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Chapter 1

Introduction

There are many steps in the design of a Machine Learning (ML) workflow
where Global Optimization (GO) can be fruitfully employed. ML tasks can
be categorized based on the availability of the class labels in the training set:
when all of the samples have a label, we deal with supervised learning, while
the two scenarios in which samples are partially labeled or not labeled at
all are called respectively semi-supervised and unsupervised learning. While
in the latter task, where the class information is completely unknown, what
is commonly learnt is the support or the distribution of the input data, ro-
bust classification can still be achieved when only a few examples have a
label. Semi-supervised learning is a ML concept which has gained increasing
attention in the last decade. It aims at exploiting the unlabeled samples
alongside with labeled ones, by including them in the learning process. This
is helpful when dealing with ML tasks where gathering large amounts of
unlabeled patterns is relatively easy, while labeling them is a costly process.
In Chapter 2 we go into detail about semi-supervised learning, present a
combinatorial algorithm to solve semi-supervised binary classification and
prove its effectiveness and efficiency on a selection of small, medium and
large scale datasets. Combinatorial approaches to semi-supervised classifi-
cation are often able to deliver accurate models, successfully involving the
unsupervised patterns in the learning process. However, these methods are
known to scale badly with the size of the unlabeled dataset, and have been
progressively abandoned by the recent literature. Thanks to the GO tech-
nique presented in Chapter 2, we are able to get rid of the dependency on
the size of the unlabeled dataset, and solve the optimization problem yielded
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2 Introduction

by semi-supervised classification by means of a very efficient combinatorial
procedure. Moreover, we show the optimality of the proposed technique,
through an elegant and simple proof.
Not all of the possible traits of an input object are worth to consider – or
available – when building a ML model (such as a classifier or a regressor),
and a feature selection phase is often needed. Even with a relatively small
number of features, selecting the most relevant ones is a crucial but complex
combinatorial task. Moreover, the literature does not provide a clear defi-
nition of feature importance, thus making hard to evaluate and rank them
before being selected. GO can be very helpful when dealing with feature
selection and ranking. The approach presented in Chapter 3 involves GO
techniques to build a formal definition of relevance. In particular, input
characteristics are ranked and selected by solving a well-defined global prob-
lem. This formulation, in addition to clearly state a concept of variable
relevance, is able to build a multivariate ranking of the features, that is,
simultaneously taking them into account when assessing their importance.
Moreover, the proposed ranking framework is well structured and lends itself
particularly well to be implemented in a parallel and distributed fashion; to
this aim, Chapter 3 also discusses a practical parallel implementation of the
proposed feature ranking technique, based on state-of-the-art software tools
and paradigms.

From an opposite perspective, ML techniques can enhance a GO scheme,
and make it both more effective and efficient in detecting the global optimum.
GO methods rarely keep track of past executions, and most of this poten-
tially valuable information is lost. In particular, the only output of a GO
algorithm is the prediction of the global optimum. Moreover, the computa-
tional effort is often redundant, as many of the solutions visited throughout
the global search have been already encountered (and optimized). Cluster-
ing methods aim at grouping GO solutions around their basins of attrac-
tion, and focusing local search on the most promising configurations of each
group. However, they lack robustness when the problem scale is large, as the
clustering strategy is based (only) on the variables’ value. For this reason,
clustering methods have been abandoned by the literature after their initial
success. In addition, problems with a clear geometrical interpretation have
the further issue of having infinite equivalent solutions, obtained by trivial
space transformations of given ones. In Chapter 4 we show how to improve
a GO algorithm with information from its past runs and making a smart use
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of the latter. Moreover, the idea of extracting compact geometrical descrip-
tors from GO solutions is used for both stopping redundant lines of search
of a perturbation-based GO method and to adapt clustering algorithms to
work in a reduced feature space, in which configurations are compared and
grouped by means of their overall characteristics rather than the value of
their variables. This way clustering methods are rediscovered and employed
in a modern and innovative fashion. Though we applied it to the scenario
of atomic structure prediction (an active field in computational chemistry),
our technique is straightforward and high-level, and can be easily used to
enhance complex GO schemes and solve problems from different areas.
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Chapter 2

Lagrangean-based
Combinatorial Optimization for
Large Scale Semi-supervised
Support Vector Machines

In many ML scenarios, large amounts of samples can be cheaply
and easily obtained. What is often a costly and error-prone pro-
cess is to manually label these instances. The semi-supervised
approach faces this issue by making direct use of the unlabeled
patterns when building the decision function. In particular, Semi-
supervised Support Vectors Machines (S3VMs) extend the well-
known SVM classifier to the semi-supervised approach, aiming at
maximizing the margin between samples in the presence of unla-
beled data. Many optimization techniques have been developed in
the last decade to efficiently include the unlabeled patterns in the
learning process of SVM. Two broad strategies are followed: con-
tinuous and combinatorial.
The approach presented in this chapter belongs to the latter family
and is especially suitable when a fair estimation of the propor-
tion of positive and negative samples is available. Our method is
very simple and requires a very light parameter selection. Several
medium and large scale experiments on both artificial and real-
world datasets have been carried out, proving the effectiveness
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and the efficiency of the proposed algorithm.12

2.1 Introduction and related work

2.1.1 The semi-supervised scenario
Semi-supervised Support Vector Machines, (S3VMs) extend the well-known
SVM classifiers ([88]) to the semi-supervised scenario. In addition to using
the labeled part of the training set to maximize the margin between classes,
these classifiers take advantage of the unlabeled patterns, whose unknown
labels are treated as additional optimization variables, by forcing the decision
function to traverse through low density areas. This approach implements
the so called cluster assumption, which states that samples that are close to
each other are likely to have the same label. In other words, the decision
function learned by a S3VM has the double goal of separating the labeled
examples of different classes while lying as far as possible from the unlabeled
instances. The motivation for S3VMs is that, in many applications, only a
small percentage of the collected samples is provided with a label: learning
a separating function with such an insufficient amount of labeled samples is
very likely to yield an unconsistent model to be used for classifying future
data. Figure 2.1 (a) shows a (rather pathological) example of the weak
classification rule learned by making sole use of the labeled dataset (the blue
big circle and the red big triangle), while ignoring the unlabeled samples
(the black dots). Conversely, in Figure 2.1 (b) the learning process had
successfully taken into account the whole dataset, and the resulting decision
function is much more accurate and robust.

S3VMs have been first introduced by [88] as transductive SVMs. This defini-
tion was due to the fact that the unlabeled samples that were used alongside
the labeled dataset to draw the separating function were the same the authors
would like to label. Conversely, the approach of building a classification rule
on the entire input space (which is the classical approach of SVMs) is known
in the literature as inductive. In [26] the authors elaborate on this distinction
and carry out an empirical analysis. As it will be pointed out in Section 2.3,

1This work ([8]) has been candidate to the best paper award at the Third International
Conference on Machine Learning, Optimization and Big Data in September 2017. An
extended version ([7]) has been accepted by IEEE Transactions on Neural Networks and
Learning Systems in October 2017.

2Part of the figures of this chapter are taken from [26] and [41].
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(a) (b)

Figure 2.1: The separation function (a) learnt by making sole use of the labeled
patterns (the blue big circle and the red big triangle) and that (b) obtained by
including the unlabeled samples (the black dots) in the training process.

our experimental setting refers to the inductive approach.
Let us consider the linear binary classification problem. We are given ` la-
beled samples, {xi, yi}`i=1 and a set of u unlabeled ones, {xi}ni=`+1, where
each xi is a d-dimensional vector, yi ∈ {−1, 1} and n = `+u. When dealing
with S3VMs the objective function one needs to optimize depends on both the
parameters (w, b) of the decision boundary (which is an hyper-plane in the
linear case) and the unknown labels yni=`+1,

P (w, b, yni=`+1) := 1
2‖w‖

2 + C
∑̀
i=1

V (yi, αi) + C∗
n∑

i=`+1
V (yi, αi), (2.1)

where αi = wTxi + b are the linear predictions. The hinge loss

L(z) = max{0, 1− z} (2.2)

(which is depicted as a black continuous line in Figure 2.4 (a)) is a common
choice for V , while the hyper-parameters C and C∗ are used to give more
importance respectively to the labeled or the unlabeled error term. Note that
if we omit the third term from (2.1), that is, we get rid of the unlabeled part
of the objective and the dependency on the variables yni=`+1, what we obtain
boils down to a standard SVM formulation. Optimizing (2.1) yields a linear
decision function, that is, a separating hyper-plane: nonlinear boundaries
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can be built by means of the kernel trick ([89]). A balance constraint is
frequently added to the formulation mainly to avoid trivial solutions (with
all the examples being classified as belonging to a single class), in particular
when the number of labeled examples is significantly smaller than that of
the unlabeled ones. This is achieved by letting the user specify a desired
ratio r of unlabeled samples to be classified as positive, which leads to the
following constraint:

1
u

n∑
i=`+1

max{yi, 0} = r. (2.3)

The above equation is equivalent to

1
u

n∑
i=`+1

yi = 2r − 1, (2.4)

as explained in [26].

2.1.2 Annealing
While the underlying optimization problem of SVM is convex, this is not the
case for S3VMs, where the objective function to be optimized is non-convex
and has a great number of low-quality solutions. Local optimizers are thus
no more enough to efficiently locate the global optimum of (2.1). Conversely,
GO techniques can be useful to avoid getting trapped in one of the many
suboptimal solutions. A common practice is to give an increasing importance
to the unlabeled patterns. This GO approach, known as annealing, is often
used in the literature (see [26] and [41]), and can be easily implemented by
updating C∗ in an outer loop.
From an optimization point of view, the smaller is the value that C∗ is as-
signed to, the less non-convex is the unlabeled loss function; in particular,
when C∗ = 0, (2.1) boils down to a standard SVM optimization. The hyper-
parameter C∗ can therefore be used to control the degree of non-convexity of
the entire objective: this can be very helpful to locate the global minimum.
In [25] a similar global scheme is used to gradually smooth (2.1): the contin-
uation method builds a smoothed objective at each iteration by convolution
with a convex function, such as the Gaussian, which in turn is controlled by



2.1 Introduction and related work 9

a parameter γ. Figure 2.2 depicts this process.

Figure 2.2: The continuation method: γ parameterizes a family of Gaussian func-
tions, which are used throughout the learning process to control (by a convolution)
the degree of non-convexity of S3VM’s objective function.

2.1.3 Continuous and combinatorial approach
The optimization techniques that have been recently developed to optimize
(2.1) fall into one of two broad categories, combinatorial and continuous. In
this section, the main ideas behind this two approaches are presented. An
overview of methods from the literature is also given.

Combinatorial methods

Once that the unknown labels yni=`+1 are fixed, what we get is a standard
SVM formulation. Defining

I(yni=`+1) := min
w,b

P (w, b, yni=`+1), (2.5)

combinatorial approaches aim at minimizing I(yni=`+1) over the set of bi-
nary variables yni=`+1. The same applies to the nonlinear case, where w =∑n
i=1 ciyixi and the real variables c to be optimized are that of the La-

grangean dual of P . All the known combinatorial methods use a standard
SVM to learn from the labeled examples, and use the information provided
by the supervised subroutine to optimize the unknown labels, while satisfy-
ing the balance constraint. The first S3VM implementation (S3VMlight, [52])
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belongs to this family of strategies. It alternates minimizations in (w, b)
obtained by training a standard SVM on the current labeled set at disposal
and a heuristic labeling process, in which the ru unlabeled samples xi with
highest wTxi are classified as positive (so to satisfy the balance constraint),
while the others are assigned the negative class. An additional label switch-
ing phase is carried out to improve the value of the objective function: since
only two labels per iteration are switched, the overall training process is very
slow. Algorithm 1 sketches the method.

Input: {xi, yi}n
i=1, r, a SVM and an annealing sequence

1: H ← separating function obtained by SVM on {xi, yi}`
i=1

2: yn
i=`+1 ← labeling computed by assigning 1 to the ru samples with

3: highest distance from H, −1 to the others
4: for C∗ drawn from the annealing sequence do
5: repeat
6: H ← separating function obtained by SVM on the enhanced labeled set,
7: with C∗ weighting the patterns which initially had no label
8: yn

i=`+1 ← labeling obtained by switching (if possible) yi and yj ,

9: i, j ∈ `+1, . . . , n, such that (2.1) is improved
10: until no labels have been swapped
Output: the trained classifier

Algorithm 1: S3VMlight

The combinatorial approach itself is known to be intractable when u is large,
due to the huge number of possible labeling combinations of the unlabeled
patterns.

Another interesting combinatorial implementation is [25], where the au-
thors develop a branch-and-bound (BB) scheme to achieve the optimal la-
beling for yni=`+1. In particular, each node is associated to a partial labeling
(the root corresponds to the set of labeled samples), and a binary tree is built
whose branch variables are the unknown labels. At each node, a standard
SVM is trained using both the labeled dataset and those unlabeled patterns
which have been given a label throughout the construction of the BB tree.
The value of the objective function at a node is used as a lower bound to
possibly discard the corresponding subset of labeling solutions. Figure 2.3
depicts this process. This approach, as the authors state, is only feasible for
small instances. Though, since the returned labeling is optimal, it can be
useful for benchmarking S3VMs implementations.
Among others, we mention [36] and [80] as further methods belonging to the
combinatorial family.
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Figure 2.3: A branch-and-bound (BB) tree can be used to achieve an optimal
labeling for yn

i=`+1.

Continuous methods

This family of methods arises from the idea that, when (w, b) are fixed,

arg min
yi

V (yi, αi) = sgn(αi) = sgn(wTxi + b). (2.6)

In other words, once the separating hyper-plane has been drawn by maxi-
mizing the margin between the labeled examples, the best way of labeling
an unknown pattern is to assign its class based on (the sign of) its distance
from the decision function. This allows to get rid of the unknown label
variables by replacing them with the expression of their prediction. The
semi-supervised objective function (2.1) becomes:

1
2‖w‖

2 + C
∑̀
i=1

max{0, 1− αiyi}+ C∗
n∑

i=`+1
max{0, 1− |α|}. (2.7)

As pointed out in [26], the above equation shows how continuous S3VMs
implement the cluster assumption: the last term of (2.7) drives the separating
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function away from the unlabeled patterns. The shape of the hat loss,

H(z) := max{0, 1− |z|}, (2.8)

is depicted in Figure 2.4 (b) as a black continuos line. The non-convex nature

(a) (b)

Figure 2.4: The hinge (a) and hat (b) losses (continuous) and their smoothed
surrogates (dashed).

of this function violates one of the nicest properties of SVM, namely, the
need of solving a convex optimization problem: this is what the continuous
approach pays by removing the dependency of P on yni=`+1. In addition, the
hat loss is non differentiable in 0: for this reason, the smoothed surrogate

H̃(z) = exp(−tz2), t > 0, (2.9)

is often used in practice. The same non differentiability issue holds for the
hinge loss, which is usually replaced by the modified logistic loss ([99]):

L̃(z) = 1
γ

log
(

1 + exp
(
γ(1− z)

))
. (2.10)

The surrogate hat loss (with t = 3) and the modified logistic loss are depicted
in Figure 2.4 as dashed blue lines.

Another drawback of substituting the unknown labels with their predic-
tions is that of getting a nonlinear balance constraint. A common approach
to tackle this issue, introduced in [27], is that of working with a linear re-
laxation of the constraint; again, this is achieved by replacing the unknown
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labels in (2.4) with their linear predictions:

1
u

n∑
i=`+1

wTxi + b = 2r − 1. (2.11)

As suggested in [26], an unconstrained optimization problem can then be
obtained by translating all the points such that the unlabeled ones have
their mean in the origin, and by fixing b = 2r − 1. Though, it is worth
to notice that replacing (2.4) with a linear constraint may lead to ignore
potentially precious information. Directly enforcing the nonlinear balance
constraint, especially when a fair estimation of the ratio r of positive samples
is available, can be a fruitful design choice, as we will show in Section 2.2
and 2.3.

Due to the loss of convexity, as pointed out in [26], off-the-shelf dual-
based SVM software cannot be used directly to optimize (2.1): for this reason,
nonlinear decision functions are often obtained by implementing the kernel
trick on the primal formulation, as in [24] and [41]; [26] shows two ways of
obtaining such a primal kernel trick. Exceptions to this common practice
are [32] and [60], where the authors develop ad-hoc dual methods.
We now provide a brief description of continuous methods from the literature.

