we observed a concomitant decreased gene 

expression of the Dipeptidyl Peptidase 4 (DPP4), a peptidase able to degrade 

multiple chemokines, including SDF-1. Therefore, lower levels of DPP4 could assure 

a higher availability of SDF-1, thus concurring to the negative regulation of this 

chemokine production. On the other hand, we assessed the expression of the SDF-1 

receptors, namely CXCR4 and CXCR7, in H295R co-cultured or not with ASCs: after 

7 day co-culture, H295R decreased CXCR4 expression, while increased CXCR7 

expression. Thus, in our system a shift between CXCR4 and CXCR7 expression 

occurs, being the axis activation likely mediated  CXCR7-downstream pathways. 

Finally, we investigated the presence of factors potentially involved in the 

immunomodulatory mechanisms that have widely been described to occur 

following the crosstalk between tumor cells and their stromal microenvironment, 

contributing to tumor progression. Interleukin- 6 (IL-6) and Monocyte 

Chemoattractant Protein-1 (MCP-1) are two of the main inflammatory cytokines 

produces by ASCs. We assessed the expression of both IL-6 and MCP-1 genes in 

ASCs co-cultured with H295R for 7 days, observing a significant decrease compared 
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to control ASCs (Fig. R13, A). This suggests that adrenocortical cancer cells may be 

able to achieve immune-tolerance by affecting adipose inflammatory cytokine 

production. Another mechanism could be linked to increased levels of cortisol 

production: in fact, this glucocorticoid is specifically produced by adrenocortical 

cells and exerts anti-inflammatory effects. Accordingly, we detected higher level of 

cortisol in the conditioned media of to H295R co-cultured with ASCs compared to 

the control. Concomitantly, an increased expression of the Hydroxysteroid 11-beta 

Dehydrogenase type 2 (HSD11B2) gene, encoding for the enzyme that converts 

cortisol to cortisone, was detected in co-cultured H295R compared to the mono-

culture (Fig. R13, B). Interestingly, HSD11B2 expression was even higher when 

H295R were co-cultured with ASCs induced to differentiate toward mature 

adipocytes, i.e. a mixed culture consisting of both undifferentiated ASCs and pre-

adipocytes. 

 

 

 

 

 

 

Figure R12. SDF-1/CXCR4/CXCR7 axis in H295R/ASCs co-culture. Gene expression related to SDF-1, 
and DPP4 (A) and CXCR4 and CXCR7 (D) genes was assessed by Taqman assay in ASCs and H295R 
respectively, after 7 day co-culture compared to the single culture. Expression levels were calculated as 
fold increase vs. the relative controls. B) Western blot analysis of SDF-1 in ASCs co-cultured compared 
to the control. GADPH was used as internal loading control. C) Extracellular levels of SDF-1 measured 
by ELISA assay in the conditioned media of ASCs after 7 day mono- or co-culture. The absolute 
concentrations were normalized on the relative cell number and expressed as fold increase vs. ASC. 
Data are expressed as the mean ± SE in least three independent experiments. * P < 0.05; ** P <0.001, co-
culture vs. mono-culture. 
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Figure R13. Factors potentially involved in immunomodulatory mechanisms in co-culture. Gene 
expression related to IL-6, and MCP-1 (A) and HSD11B2 (B, lower panel) genes was assessed by 
Taqman assay in ASCs and H295R respectively, after 7 day co-culture compared to the single culture. 
Expression levels were calculated as fold increase vs. the relative controls. C) Extracellular levels of 
cortisol measured in the conditioned media of H295R after 7 day mono- or co-culture. The absolute 
concentrations were normalized on the relative cell number and expressed as fold increase vs. H295R. 
Data are expressed as the mean ± SE in least three independent experiments. * P < 0.05; ** P <0.001, co-
culture vs. mono-culture. 

 

5) A reciprocal interaction is established also between H295R and "in 

vitro" differentiated adipocytes 

Taking together, all findings described above illustrate that, during co-culture, 

H295R are able to induce significant morphological and functional alterations in 

ASCs, which in turn concur to increase cancer cell proliferation and invasiveness. 

Since a physiological adipose microenvironment would consist of mature 

adipocytes with their stem pool of ASCs, we decided to investigate whether co-

culturing H295R with in vitro differentiated adipocytes induced some effects on the 

two cell compartments. At this purpose, we induced ASCs to differentiate for 7 days 

in the presence of the appropriate adipogenic medium, keeping culturing the 

obtained pre-adipocytes in the presence of H295R for additional 9 days. First, we 

evaluated the proliferative rate of H295R co-cultured with adipocytes compared to 

the control: even if we observed only a slight non statistically significant increase in 

cell proliferation in co-cultured H295R compared to the control (5.01 ± 0.28 vs. 4.68 ± 

0.86-fold), Western Blot analysis revealed a higher expression of MEK and p-ERK 

(Fig. R14, left panel), indicating that MAPK-mediated pathway is enhanced by the 
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presence of adipocytes. Moreover, the expression of the migration-related proteins 

FAK, RhoA and Fascin-1 was also increased (Fig. R14, right panel), suggesting that 

also mature adipocytes contribute to cancer cell migration/invasiveness.  

