
 
 

DOCTORAL PROGRAMME IN INDUSTRIAL ENGINEERING 
DOTTORATO DI RICERCA IN INGEGNERIA INDUSTRIALE 

 

XXX 
 

Safety systems for motorcycles: 

Remote sensing from tilting vehicles 
 

ING/IND-14 

 

 

Doctoral Candidate Supervisors 

Gustavo Damián Gil 

Gargolani 

Prof. Marco Pierini 

 

Dr. Giovani Savino 

 

 

External Referees Dean of the Doctoral Programme 

Prof. Luigi Del Re  

 

Prof. Riender Happee  

 

 

Prof. Maurizio De Lucia 

 

 

 

Years 2014/2017 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© Università degli Studi di Firenze – Faculty of Engineering 

Via di Santa Marta, 3, 50139 Firenze, Italy 

 

Tutti i diritti riservati. Nessuna parte del testo può essere riprodotta o trasmessa in qualsiasi 

forma o con qualsiasi mezzo, elettronico o meccanico, incluso le fotocopie, la trasmissione fac 

simile, la registrazione, il riadattamento o l’ uso di qualsiasi sistema di immagazzinamento e 

recupero di informazioni, senza il permesso scritto dell’ editore. 

 

All rights reserved. No part of the publication may be reproduced in any form by print, 

photoprint, microfilm, electronic or any other means without written permission from the 

publisher. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mi amorosa familia Silvia, José Luis y Rodrigo, que 

a pesar de la distancia, siempre están conmigo. 

 

 

To my beloved family Silvia, José Luis, and Rodrigo who,  

despite the distance, they are always with me. 

 

 

À ma chère famille Silvia, José Luis et Rodrigo, qui 

malgré la distance, ils sont toujours avec moi. 

 

 

Alla mia amorevole famiglia Silvia, José Luis e Rodrigo,  

che nonostante la distanza, sono sempre con me. 

 

 



Summary 

This research work is organized in two parts. The first one addresses how to analyze 

the interdisciplinary problem of motorcycle safety, in order to maximize the positive impact 

of future motorcycle safety systems through a new methodological tool, which it was 

developed in this work. The second part describes a remote sensor, developed in this work, 

aimed at avoiding or mitigating the motorcycle crashes, as these were found necessary in the 

first part. Therefore, this research focused on the requirements to accomplish a conceptual 

safety functionality, called Motorcycle Autonomous Emergency Braking (M-AEB). The 

reason for this is because this safety system does not exist for motorcycles. The specifications 

behind the M-AEB functionality were taken from the outcomes of a prior EU research project 

called ABRAM (Autonomous BRAking for Motorcycles). 

The first part of this research identifies the real needs to make motorcycling safer. A 

common practice consists of performing the analysis of motorcycle crash data aiming to get 

information about the main trends and characteristics of the road accidents, but usually the 

scarce number of cases analyzed does not allow generalization. In advantage, this research 

used big data (>1 million of cases) extracted from a record of motorcycle crashes occurred in 

Italy. Analysis of this data resulted in 26 representative motorcycle crash scenarios, and 

provided insights about the environmental conditions at the moment of the crashes (i.e. 

visibility, adherence of the surface). However, the analysis of vast amount of crash data cannot 

be sufficient to quantitatively estimate the impact of the usage of motorcycles safety systems. 

In this regard, I proposed a systematic way to address this research problem that take 

advantage of the information of different types of data sources available, which are not 

harmonized. Therefore, the first Knowledge-Based System for Motorcycle Safety (termed 

KBMS) was developed and implemented. The KBMS method allows researchers to predict 

the effectiveness of possible safety functions based on crashes that happened in a country 

during the last two or three years. 

The first outcomes of the analysis of Italian crash data using the KBMS showed that 

modern assistance systems existent in the automotive market (such as autonomous emergency 

braking and hazard warning systems), are very promising solutions also for motorcycle safety. 

Therefore, the goal of this thesis was clearly defined to enable Advanced Driver Assistance 

Systems (ADAS) existing in cars but not present in the motorcycle industry. 

The second part of this research is framed in the safety application of artificial 

perception systems, composed of a sensing part and perception or inference part. This is similar 

to artificial perception systems that are used in the automotive industry as a part of ADAS. 

Thus, a detailed study of high-end automotive remote sensors (e.g. RADAR, LIDAR, and 

Machine Vision) and corresponding perception algorithms was conducted. This study revealed 

some important features of perceptual algorithms for the motorcycle safety application, such 

as obstacle detector and trajectory estimation. Regrettably, the study also revealed that none 

of the existent automotive remote sensors is able to operate properly in a motorcycle due to its 

tilting behavior. 

Consequently, the second part of this research focused on the development of a new 

remote sensor for the application in advanced motorcycle safety systems, followed by an 
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assessment of its potential to be used in safety systems. The sensor was conceived to 

accomplish: 

1. The technical requirements to perform 3D measurement of a real traffic scenario 

from a vehicle that presents tilting dynamics. 

2. The utilization of algorithms for obstacle detection and trajectory prediction in road 

traffic scenarios. 

3. The specifications for the triggering of the conceptual M-AEB safety system in 

different motorcycle accident scenarios.  

During this part of the research, it was found that a camera-based sensor, in a particular 

configuration, can accomplish the 3D scanning requirements of safety systems for 

motorcycles. This remote sensor was conceived as a part of an integral perception system, it 

means, bearing in mind to enable the utilization of a perception framework called “stixel 

world”. The stixel framework was targeted because it has unique characteristics, such as 

performing obstacle detection and tracking of non-rigid obstacles without performing target 

classification, which is a computationally expensive task. Therefore, I found it feasible to 

transfer its characteristics, which allow a real-time application in embedded systems 

containing dedicated chips for specific tasks, into a preventive safety approach in the 

motorcycle safety context. In particular, its possibility for obstacle detection and trajectories’ 

prediction in real time from data acquired by a stereo camera sensor.  

A progressive development approach, based in the study of proximal remote sensor 

technology and remote sensors, allowed us to obtain a technical solution based on stereo vision 

technology. The system was initially tested in static conditions and in controlled dynamical 

tests, in order to prepare it for the execution of a large field test campaign. The test campaign 

exposed the proposed sensor in a variety of realistic traffic scenarios. The tests included the 

emulation of motorcycle crashes that happened in the past for which the deployment of the 

conceptual safety system (M-AEB), which slows down the motorcycle, would have been 

beneficial. 

To conclude, the results of this research have been published in 2 Journals (Traffic 

Injury Prevention, and Sensors) and 4 international technical Conferences papers (from the 

fields of Machine Vision and Vehicular Safety). The two main outcomes of this research are 

the following:  

a. The creation of the first Knowledge-Based System for Motorcycle Safety (KBMS), 

which is a methodological research tool that has the potential to bridge motorcycle 

accident research with industrial development of safety systems. 

b. The remote sensor developed is the first part for depth studies of the application in 

advanced safety systems of tilting dynamic vehicles, becoming an initial step 

towards the implementation of advanced safety systems with the potential to make 

motorcycling a safer means of personal transport. 
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Preface 

The safety systems applied to transport are essential to support the development of our 

society because the growth of the population increases the complexity of means transport of 

goods and people. This has motivated the creation of an integral research framework, 

(Appendix A) from which emerges this research activity. 

A number of reasons, like the expected increment of the worldwide population along 

all this century, are pushing towards the organization of designing new strategies and road 

legislations in order to fully automatize the transportation system. This goal promises to lead 

to a minimization of road accidents, with positive effect on the populations’ life, and a 

decrement of expected medical costs due to rehabilitation of people involved in crashes.  

However, the full automatization of the transportation network is something that 

possible will not happen. Other non-automated vehicles (for personal transportation) that have 

the desired characteristics, such as carbon neutral, simple to maintain and repair, will be 

adopted to travel daily in cities, and also, for recreation activities. In this context, tilting 

vehicles have a good potential to be these non-automated vehicles.   

This work introduces the fundamentals behind tilting vehicles safety that may differ in 

certain aspects with respect to the automotive safety field. For example, the visibility 

conditions when crashes happen, or the dynamics of the vehicles prior crashing. The focus on 

the powered-two wheelers field is motivated due to the current usage of these vehicles, beside 

its promotion for the governments in the EU and around the world. Concerning the research 

activity presented in this document, the two-fold aim was: 

1. Identifying Safety Functions (SFs) with the potential to produce a positive impact 

in motorcycle safety, by scoring the relevance of each SF in a qualitative manner. 

2. Starting the development of one of the most promising safety solutions as a 

proof-of-concept and to evaluate it in representative and realistic motorcycle 

accident scenarios. 

Chapters 1 and 2 describe the activity realized for the achievement of the first goal, for 

which the methodological solution consisted in a Knowledge-Based System. The methodology 

is unique in the field of motorcycle safety and it was well received for the road safety 

community. The method is already available to the research community through the following 

Journal publication [P1] (see Table 1). 

Chapter 3 introduces the concept of Preventive Safety through a brief review of the 

state-of-the art of the advanced safety systems for cars. Additionally, selected novel 
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approaches (still under study) towards the concretization of the autonomous cars are presented. 

These approaches were selected based on their possible applicability for use in motorcycle 

safety. Finally, the Knowledge-Based System for Motorcycle Safety is developed. 

The following chapters describe the activities towards the achievement of the second 

goal. Chapters 4 and 5 explain the proximal and remote sensing for the automotive application. 

These chapters describe the different sensing approaches and different perception algorithms. 

The operation of these sensing approaches allowed me to identify the technological gap that 

makes it difficult to implement advanced safety systems in tilting vehicles. This technological 

gap turns into a safety gap in the motorcycle application, which explains the lack of equivalent 

Advanced Driver Assistance Systems (ADAS) for motorcycles. These outcomes, together with 

the analysis of the different detection approaches, were accepted for publication in the 

international Transport Research Arena during the 2018 [P2]. 

Chapters 6 and 7 explain the development, evaluation and validation of the remote 

sensor conceived for the application in vehicles that lean over, such as motorcycles, pedelecs 

and other L3 category vehicles (European category). Our remote sensing is the first in its type 

in the field of tilting vehicles safety; and the sensor was materialized as a demonstrator 

prototype. The outcomes of the research are already available to the research community 

through one additional Journal paper belonging to the Sensors field [P3], and four peer-

reviewed conferences, of which two corresponding to the Machine Vision field [P4, P5] and 

two corresponding to vehicular safety systems [P2, P6]. 

This thesis finalizes discussing the limitations of all the experiments performed, 

suggesting further experiments with their motivations, mentioning improvements on the actual 

sensor design, and concluding about the potential of this sensor technology to enable 

preventive safety approaches in tilting vehicles. 

 

Table 1. List of publications done during the period of doctoral research showing the 

contribution of the Ph.D. Candidate to each publication and related thesis chapters. 

[P1] Related with 

chapter 1, 2, 
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Are automatic systems the future of motorcycle safety? A novel methodology to 

prioritize potential safety solutions based on their projected Effectiveness;  

Journal: Traffic Injury Prevention 2017 
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Riender Happee , Marco Pierini 

[P2] Related with 

chapter 4, 5 

Is stereo vision a suitable remote sensing approach for motorcycle safety? An analysis 
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 Transport Research Arena 2018 (TRA 2018) 

Section: 10. Safe, Secure and Resilient Transport Systems 
Authors: Gustavo Gil, Giovanni Savino, Simone Piantini, Marco Pierini 

[P3] Related with 

chapter 3, 6, 

7 

Motorcycle that see: multifocal stereo vision sensor for advanced safety systems in 

tilting vehicles; Sensors for Transportation. A special issue of Sensors (ISSN 1424-
8220) belonging to the section "Physical Sensors". 2017 

Authors: Gustavo Gil, Giovanni Savino, Simone Piantini, Marco Pierini 
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chapter 6, 7 

Satellite Markers: a simple method for ground truth car pose on stereo video; 10th 

International Conference on Machine Vision. SPIE Digital Library, 2017 
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Authors: Giovanni Savino, Simone Piantini, Gustavo Gil, Marco Pierini 



 

 

Part I 

 

 



 

1. Importance of motorcycle safety and its 

impact in the global society 

World population will continues growing this century by 33-70% (Gerland et al., 2014). 

In 2017, the United Nations reported a world population projection of 11.18 billion by 2100 

compared to 7 billion in 2011 (UN, 2017). In this context, urban zones will experiment an 

increase of its population, therefore an efficient administration of its resources and community 

services will be a need. 

Consequently, cities will turn into smart cities and optimization of common public 

spaces and the control of pollutant gas emissions produced for the personal transportation 

needs of its citizens will become a must. In this regard, the common view is that personal 

electric mobility is the solution, but it is only a partial view of the whole urban mobility 

problem. 

Motorcycles, pedelecs (electric bicycles), and powered vehicles which presenting a 

tilting motion, such as scooters, moppet, mofas, and three- or four-wheeled tilting vehicles 

denominated Narrow Track Tilting Vehicles (NTTVs) have shown to be advantageous in 

congested cities. For example, they require less parking space than passenger-cars, and they 

are used in successful shared mobility services in Europe. The advantages of these vehicles 

have also been highlighted by various authors, which stated their potentialities to enhance 

personal mobility (Festini et al., 2011). 

 Additionally, cost reasons (Will et al., 2011) and their potential for sustainability, 

especially in the case of electrification (Bishop et al., 2011; Weiss et al., 2015; Santucci et al., 

2016; Sindha et al., 2017), favor the potential adoption of these vehicles. In the case of China, 

which is the largest country in terms of population, the government led the industry in this 

direction (Ruan et al., 2014; Simha, 2016) to face the air-pollution caused by the personal 

mobility of its citizens. 

In the EU, hybrid electric-internal combustion powertrains for three-wheelers vehicles 

have been proposed in the market. Specific studies confirmed the favorable recyclability and 

recoverability of hybrid three-wheelers according to the most demanding regulation adopted 

for automotive products, which are not current requirements for this type of vehicles (Berzi et 

al., 2016).  

On the other hand, countries with developed cycle path infrastructures shown societal 

healthy benefits (Oja et al., 2011; Schepers et al., 2015; Götschi et al., 2016). Health benefits 

of cycling can be extended to the elderly population by the adoption of pedelecs but the risk 

of crashes increases (Schepers et al., 2014) and significant number of accidents with less severe 

injuries may be not reported (Schepers et al., 2017). Research underlines that population health 
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benefits need to be supported by appropriate transport safety measures (de Hartog et al., 2010; 

Simha, 2016). 

The injury severity level in case of crashes is the biggest barrier for the societal adoption 

of tilting vehicles. In the case of motorcycle crashes, these type of road users are generally 

subjected to serious consequences for life. Motorcyclist are the 23% of the deaths on the 

world’s roads (World Health Organization, 2015), and they have 26-fold higher risk of death 

than those driving other types of vehicles (NHTSA USA, 2015). 

In the context of an important increment of the population (about twice as much as 

today in the year 2100 – UN, 2017) and a more complex traffic environment, this research 

focuses on motorcycle safety. The achievement of safer motorcycles through technology is 

important due to the possibility of extending the safety solutions to all vehicles that have a tilt 

dynamic. In this sense, the final aim of this research is to make tilting vehicles safer, which 

contribute to a needed sustainable and effective urban mobility solution.  

 

 

 

 



 

 

2. Real needs in terms of safety for 

motorcycle users 

Chapter 2 describes the type of data collected on road accident databases or crash 

databases. An analysis of motorcycle crashes in Italy was developed using two different type 

of crash databases. The In-SAFE database (in-depth road accident database of the University 

of Florence) was used for the understanding of specific motorcycle crash scenarios, by 

employing detailed crash information of these crashes. The National database used has 

provided large data corresponding to 13 years of road accidents, including more than one 

million motorcycle crashes. The big data belongs to ISTAT database (Italian government 

database), and it was used to identify the features of the more frequent road accidents that 

involved motorcycles. 

 

2.1. Types of road accident databases 

To analyze the road accident problem, two types of databases contain the information 

of the accidents, the National databases and the in-depth accident databases. When the 

database is constituted for a standard set of data which is collected where the accident occurred, 

these are generally a national road accident databases (Table 2). These databases are 

commonly filled by the police force and the first-aid services. Thus, national databases contain 

the main aspects of the accidents including data about the vehicles and people involved, the 

traffic scenario, and the testimony of witnesses to the crash. 

 

Table 2. Characteristics of a National road accident database 
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When the content of the database is more detailed than those of the National road 

accident database, it is common to refer to an In-depth road accident database (Table 3).  The 

information of these type of databases are obtained as a results of different investigations. 

Depending of each particular case, the investigations can be carried out from the analysis of 

video footages that captured the road crash, medical and/or forensic analysis of the people 

involved, and the crash analysis reconstruction (virtual environment) that is a result of the 

investigation of the damages in the vehicles and skid marks in the road scene. 

    

Table 3. Characteristics of an In-depth road accident database 

 

 

 

2.1.1.  Differences between the road accident databases 

National road accident databases contain a reduced set of variables (about 20 variables), 

that helps to describe the circumstances of the accident. These variables help to provide a 

description of the type of vehicles involved in the crash, the people involved, and the type of 

crash scenario. The reduced set of variables are standardized by each country in order to 

provide a meaningful description of all road accidents of the country. The set of variables 

collected by each country is similar, and this can allow researchers for the comparison of the 

main crash trends among different countries. 

The advantages of National road accident databases relies on the possibility to access 

to big amounts of data for statistical purposes, which is updated yearly. This databases involves 

a big region of study (e.g. a full country). The drawbacks of National road accident databases 

relies on inaccurate or coarse information which is often collected. This can be motivated 

because the police officers sometimes must rely on the statement of eyewitnesses of the 

accident, or as another example, the sketch describing the accident is not clear or incomplete. 

From the side of the first-aid services, inaccuracies can be produced during the medical report 

which is filled after the event, because different people are involved during the process. The 

examples, can led us to classify as “unknown” part data of the data collected and therefore 

marked as unknown in the statistics.  

In-depth accident databases have a different way of data collection which is aimed to 

produce reliable and more accurate data. These databases contain information about the 

accident elaborated for specialists in road safety. They collect relevant measurements of the 

traffic scenario for the particular accident type, inspect the vehicles in order to measure 

vehicles’ deformation (damages). Other specialist review the type and level of injuries from 
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the people involved in the crash. Subsequently, all these kind of data is used to calculate the 

energy dissipated during the impact (road crash), and perform simulations describing the crash. 

The advantage of In-depth databases is the high quality of data collected, allowing for 

different analysis. For example, the crash analysis reconstruction outcome a variety of 

information about the accident, this translate in a big set of variables that describes the 

accident, ranging from 200 to 1500 depending the complexity of the crash. However, the 

drawbacks of these databases relies on the difficulty to conduct these meticulous analysis. 

In-depth road accident databases requires the availability of specialized people to 

investigate the road accident scenario shortly after the accident happens. This is vital to obtain 

skid marks and other traces that fade in less than 20/30 minutes. This makes that the In-depth 

databases are circumscribed to a small area (reduced coverage), and also that some cases 

cannot be treated for a complete in-depth analysis due to the lack of important evidence. 

Therefore, this databases contain significantly less cases with respect to National road accident 

databases.  

The following sub-section presents an overview of information contained in in-depth 

road accident databases, aiming to point out how difficult can be to perform an inter-

comparison between different databases. The description of the variables of National road 

accident databases will be explained later in the presentation of the results of the analysis of 

ISAT database. 

 

2.2. Type of information extracted from in-depth road accident 

databases for the application to motorcycle safety  

This section shows only results of motorcycles crashes as example of the information 

available in different in-depth databases. The examples were selected from GIDAS (German 

In-Depth Accident Study), MAIDS (Motorcycle Accidents In-Depth Study) and In-SAFE (an 

Italian In‐depth accident investigation study) databases. 

The quantification of the injuries of the people involved in a road accident is defined 

by doctors of medicine that treat the victims by employing standard scale.  The Abbreviated 

Injury Scale (AIS) incorporates current medical terminology providing an internationally 

accepted tool for ranking injury severity. AIS is an anatomically based, consensus derived, 

global severity scoring system that classifies an individual injury by body region according to 

its relative severity on a 6 point scale (1 = minor and 6 = maximal). AIS is the basis for the 

Injury Severity Score (ISS) calculation of the multiply injured patient. 

The usage of AIS provides standardized terminology to describe injuries and ranks 

injuries by severity, an example of usage can be found in Figure 1. In this way, AIS establishes 

a code for the injuries, based on defined rules and guidelines, which increases interrater 

reliability worldwide. Vehicle crash investigators used it to identify mechanism of injury and 

improve vehicle and road infrastructure design. 
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Figure 1. GIDAS database: Detail of injury level for motorcyclists (Otte et al., 2013) 

 

A different representation of the injuries based in the Injury Severity Score (ISS) is 

depicted in Figure 2. The ISS is a score based on AIS to make focus in road crash investigation. 

The Injury Severity Score (ISS) is an established medical score to assess trauma severity. It 

correlates with mortality, morbidity and hospitalization time after trauma. It is used to define 

the term major trauma. 

The results depicted in Figure 2 corresponds to the MAIDS (Motorcycle Accidents In-

Depth Study) report. It is a large-scale, comprehensive study of Powered Two-Wheelers 

(PTWs, i.e., motorcycles, scooters and mopeds) accidents carried out across five European 

countries, using both accident and exposure or control cases. Starting in September of 1999, 

over 2000 variables were coded in 921 accidents. Control data (no crash took place) was 

collected on an additional 923 cases, collected at five locations in France, Germany, 

Netherlands, Spain and Italy. 

 

 

Figure 2. MAIDS Final report 2009: In-depth investigations of accidents involving powered two-

wheelers 
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In Figure 2 is explicit the number of accidents that corresponds to each injury case, in 

which it can be seen that even with an extensive coverage of 5 European countries the number 

of accidents collected is very low (less than 1,000 motorcycle crashes) in comparison with the 

average yearly crashes of a single country as Italy (about 60,000-80,000 motorcycle crashes). 

 

2.2.1.  Examples from In-SAFE road accident database 

Examples of the information used in this research belongs to In-SAFE database, which 

is illustrated in Figure 3. The database contains information from all type of road crashes but 

all the information used in this research belongs exclusively to motorcycle crashes, for which 

the vehicle’s topology is shown in Figure 4. More detail of the database and its information 

can be found in the following publications (Piantini et al., 2012, 2013; Franci et al., 2015; 

Piantini et al., 2016). 

 

 

 

Figure 3. General description of In-SAFE database architecture and images of the information 

collected from the personal protective equipment of the motorcyclist and the crash deformation 

on the collided car 

 

 

Generally, the analysis comprises the vehicles involved, personal protective equipment 

of the motorcyclist and the people. The injury level and distribution along the bodies are 

identified (Figure 5) and matched with the point of impacts of the motorcyclist against the 

opposite car (Figure 6 and Figure 7). These figures are the outcomes of several in-depth 

analysis performed for the road crash researchers, and this kind of information is present in 

this type of crash databases. 
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Figure 4. Topology of the motorcycles in the database 

 

 

 

Figure 5. Injuries distribution (left side) and MAIS distribution (right side) 
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Figure 6. Example of injury causation for MAIS 3+ 

 

The information corresponding to the kinematic of the vehicles under the circumstances 

of the motorcycle crashes are obtained from the analysis of the movement of the vehicles and 

its interactions with the road. To do this a retrospective 3D reconstruction simulation is 

matched with the analysis performed by using the information of the energy dissipated during 

the impact (see examples of this measurements shown for the van of Figure 8).  

The matching process between the 3D simulation and the evidences collected from the 

crash scenario is an iterative process that involves several considerations. When the simulated 

road accident matches with all the results of the analysis performed from the physical evidence 

collected about the crash accident scene (traffic or road accident scenario), the simulation is 

able to provide detailed information about the crash. 

The detailed information simulated turns into several variables of the in-depth 

databases which describe in detail what happened during the vehicular crash. This explains the 

large amount of data variables, about 1500-2000 ones, present in an in-depth road accident 

database. 

 

 



Real needs in terms of safety for motorcycle users 35 

 

 

Figure 7. Head injuries and their impact point’s location over the colliding car 

 

Next, in Figure 8 is presented an accurate way to measuring the permanent 

deformations on the vehicle as a consequence of the crash. The measures are the result of 

scanning the vehicle with laser technology, by moving the laser scanner around the vehicle. 

Other valid approaches consist in the generation of the 3D measurement with the use of photo 

cameras (Morales et al., 2015). This method consist in the acquisition of several high quality 

pictures of the vehicles crashed to generate the 3D measurements by specific post processing 

techniques.  

Using the calculated energy dissipated during the collision (vehicle deformations) and 

the final position of the vehicles (position of rest), it is possible to propose the feasible 

trajectories and speeds ranges to perform a simulation of the crash in a virtual environment. 

Mainly, dedicated software’s such as Pam-Crash and Madymo are used to match the 

information collected from the road scene (an example depicted in Figure 9) with the 

reconstruction of the case study. 
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Figure 8. Example of vehicle deformation by the use of 3D point cloud measurements 

 

 

  

Figure 9. Example of a real motorcycle road accident scenario (In-SAFE: ID86) 
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2.3. Data variables of ISTAT (National road accident database) 

As the present research focus on motorcycle or Powered Two-Wheelers (PTWs) safety, 

only the meaningful variables to describe the motorcycle crashes were selected to segment the 

crash data (ISTAT database). These variables are depicted in Figure 10.  

 

Figure 10. Organization of the data variables of ISTAT road accident database and their 

arborescence. The circles at the end of the branches denote the continuation of the variable's 

arborescence (the same as the previous variable). Note: experience (*) is defined by Equation 1. 
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Several variables contain child variables noted as A, B, C… the reason of that is due to 

the complexity of the road accident to describe. For example, in Figure 10 are defined the 

variables “Vehicles.A”, “Vehicles.B”, and “Vehicles.C” which are used to represent up to 

three vehicles different to the motorcycle involved in the crash. 

The diagram of Figure 10 also shows a variable called “PTW_Rider.X.experience”, 

which is not present in ISTAT database. However, only for the purposes of our investigation, 

this is computed from real data during the data importation process. This ficticious variable is 

explained later and it is used only to get insights about human factors of the motorcyclist 

population. 

The Figure 11 described the variety of motorcycle road crash scenarios which are 

descripted in ISTAT road accident database. The crash scenarios are stratified in three different 

levels which are identified from left to right and using the colors: blue, violet and black. For 

all motorcycle crashes which cannot be described in with the variables presented in Figure 10 

and Figure 11 (unlikely situation), the accident is identified as unknown.  

Additionally, some variables that describes the crash in practice are filled as unknown 

due exceptional reasons. For example, the type of motorcycle can be registered for the police 

agent as an unknown due to an almost total destruction of the motorcycle during the crash or 

if it catches fire.  

 

Figure 11. Detail of accident scenarios of ISTAT database and their arborescence. The circles at 

the end of the branches denote the continuation of the scenario's arborescence (the same as the 

previous variable). 
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2.4. Analysis of motorcycle crashes from ISTAT data 

The following analysis, based on descriptive statistics, allowed me to quantitatively 

summarize the main features of the big data available in the ISTAT (Italian National road 

accident database). The following graphs are accounting for more than 1 million of motorcycle 

crashes in the period 2000-2012. The analysis included less than 10% of unknown data which 

was removed from the charts.    

 

 

Figure 12. Number of PTW road accidents by area: urban, rural, and motorway 

 

 

Figure 13. Number of PTW road accidents by pavement conditions: dry asphalt, wet asphalt, 

slippery asphalt, frozen asphalt, and snowy asphalt 
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In Figure 12 it can be seen that more of the 87% of PTW crashes happen in urban 

scenario. In Figure 13 is shown that more than 88% of PTW crashes happen in dry asphalt. 

The Figure 14 depicts that more than 86% of PTW crashes happen in clear visibility conditions. 

Figure 15 shows a stratification of the crashes according to the type of collision.  

 

 

Figure 14. Number of PTW road accidents by weather conditions: clear, foggy, rainy, hailstorm, 

snow, and windy 

 

 

Figure 15. Number of PTW by type of crash:  Head-on, Angle, Sideswipe, Rear-end, Hit pedestrian, 

Hit stopped vehicle, Hit parked vehicle, Hit obstacle, Hit train, Run-of-the-road, Sudden braking, 

Falling from the PTW 
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The trend for PTW crashes (Figure 16 and Figure 17) slowly decreased over the years 

in all cases except for the roundabout scenario, which increased in the same period. However, 

the increasing trend in the number of crashes in roundabouts could be due to the process of 

replacing standard intersections with roundabouts. Italy performed the replacements during 

the years analyzed and the safety performance of the roundabouts is under study (Giuffrè et 

al., 2015; Montella, 2011; Pecchini et al., 2014; Sacchi et al., 2011) 

 

Figure 16. Detail of total traffic accidents, PTW accidents, and its relationship during a period of 

13 years (2000 to 2012). The upper graphs show a declining trend in the number of accidents, 

instead the bottom one that shows a stable ratio (around 35.4%) between the total vehicular crashes 

and the PTW ones 

 

 

Figure 17. Detail of PTW crashes in four different street areas (normalized respect to the total 

PTW accidents of the year). The opposite slopes between intersection and roundabout could be 

explained by the fact that the roundabout is a particular case of intersection, and during the years 

some angular intersections layouts in Italy were replaced by roundabouts layouts 
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2.5. Description of human factors 

The present study addresses two relevant human factors involved in the traffic accident, 

the age of the rider, and his "experience" at the moment of the accident. The information is 

presented in six of color contour maps:  Rider Age (Figure 18, Figure 19, Figure 20), and Rider 

Experience at the moment of the accident (Figure 21, Figure 22, Figure 23).  

The color scale represents the quantity of accidents in each point of the map. The same 

color scale is used for allow an easy comparison between them.  The ordinates axe displays in 

a linear scale the years analyzed for the maps. Finally, the abscise axe displays in a logarithmic 

scale the years (Age or Experience). Note: the reason for not using a linear scale on the abscise 

axe is due to a better graphical representation because the most significant events happens in 

a few consecutive years. 

 

 

Figure 18. Detail of age of moped riders involved in a traffic accident. 

 

Figure 19. Detail of age of motorcycles riders involved in a traffic accident. 
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Figure 20. Detail of age of motorcycles and moped riders involved in a traffic accident. 

 

Because it is not known the age of the rider population (age of riders without accidents) 

it is not possible to generalize the results of these color maps. However, it is possible to 

compute the “experience of the rider” by Equation 2.1. This is a fictitious variable represented 

in our variable selection of ISTAT database. 

 

Rider Experience = Year of the accident - Year of matriculation   (2.1) 

 

The simplicity of the metric do not captures all the possible cases of the reality but due 

to the analysis conducted, I consider that it captures the main behavior in a practical level; 

allowing me to get insights. In addition, this fictitious variable is easy to be implemented in 

national databases. 

 

 

Figure 21. Detail of the years of experience of the moped riders at the accident moment. 
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Figure 22. Detail of the years of experience of the motorcycle riders at the accident moment. 

 

 

Figure 23. Detail of the years of experience of the motorcycle and moped riders at the accident 

moment 

From the maps can be interpreted that newbie PTW riders have much higher accident 

than 3 or more years of experience ones. As a remark, it has commonly been assumed that is 

due to an insufficient training, resulting in a lack of safety. In the maps, the latest years display 

less quantity of accident due to global decrease of accidents (maps not normalized), however 

the accident peak of newbie PTW riders continues stable and well defined along all the lapse 

of years.  