QN-S3VM ([41]) employs (2.9) and (2.10), differentiable surrogates respectively
for the hat and the hinge loss (2.8) and (2.2). Defined X ⊆ Rd as the feature
space and a kernel function k : X × X → R, the representer theorem ([78])
states that the optimal prediction takes the form:

f(·) =
n∑
i=1

cik(xi, ·). (2.12)

Learning a decision function can thus be formulated as a continuous opti-
mization problem involving the variables c ∈ Rn. Substituting (2.9), (2.10)
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and (2.12) in (2.1) yields the following objective function:

F (c) = C
∑̀
i=1

1
γ

log
(

1 + exp
(
γ
(
1− yi

n∑
j=1

cjk(xi,xj)
)))

+

C∗
n∑

i=`+1
exp

(
− t
( n∑
j=1

cjk(xi,xj)
)2) +

1
2

n∑
i=1

n∑
j=1

cicjk(xi,xj).

(2.13)

Having proved that F (c) and ∇F (c) can be computed polynomially (O(nd)
in the linear case), the authors of [41] use l-bfgs ([19]) to efficiently solve
(2.13), and employ an annealing scheme to avoid getting stuck in low-quality
local minima. The balance constraint is enforced by making use of the linear
approximation (2.11). The authors also claim that, given a indices subset
R ⊂ {1, 2, . . . , n}, the optimal prediction (2.12) can be approximated by:

f(·) ≈ f̃(·) =
∑
r∈R

crk(xr, ·). (2.14)

The above formulation, known as subset of regressors methods ([75]), is used
to speed-up predictions when the dataset is large.
QN-S3VM is an overall efficient and effective method, though it is very sensitive
to the choice of the hyper-parameters C and C∗. The latter issue actually
affects all of the known S3VM implementations from the literature, and is
very likely to yield weak classification boundaries if the labeled dataset is
not large enough to carry out a sound model selection.

UniverSVM ([32]) copes with the non-convexity of S3VM by means of the
convex-concave procedure (CCCP, [96]). CCCP decomposes a concave function
in two components fvex and fcave, respectively convex and concave, and
replace the latter with a (linear) tangential approximation. To get the next
point, the sum of fvex and the linear approximation is minimized. In the
context of S3VM, the concave part of the objective is due to the hat loss,
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which is decomposed as

max{0, 1− |t|} = max{0, 1− |t|}+ 2|t|︸ ︷︷ ︸
convex

−2|t|︸ ︷︷ ︸
concave

. (2.15)

If, for instance, an unlabeled point is classified as positive, the hat loss takes
the (convex) form:

Ĥ(t) =


0 if t ≥ 1
(1− t)2 if |t| < 1
−4t if t ≤ −1.

(2.16)

UniverSVM does not use an outer annealing sequence (although in [26] this
design choice is found to be an improvement compared to the original for-
mulation), and is quite slow compared to the other available online solvers.

Well-SVM ([61]) is one of the most recent and effective methods from the
literature. The relaxed dual problem

min
y∈B

max
α∈A

G(y,α) = 1Tα− 1
2α

T (K� yyT )α (2.17)

is obtained from (2.1), where B is the set of all possible labeling solutions,
A is the dual variables vector, K is the kernel matrix and � is the element-
wise product. The authors use convex programming ([53]) to solve (2.17) and
develop a label generation strategy which makes use of the multiple kernel
learning technique ([6]).

Unlike the other S3VM solvers, which directly optimize the labeling of the
unlabeled examples, Mean-S3VM aims at maximizing the margin between the
means of the positive and negative class. Once such an estimation of the
label means is available, the optimization problem boils down to something
very similar to that of SVM, with a loss function which is closely related to
the hinge loss used by supervised SVMs. To solve the resulting problem, the
authors employ two strategies: multiple kernel learning (as in Well-SVM)
and alternating minimization ([35]).
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Lap-SVM ([12]) is a semi-supervised specialization of a broader framework,
which is suitable for problems spanning from unsupervised to supervised
learning. The authors develop their general purpose scheme (which they call
manifold learning), combining the theory of reproducing kernel Hilbert spaces
([78]) with geometrical knowledge of the data distribution, using the latter
as a mean of regularization. Despite being a general purpose framework
and an innovative way of working with partially labeled datasets, Lap-SVM is
clearly the slowest and the least accurate among the S3VM implementations
available online, and has a large number of hyper-parameters which require
to be fine-tuned.

2.1.4 Further notes on S3VMs
An interesting discussion on scenarios where the use of unlabeled samples
can be unsafe can be found in [59]. Some real-world applications of semi-
supervised learning and particularly of S3VM are [58] (spoken dialog systems
evaluation), [92] (satellite image classification) and [85] (healthcare).

2.2 Lagrangean S3VM

This section, in which we present our approach, is organized as follows:
in Sections 2.2.1-2.2.3 we highlight two common issues affecting state-of-
the-art S3VM implementation and describe the nature of our method. In
Section 2.2.4 we present Lagrangean-S3VM in detail, providing the reader
with the necessary mathematical tools. In Section 2.2.5 we elaborate on our
parameter selection strategy. Finally, a theoretical proof of optimality is
given in Section 2.2.6.

2.2.1 Dealing with hyper-parameters
The labeled samples which a classifier is trained on are vital when tuning
the hyper-parameters of its learning algorithm. When only a few patterns
in a dataset have a label, cross-validation techniques are likely to pick bad
hyper-parameter settings, due to the very small size of the validation sets
that can be built. Thus, the more hyper-parameters a method needs to be
fine-tuned, the less robust the method is. In addition, even with a very
efficient learning process, the initial hyper-parameter tuning phase could be
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very time-consuming. In Section 2.2.5 we will put emphasis on the way our
algorithm tackles these issues.

2.2.2 Balance constraint as a guide
Continuous methods get rid of the dependency on the unknown labels when
formulating their semi-supervised objective (2.7), which forces to use a linear
approximation of the balance constraint (2.11). Ignoring the nonlinearity
of the balance constraint can hide potentially useful insight into the data.
Furthermore, in many classification scenarios, a reasonable confidence on
the percentage of examples to be classified as positive (r in the literature)
is actually available. Let us think about a medical procedure in which we
have to distinguish between patients who are likely to contract a particular
disease and those who are not: the overall population incidence of a disease
is often well-known or can be fairly well estimated from historical data.
Moreover, semisupervised approaches are often used when a large amount of
unlabeled data is available: this renders our estimation of r more likely to be
a fair approximation of the true ratio. This insight can be usefully plugged
in a S3VM by means of the balance constraint. Our method carefully takes
advantage of this information to draw the separating hyper-plane.

2.2.3 Inductive vs transductive S3VMs
S3VMs have been introduced by [88] as transductive classifiers: the unlabeled
samples that were used together with the labeled dataset to learn the decision
function were the same that needed to be labeled. As we will point out
in Section 2.3, our experimental setting is inductive, that is, it builds a
classification rule on the entire input space.

2.2.4 Method details
We present a combinatorial decomposition algorithm that uses a standard
SVM as subroutine. For the sake of simplicity, we are going to use the linear
formulation to elaborate on the algorithm’s idea. The extension to the non-
linear case is straightforward: the presented method only needs to be aware
of the distances between the unlabeled samples and the separating function.
At first, we initialize the decision function by optimizing (2.1) in (w, b) using
the labeled part of the training set. At each iteration we give a label to the
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unlabeled patterns {xi}ni=`+1 by taking into account both the current deci-
sion function and the balance constraint, that is handled by a Lagrangean
technique3; this labeling process is extremely fast. The inner SVM is trained
again on the extended labeled set, comprised of the patterns in {xi}`i=1 and
those just labeled by the Lagrangean heuristic; the weight C∗ is increased at
each iteration following an annealing sequence, until it is assigned the same
value of C.

Let us elaborate on how the Lagrangean labeling heuristic works. Once
(w, b) have been computed, the variable part of (2.1) remains

U(yni=`+1) :=
n∑

i=`+1
max{0, 1− yi(wTxi + b)}, (2.18)

with the balance constraint (2.4). This boils down to a (constrained) optimal
labeling problem:

min
yn

i=`+1

U(yni=`+1)

1
u

n∑
i=`+1

yi = 2r − 1.
(2.19)

Then, the idea is to relax the constraint by means of a Lagrangean multiplier
λ and solve the corresponding dual problem, which takes the form:

max
λ

min
yn

i=`+1

L(λ, yni=`+1) :=

max
λ

min
yn

i=`+1

n∑
i=`+1

max{0, 1−αiyi}+ λ(
n∑

i=`+1
yi−β), (2.20)

where αi is the prediction wTxi + b and the constant term β is defined as
3The idea of employing Lagrangean techniques to relax the balance constraint is pro-

posed also in [80], but for a totally different formulation.
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(2r − 1)u. We can write, equivalently:

L(λ, yni=`+1) =
n∑

i=`+1
max{λyi, 1− αiyi + λyi}︸ ︷︷ ︸

:=F (λ,y)

−λβ. (2.21)

If we fix the Lagrange multiplier to a starting value λ0, the above optimiza-
tion problem becomes separable in the y variables and each component of
y∗ := arg miny F (λ0,y) can be independently computed:

y∗i = arg min
yi∈{−1,+1}

max {0, 1−αiyi}+λ0yi, i = l + 1 . . . n. (2.22)

We can then plug y∗ in (2.21) and update the multiplier value. To this aim,
it can be easily shown that

L(λ) = min
yn

i=`+1

L(λ, yni=`+1) (2.23)

is a concave function of λ: we can take advantage of this property to obtain an
updated value λnext for the subsequent iteration of the Lagrangean heuristic.
This iterative approach, called cutting plane (see [15]), is a typical non-
differentiable optimization method used to solve the Lagrangean dual. Let
(λa,ya) and (λb,yb) be a pair of dual solutions, such that

n∑
i=`+1

yai − β < 0 and
n∑

i=`+1
ybi − β > 0, (2.24)

and λnext the multiplier value for which

L(λnext,ya) = L(λnext,yb). (2.25)

Then, let ynext be the labeling obtained by plugging λnext in (2.22): we can
now set ya = ynext or yb = ynext according to the sign of the constraint
violation

∑n
i=`+1 y

next
i − β, and iterate the process until convergence. The

cutting plane method thus uses, at each iteration, an upper approximation of
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the concave function of λ that is given by two subgradients, corresponding
respectively to a negative and a positive constraint violation. The upper
approximation is iteratively refined substituting a subgradient at a time until
the optimal value of λ is determined. During the very first iterations of the
heuristic, when (λa,ya) and (λb,yb) are not yet available, the multiplier λ
is updated (coherently with the constraint violation) as prescribed by the
subgradient method (see [15]). When the Lagrangean dual is polyhedral (the
pointwise minimum of a finite number of affine functions), as it happens in
our case, the cutting plane method terminates finitely (see Proposition 6.3.2
of [15]).

As described above, the Lagrangean heuristic returns with a labeling
yni=`+1 when the balance constraint is satisfied within a desired tolerance.
During the subsequent annealing iteration of Lagrangean-S3VM, a new sep-
aration function is computed by taking into account the enhanced labeled
set. Algorithm 2 reports the pseudocode of our semi-supervised method; a
few snapshots of the evolution of the decision function built by the method
are depicted in Fig. 2.5.

Input: {xi, yi}n
i=1, r, a SVM and an annealing sequence

1: C ← cross-validate the SVM on the labeled set {xi, yi}`
i=1

2: H ← separating function obtained by SVM on {xi, yi}`
i=1

3: for C∗ drawn from the annealing sequence do
4: α← distances of {xi}n

i=`+1 from H
5: yn

i=`+1 ← labeling computed wrt α and r as in (2.18)-(2.25)
6: H ← separating function obtained by SVM on the enhanced labeled set,
7: with C∗ weighting the patterns which initially had no label

Output: the trained classifier

Algorithm 2: Lagrangean-S3VM

2.2.5 Parameter selection strategy
Almost everywhere in the literature, authors handle C and γ as proper S3VM
parameters, extending this setting with C∗. All the parameters need to be
fine tuned by the experimenter (their choice widely influences the accuracy
of the S3VM approach), resulting in a very time-consuming validation phase.
Our choice is totally different: our implementation does nothing but validate
the internal supervised solver’s parameter C on the (usually very limited)
labeled set; the other parameter, γ, is kept fixed. This is done to initialize
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(a) (b) (c) (d)

Figure 2.5: The snapshots of some selected annealing iterations of
Lagrangean-S3VM. Plot (a) shows the contours of the surface that separates the
two labeled examples (the blue big circle and the red big triangle). After this
initialization the unlabeled patterns are taken into account increasingly, and the
decision function evolves until it reaches a balanced solution in (d).

the SVM and is a very quick process. In addition, C∗ is handled by a standard
annealing sequence and it is limited to assume value from a small finite set.
Finally, the choice of r (which is the only actual parameter of our method)
comes, as is common in the literature, from the knowledge of the problem
domain. Moreover, differently from C, C∗ and γ, this parameter’s value has
a clear and intelligible meaning, and can be easily used by the experimenter
to feed our algorithm. In Section 2.3 we will show in detail how C and C∗

have been chosen to carry out our experiments.

2.2.6 Optimality of the Lagrangean approach
We outline here a proof of optimality of the Lagrangean approach; in partic-
ular, we aim at proving that solving the Lagrangean dual of (2.19) provides
an optimal labeling solution, which satisfies the balance constraint.

It can be easily shown that, once (w, b) are fixed, the labeling problem
(2.19) is equivalent to

K := max
δ

n∑
i=l+1

αiδi

n∑
i=l+1

δi = ru

δi ∈ {0, 1} ∀i = l+1, . . . , n,

(2.26)
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where ru is assumed to be an integer quantity. The above formulation is a
knapsack problem, where each boolean variable δi, defined by means of the
relationship yi = 2δi − 1, is equal to 1 if the i-th item is labeled positively
and 0 otherwise, while ru is the number of items that have to be given a
positive label. The proof of the equivalence between the above formulation
and (2.19) is based on the simple observation that, given an optimal solution
to (2.19), there cannot exist an item labeled with +1 whose coefficient α is
smaller than that of an item with an opposite label; otherwise, a simple label
swap would improve the objective function without violating the constraint.
Due to the particular structure of the knapsack constraint, the linear relax-
ation of (2.26), obtained by letting the boolean variables δi assume value in
[0, 1], satisfies the integrality property: consequently, the optimal (integer)
solution of the linear relaxation KR is the same of (2.26). Solving the orig-
inal labeling problem (2.19) is therefore equivalent to finding the optimal
solution of a linear problem. By standard linear duality, we can thus affirm
that the optimal solution of the Lagrangean dual of KR is optimal for (2.19),
which proves our claim.

2.3 Experiments
In this section we introduce our experimental setup and show the perfor-
mance of the proposed algorithm, in terms of classification accuracy and
execution time, in comparison with several methods from the literature. We
carried out both small, medium and large scale experiments, making use of
artificial and real-world datasets.

2.3.1 Algorithms
We have compared our method with a standard SVM classifier and several
semi-supervised solvers. In particular, we used the Python sklearn ([73])
implementation of SVM (based on the LIBSVM library, [23]) as supervised
method. For what concerns the semi-supervised solvers, we selected the most
accurate among the S3VM implementations available online: QN-S3VM ([41]),
Well-SVM ([61]), Mean-S3VM ([60]), Lap-SVM ([12]) and UniverSVM ([32]). It
is worth to notice that all these implementations belong to the continuous
family: in fact, in the last decade, combinatorial methods have been in-
creasingly put aside, due to their poor efficiency and bad scalability. One
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of the aims of this work is to show the potential efficiency of combinatorial
methods, through a smart use of optimization techniques.

2.3.2 Datasets
We have carried out experiments at different scales. To assess its effective-
ness and efficiency on small and medium scale scenarios, we have tested our
method with three artificial datasets, 2moons (Figure 2.5 shows an instance),
2gauss and 4gauss (see [41] for construction details) and several real-world
datasets, isolet ([31]), mnist4, usps ([49]) and coil20 ([70]). For each
dataset we rescaled the features so that each value lies in [0, 1]; for coil20,
we also rescaled each picture to 20x20 pixels. It can be noticed that many
classification tasks can be derived from each real-world dataset: we denote
with (i,j) the binary classification task of distinguish between object i
and j (pictures of everyday objects in coil20, handwritten digits in usps
and mnist, spoken letters in isolet); we have taken into account those pairs
of objects that are more difficult to recognize.
Dealing with a large scale scenario, we compared the algorithms on the sparse
rcv1 dataset ([5]), which is an archive of 800K newswire stories that have
been manually categorized into one or more of 47K topics; the dataset has
been made available by Reuters, Ltd. for research purposes.