 

 

Figure R14. Expression of proliferation- and migration-related proteins in H295R co-cultured with 

mature adipocytes. Protein expression related to MEK, p-ERK, FAK, RhoA and Fascin-1 was assessed 
by Western blot analysis in cell samples from H295R co-cultured for 9 days with previously in vitro 
differentiated adipocytes (H295R+mADIPO) compared to the control (H295R). Bar charts represent 
protein expression quantified by densitometric analysis of protein bands normalized on GAPDH, used 
as internal loading control, and calculated as fold increase vs. H295R. Data are expressed as the mean ± 
SE in at least three independent experiments. * P < 0,05; ** P < 0,001, co-culture vs. mono-culture. 

 

We further evaluated the effect of H295R on adipocyte functionality: by assessing 

Adiponectin (AdipoQ) and FABP4 gene expression, we observed a statistically 

significant decrease in the expression of both genes in adipocytes co-cultured with 

H295R compared to adipocytes cultured alone (Fig. R15, A). This was accompanied 

by a significant decrease in lipid content, quantified by AdipoRed assay and 

confirmed by the observational analysis of adipocyte lipid droplets by 

epifluorescence microscopy (Fig. R15, B, C). Such a decrease in the lipid content in 

adipocytes interacting with cancer cells is consistent with the widely described 

delipidation process occurring within the tumor microenvironment. Also, 

accordingly to what observed in the literature, adipocytes co-cultured with H295R 

expressed significantly higher levels of leptin compared to the control (4.50 ± 0.3-

fold; P < 0.001). 
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Figure R15. The presence of H295R affects the functionality of mature adipocytes. A) Taqman assay 
was performed on cell samples from ASCs, used as negative control, and in vitro differentiated 
adipocytes cultured alone (mADIPO) or co-cultured with H295R (mADIPO+H295R) for 9 days. Gene 
expression related to AdipoQ and FABP4 is expressed as fold increase vs. ASCs. B) Adipocyte lipid 
content, assessed by AdipoRed assay, was calculated as fold increase vs. ASC, whose value = 1 is 
indicated by the white dashed line. Data are expressed as the mean ± SE in at least three independent 
experiments. * P < 0,05; ** P < 0,001, co-colture vs. mono-colture. C) Representative images of 
AdipoRed-related fluorescence, staining intracellular lipid droplets (green) in samples from ASC 
(negative control), mADIPO and mADIPO+H295R. Cell nuclei were counterstained with DAPI (blue). 
Original magnification: X40. 
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Discussion 

In the complex setting of a cancer mass, several metabolic and molecular 

interactions are continuously established within the tumor microenvironment 

(TME) between cancer cell and the surrounding stroma, consisting of both different 

cell types and extracellular matrix components. Such a dynamic crosstalk leads to 

substantial modification in both cancer and stromal cell behavior, eventually 

supporting tumor growth and progression. The role of adipocytes and adipose 

progenitors as active players within this dynamic crosstalk has been demonstrated 

for many types of malignancy, with particular implication for tumor initiation and 

growth, as well as for local invasion and metastasis (Duong et al, 2017). Studying 

such interactions would help in elucidating canceralso the biology of adrenocortical 

carcinoma: in fact, adrenal glands present a substantial component of adipose tissue, 

thus the cross-talk with the surrounding adipose microenvironment may play a 

pivotal role in adrenocortical tumorigenesis and ACC progression. Unraveling the 

metabolic and molecular dynamics occurring within the ACC TME would allow to 

develop new therapeutic strategies addressing the specific cancer cells-

microenvironment crosstalk. 

In this study we reproduced a simplified in vitro tumor microenvironment by co-

culturing the adrenocortical tumor cells H295R with cells of adipose lineage, both 

adipose-derived stem cells (ASCs) and in vitro differentiated adipocytes, in order to 

evaluate the paracrine effects of the adipose component on H295R cell behavior, as 

well as the influence of H295R cells on the adipose compartment. The co-culture 

system we employed, consisting of specific 6-well inserts with a porous membrane, 

was particular helpful to address our aim, since it allowed to maintain physically 

separated the two cell types, concomitantly permitting the exchange of soluble 

factors between the two compartments. Thus, in the setting of the same 

experiments, we assessed different features in the two cell compartments at the 

same time. 

First investigating the co-culture effect on cancer cells, we evaluated the H295R 

proliferation in the presence an adipose microenvironment, meaning ASCs or 

mature adipocytes, compared to H295R mono-culture, demonstrating that cancer 

cells enhance their proliferation rate when co-cultured with adipose cells. This 

increase can be likely mediated by the up-regulation of the MAPK intracellular 
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signaling, as supported by the observed protein over-expression of MEK and p-

ERK. Beyond this effect on cell proliferation, we demonstrated that the presence of 

adipose cells trigger H295R migration and invasiveness, as shown by both wound 

healing and invasion assays, as well as by the increased expression of migration-

related proteins, particularly Focal adhesion kinase (FAK), RhoA and Fascin1. These 

three proteins are involved in the cytoskeletal re-organization underlying cell 

motility, inducing the formation of specialized structures, such as focal adhesion, 

lamellipodia and filopodia. A variation in cell-cell interactions and the stimulation 

of cytoskeleton re-organization was indeed evident in H295R stimulated by the 

presence of ASCs. Notably, the three proteins have been found over-expressed in a 

variety of human tumors, associating with cancer aggressiveness. Particularly, FAK 

seems to play a crucial role in the TME, promoting tumor progression and 

metastasis through effects on both cancer and stromal cells: this is a cytoplasmic 

protein tyrosine kinase that exerts multiple functions controlling cell movement, 