After these results, it stands to reason that age and experience are contributory factors 

in PTW accidents. These also can be seen in single trends of one year, as are presented in 
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Figure 24 and Figure 25. However, to properly quantify “rider experience” is far from been 

possible due to its subjectivity and maybe a limitation of this kind of analysis. Possibly, the 

fictitious variable simply defined in Equation 2.1 required to be called in a different way.  

 

Figure 24. PTW rider age of riders in a crash (2008) 

 

 

Figure 25. PTW rider experience at the moment of the accident (2008) 
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2.6.  Conclusions 

National databases provide large number of PTW crash data. Consequently, the frequency 

of the crashes among the variety of road accident scenarios point out the most urgent needs in 

terms of safety in the region of study. However, the coarse definition of the crash scenarios in 

the National databases implies a variety of the PTW crash kinematics that fit in the crash 

scenario description. These reasons help to identify a range of circumstances needed to address 

but do not contribute to find a solution to avoid or mitigate the crash. 

In-depth databases proportion detailed information about the PTW crash kinematic and 

details about the reasons that caused specific crashes. The crash simulations realized for in-

depth investigations can be used to assess the applicability of fictitious PTW safety solutions. 

Regrettably, this databases contains few PTW crashes and its representatively in terms of crash 

type cannot be extrapolate to propose safety solutions because the crashes analyzed in these 

regions correspond to local characteristics of the crash scenarios. 

Finally, the PTW safety needs of a country can be stablished from the crash data available 

but it is not enough to proportion a possible solution to the problem. Detailed information that 

can be used to predict the safety the performance of safety solutions is delocalized and of 

difficult access for researchers and industrial stakeholders interested in develop PTW safety 

systems. These difficulties motivated the solution proposed in Chapter 3.       

 

     

 

 

 



 

3. How to predict the performance of the 

safety solutions? 

In the motorcycle industry, a seldom-acknowledged and uncomfortable tension exists 

between the desire to provide effective rider safety and keeping the vehicle cost affordable. 

The problem derives from the multifaceted aspects of motorcycle safety (e.g. conspicuity 

problem, exposure of the rider’s body in case of accident, controllability of the motorcycle 

during the execution of a hard braking), and the small size of an industry that cannot divide its 

limited resources to explore the large number of solutions. 

To guide the usage of these resources, in this dissertation is proposed a simple and 

systematic approach intended to support the tough human decision-making process for the 

development of adequate safety solutions, which is implemented by an ad hoc software tool 

(spreadsheets). The method was inspired by artificial intelligence techniques, and uses road 

accident data and categorical variables to fill the lacking information. The categorical variables 

(e.g. road layout, visibility, kind of injuries) come from the expertise of researchers in the 

safety field, and the methodology proposed captures and encodes this expertise in a Knowledge 

Base (KB).  

Knowledge-Based Systems (KBS) are constructive tools which have been used with 

success in other fields for decision-making. Big Data (ISTAT: 205.272 motorcycle road 

accidents from 2010 to 2012, and more than one million since year 2000) were used during 

the definition and implementation of the KB for the new KBS. Consequently, the use of this 

specialized KBS called Knowledge-Based system of Motorcycle Safety (KBMS), can help to 

the industry to confidently target their efforts and allocate resources to significantly improve 

motorcycle safety. The potential of the KBMS methodology is shown by comparing 

preliminary results with a prior study that attempted a systematic prioritization of safety 

systems/technologies for motorcycles called PISA project.  

 

 

3.1. Context for the analysis of motorcycle safety systems 

Motorcycle safety research aims to contribute to the understanding of motorcycle 

accidents and their causes in order to make motorcycling safer. Its societal relevance is 

increasing due to the proliferation of Powered-Two-Wheelers or PTWs (Sekine, 2014; 

Haworth, 2012; Jamson and Chorlton, 2009; Rogers, 2008). In crowded cities, PTWs offer 

several advantages to riders, mainly time saving when travelling in congested roads, and more 

parking areas with respect to car drivers (Wigan, 2000). Additionally, due to the air-pollution 

problem (Shuhaili et al., 2013; Colvile et al., 2001) more cities are promoting electric 
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Two/Three-Wheelers sharing programs for commuting (Barcelona/Grenoble) and there are 

some current/future initiatives of road space rationing (commonly in several Latin American 

cities) and car-free cities (Brussels, Dublin, Madrid, Milan, Paris, and Oslo) do not apply to 

PTWs. 

However, the protection of motorcyclists is a pending issue. The societal cost of PTW 

accidents is high, and while passenger car safety improved dramatically in the past decades 

(Glassbrenner, 2012; Orsi et al., 2012), PTW safety improved marginally (NHTSA, 2014; 

Sekine, 2014; Broughton et al., 2013; Nicol et al., 2012; Deutermann, 2004). This might be 

explained due to about the multidisciplinary complexity of PTW safety (motorcycle dynamics, 

rider/driver behavior, etc.), which is a broad subject to be addressed only for a small PTW 

industry (11.9 million of cars yearly registered in EU versus 1.0 million of PTWs (ACEA 

2013, ACEM 2014)). Therefore, the arising question is: how to channel the constrained 

economical resources of this industry to the research into the most promising solutions in 

motorcycle safety? Next, I present a method for prioritizing different safety systems or 

technologies that would drive the efforts in R&D to a set of key targets. However it is hardly 

possible due to the nature of certain safety technologies (e.g. diverse settings in a Traction 

Control System can modify the vehicle dynamics in different emergency situations). Thus, our 

study introduces the Safety Function (SF) concept, which is a broader w.r.t. safety system 

because it describes a final desired outcome, allowing for a simpler evaluation and 

prioritization process for the safety solutions.  

For example, three motorcycle safety systems and other three SFs are presented in 

Figure 26. Note that one SF can be achieved by a combination of safety systems operating 

together and that the same safety system can accomplish several SFs. 

Regarding the prioritization of different SFs, they can be attempted using retrospective 

crash data from several databases. Unfortunately, the motorcycle crash databases are not 

harmonized (IMMA 2014), and their combined use can be demanding. Alternatively, the 

prioritization can be conducted based on expert opinions, but these assessments can only be 

performed considering particular accident scenarios. The truth is that the field of vehicular 

safety is characterized by a plethora of expert knowledge among a variety of specializations 

(e.g. crash analysis reconstruction, crash test analysis, energy absorbers design, traction & 

braking control, traffic control, forensic, driver/rider training, injuries treatment, etc.) that are 

not linked. Thus, there is a need to exploit this distributed knowledge and to combine it with 

crash statistical data in a systematic and constructive manner. 

The aforementioned reasons motivated this methodology for PTW safety that aims to 

manage quantitative, imperfect, and not harmonized information, enabling to store, analyze, 

and reuse “collective expert knowledge” for a wise decision-making. The methodology 

developed is a Knowledge-Based System entitled Knowledge-Based system of Motorcycle 

Safety (KBMS) and it is illustrated in Figure 27. 

The chapter is structured as follows: an overview of the only reference study (PISA 

project) that attempted a prioritization method; then, the methodology for prioritization based 

on a KB (Knowledge Base), for which a comprehensive definition of KB and KBS 

(Knowledge-Based System) are provided in order to support the view of the KBMS 

(Knowledge-Based system of Motorcycle Safety); thirdly, the methodology is explained and 

illustrated by a case study; fourthly, a comparison is performed with PISA study outcomes; 

and finally the discussion and recommendations sections are presented.  
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Figure 26. Explanation of the Safety Function concept by examples 

 

 

 

 

Figure 27. Graphical abstract of the Knowledge-Based system of Motorcycle Safety 
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3.1.1.  Overview of PISA Project 

The PISA study (2007-2010), a database of 60 in-depth motorcycle accident cases was 

gathered, sampling from On-The-Spot study and two LMU databases: Forensic and COST 

327. These crashes were classified in a set of relevant motorcycle accident scenarios defined 

in the APROSYS project (APROSYS, 2009). The study identified 43 safety functions/systems 

to be assessed. An international team of experts in traffic accident analysis and prevention used 

the information of each crash case to establish how effective each safety functionality/system 

could have been had if it been present in each case.  

Finally, the safety functions/systems were prioritized for each accident scenario 

presenting different rankings. The PISA priority list was used to perform a comparison with 

the results of the new methodology that will be introduced in the following section. 

3.2. Fundamentals: Knowledge-Based system of Motorcycle Safety 

3.2.1.  Relationship between data, information and knowledge 

The concept of a Knowledge Base requires a clear distinction between the concepts of 

data, information and knowledge, because they will be used along the chapter. Figure 28 shows 

a graphical representation of how from the analysis of sparse data collected, it may evolve in 

meaning towards information through the establishment of new week relationships in the data 

collected. Next, the reinforcement of data relationships and the establishment of new week 

relationships to prior well stablish information in the field of study become in the so called 

“knowledge in the field”. 

 

Figure 28. Scheme of the relationship between the data, information, knowledge and wisdom. 

Finally, more strengthen relationships between varieties of fields of knowledge shape 

a more general “wisdom”. 
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3.2.2.  Defining a Knowledge Base 

Definition 1: A Knowledge-Base (or KB) is an organized repository of facts and expert 

understandings about a particular aspect of reality that are systematically classified and 

adapted to be computed by a machine.  

The information collected includes objective variables and subjective or categorical 

ones. They are stored in a codified manner. This allows for the combination of newly perceived 

information with the knowledge previously acquired, making it possible to perform 

computation. 

This current definition is aligned with the first broad concepts and particular definitions 

of KBs developed in the field of artificial intelligence in the 70's. At that time, the topic was 

called expert system (Minsky, 1974; Waterman, 1976; Waterman and Jenkins, 1976; 

Buchanan and Feigenbaum, 1978; Waterman, 1978; Hayes-Roth, 1985; Waterman, 1986; 

Chapman and Pinfold, 1999). 

 

3.2.3.  Defining a Knowledge-Based System 

Definition 2. A Knowledge-Based System (or KBS) is a tool that by computing on the 

KB allows reasoning with the content of the KB, presenting the characteristics of the case 

analyzed to the user, whom will be able for well-grounded decision-making process. 

The utilization of a KBS in a specific field is intended to emulate some aspects of 

human cognition (such as memory, reasoning and decision-making), but it differs in the fact 

that memories and reasoning come from the interpretation of experimental data and the 

contributions of many persons with expertise in this field. 

Current successful applications of KBS as tools for decision-making can be found in 

the following fields: Medicine (Shortliffe, 1976; Warner, 1968; Gennari et al., 2003; Pavlovic-

Veselinovic et al., 2016), Pharmacogenomics (Thorn et al., 2013), Engineering Design 

Applications (Shaw and Gaines, 1987; Blount et al., 1995; Sainter et al., 2000; Verhagen et 

al., 2012; Quintana-Amate et al., 2015), Environmental science (Orgiazzi et al., 2016), 

Research operations (Negre et al., 2015; Radivojevic and Milbredt, 2016), Corporative 

Management (Grant, 1996; Meso and Smith, 2000; Soliman and Spooner, 2000), Energy 

production (Law et al., 2016), Automotive (Craig B. Chapman, 2000), and Aeronautics (Xu et 

al., 2012; Zhu et al., 2012).  

In conclusion, the KBS approach can be very useful in multidisciplinary fields that have 

to deal with imperfect information (subjective or categorical variables). Accordingly, I applied 

it in motorcycle safety. 

 

3.2.4.  Core of the KBMS  

The Knowledge-Base system of Motorcycle Safety (KBMS) is a KBS which intends to 

capitalize on the scattered knowledge about vehicular safety with emphasis on motorcycles or 

Powered-two Wheelers (PTWs). The KBMS allow us for the creation of a hierarchical list of 

motorcycle safety solutions based on traffic accident information and expert judgements about 

possible accident countermeasures. The process consists of two separate stages (collecting and 

processing), which allow for the delocalization of actors involved. These stages are strictly 

defined for an operational framework. 
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3.2.5.  KBMS Framework  

The default framework of the KBMS (Figure 29) was designed to be applied which 

several traffic accident databases without modifications. It defines:  

a) A set of queries to conduct in the road accident database. 

b) The SFs (Safety Functions) list to assess. 

c) The PTW road accident scenarios to analyze.  

 

 

Figure 29. The components of the Knowledge-Based system of Motorcycle Safety are shown in 

grey. As an initial step the KBMS framework is formulated by defining the queries set, the selection 

of safety functions and accident scenarios. The queries extract the relevant information of the Road 

accident database, for the Inference Engine. Parallel in the workflow from the KBMS Framework 

to the Inference Engine, at the processing stage, the SF are assessed in several Road Accident 

Scenarios by experts, in order to obtain the contents of the knowledge base. This assessment is 

based on a list of Safety Functions which are evaluated for certain Road Accident Scenarios at the 

collecting stage (generating Input 2). Moreover, at the processing stage two tasks are performed: 

a) the validation of expertise coming from Input 2 in order to increase the Collective Knowledge of 

the KBMS; b) the combination of the Input 1 with the Collective Knowledge to define a prioritized 

list of Safety Solutions that corresponds to the country/region of the road accident data used. 

 

3.2.6.  The collecting stage  

The collecting stage consists of two independent parts where information is harmonized 

for the following stage. In part one (upper branch), a segmentation of statistical road accident 

data is conducted in a road accident database by a set of queries (Figure 29). The road accident 

data must be representative of the type and quantity of accidents in the analyzed region for this 

period of time. In part two (lower branch), the level of effectiveness of SFs is estimated and 

encoded for given accident scenarios. These estimations come from the analysis of people with 

expertise in the vehicular safety field and can be stored so as to be used in several analyses. 

The accumulation of expert assessments in the KB of the KBMS will be referred to as 

“collective knowledge” (Figure 29). 
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3.2.7.  The processing stage  

The processing stage combines harmonized accident information with collective 

knowledge to compute a list of SFs prioritized according to relevance and effectiveness. As a 

result, a list of SFs is obtained that applies to the region and period in which the accident 

information was collected. 

 

3.3. Method of the Knowledge-Based system of Motorcycle Safety 

Here is explained how to build each block of the KBMS previously defined and how I 

used the method (Figure 30). Each part of the methodology is complemented with a short 

practical example to illustrate the concepts. 

 

 

Figure 30. Schematic process to build and apply a Knowledge-Based System as the KBMS. 

 

3.3.1.  Operative Framework 

The framework defines the type of data to be used during the analysis, and how to use 

it in order to obtain useful information. For the application in motorcycle safety, I defined four 

pillars based on: I) definition of the road accident scenario; II) database segmentation by a set 

of queries; III) definition of safety functions to be evaluated; and IV) definition of how to 

perform the evaluation. 

 

I) Road Accident Scenarios 

The road accident scenarios are a way to represent the circumstances in a crash (e.g. 

type of road; trajectory of the vehicles; and type of collision). Generally, all the information is 

Definition
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• Inference Engine
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stage
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• Expert assessment

Processing 
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•Adding knowledge to 
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summarized in a pictographic system and each road accident database contain their own 

representation. Therefore, in order to be able to employ the methodology with different 

accident databases is necessary to create a subset of relevant accident scenarios able to include 

these cases in a harmonic way. Finally, these accident scenarios will be used for the experts in 

safety at the collecting stage. 

Example: in the KBMS default Framework I defined 26 representative accident 

scenarios for motorcycle accidents by a comparison between the following five in-depth road 

accident databases: VALT, DaCoTA, Vic roads, GDV, and CADaS. The pictograms are 

provided as a downloadable and editable resource (see Appendix B). 

 

II) Queries set 

The criteria to select the accident cases for the analysis are used by the investigator to 

define a set of queries. Queries should be in a form that a database manager can use to extract 

accident information (database segmentation) at the collecting stage. The database manager 

will provide the outcome of the queries in a predefined form. 

Example: in our framework are defined nine queries (Appendix C) to cluster the 26 

accident scenarios in 9 general ones, labeled from “A” to “I” (Appendix B). The use of accident 

scenarios fused is a tradeoff between the level of detail of the traffic accident scenario 

(resolution), and the data present in the traffic accident database employed (data availability). 

 

III) List of Safety Functions 

Each Safety Function (SF) defines the expected outcome for a motorcycle safety 

solution. Several SFs will be used during the expert assessment at the collecting stage and a 

set of them will represent the most promissory solutions to develop, for this reason each SF 

must be expressed in a univocal manner. Many SFs could match with the expected outcome 

of an existing safety system/technology; in these cases it is necessary to take the safety 

systems/technologies and turn them in SFs, because the SF concept is easier to evaluate with 

few information than a safety system/technology. Additionally, the formulation of nonexistent 

SFs is an innovation enabler. 

Example: the available safety systems/technologies was evaluated to elaborate a list 

containing 64 SFs for the PTW application (Appendix D). The review have included the 

automotive market, specialized literature in vehicular safety (Bayly et al., 2006; Anderson et 

al., 2011; Savino et al., 2012b; Van Elslande et al., 2012; Savino et al., 2014), sensing (Corke 

et al., 2007) and safety technologies (Montanari et al., 2011; Garcia et al., 2013; Corno et al., 

2015; Mukhtar et al., 2015). In addition, some conceptual SFs were proposed. 

 

IV) The expert assessment 

To define the procedure for perform the expert assessment is necessary to consider: 

1) What are the conditions for the evaluation? (e.g. type of accident scenarios) 

2) What things are going to be evaluated? (e.g. SFs) 

3) What is the purpose of the evaluation? (e.g. estimate the capability of a SF to 

avoidance/mitigation the crash) 

4) How to express the evaluation in a standardized way? (e.g. using a ranking scale). 

The first three considerations were previously exemplified. Now is presented the 

ranking scale criteria adopted in the KBMS which aims to quantify the valuation judgements. 

Therefore, a scoring scale (from 0 to 4) is used (Table 4). Likert proposed this kind of scoring 

system in his doctorate (Likert, 1932). 



How to predict the performance of safety solutions? 55 

 

This scale is conceived as a bipolar scaling method: measuring either negative (0, 1, 2) 

or positive (3, 4) responses to a statement. The score scale pertaining to the ratio scale 

classification (Heise, 2001) in the field of statistics and quantitative research methodology.  

 

Score 

Value 

The assessed function would  …  in accident 

avoidance / mitigation for this scenario 

0 … not have an effect … 

1 … have a very little contribution …  

2 … have a little contribution … 

3 … have an important contribution … 

4 … have a very important contribution … 

Table 4. Likert-type scoring scale defined to rank the benefit of the safety function in each accident 

scenario to analyze 

 

3.3.1.  The processing stage 

The Knowledge-Base (KB) capitalize on the human expertise in the field that is not 

present in road accident databases by storing the judgements of the expert assessment. The 

judgements are encoded in a manner that allows comparing the assessment between different 

experts, and performing calculations. 

KB example: a multidimensional matrix that contains numerical values was defined; 

each cell corresponds to a SF ranked for a human expert (presented in Table 4). Each numerical 

value is indexed for five characteristics: 

1) Road accident scenario (26 types) 

2) SF (64 types of Safety Functions) 

3) Objective (avoidance or mitigation) 

4) Expert category (e.g. Biomechanics, Passive Safety, Active Safety) 

5) Individual expert (anonymized information). 

 

3.3.2.  Inference Engine 

The inference engine is designed to apply logical rules, or math calculations, to the 

collective knowledge stored in the KB and the statistical info of the country/region analyzed 

to deduce new insights.  

In this research a set of algebraic equations were defined in order to achieve our 

objective of prioritize SFs for different road accident scenarios depicted in Figure 31. The 

complete example of the math calculations used in the KBMS is also presented.  
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Figure 31. Detail of data contained in the effectiveness matrix (Eki) and their arborescence. The 

circles at the end of the branches denote the continuation of the arborescence (the same as the 

previous variable) 
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A set of equations generate numerical values representing the effectivity of each SF in 

each accident scenario. More precisely, the effectiveness matrix output [Eki] contains the 

collective intelligence until this analysis (Figure 29 – upper branch), and the importance matrix 

output [Iki] contains the collective knowledge but regarding to the specific country/region 

where statistical accident information belongs (Figure 29 – lower branch). 

In the application case, the inference calculation used three years of ISTAT database 

(205.272 PTW accidents from 2010 to 2012) as are stated below: 

  

a) Coverage metric > 90% - 1 metric by year 

The default framework has nine general road accident scenarios. These are a 

simplification to perform the global traffic accident analysis. Consequently, not all the possible 

PTW crashes are included in these cases. Therefore, a minimal floor of 90% of accidents 

coverage was adopted in order to neglect less than 10% of the total PTW accidents, ensuring 

the possible generalization of the conclusions inferred from the analysis. 

The coverage metric computes the sum of the nine general accident scenarios types 

(defined Appendix B), and compares it to the total yearly PTW accidents to determine PTW 

accidents coverage level [%]. 

 

b) Accident reduction by scenario (compared to the previous year) [%] – 18 metrics (9 

metrics by precedent year) 

For example, using the information of the last three years is possible to compute the 

trend of PTW accidents happened in each accident scenario type two times. This information 

provides a ratio of change of accident occurrence among the time for each scenario. 

Note: these metrics are computed using the previous year as a percentage reference.  

 

c) Crash quantity coefficients – 27 coefficients (9 by year) 

𝑄𝑖𝑛
|

𝑦
=

𝑄𝑖|𝑦

𝑄𝑦

 (3.1) 

 

Notation: i means the crash scenario number; y means year of statistical crash data; Qi|y 

is the quantity of PTW accidents in the scenario i during the year y normalized to the Total 

PTW crashes of the year; Qy is the number of PTW accidents during the year y; Qin|y is the 

Qy normalized to the total PTW crashes of the year. 

 

d) Relevance coefficients – 9 coefficients (1 for each accident scenario type) 

To obtain the relevance level of each accident scenario type, compute the weighted 

mean for the last years of each accident scenario. The weights defined by the default 

framework are included in a vector of three elements called “kernel”. Different kernels shall 

compute annual, biannual, and triennial information.  

 

𝐾𝑒𝑟𝑛𝑒𝑙𝑗 = {𝐾𝑗|𝑦−2; 𝐾𝑗|𝑦−1; 𝐾𝑗|𝑦} (3.2) 

 

𝑅𝑖 =
𝐾𝑗|𝑦−2 ∗ 𝑄𝑖|𝑦−2 + 𝐾𝑗|𝑦−1 ∗ 𝑄𝑖|𝑦−1 + 𝐾𝑗|𝑦 ∗ 𝑄𝑖|𝑦

∑ 𝐾𝑒𝑟𝑛𝑒𝑙𝑗
 (3.3) 

Notation: Ri means relevance of accidents in the scenario i and j is the kernel number. 
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e) Effectiveness matrix coefficient – Matrix size = 64x18  

The effectiveness matrix contains 1152 coefficients that are computed from the 

rankings produced for the expert’s assessment (64 safety functionalities by 9 avoidance general 

assessments and 9 mitigation general assessments).  

Below is detailed how to build the effectiveness matrix. 

 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒𝑟|𝑘, 𝑖 =
1

∑ 𝑖|𝑝𝑠𝑠
∗ ∑

𝑉𝑘,𝑖|𝑝𝑠𝑠

𝑚𝑘,𝑖 |𝑝𝑠𝑠  
𝑚

 (3.4) 

  

𝐸𝑘|𝑖 = [𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 1|𝑘, 𝑖 , ⋯ , 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 𝑟|𝑘, 𝑖] (3.5) 

 

Notation: k means safety function number; Type r refers to the kind of analysis 

performed (e.g. Avoidance or Mitigation); pss means a particular sub-scenario; i|pss refer to 

the particular sub-scenario of the ith crash scenario; Vk,i|pss indicates the numerical value of the 

assumed effectiveness of the safety function k and also in scenario i|pss; and Er|k,i is the 

effectiveness matrix that represents the effectiveness of the function k under scenario i with 

regard to the type of goal r. 

 

f) Importance matrix coefficient – Matrix size = 64x18  

It acts as a proxy, highlighting only the important cases of the effectiveness matrix. The 

content of this matrix is originated combining the statistical data of a particular country or 

region and the knowledge (expert’s assessment). 

 

𝐼𝑟|𝑘,𝑖 = 𝑅𝑖 ∗ 𝐸𝑟|𝑘, 𝑖 (3.6) 

 

Notation: Ir|k,i is the importance of the safety function k for the accident scenarios i with 

regard to the safety goal r. 

 

g) Output list 

The output list consist of the addition of all the importance one-dimensional arrays by 

each SF. Then, ordering the new one-dimensional array from the biggest numerical value to 

the lowest one. 

 

3.3.3.  Collecting stage 

The operational framework defined two manners to collect information from two 

separated sources (different kind of information’s are collected). The first task involves the 

segmentation of a road accident database with the set of queries, in order to statistically 

quantify accident scenarios. The second task corresponds to the expert assessment.  

The first task is an analysis that must be defined in a set of queries employing common 

variables sectioning the database accidents (e.g. by road location, road layout, type of 

collision). The aim is to identify the quantity of accidents in different accident scenarios (e.g. 

PTW accidents that happened in “intersection of streets” AND “sideswipe collision type”). 
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The second task requires an appropriate criteria’s for the selection of the experts 

involved in the analysis. Next is presented the criteria adopted in the KBMS within a short 

example of how to collect the information in the expert assessment.   

 

3.3.3.1. Selection of experts for the assessment 

The expert is a person with a recognized knowledge on the topic of interest. For the 

KBMS the experts could come from a variety of disciplines (e.g. crash analysis reconstruction, 

crash test analysis, energy absorbers design, traction & braking control, traffic control, 

driver/rider training, injuries assessment, etc.), then aiming to manage the degree of 

heterogeneity of the sources of knowledge involved a categorization of the technical 

background of the experts involved in the KBMS was defined (e.g. Biomechanics, Mechanical 

Engineers, etc.). 

The application as an expert for the KBMS research can be summarized by fulfilling 

the requirements (Table 5). Thus, a peer-review process will enable the participation. More 

details about the selection of the experts can be found in Appendix E. 

 

Table 5. Expert legitimization table for KBMS assessment (it is filled as an example). In this way, 

it is possible to consider if the applicant could be accepted as a recognizable expert for the 

purpose of the KBMS or not, allowing recognizing both: academicals and industrial experts 

Main activity Research in Vehicle Safety 

Years of experience 5 

Background Mechanical Engineer 

Name of best three publications 
on the topic Paper #, Tech. Report, Book chapter… 

Patents related with the topic Patent … 

Participation in projects Project 1 (tasks performed), … 

 

 

3.3.3.2. Example of expert assessment 

The experts are provided with guidelines (Appendix F), to conduct the assessment, and 

a homogenous terminology to facilitate the exchange and participation with different experts. 

Additionally, they count with a scoring table (Table 4) to assess the possible effectivity of a 

set of SFs (Appendix D) in a set of road accident scenarios (Appendix B).  

 

For a best reference of the modality of the assessment, an example of expert assessment 

is depicted (Figure 32). The example corresponds to the analysis of level of traffic accident 

avoidance/mitigation of two SFs in the set of accident scenarios “h”.  
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3.3.3.3. Increasing the KB (collective knowledge) 

Prior to accept the ranked list assessed for an expert, is necessary to verify somehow if 

the numbers presented follow a criteria or if it were random selected, in order to avoid 

introducing erroneous assessments in the KB. Therefore, a coherence verification test works 

as a filter on the information coming from the expert assessment. To this end, a Fleiss's kappa 

calculation (extension of Cohen's kappa measure) is performed against the preexistent values 

of the KB to identify possible random responses in the assessment. The aforementioned 

coefficient measures the inter-rater agreement for qualitative items (Carletta, 1996; Gwet, 

2008) and this calculation can be performed in spreadsheets (Zaiontz, 2015).  

Once the information encoded by the experts is verified as not random, this is 

incorporate to the collective knowledge to be used in the following and in further analysis.  

 

3.3.3.4. Inferring with the KB 

The inference engine uses the rules or equations defined in the operative Framework to 

generate different results easier to interpret for the researcher that is manipulating all these 

information and allows to him/her to take well-funded decisions. 

In the case of the KBMS, the results consist in a set of arrays organized numerically. 

These arrays represent quantitatively the relevance of each SF along the different road accident 

scenarios for the particular region/country analyzed.     

 

3.3.3.5. Application case: Reduced study 

In order to implement and evaluate the complete workflow of the KBMS, I present the 

results of KBMS-ISTAT (reduced expert assessment employing the crash data of ISTAT 

database). The preliminary results are compared with the previous work done on PISA project.  

Avoidance Mitigation 
Safety Functions (SFs) 

h.1 h.2 h.3 h.4 h.1 h.2 h.3 h.4 

4 3 2 4 0 0 1 2 Assist the rider to perform … 

2 2 0 1 1 1 2 4 Warn to other vehicle of … 

        … 

 Figure 32. Example of an expert assessment of two Safety Functions (SFs) for parking-out 

maneuvers. The numbers in the table represent the outcome of the expert evaluation using the 

scoring scale defined in Table 4 
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In the KBS method developed, the upper branch of the collecting stage (Figure 29) is 

used to extract road accident data of ISTAT database, corresponding to the years 2010-12, 

with the nine queries of Appendix C. For reference, the information is presented in Table 6. 

The nine general scenarios of PTW accidents were defined by the queries performed in 

the ISTAT road accident database. For this reason, the Appendix B is organized with nine rows 

of pictograms. Each row corresponds to one general accident scenario, they are labeled with 

the capital letters: A, B, C…, and H. In addition, the general road accident scenarios are a 

combination of all the scenarios contained in the row (e.g. in the scenario “H” depicted in 

Figure 32, the scenarios to combine are: h.1, h.2, h.3, and h.4). Consequently, in the processing 

stage (Figure 29), the statistical information presented in Table 6 is used in the Inference 

Engine (IE – Section 3.3.2) to compute the steps a, b, c, and d.  

Coming back to the collecting stage (Figure 29), through the lower branch of the 

method is conducted the expert assessment. Here is analyzed the impact of each SF (described 

in Appendix D) among the accident scenarios depicted in Appendix B. In this reduced study a 

subset of 10 SFs presented in Table 7 were assessed for three experts, enabling the feeding of 

the KB and consequently, computing the remaining steps of processing stage (IE – steps: e, f, 

and g).   

To conclude the analysis, the results obtained in the inference engine provides a 

prioritized SF list. The results of the processing stage (output in Figure 29) are presented as 

numerical values in Table 8 (Iki_Sum column). 