2.3.3 Model selection
The setting in which we have compared our algorithm with the selected S3VM
solvers is the following: for the inner SVM model we have chosen a gaussian
kernel K(x,x′) = exp(−γ‖x−x′‖2)), and the supervised solver is internally
preset (using the labeled patterns) by cross-validating over a very small set
of values for C, while the kernel parameter γ is kept fixed at 1/d, where d
is the number of features. More in detail, with reference to Algorithm 1, C
is selected from {2i, i ∈ [0, 5]} (line 2) and C∗ take values 1

10C,
1
4C,

1
2C,C,

resulting in four annealing iterations (lines 3, 5 and 9). Table 2.1 recaps how
the hyper-parameters’ values have been choosen for our experiments.

Dealing with the other solvers, we have followed the approach reported in
the literature, and we refer to their respective papers. For all of our experi-
ments we used a 3-fold cross-validation approach to validate the algorithms’
parameters. The only exception is the moons dataset: when l ≤ 10, we used

4http://yann.lecun.com/exdb/mnist.
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C picked in {2i, i ∈ [0, 5]} by validating SVM on {xi}`i=1

C∗ { 1
10C,

1
4C,

1
2C,C}, resulting in four annealing iterations

γ fixed at 1/d

r ratio of positive samples on {xi}ni=1

Table 2.1: A recap of the hyper-parameter selection.

default values for each solver, and C = 1 for Lagrangean-S3VM. It is worth to
notice, as already mentioned above, that our validation process is very light;
in fact, we only have to choose a value for C to initialize the inner SVM classi-
fier. Differently from the literature, where the hyper-parameters are selected
by cross-validating the (parameters of the) whole semi-supervised method,
we just validate the inner supervised routine to pick a starting value for C,
selecting it from a small set. Nevertheless, in order to keep the comparison
as fair as possible, all the execution time analyses we have carried out do not
take into account the model selection phase, but only the training step.
For what concerns r, it has been set (for all the compared algorithms) to
the ratio of positive samples in the whole dataset. We are thus assuming to
have a good confidence on this measure; note that in the training and test
sets this percentage can be different. Doing this we add some uncertainty to
the value of r we pick and render its selection more fair.

Finally, it is common among the algorithms we have chosen for our com-
parison to make use of a surrogate function to approximate the hat loss
H(z) = exp(−tz2) (see Section 2.1.3): for all methods using this approxima-
tion we set t = 3, which is the standard choice in the literature.

2.3.4 Experimental results
In our first experiment, we have compared the algorithms’ classification ac-
curacy on artificial and real-world datasets in a small scale setting. Following
the experimental setup of [41], two different percentages of labeled examples
are used for each classification task. Tables 2.2 and 2.3 report the mean
classification error and its standard deviation achieved on ten different splits
of each dataset configuration; `, u and t denote respectively the number of
labeled, unlabeled and test samples, while the best score for each configura-
tion is marked in bold. Our experimental setting is inductive (see Section
2.1.1): we use two separated unlabeled sets, respectively for training and
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testing. In other words, we employ ` labeled and u unlabeled samples for
training a classification rule, and use the latter to label the t samples in the
test set; this holds for all of the experiments in this Section. Looking at
Tables 2.2 and 2.3, it is easy to notice that the semi-supervised approach
outperforms standard SVM classification everywhere. For what concerns the
semi-supervised methods, Lagrangean-S3VM is the most accurate 73.17 per-
cent of the time, which confirms its effectiveness. The overall accuracy of the
other solvers are fairly comparable, each one of them doing its best on a sub-
set of the classification tasks; QN-S3VM, Mean-S3VM and Well-SVM, however,
perform slightly better than Lap-SVM and UniverSVM.

To evaluate the execution time in a small scale scenario, we have varied
the training set size n = ` + u of two different classification tasks of usps
from 100 up to 1000 samples. The execution time (averaged over ten different
dataset splits) is reported in Figure 2.6: in both tasks, Lagrangean-S3VM,
Mean-S3VM, and QN-S3VM are the most efficient methods, growing linearly
with the size of the training set; conversely, UniverSVM turned out to be the
slowest among the compared algorithms.

Figure 2.6: Small scale scenario: execution time (in seconds) with growing training
set size (labeled and unlabeled samples, with ` being fixed at 25) on usps(3,8)
and usps(8,0). Results are averaged over ten different splits.

Let us switch to a medium scale scenario. QN-S3VM makes use of an ap-
proximation heuristic when working with medium or large instances: in [41]
the authors use the subset of regressors method (see Section 2.1.3), in which
only a random subset of k support vectors are considered when building the
prediction. In these experiments (as the authors did in [41]), we set k = 2000.
We as well use a (very simple) medium/large scale approximation scheme in



26
Lagrangean-based Combinatorial Optimization for Large Scale

Semi-supervised Support Vector Machines

our implementation: at each iteration, when training the inner supervised
classifier on the enhanced labeled set, only a random portion of the latter is
taken into account; for the medium scale setting, we set such training batch
size to 500.
Focusing on the mnist(1,7) and mnist(3,8) classification tasks, we have
gathered the execution time and related accuracy of the competing methods
varying the training set size, keeping ` fixed at 25 samples. Figure 2.7 reports
the outcome of our medium scale experiments, showing algorithms’ execu-
tion time and classification error; we omit to consider UniverSVM, Lap-SVM
and Well-SVM, which turned out to be too slow to be compared with the
other methods in the current setting. Well-SVM offers, however, an alter-
native implementation suitable for sparse datasets, which we will use in the
large scale scenario. It can be noticed that, in both tasks, Lagrangean-S3VM
and QN-S3VM are the most efficient and overall accurate methods, showing
comparable training time; Lagrangean-S3VM, however, was able to reach a
classification error lower than that of QN-S3VM. For what concerns Mean-S3VM,
its training time and error is quite unstable on both tasks; in addition, train-
ing time peaks correspond often to high classification error: see for example
mnist(3,8) with l + u = 4000, 7000.

Finally, let us consider the large scale sparse rcv1 dataset. Each docu-
ment belongs to one or more of 103 topics: we selected three of the most
frequent, namely C15, CCAT and GCAT, and built just as many binary clas-
sification tasks, giving the positive label to the documents belonging to the
target class and the negative one to all the others. Dealing with the com-
pared algorithms, both QN-S3VM and Well-SVM come with an alternative (and
faster) ad-hoc implementation for sparse datasets, which we have used in the
current setting. For what concerns our method, for the current tests we set
the training batch to 2000 samples. Also, we omit to consider Lap-SVM,
UniverSVM and Mean-S3VM, being too slow to be tested on such a large
dataset. For all of the experiments carried out on rcv1, a linear kernel
is used, as suggested in [61]. Table 2.4 reports the F-score of the competing
algorithms on the selected rcv1 topics. We used such a classification mea-
sure due to the unbalanced nature of the classification tasks we have built.
For instance, only 18% of the documents in the rcv1 corpus belong to the
C15 topic: reporting the classification error could be misleading, showing an
82% accuracy for a classifier which actually gives the negative class to all of



2.3 Experiments 27

Figure 2.7: Medium scale: execution time and classification error on mnist(1,7)
and mnist(3,8) (respectively left and right) with increasing training set sizes; l is
kept fixed at 25. Results are averaged on ten different dataset splits.

the examples in the test set. The F-score

F := 2 · precision · recall
precision+ recall

∈ [0, 1], (2.27)

conversely, takes into account both the recall (also known as sensitivity)
– which is the ability of a classifier to identify the positive samples – and
the precision, which denotes the ratio of true positives to all the instances
that have been classified as positive. Also, similarly to what carried out in
the small scale setting, we varied the number u of unlabeled samples: in
particular, the training set size n = l+u is kept fixed at 100K, while the test
set is comprised of 50K instances. Table 2.4 shows that Lagrangean-S3VM
is the most accurate solver, reaching the highest F-score on 8 out of 12
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Figure 2.8: Large scale: training time and F-score on the C15 topic from rcv1, with
increasing training set size; l is kept fixed at 25, while the test set is comprised of
50K samples.

classification tasks. It can also be noticed that the supervised approach
is quite unstable, showing a high performance variance on the 10 different
dataset splits. This is due to the small percentage of labeled examples that
SVM can take advantage of: for some splits, the supervised solver is unable
to build a balanced decision function, classifying all the patterns with the
negative class (which is most probable); this leads to a 0 recall for such splits.

In a further experiment, we focused on the C15 topic and gathered the
execution time and F-score with increasing training set size n, while l and t
have been respectively set to 100 and 50K: Figure 2.8 reports the outcome
of the experiment. As in the medium scale setting, Lagrangean-S3VM and
QN-S3VM are the most stable solvers, both in terms of training time and F-
score; actually, Well-SVM is quite faster than QN-S3VM on the selected topic,
but its training time does not grow in a linear nor predictable way. The same
holds for the F-score; in addition, we can notice that Lagrangean-S3VM is
the only semi-supervised solver for which the F-score is slightly improving
as the training set size grows, with its score rising from 81.8 (1000 samples)
to 82.0 (10K samples).

In our last experiment, we compare the Lagrangean technique described
in Section 2.2.4, Equations (2.18)-(2.25), with a sorting heuristic inspired by
that used by S3VMlight in [52] to initialize the unknown label vector yni=`+1.
We will refer to the sorting and Lagrangean heuristics respectively with S
and L. Let us recall how S works: the ru examples with the highest wTxi+b
(namely, the distance between xi and the hyper-plane defined by w and b)
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are assigned the positive label, while the others are marked as negatives.
Note that this strategy is that needed to solve the continuous relaxation of a
generic 0-1 knapsack problem, such as that we used in Section 2.2.6 to prove
the optimality of our labeling technique.
It is easy to prove that S is optimal with respect to (2.18) with the balance
constraint, that is, it provides an optimal labeling for the unlabeled patterns,
when w and b are fixed. Indeed, if we swap the labels ya = 1 and yb = −1
of two patterns xa and xb for which wTxa > wTxb, the balance constraint
is still statisfied and objective function of (2.19) strictly increases; a further
theoretical analysis is given in Section 2.2.6.
With the current experiment we therefore aim at showing how L is able to
return a labeling of the same quality of S, while being way faster: in fact, L is
independent of the size u of the unlabeled dataset, while the computational
cost of S is dominated by that of sorting the unlabeled patterns according
to their distance from the separating hyper-plane, which costs O(u log u).
This is clearly shown by Figure 2.9: the two charts refers to usps(8,0) and
mnist(3,8), respectively a small and a medium scale classification task. In
particular, they depict the ratios of the execution times and the resulting
classification errors of the two heuristics (with L as the numerator), varying
the size of the unlabeled data (l is kept fixed at 25): when the errors ratio
falls below the dashed line, using L makes Lagrangean-S3VM achieve a lower
classification error than employing S as labeling heuristic, and vice versa. It
is easy to notice how, even at a small/medium scale, the lagrangean heuristic
is able to obtain the same quality of the optimal sorting technique, while
being asymptotically faster: on the mnist(3,8) task, for instance, when
u = 1000 the execution time of S is twice as much that needed by L to
converge to a labeling solution, and the ratio decreases to approximately 1

10
when u = 11000.

2.3.5 Statistical analysis
To further prove the superiority of our method, we carried out a statistical
analysis, in which we compared the overall performance of Lagrangean-S3VM
with that of the other algorithms. In particular, our aim was to reject the
null-hypothesis that Lagrangean-S3VM performs as well as another method
on our selection of datasets: thus, we run 5 different statistical tests, one for
every other semi-supervised method involved in this study. As prescribed
in [38], only one measure is taken into account when evaluating a method’s
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Figure 2.9: Ratios of classification errors and execution times of L (numerator)
and S labeling heuristics on usps(8,0) and mnist(3,8). When the errors ratio
falls below the dashed line, the error achieved by Lagrangean-S3VM employing L
over S is lower.

performance on a given dataset, that is, all the error measures are aver-
aged dataset-wise. We have considered each different classification task of
usps, coil20, mnist and isolet as an independent dataset (indeed, there is
no reason to suppose any correlation between samples used in two different
tasks), totaling 22 datasets for Lagrangean-S3VM, QN-S3VM and Well-SVM
(for which large scale tests have been conducted) and 19 for UniverSVM,
Mean-S3VM and Lap-SVM. As suggested in [38] to compare many algorithms
over multiple datasets, we used the Wilcoxon signed ranks test. The sta-
tistical analysis confirmed the effectiveness of our method: in particular,
Lagrangean-S3VM performs better than UniverSVM, Mean-S3VM and Lap-SVM
with a confidence level of α = 0.001, while the null-hypothesis is rejected re-
spectively with α = 0.005 and α = 0.05 for Well-SVM and QN-S3VM.

2.3.6 Technical details
We have implemented our algorithm5 in Python 2.7, with the sklearn im-
plementation of SVM as the internal supervised classifier. All execution time
analyses have been performed on a desktop computer with an Intel® i7
CPU at 2.93GHz, running Ubuntu 14.04 LTS.

5Available on github.com/fbagattini/lagrangean-s3vm.git.
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2.4 Conclusion and remarks
The supervised approach to classification is not reliable when labeled data
are scarce. Involving the unlabeled data when training a classifier can help
to improve the classification accuracy in such a scenario. However, directly
optimizing the unknown labels (combinatorial approach) can be intractable;
on the other hand, expressing these variables in terms of their prediction
(continuous approach) renders the objective non-convex. Recently, several
methods have been proposed to tackle these two main drawbacks of semi-
supervised classification. A common weak point of these methods is the large
number of hyper-parameters that need to be cross-validated on a usually
very small validation set. Our approach faces this issue by implementing an
automated and very lightweight validation phase.
An additional drawback of the continuous methods lies in the need of linearly
relaxing the balance constraint. Directly involving the balance constraint in
the optimization problem has proved to be a good choice to outperform state-
of-the-art solvers’ accuracy on most datasets. The presented algorithm is also
very efficient, thanks to the quick labeling process guided by a Lagrangean
combinatorial scheme, which renders our approach suitable for large scale
scenarios. Of course, our method is sensitive to the ratio r of unlabeled
examples to be classified as positive, and should be used in a scenario in
which there is enough confidence on the value of this parameter.
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Chapter 3

GO-based Feature Ranking
Methods for Nonlinear
Regression

Reducing the dimensionality of real-world data by selecting the
most informative features is an important task in many ML sce-
narios. Feature selection can help building cheaper and more
accurate models. On the other hand, it is a very hard combinato-
rial problem to cope with, and an exhaustive search is unfeasible
even with a small variable space. Many optimization models and
techniques, including GO, have been proposed in the recent years
to provide high(er) classification or regression accuracy while us-
ing a limited set of features.
Today, powerful architectures and programming frameworks allow
to implement ML algorithms in a parallel and distributed fashion.
Apache Spark, which provides a convenient in-memory abstrac-
tion for parallel operations, is one of the most used.
In this chapter we present COBAS, an optimization-based tech-
nique for feature ranking, and propose a detailed implementation
using the Spark framework.1

1The content of this chapter is based on [21]. My contribution lies in the parallel
implementation and adaptation to large scale scenarios.
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3.1 Introduction and related work
In many ML applications, the number of features, that is, of variables which
represent a data sample, deserves special attention. We highlight three sce-
narios.

Expensive features Let us consider a supervised medical ML task,
such as, for example, that of predicting the onset of a desease on a patient,
based on a number of medical measurements. In this task, a positive label
is associated to those patients (the supervised samples) who, in the past,
have been diagnosed with the disease; the set of measurements on which the
prediction is based is the feature vector. In addition, suppose that one or
more of the latter medical variables presuppose invasive or costly medical
tests. It is easy to see that, beside the main prediction objective, obtaining
some information on the correlation between these expensive features and
the disease might be useful; even more so, avoiding the need of using them
for the prediction is a further important goal.
Let us denote by E the classification error achieved by the best model M we
have at our disposal for the medical task, and by d the size of the feature
space. Our prediction problem can be (re)stated as that of building a model
M̄ using a subset of d̄ < d non expensive features, which error Ē is as good
as (or even lower than) E.