invasion, survival, gene expression related to the epithelial-to-mesenchymal 

transition (EMT), and cancer stem cell self-renewal (Sulzmaier et al, 2014). RhoA is 

part of the Rho GTPases family, an ubiquitously expressed division of GTP-binding 

proteins involved in the regulation of cytoskeletal dynamics and intracellular 

signaling, whose abnormal expression and activation have major consequences for 

cancer progression and metastasis (Jansen et al, 2017). Finally, Fascin-1, a 

filamentous actin-binding protein, is a crucial in organization and functionality of 

cell protrusions for cell migration, and has been proposed as a prognostic biomarkes 

in several cancer types (Adams, 2015; Min et al, 2015; El-Balat et al, 2016). Notalby, it 

has been demonstrated to be a potential biomarker in adrenocortical carcinoma (Poli 

et al, 2015). Therefore, in our co-culture system Fascin -1 up-regulation becomes 

particularly meaningful.  

 If on one hand we were interested in exploring how the adipose 

microenvironment may sustain cancer cell aggressiveness, on the other one we also 

wanted to evaluate the alterations induced by cancer cells on both ASCs and mature 

adipocytes as part of their crosstalk. The main finding observed was that H295R are 

able to actively "recruit" ASCs, affecting their morphology and functionality and 

driving their differentiation toward a phenotype more prone to sustain tumor 

growth and progression. Accordingly to what demonstrated in other cancer types 

(Jeon et al, 2010; Jotzu et al, 2010; Cho et al, 2011, 2012; Do et al, 2012; Park et al, 2013), 
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H295R-stimulated ASCs enhanced their proliferation and acquired a myofibroblast-

like phenotype, concomitantly decreasing their stem markers. Accordingly, 

morphologic alterations were clearly observed in ASCs after co-culture with H295R. 

Moreover, when induced to differentiate in the presence of cancer cells, ASCs ability 

to give rise to mature adipocytes was impaired. Instead, they achieved an 

intermediate state between undifferentiated ASCs and mature adipocytes, which 

probably serves more efficiently to cancer cell sustaining. As alternative hypothesis, 

it may be possible that ASC differentiation is shifted by cancer cells toward 

browning, since we observed the expression of the brown adipocyte-specific 

Uncupling Protein-1 (UCP-1) gene in adipocytes differentiated in the presence of 

H295R. This may be consistent with evidence indicating the potential occurrence of 

white adipose tissue browning in cancer, particularly related to cancer-associated 

cachexia: brown adipocytes, in fact, are responsible for thermogenesis, that has been 

hypotesized to underlie energy wasting and fat and muscle atrophy (Kir et al, 2014; 

Petruzzelli et al, 2014; Singh et al, 2016).  

The ability of cancer cells of altering the adipose microenvironment was further 

confirmed by co-culturing H295R and in vitro differentiated adipocytes, which 

showed a decreased functionality, measured in terms of decreased expression of 

specific adipogenic markers (i.e. Adiponectin and Fatty Acid Binding Protein 4 -

FABP4 - genes), as well as a loss of intracellular lipid content. This could indicate a 

lipolytic process induced by cancer cells and the release of free-fatty acids (FFAs), as 

widely described in other cancer types (Dirat et al, 2011; Nieman et al, 2011, 2013; 

Park et al, 2014; Balaban et al, 2017; Wang et al, 2017; Wen et al, 2017). FFAs, in fact, 

represents the main energy source provided by adipocytes within the TME to fuel 

cancer cells. Alternatively, the decreased expression of Adiponectin and FABP4, 

could be interpreted as an induced de-differentiation of adipocytes toward a more 

plastic and metabolically active cells, such as the fibroblast-like adipocyte-derived 

cells described in other types of cancer (Chirumbolo & Bjørklund, 2016; Zoico et al, 

2016).  

Metabolic adaptation represents one of the key process allowing tumor cell 

survival and proliferation. Lactate, produced at high levels in the TME following the 

reverse Warburg effect (Pavlides et al, 2009; Chiarugi & Cirri, 2016), has been 

described as one of the major players mediating tumor/stroma cross-interaction and 
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sustaining tumor progression. Alterations in glucose and lactic acid concentration 

were observed in the extracellular compartment of our co-culture system: 

consistently with a possible metabolic shift toward aerobic glycolysis, glucose level 

decreased in the conditioned media of both H295R and ASCs, with a concomitant 

increase of glucose up-take by cells, whereas lactic acid concentration was higher, 

particularly when measured in the media related to ASCs. Thus, lactate may 

represent a key factor in mediating cell proliferation in a complex intercellular 

interaction, in which ASCs recruited by H295R increase glycolysis, producing 

lactate which, in turn, can fuel cancer cell metabolism.  

Since our co-culture system actually allows a "soluble" interaction between the 

two cell compartments, the secreted factors released into the extracellular media are 

the obvious mediators of the observed effects. Adipose cells produce a variety of 

hormones, growth factors, chemokines, and adipokines, that play a critical role in 

modulating tumor microenvironment. Among them, leptin appears to be strongly 

involved in carcinogenesis and cancer metastasis, promoting cell proliferation and 

invasion, as well as angiogenesis (Duong et al, 2017). Leptin over-expression was 

observed in both ASCs and mature adipocytes co-cultured with H295R, which in 

turn up-regulated the expression of leptin receptor. This could explain the IGF-1R-

independent up-regulation of the MAPK signaling observed in H295R co-cultured 

with ASCs, together with the decreased level of IGF2 gene expression: leptin may 

trigger a pro-proliferative pathway alternative to the IGF2 paracrine-autocrine loop 

typically up-regulated in adrenocortical carcinoma (Cantini et al, 2008).  