 

 

Year 2010 2011 2012 

Total vehicular accidents 211404 205638 188228 

Total PTW accidents 71108 71790 62374 

        

PTW accidents in a collision scenario type: 

A 18262 18188 15145 

B 5424 5641 4663 

C 6001 6376 5583 

D 5479 5396 4489 

E 4811 4693 4004 

F 7932 8226 7089 

G 5320 4981 4614 

H 8317 8553 7742 

I 3090 3385 2893 

 

Table 6. Information retrieved after the segmentation process applied to ISTAT road accident 

database. The information corresponds to the years 2010, 2011 and 2012 
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SF# SF description 

2 Assist the rider to perform a hard braking without falling from the PTW 

6 PTW send a signal to Slow/Stop other vehicle 

18 
Energy dissipation element placed in the PTW to dissipate rider kinetic energy during 
a crash. Case: frontal collision of the PTW 

34 PTW - Alert to the rider of an oncoming vehicle 

44 Improvement of PTW conspicuously (help to the PTW to be seen for others) 

48 Driver state detection (guarantees a minimum level of alert) 

50 Other vehicle alcohol interlock 

53 PTW restricts its maximum speed to street top speed 

59 PTW Lane keeping 

61 PTW autonomous-braking 

 

Table 7. List of Safety Functions (SFs) used in the application case. This subset contains a variety 

of SFs, going from a very specific target to broad ones 

  
 

 

 

Table 8. Numerical values of the las two steps of the inference engine. They are the results that 

quantify the importance of each SF analyzed for Italy (in the reduced study). The left column 

indicate the number of the Safety Function (SF) evaluated. The three intermediate columns show 

the result of the inference engine until the penultimate step (this example is didactic because the 

assessment was performed only for three experts and with 10 SFs). The rightest column is the 

output of the KBMS applied to ISTAT database, presenting as the most prominent the SF number 

2, followed by the 61, 6, 34, 53, …     

 

 

 

 

 

SF # Iki_1 Iki_2 Iki_3 Iki_Sum
2 1.17 1.32 1.38 3.87
6 0.72 0.78 1.02 2.52
18 0.52 0.55 0.44 1.51
34 0.73 0.74 0.88 2.35
44 0.53 0 0.89 1.42
48 0.51 0.12 0.69 1.32
50 0.04 0 0.7 0.74
53 0.76 1.32 0.08 2.16
59 0.1 0 0.04 0.14
61 0.82 1.3 0.86 2.98
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3.3.3.5.1. Results of the comparison (PISA vs. KBMS) 

The main outcomes of PISA study are presented in (Appendix H). The case study 

(KBMS-ISTAT) used 205,272 PTW crashes occurred in Italy in the period 2010-2012 (data 

correspond to the last years of the data presented in Chapter 2 – Sections 2.3 and 2.4). 

The ISTAT crashes involved at least one PTW (moped powered less than 50cc, scooter 

or motorcycle), and resulted in at least one injured or killed person. With the crashes’ 

classification of the KBMS default Evaluation Framework, I observed the following 

percentages regarding the total PTW crashes: a) 51% were represented by only four types of 

crash scenarios (namely A, H, F, and C); b) 25% occurred at intersections (scenarios A and B) 

with a clear predominance of angular collisions; c) 12% occurred in angle collisions in straight 

road segments (scenario H); and d) 11% were rear-end collisions (scenario F).  

 

 KBMS PISa ranking 

Safety Function description Metrics Quartile 
Absolute 
position 

Assist the rider to perform a hard braking without falling 
from the PTW 3.87 1 7, 8, 9 

PTW autonomous-braking 2.98 1 4 

PTW send a signal to Slow/Stop other vehicle 2.52 1 1 

PTW Alert to the rider of an oncoming vehicle 2.35 3 21 

PTW restricts its maximum speed to street top speed 2.16 2 14 

Energy dissipation element placed in the PTW to 
dissipate rider kinetic energy during crash. Case: frontal 
collision of the PTW 1.51 2 & 3 17, 18, 24 

Improvement of PTW conspicuity (help to be seen for 
others) 1.42 1 & 4 6, 35 

Driver state detection (guarantees a minimum level of 
alert) 1.32 4 36 

Other vehicle alcohol interlock 0.74 4 36 

PTW Lane keeping 0.14 4 36 

 

Table 9. Prioritized safety solutions of KBMS-ISTAT and PISa studies. The left column is the 

prioritized list of Safety Functions in the KBMS method. The KBMS metric expresses the 

importance of each SF (larger numbers represents more importance). PISa columns represent the 

same information in a different manner (quartiles and absolute score), allowing comparison 

between the KBMS-ISTAT outcomes with those of PISa project (mark 36 means “less important”) 

 

A prioritized list of Safety Functions (SFs) is obtained by applying the KBMS approach 

in our case study (Table 9). The SFs with higher priority are those with potential to avoid and 

mitigate the greatest possible number of motorcycle crashes in Italy. The top three SFs were: 

“Asist the rider to perform a hard braking without falling from the PTW”, “PTW autonomous-

braking”, and “PTW send a signal to slow/stop other vehicle”. At the bottom of the prioritized 

list we found: “Driver state detection”, “Other vehicle alcohol interlock”, and “PTW Lane 

keeping”. Concerning the reasons for the lowest scored SF (PTW lane keeping) the rating 

reflects the fact that this function is obviously inadequate for urban motorcyclists. This finding 

becomes explicit by comparison of the numerical metric of this SF (0.14) with regard to the 

precedent ones (scored 0.74 and greater than 1.32). As a supporting fact of this result, we can 
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highlight the practice of lane-splitting commonly observed in dense traffic (Aupetit et al., 

2015). 

Table 9 shows a comparision of our outcomes (analysis KBMS-ISTAT) against the 

findings of the PISa study. The comparison is complex because the methods have different 

SFs list, therefore some cases I have to add the contribution of two or three SFs of the PISA to 

match one corresponding of the KBMS method. These comparison reflects good 

correspondence in the top three and bottom three SFs of the prioritized lists, notwithstanding 

the different approaches, expert subjects and crash material. A more detailed comparison 

would be possible, however it would also be quite complicated due to a number of factors 

including also periods and places of the crash data, but also methodological factors. 

Finally, by using the KBMS method was identified that 35-50% of PTW crashes in 

Italy could have been positively influenced by mitigating and avoidance SFs. The top scores 

of automatic systems to assist the rider during the crash precipitation event suggest an 

important role for these SFs. In practical terms, for the first two SFs in the ranking, equivalent 

safety systems in cars are currently available, namely Anti-lock Braking System + Electronic 

Stability Program (ABS+ESP) and Autonomous Emergency Braking (AEB). The 

effectiveness for passenger cars of ABS+ESP and AEB was demonstrated in real cases (Lie et 

al., 2004; Burton et al., 2004; Fildes et al., 2015). However, the solutions for motorcycles still 

need to be clearly defined and the KBMS method can contribute to this end. 

 

3.4. Discussion about the KBMS 

In spite of the undeniable valuable findings of the European projects – shared though 

public deliverables and other dissemination activities like conferences and congresses – some 

members of the scientific community do not have access to the confidential documents and, 

therefore, they do not have sufficient information to validate or question their findings. In this 

respect, the new program launched by the European Commission known as Horizon 2020 

seems to be an improvement due to the promotion of more open access to scientific 

publications. Time will tell if that is the case.   

During the analysis of the large documentation of the PISA project, I found a mix of 

concepts concerning the safety solutions list to assess. This issue motivates me to explicit the 

concept of safety function (SF) in the KBMS method. The problem in PISA consisted in the 

lack of distinction between SF and safety system/technology. Consequently during the expert 

assessment the researchers assessed a functionality or a technology respectively without 

distinction. Clearly, to assess how may behave a technology in a circumstance, requires much 

more and accurate information than assessing a functionality (desired behavior). Anyway, 

PISA project was a very good first attempt of prioritization of safety solutions for PTWs, and 

for this reason I compared the KBMS with it. 

Another issue worth mentioning regarding other EU research project, is the case of the 

road accident scenarios defined in the APROSYS project. This multi-objective and integrated 

safety investigation defined a reduced set of PTW accident scenarios that were used as starting 

point in other contemporary safety research investigations (e.g. PReVENT, AIDE, EASIS, 

GST). In fact, the resolution of those PTW accident scenarios is lower w.r.t. the nine “general” 

accident scenarios presented in the KBMS-ISTAT case study. In addition, the KBMS 

framework offer the possibility to increment the resolution of the general accident scenarios 

when is used a road accident database with more variables that the employed in this research. 
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Regarding more specific projects related to PTW safety, some activities (i.e. statistical 

traffic accident analysis and in-depth accident analysis) must be carried out each time during 

the early stage of the projects. Then, different complex studies are conducted several times 

(requiring current statistical analysis, review of technologies, and considering the new road 

politics that influence the circumstances regarding past years). However, the main constraint 

is the subjectivity of certain analysis given the nature of the information and the judgments 

being made, as well as the methodology adopted. In order to overcome all the aforementioned 

difficulties, the authors suggest the KBMS (Knowledge-Based system of Motorcycle Safety) 

as a clear, flexible (e.g. reorganization of accident scenarios, modification of the inference 

engine), and scalable methodology (e.g. addition of new accident scenarios, new SFs, new 

objectives as: injurie criteria, medical fares, convalescence days, etc.), that could be used and 

updated in the coming years, regardless of confidentiality issues. 

The framework of the KBMS method overcomes common limitations as: 

heterogeneous road accident data collection between different countries/regions; and restricted 

access to the databases due to sensible information about the victims involved. In particular, 

the segmentation of a road accident database by using queries list can be easily replicated in 

several databases locally, enabling database managers to disseminate the harmonized 

numerical information.  

This drastic simplification of the contents of the database may summarize one year of 

road accident data in a few variables – a dozen for example – that contain the quantity of 

accidents in a given accident scenario. Therefore, in order to explicitly define how many 

variables are needed to be representative of reality, the “accident coverage” metric is defined. 

Although each traffic accident is unique, they share some characteristics that allow us to cluster 

the accident in different accident scenarios. However, certain accidents cannot be grouped into 

the most typical cases and might be neglected. Thus, the coverage metric helps to ensure a 

threshold of neglected accidents by performing the addition of PTW accidents in each accident 

scenario analyzed and comparing it with the total amount of PTW accidents registered for the 

region analyzed in the current year. 

Regarding our experience in the execution of the expert assessment, unattended 

problematics comes-up forcing us to find a solution and remade the expert assessment of some 

SFs. The problem appears with preventive safety solutions that may acts in a broad or in all 

type of accident scenarios. For example, an assessment of an alcohol interlock function. 

Obviously, riders or drivers under effects of alcohol are not a desired in any case, as a 

consequence, this may force to the expert to assess this function with a top score when in the 

mostly cases the SF is not required. To solve these issues some assumptions and guidelines to 

conduct the assessment backed for statistics data were proposed.       

 

About the two weakness of the actual research, they are also its further improvements 

aspects. The limitations are:  

1) The quantity of experts assessing the SF list in the study (3 persons). 

2) The resolution of the accident scenarios.  

 

The first limitation is possible to overcome with the collaboration of more experts in 

the analysis, because all the collaborations are “additive contributions”, then constructive in 

this way. The second one, it is a particular limitation in the ISTAT database that may be not 

present in others road accident databases.  

In particular, the limitation consist in the level of detail of descriptive variables used 

during the description of the accident depicted in Figure 33. It forced me to perform only nine 
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queries, therefore in our study is not present the information of which vehicle collides to the 

other one. Thus, the four sub-scenarios (a.1, a.2, a.3, and a.4) were assigned a 0.25% of 

occurrence to each one that surely is not true. It is worth saying that even with this low 

resolution in the general scenario due to the limitation imposed for the ISAT data; it was shown 

the good potential and consistent approach of the KBMS methodology.  

 

 

 

Figure 33. Main variables of ISTAT road accident database. The circles at the end of the branches 

denote the continuation of the arborescence (the same as the previous variable) 

 

3.5. Conclusion of the KBMS 

The KBMS (Knowledge-Based system of Motorcycle Safety) is a contribution as a new 

way to cross the gap between road crash data and knowledge. A tool of road accident research 

and decision making that enables the collaboration between researchers and data sharing, while 

keeping critical/confidential population data in the source. The significant outcomes of this 

kind of collaboration are the simple and concrete goals to transmit to scientist, engineers, 

developers and industrial stakeholders interested in vehicular safety. 
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The key points learned during our preliminary attempt to collecting and storing 

expertise in the KB of the KBMS were:  

a) Defining a common vocabulary to perform workshops and facilitate the 

exchange between experts of different specializations. 

b) In the expert assessment is hardly recommendable to use a binary Liker type scale 

in order to avoid ambiguous assessments (e.g. it SF may contribute sometimes). 

c) Defining a set of guidelines baked in facts of in-depth accident databases to 

reduce the degree of variability of the assessment in the accident scenarios. 

d) A very comprehensive list of SFs for the expert assessment, present the drawback 

to convert the evaluation of each accident scenario in a big time consuming task, 

and it may go against to the quantity of collaborators. 

For these reasons, more research is needed in the definition of a shorter SFs list to 

assess. The reduction of the SF list is a trade-off between the quality of expertise collected and 

the time required to encode it, in order to be stored in the KB of the KBMS. 

Currently, the KBMS method is being implemented between a recognized motorcycle 

manufacturer and the University of Florence. This joint research is somehow a proof that the 

method can provide interesting outcomes for the industry, and it is my hope that new 

stakeholders will join the methodology in the future to contributing to make motorcycling a 

safer mean of transport. 

 

3.5.1.  Future work 

A validation of the effectivity of the methodology need to be conducted against real 

crash data including the cases of intervention of real motorcycle safety systems. As most of 

them are not present in the market today, the validation will need to be conducted in the future, 

for this reason a comparison of the results versus the results of PISA project was conducted. 

 



 

 

Part II 



 

 

4. Preventive safety and artificial 

perception systems 

 

I will briefly develop the concept of preventive safety as a new aspect of vehicular 

safety, which currently is separated in two aspects called passive and active safety. After that, 

it is introduced by examples a preventive safety approach used in cars which are suitable for 

artificial perception in the motorcycle safety case. Consequently, this motivated the research 

of a suitable sensing approach to cope with the requirements of the preventive safety solutions 

envisaged. 

Hereinafter, a brief overview the technology behind selected artificial perception 

sensors (considered important for the application in advanced safety systems in motorcycles) 

is presented. Recent proximal sensors (it is possible to define a proximal sensor as a remote 

sensor designed for measurements in a range below to 3 or 4 meters) are analyzed .The 

operation principles of proximal sensors can provide good insights about the potential and 

limitations of these sensing technologies. Clearly, proximal sensors cannot be directly applied 

to a real application with motorcycles, however the signal processing circuits are similar to 

remote automotive sensor but scaled in terms of range, power, and performance. From the 

algorithms side, the algorithmic core behind proximal sensors and remote sensors used in 

industrial and aerospace applications is very similar. 

The usage of some inexpensive proximal sensors allowed me to experiment with them. 

The practical utilization of the sensors allowed me to capitalize on my prior background in 

electronics engineering and firmware development by conducting reverse engineering of them, 

and learning details about their sensing limitations which are not properly specified. The 

learning on these sensors was then applied to the study of technical specifications and scientific 

publications of automotive sensors. This allowed me to assess current automotive sensors for 

application on tilting vehicles in Chapter 6. 

This chapter concludes with the introduction of the target hardware required for the 

embedded processing required for an artificial perception system in motorcycles. Also 

mentioning the related software platforms for its development. This is important for the 

motorcycle safety application because not information is available in literature concerning 

motorcycle safety. In addition, I mention the differences between them and explain their 

election among other alternatives. The considerations mentioned in this study helped to restrict 

the plethora of algorithms that can be used for safety systems implementations, and guided the 

development of the remote sensor described in Chapter 7. 
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4.1. Concept of preventive safety 

In vehicular safety, it is currently accepted the classifications of active and passive 

safety. The term active safety (or primary safety) refers to safety systems that are active prior 

to an accident. This has traditionally referred to non-complex systems such as good visibility 

from the vehicle and low interior noise levels. Nowadays, this classification contains complex 

systems such as anti-lock braking system, and electronic stability control. Passive safety (or 

secondary safety) refers to safety systems which act during an accident with a mitigation scope. 

For example, helmets, protective garments and air-bag jackets belong to passive safety. 

Advances in passive safety systems have progressed enormously in recent years, in 

contrast, in the active safety domain there are still several unexplored solutions. Most of these 

unexplored solutions refer to certain intend to the automation of the driving task, as it was 

stablished by the SAE J3016 international standard (Table 10). These definitions are 

commonly associated to self-driving cars but involve all kind of road vehicles. 

 

 
Table 10. SAE international’s J3016 provides a common taxonomy and definitions for automated 

driving in order to simplify communication and facilitate collaboration. 

   

Latest researches (up to 2017) in vehicle safety focus mainly on collision avoidance 

(with other vehicles, pedestrians and wild animals), like collision warning/avoidance and 

through automatic braking/steering (intervention systems) corresponding to SAE Level 0. 
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In the pursuit of the development of collision avoidance safety systems, I classified 

these type of research as preventive safety (Figure 34). The motivation to classify the 

preventive safety systems outside of the current classification of active safety is because of 

two reasons: 

 

1. Preventive safety predicts potential crashes, as long as certain conditions are met, 

which differs from active safety. The SAE J3016 taxonomy, described in Table 10, 

expresses that the capability of “monitoring the driving environment” requires an 

artificial perception system foreseen only in SAE Level ≥ 3.   

2. Active safety systems enhance driver/rider actions to perform a hard braking and/or 

help to stabilize the vehicle under difficult scenarios (intervention systems 

corresponding to SAE Level 0). However, the preventive safety system can take 

over the control of the vehicle, based in the idea that the safety system (which 

includes an artificial perception system) identified properly the traffic scenario 

under certain conditions of operation. 

 

 

Figure 34. Proposed classification of safety systems. 

 

Consequently, preventive safety systems may help drivers and riders to avoid or 

mitigate an accident through the use of in-vehicle systems which senses the nature and 

significance of the danger. Depending on the significance and timing of the threat, the 

preventive safety systems will: 

 

 Inform the driver/rider of a critical situation (potential crash) as early as possible. 

 Assist actively the vehicle or ultimately intervene (the system have more 

hierarchy level than the human driver/rider) in order to help prevent any collision 

or mitigate its consequences. 
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In my opinion, a substantial difference exist between preventive safety and other active 

safety systems. Preventive safety allows for taking the control of the vehicle under the inaction 

of the human driver/rider, I decided to separate the preventive safety systems from the category 

of active safety systems.  

 

Summarizing, preventive safety applications can help drivers/riders to: 

 

 Keep a safe distance to precedent vehicle. 

 Avoid overtaking in critical situations. 

 Avoid crashes with other Vulnerable Road Users (VRUs). 

 If the crash occurs, they may reduce the crash severity by reducing the speed of 

the collision (crash mitigation). 

 

Finally, the preventive safety will make use of automotive remote sensors to perceive 

the traffic environment (massive data), communications between vehicles and/or 

infrastructure, geo-localization solutions, and artificial intelligence for improving road safety. 

The fusion and coordination of all these technologies make these systems more complex than 

active safety systems, such as Anti-lock Braking System (ABS), and Electronic Stability 

Control (ESC), as is illustrated in Figure 35. 

 

 

Figure 35. Safety performance expected for different safety systems. 

 

 

Remark: some remote sensors are introduced in the pictures for a best reference, 

however more detailed information about the automotive remote sensors are opportunely 

explained in Chapter 4 (Section 4.3) and Chapter 5 (Section 5.3).   
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4.2. Artificial perception systems in road vehicles 

Artificial perception is a technology that provides the ability to understand, to some 

degree, the surrounding environment of an intelligent system embodied in a robot. In the case 

of road vehicles that attempts to understand the road environment, they are usually referred as 

robot cars, or driverless cars, or autonomous cars. Datasets are collected from moving sensing 

platforms, like the depicted in Figure 36, which store considerable amounts of data in order to 

provide support for the development of perception algorithms. 

As example, I selected three references which contains automotive datasets: The Ford 

Campus (Pandey et al., 2011), the KITTI (Fritsch et al., 2013; Geiger et al., 2012a, 2013; 

Menze and Geiger, 2015), and the Oxford Robotcar (Maddern et al., 2017). The links below 

present the datasets organized by year in which they released the data to the scientific 

community: 

 

 Year 2011: Vision and Lidar Ford Campus dataset 

http://robots.engin.umich.edu/SoftwareData/Ford 

 Year 2012-15: KITTI Vision Benchmark Suite 

http://www.cvlibs.net/datasets/kitti/ 

 Year 2017: Oxford Robotcar  

http://robotcar-dataset.robots.ox.ac.uk/ 

http://ori.ox.ac.uk/the-oxford-robotcar-dataset/ 

 

 

Figure 36. Detail of instrumentation of Robotcar sensing platform (adapted from Oxford website) 

http://robots.engin.umich.edu/SoftwareData/Ford
http://www.cvlibs.net/datasets/kitti/
http://robotcar-dataset.robots.ox.ac.uk/
http://ori.ox.ac.uk/the-oxford-robotcar-dataset/
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4.2.1. Perception systems after DARPA grand challenge of 2005 

The initial DARPA Grand Challenge was created to stimulate the development of 

technologies needed to create the first fully autonomous vehicles capable of completing a 

substantial off-road course within a limited time. This competition was an important milestone 

in the field of artificial perception systems, and current systems are based in the most 

performant competitors’ strategies. 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 37. Vehicle winner of 2005 DARPA challenge. (a) Remote sensing apparel in the top of the 

vehicle. (b) Scheme of the sensing and artificial perception strategy. (c) System architecture with 

detail of the perception strategy and its corresponding sensors. 
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The winner of DARPA competition was a vehicle called “Stanley” (Figure 37). The 

perception strategy was based in the information provided by a single color camera, supported 

by a set of off-the-shelf industrial LIDARs (detail in Figure 37a) and a GNSS (Global 

Navigation Satellite System) to follow the waypoints of the competition. Figure 37b is a 

scheme of the sensing and artificial perception strategy used, for which its four main 

components (red labeled in the scheme) are explained below:  

1) GPS antenna: it receives data that has actually traveled twice into space, once to 

receive an initial position that is accurate up to a meter, and a second time to make 

corrections. The final reading is accurate up to 1 meter. 

2) Laser Range Finder (LIDAR): it scans the terrain 22 meters ahead and to either side 

of the grill five times a second. The data is used to build a map of the road. 

3) Video camera: it points on the road beyond the LIDAR range and pipes the data back 

to the computer. If the lasers have identified drivable ground, software looks for the 

same characteristics in the video data, extending car’s vision to 70 meters and 

permitting safe acceleration. 

4) Odometry: a photo sensor in the wheel well monitors a pattern imprinted on car’s 

wheels. The data is used to determine how far the car has moved since the blackout 

of GPS location. 

From the system architecture diagram (Figure 37c) the perception system implemented 

has three objectives: a) The road perception and obstacle detection, mainly performed by the 

video camera and LIDARs; b) Localization managed with a non-linear estimator, the 

Unscented Kalman Filter (UKF); and c) Surface assessment (roughness of the off-road terrain). 

More detailed information about the perception system of the winner vehicle is available in 

(Thrun et al., 2006).  

 

The evolution of these perception systems has turned into the use of visual information 

sensors because they provide huge amounts and significant information. In fact, most mammal 

animals have not equivalent sensor capabilities like a RADAR or LIDAR. These animals 

perform mostly of the sensing and interpretation from visual information gathered from the 

eyes. This is also the case of humans, for with a significant the part of the brain is dedicated to 

visual interpretation (Harvey et al., 1991), as it is shown in Figure 38. 

 

 

Figure 38. Neural network vision model: (top) sketch of human brain in which areas associated 

with vision are shown in red, and (bottom) block diagram of human vision process. 
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Posteriorly, special interest was given to the interpretation of binocular vision or stereo 

vision due to its capability of providing depth estimation from the visual information. In 

(Rankin et al., 2009) more than 10 years of research of the Jet Propulsion Lab (JPL-NASA) 

were implemented in a single off-road rover which performs the perception of the environment 

from stereo vision sensors. Figure 39 shows from left to right the visual information of one 

camera of the stereo vision system, the depth information computed of the scene, and the 

interpretation of the scene by a voxel representation (regular grid in three-dimensional space).  

 

 

Figure 39. Visual sensing and perception of the off-road rover. 

 

Targeting a rural traffic environment, other interpretation of the terrain and its obstacles 

is presented by (Broggi et al., 2013a). The artificial perception was also based on stereo video. 

Figure 40 shows the interpretation of terrain irregularities or obstacles growing from a green 

grid that represents a free road space. Details of this perception system are available in (Broggi 

et al., 2013b).  

 

 

Figure 40. Estimation of terrain traversability, in terms of both terrain slope and obstacles. 
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Sub-pixel interpolation on stereo vision systems (Haller and Nedevschi, 2012) is 

another technique that provides a more accurate depth calculation. This feature is important 

because it enhances the perception capability of the camera-based sensor to distinguish small 

irregularities in an urban scene. For example, the curbs in the side of the streets (Figure 41). 

  

 

Figure 41. Example of an urban scene corresponding to the KITTI dataset: (top) the classified 

occupancy grid, (bottom) is the depth information. 
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4.2.2.  Automotive perception systems: The stixel world representation and 

6D-Vision 

This perception system is based on stereo vision and radar technology as main remote 

sensors. Modern stereo matching algorithms deliver a depth estimate for nearly every pixel of 

the image (Hirschmuller, 2005) established a matching scheme called Semi-Global Matching 

(SGM) that was made available on FPGA (Field Programmable Gate Array) hardware by 

(Gehrig et al., 2009). This low-power solution for matching stereo image pairs delivers dense 

disparity images in real-time. 

However, the dense disparity images plus the original images represent huge amounts 

of data to process. The effort spent to extract task-relevant information grows significantly 

with the variety of independent vision tasks. To avoid this, a generic pre-processing step has 

been designed to manage the huge amount of data in video sequences and its pixel attributes 

(the “Stixel World” representation). 

 

 

 

Figure 42. Two examples in which a perception system identify the depth, direction and speed of 

different obstacles. The arrows show the prediction of the location of the different parts of the 

obstacle sensed in the following half second. This technique for the perception of road scenes is 

known as “stixel world”. 

The stixel world is a medium level representation for three-dimensional objects. These 

are approximated by a set of rectangles called stixels, all sharing the same width within the 
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image (e.g. 5 pixels). Each stixel describes the distance and height of an object in a certain 

image column. The space up to the base point of each stixel is considered as free.  

Furthermore, the stixel world representation comes along with significant compression 

rates of the input data. For example, for a given width of 5 pixels for the stixels, the relevant 

content of a 1024 x 440 pixels disparity image can be described by 205 stixels only. In total is 

possible to achieve a reduction of the data volume of 99.9%: more than 450,000 disparity 

measurements reduced to 410 values. 

The stixel world is well suited as a medium level representation to decouple low-level 

data from high-level algorithms. It corresponds to a figure-ground segmentation that offers a 

precise contour approximation. By varying the width of the stixels, it can be selected the 

compactness and the detail of the medium level representation. 

By introducing a tracking scheme similar to the principle of 6D-Vision (Franke et al., 

2005), which consist in 3D-position and 3D-motion, and the stixel representation is extended 

into the time domain (Pfeiffer and Franke, 2010). As a result, velocity information for each 

stixel independently is obtained. An example is shown in Figure 42, in which the vertical lines 

are the stixels and the arrows indicate its future location. More details of this approach can be 

found in (Pfeiffer and Franke, 2011). 

 

4.3. Sensors for remote sensing 

This section explains the clever adaptations done for the automotive and entertainment 

applications of the main remote sensing technologies, which initially were developed for 

sophisticated applications such as military and space exploration. Inevitably, the process of 

cost-reduction of the adaptation of these technologies occasioned the degradation of sensing 

performance (several aspects), but complying with the needs of 2D or 3D measurement of the 

road scene. 

4.3.1.  State-of-the-art of proximal sensing  

Sensors for proximal sensing are relatively new technologies for 3D sensing which are 

relevant for artificial perception systems. These solutions were developed mainly for the 

entertainment industry, however proximal sensing technologies are based on principles of the 

remote sensing technology developed for earth exploration from satellites.  

Proximal sensing is oriented to short range measurements within controlled 

environmental conditions, also they are economically constrained (10 to 20€). These 3D 

sensors developed for the entertainment industry have been seen with a particular interest from 

the robotic community, which started to use these devices for radically different applications. 

After a decade of developments of proximal 3D sensors, multiple strategies and principles 

were used to enhance measurement performance in different situations, such as texture less 

surfaces and low light conditions.  

The world’s top semiconductor companies (e.g. Intel, Qualcomm, IBM, etc.) are 

promoting advanced proximal sensors, in which theirs data can be processed by specific 

purpose chips called ASIC (Application Specific Integrated Circuit). This makes possible to 

define embedded low power systems able to use the information provided for smart sensor, 

because the sensor heavily pre-process the data on the source. Recently (year 2016), Intel 

started to sell these smart sensors under the name Intel RealSense™ cameras, which also 

includes a Vision Processing Unit (VPU) on chip.  
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4.3.2.  Potential of Vision Processing Units (VPUs) for the motorcycle safety 

application 

The important potential of VPUs for the motorcycle safety application relies on the 

possibility to build embedded artificial perception systems. VPUs can run algorithms needed 

for 3D triangulation on the camera itself. In this way, the camera can transmit the results of 

the calculations together with the image acquired. These type of calculations are pixel-wise, 

such as dense disparity map, optical flow, and SURF image features extraction (as explained 

in Chapter 6). 

Myriad X (Figure 43) is a modern ASIC oriented to VPUs calculations. This chip is 

able to compute 3 stereo video frames (6 cameras) with a resolution of 1280x720 at 60 fps, 

and power consumption of 1.2W. This low power consumption is feasible for embedded 

applications in motorcycle safety systems. On the contrary, GPUs technology that can 

accomplish with the same functionalities consumes up to five to ten times more energy due to 

its more general architecture and in particular by the memory management required (e.g. total 

NVIDIA Jetson TK1 power 4.7W running a memory-intensive task). 

 

 

Figure 43. Last ASIC for embedded artificial vision released in August 2017. Adapted from 

https://www.movidius.com/ 

 

As the technology is new, there are not agreement between manufacturers to 

denominate these ASICs that acts as Artificial Intelligence (AI) hardware accelerators, to 

which VPUs belong. The terminologies used are: neuromorphic processor, neural processing 

unit, tensor processing unit and neural compute engine.  

Recently, Intel released an USB-stick (based on Myriad 2) for embedded artificial 

intelligent applications. This device integrates a USB port for modular connection with 

embedded boards, and integrates a powerful chip for algorithm calculations (Figure 44). 

Therefore, the usage of these VPUs on remote sensors for motorcycle safety is a very 

interesting possibility that did not exist before. In the following sections, I present 

representative examples of recent proximal sensors that have used this ASIC chips to perform 

3D sensing in near range. 
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Figure 44. Detail of the neural computer featuring a VPU (Myriad 2) in a blue heat sink case 

connected to an embedded system - Released in July 2017 

 

4.3.3.  Background: structured light for proximal sensing  

Following, the physical principle of proximal sensor is explained. These concepts 

include examples of recent sensors and its real-world applications. 

 

4.3.3.1.   Gray code projection 

Structured light is a technique used to measure the depth and surface of a beamed 

object. This technique is based on projecting a light pattern, which contains horizontal and 

vertical bars, onto a scene where an object interferes. The width and surface of the object can 

be extracted by the deformation of the bars beamed on the object (Proesmans et al., 1996). A 

visual representation of the measuring principle is presented in Figure 45. 

 Recently, the method was extended for the application under sunlight (Gupta et al., 

2013), at expenses of increasing the time of acquisition. A complete tutorial paper about this 

technology (Geng, 2011) is explaining the 3D sensing technique. 

 

 

Figure 45. Scheme of 3D scanning with structured light.  
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Adapted from https://www.esat.kuleuven.be/psi/research/structured-light 

The proximal sensors generate structured light by using a set of temporally encoded 

patterns that are sequentially projected onto the scene and acquired by a camera. The depth 

provided by the technique results in high resolution depth maps of relatively static scenes. An 

example of this type of sensor can be seen in Figure 46. 

