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Chapter 1

Introduction

1.1 The objective

This PhD thesis deals with the study of new paradigms for exploiting data

obtained from virtual and real digital traces (i.e. from Social Networks,

Location-Based Social Networks, remote sensing and crowd-sourcing, physic

sensors) and human factors (e.g. interests profiling, behavioral aspects such

as movements, voice and contextual information) as a basis for the design

and implementation of innovative infovis technologies, multimedia recom-

mendation and browsing systems, human computer interaction paradigms

in real and virtual spaces, i.e. in online, outdoor and indoor environments.

Primary objectives have been the automatic identification of functional ar-

eas within cities through the analysis of geolocated social media information

and user profiling, and the detection of macro and micro events happening

in urban areas. The analysis on user generated data and the profiling of user

behaviors, actual such as on movements and voice interaction and implicit

or psychological such as on self-esteem and saliency perception have also led

to research on how to exploit human factors to improve recommendations

systems on general purpose and contextual social networks. The same ap-

proach has also been used as regard to real locations in designing smart and

personalized systems to be used in indoor and virtual environments.

1



2 Introduction

1.2 Contributions

New methods for identification of functional areas in cities and for the de-

tection of geo-localized micro and macro-events are described respectively in

Chapter 2 and Chapter 3. Using these results as a basis, personalized recom-

mendation and routing systems as well as immersive browsing interfaces has

been created that could present innovative paradigms of human computer

interaction through original solutions for information visualizations. In par-

ticular it has been developed 1) a framework which exploits user profiling on

social networks and data from mobile device sensors that allows the semi-

automatic recommendation and assisted definition of personalized itineraries,

described in Chapter 4 and 2) a framework for navigating, on the web, im-

mersive urban routes through continuous spherical images transitions, which

allows the fruition of multimedia materials associated to Point-Of-Interests,

described in Chapter 5. These systems exploit, in part, the techniques of

user profiling presented in the first Chapter and provide original solutions

for information visualization. Proposed strategies of recommendation of mul-

timedia material combined with the previously cited user profiling techniques

have then been used also for implementing 1) a recommender which makes an

improvement to standard user and item-based recommendation algorithms,

described in 6. The recommender has been implemented in a Social Network

for video sharing and it is based on content-based techniques for the analysis

of video annotations (the improvement has been achieved through an original

exploitation of human factors, i.e. users’ self-expression in user profiles and

perception of visual saliency in video frames); 2) effective methods of rec-

ommendation and profiling designed for contextual SNs which exploit online

profiling, collaborative filtering and information derived from the context,

see Chapter 7. New ways of recommending, browsing and navigating mul-

timedia content in indoor real and virtual environments relying on context

understanding, behavior and interests profiling, user localization through

portable devices, iBeacon sensors, computer vision, and natural interaction

have been designed and implemented in real applications in original ways.

Insights of these experiences and solutions are given in Chapter 8, 9 10, 11

and 12. Main objectives of these systems were the personalization of con-

tent and the understanding of the user context, preferences and behaviors in

order to provide a more natural and targeted user experience.
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1.3 What are Digital Traces

Physical traces that humans leave on things in the world are everywhere.

They can be visible or imperceptible, left intentionally or unintentionally.

Just think of footprints on a floor, a lost hair in the bed or between the pil-

lows of the couch, or a note that we have written and abandoned somewhere

to remind us of something. As regard to invisible traces, we can consider

the fingerprints that we leave on anything we touch with bare hands. All

these traces are essential information that reveal where we have been, how

we got there, objects we have handled, with whom we have been, and they

can say a lot even with respect to our interests and preferences. This is not

different in the digital world, where it happens on an even larger scale. We

all, aware or unaware, leave hundreds and hundreds of digital traces every

day working at our computers (sending emails, writing blog posts, interact-

ing on social networks through Twitter messages, Facebook status updates,

Youtube videos views and uploads, etc.) or simply carrying around our mo-

bile phones with us and using applications (through logs of device sensor

data such as GPS, accelerometers, camera, microphone etc.). Through these

logs it is possible to extract information that we would assume to be private

and that can instead give detailed insights of our lives, that are revealed un-

intentionally (as it happens for example through the records of website visits

and queries on search engines). Digital traces can be defined as metadata,

i.e. data that describe the content itself so that its semantic value can be

contextualized. Whether we consider the metadata produced using our per-

sonal devices, for example by writing a message on a social network that can

be enriched through geolocation, timestamp, messages content analysis; or

those that identify our actions captured by external devices, such as a video-

surveillance camera, or by worn sensor in a precise environment (e.g. exploit-

ing localization, user attention and preference estimation through computer

vision, voice recognition, activity detection), all these are information that

have to do a lot with who we are, how we represent ourselves in online or

virtual worlds or that just reveal what we are doing and how we act in public.