Another pathway that seems to be involved in the crosstalk between 

adrenocortical cancer cells and the adipose microenvironment is represented by the 

CXCL12 (SDF-1)/CXCR4/CXCR7 axis, which has been shown to affect tumor 

progression by an autocrine/paracrine control of cancer cell survival, proliferation 

and migration (Guo et al, 2016). In our system, along with an increased 

concentration of SDF-1 measured in the conditioned media of co-cultured ASCs, we 

observed a de-regulation of CXCR4 and up-regulation of CXCR7 in co-cultured 

H295R. This is accordant with several evidence showing  CXCR7 over-expression in 

a variety of cancers (Hattermann et al, 2010; Deutsh et al, 2013; Hu et al, 2014; Lin et 

al, 2014; Wu et al, 2015; Shi et al, 2017) and a role for CXCR7 in negatively regulating 

CXCR4 (Uto-Konomi et al, 2013). Interstingly, in a mouse model of metastatic 



Results 

99 

neuroblastoma, CXCR7 has been shown to specifically mediate cells cancer homing 

to the adrenal glands (Mühlethaler-Mottet et al, 2015). Also, CXCR7 seems to be 

specifically required for transendothelial migration (Mazzinghi et al, 2008), 

mediating cancer cell interaction with the endothelia. 

To further investigate tumor adaptation within the TME, we also considered the 

immunomodulatory mechanisms possibly activated by the cross-interaction 

between H295R and adipose cells. The expression of genes encoding two of the 

main adipose inflammatory cytokines, Interleukin- 6 (IL-6) and Monocyte 

Chemoattractant Protein-1 (MCP-1), was decreased in ASCs after co-culture with 

H295R, thus suggesting that adrenocortical cancer cells may be able to achieve 

immune-tolerance through the modulation of cytokine production by adipose cells. 

In fact, lowering IL-6 levels could allow to mild the mobilization of anti-tumor T-

cells (Fisher et al, 2014), while low levels of MCP-1 have been associated to modest 

monocyte infiltration, resulting in tumor formation (Nesbit et al, 2001). The 

increased cortisol production and the up-regulation of its metabolizing enzyme 

(Hydroxysteroid 11-beta Dehydrogenase type 2 - HSD11B2) that we observed in co-

cultured H295R, may also concur to establish a low-level inflammation in the TME, 

supporting tumor progression. Some evidence, in fact, indicates that high levels of 

cortisol and HSD11B2 promote tumorigenesis and mediate immunomodulation in 

other types of cancer (Sidler et al, 2011; Voisin et al, 2017;Wu et al, 2017).  

In conclusion, our findings demonstrate that an active metabolic and functional 

crosstalk is established between adrenocortical cancer cell and cells from the 

adipose lineage. However, as an in vitro experimental model, our co-culture system 

present some limitations, fist of all represented by the pore size (0.4 µm diameter) of 

the insert membrane, which allows soluble factors and exosomes to pass from a 

compartment to the other, but likely prevents the exchange of larger secreted 

vesicles. Some type of experiments required H295R to be cultured inside the inserts 

thus, considering their small dimensions, larger pores should be avoid not to risk 

cell migration through the membrane. An alternative method to study the effect of 

secreted factors on cell behavior would be the use of conditioned media of one cell 

type directly in the mono-culture of the other. However, in this case the possibility 

to follow a dynamic intercellular crosstalk would be loss. Another point is 

represented by the cell models of adrenocortical carcinoma and adipose 
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microenvironment employed: H295R are not effectively reproducing the specific 

characteristic of ACC, whereas ASCs are derived from different individuals and 

would show variations in their functionality and differentiation ability. However, 

even being a simplified model of tumor microenvironment, our models allows to 

detect substantial modification in the two different compartments, pointing out the 

potential role of the surrounding adipose microenvironment in sustaining 

adrenocortical tumorigenesis and cancer progression. 
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PART II - Detection and characterization of circulating tumor 

cells in adrenocortical carcinoma 

 

Materials and methods 

� Patients and samples. Fourteen patients evaluated at our University Hospital 

for adrenocortical carcinomas who underwent surgery and are currently under 

follow-up were enrolled for this study, which was approved by the Local Ethical 

Committee. All patients agreed by written informed consent. Blood samples were 

collected in K2-EDTA tubes during standard blood draws, kept at 4°C and 

processed within 3 hours. For most of the patients, samples related to different time 

points were collected. 

� Blood filtration and CTC isolation. Blood samples were processed by using 

two different ScreenCell® filtration devices for CTC isolation, namely ScreenCell 

Cyto and MB kits, allowing for cytomorphological analysis and DNA extraction 

respectively. The filtration was performed according to the manufacturer’s 

instructions. Briefly, with the Cyto kit, 3 ml of blood were diluted in a specific 

dilution buffer for red blood cell lysis and cell fixing. A total volume of 7 ml of  

diluted blood was transferred into the filtration unit and filtered through the 

microporous filter, adding 1,6 ml PBS in order to remove red blood cell debris. At 

the end of the filtration process, each track-etched microfilter was released from the 

filtration module, placed on absorbing paper and washed with PBS, allowed to air 

dry and further stored at 4°C. For each patient, the blood sample was filtered in 

duplicate, while a third parallel filtration was performed by using the ScreenCell® 

MB kit: 6 ml blood, diluted with 1 ml of specific dilution buffer, were filtered as 

described above. The filter was finally released in the provided Eppendorf tube and 

stored at -20°C (Fig. R16). 