 

 

Figure 46. Aspect of the Asus Xtion Pro remote sensor (left lens belongs to the IR projector and 

the right lens corresponds to the IR camera) 

 

The projected encoded pattern uses a binary Gray code shown in Figure 47. This code 

has the property that only single bit changes at a time, therefore it is used to reduce errors to 

+/-1 bit (Low Significative Bit) while decoding the captured structured light images acquired 

by the camera. 

Once every pixel is decoded, it is possible to calculate depth of the scene. For example, 

the column number for each captured pixel (0 = first pixel on left and 480 = last pixel on the 

right) and the decoded projector column. The depth is calculated by geometrical 

triangulation. The technique is called depth from disparity.   

 

 

Figure 47. Graphical pattern corresponding to a Gray code of 10 bits (the pattern must be read in 

vertical scanning lines) 

http://i0.wp.com/hackengineer.files.wordpress.com/2012/02/conventionalgray.png
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In Figure 48, the box on the left represents the projected set of structured light images 

and the box on the right represents the captured image. The line running through the middle of 

the boxes is called a scan line. As the surface moves closer, the reflected light will be captured 

by pixel further to the left on the imager sensor. The calculation of the disparity (the difference 

between the two) is perform by subtracting the decoded projector pixel from 

the corresponding camera pixel. As a consequence, the depth is calculated as inversely 

proportional to disparity. 

 

 
 

Figure 48. Calculation of depth by disparity measurement 

 

In Figure 49 is depicted how this proximal sensor is scanning the 3D space by projecting 

a set of Gray binary codes that can be captured for an IR camera.  

 

 

Figure 49. Infrared picture of the Grey pattern projected on a wall 
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4.3.3.2. Datamatrix code projection 

The technique used by the Kinect sensor (similar sensor to Asus Xtion Pro) is a static 

spatially encoded pattern projected onto the scene. The pattern belongs to the family of 

datamatrix (or two-dimensional barcode) codes. The projected code consists of IR light 

squares arranged in a rectangular grid. The camera read it and processes the code using Reed–

Solomon error correction.  

The example of Figure 50 illustrates the set of dots scattered on the scene. The pattern 

is deformed as it falls onto the objects. The camera then captures an image of the scene and 

decodes the result. This method calculates a single depth reading to a group of projected pixels 

(it takes multiple spatially encoded pixels to map back to unique camera pixels). As a result, 

there is a loss of depth resolution but depth can be calculated with only one capture in all the 

image, therefore the sensor can handle dynamic scenes (desired characteristic). 

 

 

Figure 50. Infrared picture of the Kinect sensor scanning part of a room. 

 

4.3.4. Example of recent proximal sensors 

4.3.4.1.  Real sense SR300 

This sensor (Figure 51) uses structured light technology to perform the 3D 

measurement. These sensors has a MEMS laser projector that creates a coded IR pattern (an 

8-bit code for every point in space), and a high speed IR camera that captures the reflected 

pattern. Based on the displacement of the pattern due to objects in the scene, it can be 

calculated the distance of the objects from the camera.  

 

 

Figure 51. Aspect of the SR300 proximal sensor camera based in structured light. Adapted from 

https://click.intel.com/realsense.html 
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In addition, this sensor contains an additional camera that captures the scene in color 

(common RGB camera) to fusion depth and visual information (details in Figure 52). Then, 

the sensor laser-generated 2D spatial patterns, the IR camera is taking pictures of them, and 

the sensor is calculating the coordinates of the 3D point cloud while doing the matching of the 

color image and the corresponding depth. 

 Consequently, the ASIC processes in real-time the depth for each corresponding pixel 

of the color video streamed. The advantage of this sensor is that it creates an overall texture 

map in IR, so the sensor can measures texture-less objects. 

 

 

 

(a) 

 

(b) 

Figure 52. Scheme of main internal component of the SR300. (a) Detail of the position of the ASIC, 

IR camera, RGB camera and IR laser projector. (b) Scheme of the FoV of each component: IR & 

Projector (depth measurement), and RGB (color image) 

 

4.3.4.2.  Realsense R200 and R400 

Another versions of a RealSense camera, shown in Figure 53, differ from the SR300 

sensor because they have an additional IR camera for stereo vision. This extends the depth 

range to outdoors applications.  
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Figure 53. OEM proximal sensor of Intel Realsense portfolio. Adapted from 

https://click.intel.com/realsense.html 

 

4.4. State-of-the-art of high performance computers for perception 

systems in vehicles 

This section is strongly related with the evolution of electronics and consequently the 

computation capabilities of the chips, providing an indication of the computing capabilities 

that perception systems can use. The reference of this subject can by expressed by mentioning 

Moore’s law, which predicted more than half century ago a doubling every year in the number 

of components per integrated circuit  looking forward to the next decade. Surprisingly, Moore's 

prediction proved accurate for several decades in spite of the technological arrival to the 

limitation in number of transistors of unit of surface due to the increment of the speed of the 

transistors.  

Moore's law is an observation or projection and not a physical or natural law. Although 

the rate held steady from 1975 until around 2012, and nowadays the technological barriers of 

size and speed achieved are being tackled due to the implementation of parallel architectures, 

mainly multiple cores and parallel processors called GPUs (Graphics Processing Unit). 

The embedded processors also benefited from this evolution. Nowadays are 

economically accessible powerful microcontrollers that contain co-processors integrated FPUs 

(Floating Point Units) which were unthought ten years ago, and nowadays are allowing very 

intensive real time applications. Other actual view of the embedded processor is the degree of 

integration between dedicated processors. For example, nowadays it is possible to count which 

a variety of SoCs (System-on-a-Chip) that concentrates in the same chip reconfigurable analog 
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and digital processing capabilities, others mix dedicated DSPs (Digital Signal Processors) or 

powerful FPGAs (Field Programmable Gate Array) with microcontrollers. 

The new era in embedded computation is the adoption of software functionalities 

implemented in hardware. This chips are denominated ASICs (Application Specific Integrated 

Circuit). The ASICs are meant to perform repetitive tasks that will require intense computation 

if they were implemented in a software fashion. These kind of chips proliferating with the 

concept of smart sensor and some big ones where developed for the development of proximal 

sensing sensors.  

Nowadays, there is an intense development of ASICs mainly in two directions. One 

towards smart cameras (see the section “State-of-the-art of proximal sensors”), for which the 

integration of some algorithmic capabilities for visual understanding of the scene captured are 

being incorporated into the camera sensor chip. The second is towards AI (Artificial 

Intelligence), in which the ASICs are aimed to host certain types of neuronal network layers 

that can be configured to present certain levels of AI for specific and well defined applications.  

The advantage is the low power and small form factor of the embedded device. One of 

the most recent examples is the ASIC Myriad of Intel that can be obtained also as an USB-

stick (neural computer). 

 

4.4.1.  First automotive super computer: DRIVE PX 

The term super computer is a simplistic way to express that the capacity of perform 

operations of this particular computer exceeds in more than one or two orders of magnitude a 

conventional PC (Personal Computer). In the case of the first automotive super computer, it 

will be as powerful as 150x Macbook Pro’s. 

The design comes from an agreement between two big technological manufactures, one 

belonging to the informatics industry and the other to the automotive industry. NVIDIA and 

the automotive supplier Bosch. Other automotive suppliers, as ZF, are making agreements with 

NVIDIA due to their know-how in scientific computation with applications to Artificial 

Intelligence (AI).   

The automotive suppliers as Bosch are also Tier 1 of the motorcycle industry. 

Independently of the name of the company, a Tier 1 company is the most important member 

of a supply chain. It is supplying components directly to the OEM (Original Equipment 

Manufacturer) that set up the chain.  

In a typical supply chain, Tier 2 companies supply companies in Tier 1; Tier 3 supplies 

to Tier 2, and so on. Tiered supply chains are common in industries such as aerospace or 

automotive manufacturing where the final product consists of many complex components and 

sub-assemblies that must comply with stringent quality, manufacturing and business standards. 

Tier 1 companies are generally the largest or the most technically-capable companies 

in the supply chain. They have the skills and resources to supply the critical components that 

OEMs need and they have established processes for managing suppliers in the tiers below 

them. In motorcycle industry, Tier 1 companies provide a manufacturing service for the OEM, 

leaving the OEM to concentrate on final assembly or marketing. 

From the side of NVDIA, the informatics company was innovating in parallel 

computation for more than 20 years and during the last decade built a framework for scientific 

computation. From this scientific framework the company derivate one for target autonomous 

driving and it is called NVIDIA DriveWorks. This software framework is only available to 
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select Automakers, Tier 1 Suppliers, and Research Institutions working on developing systems 

that enable cars to drive themselves.  

The first generation of an automotive super computer is the DRIVE PX. It can achieve until 

automation level 2 (see Table 10), and two cases are depicted in Figure 54. Is it expected that 

more Tier 1 companies start to produce the devices and the cost of the technology will start to 

drop off.  

 

 
Figure 54. Examples of DRIVE PX automotive super computers. On the left hand is the version of 

Bosch supplier and on the right side the implementation of ZF 

 

4.4.2.  First AI automotive super computer: DRIVE PX2 

A computer designed for AI applications is a computer that have a co-processor, which 

is a specialized processor that acts as a companion of the main processor. The co-processor 

performs specific tasks and deliver its results to the main processor, acting as an assistant of 

the main processor. In this way, the main processor can perform other operations until it 

receive the outcome of specific tasks realized by the co-processor. In the case of NVIDA 

hardware solutions the co-processor are GPUs (Graphics Processing Units).  

A couple of years ago started the ongoing development of the first AI automotive super, 

the DRIVE PX2 (Figure 55) of NVIDIA, it will be based on the chip Pascal and will be the 

first single-chip processor to achieve Level 4 autonomous driving (see Table 10). The DRIVE 

PX2 is going to be used by cars manufacturers which believe that the solution to self-driving 

cars will be mostly based in Computer Vision (CV), Depth Neural Networks (DNN), accurate 

road map datasets, and high level software agents.  

 

Figure 55. Render of prototype of DRIVE PX2 of NVIDIA. It includes the Pascal processor. 

Adapted from https://www.nvidia.com/en-us/self-driving-cars/drive-px/ 
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To experiment and assess their own technologies, NVIDIA get associated with 

automakers to build autonomous racecars. The racecars used a demonstrator of DRIVE PX2. 

This hardware have become the brain of the Roborace cars, which consist of an instrumented 

race car as is shown in Figure 56.  

 

 

Figure 56. Roborace car with description of its perceptual sensors. Adapted from 

https://roborace.com/ 

Roborace is meant to be a motorsport championship with autonomously driving, 

electrically powered vehicles. The series used the same tracks the FIA Formula E 

Championship uses, and it is the first global championship for driverless cars. All the teams 

will have the same hardware in the race cars and the only think that the will be able to change 

is its software.  

 

4.4.2.1. Technical specifications of DRIVE PX2 and its future 

evolution 

  The technical specifications of DRIVE PX2 (AutoCruise) are: 12 CPUs, 1 Pascal 

GPU, 8TFLOPS, 24 DL TOPS, 250 Watts liquid cooled). TFLOPS and DL TOPS are 

somewhat meaningless terms because they represent theoretical peak performance. NVIDIA 

provides a separate measurement of performance using AlexNet, an image classification 

approach using deep convolutional neural networks. They quotes performance of 450 images 

per second with a Titan X compared to 2,800 images per second on DRIVE PX2. So in this 

case, NVIDIA shows a single supercomputer DRIVE PX2 delivering more than six times the 

performance of a single high-end processor (Titan X).  

In Figure 57 are shown the three super computers for the automotive industry. The 

smallest (AutoCruise) is the one in process of industrialization with the Tier 1 companies 

aforementioned. The board in the middle (AutoChauffeur) is the current platform for 
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autonomous cars development and only partner companies can have access to it. On the left 

side, the board (Full Autonomy) is in ongoing development as a more powerful supercomputer. 

 

 
Figure 57. Actual and planed supercomputers for automotive applications. Adapted from 

https://www.nvidia.com/en-us/self-driving-cars/drive-px/ 

 

The next generation of supercomputer (left image of Figure 57) will be designed to 

handle the massive amount of computation required for self-driving tasks, such as running 

deep neural nets to sense surroundings, understanding the 3-D environment, localizing on a 

HD map, predicting behavior and positioning of other objects, as well as computing car 

dynamics and a safe path forward. 

4.4.3.  Machine vision in autonomous vehicles 

This section is a brief explanation of a broad state-of-the-art in artificial perception 

systems which application to vehicular field. The research is mainly driven with the objective 

to achieve autonomous cars, so the examples will correspond to this topic.  

Linking with the previous sections, the next video provides a full picture of the 

possibilities of MV (Machine Vision) and CV (Computer Vision). 

 

Three minutes video:  https://www.youtube.com/watch?v=84M3ghUKlLk 

 

 

4.4.3.1. Machine vision in the motorcycle field 

Nowadays there is a lack in machine vision systems and remote sensors in the 

motorcycle industry. However, the perception technologies in development towards the 

accomplishment of automation level 3 (see SAE J3016 in Table 10) in autonomous cars, have 

the potential to be adapted for motorcycle safety.  

The level 4 of automation is expected to be achieved commercially in 2020 (agreement 

between NVIDIA and Audi), but it may happens later. Anyway, it is not necessary to wait until 

the end of the car automation process to transfer the technology from an industry to the other. 

https://www.youtube.com/watch?v=84M3ghUKlLk
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Therefore, today is feasible start to develop safety systems for motorcycles that employ these 

kind of technologies, and the UNIFI demonstrator that I created is a proof of this. 

 

4.4.3.2. Development kits suitable for motorcycle safety  

4.4.3.2.1. NVIDIA Jetson 

The NVIDIA Jetson TK1 developer kit (Figure 58) is the starting point to use GPU for 

embedded systems applications. It is built around the Tegra K1 SoC and uses the NVIDIA 

Kepler framework for software development. This is a general purpose framework for the 

development of compute-intensive systems for computer vision, robotics, medicine, and 

possibly motorcycle safety. 

 

 

Figure 58. Jetson TK1 developer kit. Note that the main chip need a heatsink with a fan for air 

cooling which are not present in the picture. Adapted from http://www.nvidia.it/object/jetson-tk1-

embedded-dev-kit-it.html 

Similar development kits that contains the main processor chips in a small credit card 

format (an AI module) are the NVIDIA Jetson TX1 and TX2 (Figure 59). The key advantage 

of this development board is that it is relatively simple to install the module in a rugged carrier 

board and testing applications in harsh environments, such as a motorcycle. The main 

limitation is the power consumption and the need of a heatsink with fan for air cooling.  

 

 

Figure 59. NVIDIA Jetson TX2. On the left hand there is the credit card size board with the main 

processor that can be installed in p rugged hardware. On the right side there is the complete set of 

boards for development purposes. Adapted from http://www.nvidia.it/object/jetson-tx1-module-

it.html 

 

http://www.nvidia.com/object/tegra-k1.html
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html
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4.4.3.2.2. Carrier boards for NVIDIA Jetson 

The carrier boards are needed to simplify the process of integration of the AI module 

in a prototype or short series of final applications. The need of this carrier boards is based in 

the fact that the signals that need to travel for the circuit are of very high frequency (in the 

orders of GHz), so the design specification of the PCBs (Printed Circuit Boards) is challenging.  

When it comes to PCB layout and routing, high speed application is a multidisciplinary 

task. High speed PCB layout required to ensure the integrity of signals, which starts to be 

affected by the physical characteristics of the circuit board, like the layout, packaging, 

interconnections (bias), etc. Some common problems in high speed PCB layouts are: delays, 

attenuation, crosstalk, reflections, or electromagnetic emissions. Therefore, to avoid all these 

tedious problems, the design of the final PCB can be done in a posterior stage of the 

development. 

Next, I explain three of them because they are suitable for the constraints of motorcycle 

safety application from an electronic point-of-view. In Figure 60 is shown the Astro Carrier. 

One of the main features is that it has 8 coax video inputs. This may be useful for projects that 

want to work with several stereo vision systems.  

 

 

Figure 60. Detail of connections of Astro Carrier of Connect Tech Inc. 

In Figure 61 is shown the Orbitty Carrier. This is the cheapest carrier board available 

of our comparison, but it still has most of the main interfaces like Ethernet, USB 3.0, HDMI, 

etc. What it is lacking in this board are the CSI (Composite Serial Interface) video inputs, but 

for the using USB 3.0 cameras that should be no problem. 

 

 

Figure 61. Detail of connections of Orbitty Carrier by Connect Tech Inc. 

http://api.ning.com/files/JPrUh3-6xrRoMD-ufCf6goKthoHZs3qE-AzkMMYukdtoP4hbwDwUsQT*WD8LRixX6-Aa7VpbLZhEd1emUYMCuy7cT6lp*WiJ/Astron.png
http://api.ning.com/files/JPrUh3-6xrRkJa-E0KrkIGDMFxfDxyY3*VHR0KS6A26m1ATV5etTtq4iuqF365E4UgfJBbbz*m76VtOTYzEnIL6R5anUHEA5/Orbitty.png
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     The most advisable board to start the development in motorcycle application is shown in 

Figure 62. I recommend this board for its main features, such as four CSI (Composite Serial 

Interface) video inputs, and two USB 3.0 ports, which allows to connect a lot of digital camera 

sensors. Most interfaces including USB are routed to custom connectors that require special 

cables. 

 

 

Figure 62. Detail of connections of Auvidea carrier board. 

 

4.4.3.2.3. FPGA-based deep learning accelerator 

The company DeePhi has produced two separate FPGA (Field Programmable Gate 

Array) based deep learning accelerator architectures. The first is Aristotle, which is aimed at 

Convolutional Neural Network (CNN) acceleration. The second is called Descartes, which is 

directed at sparse LSTM (Long Short Term Memory) deep learning acceleration. These are 

matched against work that has been done on model compression and “activation quantization” 

wherein the team found that getting the precision of 8 bits is perfectly reasonable on this 

architecture. 

The problem with existing processing is in the access to DRAM (Dynamic Random 

Access Memory – capacitance based). Fetching the weights from DRAM can be as much as 

two orders of magnitude more expensive than an ALU (Arithmetic Logic Unit) operation, and 

dominates power consumption. A possible solution can be the use of an Efficient Inference 

Engine (EIE), that maximizes the role of SRAM (Static Random Access Memory – not refresh 

required) in processing the inference side of neural networks, while on the backend, a new 

technique (made up of old EIE techniques) called deep compression, packs the nets down to 

manageable sizes for ultra-rapid and efficient processing (Han et al., 2016). 

Using the deep compression techniques, the neural network problem can be fit into on-

chip SRAM. EIE then executes the inference across the compressed set with some rather 

stunning results. For example, a benchmark using nine different deep neural network 

benchmarking suites, EIE performed inference operations anywhere (depending on the 

benchmark) between 13x and 189x faster over regular CPU and also GPU implementations, 

although this is without any compression. As the benchmarks show, the energy efficiency is 

better by between 3,000X on a GPU and 24,000X on CPU (Han et al., 2015). 

The DeePhi hardware (Figure 63) is a first demonstration that there is a more efficient 

route to real-time inference in a dramatically lower power envelope. The company’s own 

custom built compiler and architecture is used instead of OpenCL. The algorithm designer 

doesn’t need to know anything about the underlying hardware. The compilers generates RTL 

(Register-Transfer Level) code. Deep compression maybe useful in real-world neural networks 

and can save a great deal in terms of the number of computations and the bandwidth demands. 

 

http://api.ning.com/files/JPrUh3-6xrQ1gPykIB44l7EYrN4qh1llrPCc5rF4VdmXIj2Kxe4vNDLLW*pGqC0T0*dJTF9YeiLaX-bI9hk81D4oF7OFvsds/AuvideaJ100.jpg
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Figure 63. Aristotle architecture, which is designed for CNN acceleration. Adapted from link. 

 

4.4.3.2.4. INTEL: case of Myriad chips 

In previous sub-sections I introduced the chips Myriad 2 and Myriad X. In particular, 

the Intel Movidius Myriad 2 VPU includes 4 Gbit of LPDDR3 DRAM, and its architecture 

includes specific imaging and vision accelerators and an array of 12 VLIW vector media 

processors called SHAVE processors. These processors are used to accelerate neural networks 

by running parts of the neural networks in parallel for achieving the highest performance.  

The Intel Movidius NCS (Neural Computer Stick - Figure 44) is connected to an 

Application Processor (AP), such as a Raspberry Pi, using the USB interface on the Intel 

Movidius Myriad 2 VPU. The USB3 interface can be used both in USB 3.0 (5 Gbps) or 

USB2.0 (480 Mbps) modes. 

The CPU in the Intel Movidius Myriad 2 VPU is a SPARC microprocessor core that 

runs custom firmware. When the Intel Movidius Neural Compute Stick is first plugged in, 

there is no firmware loaded onto it. The Intel Movidius Myriad 2 VPU boots from the internal 

ROM and connects to the host computer (application processor) as a USB 2.0 device. 

Applications executing on the host computer (AP) communicate to the Intel Movidius 

Myriad VPU SOC using the Neural Compute API (Application Program Interface). When the 

API initializes and opens a device, the firmware from the Neural Compute SDK (Software 

Development Kit) is loaded onto the Intel Movidius Neural Compute Stick. At this time, the 

Intel Movidius NCS resets and now shows up to the host computer as a USB 2.0 or USB 3.0 

device depending on the host type. It is now ready to accept the neural network graph files and 

commands to execute inferences on the graph files. 

 

https://3s81si1s5ygj3mzby34dq6qf-wpengine.netdna-ssl.com/wp-content/uploads/2016/08/DeePhi3.png
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4.5. Conclusions 

Preventive safety systems for motorcycles need to be based on artificial perception 

systems but these vehicles have serious constraints in terms of power budget. Embedded 

solution will required specific ASICs to be able of processing big amounts of environmental 

data in real-time. Different chip solutions were described in this chapter but my 

recommendation for the PTW application is towards the Intel processor Myraid 2 and Myraid 

X. The reasons are related to the low power consumption (less than 1.2W), the VPUs (Vision 

Processing Unit) that acts as co-processors for video processing in real-time and their 

capability to manage up to three streams of stereo video data simultaneously. This is suitable 

for the multi focal stereo sensor developed in Chapter 6. 

 

 

Figure 64. Intel is supporting seven AI software frameworks 

 

From the software development side, Artificial Intelligence applications can be 

implemented with a lot of development frameworks. The current frameworks to develop 

Artificial Intelligence applications are 7 (Figure 64). However, for the utilization of Myraid 

processors only 2 frameworks are supported by the chip manufacturer. The frameworks 

accepted are: Tensor Flow, and Caffe 2. Therefore these two are the only suggested for the 

implementation of preventive safety systems for motorcycles.



 

 

5. Is it possible to apply ARAS on 

motorcycles? 

 

This chapter is dedicated to analyze the difficulties encountered for the automotive 

perception systems when they are subjected to motorcycle dynamics. The reason is simple, 

these systems stay out of specifications when they are applied to a two-wheeler dynamics. The 

fact that they were designed bearing in mind a different ego dynamics, which makes the 

systems fails in physical and algorithmic terms. An analysis of the three main technologies 

(RADAR, LIDAR, and Machine Vision) highlight the main limitations encountered for these 

sensors. After that, a possible ways to deal with the limitations is explained. 

5.1. Motivation of a 3D perception system for motorcycles  

Smart vehicles need to be able to interpret and predict the immediate future location of 

other vehicles and road users in the context of advanced safety systems and autonomous 

driving. The remote estimation of car pose and in particular its heading angle is key to predict 

its future location. This chapter explains why automotive remote sensors are not currently used 

in vehicles that present a tilting dynamics behavior. The technical reasons of the safety gap, 

which motivates the absence of rider assistance technologies in tilting vehicles, are overcome 

by a proposed remote sensor camera-based solution. 

Stereo vision systems allows to get the 3D information of a scene from a couple of 2D 

sensed projections of the same scene. The ground truth in this specific context is associated 

with referential information about the depth, shape and orientation of the objects present in the 

traffic scene. The creation of a 3D ground truth to validate the 3D information obtained from 

the stereo vision sensor is a complex measurement and data fusion task. The ground truth of a 

road scene in real traffic is generally obtained by the combination of different remote sensors. 

Conveniently, camera-based sensors can use a satellite marker to generate ground truth car 

pose in a post processing stage. This technique enable the quantitative evaluation of machine 

vision solutions. 
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5.2. Motorcycle safety needs  

In motorcycle several terms and acronyms are commonly used to identify sets of 

vehicles with given legal requirement or features associated with their dynamics behavior. For 

example, single-track vehicle, Powered Two-Wheeler (PTW), and Narrow Track Tilting 

Vehicle (NTTV) among others. This section use two expressions: motorcycles and tilting 

vehicles. The term “motorcycle” will refer to pedelecs (electric bicycles), mofas, moped, 

scooters and motorcycles, while “tilting vehicle” will add to “motorcycle” three- and four-

wheeler vehicles characterized by tilting dynamics behavior. Another preliminary 

consideration deals with the expression “advanced safety systems”. In the car industry these 

are called Advanced Driver Assistance Systems (ADAS), whereas the motorcycle industry 

they are called Advanced Rider Assistance Systems (ARAS).    

In the first part of this dissertation was analyzed a large traffic accident dataset (ISTAT, 

National crash database in Italy, period 2000-2012, >1,000,000 motorcycle crashes) to 

developing the KBMS methodology, which estimate the effectiveness of safety systems for 

motorcycles. Part of the crash data is summarized in Figure 65. One outcome of the data 

analysis is the fact that most of the motorcycle crashes occurred in clear visibility conditions. 

Therefore, ARAS can contribute to protect motorcycle riders without the need to operate in 

difficult visibility conditions, such us rainy, foggy, and snowy conditions. 

 

For a more up-to-date insight, it was necessary to focus in the last three years of data 

(2010-2012), which comprise more than 200,000 motorcycle crashes. I used these information 

and the classification of crash scenarios of the Knowledge-Based system of Motorcycle Safety 

(Appendix B) to create Table 11. This table make explicit that more than 70% of motorcycle 

crashes in Italy took place from ahead of the motorcycles. Therefore, installing in the frontal 

part of motorcycles an artificial perception system for ARAS, presents a great potential. 

Figure 65. Circumstances of motorcycle crashes in Italy, more than 2 crashes every 15 minutes 

(percentages for the period 2000-2012). The left chart indicate where the crashes happened, 

totalizing more than 87% in urban areas. The center chart indicate the pavement conditions at 

the moment of the crashes, resulting in more than 88% over a dry street. The right cart present 

the weather at the moment of the crashes, indicating that more than 86% of the crashes occurred 

in clear visibility conditions 
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This finding justified our analysis of automotive remote sensing technologies employed 

for ADAS, in the perspective of possible applications to motorcycles and tilting vehicles. 

However, ADAS sensors would fail on tilting vehicles due to the large roll angles reached by 

the motorcycle, even in normal riding conditions, thus motivating the new approach “stixel 

world” based on stereo vision (introduced in Chapter 4). 

 

Scenario Description Crashes Crash from ahead of the 
motorcycle 

A Intersection and angle collision 24.80% Yes 

H Straight street and angle collision 12.16% Yes 

F Rear-end collision 11.41% Yes 

C Straight street and sideswipe collision 8.91% Yes 

B Intersection and sideswipe collision 7.66% Sometimes 

D Single-vehicle accident 7.35% Sometimes 

G Hit obstacle + hit pedestrian 7.16% Yes 

E Head-on collision 6.47% Yes 

I Roundabout 4.67% Sometimes 

Z Unclassified 9.41% Unknown 

Table 11. Overview of motorcycle crash scenarios in Italy (period 2010-2012) 

 

5.3. Automotive remote sensing 

Remote sensing sensors provide the inputs for artificial perception systems. Typically, 

camera sensors are reliable to identify objects or targets to look at, RADAR sensors provide 

targets velocities, and LIDAR sensors measures distance to targets. Nowadays, cutting edge 

RADAR and LIDAR measurement techniques can provide estimations of the other target 

information’s (target identification, velocity and distance) with a single sensor device. On the 

other hand, machine vision has allowed it from more than a decade ago but with limitations of 

robustness and accuracy.  

These automotive technologies provide smart vehicles with information about their 

surroundings, e.g. to monitor safety gaps between vehicles or to detect imminent collisions 

and react consequently. Examples are in the form of warnings, to early alert the car driver 

about an action to be executed, or performing automatic actions even without human 

intervention, such as maintaining the vehicle position in the lane or executing an emergency 

stop. 

Automotive remote sensing is based on powerful remote sensing technologies 

employed in earth observation from satellites, aeronautics and military applications. However, 

the high cost of these technologies do not allow for a massive adoption in vehicles to 

accomplish the safety tasks. This economic constraint originates a de facto standard of the 

automotive industry, in which safety devices must cost less than 100$ mass-produced to be 

considered for adoption. Manufacturers were forced to tailor remote sensing technologies to 

accomplish the minimal needs of the automotive application. The microelectronics industry 

benefited for being the only known way to manufacture such sophisticated sensor systems in 

an economical way. Different directions for development, such as MEMS 

(Microelectromechanical Systems), photonic and radio integrated circuits, have recently 

gained importance. Thus, novel technologies, such as MEMS mirrors, OPA (Optical Phased 
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Arrays), SiGe (Silicon Germanium), RF SOI (Radio Frequency Silicon-On-Insulator), and 

dielectric lens antennas, became affordable for automotive safety application. 

Nowadays, the tailored remote sensors for the automotive industry have achieved a 

great maturity level, thanks to the progress in microelectronics and creative remote sensor 

design. As expected, the high degree of tailoring of a sensor to fit in a specific application 

makes the sensor less flexible to be used in a different application. Therefore, the following 

analysis aims to assess whether these tailored sensors can operate properly under a vehicle 

dynamic (tilting dynamics) they were not specifically designed for. 

 

5.3.1.  Automotive RADAR technology 

RADAR (RAdio Detection And Ranging) is an object-detection system that uses radio 

waves to determine the distance (range) and the velocity of objects. For automotive 

applications in ADAS, two types of RADAR are available: Short-Range RADAR (SRR) and 

Long-Range RADAR (LRR). These are tailored to perform specific tasks. For example, SRRs 

handle the requirements of Blind-Spot Detection (BSD), Lane-Change Assist (LCA) and 

front/rear cross-traffic alert, whereas LRRs are responsible for Adaptive Cruise Control (ACC) 

and Autonomous Emergency Braking (AEB). 

Advanced safety functions demand for accurate 3D object discrimination in short and 

long range, that in RADAR terms translates in large Bandwidth (B). The European Union has 

defined the spectrum band of 79GHz (77-81GHz = 4GHz) as the most suitable for long term 

and permanent deployment of high resolution automotive radars (Verheugen, 2005). The 

79GHz band offers significant benefits in terms of low power consumption, leading to a lower 

risk of mutual interference because of the smaller emission power required (Schneider, 2005), 

and lower the electromagnetics pollution in contexts of market saturation. 

Experiments are quite common in the radar field because the variety of the reflections 

provided by real targets in uncontrolled environments is very challenging to predict. The 

energy that is reflected back from the targets to the radar can be influenced for several factors, 

such as the material of the target, its size, or the incident angle among others. The radar metrics 

of detectability of an object is denominated Radar Cross-Section (RCS). In general terms, a 

large RCS indicates that this target is easily detectable from the radar and it allows to look for 

radar signatures associated to specific types of targets.  