More samples than features In many real-world applications, such as
gene expression analysis, combinatorial chemistry, automated text classifica-
tion, software defects prediction or image retrieval, the number of variables
is often one or more orders of magnitude larger than that of the samples at
one’s disposal. Building a predictive model in such a scenario is intractable,
and a feature selection step is needed upstream of the learning process.

Too many (non informative) features Even if there is enough
data the learn from, detecting the actually informative variables among the
many available is likely to improve the accuracy of the resulting model by
avoiding overfitting; in addition, feature selection might allow the user to
better interpret the outcomes and reduce both the space and time complexity
of the learning process.

The last scenario is the more broad. In general, a feature selection phase can
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improve the performance and robustness of a predictive model. A valuable
survey on feature selection is [45].

A ranking step, where features are sorted by some relevance criterion,
is often applied before the actual selection. This additional phase can be
useful when building a decision support system; see, for instance, [1], [2] and
[28]. Moreover, feature ranking is in itself a valuable tool, and has not to
be necessarily used to define a ML model. There are several definitions of
variable relevance in the literature (see, for example, [16] and [95]). The
peculiarity of the method presented in this chapter is to formally state the
concept of relevance in terms of a well-defined optimization problem.
Feature ranking methods can be grouped in three classes. Wrapper methods
use a ML model as a black box to compute the variable ranking: there-
fore, these techniques presuppose the availability of a reliable model to be
employed. In addition, the time needed for computing the ranking has to
include that of training the underlying model. Conversely, filter methods
make sole use of the training data, and are independent of a given learn-
ing algorithm; the most used algorithm of this family is Relief ([55]). Fi-
nally, embedded methods compute the ranking during the training process,
by adding a penalty term to the objective function which is related to the
number of variables to be minimized. A common point of many of the feature
ranking algorithms from the literature is to compute the score of a variable
independently, that is, without considering the other features. This can be
a drawback: the authors of [45] state that a variable that is completely use-
less by itself can provide a significant improvement when taken with others.
The approach presented in this chapter belongs to the wrapper family and is
multivariate: both when training the underlying model and computing the
variable ranking, all the features are considered simultaneously.

Despite being a very powerful tool, feature selection is a costly process;
even with a small variable space, an exhaustive search of the best variable
configuration is intractable. Selecting a subset of variables can be stated as
a combinatorial problem, where the i−th entry of the boolean solution vec-
tor is 1 if the i−th feature has been chosen. A local search in the resulting
combinatorial space is very likely to get stuck in one of the many suboptimal
solutions. For this reason, many attempts have been done in the literature
to use GO to solve feature selection; in the following, some examples are
reported. In [20], the accuracy of a cancer diagnosis model was improved
employing a variable selection based on concave optimization. The authors
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of [91] used rough sets ([72]) – a set theory abstraction which is often used
in feature selection – alongside with the global scheme provided by Particle
Swarm Optimization (PSO, [54]). PSO was also used in [63], both to select
the most informative features and to refine the hyper-parameters of an SVM;
addressing the same goal, the authors proposed in [62] an alternative global
approach, based on Simulated Annealing (SA, [87]). In [10], two GO schemes,
namely SA and tabu search ([43]), were used alongside with k-nearest neigh-
bors ([34]) to solve the feature selection problem. In [18], GO was used to
simultaneously refine the hyper-parameters of a ML model while using a
subset of variables. Finally, the authors of [86] selected a subset of features
by using a genetic algorithm ([83]) and differential evolution ([9]), while a
local heuristic was employed to produce an initial feasible solution.
In the next section, we will see how the relevance of a feature can be obtained
by solving an optimization problem in an efficient way by means of GO.

3.2 Feature ranking by concave optimization

3.2.1 Regression, inversion and a concept of relevance
Unlike classification, where labels are boolean, in a regression problem data
samples are labeled with continuous values. We are given a training set
{xi, yi}ni=1, where the samples xi ∈ Rd belong to a feature space of d vari-
ables and yi ∈ R, i = 1, . . . , n2. Training, or fitting a regression model
consists into approximating the unknown relation φ : Rd → R, which maps
a vector in the feature space to a real number, by using the data sample
provided by the training set. With feature ranking, we aim at computing a
relevance score for the variables of the underlying mapping.
Regression models assume the unknown relation between data and labels to
belong to a given family; for instance, if we seek for a linear approximator,
we are carrying out a linear regression. In general, given a parametric family
of functions F (·; w) : Rd → R, fitting a regression model boils down to opti-
mize the parameter w, that is, picking the value of w whose corresponding
function from the family fits the data best. A universal approximator is a
family of functions which is able to build every continuous function on a com-
pact set; feed-forward neural networks ([74]) and SVMs with Gaussian kernel

2This notation, which is slightly different than that used in Chapter 2, better suits
the feature selection scenario.
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are known to be universal approximators. From now on, we will assume a
regression model to be a universal approximator.

Inverting a regression model consists into determining an input for which
model prediction yields a desired output; since it has many solutions, it is
regarded as an ill-posed problem. With the additional goal of maximizing
a generic criterion f on the input, the inversion problem can be formulated
as:

min
x
f(x)

F (x; w∗)− ȳ = 0
l ≤ x ≤ u.

(3.1)

In the above formulation, F (·; w∗) is the trained model, ȳ is the target
output and l and u are respectively lower and upper bounds on the variables,
resulting in d box constraints. The criterion f defines the kind of inversion
we would like to compute. For example, by taking f(x) := ‖x − c‖, where
c ∈ Rd is a reference point, we obtain the inversion nearest to the reference
point problem.
Given a trained model F (·; w∗), a training sample xp and a training label yq,
with p 6= q, we introduce the concept of relevance of a variable i, i = 1, . . . , d,
with respect to the pair (xp, yq). In particular we call the feature i relevant
if, starting from xp and modifying the minimum number of components, we
determine an input x∗ for which

1. the model yields a prediction F (x∗; w∗) = yq and

2. i is among the modified components, that is, x∗i 6= xpi .

We can then define the following inversion problem,

min
x
f(x) := ‖x− xp‖0

F (x; w∗)− yq = 0
l ≤ x ≤ u,

(3.2)

where, ‖ · ‖0 is the zero-norm, i.e., ‖t‖0 := CARD{i : ti 6= 0, i = 1, . . . , d}.
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3.2.2 A feature score
Let us now define a measure of importance for the features. If we suppose
to have determined a finite subset X ∗ of solutions of (3.2), we say that a
feature i ∈ {1, . . . , d} is relevant with respect to the pair (xp, yq) if there
exists a solution x∗ ∈ X ∗ such that x∗i 6= xpi . We can then define, for each
feature i, the set

X ∗i := {x ∈ X ∗ : xi 6= xpi }. (3.3)

We can use (3.12) to compute a score ri(xp, yq), which represents the impor-
tance of the feature i; this could be, for instance, the cardinality of the set
X ∗i . By varying the pair (xp, yq) and computing the corresponding scores
for each feature, we can build an overall ranking.

3.2.3 Concave optimization for zero-norm minimization
We can highlight two main difficulties of (3.2). First, its formulation contains
a highly nonlinear constraint. In case we are not interested in satisfying the
latter exactly, we can shift it to the objective function by adding a quadratic
penalty to its violation. The resulting objective function would take the form

f(x) = ‖x− xp‖0 + 1
2C
(
F (x; w∗)− yq

)2
, (3.4)

with C weighting the importance given by the user to the inversion rule.
Secondly, the objective function in (3.2) is discontinuous and non smooth.
To cope with this issue, we transform the objective into an equivalent smooth
one, and solve the resulting formulation by means of concave optimization.
Let us consider the problem

min
x∈S

‖x‖0 , (3.5)

where S ⊂ Rd. We observe that (3.5) is equivalent to

min
x∈S

d∑
i=1

s(|xi|) , (3.6)
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where the step function s(·) is equal to 1 for strictly positive inputs, 0 other-
wise. Following [68], we can approximate (3.6) by replacing the discontinuous
step function with 1− e−αt, α > 0, which is continuously differentiable and
concave, thus obtaining

min
x∈S, z

d∑
i=1

1− e−αzi

−zi ≤ xi ≤ zi, i = 1, . . . , d.

(3.7)

The author of [68] proved that problem (3.7) is equivalent to (3.6), under
the hypothesis that S is a polyhedral set; more in detail, for α large enough,
there exists a solution of (3.7) which is also a solution for (3.6). Though,
the feasible set of (3.2) is not polyhedral. Thus, in the following, we will use
the above approximation strategy as an heuristic to manage the zero-norm.
Finding a vector to a polyhedral set having the minimum number of non-
zero components, is a NP-hard problem; the above heuristic helps making it
tractable. In [94], a different function is used to smooth the step function.
Finally, since discrete or categorical features would influence the structure
of the feasible set S, and render the optimization problem a lot harder to
solve, we assume to work, from now on, with continuous features.

3.2.4 Details of the ranking method
Following the recipe of the previous section, that is, expressing the inversion
rule by a quadratic penalty on the objective function and by using a concave
approximation of the zero-norm, we obtain the following formulation:

min
x, z

d∑
i=1

1− e−αzi + 1
2C
(
F (x; w∗)− yq

)2
−zi ≤ xi − xpi ≤ zi, i = 1, . . . , d

l ≤ x ≤ u.

(3.8)

The above is a non-convex GO problem. Let X ∗ be the finite set of putative
global minima found by solving (3.8). In general, as already pointed out, we
cannot guarantee that a solution in X ∗ is neither feasible nor a solution of
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(3.2). We thus define the set X̄ ⊆ X ∗ of quasi-feasible minima, such that

|F (x∗; w∗)− yq| ≤ ε ∀x∗ ∈ X̄ , (3.9)

where ε > 0 is a user specified tolerance on the inversion rule. Then, we
define the set X̂ of quasi-feasible zero-norm minima:

X̂ := {x∗ ∈ arg min
x∈X̄
‖x− xp‖0}. (3.10)

Finally, for i = 1, . . . , d, we define the set X̄i of minima “reached” by feature
i:

X̄i := {x ∈ X̄ : xi 6= xpi }, (3.11)

and we compute the score

ri(xp, yq) := |X̄i|. (3.12)

An overall ranking of the features in built by sampling reference points and
target outputs respectively from training patterns and labels. By doing so,
if we assume that the model F (·; w) is reliable enough, we can affirm that we
are selecting target outputs which are “reachable”; in other words, given a
target output yq, there exist at least one point xp such that |F (xp; w∗)−yq| ≤
ε. The approach, called COBAS, is sketched in Algorithm 3. In the next

Input: M , a training set {xi, yi}n
i=1 and a trained regression model F (·; w∗)

1: P ← M pairs (xp, yq), with p 6= q, where xp and yq are respectively a pattern and a
label of {xi, yi}n

i=1
2: for each pair (xp, yq) do
3: X ∗ ← set of putative optima obtained by solving (3.8)
4: X̄ ← set of quasi-feasible optima as defined in (3.9)
5: X̂ ← set of quasi-feasible zero-norm optima as defined in (3.10)
6: for each feature i = 1, . . . , d do
7: X̂i ← set of minima reached by i as in (3.11)
8: ri(xp, yq)← ranking of i wrt (xp, yq), computed as in (3.12)

Output: a ranking of the features i = 1, . . . , d based on scores ri

Algorithm 3: COBAS
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section, experimental results are reported for both artificial and real-world
datasets. In Section 3.3, a distributed implementation using Apache Spark
is proposed.

3.2.5 Experimental setting and results
In this section we discuss the numerical results reported in [21]. Experiments
are carried out both on artificial and real-world dataset. While the former
are performed to provide a proof of concept and to assess the effectiveness of
COBAS in detecting features actually correlated with the output, real-world
experiments allow to qualitatively evaluate the proposed approach.
In [21], a feed-forward neural network is employed as regression model; in
particular, the authors adopt a radial basis function network (RBFN) with
inverse multiquadric as activation function:

F (x; w) :=
h∑
i=1

λi(‖x− vi‖2 + σ2)− 1
2 . (3.13)

In the above equation, h is the number of hidden neurons, λi ∈ R and
vi ∈ Rd are hyper-parameters and σ is set to 0.1. The network has been
trained by minimizing a least-squares error function, measuring the output
error on the set of training pairs; a gradient-based batch strategy with early
stopping has been used as optimization strategy, and the number h of hidden
neurons is chosen by a cross-validation technique. For what concerns COBAS’
parameters, the authors set the number M of training pairs to 500, while
the quasi-feasible threshold ε has been set to 10−4. Finally, the multi-start
GO strategy used to solve (3.8) employed MINOS ([69]) as local solver.
COBAS is a wrapper method, thus needing a regression model to be trained
to perform the feature scoring. In addition, the number of training pairs is
required to be large enough in order to produce a robust scoring. However,
a major part of the above operations do not need to be implemented in a
sequential way. For this reason, a distributed implementation is proposed in
Section 3.3.
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Results on artificial datasets

Consider the following functions:

f1(x) := (x4
1 − x2

1) · (3 + x2) (3.14a)
f2(x) := 2(x3

1 − x1) · (2x2 − 1) · (x2 + 1) + (x3
2 − x2 + 3) (3.14b)

f3(x) := −2(2x2
1 − 1) · x2 · e−x

2
1−x

2
2 (3.14c)

f4(x) := x1 + (x2 > 0.5) · (x3 > 0.5) (3.14d)
f5(x) := 10 sin(x1)x2 + 20(x3 − 0.5)2 + 10x4 + 5x5. (3.14e)

In (3.14d), (xi > 0.5) is equal to 1 when xi > 0.5 and to 0 otherwise. A
synthetic dataset has been obtained by each of the above functions by gen-
erating n data points in an interval [a, b]d, and computing the corresponding
labels by appling fi(·) to each point. Such interval is chosen as [−3, 3] for
f1 and f2, [−1, 1] for f3 and [0, 1] for f4. Functions (3.14a)-(3.14c) were
originally proposed in [77], while (3.14d) and (3.14e) were introduced in [14].
It can be noticed that these functions depend nonlinearly only on some vari-
ables. The authors varied the number d of features and that of data points,
n, used to build the RBFN. For each test, ten runs were performed by tak-
ing into account just as many different randomly generated datasets. COBAS
is then compared with three filter methods, namely RRelief (an adapta-
tion of Relief to regression problems, [55]), Mutual Information Criterion
(MFI, [97]) and Pearson Correlation (PC, [13]), and the embedded Recursive
Feature Elimination method (RFE, [46]).

To assess the effectiveness of the compared methods, a scoring system
is built as follows. Let Rt be the number of features actually correlated
with the output (for instance, variables 1 and 2 of function f1), and It be
the number of those which have no correlation with the function output. A
feature is assumed to be marked as relevant by an algorithm if the latter
ranks it in the first Rt positions; otherwise, it is marked as not relevant. The
number of relevant and irrelevant features selected by a method as relevant
are respectively denoted by Rs and Is. By reference to [17], the following
performance index is defined,

100
(Rs
Rt
− αIs

It

)
, (3.15)
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which rewards the selection of relevant features while penalizing that of irrel-
evant ones; the tradeoff is controlled by α, which is set as min{1/2, Rt/It}.
If all of the relevant variables are ranked before the irrelevant ones, the per-
formance index reaches its maximum, and is equal to 100. Table 3.1 reports
the results on the synthetic datasets.

Table 3.1: Performance of COBAS and other selected algorithms on a choice of
synthetic datasets.

Results in Table 3.1 show that the proposed method is competitive with
RRelief and outperforms the other algorithms. On the other hand, it is
clear how COBAS requires a sufficient number of training samples to produce
a robust variable ranking; see, for instance, the results reported for functions
f3 and f4 with d = 15 features, where the performance score increases with
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the number of data points n.

Results on real-world datasets

Five real-world datasets are considered: poland ([56, 57], with n = 1370
and d = 30), santafe ([51, 93], n = 10081, d = 12), housing (n = 506,
d = 13), abalone (n = 4177, d = 8) and cpusmall (n = 8192, d = 12)3.
As prescribed in [14], raw time series data from poland and santafe have
been transformed into regression data by using the last q values (respectively
q = 30 and q = 12) as features.
In the current setting, COBAS has been compared with RRelief and the fea-
ture selection method ELM-FS ([14]); in particular, since the code of the latter
algorithm is not publicly available, the results reported in this section are
taken from [14], and refer solely to datasets poland and santafe. In order
to compare the methods’ performance, a nonlinear regressor (namely, SVR,
[11, 23]) has been trained, and its prediction accuracy has been evaluated
with a growing number of selected features; more in detail, each dataset has
been divided into a training (70%) and a test set (30%), and the training pro-
cess has been repeated ten times, on different data splits. Results depicted
in Figure 3.1 (a)-(e) show how COBAS is either competitive or outperforms
the other methods, and prove the quality of the feature ranking provided on
medium scale datasets.