 

� CTC identification

was used to perform cytological studies, including hematoxylin/eosin staining and 

immunocytochemistry. Each filter was incubated with Hematoxylin S (Merck 

KGaA) for 2 minutes at 

with Shandon Eosin Y (Thermo Fisher Scientific) for 1 minute. Excess of eosin  was 

removed with distilled water and the filter was allowed to air dry, placed on a 

standard microscopy glass slide and

(DAKO) and 7 mm circular cover slip. CTCs were identified and enumerated under 

light microscope according to the following morphological criteria: cell size 

nucleo-cytoplasmic ratio 

basophilic cytoplasm.

was performed as following: filters were hydrated with Tris

pH 7.4) and incubated with permeabilizing buffer (TBS

minutes at room temperature. H

incubating filters in a bath 

20 minutes. Each filter was incubated overnight with 70 µ

human SF-1 (Upstate; dilution 1:50 in TBS

immersed in distilled water. Staining was achieved by treating each spot with 70 µl 

EnVision Detection System Perox

minutes at room temperature, followed by chromogen 3.3' diaminobenzidine 

Figure R16. Schematic representation of the 
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CTC identification, enumeration and characterization. Track

was used to perform cytological studies, including hematoxylin/eosin staining and 

immunocytochemistry. Each filter was incubated with Hematoxylin S (Merck 

2 minutes at room temperature, washed in distilled water and incubated 

with Shandon Eosin Y (Thermo Fisher Scientific) for 1 minute. Excess of eosin  was 

removed with distilled water and the filter was allowed to air dry, placed on a 

standard microscopy glass slide and mounted with Faramount mounting medium 

O) and 7 mm circular cover slip. CTCs were identified and enumerated under 

light microscope according to the following morphological criteria: cell size 

cytoplasmic ratio ≥ 50%, irregular nuclear shape, hyperchromatic nucleus, 

toplasm. To confirm cell adrenocortex origin, immunocytochemistry 

was performed as following: filters were hydrated with Tris-buffered saline (TBS; 

pH 7.4) and incubated with permeabilizing buffer (TBS-0,2% Triton 100X) for 5 

minutes at room temperature. Heat-induced epitope retrieval was performed by 

incubating filters in a bath with Target Retrieval Solution (pH 9.0) (Dako) 

Each filter was incubated overnight with 70 µl monoclonal mouse anti

1 (Upstate; dilution 1:50 in TBS-1% BSA), washed with TBS 

immersed in distilled water. Staining was achieved by treating each spot with 70 µl 

EnVision Detection System Peroxidase/DAB, Rabbit/Mouse (K5007; Dako) for 40 

minutes at room temperature, followed by chromogen 3.3' diaminobenzidine 

Schematic representation of the described CTC isolation workflow. 

Results 

Track-etched filters 

was used to perform cytological studies, including hematoxylin/eosin staining and 

immunocytochemistry. Each filter was incubated with Hematoxylin S (Merck 

room temperature, washed in distilled water and incubated 

with Shandon Eosin Y (Thermo Fisher Scientific) for 1 minute. Excess of eosin  was 

removed with distilled water and the filter was allowed to air dry, placed on a 

mounted with Faramount mounting medium 

O) and 7 mm circular cover slip. CTCs were identified and enumerated under 

light microscope according to the following morphological criteria: cell size ≥ 16 µm, 

≥ 50%, irregular nuclear shape, hyperchromatic nucleus, 

To confirm cell adrenocortex origin, immunocytochemistry 

buffered saline (TBS; 

0,2% Triton 100X) for 5 

induced epitope retrieval was performed by 

Target Retrieval Solution (pH 9.0) (Dako) at 99°C for 

monoclonal mouse anti-

1% BSA), washed with TBS and 

immersed in distilled water. Staining was achieved by treating each spot with 70 µl 

idase/DAB, Rabbit/Mouse (K5007; Dako) for 40 

minutes at room temperature, followed by chromogen 3.3' diaminobenzidine 
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(Dako) for 10 minutes at room temperature. Filters were rinsed with water and 

nuclei were counterstained with Hematoxylin S. 

� Genomic DNA purification from CTCs and whole genome 

amplification. CTCs isolated with ScreenCell MB kit were processed according to 

the manufacturer’s protocol for DNA extraction, purification and amplification: 

filters were incubated with an appropriate lysis buffer at 56°C for 10 minutes and 

centrifuged 1 minute at 12000 g. The DNA within the flow-through was column 

purified through sequential centrifugation steps and finally eluted in 23 µl AE 

buffer (QIAamp DNA Micro Kit; Qiagen). Whole genome amplification was 

performed by using the GenomePlex® Single Cell Whole Genome Amplification kit 

(Sigma-Aldrich): DNA was fragmented by 1 hour incubation at 50 °C with an 

appropriate working solution, followed by 4 minutes at 99°C, and used for library 

preparation. Further amplification was performed in a final volume of 75µl mix in a 

thermal cycler as following: initial denaturation at 95°C for 3 minutes, 30 seconds at 

94°C plus 5 minutes at 65°C for 25 cycle, hold at 4°C. Negative and positive controls 

were amplified along with samples. 