Figure 66. Radar Cross-Section of a motorcycle. Adapted from (Köhler et al., 2013) 
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Europe has carried out an extended measurement campaign to identify the RCS of 

pedestrians (Fortuny-Guasch et al., 2013) aiming to ensure that pedestrians can be seen by 

automotive radars, for the purposes of improved safety for vulnerable road users. Figure 66 

shows an example of the RCS of a motorcycle (Köhler et al., 2013). The radar signal for the 

band of 79GHz (77-81GHz) is depicted in green, being the weakest of the three bands 

analyzed. These measurements show that the motorcycle returns a strong eco to the radar when 

it is placed with perfectly perpendicular alignment (0º and 180º). On the contrary, for different 

alignments the strength decrease considerably. For example, at 15º the signal is 10 times 

weaker with respect to the maximum signal received from the motorcycle, and it falls down to 

40 times weaker for other orientations. Concerning the radar conspicuity problem, it can be 

seen the poor visibility of the target in the measures realized to the front (between -50º and -

130º) and rear (between 50º and 130º) side of the motorcycle.       

Valuable insights about the possibilities in terms of 3D discrimination by automotive 

radars in the 79GHz band were obtained experimentally. Experiments conducted from a static 

radar setup to static cars located 10m away (Andres et al., 2012), helped to define the maximum 

capabilities of the system in terms of discrimination from direct measurements. Recent 

experiments also realized from a static setup (Kellner et al., 2016) achieved the tracking of a 

single moving car target turning 20 m away by combining the information measured with a 

math model which described the movement of a vehicle with Ackermann kinematics on a 

planar surface. This possibility to couple mathematical models with the sensor received data, 

which is a common practice in automotive 3D machine vision (Barth et al., 2009; Barth and 

Franke, 2008), have a great potential to enhance radar data interpretation.  

Other way to interpret the data received from a radar sensor for dynamic scenarios can 

come from the use of a cognitive processing approach. The early stage of this discipline called 

cognitive radar (Haykin, 2006) is growing in the research community and its practical 

applications are being discussed (Ender and Brüggenwirth, 2015; Haykin, 2014).     

Regarding the physical aspects of the automotive radar sensors, in order to attain an 

adequate 3D discrimination for vehicular safety while maintaining low production costs, each 

part of the system must attain certain technical considerations. Up-to-date examples for the 

main constitutive elements of the radar are: 

• The radio frequency front end and the antenna feeders (Hasch et al., 2011, 2012; Ku 

et al., 2014) 

• The types of folded reflectarray antennas (Bildik et al., 2015; Dieter et al., 2011; 

Menzel and Kessler, 2009) 

• The appropriate packaging technology and dielectric lenses (Baur et al., 2011; Mayer 

et al., 2009) 

As a result of the aforementioned developments, nowadays automotive radars are able 

to measure independent the distance (range) and velocity (Doppler's principle) to objects in 

one measuring cycle thanks to FMCW (Frequency Modulated Continuous Wave). The 

different brands of automotive radars offer products with very similar specifications because 

they are tailored for the same specific application. In Figure 67, part of the specifications of a 

high-end commercial automotive radar (ARS 408-21 of Continental) are presented.   
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The information provide corresponds to the short range (blue section of the diagram). I 

focus on this part of the specification because the near field (up to 70 m) is the most relevant 

to sense in urban scenarios. In addition, the short range present a wider FoV allowing to cover 

more volume ahead of the vehicle with a single sensor. In the azimuth beam width specification 

are defined three different sizes for beam a 0º, ±45º, and ±60º. This is an expected consequence 

of the electronically steering beam technique, in fact, the radiation lobe of the antenna is 

constantly changing its 3D shape when it is moving. Therefore, the resolution and 

discrimination capability of the radar is variable according to the orientation of the measure. 

As it can be seen from the top view diagram (Figure 67) and the specification corresponding 

to resolution azimuth angle, the possibilities to sense targets about ±60º from the central radar 

reference is poor, about half range in terms of depth (less than 35 m). Additionally, as the beam 

size changed the resolution in this orientation is almost 4 times less that a 0º (resolution 

azimuth angle 12.3º).  

The scale drawings of Figure 68 intends to express visually the consequences of the 

prior statements. In the figures are depicted how the beam footprint (the transversal area of the 

beam impacting on the target) change for the three different angles specified in the technical 

datasheet (±45º, 0º, and ±60º). The left figure is representing a car located 7 m away from the 

radar and how the beam footprint change with respect to the orientation of the scanning. In the 

central and right pictures the same car is located a 14 m. In them almost half part of the beam 

energy is passing over the car (energy not used for the detection). In them also is noticeable 

the coarse horizontal resolution of the 3D space at only 14 m of distance. 

Figure 67. Top view of the 3D scanning volume of a commercial automotive radar and relevant 

specifications corresponding to the short range. Adapted from the technical datasheet of the ARS 

408-21 Continental radar 

Figure 68. Representations in scale of the size of the beam impacting on a generic car. The 

numbers in degrees correspond to the three azimuth beam width. In the left diagram the car is 

located 7 m away from the radar, while in the other diagrams the car is 14 m away 
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5.3.2.  Feasibility of automotive RADAR sensors for motorcycle safety 

In the RCS depicted in Figure 66, it was highlighted the difficulty for radars in the band 

of 79GHz to identify objects as motorcycles. The motorcycle geometry and main constitutive 

materials scatter the energy of the radar in multiple directions causing a weak returning echo. 

This can be seen in the radar measurements for the angles different to 0º and 180º. Therefore, 

vehicles cannot rely on radar information for the identification of motorcyclist. 

The use of automotive radars for the implementation of advanced safety systems for 

motorcycles (denominated ARAS) does not seem to be a viable choice. From the interpretation 

of the technical specification of high-end commercial radars for the car industry (Figure 67), 

it was highlighted that the size of the scanning beam become considerably wider at 14 m. 

Therefore, in order to be able to scan ahead of the motorcycle with enough discrimination in a 

wide FoV (close to 180º) is necessary the use of at least two radars. In terms of mass and 

dimension of the sensor the installation of two or three sensors in the front of the motorcycle 

will not compromise this dynamics. However, this will increase the cost of the sensing strategy 

and duplicate or triplicate the power consumption (being 13.2 W or 19.8 W respectively). The 

power budget of a motorcycle is considerable lower with respect to a car. 

Nevertheless, the major impediment for the use of an automotive radar in a motorcycle is the 

non-compliance with the upright assumption (Figure 69). Automotive radars are tailored 

considering that the reference coordinate system of the sensor have a fix alignment with the 

vertical gravity component. This consideration define the 3D space to scan, and consequently 

all the hardware and the software to accomplish the measurement of this 3D space. In a tilting 

vehicle, simple change lanes and traffic filtering requires roll angles up to ±10º. To taking 

curves this vehicles may achieve up to ±26º of roll angle in urban environment. As illustrated 

in Figure 69, the directivity of the radar beam was designed to provide horizontal 

discrimination (resolution) that in a non-upright position of the host motorcycle is seriously 

affected. 

On the right side of Figure 69 it can be seen how the radar measures away of the road 

plane. This reduce the net energy which will impact on the possible targets and produce weaker 

echoes. On the left side the situation is even worse because two unwanted effects occurs 

leading to a possible radar blindness. One, the reduction of the net energy that hits the possible 

targets. Second, the drastic increment of the radar clutter which are unwanted echoes measured 

due to the strong reflections occasioned from the street. The intensity of this echoes will 

generally occlude the real echoes leading to the condition of radar blinded. 

Figure 69. Example of an ideal radar scanning 7 m ahead when the motorcycle is tilted only 10 

degrees. The increment of the clutter (unwanted echoes) coupled with the reduction of the surface 

radiated by the car can lead to radar blind 
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5.3.3.  Automotive LIDAR technology 

A LIDAR (Light Detection and Ranging) system is based on the time-of-flight (TOF) 

method. Our analysis focus on the ibeo LUX automotive laser scanner (Figure 70) due to its 

broad use in the automotive industry and its possible incorporation to motorcycles. Nowadays, 

research in photonics and microelectronics towards the Optical Phased Arrays (Abediasl and 

Hashemi, 2015; Heck, 2017; Kwong et al., 2014; Weihua Guo et al., 2013) technology, is 

enabling new capabilities for LIDAR sensors, but at this moment it is a technology in 

development. 

The technical manual of the ibeo LUX sensor explain the principle of measurement, 

which consist in slicing the 3D volume in front of the sensor in a set of stacked horizontal 

planes (4 or 8 planes depending of the model). In this way the depth of the environment sensed 

is represented by simple two-dimensional representations and the remaining tridimensional 

space which is not traversed by the planes is ignored. 

 When the sensor is working in nominal conditions, it is expected similar (redundant) 

measures in all planes for short distances up to 14 m because these horizontal planes are almost 

parallel between them. A slight inclination between the planes allow to compensate changes 

in the coordinate reference system of the sensor when the vehicle is braking (the front of the 

car tilt downwards). Thus, the sudden change in the pitch angle of the car is compensated by 

the wise selection of a superior scanning plane, avoiding LIDAR blindness (to sense the floor). 

For simplicity, our analysis considered a single beam corresponding to a single plane. 

 

 
Figure 70. Aspect of the automotive LIDAR and its relevant specifications. Adapted from the 

technical datasheet of ibeo LUX. 

In Figure 70 is presented part of the specification of a high-end automotive laser scanner 

of ibeo. Concerning to the laser beam that produce scanning planes, from the horizontal (0.08º) 

and vertical (0.8º) beam divergence it can be intuited that the laser is operating in a high 

transverse electromagnetic (TEM) mode. As a result, the laser footprint (the transversal area 

of the beam impacting on the target) cannot be described as circular dot. The laser footprint is 

better described as a thin rectangle or line because it was engineered to provide high horizontal 

discrimination. The horizontal discrimination can be interpreted by the specification of the 

angular resolution (0.125º, 0.25º, and 0.5º) which change according different scanning speeds. 

In other words, the laser beam was tailored for the automotive application. 

The scale drawings of Figure 71 intends to express visually the prior statements, 

showing the rectangular footprints of the LIDAR for the automotive industry. The numbers 

over the laser footprints represent the distance between the target car and the LIDAR (from 7 

m to 57 m) and consequently, the laser footprint grows due to the beam divergence. The dashed 

lines sounding the laser footprints represent the movement of the laser over the car surface 

when the sensor is under a hypothetical vibration that causes angular deviations about ±0.05°. 
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The right part of the picture show the car from the side. When the car 57 m away from the 

sensor a single laser pulse is able to sense different parts of the car, denominated in the example 

from P1 to P5. 

 

 

5.3.4.  Feasibility of automotive LIDAR sensors for motorcycle safety 

In the technical specification there is indicate the number of bounces back allowed for 

a single laser pulse by the term multi echo. This feature is related with the TOF measurement 

principle, therefore the sensor will not be able to measure if the target impacted generates more 

than 3 bounces for the same laser pulse. In the cases of more than 3 bounces the LIDAR get 

blind.  

Brief analysis of the case depicted in Figure 71: the car is 57 m away from the laser 

scanner and due to the beam divergence the laser footprint impact in several parts of the frontal 

part of the car. The impacts are described in 5 parts corresponding to the same laser pulse. As 

the depth resolution of the laser is 40 mm ±10 mm, the impact in different parts of the car 

present different depths for the same pulse. The parts P1 and P2 presents one bounce each, 

while the part P3 present two or three bounces and the parts P4 and P5 also present different 

pulses. Therefore, the car is invisible for the automotive LIDAR at this 57 m of distance even 

if the laser beams have a maximum range specified at 200 m. This undesired effect that shorten 

the range of detection was reported in a previous experiment that involved 140 tests (Savino 

et al., 2012a). The automotive laser scanner installed in a scooter, which traveled in an upright 

position towards the target (three foam boxes, each one with a hole on it), started to detect the 

obstacle from distances about 58.3 m (sd. 14.5 m). 

Nevertheless, the major impediment for the use of an automotive LIDAR in a 

motorcycle is the non-compliance with the upright assumption (Figure 72). Automotive 

LIDARs are tailored considering that the reference coordinate system of the sensor have a fix 

alignment with the vertical gravity component. This consideration define the 3D space to scan, 

and consequently all the hardware and the software to accomplish the measurement. In a tilting 

vehicle, simple change lanes and traffic filtering requires roll angles up to ±10º. To taking 

curves this vehicles regularly achieve up to ±26º of roll angle in urban environment. 

Figure 71. Representations in scale of the size of the beam impacting on a generic car. On the 

left picture, the numbers above of the laser footprints represent the distance to the laser scanner. 

For example, the rectangle below the number 43 have the size of the impacting laser footprint 

on a car 43 m away. On the right picture, the multi echo effect is depicted for a target car at 57 

m from the laser scanner 
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5.3.5.  Automotive Machine Vision technology 

Machine Vision (MV) is the ability of a computer to see. It can employ one or more 

video cameras that can be of different types. MV involves a large number of technologies, 

software and hardware elements to perform the processing, and involves the Computer Vision 

(CV) discipline. In particular, CV deals with algorithms for gaining high-level understanding 

from digital images or videos. Some of these algorithms seeking to automate tasks that the 

human visual system can do in terms of 3D perception and understanding. 

Automotive Machine Vision concerns to the real-time application of MV in road 

vehicles, which is currently booming due to the development of autonomous cars. For the M-

AEB (Motorcycle Autonomous Emergency Braking) application, it is interesting in to identify 

possible automotive MV systems that can be used as a remote sensor for the development of 

ARAS. Our focus is CV algorithms for 3D perception and road traffic understanding that only 

use of camera sensor information. In this way, the strength of stereo vision techniques relies 

on that heavy dense calculation of the disparity map is a pixelwise operation that can be 

achieved by hardware in real-time (Gehrig et al., 2009). Thus, the visual and depth information 

can be given to a high performance embedded system to implement an Obstacle Detector (OD) 

system. 

Most of OD algorithms needs certain assumptions about the ground in the image, such 

the ground is parallel to the orientation of the camera (Hu and Uchimura, 2005; Kubota et al., 

2007; Xia et al., 2014), or planar ahead of the vehicle (Suganuma et al., 2008; Suganuma and 

Fujiwara, 2007a; Zhang et al., 1997). An example is presented in Figure 73. 

Figure 72. Example of an ideal LIDAR scanning 14 m ahead when the motorcycle is tilted only 

10 degrees. Several condition in this case lead to the no visibility of sounding targets. On the right 

side part of the scanning plane will not intersect possible targets, while on the left side part of the 

scanning plane will impact on the floor 

Figure 73. Representation of the stereo camera and the different 3D plane projections of the 

traffic scene using the “U-V-Disparity” concept. On the right image is overlaid the identification 

of the street and other big surfaces. Adapted from Hu and Uchimura, 2005 
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 Strategies for non-planar roads (Suganuma et al., 2008) relies on the importance of the 

physical camera setup and calibrate the system in order to use less software transformations to 

rectify the images (Broggi et al., 2006; Sergiu Nedevschi et al., 2004; S. Nedevschi et al., 

2004), saving computation. Other approaches, instead to localize the road attempt for 

approximate free space in the 3D volume. The free space is expected to be over the road 

(Badino et al., 2007; Broggi et al., 2013a; Oniga and Nedevschi, 2010).  

 

A recent review of the most evolved OD approaches for the car application, (Bernini et 

al., 2014) analyzed and categorized the approaches in four categories: 

a) Probabilistic occupancy grids 

b) Digital elevation map 

c) Scene flow segmentation 

d) Geometry-based cluster 

Most of these approaches proved to be: deterministic (important for real-time), possible 

to implement high performance embedded computers, and robust in a variety of clear visibility 

conditions at very different hours of the day. The “stixel” concept (Benenson et al., 2011) is 

presented in Figure 74, next to the “stixel” world (Badino et al., 2006, 2009) as example of 

mature OD system. 

 

 

Low light and nighttime situations requires totally different algorithms, because the 

performance of ordinary CV algorithms is seriously affected. Vehicle front and rear lights are 

often the only characteristics used to detect vehicles at nighttime, but they suffer from 

distraction of shops lights and other bright regions. 

 

5.3.6.  Feasibility of Automotive Machine Vision for motorcycle safety 

Cameras, differ from RADAR and LIDAR sensors in cost, size, power consumption, 

and FoV (Field of View). The imaging sensor can have wide horizontal and vertical FoV, 

providing enough information of the environment even with large roll angles (±30º). Camera-

based driver assistance was intensively developed in the 1990s and nowadays are standard 

ADAS in several vehicles. Thanks the advances in algorithm developments, today is possible 

to combine the depth information of the stereo vision system and visual data allowing distance 

and velocity estimation at pixel level.  

Figure 74. Left: conceptual representation of the stixel world. Center: the Disparity Map of the 

stereo vision system as interpretation of the depth of the traffic scene. Right: the stixel 

representation of the different obstacles. Adapted from Benenson 2011 and Badino 2009 
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Nevertheless, most of these approaches contain algorithms that requires certain 

alignment between the camera sensors and the 3D space to sense, due to the upright assumption 

inherited from ADAS. Therefore, to cope with the tilting dynamics is necessary adapting 

existing algorithms or develop new ones that accomplish the same thing. 

 

In our informed view, with nowadays automotive remote sensor technologies, camera-

based sensors is the only feasible solution for tilting vehicles. The reasons are mainly:  

a) The tilting dynamics 

b) The constrained space and power budget available in this vehicles to install sensors 

and safety systems 

c) The cost of the entire safety solution that may not impact drastically in the final price 

of affordable tilting vehicles 

This chapter mentioned several promising state-of-the-art solutions that are include 

machine-learning techniques. These technics requires an intensive computational power that 

consumes significant amounts of energy that will not be available in a tilting vehicles. 

Fortunately, recent embedded neural computers designed in a single chip (ASIC: Application-

Specific Integrated Circuit), provide the capability to deploy certain Deep Neural Networks 

(DNNs) which a power consumption inferior to 1.2 watts.  

Other relevant aspect is that these ASICs have a Vision Processing Unit (VPU) to 

process camera data in real-time. This is important because all the algorithms used in this 

chapter can be implemented in VPUs. These new chips and the upcoming improvements in 

camera sensors are promising technologies to make remote sensors camera-based, such as the 

one developed in this research for motorcycle safety application. 

 

 

 



 

 

 

6. Can stereo vision be used as a remote 

sensing approach? 

This chapter presents the development of the camera-based remote sensor that is aimed 

to solve the technological safety gap that produces the lack of ADAS for motorcycles or ARAS 

(Advanced Rider Assistance Systems). It also includes the considerations for the design of this 

type of sensors, its calibration and algorithms. 

Automotive remote sensors are the cornerstone of current ADAS. As explained in 

Chapter 5, the roll angle fluctuations characterizing the dynamics of motorcycles and tilting 

vehicles (even when vehicles travelling straight) prevents the correct operation of the sensors. 

For this reason, my design is based on cameras that present a large FoV (Field of View) and 

important spatial resolution in all different directions. 

A multifocal stereo vision was conceived to cover different regions of interest 

simultaneously, and to guarantee adequate depth accuracy, as a requirement to be part of future 

ADAS for motorcycles. The importance of this approach is to allow the use of artificial vision 

methods developed for ADAS in motorcycle safety. Consequently, this is a way to capitalize 

on relevant cutting-edge algorithms created for ADAS during the last 20 years and speed-up 

the development of needed motorcycle safety systems (ARAS) to make motorcycles and 

mopeds a safer means of transport.  

In particular, these stereo vision algorithms for vehicular application are successful in 

the following tasks: separating objects and surface structures by fast features extraction 

(Franke and Kutzbach, 1996); estimating the ground plane and perform a partial 3D 

reconstruction above it (Zhang et al., 1997); estimating the vertical road profile from the lateral 

projection of the 3D point cloud and model it as a clothoid (Sergiu Nedevschi et al., 2004); 

classify surfaces on the road scene by the U-V Disparity concept (Hu and Uchimura, 2005); 

performing obstacle detection in unstructured environment (Broggi et al., 2005, 2006); fusing 

stereo and optical flow to improve depth estimation accuracy, enabling fast detection of 

moving targets without classification processing (Franke et al., 2005); modeling the scene by 

a polar occupancy grid (Badino et al., 2007); generating a disparity map without perspective, 

simpler to analyze (Suganuma et al., 2008; Suganuma and Fujiwara, 2007b); matching the 

motion of a rigid point cloud with the kinematic model of a car with a tracker filter, allowing 

to predict its immediate future location (Barth and Franke, 2008); defining a 3D perception 

primitive called “stixel” to capitalize on the depth information of almost all pixels of the image 

(Badino et al., 2009); using dense disparity maps to create digital elevation maps useful to 

detect important hazards for motorcyclist like traffic isles and small curbs (Oniga and 

Nedevschi, 2010); triggering an autonomous emergency braking (Wedel and Franke, 2007; 
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Xia et al., 2014); and employing different obstacle detection strategies in real-time (Bernini et 

al., 2014).             

However, the algorithms indicated in Section 5.3.5 assume that the stereo vision sensor 

is rigid (nearly not deformable) and operates parallel to the road surface, different from 

motorcycle functioning. The chapter address these aspects and explain the problems that 

imaging systems based on stereo vision technology need to overcome to be used as a part of a 

motorcycle safety system. Section 6.1 introduce concepts of stereo vision together with the 

technical vocabulary used in the following sections. Section 6.2 presents the design of our 

custom build camera-based remote sensors. In this section is also explained the key operational 

consideration required for motorcycle operation (the online re-calibration to counteract the 

deformations of the sensor) and how they were achieved. 

 

6.1. Stereoscopic vision considerations for motorcycle safety 

applications 

 A proper operation of stereo camera-based sensors requires the use of two 

synchronized cameras as a whole, which is achieved through the jointly characterization of 

them (the stereo camera calibration). An invariant calibration of the 3D sensor would assume 

constant parameters of the imaging system, such as relative distance and orientation between 

the two cameras, which are physically determined by the location of the cameras in the stereo 

rig.  

Regrettably, the assumption is not valid for the motorcycle application due to the 

deformation (micro-bending) of the stereo rig. A motorcycle, as a lightweight vehicle, has less 

potential than a car to damp the vibrations generated from road irregularities. In fact, in normal 

riding conditions the vehicle frame is subjected to intense shocks, which passes to the stereo 

camera rig, producing dynamical changes in the instantaneous distance and orientation 

between the cameras. These very small changes, that may be imperceptible to the naked eye, 

can make the stereo vision system unable to operate (unable to compute the Disparity Map and 

obtaining the depth of the scene imaged). As a consequence, an invariant stereo calibration is 

not suitable for a moving motorcycle setup. In addition, the optical zoom of the long range 

cameras makes common mechanical anti-vibration solutions ineffective. However, one 

possible software solution is the online stereo re-calibration. 

 

6.1.1.  Stereo vision fundamentals 

Concepts of stereo vision considered relevant for the design and implementation of our 

multifocal stereo camera sensor are recapitulated hereafter. More details on stereo vision and 

3D geometrical modeling principles can be found in (Hartley and Zisserman, 2004) and 

(Bradski and Kaehler, 2011). 

Estimating depth from stereo imaging is a triangulation task. In the human vision, to 

solve this task visual information derived from two eyes is used to estimate depth from the so 

called binocular disparities (Qian, 1997). The disparity is the parallax observed between 

corresponding world-points (in 3D space), and it is inversely proportional to the distance from 

the sensor viewpoint (Z, see Equation 6.1).  

If we consider the stereo triangulation in epipolar geometry, the correspondence of 

points between two images is obtained by means of imaginary scan lines. The distances in 
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pixels along scan lines are the disparities between couples of correspondent points. Epipolar 

geometry defines epipoles and epipolar lines. For each camera and each point in space, the 

epipole is defined as the intersection of the camera imager and the line passing from that given 

point and the focal point of the camera. The line in the space connecting two corresponding 

epipoles of the two cameras is the epipolar line. Finally, epipoles and epipolar lines have a 

representation in a rectified space computed using the fundamental matrix (Hartley, 1997; 

Luong and Faugeras, 1996), thus generating rectified images (after lens distortion correction). 

Epipolar lines in rectified images are horizontally aligned. This characteristic simplifies 

the search for matching correspondent features to a simple search within image rows between 

the pair of rectified images (Baker and Bolles, 1989). For real time computation, a suitable 

stereo correspondence method is the Semi-Global Matching algorithm (Hirschmuller, 2005).   

In our setup, both cameras are assumed to have the same focal length  f  expressed 

pixels unit. The distance between the cameras is their baseline b in distance unit. The difference 

of the relative projection of a world-point is the disparity d, generally expressed in terms of 

pixel units. Resulting depth can be computed using Equation 6.1, which shows that the 

disparity is inversely proportional to the distance Z (expressed in distance units) of the object. 

𝑍 =
𝑓 ∙ 𝑏

𝑑
 (6.1) 

 

6.1.2.  Concepts of Field of View and Depth of Field 

The Field of View (FoV) of a single camera is a solid angle through which the imaging 

sensor is sensitive to the light. Therefore, the FoV defines the periphery of the 3D volume of 

the inspection captured on the camera imager sensor. The FoV depends of a combination 

between the size of the imager and the camera lens. Therefore, the focal length defines the 

FoV (Equation 6.2), which is related to the focal length  f  (in distance units) and the horizontal 

size of the imager h (in distance units). 

𝐹𝑜𝑉[°] = 2 ∙ 𝑡𝑎𝑛−1 (
ℎ

2𝑓
) (6.2) 

 
Lenses with a fixed focal length are designed to be focused for different distances but 

at expenses of less quantity of light from the scene imaged (brightness). Therefore, in the case 

of a multifocal strategy is recommended to use fixed lenses that select a limited Depth of Field 

(selective focus along the depth axis) in the desired depth range of measurement, in order to 

maximize the light sensed from this part of the scene. 

 

6.1.3.  Characteristics of a stereo camera rig: Common FoV, Range Field and 

Horopter d=10 

Rectangular imager sensors modifies the concept of circular FoV, as a consequence, it 

is specified as Diagonal FoV, Vertical FoV and Horizontal FoV. Additionally, in this chapter 

is defined common FoV as the overlap between the FoVs of the pair of cameras on a stereo 

rig. The common FoV between the left and right cameras define the lateral boundaries (vertical 

and horizontal) of the Range Field (Figure 75). Employing fixed lenses (b.f = constant) the 
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possible depth range to perform triangulation is defined for the range of disparities (dmin and 

dmax), which determines the rear and frontal boundaries of the Range Field.    

 

 
Figure 75. Top view of a conventional stereo vision system. Detail of the Range Field including the 

boundary of depth triangulation range adopted at the Horopter of 10 disparities. 

 
The previous top view representation of the Range Field (Figure 75) is a simplification 

of a 3D volume termed frustum, which defines the Range Field. Thus, it is possible to 

determine the depth information for all objects inside this frustum. The Range Field was 

shortened by the transversal surface defined as Horopter of 10 disparities, in order to neglect 

the bias error of depth and satisfy the real-time constraints of our application.  

 

6.1.4.  Depth triangulation error in stereo camera sensors: Case of long-range 

applications while moving 

The triangulation error (ΔZ) in a stereo system is defined according to Equation 6.3, for 

which Z is the depth in world coordinate frame and ΔZ is the depth error in distance units. The 

value Δd (disparity step) is directly related to the depth error and this component of the error 

depends on the capabilities of the stereo matching algorithm for achieve sub-pixel refinement.  

𝛥𝑍 =
𝑍2

𝑓 ∙ 𝑏
∗ 𝛥𝑑 (6.3) 

 
In stationary stereo measurements, the triangulation error follows a normal distribution 

(Clark F. Olson et al., 2001; Jung and Lacroix, 2005; Langer et al., 1994; Matthies and Shafer, 

1987). However range bias error is induced for the camera position (Chowdhury and 

Chellappa, 2003; G.S. Young and R. Chellappa, n.d.; Kostas Daniilidis and Minas E. 

Spetsakis, n.d.) and depending the application researchers neglected it or no. Thus, the range 

bias error in moving systems need to be considered different from the Gaussian distribution. 

For this reason, in Simultaneous Localization and Mapping (SLAM) applications in order to 

ensure robustness, the maximum depth triangulation is defined a priori until a maximum 

distance 40 times the baseline (Mur-Artal and Tardos, 2017). This limit adopted for SLAM 

(mapping needs) is very conservative for long-range stereo, for example our long-range 
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baseline is duplicating this relationship (depth range 80 times the baseline) while keeping the 

maximum depth error bellow to 3% (more details in Section 6.2.4). 

Research of long-range stereo applications have quantified the nature of depth stereo 

error. In their research, an experimental setup was conceived in order to tracking distant 

features with sub-pixel accuracy. They showed that the probability density distribution of the 

depth measurement error is non-Gaussian (Sibley et al., 2007). In fact, the distribution is 

skewed and present a long tail (Sibley et al., 2007). This produce an effect of over estimation 

of the triangulated position that increase with the distance. Other research point out the 

possibility of correct the bias error of depth in the lower values of disparity, for integer 

disparities calculations (Freundlich et al., 2015). 

 

6.1.5.  Sub-pixel accuracy and their relationship with depth accuracy: Case of 

car detection 

Digital images are limited to pixel resolution because the objects in an image are 

spatially quantized at the resolution of the imager. However, the edges of the real object cannot 

necessarily be sensed for the entire pixel of the imager. In this cases, a more accurate object 

location must be defined in fraction of pixels. This situation is referred as sub-pixel resolution, 

which is common to encounter for far objects imaged (Keren et al., 1988). 

From Equation 3, it is clear that a disparity value (Δd) inferior to one will decrease the 

triangulation error, or for the same error the triangulation Range Field can be extended. On the 

other hand, a fractional value of disparity can be seen as virtual expansion of the baseline (b). 

In this second regard of fractional Δd, for example, a portable stereo sensor designed to assist 

the visually impaired has achieved 1/8 sub-pixel resolution in an embedded system, 

compensating for the short baseline allowed for the wearable application (Di Stefano and 

Mattoccia, 2002). 

In the automotive field, the first application of this concept to car detection reported an 

empirical limit in 1/4 of sub-pixel accuracy by employing a quadratic interpolation 

(Williamson, 1998), which is a simple constant-time operation suitable for real-time 

implementations. Beyond this empirical limit of sub-pixel accuracy, the car depth triangulation 

is not robust due to the pixel-locking effect (Shimizu and Okutomi, 2002; Szeliski and 

Scharstein, 2004). Subsequent experiments, endorsed the 1/3 or 1/4 as a robust sub-accuracy 

measurement on road traffic scenarios (Gehrig and Franke, 2007; S. Nedevschi et al., 2004), 

but they extended the measurement case to texture-less regions (Gehrig and Franke, 2007), 

which is a big challenge for stereo matching algorithms. 

A recent publication (Haller and Nedevschi, 2012) reports the achievement of 1/5 of 

sub-pixel accuracy highlighting the importance of the census transform (Zabih and Woodfill, 

1994; Hirschmuller and Scharstein, 2009; Spangenberg et al., 2013; Lee et al., 2016) to provide 

a robust stereo matching. The robust matching function “census” was also pointed in a 

previous analysis of sub-pixel decalibration error (Hirschmuller and Gehrig, 2009). Nowadays, 

the census transform is recognized as a noise robust stereo matching. It is used to provide 

proper disparity maps during the training of machine learning algorithms in applications of 3D 

understanding (Poggi et al., 2017). 

For our remote sensor, I considered HD imagers (resolution 1280x720) to set an 

equivalent value of 1/2 of sub-pixel accuracy with respect to the imagers in the literature 

aforementioned. This conservative decision limits the full range of the measurement at 

expenses of a gain in robustness against sub-pixel camera decalibration (calibration loss).    