Computational time

The authors of [21] performed a comparison between COBAS and RRelief in
terms of time needed to rank the features. They highlight the inefficiency
of the approach: the time needed for training the RBFN is in itself one or
two orders of magnitude larger than that of RRelief, while the scoring time
is three orders larger. However, most of the operations required by COBAS
are suitable to be implemented in a parallel way. The next section provides
an implementation sketch, employing a state-of-the-art parallel/distributed
platform and programming framework.

3Datasets housing, abalone and cpusmall have been obtained from
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets.
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Figure 3.1: A comparison between COBAS, RRelief and ELM-FS on real-world
datasets. Results are reported as a function of the mean square error achieved
by the methods as the number of selected features increases.
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3.3 A distributed implementation of COBAS us-
ing Pyomo and Spark

The goal of this section is to propose a parallel and distributed implementa-
tion of COBAS. This is achieved using Apache Spark and Pyomo.

3.3.1 Apache Spark

Iterative algorithms reuse intermediate data across multiple computations.
This paradigm is common to many ML algorithms. Cluster computing
frameworks like MapReduce ([37]) let users writing their code using a set
of high-level primitives, providing transparent distribution of operations and
fault tolerance. However, these frameworks lack abstractions for exploit-
ing distributed (main) memory. Moreover, the only way they provide for
reusing data from past computations is to serialize them onto a reliable stor-
age system, incurring in overheads due to data replication and heavy I/O
operations.
Resilient Distributed Datasets (RDD, [98]) is a technique which provides an
in-memory abstraction, based on coarse-grained transformations, which ap-
plies the same operations to distributed data. This kind of operations do not
require to share a state or replicate data among different machines: rather
than logging the actual transformed data, RDDs provide fault tolerance by
building a lineage of the transformations applied up to a certain time during
the computation. By doing this, if a data partition is lost, it can be easily
built from scratch by referring to its lineage.
RDDs can be handled by two types of distributed primitives. Transformations
(like map, filter and join) convert an RDD into another by applying the
same operation to all of the data contained within. Actions (like count or
sum) are aggregated operations on RDDs which return a value to the main
application. Note that, until an action is not applied, RDDs do not need to
be materialized (if lost, they can be recomputed by looking at the lineage)
and the corresponding transformations do not need to be actually applied:
for this reason, transformations are called lazy operations.

Spark is the programming platform and framework which implements
RDD. It runs across a computers’ cluster and provides a distributed memory
abstraction. Roughly speaking, all of the RAMs of the cluster members are
seen as a single overall memory entity. Consider the following example. A
user is interested in counting sql errors from a log file of large size, and has
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a cluster of computers at his disposal. The first step is to load such file into
the cluster’s main memory: Spark provides the .parallelize() primitive
to achieve this goal. By doing so, the log file is divided into small portions
and shared across the cluster memory. Now, a first transformation is needed
to extract those lines which start with the word “ERROR”: the .filter()
primitive can be used for this purpose. A new RDD is thus obtained (no new
data is actually created by the platform, as the transformation just applied
is nothing but a record in the RDD lineage): note that the same operation
(checking if it starts with a given word) has been applied to each line of the
log file. A new application of .filter() is then needed to extract error lines
containing the world “SQL”; again, a new “shallow” RDD is created. Finally,
the action .count() is applied to return the size of the sql errors RDD to the
main application. At this point, all of the lazy transformations are actually
performed, and instantly deleted by the system when the requested line count
is ready. If the user is interested in saving an RDD for a future use (that is,
to checkpoint a RDD in addition to log the corresponding transformation into
the lineage), Spark provides a .persist() primitive to do so: by default,
RDDs are persisted in the cluster’s primary memory; when no more space is
available, they are moved onto disk.
Spark is a multi-language platform: among the supported programming
languages, it provides a set of primitives for Python.

3.3.2 Pyomo

Pyomo ([47]) is a collection of Python software packages for modeling struc-
tured optimization problems. Its high-level object-oriented programming
interface provides a syntax similar to the notation commonly used in math-
ematical optimization. Pyomo can be used to define general abstract (sym-
bolic) models and create concrete problem instances by providing the data
to an abstract model. A model, its objective, constraints and variables are
all Python objects, and concrete problems can be initialized using Python
data. Pyomo allows the user to solve a problem instance by supporting a large
number of commercial and open-source solvers; this interaction is handled
with several interfaces, depending on the solver being used.
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3.3.3 Implementation details
By reference to Section 3.2.4, it is easy to notice that all of the operations
carried out for a given reference/target pair (xp, yq) are independent. For
this reason we refer to a pair as the minimal data object referred to by Spark:
the same bulk operations are applied parallelly to all of the pairs, and the
latter are distributed across cluster’s memory.
When a Spark user wants to transform all of the data contained in an RDD into
a new one, by applying a 1-to-1 operation in parallel, the .map() primitive
is the easiest to be used: by applying .map() with a specific operation f(·)
attached to an RDD R, a new RDD R′ is generated, where each element r ∈ R
will be mapped to a new element r′ := f(r) ∈ R′. Another useful feature
provided by Spark is to allow the user to broadcast an entity (such as a
Python object), so that it can be referenced by all of the cluster’s members.

Let us consider Algorithm 4: At line 1, the trained regression model is

Input: M , a training set {xi, yi}n
i=1 and a trained regression model F (·; w∗)

1: P ← build a problem sketch using F (·; w∗)
2: broadcast P
3: {(xp, yq)}M

i=1 ← build pairs from training set
4: for each pair (xp, yq) parallelly do
5: P(p,q) ← fetch P and customize it with (xp, yq)
6: x̂(p,q) ← solve P(p,q) by applying a GO algorithm
7: v(p,q) ← vector of features changed in x̂(p,q) wrt xp

8: V ← sum all vectors v(p,q)

Output: Reorder features i = 1, . . . , n according to their scores in V

Algorithm 4: A distributed implementation of COBAS using Pyomo and Spark.

used to build a sketch of the GO problem (3.8); the latter is referred to as a
sketch because the reference point xp and the target output yq are not yet
specified. To this aim, Pyomo abstract model is used. At line 2, the problem
sketch is broadcast, in order to be used by each machine in the cluster. At
line 3, M pairs are generated from the training set.
From line 4 to 7, parallel operations are computed on the pairs. At line 5,
the problem sketch is fetched and customized by each pair (xp, yq) – that
is, a Pyomo concrete problem is built – to obtain problem (3.8), which we
refer to as P(p,q). At line 6, problem P(p,q) is solved for each pair by a GO
algorithm. From Spark’s point of view, each pair (xp, yq) is mapped (using
the .map() primitive in a parallel way) into the optimum x̂(p,q) of its related
GO problem. The .map() primitive is used again at line 7 to transform every
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optimum x̂(p,q) in a boolean vector v(p,q) of features changed with respect
to the reference point xp:

v(p,q)
i =

{
1 if x̂(p,q)

i 6= xpi

0 otherwise.
i = 1, . . . , d (3.16)

Once that all boolean vectors v(p,q) are computed, the Spark action .sum()
is invoked at line 8 to aggregate them in order to obtain an overall scoring:
if, among the M pairs, a feature has changed k times from its corresponding
reference point, its score will be equal to k. Finally, features are reordered
according to their score, and a ranking is returned.

3.3.4 Numerical experiments
Filter methods such as RRelief do not need a ML model to be trained to
compute the feature ranking. Therefore, the efficiency of a wrapper method
such COBAS cannot compete with that of RRelief. The aim of the implemen-
tation presented in the last section is to alleviate the computational burden
of COBAS. Ideally, such scheme should be able to obtain a ranking which is of
the same quality of that obtained with a serial implementation while spend-
ing a time (not taking into account that needed for training the regressor)
which is linearly (and inversely) proportional to the degree of parallellism.
Roughly speaking, if a parallel/distributed implementation would spend T

seconds using K cores, it should ideally take T/2 seconds using 2K cores: in
other words, in a perfect parallel scenario the overhead time is negligible.
To assess the efficiency of the proposed implementation, we have used the
following setting: an SVR (an adaptation of SVM to regression, [81]) has been
trained and input to the method, while a multi-start approach using SNOPT
([42]) as underlying local solver has been employed at line 6 of Algorithm
4 to solve (3.8). Moreover, we have built a cluster of 8 machines (with the
same hardware features), each providing 8 independent physical cores. We
have considered the five artificial dataset presented in Section 3.2.5, with
M = 1000 pairs and n = 15 features, and compute the average ranking
time (on ten different dataset instances) as a function of the cores employed.
Consider Figure 3.3.4: the x-axis reports the number ncores of employed
cores, which have been added to the cluster in order to incrementally double
the degree of parallelism (when ncores < 8, only one cluster member is used
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and the implementation is parallel without being distributed). The y-axis
reports the ratio of times needed respectively by the distributed and serial
(ncores = 1) implementations of COBAS. Figure 3.3.4 depicts a comparison

Figure 3.2: Ratio of times needed by the parallel (numerator) and serial implemen-
tations of COBAS: the red continuous line depicts an ideal trend, while the black
dashed one shows the actual trend achieved by the parallel implementation.

between an ideal trend (continuous red line) – where the time needed by
COBAS halves when ncores is doubled – and the actual trend achieved by our
implementation (black dashed line): it can be easily noticed how, asymptot-
ically, the actual trend approaches the ideal one, which proves the efficiency
of the proposed parallel/distributed scheme.
For our experiments, we used hdfs (the distributed file system provided by
Hadoop, [37]), and respectively Spark 2.2.0 and Pyomo 5.2.

3.4 Conclusion
Feature ranking is an important brick of a decision support system. More-
over, its outcome can be useful in itself, without necessarily be employed to
feed a ML model. The literature does not provide a clear definition of feature
relevance. In addition, many feature ranking methods have the common trait
of analyzing one feature at a time when building an overall scoring. This can
be a drawback, since a feature that seems useless when used alone can be of
high importance when employed along with one or more other variables.
The approach presented in this chapter builds the concept of feature rele-
vance by solving a well-defined GO problem, and is multivariate, that is, all
of the variables are taken into account simultaneously in the ranking process.
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Experiments on both synthetic and real-world dataset have been carried out,
and prove how COBAS is either competitive or outperforms well-estabilished
feature ranking methods.
On the other hand, the computational time of the proposed technique is up
to three orders of magnitude larger than that of a filter method like RRelief.
However, a major part of the operations required by COBAS are independent,
and can be applied in parallel. For this reason, an implementation scheme is
proposed, which uses the state-of-the-art programming paradigm and plat-
form provided by Apache Spark. The latter alleviates the computational
effort, and renders COBAS scalable and applicable to problems of larger scale.
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Chapter 4

Learning from Large Scale
Global Optimization using
Geometrical Features

Seeking for the optimum of a large scale multimodal GO problem
can be very time consuming. Geometrical problems of this kind,
such as arranging circular-shaped objects in a container of fixed
size or predicting the structure of a molecule, have the further is-
sue of having an infinite number of equivalent solutions, yielded
by transformations (such as rotations) of given configurations.
In this chapter we elaborate on the idea of representing solutions
through compact feature vectors, which allows them to be com-
pared and clustered from a geometrical rather than a pure numeri-
cal perspective. We integrate this strategy in a GO algorithm, and
exploit it to prune redundant lines of search, while focusing the
computational effort into the most promising ones. Moreover, we
show how enhancing a GO algorithm with the experience from its
past computations and making a smart use of the information
provided can lead to significant performance improvements.1

1Part of the material of this chapter has been presented in 2016 at the 14th EUROPT
Workshop on Advances in Continuous Optimization. For what concerns the part dealing
with prediction of atomic clusters structure, a work has been submitted to the Journal of
Chemical Physics, and it is under review at the time of writing.
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4.1 Introduction and related work

4.1.1 Making GO smarter by learning from local search
information

Let us consider the problem of efficiently approximating the global optimum
of a large scale optimization problem with many local optima. A common
heuristic approach to solve this kind of problems is that of repeatedly per-
forming local searches in the feasible set in order to visit good local optima,
while looking for the global one. Usually, much of the computational effort
is wasted: in fact, only the best point is returned by these techniques, as
an estimation of the global optimum. Among the many approaches that
have been proposed to tackle large scale GO problems, a rather basic but
still successful one is the algorithmic scheme of Monotonic Basin Hopping
(MBH, see [90]), also known as iterated local search in GO literature. At each
iteration, MBH perturbs the current point and attempts to improve the ob-
jective value carrying out a local search from the new position, moving to
the reached point in case of success. Its parameters are φ, the radius of the
neighbourhood (e.g., a box) within which points are perturbed, a number of
iterations K and a maximum amount max no improves of consecutive non
improving iterations (thus, local searches) that MBH is allowed to perform:
Algorithm 5 shows the pseudocode of MBH.

Input: f , K, max no improves, φ, xstart

1: xcurr ← xstart

2: no improves← 0
3: for k = 1, 2, . . . ,K do
4: x′ ← perturb xcurr in a neighbourhood of radius φ
5: x′′ ← solve locally from x′
6: if f(x′′) > f(xcurr) then
7: xcurr ← x′′
8: no improves← 0
9: else

10: increment no improves
11: if no improves > max no improves then break
Output: xcurr

Algorithm 5: MBH

It is easy to notice that such a GO scheme has no memory of the past compu-
tations, that is, every trial of MBH does not employ any information from the
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previous ones. This is because only the best known prediction is returned
by each run, and no use is made of past executions.

Two main strategies are followed to make a smarter use of the information
collected during the search: population-based methods (see [44], [4] and [3]),
in which several runs of an algorithm are performed simultaneously and
communicate with each other aiming to perform a coordinate search, and
LeGO (Learning for Global Optimization, see [22]). Given an optimization
problem

min
x∈S⊆Rn

f(x), (4.1)

the authors of [22] call G(·) a generic routine to randomly generate starting
points, and R(·) a refinement procedure, such as an expensive local opti-
mization, which maps an input x into another point in the feasible space,
which objective value has at least the same quality of x; the cost of R is
assumed to be dominant on that of G. The LeGO framework works in the
following way: a gathering phase is carried out, that is, some optimizations
are performed to mark starting points xk with a label yk = +1 if f(yk) is
below a threshold (which can be obtained from the knowledge of the problem
or calibrated by means of a cross-validation step) and yk = −1 otherwise;
positively labeled points – the positive class – are therefore “good” starting
configurations. This ground truth is then used to train a SVM, with the aim
of learning the unknown relationship between a starting point and its objec-
tive value after an expensive (local) optimization, and used to evaluate and
prune starting configurations of future runs.
LeGO is one of the first examples of interplay between GO and ML, and high-
light how GO algorithms can be enhanced by their local search history. In
Section 4.2 we provide the algorithmic scheme of MBH with the knowledge
from its past trials, and show how this strategy is capable of saving large
amounts of local search.

4.1.2 Two geometrical problems
We call a problem geometrical when its variables, constraints and objective
have a clear physical meaning. Let us consider, for instance, the 2D disk
packing problem ([44], [3], [50], [33]). An integer N is given as well as a
“container”, which might be the unit square, the unit circle or a rectangle
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with unit longest edge and specific shortest one: it is then required to find
the position, within the container, of N non overlapping identical disks with
maximum radius. Figure 4.1 depicts two solutions of the Circle-IN-A-Circle
(CINAC) packing problem. Colors are related to the number of contacts; for
instance, light brown disks are those having two contacts with other circles
and a further one with the container border. Pink disks, the rattlers, have
at least one degree of freedom. In this scenario, the 2N variables are the
circles’ coordinates; two contraints arise from the request of non overlapping
disks lying within the container border, while disks’ radius is the objective
function to be maximized:

max r√
(xi1 − xj1)2 + (xi2 − xj2)2 ≥ 2r i, j ∈ [1, N ], i < j√

(x2
i1 + x2

i2) ≤ 1−r i ∈ [1, N ].

(4.2)

The above problem is equivalent to the maximum dispersion problem, which
is slightly easier to solve:

max d√
(xi1 − xj1)2 + (xi2 − xj2)2 ≥ d i, j ∈ [1, N ], i < j

(x2
i1 + x2

i2) ≤ 1 i ∈ [1, N ].