� Targeted NGS sequencing. Tumor DNA from patients previously assessed 

for mutations was sequenced by NGS on a Ion PGM system (Thermo Fisher 

Scientific) with a targeted panel designed with the Ion AmpliSeq Designer tool 

(Thermo Fisher Scientific) and including 9 genes described as mutated in ACC 

(ZNRF3, TP53, CTNNB1, CDKN2A, MEN1, RB1, CDK4, GNAS, PRKACA) and a 

selection of 173 heterozygous SNPs distributed along chromosome arms associated 

with LOH in ACC. Libraries were prepared according to the Ion AmpliSeq protocol: 

the selected genes and SNPs were amplified by two multiplex PCR using 2 pools of 

primer pairs (355 total) in order to obtain amplicons with an average size of 150 bp. 

100 ng genomic DNA were used for each PCR reaction. Libraries were further 

amplified, purified and sequenced by semiconductor sequencing technology (Ion 

Torrent, Thermo Fisher Scientific). Vcf files were annotated with Annovar. Data 

were analyzed by using the RStudio software. 

� Digital-droplet PCR (ddPCR). The QX200 droplet digital PCRsystem (Bio-

Rad) was used for mutant detection in selected tumor and CTC DNA samples 

according to the manufacturer’s instructions. Two primer and probe pairs were 
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designed to amplify and target specific wild type and mutated sequences within the 

genes ZNRF3 (forward primer: 5'-CCGGTTTCACAGGAAGTG; reverse primer: 5' 

GACTCTTCAGCAATGGCTAA; wt probe: 5'-TGCAGCACCACAC, HEX-

conjugated; mut probe: 5'- TGCAGCAACACACCT, FAM-conjugated) and TP53 

(forward primer: 5'-GAGTCTTCCAGTGTGATG; reverse primer: 5'-

CACCATCCACTACAACTAC; wt probe: 5'-TCATGCCGCCC HEX-conjugated; mut 

probe: 5-TCATG+C+T+G+CCCA FAM-conjugated) (Eurogentec). ddPCR reactions 

were performed in 20 µl mix using 18 ng DNA with the following cycling 

conditions: 10 minutes at 95°C, 30 seconds at 94°C plus 1 minute at 57°C for 40 

cycles; 10 minutes at 98°C, hold at 4°C. Mutant and wild type allele concentration 

(copies/µl; CMUT and CWT, respectively) were determined basing of the number 

of positive and negative droplet for each fluorophore in each sample and mutant 

allele frequency (MAF) was calculated as following: MAF =CMUT/(CMUT +CWT). 
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Results 

 
1) CTCs can be detected in the peripheral blood of ACC patients with 

different clinical features 

We collected blood samples from 14 patients diagnosed for adrenocortical 

carcinoma, who underwent surgery and are currently under follow-up. Our cohort 

includes patients with different features related to disease presentation (tumor size, 

Weiss score, Ki67, stage), outcome (tumor recurrence or metastasis) and post-

surgical treatment, as summarized in Tab. R2. For some of the patients, the 

mutational profile of the primary tumor was also available, since they were 

analyzed in the setting of an European cohort for the study of the genomic 

landscape of ACC (Assié et al, 2014). Where present, gene mutations and 

homozygous deletions are indicated.  

For most of the patients, we performed blood draw at different time points, in order 

to have multiple samples over time. Blood was filtered to isolate circulating tumor 

cells (CTCs) by using the ScreenCell filtration devices, as described in the section 

above (see Materials and methods), and the circular microfilters were analyzed for 

CTC detection and characterization. Following hematoxylin/eosin staining, filters 

were assessed for CTC identification using the described cytomorphometric 

parameters. In our samples, we detected both single CTCs and CTC clusters, namely 

circulating tumor microemboli (CTM), considering morphometric parameters such 

as size (> 16 µm), irregular and hypercromatic nuclei and high nucleocytoplasmic 

ratio (Fig. R17, A, B, C). In some samples we also detected the so-called cancer-

associated macrophages-like cells (CAML), characterized by large size, multilobular 

or multiple nuclei and voluminous cytoplasm (Fig. R17, D). The relative number of 

CTC, CTM and CAML detected for each sample of each patient is indicated in Tab. 

R2. Further immunocytochemistry analysis was performed to assess the 

adrenocortical origin of the detected CTCs: a nuclear positivity for the Steroidogenic 

Factor-1 (SF-1) was observed, indicating the adrenocortical nature of cells, as also 

confirmed by comparing the SF-1 immunohistochemistry performed on tissue 

samples from the primary tumor of the same patients (Fig. R18). Thus, CTCs can be 

detected in the peripheral blood of ACC patients, even years after surgical resection 

of the primary tumor. 



   

Table R2. Characteristics of ACC patients analyzed for CTC detection and characterization. 
available; — = none. 
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Characteristics of ACC patients analyzed for CTC detection and characterization. 