Can stereo vision be used as a remote sensing approach? 113 

 

6.1.6.  Camera decalibration (calibration loss) 

Depth triangulation in stereo camera systems depend critically on accurate calibration 

of each camera pair and in a vibration-free set up. The calibration is constituted by intrinsic 

and extrinsic parameters, for which the latest refers to the relative camera pose (3D orientation) 

between the two cameras. The extrinsic calibration depends on the physical fixation of the pair 

of cameras along the time. In this regard, a motorcycle is a harsh environment where vibrations 

coming from the engine (which is rigidly fixed to the motorcycle frame), the vehicle-road 

interaction, and aerodynamic drag forces can slightly modify the instantaneous pose between 

the camera pair along time (that cannot be seen with the naked eye). 

Depending on the application, a variety of techniques are used to solve this issue. 

Examples: a) In visual odometry is usual to perform continuous stereo extrinsic re-calibration 

(5 Degrees of Freedom) operating on sparse stereo correspondences on stereo frame basis 

(Hansen et al., 2012); b) In mapping applications the re-calibration is 6 DoF between the 

cameras in the way of visual odometry but with the addition of GPS information (Kelly et al., 

2011); c) In low altitude aerial imagery (< 30 m), the modal deflection of the drone wingspan 

is monitored which accelerometers in the tip of the wings where the cameras are located, using 

this information to compensate the relative angle of the stereo pair (Prather Lanier et al., 2011); 

d) In satellite imagery the undamped micro-vibrations on the satellite are software-

compensated by the measures realized over known flat points in the earth (Roques et al., 2004); 

e) In areal imagery, a tailored bundle adjustment technique is used to refine camera parameters 

achieved altitude operations up to 120 m employing a wide baseline (Warren et al., 2013); f) 

Automated driving have also bundle adjustment implementations in which they estimate 

online both extrinsic and intrinsic camera parameters with a pre-definition of the scale (Rehder 

et al., 2017); g) A recent approach for robotic applications computes 5 DoF of extrinsic by a 

marker-less nonlinear optimization method (Ling and Shen, 2016); and h) In “motion stereo” 

or Structure-from-Motion (SfM) applications a relaxation of the epipolar constraint is 

performed. In these cases, the stereo frame is generated for a monocular moving camera, which 

moves over a rigid scene. The main assumption of this technique is a small vertical 

displacement, and consequently the matching strategy is relaxed by exploring a corridor 

around the epipolar line (Unger et al., 2011). 

For our remote sensor (Section 6.2.1), I considered for a two-step calculation (Section 

6.2.6). First, I perform the pre-rectification of the images based in an accurate static calibration, 

obtaining a similar effect to the strategy developed (Rehder et al., 2017). Second, I use the a 

visual odometry method (Hansen et al., 2012) but employing different feature descriptors .    

 

6.1.7.  Stereo confidence clues 

The results corresponding to the Disparity Map (DM) calculation may have associate a 

level of confidence meaning that, for each pixel of the DM can be associate a probability that 

express how real is the triangulation calculated. Non-real triangulations due to lighting 

reflections or circumstances of bad visibility, like rainy weather, can lead to wrong detections. 

Several metrics were developed as a way of quantify the stereo confidence, a first framework 

for stereo confidence clue evaluation define a taxonomy (Scharstein and Szeliski, 2002) that 

was adopted for the research community to this end. 

The stereo confidences is a valid measure that can be used in absence of ground truth 

data (Banks and Corke, 2001). This is important because rendering artificial scenarios which 

contains realistic outdoor adverse situations, and realistic erroneous sensor data, it is a huge 
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challenge (Scharstein and Szeliski, 2002; Kondermann et al., 2012). Therefore, even the 

advantage of the ground truth of syntactic imagery, it is not a practical approach to use for this 

case. The practical approach consist in to use real imagery acquired in adverse situations and 

human annotations or labeling of the DM based in the visual information (Pfeiffer et al., 2013). 

The tedious approach of binary labeling the confidence zones, allows to implement a Bayesian 

inference that is better for assess confidence metrics because it does not use only the 

annotations in the images. 

The variety of stereo confidence metrics perform differently in varying outdoor 

conditions, thus the wise fusion of them implies more robustness against stereo matching 

errors. Machine-learning approaches allow to use a set of metrics to improve the accuracy of 

the stereo confidences (Haeusler et al., 2013; Saygili et al., 2014, 2015; Mostegel et al., 2016). 

Recently, machine-learning approaches to big stereo data collected in adverse weather allowed 

for a self-supervised strategy that automatically label confidence zones effectively (Tosi et al., 

2017). 

 

6.2. Materials 

This section provide a detailed explanation of the design considerations of our camera-

based remote sensors and consequently, how the system was evaluated for the application in 

motorcycle safety. For the evaluation, a new marker-based technique denominated satellite 

marker was developed. This marker-based technique is explained in Sections 6.2.1.1, 6.2.1.2 

and 6.2.1.3 while presenting measurements realized with our remote sensor. 

  

6.2.1.  Sensor architecture (multifocal stereo rig and processing) 

The multi-focal stereo rig is shown in Figure 76a. It is composed by 8 low-cost cameras 

with fixed focal lenses conforming 4 stereo camera pairs. All cameras have a rolling shutter 

imager sensor with HD resolution (1280x720).  

 

 

 

 

(a)  (b) 

Figure 76. Overview of the imaging system. (a) Multi-focal stereo rigs installed in the frontal part 

of the vehicle and fixed to the scooter frame. (b) Top view of the 3D space to measure in front of 

the scooter (the outer stereo cameras are used for development purposes and future extension of 

the long range of measurement) 

Camera pair 2-1 

(upper rig) 

Camera pair III-IV 

(lower rig) 
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The synchronization between the six cameras (Camkong) of the lower rig was 

performed by hardware (Figure 77), while the two cameras (GoPro Hero Black) of the upper 

rig used wireless parring. In this publication are used only the central cameras corresponding 

to the camera pair III-IV (short-range sensor < 8 meters) and the camera pair 2-1 (long-range 

sensor < 22 meters) as indicated in Figure 76a. The other cameras are installed for development 

process. 

The design of the remote sensor initially requires to define the spatial zones at the front 

of the scooter which are necessary to scan, as it is shown in Figure 76b. The depth range of 

these zones need to be defined according to the highest traveling speed allowed for the scooter 

and the possible colliding car. The application focusing on the urban scenario were top speed 

is restricted to 50 km/h. 

Applications in advanced safety systems like the conceptual Motorcycle Autonomous 

Emergency Braking (M-AEB), requires a precise triggering to avoid false positives. In 

particular, for M-AEB safety system, the depth resolution required for the proper identification 

of the inevitable collision state was defined in a spatial grid of 20 cm (Savino et al., 2016). 

Thus, our remote sensor target this specification.  

 
 

 
 

(a) (b) 

Figure 77. Wiring detail for the synchronization of the six cameras. (a) Circuital scheme. (b) A 

disassembled camera showing the location of the electrical connections labeled “1” and “2” 

 
The short-range stereo pair have fisheye lenses to scan a wide 3D space ahead of the 

vehicle. The light arrives to the imager from multiple directions, these motivated to define a 

short Range Field for the stereo triangulation. The case of the long-range cameras differ, 

because the narrow Field of View (FoV) of the lenses focalize the scanning volume in a narrow 

frustum. 

Consequently, the lenses were selected through their FoVs. Next, the baselines for the 

two pair of cameras that allow us having a common Depth of Field (DoF) enclosing the desired 

frustum, as shown in Figure 76b. Additionally, to ensure capturing sharp images in the range 

of the sensor (e.g. short- or long-range) with the aim of performing the stereo triangulation, a 

trade-off between the FoV and the focal length was chosen (Table 12). 

 

Short-range: Camera pair III-IV Long-range: Camera pair 2-1 

Baseline [cm] 15.0  Baseline [cm] 26.5  

Diag. FoV [°] 170  Diag. FoV [°] 90  

Depth Field [m] 1 8 Depth Field [m] 8 22 

Resolution 1280 720 Resolution 1280 720 

fps 30  fps 30  

Table 12. Specification of the stereo rigs and constitutive cameras 
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After that, the 3D space measured is confined in a frustum, which is defined by the 

common FoV and the disparity range determining the Range Field of the stereo sensor (Figure 

75). Regarding the Range Field of our sensors, they have to be included on the Depth of Field 

of each camera. In our application the Range Field was shortened as a manner to warranty 

repetitively at the full range of the measured space in a robust manner.  

For the initial definition of the Range Field, the adoption of a Horopter of 10 disparities 

for the farthest measure was motivated to neglect the bias error of depth. At disparities on the 

order of 10 pixels or less, the effect of the non-Gaussian error in depth cannot be negligible 

for the triangulation calculation (Sibley et al., 2007). The Table 13 shown the values calculated 

using the Equation 6.1 for our specific application. 

The depth discretization is not linearly distributed inside the frustum, as illustrated in 

Figure 75 by the parallel lines (top view of parallel planes). Thus, the largest and the shortest 

depth discretization are defined by the last and first two Horopters (depth planes) of the Range 

Field. 

Considering the requirements for motorcycle safety systems, a depth grid of 20 cm is 

required by the conceptual M-AEB. The Table 13 shows the potential of the designed sensor. 

For example, when the long-range sensor (Camera pair 2-1) is measuring 18.93 meters ahead 

the sensor, the depth discretization using ¼ of sub-pixel accuracy is 19 cm. When the obstacle 

is approaching, the depth discretization become even smaller offering more depth accuracy. 

  

 Camera pair III-IV Camera pair 2-1 

 Far Near Far Near 

Disparity [pix] 17 118 24 57 

Depth [m] 8.382 1.207 18.936 7.973 

Depth discretization [m] & Sub-pixel = 1 0.465 0.010 0.757 0.137 

Depth discretization [m] & Sub-pixel = 1/4 0.121 0.002 0.195 0.034 

Table 13. Range Field of the remote sensor calculated for the application on advanced safety 

systems 

 

Remark: in some Disparity Maps showed in this section, the reader may find different 

range of disparities of that required for M-AEB (Table 13), this is only for better visualization 

in the printed thesis.   

 

6.2.2.  Calibration of the multi-focal stereo camera sensors 

The procedure allowed the calibration of all the cameras of the stereo rigs, it means 

obtaining all the intrinsic and extrinsic parameters that are used to model the camera and its 

pose in the space.  In (Zhang, 2000a) is presented and explained the first method that allowed 

to calibrate a 3D imaging sensor with an inexpensive planar calibration pattern. The intrinsic 

and extrinsic parameters of the camera mathematical model are also descripted in this 

important paper. 

Different planar calibration patterns exist but one of the most used is the checkerboard 

pattern. The reason of the election of this kind of pattern is that it presents visual features 

(corners) that are easy to identify for a variety of algorithm strategies. The identification of the 

features enable the semi-automatization or full automatization of the calibration process. This 

is very desirable because a correct camera characterization is a demanding process. 
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6.2.2.1. Semi-automatic algorithms for camera calibration 

In this section is used the camera calibration toolbox of Jean-Yves Bouguet (Caltech 

Vision: www.vision.caltech.edu/bouguetj/), which is a standard the facto for camera 

calibration. Nowadays, many vision systems utilizes the procedure stablished in this toolbox 

to perform the camera calibration. The toolbox evolved in terms of automatization and 

algorithms until the year 2015 (more than 15 years). The semi-automatic fashion of the tool 

allowed me to experiment in the different stages of the calibration process. 

 

 

Figure 78. Characterization of the imaging system (monocular camera and fixed lens). (a) Shows 

the 3D location and pose (orientation) of the patterns used during the calibration w.r.t. one camera. 

(b) 2D plot of the reprojection error for all the features. (c) Graph of lens distortion (aberration) 

Initially, I want to use each camera of the imaging system as a measurement device. 

Therefore, it is necessary to characterize how the light reflected in a 3D space or environment 

in front of the camera arrives to the imager (CMOS sensor) thought the camera lens. As a brief 

example, Figure 78 shown the results of the characterization of only one camera of the stereo 

rig. The physical volume and the pattern used in the characterization is shown in Figure 79. In 

addition, the characterization comprises the quantification of the effects produced for the 

physical location of the imager (CMOS sensor) and the plastic lens of the camera, which is not 

expected to be perfectly aligned.  

Figure 78a shows in a 3D Cartesian space the volume used in the calibration process, 

in which it is defined the location and pose of the pattern detected in the space. Each 

measurement on the pattern is labeled (e.g. 2983) to associate it to a specific video frame. The 

location and pose is relative to the camera view (pyramid Oc), and the resulted mathematical 

model that is used to convert the camera in a remote measuring device. Figure 78b displays a 

geometric error corresponding to the image distance between a projected point and a measured 

one, the so-called reprojection error. The distribution of the reprojection error indicates how 
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well fit the mathematical model adopted to the reality. For example, because errors until 14 

pixels were obtained, the mathematical model used in the example is not appropriate to long 

range stereo vision. The level curves chart of Figure 78c shows how the image is altered by 

the optics in the zones away of the center of image. 

In Figure 79 is overlaid over one frame of the calibration images set, the reprojected 

points of the detected features (corners of the pattern), which are based in the mathematical 

model of the camera. The corresponding calibration parameters of the model where obtained 

from a nonlinear optimization fitment on the full set of images. Therefore, effects of an 

imprecise camera calibration can be seen because the cyan circles have not a concentrically 

matching against the red “+” marks (detected features for this frame). An additional problem 

on this calibration relies on the fact that corner features located in the boundaries of the pattern 

are not accurately identified (symmetrical features for all corners solve the problem).   
 

 

Figure 79. Example of one result of the reprojected points after an imprecise camera calibration 

Next, Figure 80 shown a static outdoors scene with landmarks (traffic cones) in order 

to verify the measuring capabilities of the custom built camera-based remote sensor based in 

stereo vision. The scene corresponded to the garden of my office, at the University of Florence 

(UNIFI), which allowed me to conduct experiments in a variety of different lighting 

conditions.  

 

Figure 80. Scene to evaluate the remote sensor. The traffic cones of well-known dimensions are the 

landmarks used to generate ground truth. The targets were measured using a laser rangefinder  
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Figure 81. Example of the left image of the stereo pair processed. Image with big contrast and 

illumination changes 

 

Figure 82. Disparity Map (DM) calculated from the stereo images. Dark areas represent objects 

that are farther away, while light areas represent nearby objects 

 

 

Figure 83. 3D point cloud or 3D reconstruction of the scene imaged 
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 Figure 81 shows the output of the camera-based sensor when there is different contrast 

(challenging lighting conditions). Figure 82 shows the results of the Disparity Map (DM) 

calculation in gray scale, in which it can be seen the detection of the people in the center of 

the image, regardless the shadows and colors on it. Finally, Figure 83 shows the 3D depth 

measurement performed by the sensor in the form of 3D point cloud. 

For a more comprehensive analysis and tests of our custom build sensor, which includes 

traffic scenes with different vehicles, such as scooters, motorcycles, cars, vans, and buses, can 

be found in (Savino et al., 2017). 

 

6.2.2.2. Fully automatic algorithms for camera calibration   

In this fully automatic process was used the Matlab stereo calibration application. The 

calibration algorithm (Bouguet, n.d.) uses the pinhole camera model (Zhang, 2000b) and the 

lens distortion calculation (Heikkila and Silven, 1997). 

During the procedure of calibration, two people moved an asymmetric checkerboard 

pattern throughout the common Field of View (FoV) of all stereo pairs, while all cameras were 

recording video concurrently. Consequently, the analysis of the footages of each camera 

allowed to picking up the suitable stereo frames (these that contain a complete view of the 

checkerboard in the couple of images that conform the stereo frame) to perform the stereo 

calibration for each pair of cameras.  

Next, corner detection algorithms are in charge of searching for symmetrical corner 

features in the images in order to find the checkerboard. State-of-the-art subpixel accuracy 

algorithms (Geiger et al., 2012b) contributed to obtain a proper calibration of our remote 

sensor. During the calibration process, I selected the frames for which the reprojection error 

was below to a low threshold empirically selected. To conclude, the two-step nonlinear 

optimization needed (Heikkila and Silven, 1997) was conducted to get the camera calibration 

parameters.  

 

 
Figure 84. Overview of the graphical user interface of the Matlab Application for the stereo camera 

calibration 
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In Figure 84, the calibration procedure illustrated by an example that corresponds to the 

long-range stereo camera sensor. The procedure is the same for each stereo camera pair. The 

thumbnails on the left shows a set of stereo frames employed for the calibration. On the top, 

the pictures labeled “Camera 1” and “Camera 2” have overlaid the corners detected on the 

checkerboard in the stereo frame. The bar plot (reprojection flap) depict the calibration 

accuracy for each stereo frame, the reprojection error of the corners detected are due to the set 

of camera parameters obtained, which tends to satisfice the calibration of all the set of images 

simultaneously. The 3D diagram show the pose of the checkerboard in the space for each stereo 

frame (extrinsics flap). 

The main camera parameters obtained as a result of the static camera calibration 

performed for both stereo sensors are shown in Table 14. 

 

Short-range: Camera pair III-IV Long-range: Camera pair 2-1 

Baseline [cm] 14.9157  Baseline [cm] 26.4867  

Right Focal length 

Vector [pix] 

Left Focal length 

Vector [pix] 

Right Focal length 

Vector [pix] 

Left Focal length 

Vector [pix] 

897.2688 897.6886 1027.5 1040.7 1715.3 1719.6 1712.6 1717.8 

Table 14. Main values of the calibration of the stereo rigs for both measuring ranges 

 

6.2.3.  Determination of the Range Field (verification of desired depth 

accuracy) 

The design considerations of the imagining system developed, mainly in terms of focal 

lenses, common FoVs, baselines, resolution of the imagers, proportioned a baseline with the 

ideal measurement capabilities of the stereo vision sensors. However, several practical factors 

can affect the measurement range of a stereo camera system and this experiment was designed 

to quantify the Range Field of all the stereo camera rigs. 

The test was conducted in an open and flat surface after having delimited a rectilinear 

corridor by traffic cones (Figure 85a). The corridor had 2 m of wide and 45 m of length, and 

it was defined by cones of 30 cm height placed in couples spaced 5 m. The nearest couple of 

cones are located a 5 m of our sensor. The same stereo videos recorded during the camera 

calibration process were re-used, for this reason two people appear holding a checkerboard. In 

the Disparity Map (DM) of Figure 85b, the planar surface of the checkerboard was used to 

assess the homogeneity of the disparities calculated in function of the depth. 

The 3D reconstruction of the scene imaged (Figure 85c) shows the capability of the 

remote sensing approach to measure the 3D space. The 3D point cloud was calculated for a 

three-dimensional space starting from 5 m to 30 m of depth for development purposes and the 

definition of the Range Field.  

The point cloud calculations are not supposed for a real time application, it is only used 

for helping to assess the quality of the 3D information measured. For the top view of the scene 

(Figure 85d) the point cloud was calculated from 10 m to 22 m which corresponds with the 

Range Field of the long-range sensor. The location of the 2nd, 3th and 4th couple of cones 

corresponding to the depth distance of 10 m, 15 m, and 20 m was highlighted.  

The bias error of depth grows for longer distances as is expected for Equation 6.2, this 

is being negligible for the first two pairs of cones and a tolerable 1.68% and 2.25% systematic 

errors (more details in Figure 86). It is adequate to consider our systematic depth errors as a 

tolerable because they are inferior to 3% (even without the proper error cancelation). The 3% 
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of error was found as a requirement for reliable driving assistance functions in cars (Pantilie 

and Nedevschi, 2012). 

 

  
(a) (b) 

 

 

 
 

 

(c)  (d)  

Figure 85. Depth accuracy quantification of the calibrated stereo camera (long-range camera rig). 

(a) Rectified left picture acquired by the long range stereo camera sensor. (b) Disparity Map of the 

scene (range from 0 to 128d). (c) Three-dimensional reconstruction or 3D point cloud of the scene 

imaged. (d) Top view of the 3D point cloud highlighting the location of the traffic cones originally 

placed at 10m, 15m, and 20 m. This 3D point cloud can be download according to Appendix B for 

a better assessment of the reader 

 

6.2.4.  Determination of the horizontal resolution of the stereo vision sensor 

In order to quantify the horizontal resolution of the stereo vision system the objects of 

known dimensions were carefully located, like traffic cones of 30 cm of height separated 2 m 

inside the Range Field of the stereo camera sensor. In Figure 86 are depicted three different 

views of the measurement corresponding to the couple of cones located a 15 m and 20 m. From 

the measured values it can be seen that the horizontal measurement of the targets present a 

systematic error about 7% to 8% from the two measures.  

Therefore, the 20 cm of horizontal resolution required for the Motorcycle Autonomous 

Emergency Braking (M-AEB) application (Savino et al., 2016) can be achieved for our stereo 

camera sensor. Additionally, this the horizontal resolution have the potential to be used in for 

the detection of small road hazards strategies (Ramos et al., 2017).     

20 m 

15 m 

10 m 



Can stereo vision be used as a remote sensing approach? 123 

 

Cones placed at 15 m faw away Cones placed at 20 m far away 

 

 

 
(a) 

  
(b) 

 

 

 
(c) 

Figure 86. Analysis of small narrow objects in the farthest half of the Range Field (long-range 

camera sensor). 3D control points were located at similar places for each couple of cones for the 

analysis. (a) Detail of the 3D representation of the targets. (b) Frontal view of the targets (grid sized 

10 cm). (c) Top view of the 3D point clouds (grid sized 50 cm). For the cones at 20 m the fattening 

effect becomes evident (depth artifact) 

 

6.2.5.  Determination of dynamic ground truth 

Dynamic ground truth in this specific context is associated with referential information 

about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D 

ground truth is a measurement and data fusion task associated with the combination of different 

kinds of sensors. However, employing the technique of the satellite marker (Section 6.2.1.1) 

is possible to obtain accurate car heading angle estimation of a moving car under realistic 

imagery.  

This is important because the method provides accurate car pose at frame level, and the 

instantaneous spatial orientation for each camera, also at frame level. This can be used for the 

generation stereo video of datasets with ground truth, which can be used to assess the online 

camera re-calibration algorithms of Section 6.2.2. 
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6.2.5.1. Materials 

The marker chosen was an asymmetric checkerboard pattern. This type of pattern 

allowed to estimate the intrinsic and extrinsic parameters of cameras with common a camera 

calibration tool. The satellite marker was built from a planar wood panel of 95x120x1 cm. 

Black and withe squares with sides of 22 cm painted on the board constituted a checkboard 

pattern of 4 by 5 full squares (Figure 84). The checkerboard pattern was extended to the edges 

of the wood panel (detail in Figure 87) to define symmetric corner features for all the corners 

belonging to the 4 by 5 full squares pattern. In this way, cutting edge algorithms for automatic 

corner localization which provides sub-pixel accuracy (Geiger et al., 2012b) could be used 

during the ground truth generation. 

 

 

For the validation of the dynamic measures acquired, a highly accurate Real Time 

Kinematic (RTK) satellite navigation system was employed to validate the ground truth 

generated from the stereo video with the satellite marker method. The D-GPS units (GeoMax 

Zenith 20) provided the locations of the PTW and the moving target at 20Hz and an accuracy 

of ±2 cm over the ground plane. Note: According to the user manual several factors of the can 

affect it, I assumed ±2 cm which 1-sigma accuracy (68.27%). 

 

 

 

Checkerboard 
pattern origin 

Figure 87. Overview of supporting structure and detailed measurements of the satellite 

marker and its alignment with respect to the target car. Only the lateral setup (satellite 

marker in one of the sides) was used in this experiment 
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6.2.5.2. Ground truth generation using the satellite marker 

Our proposed strategy is to measure the pose of the target car via measuring the pose 

of a satellite marker rigidly connected to the target itself. In our application case, the marker 

was placed on top of the target (Figure 87) in order not to occlude or change in any way the 

aspect of the target vehicle.  

The calculation of the ground truth heading from the stereo videos was post-processed 

analyzing only the pose of the marker in the tridimensional space for left and right frames 

independently. All the information contained in the stereo video corresponding to the moving 

target was neglected. The algorithm is a double-step method that first uses the results of the 

Direct Linear Transformation (DLT) based on the pinhole camera model (Zhang, 2000b) to 

initialize the Levenberg-Marquardt non-linear optimization (Heikkila and Silven, 1997).  

In order to obtain the desired ground truth with the satellite marker method, first is 

necessary to create an “etalon” for the camera system. An etalon for our imaging system as set 

of stereo frames acquired in static conditions (the camera rig is not moving therefore not 

dynamic decalibration can occurs), which contains enough stereo features along all the FoV to 

direct the optimization process to converge to very similar intrinsic camera parameters, even 

if other stereo pairs containing different stereo features are added in the calibration process. 

Therefore calibrating the stereo camera system. Regarding the accuracy, the measurements 

obtained were controlled maintaining the maximum reprojection error of the etalon set below 

0.75 pixel (3/4 sub-pixel accuracy). This ensures the conservative 1/2 sub-pixel accuracy 

adopted for our measurements in dynamic situations.  

Once the etalon was defined, it was set as input of the stereo camera calibration tool 

together with the stereo frames of the video sequence to be analyzed. For example, our 

application case consisted of 60 stereo frames for which the first 23 pairs belonging to the 

etalon.  

To obtain the ground truth, it is necessary to remove the extrinsic data corresponding 

to the etalon set from the obtained results. As a consequence, ground truth files complementing 

the video containing the pose of the target to measure for each video frame can be created. The 

information obtained as a ground truth consists in three rotational and three translational values 

of the satellite marker for each camera. The convention used for the 6DoF measurement are 

referred to the optical center of the left camera of the stereo pair.  

Regarding to the heading angle reference, the rotational value around Y-axis 

correspond to the heading angle of the target car. Therefore, once the satellite marker position 

is defined, obtaining the ground truth heading is straight forward from the stereo camera 

calibration tool.  

 

6.2.5.3. Measurement on a moving target vehicle 

Our case study is a single moving vehicle that perform a set of three manoeuvers in 

front of our imaging system. The experiments were performed in an outdoor car parking in 

daylight conditions. This setup allowed us to obtain realistic imagery while performing a series 

of simple and complex maneuvers in a controlled environment. 

  The stereo system, in the frontal part of the PTW sensing platform, remained static 

and in upright position during the tests. The manoeuvers performed by the test car are 

illustrated in Figure 88.  
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First, the target car was approaching the PTW from opposite direction and turned in 

front of the PTW’s path. Second, the car stopped and reversed passing again in front of the 

PTW. Finally, after stopping again, the car moved forward merging in front of the PTW’s 

longitudinal axis. 

The experiment was conducted at noon with the sun high in the sky, and the satellite 

marker was placed in the lateral position to guarantee a correct sight of view during the 

execution of the maneuvers. The car driver was instructed to perform the maneuvers with both 

slow and quick dynamics (not exceeding 45 km/h). 

 

 

Figure 88. Succession of 20 representative frames to describe the maneuvers for which the heading 

angle ground truth was obtained. The numbers represent the temporal order of the sequence 

during the maneuvers 

As a results of the stereo video sequences acquired, the disparity maps were computed 

thus generating a 3D reconstruction of the scene (Figure 90). This step allowed us to verify the 

integrity of the images acquired. 

A representation of the accurate geo-localization of the moving car during our 

experiment is showed in Figure 89. The dashed trajectory corresponds to the movements of 

the vehicle where the satellite marker was not visible from the imaging system due to its lateral 

placement. The solid line represents the vehicle trajectory while the marker was in the line of 

sight of the stereo camera. Ground truth was generated in all these locations.  

The ground truth obtained from the stereo video employing the method of the satellite 

marker provided 6DoF information (pose of the marker) with respect to each single camera of 
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the stereo rig. 3DoF corresponds to the translation of the marker in the space, and 3DoF 

corresponds to the rotation. Our interest corresponds only to the Y-axis rotational component, 

however the D-GPS system do not provides heading to compare. The D-GPS antennas 

provides Cartesian coordinates over the ground plane with an error of ±2 cm 1-sigma. 

 Consequently, other two components of the ground truth were used (generated from 

the imaging system) to obtain a fair comparison metric which is depicted in Figure 91. 

 

 

 

Figure 90. Example of the 3D point cloud generated from the disparity map (all the units are in 

meters) 

 

Bearing these considerations in mind, I overlaid on the X-Z plane (delivered for the 

D-GPS) the locations calculated from the ground truth in order to assess it (Figure 92). The 

information to the location present a deviation up to 18 cm in the section analyzed. The biggest 

errors appear when the marker have big heading angles (62° and -50°) with respect the stereo 

camera in the PTW. 

During the analysis of the stereo triangulation, was noticed that these pair of cameras 

of our imagining system tend to overestimate in 3.75% the depth range close to the Full Scale 

Figure 89. 2D trajectory of the target car during the experiment. The measure indicates the relative 

position of the two yellow antennas installed in the vehicles. One antenna is positioned in the rear 

part of the PTW (coordinate origin) and the second antenna on the satellite marker frame 



128 Chapter 6 

 

Output (FSO) of the stereo sensor. For example, traffic cones of 30.0 cm of height aligned 

with the center of the stereo rig and located at 20.0 m away from it indicated a depth distance 

of 21.75 m in the 3D point cloud obtained from the calculation of the disparity map. 

Nevertheless, this does not contribute to the error of the satellite marker method because it 

does not use the stereo triangulation to measure. 

 

 

 

 

Figure 91. From left to write is illustrated in vectorial form the measurement performed (D-GPS) 

and the equivalent measure synthesized from three components of the ground truth (imaging 

system) 

 

 

Figure 92. Comparison of the Ground Truth location generated with the satellite marker method 

and a more accurate reference provided for the D-GPS system 
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6.2.6.  Online camera re-calibration  

The vibrations in the scooter temporally misalign the cameras of the calibrated stereo 

camera sensor (decalibration). Therefore, an online re-calibration is needed to perform 

triangulation. The re-calibration implemented is based on a two-step rectification under two 

assumptions: 

 Invariance of intrinsic parameters of each camera. 

 The extrinsic parameters of each camera pair varies within a small range. 

 

In this way, the images are rectified two times to avoid problems of scaling (scale-drift). 

The first time uses the camera parameters obtained in the static calibration, and a second time 

uses the sparse pixel image correspondences (rectification tuning). 

Nevertheless, as multiple correspondence measures are available and matching 

methods can lead to significant differences in matching results, there is a trade-off between 

execution time and descriptor quality to be evaluated empirically (Rublee et al., 2011; 

Leutenegger et al., 2011; Miksik and Mikolajczyk, 2012; Alahi et al., 2012; Schaeffer, 2013; 

Panchal et al., 2013; Gupta and Cecil, 2014) for each application case.  

As starting step, a qualitative comparison was performed by employing two different 

kind of keypoint descriptors, a histogram-based descriptor and a binary descriptor. It is worth 

saying that the two feature descriptors chosen have shown good performance in real-time 

implementations (comparison in Section 6.2.5.1). The correlation methods were excluded of 

our comparison due to its high computational complexity (Mikolajczyk and Schmid, 2005). 