(4.3)

A further geometrical large scale application is that of predicting the
optimal structure of an atomic cluster, which is an active field in molecular
biology and computational chemistry. Let us consider the problem of finding
the minimum energy configuration of a cluster of N atoms in R3, interacting
through a pair potential. By this we mean that we would like to solve the
unconstrained GO problem

min
x1,...,xN∈R3

N∑
i=1

i−1∑
j=1

V (xi,xj), (4.4)

where V (·, ·) is a pair-potential function modeling the interaction of two
atoms as a function of their distance. The most frequently encountered
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models for the pair potential are the Lennard-Jones’

V (xi,xj) = ‖xi − xj‖−12 − 2‖xi − xj‖−6 (4.5)

and the Morse potential

V (xi,xj) = D(1− e ρ(r−‖xi−xj‖))2 − 1. (4.6)

In (4.6), r is the optimal (i.e., the equilibrium) distance between xi and xj ,
while D and ρ control, respectively, the depth and the width of the unique
local minimum of V (xi,xj); more in detail, the larger is ρ, the tighter is the
minimum well. We can rescale the model by setting both D and r to be
equal to 1, obtaining:

V (xi,xj) = (1− e ρ(1−‖xi−xj‖))2 − 1. (4.7)

The literature on Lennard-Jones and Morse cluster optimization is huge.
Classical references in the chemical-physics literature are [90], [39] and [65].
These problems are very well-known in the GO literature, as finding a low
energy configuration is extremely challenging: indeed, it is widely believed
that the number of local optima of the potential energy function grows expo-
nentially with the number of atoms N . For what concerns Morse clusters, the
difficulty of the underlying GO problems increases as ρ becomes larger, with
the extreme case in which ρ → ∞ being combinatorial. The case ρ = 6 is
considered as pretty equivalent to the Lennard-Jones case, and the putative
optima known are quite similar to those obtained in the latter case.

4.1.3 Equivalent solutions and geometrical features
When dealing with geometrical problems, GO algorithms’ job is made harder
by the existence of multiple (often infinite) equivalent solutions. Figure 4.1
depicts two CINAC configurations. We can easily notice that (b) is obtained
from (a) by a 90◦ counterclockwise rotation: (a) and (b) thus overlap per-
fectly, and share the same objective value. Despite being equivalent for what
concerns the packing problem, (a) and (b) are clearly very different from the
point of view of a GO algorithm: in fact, disks’ centers (the variables) are
arranged differently. Our aim, then, is to map configurations in a reduced
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space induced by an array of geometrical properties, or features: we call fin-
gerprint such representation. This compact geometrical model, in addition
to being invariant to trivial transformations, allows different solutions to be
compared and grouped together. For what concerns cluster structure pre-
diction, the idea of classifying a configuration by means of its geometrical
properties is not new ([40], [82]). In [29], a compact descriptor is used along-
side a tabu search ([43]) heuristic for predicting the structure of (actually
very small) Lennard-Jones clusters.
In the remainder of this section, we introduce the geometrical descriptors we
will use throughout the chapter to describe packings and cluster configura-
tions.

(a) (b)

Figure 4.1: Rotations (but also mirrorings, flips and disk permutations) of a pack-
ing configuration (a) yield an equivalent one (b). Colors are related to the number
of contacts; for instance, light brown disks are those having two contacts with other
circles and a further one with the container border. Pink disks, the rattlers, have
at least one degree of freedom.

Packings

Let us consider a packing solution. We can easily determine if two circles
are neighbors, that is, they are in contact with each other, or if a circle is
leaning against the container border by computing Euclidean distances. In
two dimensions, a circle can have 3 down to 0 neighbors if (also) touching
the container border, 6 (the so-called kissing number) down to 0 if not.
Pink disks in Figure 4.1 are called rattlers (see [67]): they have at least one
degree of freedom, thus not being part of the solid structure of the given
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configuration. Once that the contact information has been computed, we
need to determine whether a circle is a rattler or not: in fact, if it has one
or more degrees of freedom, some of its contacts might be spurious. To this
end, we introduce a very intuitive check: we call a circle a non-rattler if its
center strictly lies inside the convex hull of its neighbors’ centers. Figure 4.2,
(a) and (b) depict respectively a rattler and a non-rattler.

(a) (b)

Figure 4.2: Three contacts: a rattler (blue) and a non-rattler (red). We can notice
that the blue circle’s contacts in (a) are spurious. We can claim that a disk is a
non-rattler just by looking at its contacts only when it is surrounded by at least 5
neighbors or 3 neighbors plus the container border. Similarly, we are sure we are
dealing with a rattler if it has less than 3 neighbors or just one neighbor plus the
border. In all other cases, the depicted disambiguation is needed.

Another geometrical invariant we have choosen to describe packings is the
shape factor (see [39]). This measure gives an idea of how much a packing
is circular-shaped, reaching its maximum at 1 when the centers of the most
external disks lie on a circumference. More in detail, let A be the 2×N
centers’ matrix. In a 2D scenario, the shape factor is defined as the ratio of
the smallest and the largest of the two eigenvalues of ATA.

Here below is the complete list of features we have used to describe
CINAC configurations:

1 shape factor
2 # of rattlers

3-5 # of disks with 3/4/5 contacts
6-7 # of disks with 2/3 contacts +border.
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Atomic clusters

The concept of neighbor introduced for a packing configuration, though
slightly different, can be easily extended to the cluster prediction scenario. In
particular, the coordination number ci ([40]) of a given atom xi is the num-
ber of atoms located within a sphere, centered in xi, of prespecified radius;
for standard Morse and Lennard-Jones clusters we use 1.15. As suggested in
[29], the average coordination number, as well as its standard deviation and
its minimum and maximum values, are good candidates for describing the
physical structure of a molecole. The authors of [29] also make use of two
descriptors which quantify the departure from a spherical shape, similarly
to the shape factor used for the packing structure, towards a more prolate
or oblate sctructure. Let Ia, Ib and Ic be the moments of inertia of a given
cluster configuration, and assume Ia ≥ Ib ≥ Ic. The descriptors ζ and η are
defined as:

ζ = (Ic − Ib)2 + (Ib − Ia)2 + (Ia − Ic)2

I2
a + I2

b + I2
c

η = 2Ib − Ia − Ic
Ia

.

(4.8)

For what concerns the shape factor, a 3D extension is needed to describe
atomic clusters. In particular, let λ1, λ2 and λ3 be the eigenvalues of ATA,
where λ1 ≥ λ2 ≥ λ3. The 3D shape factor is defined as

S =
(λ2

λ1
,
λ3

λ1

)
. (4.9)

An additional feature we have picked to describe atomic cluster structures
in a compact way is the strain energy ([71]). Let us refer to (4.7): in an ideal
scenario, each pair of neighbors xi and xj should be distant exactly r = 1
from each other, yielding a contribution to the overall potential energy equal
to -1; a larger or smaller distance would produce a suboptimal potential
V (xi,xj) > −1. The strain energy is defined as

Estrain =
∑

i<j : ‖xi−xj‖≤1+ε

V (xi,xj) +m, (4.10)
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where m is the cardinality of the set of neighbor pairs in the cluster. Note
that Estrain = 0 if atoms in each pair have an optimal distance from each
other.

The Bond-orientational Order Parameters (BOPs) are used in [82] and
[92] to characterize the neighboring environment of an atom. To this aim,
the contribution of an atom x to the molecule’s BOPs is modeled by a set
of spherical harmonics associated with each atom lying in the surrounding
of x. In particular, the authors call bond (not related with chemical ones) a
straight link between an atom x and each of its neighbours x′. Let r be the
midpoint of this link in some reference coordinate system P, and define the
quantities

Q(r) := Y (θP(r), φP(r)), (4.11)

where θP and φP are the polar angles of the bond measured in P and Y (θ, φ)
are spherical harmonics. BOP is then defined averaging Q over the mx
neighbours of x:

BOP (x) := 1
mx

∑
neighbors of x

Q(r). (4.12)

A complete list of the geometrical features we have used is the following:

1-4 coordination number’s mean, standard deviation, maximum and min-
imum values

5-6 prolate and oblate structure indicators
7-8 3D shape factors

9 strain energy
10-13 bond order parameters.

4.2 An experienced MBH

In this section, a technique is proposed to enhance the structure of MBH
by making a smarter use of the information from past executions. The
geometrical descriptor introduced in Section 4.1.3 is used to represent past
solutions in a compact way. Section 4.2.1 reports the details of the proposed
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scheme. Experiments and numerical results are reported in Section 4.2.2.
Finally, in Section 4.2.3 we make a few remarks on the proposed approach
and hint at possible improvements.

4.2.1 Methods details
Our aim is to enhance MBH with the knowledge of optima that have been
reached in the past trials; the idea is very straightforward, and can be looked
at as a two steps procedure:

1. gather fingerprints of past MBH outputs (i.e., local optima);

2. stop subsequent trials when reaching a configuration with a “known”
fingerprint.

The insertions we need to extend MBH with, in order to implement the above
scheme and make the method experienced (we called ExpMBH the enhanced
version) are highlighted in Algorithm 6.

Input: f , K, max no improves, φ, xstart, F , fingerprint set
1: xcurr ← xstart

2: no improves← 0
3: stopped← False

4: for k = 1, 2, . . . ,K do
5: x′ ← perturb xcurr in a box of side φ
6: x′′ ← solve locally from x′
7: if f(x′′) < f(xcurr) then
8: xcurr ← x′′

9: if F(xcurr) ∈ fingerprint set then
10: stopped← True

11: break
12: no improves← 0
13: else
14: increment no improves
15: if no improves > max no improves then break
16: if not stopped then add F(xcurr) to fingerprint set

Output: xcurr, fingerprint set

Algorithm 6: ExpMBH. The insertions with respect to the plain method are high-
lighted.

ExpMBH needs to know how to compute the fingerprint F of each reached
configuration. In addition, a set of fingerprints of known local optima is
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given as an extra input parameter. At lines 9-11, ExpMBH computes the
fingerprint of the current point xcurr and checks if the resulting geometrical
representation is the same of some optimum that has been already returned
by a past MBH trial. At line 16, if an unseen solution has been computed,
it is included in the experience of ExpMBH in the form of its fingerprint, and
the updated fingerprint set is returned as additional output, to be used by
subsequent trials. Figure 4.3 depicts an illustrative example of experienced
trial, working on the 62 CINAC packing problem.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: An illustrative trial of ExpMBH on the 62 CINAC packing problem.

Figure 4.3 (a) depicts a known optimum x∗, whose fingerprint (following the
signature introduced in Section 4.1.3) is F(x∗) = [0.97, 6, 25, 20, 1, 10, 10].
Let us start a brand new ExpMBH trial, where F(x∗) represents the experience
of the method; (b)-(d) show the packing configurations obtained at iterations
0, 4 and 10, in which the radius is improved: none of the fingerprints of these
configurations is equal to F(x∗). The next improvement, (e), takes place at
iteration 13, yielding a packing having the same fingerprint of x∗ (it is easy
to notice that (e) is just a rotation of x∗): the experienced trial stops here.
Finally, (f) shows the configuration that would have been reached by MBH
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(that is, without early stopping the trial) after max no improves = 100
local searches: nothing has changed with respect to (f), making the last 100
iterations useless.

4.2.2 Experiments
In this section we describe the experiments we have carried out to assess
the efficiency of our strategy. We show how our modified version of MBH is
capable of saving a large amount of local searches, compared to the plain
algorithm. The scenario in which we have tested our method is that of the
CINAC packing problem described in Section 4.1.2.
Let us start by introducing our experimental setting. A measure that is
widely used in the literature to compare algorithms’ efficiency is the number
of local searches they need, in average, to hit (that is, to reach) a known
putative global optimum within a given number of trials:

L̄ = #local searches
#hits . (4.13)

We define the gain G as the percentage of local searches we have saved by
employing our method rather than the plain version of MBH:

G = 100 ∗ (1− L̄ExpMBH

L̄MBH
). (4.14)

We have run a number of MBH trials: everytime a trial have bumped into a
known local optimum (in the form of its fingerprint), thus being supposed
to stop according to our method, it has been marked, keeping track of the
amount of local searches it needed to reach that configuration, without ac-
tually stopping it. We did so in order to gather L̄ for both MBH and ExpMBH.
Following the notation of Algorithms 5 and 6, we set the number of iterations
K = 1000 and max no improves = 100, and carried out 1000 MBH trials on
instances from 30 up to 100 circles-in-a-circle.

Figure 4.4 depicts the gain achieved on these instances within a different
number of trials. In particular, (a), (b), (c) and (d) refer respectively to
the gain obtained within 100, 250, 500 and 1000 trials and show how the
efficiency of the method increases with the number of past trials.
Note that our strategy is not deterministic: its evolution, in fact, depends
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(a) (b)

(c) (d)

Figure 4.4: Average gain within 100 (a), 250 (b), 500 (c) and 1000 (d) MBH trials
on packing instances from 30 up to 100 circles; results are averaged on 10 trials
permutations. The legend indicates gain’s mean and standard deviation on all the
instances alongside the best and worst instance., which is shared between the latter
applications Blue squares on the x-axis mark those instances in which MBH has not
been able to hit the global optimum: in these cases, the best value obtained by
MBH is used to compute L̄ for the compared methods.

on the order in which trials are computed; therefore, results in Figure 4.4 are
averaged on ten different trials permutations. Is it easy to see how enhancing
MBH with the memory of the past local optima lets the algorithm save a large
amount of local searches; in particular, within 1000 trials, the average gain is
36.9%. Our method impact is more visible on smaller instances, due to the
greater amount of possible local optima in a larger instance; however, the
more trials are carried out, the less this gap is evident: we can appreciate
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how the whole gain curve rises while more trials are gradually used to feed
ExpMBH.

Let us finally consider those instances (in particular 45 and 73 circles)
where our method fails, leading to a negative gain: this happens because one
or more configurations have been wrongly marked as local optima, making
ExpMBH to stop during subsequent trials that would have led to the puta-
tive global optimum (that is, to a hit). In general, the more accurately a
fingerprint is able to describe a local optimum, the less promising trials are
stopped, leading to a higher number of hits; on the other hand, a “relaxed”
way of detecting known configurations yields a large saving in terms of local
searches: a tradeoff is thus needed.

4.2.3 Remarks on the presented approach
Two downsides of the proposed scheme can be highlighted. The first lies in
the nature of MBH. What we are trying to achieve by checking the geometrical
structure of the solutions generated throughout the execution of MBH is to
possibly early stopping the method and save some computational effort. By
doing so we give for granted that a line of search who has reached a known
local optimum (that is, of which we have already observed the fingerprint
in the past) won’t be able to escape from the basin of attraction of that
minimum. Actually, one of the strong points of MBH is its capability of
“hopping”, that is, escaping from a low quality valley down to a better one;
this is due to the random perturbations carried out by MBH. This behaviour,
while being a good feature when using MBH as a global method, does not
accurately fit our scheme. Indeed, marking a line of search as “redundant”
and stopping the execution might wrongly prune a promising exploration. In
other words, it is not an easy task to predict the outcome of the current MBH
search (whether or not it will get stuck in a known solution). As we will see
in the next section, using a smart global scheme (which gathers information
from the past and employs geometrical decriptors for representing known
configurations) with a purely local optimizer is a more robust design choice,
being able to increase the gain obtained in terms of local search without
loosing any information.

Another weak point of the proposed approach lies in the “exact” checking
that we carry out on the current solution in order to detect a known local
optimum and possibly stop the search. By doing so, we are just grouping
equivalent solutions, that is, we are employing our compact representation
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solely to (early) detect trivial transformations of a known solution. Actually,
our geometrical descriptor can be used in a broader way: in the next sec-
tion we will introduce a grouping technique, and use fingerprints of known
solutions to build clusters of “similar” configurations.

4.3 Working with clustering methods in a space
of geometrical features

4.3.1 Clustering methods
In the early GO literature the idea of clustering has been a winning one for
several years. Such methods aimed at early abandoning an expensive local
search, by estimating that its continuation would have led to an already
observed local optima. In recent years these methods have been abandoned,
mainly for two reasons. Firstly, in order to cluster points (by means of
closeness in the space of variables) in a meaningful way, a sufficiently large
sample needs to be observed. The size of such sample grows exponentially
as the dimension of the problem to be solved increases, thus making the idea
of clustering useless for problems of even a few tens of variables. Another
cause of the disappearance of clustering methods was that local optimization,
which has evolved in recent years, provides fast and reliable methods, also for
large scale problems. Thus, in modern GO methods, although the number
of local searches performed is still the preferred complexity measure (as the
time devoted to local descent dominates the overall computational cost),
most approaches assume that, once a starting point is generated, a local
search needs to be performed and run until convergence.