Results 

Characteristics of ACC patients analyzed for CTC detection and characterization. na = not  



 

 

 

 

2) Experimental design for 

CTCs: preliminary results

The principal aim of

characterize at the molecular level the isolated CTCs, in order to compare their 

genetic profile with the primary tumor

evolution and progression in the 

of CTC isolation and DNA extraction and amplification, aimed to obtain a sufficient 

amount of DNA feasible for further downstream applications, in particular targeted 

NGS and digital-droplet PCR (ddPCR) (Fig. R19)

CTC DNA for the presence of 

primary tumor of the same patients, and to eventually obtain a single cell genetic 

profile to be compared to that of the primary tumor.
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xperimental design for the molecular characterization 

: preliminary results 

The principal aim of this study was to set up an experimental workflow to 

characterize at the molecular level the isolated CTCs, in order to compare their 

genetic profile with the primary tumor, thus eventually allowing to follow ACC 

evolution and progression in the single patient. This workflow includes a first step 

of CTC isolation and DNA extraction and amplification, aimed to obtain a sufficient 

amount of DNA feasible for further downstream applications, in particular targeted 

droplet PCR (ddPCR) (Fig. R19). The purpose 

the presence of single point mutations already detected in the 

primary tumor of the same patients, and to eventually obtain a single cell genetic 

profile to be compared to that of the primary tumor. 

Figure R17. 

images of hematoxylin/eosin 
staining of
C) and CAML (D), detected in 
the blood samples of ACC 
patients. Original magnification. 
X40 

Figure R18. 

images of nuclear SF
performed on primary tumor 
samples (A) and on isolated 
CTCs (B) in the same patient.

Results 

the molecular characterization of isolated 

this study was to set up an experimental workflow to 

characterize at the molecular level the isolated CTCs, in order to compare their 

, thus eventually allowing to follow ACC 

tient. This workflow includes a first step 

of CTC isolation and DNA extraction and amplification, aimed to obtain a sufficient 

amount of DNA feasible for further downstream applications, in particular targeted 

. The purpose was to assess the 

single point mutations already detected in the 

primary tumor of the same patients, and to eventually obtain a single cell genetic 

Figure R17. Representative 
ges of hematoxylin/eosin 

staining of CTCs (A), CTM (B, 
C) and CAML (D), detected in 
the blood samples of ACC 
patients. Original magnification. 

Figure R18. Representative 
images of nuclear SF-1 staining 
performed on primary tumor 
samples (A) and on isolated 
CTCs (B) in the same patient. 
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We started from patients whose tumor samples were already analyzed by NGS 

assay and SNP array (as part of European cohort for the study of the genomic 

landscape of ACC; Assié et al, 2014), in order to detect the presence of mutations and 

chromosome alterations (i.e. loss of heterozygosity, LOH ). In particular, we selected 

two patients showing mutations in ZNRF3 and TP53 genes, respectively (see Table 

R2, patient 2 and patient 13). Notably, these two genes have been described among 

the most frequently altered genes in ACC (Assié et al, 2014; Juhlin et al, 2015; Zheng 

et al, 2016). We used a dedicated ScreenCell filtration device to isolate CTCs and 

extract DNA. Further whole genome amplification was performed to increase the 

amount of DNA. We designed a specific ddPCR assay for each gene in order to 

target the specific mutation in each patient, and we tested the assays on the relative 

DNA tumor samples. We were able to detect the mutated allele in both patients (Fig. 

R20, A), thus we could confirm the specificity of our assays. Notably, the allelic 

frequency of the mutations detected by ddPCR was comparable to that obtained 

with the previous NGS assay (Fig. R20, B). On the contrary, the results of ddPCR 

performed on CTC DNA from the same patients were disappointing: no signal was 

detected in any of the samples, even related to the wild type alleles (Fig. R20, C). 

Since our CTC isolation system does not allow to obtain a pure sample of CTC, but 

other blood cells, including lymphocytes, still remain after filtration, at least we 

should detect germline DNA in our samples. Thus, some technical issue related to 

CTC DNA purification and amplification affects our system and needs to be 

investigated. 

Figure R19. Schematic representation of the experimental workflow for the molecular characterization 
of circulating CTC isolated from blood sample of ACC patients. 
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To further assess the chromosomal alterations and the mutational state of ACC-

related genes in both tumor and CTC samples, we designed a target NGS assay, 

which included genes and Single Nucleotide Polymorphisms (SNPs) selected on the 

basis of the previous results on the larger European cohort of ACC patients. In 

particular, we selected 9 genes with a high percentage of mutation and prognostic 

value in ACC (ZNRF3, TP53, CTNNB1, CDKN2A, MEN1, RB1, CDK4  GNAS, 

PRKACA) and a selection of 173 SNPs related to 11 chromosome arms (1p, 1q, 2p, 

2q, 9q, 11p, 11q, 17q, 18p, 18q, 22q) previously identified as discriminating of 

chromosomal and noisy LOH profiles, or harboring the genes frequently found 

deleted in ACC. The SNP selection criteria included heterozygosity (average > 

0.4999) and  at least 100 kb distance one to the other in order to avoid the linkage 

disaequilibrium effect and to achieve as much coverage as possible for each 

chromosome arm. As for ddPCR, we first tested the new NGS panel on ACC tumor 

samples to compare the results to the previous analysis. We obtained encouraging 

preliminary results about  SNPs, confirming that the new NGS assay can replicate 

the previous SNP profiles in all the cases of chromosomal, quite or noisy LOH (Fig. 