The election of SURF (Speeded-Up Robust Features) method (Bay et al., 2006, 2008) 

as image feature descriptor and extractor was because it is a robust (Schaeffer, 2013) and quick 

 

 
(a) 

  

(b) (c) 

Figure 93. Illustration of the automatic camera extrinsic parameters re-calibration. (a) An initial 

rectification of the stereo frame according to the static calibration values. (b) SURF feature 

extraction in both images of the stereo pair (circle’s diameter represents the scale of the feature – 

only 30 are shown for clarity). (c) The salient features matched (correct pixel assignments indicated 

by yellow connections – the 1000 features are shown) are overlaid on a 3D anaglyph 
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(Rublee et al., 2011) keypoint descriptor (Gupta and Cecil, 2014). These characteristics make 

it suitable for the self-calibration of wide baseline stereo camera systems. 

In Figure 93 is illustrated the procedure for the second step of the re-calibration 

implemented. First, calculate sparse point correspondences between the images rectified to 

identify 3D salient points of the scene (Figure 93b). Compute salient points per image with the 

point descriptor SURF. Next, putatively match the correspondent features between the images 

(Figure 93c) in order to estimate the “fundamental matrix” (Bradski and Kaehler, 2011; 

Hartley and Zisserman, 2004) thanks to the RANSAC (RANdom SAmple Consensus) method. 

Thus rectifying the images, it means, aligning the images such that corresponding points will 

appear on the same rows in both new images to perform triangulation.  

Up to now, it is implemented the online camera re-calibration employing SURF 

features and SURF feature descriptors. However, binary descriptors are more suitable for real-

time applications because they requires significantly less memory than histogram-based 

descriptors like SURF. This motivated our second re-calibration test employing SURF features 

and FREAK (Fast REtinA Keypoint) descriptors. FREAK is based in human retina behavior 

(Alahi et al., 2012).  

A real example of dynamic decalibration acquired from our stereo camera rig is 

presented in Section 6.2.5.1 next to the results of the two re-calibrations implemented. In 

addition, an image dataset with ground truth corresponding to a trial of the pre-crash 

experiment is provided. The dataset is provided through an online repository and the ground 

truth can be obtained from the satellite marker on the colliding car. 

 

6.2.6.1. Online re-calibration of the cameras 

Table 15 and Table 16 present in the form of Disparity Maps (DMs) the inability of the 

stereo camera system to perform the depth triangulation due to the fitment of the sensor on a 

motorcycle (first column). The reason of it is the invalid assumption of having rigid stereo 

camera rig, which maintains stable the baseline and orientation of each camera. 

The second and third column depicts the DM computed with the proposed two-step 

online recalibration technique. The results point out the need of a continuous recalibration of 

the system for the motorcycle safety application, because the decalibration (calibration lost) of 

the stereo rig generates the corruption of the Disparity Map (DM). 

In our system, it was empirically noticed that it is not possible to calculate a proper 3D 

point cloud from the DM data when it contain less than 45% of matched pixels of each camera 

(belonging to the shortened frustum at the Horopter 10d). Therefore, Figure 94 shows a 

comparison of the percentage of pixels properly employed to compute the Disparity Map and 

obtain the depth of the scene. The comparison is by normalizing the number of pixels on the 

Disparity Map computed and the number of pixels of an input imagen. The chart present in 

three different colors the results of the Simple rectification (static stereo calibration 

parameters), and the two strategies used for the re-calibration based in SURF and FREAK.  

The continuous and dashed lines of the chart distinguish between the totality of the 

pixels used to compute the DM and the most relevant set of disparities calculated, which are 

above of the Horopter 10d. For the two online re-calibration cases, the percentage of pixels 

used to calculate the DM appear to be stable around 70% to 74%, which is convenient. Also, 

in these cases the number of disparities below the Horopter 10d are negligible and 

consequently, the continuous and dashed lines in the chart are almost overlapping.



 

 

 Static calibration Re-calibration (SURF-SURF) Re-calibration (SURF-FREAK) 

 

 

 

 

1st frame 

 

 

 

 

 

 

 

 

2nd frame 

 

 

 

 

 

 

 

 

 

 

3th frame 

 

 

 

 

 

 

 

Table 15. The left column corresponds to the depth triangulation on the rectified images (Simple rectification) obtained from the static calibration (extrinsic 

+ intrinsic parameters of the camera model). The central and right columns corresponds to the re-calibration (second step of the online re-calibration).  

Remark: in the 2nd frame corresponding to the static calibration it can be seen that the DM is corrupted, so it is not reliable to perform depth triangulation 



 

 

  

 Static calibration Re-calibration (SURF-SURF) Re-calibration (SURF-FREAK) 

 

 

 

4th frame 

 

 

 

 

 

 

 

 

5th frame 

 

 

 

 

 

 

 

 

6th frame 

 

 

 

 

 

 

 

Table 16. From the 4th and 5th frames of the static calibration cannot be measure the target due to the decalibration at these moments, while in the 6th frame 

the depth triangulation is reliable again (borderline)
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This short sequence of 6 consecutive frames (Table 15 y Table 16) make explicit the 

consequences of the dynamic stereo decalibration in the motorcycle application. In the two 

columns corresponding to the online re-calibration, it can be seen that both strategies present 

satisfactory results. Note that the color disparity scale between the online re-calibrated DMs is 

different to the scale of the fixed calibration to facilitate the visual comparison. 

 

 
Figure 94. Chart showing the percentage of effective stereo frame used to calculate the Disparity 

Map (DM) during the first six neighboring frames (consecutive frames) of the 1 second pre-crash 

sequence. Below 45%, the number of reliable pixels is insufficient to compute the DM 

 

The data is available in the following repository: 

https://github.com/GusRep/StereoDecalibrationProblem_and_PointClouds 

 

The Wiki page associate to the repository is: 

https://github.com/GusRep/StereoDecalibrationProblem_and_PointClouds/wiki 

 

The provided data can be used for visualization and experimentation purposes: 

 3D reconstructed scenes: (*.pcd) files corresponding to the 3D point clouds 

acquired for the system which are shown in the publication. Files named 

"testFirenze*.pcd". 

 Decalibration dataset: (*.png files): 

o A set of 30 color stereo pairs (raw data) corresponding to the pre-crash 

test sequence. Six files named "Original_crash_*.zip.*". 

o A set of 30 rectified stereo pairs (pre-rectification according to the 

static camera calibration) corresponding to the pre-crash test sequence. 

Four files named "PreRect_crash_*.zip.*". 

 

The satellite marker method can be used in the stereo frames to retrieve the ground truth 

heading angle of the vehicle and the instantaneous orientation of each camera. 

 

https://github.com/GusRep/StereoDecalibrationProblem_and_PointClouds
https://github.com/GusRep/StereoDecalibrationProblem_and_PointClouds/wiki


134 Chapter 6 

 

6.3. Conclusions 

The possibility to use only stereo vision as a remote sensor is feasible. The results of 

static and dynamic measurements performed by the remote sensor installed in the UNIFI 

demonstrator were satisfactory within the design condition of good visibility. The static cases 

correspond to controlled environments which presented ground truth conditions in challenging 

outdoor lighting conditions. The dynamic cases presented, added the complexity of moving 

targets and ego motion with ground truth provided by the D-GPS and the satellite marker 

technique. 

The performance of the developed sensor, employing low-cost action cameras, was 

satisfactory in a static setup and the sensor showed good potential for the application in 

advanced motorcycle safety systems. The sensor was able to measure small targets sized 30 

cm height (traffic cones) from distance up to 21 meters and some curbs of street islands during 

the test in the traffic scenarios. The bias error of depth in this measure of the cones was +2.25% 

which is inferior to the 3% of error used as a requirement for reliable driving assistance systems 

in cars (Pantilie and Nedevschi, 2012).   

The analysis of the point clouds, which are available in the online repository, showed 

the possible discrimination of targets using a grid of 20 cm up to 16 meters of depth. This grid 

size was a target requirement to avoid false positives in the conceptual Motorcycle 

Autonomous Emergency Braking (M-AEB). The sensing capabilities of our sensor are very 

promising for motorcycle safety application in urban scenarios, because the intervention of M-

AEB is expected to be in the range of 8 to 10 meters from the colliding vehicle. Thus the 

developed sensor more than meets the M-AEB requirements. 

Additionally, it is important to remark that depth measurement by a moving stereo 

vision setup relies on the combined movement of the camera set (static camera calibration), 

therefore it is seriously affected by relative movement between the cameras. However, the 

satellite marker technique used for the ground truth generation is a monocular depth 

measurement technique, therefore it is not affected by the bending of the stereo rig that causes 

a relative displacement between the cameras set.    

The obtained results, with the two online recalibrations implemented, were very 

satisfactory for avoiding the problem of calibration loss. In the dynamic tests of id90, without 

online recalibration 66% of the measurements were missing, while with online recalibration 

100% the measurements were obtained. The example of Table 15 and Table 16 depicted 

several frames of these test in which the depth stream computed with a static calibration is 

corrupted (classical stereo vision approach), due to the deformations of the sensor. However, 

the proposed online recalibration overcomes this problem.  

As a final remark, the algorithms employed can be implemented in embedded hardware 

such as, the Vision Processing Units (VPUs) described in Chapter 4. In particular, the low-

power consumption (less than 1.2 Watts) of Myriad 2 processor is very convenient for an 

industrial implementation of this technique in real-time.    

 



 

 

7. Field tests 

This chapter contains the results of the remote sensor engineered for the motorcycle 

safety application. The sensor is targeting a perception system for a conceptual safety system 

for motorcycles, such as the M-AEB (Motorcycle Autonomous Emergency Braking). The 

UNIFI (University of Florence) started the development of M-AEB in a previous EU project. 

The camera-based remote sensor developed in this research is used to investigate the 

feasibility of this remote sensing technology to trigger the M-AEB under real traffic and in 

cornering conditions. In particular, the evaluation use the information of the in-depth accident 

database In-SAFE to select real PTW crashes that happened. Therefore, a part of the 

experiments conducted involve similar situations to those that lead to a collision. The 

assessment of the sensor in these realistic pre-crash conditions have an added value. 

 

7.1. Prior experiences with the M-AEB UNIFI demonstrator 

AEB have the potential to assist the user to avoid the collision. In cars, AEB is a well-

accepted solution and nowadays commercially available. Years ago UNIFI used an automotive 

laser-scanner in an instrumented scooter, making it able to brake by itself (Figure 95). 

 

 

Figure 95. Concept of AEB for cars and M-AEB for motorcycles (UNIFI Demonstrator) 
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Contrary to cars, the dynamic of PTWs (Powered-Two Wheelers) cannot guarantee that 

a motorcyclist is able to control the bike against an unexpected deceleration. 

 

The main two reasons are: 

1) A two-wheeled vehicle is intrinsically (or inherently) unstable. 

2) The rider is not retained to the vehicle. 

These topics were addressed in the EU research project ABRAM, which is summarized 

in Figure 96. In this EU project, the Monash University of Australia collaborate with UNIFI 

in the definition of safe thresholds of unexpected deceleration that motorcyclist can manage 

without loose the control of the vehicle. This human factor is key to identify the real 

applicability and potential of the M-AEB as a safety solution.  

 

 

 

Figure 96. Investigating the feasibility of M-AEB from the perspective of the motorcyclist 

 

7.1. Current experience with the M-AEB UNIFI demonstrator 

To address when to trigger M-AEB in a real traffic scenario, a perception system that 

can deal with the PTW dynamics is needed. In our motorcycle demonstrator, an automotive 

laser-scanner to detect obstacles until 60 m, and the camera-based remote sensor explained in 

Chapter 6 was used. Next, some representative measurements are presented.  
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7.2. Small moving target from a moving motorcycle 

In the next example, illustrated through Figure 97, Figure 98, and Figure 99, it can be 

seen the results of the measurement of a small obstacle (other scooter). 

The camera-based remote sensor measures the scooter at 14 m from the host motorcycle 

(UNIFI Demonstrator). This was validated with the automotive laser scanner of our 

motorcycle demonstrator. As a remark, the tailored automotive LIDAR of out motorcycle was 

able to measure the target distance because the host motorcycle was upright.  

 

 

Figure 97. This is the left picture of the short-range sensor 

 

 

Figure 98. This is the disparity map containing 3D information of the scene 

From the information of the remote sensor is possible to compute a tridimensional 

reconstruction of the scene in which appeared the obstacle. The scooter is located at 14 m from 

the UNIFI motorcycle demonstrator. This distance was validated with the information 

provided for the automotive laser-scanner of our demonstrator which was able to operate 

properly in this particular condition. 
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Figure 99. 3D point cloud showing that the scooter is located at 14 meters from the motorcycle 

demonstrator 

 

7.3. Turning maneuver at an intersection 

The following results correspond to the case in which the UNIFI demonstrator is 

executing a turning maneuver at an intersection. In this situation the scooter is tilted more than 

13 degrees, excluding the successful use of traditional automotive remote sensing sensors 

(details in Chapter 5 – Sections 5.3.2 and 5.3.4). 

Figure 100 shows the traffic scene sensed by the short- and long-range sensor and the 

associated DMs. With regards to the parked cars visible in the scene, which did not move 

throughout the experiment, the measurements in repeated trials presented similar information. 

This condition allowed us to compute similar depth measurements of the static scene.  

Both DMs depicted in the figure show the accurate measurement of the ground surface. 

This can be interpreted with an elevation map technique (e.g. the 2.5D boxel approach to 

simplify the 3D point cloud data density) employed in off-road vehicles. This approach has 

been used to define the ground plane ahead of the vehicle (Rankin et al., 2009; Broggi et al., 

2013a) and from that, the Region of Interest (RoI) for the subsequent analysis. Other 

approaches used in autonomous cars (Oniga and Nedevschi, 2010; Harms et al., 2015) cannot 

be applied to tilting vehicles because the assumption of a road plane almost parallel to the 

stereo sensor.  

In the short-range sensor (the shorter baseline of the stereo camera rig), the fisheye 

lenses used embraced the light coming from a wide volume of the 3D space into the imaging 

sensors. Consequently, the maximum value of the disparity becomes big. In Figure 100c DMs 

were represented using a color scale of 32d instead of 128d to highlight the presence of a car 

(car 4) that was not visible in the long range view. In addition, the different range values 
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contained in the DMs are consistent with the type of lenses and baselines employed for the 

short- and long-range sensing, respectively.  

Short-range (wide common Field of View) Long-range (narrow common Field of View) 

  
(a) (b) 

  
(c) (d) 

Figure 100. Analysis of a turning maneuver: measurement of the space in front of the scooter. 

Short-range and long-range measurements are depicted simultaneously for comparison. (a) 

Rectified left picture of the short range stereo camera sensor. (b) Rectified left picture of the long 

range stereo camera sensor. (c) Short-range Disparity Map (0 to 32d). (d) Long-range Disparity 

Map (0 to 128d). The 3D point cloud is available for download (see Section 6.2.2.1) 

 

In the long-range sensor, the more directional type of lenses (narrow FoV) and longer 

baseline of the stereo camera rig produced a smaller range of values of the disparities. This is 

a consequence of measuring a smaller part of the 3D space with an imager of the same size, 

thus providing more depth discrimination of the 3D space. 

Figure 101a shows the 3D point cloud of the 4 target cars measured by the short-range 

sensor (manually labelled). In Figure 101b shows the long-range sensor measures of the same 

scene. Only 3 of the previous target cars are visible, because of the narrower FoV of this sensor. 

In addition to this, it is worth noticing the tail of an additional withe car visible behind the trees 

at the boundary of the Range Field (Figure 100, Figure 101, and Figure 102).  

In Figure 101 the depth measurement performed for the imagining system (short- and 

long-range) are presented in more detail. In both measurements cars 1, 2, and 3 can be 

identified. However, only the depth measure delivered by the long-range sensor (Figure 101b) 

is reliable. In fact, these cars were visible in both sensors, but they were located inside the 

Range Field of the long-range sensor only. As mentioned before, the condition that the targets 

are inside the boundaries for the triangulation (horopter of 10 disparities) ensures the 

possibility to neglect the influence of the non-Gaussian error in the DM. Otherwise, such error 

should be taken into account for proper depth triangulation (Sibley et al., 2007). 
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Figure 101. 3D point clouds corresponding to the turning maneuver scene calculated from the 

information provided by the two stereo camera sensors. (a) Reconstruction for the short-range 

stereo camera (wide common Field of View). (b) Reconstruction for the long-range stereo camera 

(narrow common Field of View) 

Considering Figure 102a, car 4 is properly sensed due to the wide common FoV of the 

short-range sensor. Additionally, in the same figure artifacts are present outside the Field 

Range, in the low values of disparities. At very low disparity values, the erroneous matchings 

of the SGM (Semi-Global Matching algorithm) (Hirschmuller, 2005) generates fattening, 

which is a matching error amplified by the depth discretization for the pixel accuracy 

resolution (including subpixel accuracy). Fattening are common artifacts in outdoor stereo 
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vision, and post-processing approaches that remove them in 3D mapping applications are not 

a real-time task. 

 

 

 

 

 

 

Figure 102. Top view of the 3D point clouds corresponding to the turning maneuver. (a) Depth 

measurement delivered by the short range sensor (accurate depth measures are inside the Range 

Field). (b) Depth measures delivered by the long range sensor (Car 4 is not in the common Field of 

View of this stereo camera sensor) 

 

Note: the 3D point clouds presented until now contain all the raw data measurements 

retrieved from the stereo cameras. However, certain details are difficult to assess the 3D 

measurements. Therefore, in order to simplify the assessment of the quality of the measures 

corresponding to the long-range sensor, I “cleaned up” the 3D point cloud. The cleaning 

process consisted in two steps:  

 To post process the three-dimensional representation by removing the 13 degrees of 

inclination of the scene without altering the quality of the 3D reconstruction. 

 To extract the points that lies outside of a Region of Interest (RoI). 

 

In this manner, I extracted and inspected a RoI above the ground plane as it can be seen 

in Figure 103a, where the detection of a narrow object (light pole) is highlighted.  

In Figure 103b the top view of the clean imaged scene is presented, with the reference to 

the vehicles and the light pole location.  

The results presented in Figure 103 illustrate the measurement capability of the sensor to 

measure the sides of the parked vehicles, even under large inclination of the sensor (13 

degrees), where other automotive remote sensor technologies cannot deal with it, as was stated 

in Chapter 5. This capability of the proposed remote sensing approach enables the utilization 

of the obstacle detection, tracking, and depth perception during the normal operation of a tilting 

vehicle.  
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Figure 103. Cleaned measurements of the corresponding to the turning maneuver. (a) The 3D point 

cloud inclined 13° to compensate the leaning of the scooter. (b) Top view of the measures 

 

7.4. Pre-crash test (based on a real motorcycle crash) 

This section describes the performance of the camera-based sensor in a real crash 

scenario. The description is organized in three sub-sections: 1) the analysis of a real crash 

event; 2) the virtual simulation of this crash when the M-AEB is activated, and before (pre-

crash scenario); and 3) the results of the camera-based sensor during the emulation of the 

motorcycle crash id90. 
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7.4.1.  Real motorcycle crash and the results of the crash reconstruction 

analysis 

An accident that occurred under conditions of good visibility (daylight), and dry and 

flat asphalt surface has been considered in this study. In the accident, a stopped car made a U-

turn from the right lane, crossing the path of an oncoming motorcycle. The motorcyclist 

activated the brakes hardly, but he/she lost the control of the motorcycle. At this moment, the 

motorcycle and its rider fall and slide on the pavement until they hit the car.    

Figure 104 shows a top view of the accident scenario indicating different landmarks of 

the scene and the point of rest of the car (after the collision). The motorcycle landmarks “+” 

of our interest are represented for the labels 6 to 11. References +6 and +7 defines the segment 

of the road in which skid marks shown a hard braking performed by the motorcyclist before 

he/she lose the control and consequently fall down from the motorcycle. The range from +8 to 

+11 defines two segments that corresponds to scratches on the road caused by the sliding of 

the motorcycle up to the collision with the car (in the red box area).    

 

Figure 104. Sketch of the motorcycle crash id90. 
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Figure 105 shows the critical moments of the pre-crash phase, which was modeled 

(using Virtual Crash software) as the other crashes of the in-depth database described in 

(Piantini et al., 2012; Franci et al., 2015). These events occurred in a Time-To-Collision (TTC) 

of 1.50 s and 1.00 s. At TTC=1.50 s the motorcyclist still continues travelling without braking, 

and half second later (at TTC=1.00 s) the motorcyclist braked hardly and lost the control of 

the vehicle due to the locking up of the front wheel.  

Note: an Anti-lock Backing System (ABS) in the motorcycle could have helped to 

avoid this PTW crash. 

 

Figure 105. Visual results of the 3D crash reconstruction for two instants of time before the crash. 

 

7.4.2.  Virtual simulation of the crash before to M-AEB deployment 

Based on the in-depth information provided by the crash reconstruction, a simplified 

kinematic of the crash scenario is performed under the assumption of ABS (Matlab/Simulink 

software). Then, a co-simulation (BikeSim software) calculate the dynamics of the motorcycle 

or Powered-Two-Wheeler (PTW) while simulate the action of the M-AEB (remark: M-AEB 

requires the use of ABS). The same approach served to quantify the effectiveness of M-AEB 

using real crash circumstances as in (Savino et al., 2012b, 2013, 2014) . 

The crash simulation up to the instant of Inevitable Collision State (ICS defined in 

Savino et al., 2016), in which the remote sensor must trigger the M-AEB, is presented. In 

addition, the information of the instants previous to ICS were collected and analyzed, to 
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establish if our sensing system can be used to activate other faster safety systems (that require 

an earlier deployment that M-AEB) such as, airbag jackets, or the AEB in the opposite car 

through Vehicle-to-Vehicle (V2V) communication. 

Figure 106 shows the curves of the real and simulated cases for the instantaneous speed 

and acceleration of the motorcycle or PTW and passenger car, as a function of time. In the 

curve of real case, the motorcycle braking was activated at the time of 2 seconds, and the 

sliding phase occurred at the time of 2.5 seconds. In the curve of simulated case, the hard 

braking was maintained for more than 1.5 seconds, until ICS. This assumption is based in the 

intervention of the ABS (acceleration -6.622 m/s2), which assists to the motorcyclist to keep 

the control of the motorcycle to brake in straight line. The assumption reduces the speed of the 

motorcycle at the ICS, which occurs beyond 3.5 seconds.  

 

 

Figure 106. Speed and acceleration evolutions before crashing (id90). Real case (top) in which the 

motorcyclist loss the control of the PTW during a hard braking. Simulated case (bottom) in which 

is supposed that the motorcyclist can handle the braking action due to ABS intervention. 
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The deceleration caused by the hard braking (assumed in -6.622 m/s2) is coherent with 

the average deceleration reported for motorcycle ABS, with a maximum value of -7.5 m/s2 

only obtained by professional riders (Vavryn and Winkelbauer, 2004). 

The Figure 107 shows the relative orientations and locations of the vehicles during the 

pre-crash phase. As it was indicated in the below charts of Figure 106, the times corresponds 

to 1.0 and 0.5 seconds before the ICS and the ICS itself. In the kinematic simulation both 

vehicles are referred to theirs centers. Therefore, a compensation is needed to compare d(t) 

distance against the measurement from the remote sensor in the PTW (installed in the front of 

it) to the sides of the car.  

 

 

Figure 107. Relative orientations and locations between the PTW and the Opposite Car (id90). 
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7.4.3.  Crash emulation: on road test or pre-crash test 

For the study of pre-crash condition, I adopted the methodology of (Savino et al., 2017) 

for computing accurate triggering for Advanced Rider Assistance System (ARAS). This 

methodology involves a series of tests in real traffic, which was approved by the ethical 

committee of UNIFI (University of Florence).  

This test emulated one particular real-world motorcycle crash (id90) and assess the 

capabilities of our camera-based remote sensor to sense the conditions of the traffic scene in 

the neighborhood of the point where the collision became inevitable. In particular, the 

experiment consisted in remotely measuring the distance and orientation of the opponent 

vehicle (a passenger car) from the sensors in the scooter. As shown in Figure 108a, the 

reference point of the deployment M-AEB was marked as X-white on the road, for visual 

helping. This point corresponds to the location of the scooter at the ICS (Figure 107). The test 

was designed and executed so that, when the scooter was located at this point the opponent car 

was located and oriented as it was in the real crash (when the collision became inevitable). 

 

 
Figure 108. Analysis of the pre-crash scene (id90 – InSAFE). (a) Rectified left picture of the long 

range stereo camera sensor. (b) The 3D anaglyph composed by the stereo frame. (c) Disparity Map 

(0 to 64d). (d) 3D reconstruction 

 

To reproduce the crash properly, the test of was repeated several times. Five test results 

were chosen, which are coherent with the D-GPS data. 

 

During the experiments of the pre-crash test (id90 - Figure 108), the capability of the 

camera-based remote sensor for 3D measurement of the traffic scene was analyzed. The 

assessment of the capability of sensing the traffic scene started from 1 second before the ICS.  
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This 1 second before ICS was considered by: 

 

 The information of the crash reconstruction and the corresponding simulation 

results, shown in Figure 107. 

 The depth resolution required for M-AEB to avoid false positive deployments, which 

is of 20 cm. The sensor achieved this until 16 meters (see Chapter 6 - Section 6.2.4). 

   

In the 3D anaglyph of Figure 108b, the remote sensor is slightly tilted with respect to the 

road plane, as it can be seen from the small vertical shifting of the features in the scene. For 

example, the vertical pixel misalignment in the stereo frame is noticeable in the “x” marking 

on the road, or in the corners of the asphalt marks located at the bottom right corner of the 

picture.  

 

Figure 109. Detail of 3D reconstruction of the pre-crash scene (id90 – In-SAFE). (a) Cleaned 3D 

point cloud seen from the scooter point-of-view. (b) Cleaned top view representation of the pre-

crash scene 
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The results shown (Figure 108c, Figure 108d) indicated that the stereo camera sensor was 

able to accurately sense the condition of the traffic scene 1 second before the ICS. In addition, 

the sensing approach is be able to detect narrow obstacles including Vulnerable Road Users 

(VRUs), which is a challenging task for other automotive remote sensors. In this case, a 

pedestrian was measured along the left sidewalk. 

A clean 3D point cloud (extracting only the information from above the street up to 

several centimeters above the roof of the target cars) is shown in Figure 109. It can be seen 

that part of the supporting frame of the satellite marker appears in the reconstruction. These 

results showed that the remote sensing strategy is able to measure the car pose and narrow 

obstacles in real conditions even in the presence of roll angle fluctuations (Figure 110), that 

also can affect the operation of other automotive sensors as the LIDAR.  

 
Figure 110. Roll angle fluctuations during 5 trials of the emulation of the motorcycle crash (id90 – 

In-SAFE) 

The temporal chart (Figure 110) illustrates the roll angle fluctuations due to the dynamics 

of a tilting vehicle when traveling straight (note that the traveling surface is a flat asphalt). 

 

7.5. The experience employing the camera-based remote sensor in a 

pedelec 

As a proof-of-concept, a simplified version (shown in Figure 111) of the camera-based 

remote sensor was installed in a pedelec (electric bicycle). The objective of these test was to 

assess the sensor in a different vehicle and in cycling traffic. 
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Figure 111. Pedelec with the stereo camera rig installed on the handle bar. (a) Complete vehicle 

view and detail of the frontal suspension. (b) Detail of the camera-based remote sensor (imaging 

system) 

The results presented in Figure 112 and Figure 113 correspond to traffic situations in 

which the tilting vehicle (pedelec) presents a roll angle about 22º and 17º respectively. Figure 

112a shows one of the images of the stereo frame which are used to calculate the Disparity 

Map (Figure 112b). The maximum value of the disparity range allows to start to perform 

triangulation from 4 meters, for this stereo rig setup. 

 

 

 

Figure 112. Results of the remote sensor while taking a curve (pedelec tilted 22º). (a) Left image of 

the stereo camera pair. (b) Disparity Map calculation (0 to 128 disparities). (c) 3D measurement of 

the scene up to 14 m. (d) Top view of the 3D scene 
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Figure 113. Results of the remote sensor when traveling on a bicycle path (pedelec tilted 17º). In 

this case the 3D point cloud was mathematically rotated (straighten) to easy the depth inspection 

in the 3D reconstruction. All units are in meters 

 

 

Figure 114. 3D sensing in a scene with strong changes of illumination. (a) Left image of the stereo 

camera pair. (b) Disparity Map calculation (0 to 128 disparities). (c) 3D measurement of the scene 

in meters 

 

The Figure 112d shows the top view of the 3D reconstruction, which makes explicit the 

capability of the sensor to obtain the depth of the scene.  

Figure 114 shows a traffic scene with strong changes in the illumination. This type of 

situations have not proven to be a problem for the Semi-Global Matching (SGM) algorithm 

adopted (Hirschmuller, 2005; Hirschmuller and Gehrig, 2009). The test were realized against 
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a prior histogram equalization of the same stereo frames that presents abrupt illumination 

changes and not improvement in the Disparity Map (DM) was found. 

 

 

Figure 115. 3D sensing of a cyclist at an intersection of streets (cobblestone street – thick patterned 

surface) 

 

Finally, the results presented in Figure 115 were acquired when the vehicle traveled by 

a cobblestone street. This is the most challenging situation for the remote sensor because the 

sensor accuracy is compromised under important deformations on the stereo rig. 

 

 

7.6. Conclusions 

The camera-based remote sensor was used to determine the feasibility of triggering a 

conceptual motorcycle safety system (M-AEB) under real traffic and in cornering conditions. 

Special attention was given to the operation of the sensor under fluctuations of the roll angle 

because these fluctuations are present in the PTW dynamics, even when the vehicle is traveling 

straight and over a flat asphalt. This roll angle fluctuations translated into inexistent lateral 

accelerations of detected obstacles in other sensors, such as automotive LIDARs and 

RADARs, which negatively affects their measurement accuracy and object tracking 

capabilities.  

The field test extends the results of Chapter 6, assessing the remote sensor in real traffic 

scenarios similar to PTW crashes that happened (In-SAFE crash id90). The sensor was able to 

measure the distance to the opposite car within the grid of 20 cm required by M-AEB during 

the pre-crash phase (one second before arriving to the instant of inevitable collision 

avoidance). The raw data obtained from the sensor and the processed results are available as a 

part of an online dataset (Section 6.2.6.1). In the future, this dataset will include more PTW 

crash scenarios based on the emulation of real crashes, which are needed for a better 

understanding of the limitations that the sensor can present as a part of a safety system for 

motorcycles.  

Additionally, the operation of the remote sensor was analyzed in two different tilting 

vehicles when cornering. The sensor operates properly under roll angles of 13 degrees in the 

UNIFI demonstrator. A simplified version of the same sensor was installed in a pedelec, and 

it was able to measure the 3D environment up to 22 degrees of roll angle. The operation of the 

developed sensor overpassed the 10 degrees of roll angle achieved for other remote sensors 

for motorcycles (Savino et al., 2009, 2013), this is important because the sensor presents a 

good potential for the application in tilting vehicles. 
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In comparison, the experiments using the pedelec were not exhaustive as the ones 

carried out with the scooter (UNIFI demonstrator), because the stereo rig was not designed for 

this vehicle. The objective was to achieve bigger roll angles than in the scooter, in a safe 

manner. The precision accuracy seems to be similar to the scooter setup but in a shorter range, 

however a more extended test campaign with it would be needed to verify this statement. On 

the other hand, we can report that the level of vibrations in the stereo rig is considerably more 

intense in the pedelec setup. Mainly for the front fork assembly and the tire size difference 

between the vehicles. This is an important aspect to consider for commercial applications. 

Extensive multibody simulations and/or road tests on pedelecs can be needed to understand 

the limitations or requirements for the online calibration on these type of vehicles.      