In this section we would like to propose a rediscovery of clustering meth-
ods for large scale optimization problems. The main idea is that this tech-
nique can be quite easily applied also to large scale problems, once a mapping
from the solution space to a low-dimensional feature space is defined. This
way, clustering can be performed in such space, where the decision whether
to start a complete local search is also taken. In order to map solutions to
a feature space, context information needs to be included. For this reason,
the proposed approaches is a general one, and should be tailored to specific
problem families. In the following we will demonstrate its effectiveness and
efficiency in solving well-known and hard optimization problems in the field
of atomic cluster potential energy minimization.
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4.3.2 Multi-level single-linkage
Among GO algorithms, clustering2 methods aim at reducing the number of
local searches needed by the näıve multi-start (MS) approach by generating
a non homogeneous sample of observations (clusters), with higher density
around areas ideally coinciding with local minima’s zones of attraction. If
this biased generation is achievable, only one local search needs to be started
from a representative (seed) of each cluster. Consider the GO problem

min f(x)
x ∈ S ⊂ Rn,

(4.15)

where we assume that the feasible set S is a box [`, u] with `j < uj , j =
1, . . . , n. We might even assume that, after suitable scaling, the problem is
defined in the unit hyper-cube:

min f(x)
x ∈ [0, 1]n.

(4.16)

One of the most basic GO algorithms is MS, which proceeds by randomly
choosing a point in the feasible set and starting from there a local descent
by means of a standard local optimization algorithm. MS is notoriously very
inefficient, one of the reasons being that, frequently, the same local minimum
is observed several times, starting from different points belonging to the same
region of attraction. There exist many alternative GO methods (see, e.g.,
[66]), most of which try to improve over MS by suitably deciding how to
choose a “promising” starting point for a computationally expensive local
search.

One of the most interesting methods within this class is the Multi-Level
Single-Linkage (MLSL), introduced in [76]. An high level description of this
method is given by Algorithm 7. MLSL is structured in four steps, which are
carried out at each iteration; an overall sample is kept throughout the GO
process. At the beginning of the k-th iteration, MLSL generates a batch of

2The term clustering here has nothing to do with atomic clusters. Throughout the
paper, the term cluster will be used both for atomic clusters as well as for a cluster of
points in a generic Euclidean space. It should be clear from the context which of the two
interpretations is the correct one.
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Input: τ(·), nbatch, nsteps, K
1: Overall sample O ← ∅
2: for k = 1, 2, . . . ,K do
3: Xbatch ← (uniformly) generate nbatch points in [0, 1]n . (sampling)
4: Xconcentrated ← perform a few (nsteps) steps of a local descent algorithm from

each seed in Xbatch . (concentration)
5: O ← O

⋃
Xconcentrated

6: Xselection ← ∅
7: for X ∈ O do
8: if ∀Y : f(Y ) ≤ f(X)⇒ ‖X − Y ‖ ≥ τ(k) then
9: Xselection ← Xselection ∪X . (selection)

10: Xfully optimized ← perform a full local optimization from each seed in Xselection

. (full optimization)
11: O ← O

⋃
Xfully optimized

Output: best solution in O

Algorithm 7: MLSL

nbatch seeds (sampling step). During a concentration step, a truncated local
optimization is started from each seed, in order to obtain a non uniform
sample which might then be grouped in clusters; once concentrated, the
seeds are added to the overall sample. Then, only a selection of seeds in the
overall sample is fully optimized by a local optimization algorithm (selection
and full optimization steps).

The main idea behind MLSL is that, thanks to the above four phases,
it is often possible to avoid exploring each basin of attraction more than
once. In this sense, the overall sample’s members which are selected for
being fully optimized are the cluster best representatives: ideally, denoting
by x?c the local optimum reached by starting a full local search from a point
in Xselection, none of the other cluster members, if optimized, should lead to
a local optimum which is better than x?c . In other words, all of a cluster’s
members should belong to the zone of attraction of x?c . What is meant
by “cluster” in this context is the following. We might think of a directed
graph in which nodes correspond to points in the concentrated sample and
a directed arc connects a point y to a point x if

‖x− y‖ ≤ τ
f(x) ≤ f(y).

(4.17)

Directed paths will be observable in such a graph, and those nodes having
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no outbound arcs will correspond to the selected points, from which to carry
out a complete local search. Borrowing from the chemical-physics literature,
these points can be seen as “funnel bottoms”, where funnels correspond
to points in the concentrated sample from which a directed path leads to
a specific point. The above criterion corresponds to the test used in the
algorithmic scheme (lines 7-9 of Algorithm 7) in order to select candidate
points for further optimization.

The threshold τ(k) should take into account the probability that two
points uniformly sampled in a box are close enough; this probability, of
course, depends on the cardinality of the sample. A common choice for τ is
the following:

τ(k) := 1√
2π

(
log(bk)
bk

σΓ
(

1 + n

2

)) 1
n

. (4.18)

In the above threshold, Γ(·) is the gamma function (a generalization of the
factorial), b is the batch size (so that bk is the number of seeds generated
within iteration k) and σ is a parameter; Equation (4.18) assumes that all
samples belong to [0, 1]n, although the threshold might be easily generalized
to different hyper-rectangles. This formula was proposed in [76], were it was
also proved that, by suitably choosing the parameter σ, some interesting
properties can be obtained. As an example, it was shown that, for σ > 2,
the probability of starting a new local search goes to zero as the iteration
number increases; also, with σ > 4, the expected total number of complete
local searches performed remains finite even if the algorithm is run forever.

At each iteration, the whole sample is “clustered” from scratch; note
that, in this scheme, since the threshold is decreasing, a solution previously
assigned to a cluster might be reassigned to a different one: this way points
are not definitely marked as belonging to the same group. The selection
step is followed by a full local optimization of the best point of each cluster;
of course, points which have already been fully optimized during a previous
iteration are not handled again at this step. In Section 4.3.4 we will adapt
the above formulation to the goal of predicting atomic cluster structures.

Clustering GO methods, although very successful in the past, have even-
tually been abandoned. The main reason behind this trend is that those
methods displayed excellent performance only for low-dimensional GO prob-
lems. In fact, when the number of variables exceeds, say, n = 10, the sample
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size required in order to be able to build meaningful clusters become pro-
hibitively large. Our aim is to propose a re-discovery of these GO methods as
good candidates for solving large scale structured GO problems. By “struc-
tured” we mean that we are dealing with GO problems coming from some
realistic application which gives us the possibility of extracting relevant fea-
tures from each feasible solution. The idea in this paper is to apply the GO
clustering criterion in the space induced by such features, instead of applying
it directly to the original problem (and its optimization variables).

4.3.3 Cluster surface smoothing
In [30] a geometrical class of clusters (such as icosahedral or decahedral) is
called a motif. The authors relate motifs to funnels of the Potential En-
ergy Surface (PES): each funnel might contain a huge amount of basins of
attractions and sub-funnels, but all of them belong to the same geometri-
cal class. In other words, the PES is seen as a collection of funnels, where
each one of them represents a single cluster motif. Furthermore, while the
number of local minima in the PES scales exponentially with the size N of
a cluster, the number of different motifs does not increase so much. The
authors also highlight the local search weakness of GO methods, such as
MBH, based on random perturbations of atom positions. The main idea of
[30] is to build an ad-hoc local optimizer being able to locate the minimum
of a funnel (that is, the best configuration of the related geometry) at the
least possible computational cost; doing so allows an outer GO scheme to
focus on the whole picture and coordinate the information provided by the
underlying local optimizer.

The authors of [30] build an “expert” local optimizer cascading a first
step of classical local optimization, based on the L-BFGS method ([64]), and
a geometrical one, which works on the atoms lying on the surface of a cluster.
Indeed, after the numerical optimization phase, the internal part (core) of a
cluster is assumed to be well optimized, due to the “pressure” of the atoms in
the outer shell: the motif of the molecule3, thus, is determined by that of its
core atoms. Conversely, the atoms belonging to the surface are still not well
organized and contribute a high value to the potential energy: the Cluster
Surface Smoothing optimizer (CSS) aims at locating the motif’s minimum
energy by rearranging the surface atoms. Combining CSS with a basic global

3Even if not strictly correct, here and in the sequel we will sometimes use the term
molecule as a synonymous of atomic cluster.
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scheme proved to be able to beat random perturbation strategies, being both
more effective (that is, able to successfully locate the minimum of a large
funnel/motif) and efficient (employing a tiny fraction of local optimizations),
especially at large cluster sizes. We refer to [30] for a deeper look into CSS,
particularly about how the surface of a cluster is rearranged at each step.
Similar approaches can be found in [84], [48] and [79]. In the GO literature
the perturbations applied by these approaches go under the name of “direct
moves”.

One trait of CSS which is crucial for our purposes is its local nature. In-
deed, its authors claim that CSS can fast locate the minimum of the current
funnel without attempting to jump to other funnels, even when the energy of
current funnel is relatively high, and highlight that the transition between
funnels is left to the GO scheme. This is in contrast with random perturba-
tions strategies, such as MBH, where transitions between motifs may occur. In
the next section we will show how CSS perfectly meets our need of providing
the global scheme of MLSL with an ad-hoc local optimizer.

4.3.4 Method details
Let us refer to Section 4.3.2. In the scenario of Lennard-Jones or Morse
clusters prediction, each point handled by MLSL is a 3D molecule: thus,
throughout the algorithm, atomic clusters are grouped, selected and locally
optimized. If a cluster is composed of N atoms, the feasible space will have
n = 3N dimension, as many as all of the atoms’ coordinates. With MLSL, we
aim at focusing the local optimization effort on well defined and independent
“areas” of the PES, cutting redundant lines of search. Moreover, our goal
is to relate the clustering strategy of MLSL to the concept of geometrical
class – motif – previously introduced. In other words, we would like MLSL
to group clusters according to their geometrical properties. Note that this is
not guaranteed by the standard setting, that is, if MLSL’s grouping strategy is
based on atoms coordinates: indeed, as it should be clear from Section 4.1.3,
the vector of coordinates of atoms in a cluster is far from being a practically
useful descriptor of its geometrical nature, at least from the standpoint of a
GO algorithm.

One of our contributions is to make MLSL’s grouping strategy suitable for
working with geometrical descriptors of clusters, namely their fingerprints.
This adjustment is straightforward: at the k-th iteration, Equation (4.18)
can be directly used to compute the threshold τ(k) using the size of the
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descriptor d in place of the number of variables n = 3N . Moreover, in place
of the original variables of the generic samples x and y in Equation (4.17),
we use the corresponding feature vectors (fingerprints). A slight extra tweak
is needed to fit our descriptor in MLSL’s formulation. As stated in Section
4.3.2, Equation (4.18) assumes the variables to be bounded in [0, 1]: to
achieve that, we simply scale the features in the descriptor so that they take
values in the required interval. Since this is carried out at each iteration,
a cluster’s descriptor might slightly change in two subsequent iterations, as
more cluster structures (and therefore their descriptors) are discovered. By
means of the above adjustment, we are able to compare clusters in a reduced
space, induced by our choice of geometrical features, that is, to group them
based on their geometrical properties: MLSL’s selection step will thus yield,
for each observed motif, the best element available in the cluster, namely the
funnel leader.

We are know ready for including the local CSS optimizer into our pic-
ture. As stated in Section 4.3.3, CSS is able to predict the minimum energy
configuration of a given motif at the least cost, without attempting any tran-
sition between different funnel/motifs. Employing CSS as a local optimizer
comes with two main advantages: first, funnel leaders are ideal configura-
tions where to start an in-depth local optimization from. Exploiting the
ability of CSS of not to jump outside a funnel during the descent, we can
safely state that starting a local optimization from a funnel leader will yield
the local minimum of that funnel/motif, that is, the best configuration of
that geometry. Moreover, CSS is a step-by-step process – the surface of a
cluster is rearranged iteratively until the minimum of a funnel is reached
– which perfectly fits MLSL’s scheme: indeed, we can consider the first few
steps of CSS (which turn a liquid-like, disordered starting configuration into
a slightly optimized one) as the concentration phase of MLSL.
Summarising, we use MLSL as a global scheme, employing an adapted se-
lection strategy which allows to group cluster configurations based on their
geometry. An ad-hoc local optimizer, CSS, is used at each iteration both
to concentrate the cluster sample, gathering the initially liquid-like struc-
tures around their motifs, and to fully optimize the best cluster of each
funnel, seeking for the local minimum of the corresponding motif. We called
MLSL-CSS the resulting scheme.
Algorithm 8 sketches the overall process: in the reported pseudocode, F :
R3N → Rd is a mapping from a generic cluster to a vector of d fingerprints,
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while V(·) is the energy of a given cluster; the threshold τd(·) is defined as in
(4.18), but with the dimension n replaced by d. We can easily observe the

Input: τd(·), nbatch, nsteps, N , K, F
1: Overall sample O ← ∅
2: for k = 1, 2, . . . ,K do
3: Xbatch ← (uniformly) generate nbatch atomic clusters of size N
4: Xstable ← optimize the starting seeds in Xbatch by local optimization (L-BFGS)
5: Xconcentrated ← perform nsteps CSS steps from each seed in Xstable

6: O ← O
⋃
Xconcentrated

7: Xselection ← ∅
8: for X ∈ O do
9: if ∀Y : V(Y ) ≤ V(X)⇒ ‖(F(X)−F(Y )‖ ≥ τd(k) then

10: Xselection ← Xselection ∪X
11: Xfully optimized ← perform a full CSS optimization from each seed in Xselection

12: O ← O
⋃
Xfully optimized

Output: best solution in O

Algorithm 8: MLSL-CSS

similarity of this scheme to the plain MLSL one.
Let us give some implementation details. The selection phase at lines (8)-
(10) is carried out by first sorting the clusters in the overall sample O based
on their energy (from the best down to the worst); the current point X
is then added to Xselection if none of the clusters previously seen (that is,
those with an energy lower than the current) is distant from X less than
the current threshold. Furthermore, a selected cluster in Xselection is fully
optimized only if this has not been done yet.

4.3.5 Numerical experiments
In our first batch of experiments, we have the double goal of calibrating the
parameters of MLSL-CSS and interpreting them. Furthermore, we aim at
showing how our method is able to early group atomic configurations, and
exploit this capability by pruning redundant lines of search while exploring
promising and new ones.

Let us consider Lennard Jones clusters of size N equal to 100 up to
200 atoms. To build our testing ground we first ran, for each instance,
1000 CSS trials, that is, we performed a full CSS optimization from 1000
different starting configurations. We gathered, for each trial, the optimum
configuration obtained by the CSS algorithm and the corresponding number
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of L-BFGS calls. With the aim of comparing our global scheme with the multi-
start one (which from now on we will refer to as multi-CSS), we used, as
initial configurations for our MLSL-CSS runs, the same seeds used as starting
points for CSS. Due to the excellent quality of the CSS optimizer, multi-CSS
is almost always able to provide, within the 1000 trials, the best optimum
known in the literature, (the putative global optimum); the only instance
where multi-CSS fails to detect the putative optimum within 1000 trials is
N = 176. What we are comparing our method with is then a simple but
extremely effective scheme, which succeeds in predicting the putative global
optimum of most medium scale instances. We did not chose smaller clusters
in this phase, as they are quite trivially solved by multi-CSS, even in the
case of magic numbers, like N = 75, 78 and 98, which were once considered
as extremely challenging for an unbiased GO method.

In the current experiments we tried to find a suitable calibration of the
parameters of our algorithm in order to achieve two goals:

1. preserving the excellent exploration capability of MS, namely being able
to return the best optimum found by multi-CSS;

2. achieve this with significantly lower computational effort.

In other words, we aimed at showing that the proposed method is capa-
ble of delivering the same quality of multi-CSS, but at a fraction of the
computational cost.

Similarly to what we did dealing with the CINAC problem in Section
4.2.2, we define the gain G as

G := 1− LMLSL-CSS

Lmulti-CSS
, (4.19)

where LMLSL-CSS and Lmulti-CSS refer, respectively, to the number of times
MLSL-CSS and multi-CSS invoked the L-BFGS optimizer. Metrics that in-
volve the number of calls to a local optimizer are widely used in the literature,
and provide a convenient way of evaluating the efficiency of a GO algorithm,
being independent from the testing hardware. Moreover, the execution time
of L-BFGS (which is employed both by MLSL-CSS and multi-CSS as underly-
ing numerical optimizer) is certainly a bottleneck in the computational effort
of the overall process.