Figure R20. ddPCR analysis assessing the presence of selected mutations in tumor and CTC-derived 

DNA. A specific ddPCR assay was designed for each of the selected mutations in ZNRF3 and TP53  
related to patient 2 (P2) and patient 13 (P13) of our cohort. The mutated and wild type alleles are 
detected thanks the complementary hybridization of a specific probe conjugated with a different 
fluorophore, FAM for the mutated (blue signal) and HEX for the wild allele (green signal). The grey 
signal represent the double-negative droplets. 
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R21). Further data analysis needs to be done to validate the NGS assay, including 

the evaluation of gene mutations.  

 

 

 

 

 

 

 

Figure R21. Representative images of  chromosomal (A), quiet (B) and noisy (C) LOH profiles related 
to tumor samples of three different ACC patients. The BAF (B Allele Frequency) plots refer to the 
previous NGS analysis; the mBAF (mirrored B Allele Frequency) plots are related to the analysis with 
the new targeted NGS panel. The chromosome arms harboring the analyzed SNPs are indicated on the 
mBAF plots and linked to the correspondent ones on the BAF plots by the red arrow. 
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Discussion 

The molecular and metabolic evolution within the primary tumor mass, together 

with a variety of stimuli produced in the surrounding microenvironment, underlies 

cancer cell ability to acquire metastatic traits and, eventually, disseminating through 

the blood circulation and colonizing distant organs. Since metastasis represents the 

main cause of death in cancer patients, preventing cancer cell spreading rather than 

treat secondary neoplasms would be more effective in high-risk patients. In this 

setting, the detection and characterization circulating tumor cells (CTCs) could serve 

as real-time "liquid biopsy" (Alix-Panabières & Pantel, 2013), allowing to profile the 

disease complexity at any stage of tumor progression. This would particularly 

helpful in the case of advanced adrenocortical carcinoma, aiding in developing 

more effective therapeutic strategies targeting specific traits of cells that retain the 

metastatic potential.  

CTC detection and count has been already shown to be a potential marker for 

differential diagnosis in ACC (Pinzani et al, 2013). Here, we aimed to develop an 

experimental design to characterize CTCs at the molecular level, in order to 

compare the genetic profile with that of the primary tumor and identify potential 

markers allowing for early detection of metastatic disease. 

CTC isolation by size, associated with the positivity for the adrenal specific 

marker SF-1,  remains the most useful tool in the case of ACC, since adrenocortical 

carcinoma have been shown to be EpCAM-negative (Went et al, 2004), thus making 

poorly efficient the EpCAM immunoselection-based systems for CTC detection. 

Using a dedicated filtration device, we were able to assess the presence of CTCs in 

blood samples from ACC patients under follow-up and with different 

characteristics of disease presentation. We were able not only to detecte single 

CTCs, but also CTC clusters (CTM), which have been associated with a more 

aggressive tumor behavior and poor clinical outcome (Hou et al, 2012; Aceto et al, 

2014, 2015; Au et al, 2016). Moreover, we also identified cancer-associated 

macrophages-like cells (CAML), which seems to be predictive of disease outcome in 

other cancer types (Adams et al,2014, 2016; Mu et al, 2017). The specific nuclear 

positivity for SF-1 in isolated cells confirmed the adrenal origin of the detected 

CTCs. However, some limitations are still present: first of all, our filtration system 

do not allow single CTC isolation, since a percentage of blood cells is still retained 
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on the filters. Employing more sensitive techniques for CTC isolation by size, 

followed by a specific selection for SF-1-positive cells, will help in overcoming this 

particular issue. 

Concerning CTC molecular characterization, we are still far from have enough 

amount of high quality DNA from CTCs suitable for downstream applications, such 

as digital-droplet PCR and next generation sequencing. However, our preliminary 

results with the designed assay addressing specific alterations in the primary 

tumors of ACC patients, are encouraging: in fact, we could confirm the presence of 

both point mutations and the specific LOH profiles in tumor samples of selected 

patients. Improving technical aspects related to DNA extraction, purification and 

amplification of CTC DNA will allow to pursue in this promising field, looking 

forward the application of "liquid biopsy" and CTCs for personalized therapy also 

in ACC. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

Despite immunohistochemical and molecular studies have identified novel 

biomarkers of diagnostic and prognostic relevance for adrenocortical carcinoma, the 

discrimination between malignant and benign forms remains challenging, the 

molecular mechanism underlying the pathology has still to be fully elucidated and 

the available therapeutic options show limited specificity and efficacy. A better 

understanding of the tumor biology and behavior would help in identifying new 

therapeutic targets to develop a more personalized approach to treat patients. 

Beyond molecular alterations occurring within the tumor mass, including driver 

gene mutations, epigenetic alterations and dysregulation of signaling pathways 

related to cell survival, growth and proliferation, the role of the surrounding stroma 

has been widely recognized as crucial in sustaining tumor metabolic adaptation and 

evolution. Thus, unraveling the dynamics occurring in the setting of the ACC tumor 

microenvironment would help in elucidating the biology of adrenal tumorigenesis, 

shedding new light on the mechanisms driving cancer progression. Particularly, this 

would give a chance to address the metabolic and functional interactions potentially 

established between adrenocortical carcinoma cancer cells and their adipose 

microenvironment, allowing to uncouple such a crosstalk. Moreover, identifying 

more specific features of cells developing and retaining more aggressive traits could 

allow to monitor tumor progression, preventing tumor dissemination and 

metastasis. In this scenario, the "liquid biopsy" may represent the possibility to 

follow tumor evolution, with promising implications for the clinical practice. 
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