 

 

8. Discussion 

 

This chapter discusses the limitations of the different core studies realized during the 

doctoral research, possible improvements and future actions. The future actions concerns tasks 

to be done after the period of time corresponding to this doctoral research.  

The future actions are related to a bigger research scope concerning the development 

of the advanced safety system called Motorcycle Autonomous Emergency Braking (M-AEB). 

This safety system is one of the possible applications that can benefit from the research 

presented in this dissertation. 

 

8.1. First part: the KBMS methodology 

The use of Powered Two-Wheelers (PTWs) is high in Italy compared to the rest of 

Europe (Ordonez, 2016; Schaller and Perlot, 2016). PTW rider fatalities are high as well, 34% 

on the total road deaths in 2008 versus 19% of the mean in Europe (IRTAD 2010). However, 

in motorcycle safety the main constraint is the subjectivity of certain analysis due to the 

variability in the dynamics of the PTWs, the nature of the information and the judgments being 

made, as well as the methodology adopted. In order to overcome the difficulties, I propose the 

KBMS (Knowledge-Based system of Motorcycle Safety) as a constructive, flexible, and 

scalable methodology.  

 Why constructive? Additional experts’ contributions for the assessment of crash 

scenarios will lead to more accurate predictions about the solution’s 

performance.  

 Why flexible? The Evaluation Framework allows the reorganization of crash 

scenarios and the modification of the inference engine according to the crash data 

available. 

 Why scalable? The Evaluation Framework also allows the addition of new crash 

scenarios, new Safety Functions, and new objectives as: injury criteria, medical 

fares, convalescence days, etc. 

The KBMS was conceived to be updated (using fresh crash statistical data) and reused 

in the course of time. Another advantage of this method is the step of information extraction 
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from crash databases, which allows for confidentiality of the original crash data, and the 

collaborative sharing of data will be made easier.  

To the best of my knowledge, the safety system prioritization performed in the PISa 

project was the most comprehensive in terms of safety systems evaluated focused on 

motorcycle technologies. Thoroughly analyzing the documentation of the PISa project, I found 

no distinction between Safety Function (SF) and safety system/technology. Consequently, 

during the assessment phase experts were requested to evaluate the functionality of a safety 

solution or the performance of a specific technology without any distinctions between the 

potential benefits of a theoretical function and those of a practical system. Assessing how a 

technology may behave in a given circumstance requires more accurate information than the 

evaluation of a specific functionality (a specific Safety Function in our case), because 

functionalities just define desired behaviors. For this reason, in our study I made the concept 

of Safety Function (SF) explicit in the KBMS method. However, the PISa rating process was 

a valuable step in the prioritization of safety solutions for PTWs and a good material to design 

a new methodology that overcome its weak points. 

Concerning the road crash scenarios, previous EU research projects have used the 7 

PTW crash scenarios defined in the APROSYS project as starting point (e.g. PReVENT, 

AIDE, EASIS, GST). However, 3 of the 7 crash scenarios concentrate less than 10% of total 

of motorcycle crashes in the EU. This implies that more than 90% of PTW crashes (a wide 

variety of crash configurations) were grouped together in only 4 general crash scenarios. To 

address this limitation, the definition of the PTWs crashes scenarios of the KBMS Evaluation 

Framework contains 26 cases (Appendix B) that can be grouped in function of the level of 

detail of the crash database used.  

The KBMS introduces the concept of coverage metric. This helps to ensure a minimum 

of 90% of total motorcycle crashes included in the crash scenarios defined, monitoring the 

remaining percentage of road crashes that contains incomplete/unknown data.  

An advantage of the KBMS method is the direct interpretation of the metric obtained. 

For example, the PISa priority list made clear which SF is more important, but it did not clarify 

the absolute importance of a function in quantitative terms. In the KBMS, the insight of how 

important a SF is with respect to the others is made explicit by its numerical value. For example 

in our case study, by simple numerical inspection of the metrics of the prioritized list (Table 

8), was obtained that the SF “PTW autonomous-braking (2.98)” is considered twice as 

important as the SF “Improvement of PTW conspicuity (1.42)” in Italian roads. It shall be 

noted that low income countries with poor infrastructure, outdated vehicles, and limited safety 

awareness will see different priorities. The new method can be applied to such other countries 

when crash data is provided. 

Summarizing the benefits of the KBMS Evaluation Framework, it overcomes common 

limitations as: heterogeneous road crash data collection between different countries/regions; 

and restricted access to the databases due to sensible information about the victims involved. 

In particular, the segmentation of a road crash database by using queries list can be easily 

replicated locally to several databases, enabling database managers to disseminate harmonized 

numerical information for the KBMS method.  

The key points learned during our preliminary attempt to collecting and storing 

expertise in the KB of the KBMS were:  

1. Define a common vocabulary simplifying the exchange between experts of 

different specializations. 
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2. In the expert assessment it is hardly recommendable to use a binary Likert 

type scale in order to avoid the accumulation of neutral responses in the KB. 

3. Define a set of guidelines baked in facts of in-depth crash databases to reduce 

the degree of variability of the assessment in the crash scenarios. 

4. A very comprehensive list of SFs for the expert assessment, present the 

drawback to convert the evaluation of each crash scenario in a big time 

consuming task, and it may go against to the number of collaborators. 

 For this reason, more research is needed in the definition of a shorter SFs list to assess. 

The reduction of the SF list is a trade-off between the quality of expertise collected and the 

time required to encode it in order to be stored in the KB of the KBMS.  

 

8.2. Second part: the remote sensor 

The goal of the second part of the research activity was to contribute to making 

motorcycling safer by fostering the implementation of assistance technology. However, 

technological limitation on automotive remote sensors was identified and stated in Chapter 5, 

for which these sensors cannot operate on a tilting vehicle. To overcome this technological 

barrier I proposed an approach that utilizes camera-based sensors. These sensors resulted 

suitable for the task thanks to their wide diagonal FoV (Field of View) and additional desirable 

features, such as resolution, lightweight, passive (does not increase electromagnetic pollution), 

low consumption and affordable cost.  

In this manner, I targeted the development of a novel multi-focal stereo camera sensor 

to provide a remote sensing sensor able to operate under the constraints imposed by the 

motorcycle dynamics. In motorcycles, simple change lane and traffic filtering tasks requires a 

counter steering maneuver and roll angles up to ±10 degrees. This vehicle dynamics is 

completely inexistent in four-wheeled vehicles. In addition, when a motorcyclist negotiates a 

curve the circumstances, such as layout of the road, current traveling speed, other vehicles in 

the street, and rider skills among others, may require that the motorcycle exceed the ±10 

degrees of roll angle mentioned before.  

The importance of the technological sensing solution proposed relies on the potential 

to bridge the technological gap that causes the existing lack of rider assistance technologies 

for tilting vehicles. An example of application of sensing technologies for improved safety of 

motorcycles was provided with the emulation of a real motorcycle crash, as described here and 

in (Savino et al., 2017). These tests conducted in real traffic conditions are part of the 

assessment of our remote sensor for the possible application in future ARAS (Advanced Rider 

Assistance Systems), for example a motorcycle application of Autonomous Emergency 

Braking (the so-called M-AEB).    

In a camera-based perception system, the quality of the camera sensor is essential. The 

proliferation of mobile phones with camera sensors during the last decade, reinvent the way in 

which camera sensors work, as well as their performances. A proof of that is the ongoing 

standardization of the camera sensors for the automotive industry (Standard for Automotive 

System Image Quality - IEEE Project 2020), which started to work over the advanced draft of 

the current IEEE P1858 Standard for Camera Phone Image Quality. For related information, 

an overview of the image quality test for phone cameras is presented in (Jin et al., 2017). 
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Another important consideration is that the image sensor manufacturing technology is 

well below its limits. Image sensors use CMOS technologies that are at least 2 generations 

behind those of solid-state memories or digital integrated circuits. Thus, in the next few years 

several innovations in camera sensors are likely to take place. In particular, HDR imagers 

(High Dynamic Range camera sensors) are showing impressive capabilities using inexpensive 

technology (Kobayashi et al., 2017). Recent low-cost imagers feature a combination of 

RGB+IR (color and infrared) with controllable IR sensitivity (Machida et al., 2017). This will 

make night vision cameras ubiquitous. 

On the stereo algorithms side, the algorithms can calculate disparities in regions where 

there are no specularities or occlusions. In regions with low contrast or with high sensor noise, 

most implementations have difficulties. However, specific implementations allow 3D 

perception also in adverse weather like rain (Gehrig et al., 2013; Pfeiffer et al., 2013; 

Scharwächter, 2013). This result can be achieved by exploiting stereo confidence clues based 

in a probabilistic implementation (a Bayesian manner) of scene and temporal priors (prior 

knowledge of scene instants before) for the improvement of the stereo matching.  

In addition, stereo cameras allow the discrimination of water on the road (possible 

slippery surfaces) by polarization light filters installed in each camera and machine-learning 

methods (Iqbal et al., 2009; Kim et al., 2016). Another application for the detection of small 

road hazards was recently implemented by combining geometrical modeling and deep learning 

in autonomous cars context (Ramos et al., 2017). For further improvement, machine-learning 

researchers are also combining the visual information with the Disparity Map of stereo vison 

systems for an alternative three-dimensional understanding (Zbontar and LeCun, 2015; Poggi 

et al., 2017).  

In our experiments, the performance of the sensor developed employing low-cost action 

cameras was satisfactory in a static setup. The sensor showed good potential for the application 

in advanced motorcycle safety systems as it was able to measure small targets sized 30 cm of 

height (traffic cones) from a distance up to 21 meters and road curbs during the test in the 

traffic scenarios. This sensing capabilities are promising for motorcycle safety application, for 

which unexpected small obstacles in the travelling path or occasional slippery surfaces can 

cause serious consequences to the motorcyclist (destabilization, crashing and falling).  

In this section several promising state-of-the-art solutions that include machine-

learning techniques are mentioned. These technics requires an intensive computational power 

that consumes significant amounts of energy that will not be available in tilting vehicles. 

Fortunately, recent embedded neural computers designed in a single chip (ASIC: Application-

Specific Integrated Circuit), provide the capability to deploy certain Deep Neural Networks 

(DNNs) with a power consumption inferior to 1.2 watts.  

Other relevant aspect is that these ASICs have a Vision Processing Unit (VPU) to 

process camera data in real-time. This is important because all the algorithms used in the on-

line re-calibration can be implemented in VPUs. These new chips and the upcoming 

improvements in camera sensors are promising technologies to make remote sensors camera-

based, such as the one developed in this research for motorcycle safety application. 

 

 



 

 

Conclusions and Outlook 

In the context of a continuous growth of the world population in the 21st century, smart 

tilting vehicles have a great potential as the future non-autonomous personal means of 

transport in congested urban areas. As tilting vehicles are, low price, small-size (optimized use 

of public spaces for parking), and have potential for fuel economy, recyclability and 

electrification, they are very recommendable for vehicle owners or vehicle sharing services.  

Regrettably, the injury severity level in case of crashes is the biggest barrier for the 

societal adoption of tilting vehicles. To change it, this dissertation focused on the development 

of a safety system to anticipate possible crashes from a tilting vehicle. Research in the 

automotive industry is supporting the feasibility of the development of preventive safety 

systems. For example, the case studies concerning Autonomous Emergency Braking (AEB) 

systems in cars provides a solid foundation to preventive safety in tilting vehicles. 

Consequently, aiming to achieve safer mobility in tilting vehicles, effective preventive safety 

approaches need to be identified and cost-effective technologies must allow the development 

of corresponding safety systems. 

 

The recapitulation of the main contributions of this dissertation are: 

1. The creation of the first Knowledge-Based System for Motorcycle Safety (KBMS), 

which is a quantitative methodological research tool to identify effective safety 

approaches. The method synergistically combines crash data and human expertise 

in the motorcycle safety field. The relevance of the KBMS relies on its potential to 

bridge motorcycle accident research with industrial development of safety systems. 

For this reason, a motorcycle manufacturer is currently employing the KBMS 

together with researchers of the University of Florence, looking to maximize the 

positive impact of future motorcycle safety systems. Furthermore, a future widely 

accepted and open access KBMS would be advantageous to promote in the whole 

of Europe, becoming a tool to assist policy makers in taking well-funded decisions 

on safety regulations in order to make PTWs a safer means of transport. 

 

2. The realization of the proof-of-concept of a camera-based remote sensor for road 

environment perception in tilting vehicles. The sensor design is a cost-effective 

remote sensor for application to advanced safety systems for vehicles with tilting 

dynamics. The proposed sensor can operate beyond the threshold limit up to 10 
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degrees of roll angle stated in the state-of-the-art. The approach developed has 

proven suitable and the following milestones were achieved during the tests: 

a. Improved stereo sensing performance during non-rigid registration 

(deformable stereo camera rig) by means of a novel two-step dynamic 

stereo camera recalibration technique proposed. 

b. Satisfactory measurement of the opponent car location in the motorcycle 

crash emulations (id86 and id90), which were made for the feasibility 

assessment of the remote camera-based sensor in Advanced Rider 

Assistance Systems (ARAS) applications.  

c. Success in the environmental depth sensing under roll angle conditions of 

13º (scooter) and 22º (pedelec) with respect to a vertical line. 

 

The second part of this research is an integral approach to develop a remote sensor 

capable to enable ARAS (ADAS1 for motorcycles) with the potential to avoid crashes. This is 

an important step towards making real preventive safety technologies in tilting vehicles. In 

addition, the feasibility study of the remote sensor for the triggering of the Motorcycle 

Autonomous Braking System (M-AEB) showed satisfactory results for the two cases analyzed: 

an intersection of streets, and the U-turn. The promising results, achieved so far and presented 

in this dissertation, ask for the validation of the remote sensor in a wider variety of conditions 

to foresee its application in motorcycle safety systems. For example: assessing the sensor and 

its algorithms in real crash emulation when cornering, under different levels of vibrations, and 

in tilting vehicles of different characteristics, in order to implement industrial prototypes of 

safety systems. 

To conclude, this dissertation addresses a problem with a significant impact in terms of 

the future personal transportation in urban areas. The concepts and methods studied in this 

work represents a solid step towards the development of advanced safety systems with the 

potential to make motorcycles and tilting vehicles a safer means of personal transport. 

 

 

 

 

 

 

 

 

                                                           

1 In the automotive safety context ADAS stands for Advanced Driver Assistance Systems 



 

 

Appendix A 

This doctoral research was part of an the Innovative Training Networks (ITN), called 

Marie Skłodowska-Curie Actions, which pursuits to train a new generation of creative and 

innovative early-stage researchers, able to face current and future challenges for economic and 

social benefit. In this context, the European project MOTORIST was created.  

The research project consist in a multidisciplinary and holistic approach in powered-

two wheelers safety. This integral approach was supported for three main pillars or research 

axes termed Work Packages (WPs) as Figure 116 depicts.   

 

Figure 116. Descriptions of the Work Packages of MOTORIST project and the organizations 

involved. This research belongs to WP2 which is highlighted in light blue 

The logo of the organizations involved in each part of the project is shown on the left 

side of a brief description of the goal of the WP. The three axis of research: 1) enhancing 

rider’s skills; 2) developing advanced safety systems; and 3) enhancing protective equipment; 

helped to mix different disciplines and different type of professionals to works towards a 

common goal. Each researcher contributed with their expertise and different perspective and 

way of thinking about the problems to face. This allowed to find very creative solutions. 



 

In addition, the more the field is under innovation, the more research tools and test 

reliable test assessment protocols are needed. This can be seen on the outcomes provide for 

each partner. I will focus only in WP2 that involved UNIFI, SIEMENS, and TU Delft, because 

are the related with the development of safety systems for motorcycles.  

On the side of UNIFI, in addition of the enablement of a remote sensor for Advanced 

Rider Assistance Systems (ARAS or ADAS for motorcycles), the research conducted for other 

researchers outcome an innovative research approach which involves rider muscle activations 

for the assessment of rider behavior and rider profiting. UNIFI also developed and implement 

a test protocol for rider skills assessment and training. This protocol is also used in real 

instrumented motorcycles but also in advanced motorcycle simulators. 

SIEMENS participates in the development of an advanced motorcycle simulator able 

to reproduce with high fidelity the behavior of a real scooter. This provides to the volunteer 

motorcyclist under study more realistic feedback of the riding situation, which is particularly 

difficult to achieve in a tilting vehicle due to its tilting dynamics. 

TU Delft contribute with two stat-of-the-art bicycle simulators and the development of 

the first steer-by-wire bicycle. These unique research tools are very important to study the 

complex behavior of human riders which presents infinite degrees of freedom and this level of 

complexity must to be baking-it-down for a better understanding of rider behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B 

Pictograms (KBMS) 

 

The following rows of pictograms represent the general crash scenarios to assess 

(named from A to I). The cases represent the same kind of a crash scenario but with more 

resolution or definition (i.e. labeled from a.1 to a.4). The present organization corresponds to 

the nine general scenarios of PTW crashes defined by the queries performed in the ISTAT road 

accident database. A different set of queries will rearrange each single pictogram in other 

organization.  

Note: each pictogram (created in vector graphic format) may be downloaded and 

edited. The free graphical repository is: https://openclipart.org/user-cliparts/Gusta  

 

Scenario A: PTW crashes that happened in “intersection of streets” AND “angle 

collision type”. 

             
 

 

Scenario B: PTW crashes that happened in “intersection of streets” AND “sideswipe 

collision type”. 

         
 

 

Scenario C: PTW crashes that happened in “straight street” AND “sideswipe collision 

type”. 

      
 

 



 

Scenario D: PTW crashes that happened in “rural road” OR “urban road” AND “single 

vehicle accident type” OR “run-off-the-road accident type” AND “curve layout”. 

     
 

 

Scenario E: PTW crashes that happened in “head-on collision type”. 

      
 

 

Scenario F: PTW crashes that happened in “rear-end collision type”. 

         
 

 

Scenario G: PTW crashes that happened in “hit-obstacle collision type” OR “hit 

pedestrian collision type”. 

          
 

 

Scenario H: PTW crashes that happened in “straight street” AND “angle collision 

type”. 

             
 

Scenario I: PTW crashes that happened in a “roundabout”. 

 

             
 
Note:  “roundabout” is a very particular case of “intersection” well studied in literature (Gross et al., 2013; 

Montella, 2011). For this reason, in the present methodology the crashes that happened in a roundabout are separated 

of the intersection crashes. 

 



 

 

 

Appendix C 

List of Queries  

 

In the default framework, the above nine groups of scenarios were stablished 

performing the following queries on the traffic accident database. 

 

PTW crashes that happened in: 

1) Scenario A: “intersection of streets” AND “angle collision type”. 

2) Scenario B: “intersection of streets” AND “sideswipe collision type”. 

3) Scenario C: “straight street” AND “sideswipe collision type”. 

4) Scenario D: [“rural road” OR “urban road”] AND [“single vehicle accident 

type” OR “run-off-the-road accident type”] AND “curve layout”. 

5) Scenario E: “head-on collision type”. 

6) Scenario F: “rear-end collision type”. 

7) Scenario G: “hit-obstacle collision type” OR “hit pedestrian collision type”. 

8) Scenario H: “straight street” AND “angle collision type”. 

9) Scenario I: “roundabout”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix D 

List of Safety Function for the KBMS  

 

The list of Safety Functions (SFs) was conceived for the analysis that the experts in the 

field will perform for each road crash scenario. It is divided in seven main functionalities as: 

Crash avoidance or mitigation, PTW Stability managing, etc. aiming to simplify the process 

of classification and elaboration of these functionalities.   

 

Acronyms used: OV (Other Vehicle) and PTW (Powered-Two Wheeler) 

 

Crash avoidance or mitigation 

1. Distribute more properly the braking action on the two wheels even if one brake is 

actioned 

2. Assist the rider to perform a hard braking without falling from the PTW 

3. Anti-stoppie (avoidance of the rear wheel lifting off the ground) 

4. PTW Manoeuver advisor: Brake vs. Swerve (1) 

During risky situations, indicates to the rider the best maneuver to perform: a hard 

straight line braking or evading the obstacle with a soft braking. 

5. OV Manoeuver advisor: Brake vs. Swerve (1) 

During risky situations, indicates to the driver the best maneuver to perform: a hard 

straight line braking or evading the obstacle with a soft braking. 

6. PTW send a signal to Slow/Stop other vehicle (autonomous braking for collision 

avoidance) (2) 

7. OV send a signal to Slow/Stop other vehicle (autonomous braking for collision 

avoidance) (2) 

Remarks: 

(1) requires precise obstacle distance detection and dynamic state of the vehicle 

(2) requires vehicular communication network 

PTW Stability managing 

8. Enhance stability in straight paths 

9. Enhance stability in curved paths 

10. Avoidance of oversteer at high speed. Steering bar with additional and adaptive 

angular stiffness as a function of the velocity 
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Rider protection (injury reduction in a crash) 

11. Head: kinetic energy dissipation element (3) 

12. Neck: kinetic energy dissipation element 

13. Thorax: kinetic energy dissipation element 

14. Abdomen: kinetic energy dissipation element 

15. Limbs: kinetic energy dissipation element 

16. Anti-abrasion 

17. Energy dissipation element placed in the PTW to dissipate vehicle kinetic energy 

during a crash. Case: frontal collision of the PTW 

18. Energy dissipation element placed in the PTW to dissipate rider kinetic energy during 

a crash. Case: frontal collision of the PTW 

19. Energy dissipation element placed in the OV to dissipate vehicle kinetic energy 

during a crash. Case: frontal collision of the PTW 

20. Energy dissipation element placed in the OV to dissipate rider kinetic energy during 

a crash. Case: frontal collision of the PTW 

21. Energy dissipation element placed in the PTW to dissipate vehicle kinetic energy 

during a crash. Case: rear collision of the PTW 

22. Energy dissipation element placed in the PTW to dissipate rider kinetic energy during 

a crash. Case: rear collision of the PTW 

23. Energy dissipation element placed in the OV to dissipate vehicle kinetic energy 

during a crash. Case: rear collision of the PTW 

24. Energy dissipation element placed in the OV to dissipate rider kinetic energy during 

a crash. Case: rear collision of the PTW 

25. Energy dissipation element placed in the PTW to dissipate vehicle kinetic energy 

during a crash. Case: lateral collision of the PTW 

26. Energy dissipation element placed in the PTW to dissipate rider kinetic energy during 

a crash. Case: lateral collision of the PTW 

27. Energy dissipation element placed in the OV to dissipate vehicle kinetic energy 

during a crash. Case: lateral collision of the PTW 

28. Energy dissipation element placed in the OV to dissipate rider kinetic energy during 

a crash. Case: lateral collision of the PTW 

29. Human body confinement (4) 

Remarks: 

(3) It does this by converting the kinetic energy of the shock into another form 

of energy; typically plastic deformation, sound energy and heat which is then 

dissipated 

(4) i.e. Protection system of BMW C1 four-point seat-belt 

Accident prevention 

30. OV - Alert of oncoming PTW (from front) 

31. OV - Alert of oncoming PTW (from rear) 

32. OV - Alert of oncoming PTW (from right side) 

33. OV - Alert of oncoming PTW (from left side) 

34. PTW - Alert of oncoming vehicle (from front) 

35. PTW - Alert of oncoming vehicle (from rear) 

36. PTW - Alert of oncoming vehicle (from right side) 

37. PTW - Alert of oncoming vehicle (from left side) 



 

38. PTW - Pedestrian/cyclist in the path (notification) 

39. Notification of non-correct pressure in the tires 

40. Notification of approaching hazard (i.e. steep decline) 

41. Prevent the crossing of wild animals on the road by means of additional infrastructure 

(e.g. eco-ducts, wildlife corridors) 

Perception augmented 

42. PTW Enhanced vision at night 

43. OV Enhanced vision at night 

44. Improvement of PTW conspicuously (help to the PTW to be seen for others) 

Rescue 

45. Crash signalization. Beacon that help to find the PTW crashed (most useful in rural 

areas) 

46. Emergency call. System uses the cell phone network (or other) to inform the 

coordinates of the accident (GPS position) to the local authorities 

Safe riding/driving 

47. Rider state detection (guarantees a minimum level of alert) 

48. Driver state detection (guarantees a minimum level of alert) 

49. PTW Alcohol interlock 

50. OV Alcohol interlock 

51. PTW - Adaptive to road adherence condition. Change the acceleration and braking 

response of the vehicle according with the level of adherence to the road. 

52. OV - Adaptive to road adherence condition. Change the acceleration and braking 

response of the vehicle according with the level of adherence to the road. 

53. PTW restricts its maximum speed to street top speed 

54. OV restricts its maximum speed to street top speed 

55. PTW Adaptive cruise control 

56. OV Adaptive cruise control 

57. PTW Adaptive speed to traffic speed 

58. OV Adaptive speed to traffic speed 

59. PTW Lane keeping 

60. OV Lane keeping 

61. PTW  autonomous-braking 

62. OV  autonomous-braking 

63. Elimination of blind spot in PTW (side of vehicle) 

64. Elimination of blind spot in OV (side of vehicle) 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix E 

Selection of experts for the assessment  

 

The ‘expert’ is a person with a recognized knowledge on the topic of interest. For the 

KBMS the experts could come from a variety of disciplines (e.g. crash analysis reconstruction, 

crash test analysis, energy absorbers design, traction & braking control, traffic control, 

driver/rider training, injuries assessment, etc.). In order to manage the degree of heterogeneity 

of the sources of knowledge involved, a categorization of the technical background of the 

experts involved in the KBMS was defined (e.g. Biomechanics, Mechanical Engineers, etc.). 

 

The process of recruitment of experts, for the KBMS research, can be summarized by 

fulfilling a set of requirements: 

 

Main activity Research in Vehicle Safety 

Years of experience ≥ 5 

Geographical region of expertise Tuscany, Lazio, Italy 

Background Mechanical Engineer 

Name of best three publications on the 
topic 

Paper #, Tech. Report, Book 
chapter… 

Patents related with the topic Patent … 

Participation in projects Project 1 (tasks performed), … 

Table 17 Expert legitimization table for KBMS assessment (it is filled as an example) 

In this way, it is possible to consider if the applicant could be accepted as a recognizable 

expert for the purpose of the KBMS or not, allowing recognizing bough: academicals and 

industrial experts. 

 

 

 

 

 

 

 

 



 

 

 

Appendix F 

Guidelines for the expert assessment 

 

Defining boundaries to the analysis is vital to help the experts during the process of 

evaluation. I defined the next five directives to this intent based on the statistical results of 

more than one million of motorcycle accidents (ISTAT: 2000-2012 year). 

 

Five directives: 

1. Pessimism, in case of doubts about the potential benefit of a particular safety function 

for a specific crash scenario, the evaluation must be directed towards the less 

effective case. For example, if the scale of this study (Table 2) is used to determine 

the quantity of water in a glass that seems to be half full of water, the queried 

participant must respond without hesitation the score value 2. 

2. Clear visibility conditions during the moment of the crash are assumed. No fog, 

smoke, trees or other external elements of the scenario that can decrease the field of 

view of the rider/driver. 

3. Good weather conditions during the moment of the crash are assumed. Non rain, 

wind-shear, or other less favorable weather conditions. 

4. Correct pavement adherence during the moment of the crash is assumed. No slippery 

conditions or irregularities on the surface of the pavement. 

5. Speeding in urban scenarios is assumed in at least 70%. Motorcyclist’s fault (In-Safe 

database: near to 13 km/h more than the road top limit – 50 or 60km/h in Italian 

roads).  

Note: pedestrians, cyclist and PTWs are not considered as Other Vehicle (OV) in the 

safety function description 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix G 

Technical terminology 

 

In order to retrieving comparatively information from the expert consultation process, 

it is necessary to define a common vocabulary to guide the experts during the traffic accident 

evaluation. Indeed, for some safety functionalities to analyze already exists a safety system 

that can fulfill the requirements, but for others is not the case. The following terms are defined 

as follows in order to offer a common vocabulary to the experts’ ideas during communications 

and workshops: 

 

 Crash mitigation: making the consequence of the crash less severe in terms of people 

injured level. Example: 20% crash mitigation means "in 20% of accidents, the crash 

severity can be reduced". 

 Crash avoidance: preventing the crash from happening. Example: 30% crash 

avoidance means "30% of accidents can be reduced in number". 

 Technology: technical aspects that have made possible the development of a specific 

system.   

 Safety system: specific system in charge of a determinate safety function. Different 

safety systems may use the same technology for accomplishing different objectives. 

For example in cars, the ABS (anti-lock braking system) and the ESP (Electronic 

Stability Programme) are sharing technology. 

 Safety function: unequivocally describes the desired outcome for a safety solution, 

emphasizing in goals regardless the constitutive mechanisms or sub-systems. For 

instance, the safety function of the ABS is to avoid the wheel locking on different 

pavement conditions in order to maximize the deceleration. For the system ESP (for 

cars), the safety function is to ensure that the vehicle follows a trajectory consistent 

with the steering wheel action.  

 Primary safety or Active safety: its main objective is to improve the vehicle safety 

through technology with the aim of preventing or avoiding a vehicle crash (e.g. 

alcohol lock, ABS). 



 

 Secondary safety or Passive safety: systems designed to protect and reduce the risk 

of injury to the rider/driver (e.g. seat belt). 

 Tertiary safety: a concept referred to alerting to rescue services after an accident 

occurrence to provide them the exact location of this event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix H 

Prioritized safety functionalities list (PISa study) 

 

The following lists present the SFs from the most to the less important (43 safety 

solutions assessed). For simplification only the 15 more relevant are presented. 

 

PISa outcome 1:  General ranking of safety functionalities 

 

1) Automatically stop other vehicle without input from driver 

2) Warn other vehicle of PTW presence 

3) Communicate and warn PTW that vehicle travelling from left, right or oncoming is 

crossing PTW's path 

4) Automatically stop PTW without input from rider 

5) Detect and warn PTW that vehicle travelling from left, right or oncoming is 

crossing PTW's path 

6) Improve PTW conspicuity 

7) Avoid locking of wheels 

8) Amplify braking force 

9) Balance front to rear braking force 

10) Warn PTW of traffic signal/pedestrian crossing (status chance from green to red) 

11) Reduce closing speed 

12) Warn PTW leading vehicle slowing/stopping 

13) Protect fallen/rolling rider's body 

14) Restrict PTW to posted speed limit 

15) Help PTW rider to remain upright post impact 

 

PISa outcome 2:  Coarse ranking (contain only the maximum scores) of safety functionalities 

 

1) Warn other vehicle of PTW presence  

2) Automatically stop other vehicle without input from driver  

3) Communicate and warn PTW that vehicle travelling from left, right or oncoming is 

crossing PTW's path 

4) Automatically stop PTW without input from rider 

5) Avoid locking of wheels 

6) Warn PTW of traffic signal/pedestrian crossing (status chance from green to red) 



 

7) Reduce closing speed 

8) Balance front to rear braking force 

9) Warn PTW leading vehicle slowing/stopping 

10) Help PTW rider to remain upright post impact 

11) Detect and warn PTW that vehicle travelling from left, right or oncoming is 

crossing PTW's path 

12) Improve PTW conspicuity 

13) Warn PTW that oncoming vehicle is in the same lane as PTW 

14) Warn PTW rider of diagnostic status of PTW (brake, tire pressure, etc.)  

15) Restrict PTW to posted speed limit 

Remark: only the first 4 safety functionalities are almost matching in type and priority 

order of the safety importance between the previous outcomes. 
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