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A two-part geoadditive model for geographical
domain estimation.

Chiara Bocci, Alessandra Petrucci, Emilia Rocco

Abstract Small area estimation (SAE) based on linear mixed models can be in-
efficient to deal with semicontinuous variables that have a portion of values equal
to zero and a continuous, often skewed, distribution among the remaining values.
Moreover when small domains of study are geographical areas an adequate use of
geographic information and geographical modeling can provides more accurate es-
timates for small area parameters. In this paper we suggest a two-part geoadditive
small area model that can deal with these issues, frequently addressed in many fields
of applied research, among which the agricultural one. The performance of the sug-
gested model is then illustrated by an application to agricultural data: the model is
used to estimate the per farm average grapevine production in Tuscany at Agrarian
Region level.

Key words: Generalized linear mixed model, Geographic information, Semicon-
tinuous data, Small area estimation.

1 Introduction

In many agricultural applications, a response variable may have a continuous distri-
bution whit a large number of values clustered at zero. In literature the “excesses”
zeros” in data are usually described by the zero inflated (ZI) regression models that
mix a degenerate distribution with point mass of one at 0 with a simple regression
model based on a standard distribution. This is realized considering a pair of regres-
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sion models: a model, usually logit or probit, for the probability of nonzero response
and a conditional linear model for the mean response given that it is nonzero. The
ZI models has been originally developed to analyze count data, but then are also
extended to situation in which a huge number of zeros occur in continuous data
(Holsen and Shafer, 2001; Gosh and Albert, 2009) and their application is common
in zero inflated lognormal model with skewed semicontinuous data. Frequently, in
the context of semicontinuous data these mixture models are referred to as two-part
models. A two-part SAE model may be defined replacing the pair of regression mod-
els above mentioned with a pair of classic SAE models that is a pair of generalized
linear mixed models that include independent random area effects to account for
between area variation beyond that explained by auxiliary variables. Nevertheless
classic SAE models assume independence of the area-specific random effects. If the
small domains of study are geographical areas, this assumption means that any pos-
sible spatial structure of the data is not take into account.Therefore it may be unrea-
sonable and an adequate use of geographic information and geographical modeling
may be opportune. A geoadditive model allow to analyzes the spatial distribution of
the study variable while accounting for possible covariate effects through a linear
mixed model representation (Kammann and Wand, 2003). The linear mixed model
structure allows to include the area-specific effect as an additional random compo-
nents. In particular, a geoadditive SAE model has two random effect components:
the area-specific effects and the spatial effects. The aim of this paper is to suggest
an approach in order to predict the mean value at some domain of interest of a vari-
able that present a semicontinuous structure and a spatial related pattern. A two-part
model composed by a pair of geoadditive small area models is suggested and ap-
plied to estimate the per farm average grapevine production in Tuscany at Agrarian
Region level.

2 Methods

Let y;; denote a non-negative semicontinuous skewed response variable for the unit
j(j=1,..,N;)insmall area i (i = 1,...,m ¥J* | N; = N), x;; a vector of p linear
covariates associated with the same unit and s;; (s € R?) the spatial location of the
unit. We assume that the response variable has a significant spatial pattern and can
be recoded as two variables,

o 1 ifyij>0
1,,{Oifyij:0 (1)
and

1 Yij ify,'j>0
Yij = {irrelevant if yjj =0 )
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We model these responses by a pair of uncorrelated geoadditive small area mod-
els. One for the logit probability of I;; = 1 and one for the conditional mean of the
logarithm of the response E[log(y;;)|Ii; = 1]. The two models using the linear mixed
model representation, can be written respectively as:

n=XB+Zy+Du (3)

and
log(y) =X*B*+Z*y* +D*u" +¢ “4)

where 1;; = log(m;;/(1+m;;)), m; = P(I;j = 1), y' is the vector containing all rele-
vant y;; values, the ones corresponding to /;; = 1 ; w and u* are the the vectors of the
area specific random effects in the two model, ¥y and y* are the coefficient vectors
for the ”spline” portion of the two models, B and B* are the coefficients vectors for
the ”parametric” portion of the two models, X and X* are the matrices of covariates
relating to the fixed effects, Z and Z* are the matrices of covariates concerning the
random effects due to the spline, D and D* are the matrices of covariates concerning
the random effects due to the small area, € is the second model the residuals vector.
In our model the same set of covariates may appear in the logit and loglinear parts.
Even if the same covariates are used in both parts, it will be not generally true that
X =X*Z =17",D = D* because model (4) applies only when y;; > 0.

For independent semi-continuous data all observed zero are unambiguous, they nec-
essarily came from the degenerate distribution, rather than from the nondegenerate
continuous distribution. The likelihood for such a model factors into terms for the
zero and nonzero data, so that it is equivalent to separately model the nonzero data
and an indicator variable for wether or not the response is zero. Unfortunately this
simplification may not occur for clustered data because the cluster specific random
effects into the two models may be correlated. In a recent paper, Zhang et al. (2006)
compared the parameter estimates obtained adopting a two part hierarchical model
with a correlated random effects structure with those obtained fitting separately the
two models and showed that they are similar. Looking at these results, in the appli-
cation described in next section we assume that the random effects relative to the
two models, one due to the logit probability and the other to the logarithm of the
mean conditional response, are uncorrelated.

3 Data, preliminary results and comments

The Italian Statistical Institute (ISTAT) drives an Agricultural Census ten-yearly
and a sample Farm Structure Survey (FSS) two-yearly. Both in the Census and in
the FSS, the unit of observation is the farm and the data of the surface areas al-
located to different crops are registered for each farm. In the FSS, until 2005, the
productions of each crop were also observed. The FSS survey is designed to obtain
estimates only at regional level. We are interest in producing the mean estimation of
grapevine production for the 52 Agrarian Regions in which Tuscany region is par-
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titioned. A large number of farms don’t cultivate grapevines, and a few produce the
majority of the total region production. Moreover the cultivation and consequently
the production of grapevines for each farm depends on the characteristics of the
territory in which the farm is located. Finally, the quantity of grapevine produced
by the same allocated surface may change, depending on the soil productivity and
on the production choices of the farms (relative to the typology and quality of the
produced grapevine). These practical considerations, confirmed by an explorative
analysis of the data, motivate our choice of a two part geoadditive SAE model. The
model is applied to produce estimates referred to the 2003 year for which the data of
the FSS Survey are available. Auxiliary variables and spatial information for each
farms referred to 2000 census time. As main results we obtaine the predicted agrar-
ian regions means which are showed in Figure 1.1t is evident a evident geographical
pattern, with the higher values in the areas belonging to the provinces of Florence
and Siena (the well known zone of Chianti) and the lower values in the north moun-
tainous area of the provinces of Massa Carrara and Lucca.

Mean Grapevine Production
1.81-594

Fig. 1 Agrarian region 5,94 - 15.35
. B 15.35 - 31.90
level estimates of the mean I 31.90 - 132.50

> . B 132.59 - 254.34
grapevine production.
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