We define as a hit a MLSL-CSS execution returning the best optimum
found by multi-CSS; similarly, we say that our method hits multi-CSS when
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the line of search that would have reached the best configuration found by
the multi-start scheme is not wrongly pruned by our clustering approach. On
the 100 out of 101 instances where CSS is able to spot the best optimum from
the literature, hitting multi-CSS is therefore equivalent to hit the putative
global optimum.

In order to compare our method with multi-CSS, having already run
1000 independent CSS local searches, we just checked from which of the
elements in the Xconcentrated set our algorithm decided to perform a full CSS
optimization. Similarly to the “experienced” scheme presented in Section 4.2,
our method is non deterministic, since its evolution depends on the order in
which batches are processed. To take this into account, we ran MLSL-CSS
on ten independent seed permutations, that is, we randomly permuted the
1000 CSS seeds before starting MLSL-CSS.

A positive outcome of this experiment should therefore show a high hit
rate (ideally 10/10 hits, meaning that our method has been able to detect the
best optimum found by multi-CSS regardless of the order in which the 1000
CSS trials were processed) and a large saving in terms of L-BFGS calls. On the
other hand, it is important to notice that achieving less than 10/10 hits does
not always imply that MLSL-CSS is beaten by MS: indeed, a positive saving
can be obtained even with less than 10/10 hits. Let us denote by x∗multi-CSS
the best optimum found by multi-CSS and assume that MLSL-CSS have hit
multi-CSS, say, nine out of ten times, with a gain in local searches equals
to G = 0.6; this means that, on average, a single MLSL-CSS run requires
40% of the number of local optimization calls required by multi-CSS. To
hit x∗multi-CSS, on average, we need 10

9 MLSL-CSS trials, each requiring 40% of
the L-BFGS calls needed by multi-CSS: thus, we are still achieving an actual
gain of Ḡ := 1 − ( 10

9 ∗ 0.4) = 0.56, meaning that we are saving more than
the half of L-BFGS calls. We define the expected gain Ḡ as

Ḡ = 1− LMLSL-CSS

Lmulti-CSS

Hmulti-CSS

HMLSL-CSS
, (4.20)

where Hmulti-CSS and HMLSL-CSS denote the number of hits achieved respec-
tively by multi-CSS and MLSL-CSS. Note that Ḡ = G when the hit rate is
the same for both algorithms. A negative expected gain indicates that our
method has been indeed beaten by the multi-start approach, and quantifies
the advantage of using multi-CSS over MLSL; in particular, Ḡ is set to −1.0
when our method fails to hit x∗multi-CSS on all of the 10 executions.
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(a) σ= 0.07
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(b) σ= 0.07 (whole molecule)
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(c) σ= 0.08
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(d) σ= 0.1

Figure 4.5: Average gain Ḡ (red) and number of hits (blue) on ten different permu-
tations of the multi-CSS trials, on Lennard-Jones cluster instances from N = 100
up to 200 atoms. On the x-axis, ticks are reported only for “difficult” instances,
namely, where multi-CSS finds the putative global optimum less than the 0.5% of
the time (that is, less than 5 out of 1000 times); instances where multi-CSS is able
to spot the putative optimum only once (N = 154 and N = 192) are also marked
in red. A gain value above the Ḡ = 0.50 horizontal line indicates that MLSL-CSS
allows to save more than the 50% of the L-BFGS calls needed by MS, while negative
gains in (b) and (d), that is, where MLSL-CSS is beaten by multi-CSS, fall below the
additional dashed line. In all experiments a single CSS step has been performed as
MLSL concentration step; the MLSL’s threshold σ is risen from 0.07 to 0.1 in charts
(a), (c) and (d). In chart (b), the geometrical descriptor is computed, after the
concentration step, from the whole molecule, without extracting the core.

Figure 4.5 reports the average gain Ḡ (red) and number of hits (blue) on
ten different permutations of the multi-CSS trials, on cluster instances from
N = 100 up to 200. Ticks are reported on the x-axis only for “difficult” in-



80
Learning from Large Scale Global Optimization using

Geometrical Features

stances, namely, where multi-CSS finds the putative global optimum in less
than 5 out of 1000 runs. Those instances where multi-CSS is able to obtain
the putative optimum only once (N = 154 and N = 192) are additionally
marked in red. For convenience, let us call these two subsets of instances
respectively I and J . When the observed gain falls above the Ḡ = 0.50
horizontal line, MLSL-CSS allows to save more than one half of the L-BFGS
calls needed by multi-CSS. In Figure 4.5 (a), one CSS step is carried out
as MLSL-CSS’s concentration step (nsteps= 1) and the threshold parameter
σ is set to 0.07. In this setting, MLSL-CSS is able to achieve, on average
over all the instances in I, a gain of Ḡ = 0.62, reaching 0.63 on J ; on all
of the 101 instances, the average gain is 0.61. This results clearly show how
our scheme is able to successfully predict the putative global optimum while
saving more than 60% of the computational effort. This happens also for
extremely hard instances, where the putative optimum is seen only once:
MLSL-CSS’s geometrical clustering is thus able to identify promising motifs,
even if the corresponding funnel is very narrow, getting rid of a large amount
of redundant configurations.

Let us keep the setting of Figure 4.5 (a) as a benchmark and rise the
threshold parameter σ, in charts (c) and (d), respectively to σ = 0.08 and 0.1.
With reference to Equation (4.18), rising σ yields a higher threshold τ , which
in turns makes a configuration in the overall sample less likely to be selected
and fully optimized. In Figure 4.5 (c), rising the threshold to σ = 0.08 yields
an average gain higher than the benchmark in (a), namely Ḡ = 0.64 on
both the I and J subsets, while the overall average gain reaches 0.62. It is
worth to notice that, while a hit is lost on both N = 198 and 191, rising σ
have “recovered” N = 178, yielding a full hit rate for that instance. This
outcome shows how increasing the threshold τ in Equation (4.18) does not
always imply a (possible) reduction in the hit rate: making the selection step
more demanding, indeed, can also help getting rid of “noisy” configurations,
rendering the method sharper.
Switching to Figure 4.5 (d), we can see how further increasing σ yields a
failure on N = 198, where the gain is slightly negative (Ḡ = −0.06). Also,
other hits are lost for some other cluster sizes, including the red instance
N = 192, though a positive gain is still obtained. In the setting of Figure 4.5
(d), the average gain for the instances in I remains 0.64, while decreasing on
J to 0.59; the average gain on all of the cluster sizes is still 0.62.

Let us now switch to Figure 4.5 (b): in this chart, the parameter setting
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is the same as the benchmark in (a), but the fingerprint is computed on the
whole molecules, instead of extracting the geometrical descriptor only from
the atoms belonging to the clusters’ core. It is easy to notice how including
the surface atoms in the procedure makes the scheme less accurate, yielding
a considerable loss of hits. A negative gain is obtained for instances in J : in
particular, MLSL-CSS is never able to hit the putative optimum on N = 192.
This analysis should confirm how extracting a reliable geometrical descriptor
is crucial for the selection step of MLSL-CSS.
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(a) σ= 0.07 nsteps= 0
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(b) σ= 0.03 nsteps= 0

Figure 4.6: Gain profiles for the selected testing ground. In (a), the concentration
phase is limited to a pure numerical optimization, without using CSS to work on
clusters’ surface. In (b), the same experiment is carried out, with a lower threshold
parameter σ.

In the experiment depicted in Figure 4.6, the starting seeds of MLSL-CSS
are concentrated only by a L-BFGS optimization: therefore, the concentration
step does not employ CSS’s surface smoothing technique to group the liquid-
like configurations around their basins of attraction, and it boils down to a
pure numerical optimization. As expected – see Figure 4.6 (a) – many hits
are lost due to a shallower concentration, even if the average gain on all of
the cluster sizes is the highest seen so far, namely Ḡ = 0.71: in particular,
a negative gain is obtained on N = 169, 171, 184 and 190, with MLSL-CSS
achieving 0 out of 10 hits on instance 184.
Let us now try to “recover” these failures, while keeping the gain high by
concentrating the starting seeds still only through a numerical optimization,
that is, skipping CSS’s surface smoothing. To this aim, in Figure 4.6 (b) we
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decrease the threshold parameter σ to 0.03. By doing so, a positive gain is
obtained on all of the instances, with an average saving of 66% of L-BFGS
calls. On the instances in J , a maximum hit rate is achieved, with a gain of
0.69; finally, Ḡ = 0.61 on I.

With the above experiments, we have showed how MLSL-CSS is able to
preserve the quality of an excellent multi-start scheme, while saving a large
percentage of local searches. Consider now the Morse potential defined in
Section 4.1.2, with ρ = 14: the latter parameter controls the width of the
unique global optimum, and with our choice we aim at minimizing the po-
tential energy in the hardest scenario. We have carried out experiments on
Morse cluster instances from N = 40 up to 130 atoms, running 50 “pure”
trials of MLSL-CSS for each configuration. By pure we mean that we are
not simulating our scheme based on existent CSS runs (as we did in the last
batch of experiments), and that each trial is totally independent from the
others. In particular, a trial is stopped whenever the putative global opti-
mum is found. By doing this, we aim at assessing the effectiveness of our
method on a set of instances which are among the hardest to be solved; in
other words, while the previous experiments have proved the efficiency of
MLSL-CSS with respect to multi-CSS, our goal is now to evaluate the recall
of our scheme, that is, the percentage of trials, among those carried out, in
which our scheme is able to locate the putative optimum. In this experi-
ment, our parameter choice is that of Figure 4.5 (a). Figure 4.7 reports the

40 60 80 100 120
N

0

25

50

75

100

%
 o

f h
its

Figure 4.7: Percentage of hits achieved by MLSL-CSS on Morse cluster instances
(ρ = 14) from N = 40 to 130 atoms.

percentage of hits on 50 trials of MLSL-CSS: on only 4 out of 90 instances the
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hit rate is lower than 50%, meaning that our method was able to locate the
putative global optimum on less than the half of the trials. In particular, the
worst result is N = 128, where the putative optimum is hit 4 out of 50 times.
However, what is worth to notice is the ability of our scheme to always hit
the global optimum at least once on a selection of problems which are known
to be very hard: that confirms the effectiveness of MLSL-CSS. For the sake

40 60 80 100 120
N

0

25

50

75

100

%
 o

f h
its

(a) ρ = 6

40 60 80 100 120
N

0

25

50

75

100

%
 o

f h
its

(b) ρ = 10

Figure 4.8: Percentage of hits achieved by MLSL-CSS on Morse cluster instances
from N = 40 to 130 atoms with ρ = 6 (a) and ρ = 10 (b).

of completeness, Figure 4.8 also reports the hit rate in the ρ = 6 and ρ = 10
scenarios.

4.4 Conclusion
A run of a GO algorithm rarely exploits information from the past, as meth-
ods often yield their prediction of the global optimum as only output. More-
over, when dealing with global problems with a clear geometrical component,
all those solutions that are obtained from a given one by trivial space trans-
formations, even if different from GO’s standpoint, actually refer to the same
spatial configuration. In Section 4.2 we have extended the well-known scheme
of MBH by including a compact description of known solutions as a method
input. Such descriptor is extracted by configurations of the CINAC packing
problem, and used as a mean to represent the geometry of a solution. The
resulting enhanced scheme is thus able to stop the execution of a run when
bumping into a solution whose description has already been encountered.
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The extension of MBH has been able to save a large amount of computational
time, with respect to the plain method.
The above approach, however, has two downsides. First, methods like MBH
are based on random perturbations, and this way of generating new solu-
tions makes hard to predict the outcome of the current search. Therefore, a
scheme based on the early detection of known structures can fail, especially
with large scale problems where the total number of possible structures is
much higher. Another weakness of the proposed scheme is the way it checks
if a newly reached configuration has already been encountered in the past.
By applying a strict equivalence check, we are employing our compact repre-
sentation only to early detect trivial geometrical transformations of a known
solution.

Cluster methods, which aim at focusing local optimization effort on pre-
cise areas of the feasible space, have been abandoned by the recent GO liter-
ature. This because to group solutions based solely on their variables’ value
can be a very hard task even at medium scale. In Section 4.3, we used the
concept of fingerprinting in a broader way, and adapt the MLSL clustering
scheme to work in the compact space induced by our choice of geometri-
cal features. In this setting, large scale molecular structure configurations
are grouped based on their geometrical properties, instead that looking at
their atoms’ position. Numerical experiments have been carried out, show-
ing how the quality of a very efficient multi-start scheme is preserved, while
to number of local searches needed to locate the putative global optimum is
dramatically decreased.



Chapter 5

Conclusion

Machine learning and global optimization can interact in many ways and
help each other. In Chapters 2 and 3 we showed how global techniques can
be used to solve optimization problems which arise from machine learning
scenarios.
In many classification tasks, manually labeling training instances is a costly
process, and supervised methods are likely not to deliver reliable models
when labeled data are scarce. Semi-supervised learning, which aims at in-
volving unsupervised patterns in the training process along with the labeled
dataset, is often able to improve on the accuracy achieved by the supervised
approach. Global optimization can be used to optimize the non convex ob-
jective function which arises from semi-supervised classification. While the
continuous approach expresses the unknown labels in terms of their predic-
tions, combinatorial methods treat them as optimization variables. These
methods usually scale badly with the size of the unsupervised dataset, and
the combinatorial approach is known to be intractable even in medium scale
applications. In Chapter 2 we presented a combinatorial exact method for
S3VMs. Thanks to the use of a Lagrangean-based global optimization scheme,
we were able to get rid of the dependency on the number of unsupervised pat-
terns. Moreover, directly taking into account the balance between positive
and negative samples turned out to be a successful design choice. Indeed,
the resulting method proved to be superior to state-of-the-art S3VM imple-
mentations in terms of both model accuracy and optimization efficiency, as
it is clear from small to very large scale experiments. The presented method
also comes with a very lightweight parameter selection phase, in contrast
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with recent implementations from the literature. Our approach presupposes
a fair estimation of the ratio of unlabeled samples to be classified as pos-
itive, and should be used when there is enough confidence on the value of
this parameter.

Variable selection and ranking are important steps of a machine learning
workflow. They also provide valuable information that can be straight used,
without necessarily be input to a machine learning model. Feature relevance
is not defined accurately in the literature, and a weak point of many variable
ranking methods is that of being univariate, that is, taking into account one
feature at a time when building the overall ranking. This choice may pro-
duce bad quality results as a feature which is useless when taken into account
individually can be relevant when employed along with one or more other
variables. Global optimization has been used in Chapter 3 to define a con-
cept of feature relevance, and a global problem has been solved to produce
a ranking for the variables of a nonlinear regression problem. In addition,
such a method is multivariate as all of the variables are considered simulta-
neously in the ranking process. The resulting ranking strategy turned out to
be either competitive or more accurate than state-of-the-art methods. Even
if highly competitive in terms of the accuracy achieved by the regression
model trained on the variables which are relevant according to the ranking
procedure, the proposed technique is clearly less efficient than filter meth-
ods. However, its structure is straightforward and can easily fit a parallel
workflow. Chapter 3 presents a distributed implementation, which uses the
state-of-the-art programming paradigm and platform provided by Apache
Spark. This design choice alleviates the computational effort, and renders
the proposed technique scalable and applicable to problems of a larger scale.

From the perspective of Chapter 4, machine learning can help global op-
timization to learn from and make a smart use of information from past
executions, and machine learning techniques such as clustering and feature
engineering can be fruitfully employed to enhance global schemes. Clus-
tering methods provide a way to organize local information and focus the
optimization effort on promising areas of the feasible space. Though they
were largely used in the past, they proved to be weak when the scale of the
problem to be solved is large, as they compare solutions based on the value
of their variables. In Chapter 4 we have developed structural descriptors
for representing the solutions of two well-known geometrical problems in a
compact way, and adapted a clustering method to work in the restricted
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space induced by our choice of geometrical features. Large scale solutions
are therefore compared and grouped based on their overall characteristics
rather than the value of their variables. Thanks to our strategy we were able
to obtain the same quality of a very effective multi-start approach, while
employing a tiny percentage of local searches to converge to the putative
global optimum.
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