Today much of our activities, professional and private, are mediated by

information systems. This means that the massive amount of digital foot-

prints that are produced can be used to gain insights on people behaviors

and to adapt technologies to personal preferences and needs. This can be

done both at the macroscopic and microscopic level and using the differ-
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ent paradigms in which digital technologies can be exploited, i.e. in online,

outdoor, indoor or virtual environments. With macroscopic level we mean,

for example, to process big amounts of user-generated information on social

networks in order to understand social and urban dynamics, or to detect and

to predict events that could be of interest for the community itself or, for

example, for city planners. With microscopic level instead we reference all

those systems for the fruition and recommendation of content that take into

account personal traces and are directed specifically to the use of individ-

uals in ‘spaces’. In this context a new breed of interactive systems can be

designed that can help to bridge the gap between users of applications, the

multimedia content and the world itself where users move in. These systems

can be used through our personal devices in online environments, where our

digital representations are nowadays the mirror of the real ones (think about

our social network profiles), but also in outdoor and indoor environments

for knowledge augmentation, or exploiting new technologies such as virtual

reality systems and natural interaction. An important part of this thesis is

the investigation of how digital traces can be exploited at their best con-

sidering at the same time user preferences, behaviors, the context of use of

technologies and their objectives, that can be of the most varied. Human

factors are in fact related to the context of use and come into play on a

personal and social level when people use digital systems. Through several

examples it is demonstrated how user interests, perception, self-esteem, user

status and conditions, contextual needs in particular domains and located

situations, can be a mean to better characterize digital traces and to im-

prove digital systems in terms of targeted services, usability of applications

and users expectations.

1.4 Summary

This thesis has 12 chapters, which are briefly summarized below. Chap-

ter 2 and 3 are dedicated to the exploitation of large amount of personal

data from social networks to extract knowledge that can be valuable, at the

macroscopic level, to have insights on urban dynamics.

Chapter 2 presents a system for the automatic detection of functional areas

in cities using geolocated data from Facebook. The main idea is to character-

ize points of interests in urban areas through the analysis of profiles of people
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who have been in those POIs (i.e. restaurants, theaters, cinemas, gardens,

public buildings and so on). It is demonstrated how this technique for feature

selection improves the detection and gives better insights on activities that

take place in POIs compared to standard approaches. A recommendation

system for outdoor urban exploration that benefits from these results is also

presented.

Chapter 3 proposes a method for geolocated event detection in urban ar-

eas exploiting personal messages on Twitter. The method was designed to

provide a tool that could be exploited and lightweight enough for identify-

ing and predicting events by realtime systems. Recommendation systems of

events in outdoor scenarios may profitably use this method.

In Chapter 4 an application for semi-automatic recommendation of itineraries

and for itinerary planning in urban scenarios is described. The Chapter sug-

gests some techniques of user profiling from social networks and through

mobile device sensors that can be used to improve POIs recommendation

and content personalization with respect to traditional approaches.

To conclude the part dedicated to technologies exploitable for improving

HCI interfaces for outdoor environments Chapter 5 presents a multime-

dia system that allows to experience an urban itinerary remotely. The App

provides an immersive interface and it was conceived with the aim of im-

plementing a system based on spherical images that would allow fluid and

lightweight navigation and provide an innovative paradigm for the fruition

of geo-located multimedia content.

Chapter 6 and Chapter 7 deal with the exploitation of personal data and

human factors in order to create personal recommendations in virtual com-

munities. Compared to the macroscopic level of Chapter 6 which tackles

themes related to recommendations on general purpose online communities,

Chapter 7 is more focused and the scope of investigation is targeted to the

specificity of a contextual social network, i.e. an online environment that

can be accessed only in a specific place.

In details, Chapter 6 proposes a method of recommendation on a video

sharing platform that takes into account, in particular, perception and de-

sire of self-representation in order to improve user tagging and video content

representation.

Chapter 7 moves the attention to the context in which a virtual commu-

nity can grow (i.e. it is a social network designed for an airport area) and

factors related to the site and the specific purpose of the application. Hints
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are given on which elements (preferences on social networks, collaborative

filtering, user behaviors) can be exploited and how in order to improve user

profiling, recommendation of other users and resources, and fruition of mul-

timedia content. Results are generalizable and applicable to other similar

contextual situations.

Chapter 8 introduces the theme of smart personal mobile applications that

can be used inside real environments and that allow to establish a profitable

dialogue between the digital content and the real space. This is achieved

on the one hand through the understanding of user behavior, on the other,

through paradigms that exploit human factors to improve engagement and

interaction. In Chapter 8 digital signals generated by users in a contextual

environment are exploited in order to improve and propose innovative routing

and multimedia content systems. In particular, it is presented a framework

based on iBeacon sensors for localization and routing of users in indoor mu-

seum environments. Localization is provided through sensors which trigger

advertisements on an ad hoc mobile application that provides routing and

multimedia insights on museum artworks. The system demonstrates how

passive localization of users can be a very valuable tool for understanding

their interests and adapting digital applications to their needs.

Chapter 9 presents a mobile application developed for the Museo Nove-

cento in Florence. The app exemplifies how advanced techniques of com-

puter vision exploited in contextual situations can be effective in providing

personalization of the experience. Motivations of self-presentation and visi-

tors’ desire in sharing of activities, in fact, constitute human needs that can

be satisfied by reducing the gap between personal experience and knowledge

representation, feasible nowadays with the help of new technologies. The

application allows transfer of style between artwork and user generated con-

tent. This feature is proved to improve visitor satisfaction and to increase

system performance.

Chapter 10 concludes the subject of smart and adaptive applications for

contextual environments by extending the concept of user profiling to the

analysis of the user’s interaction and behavior in the environment itself. In

particular, it describes the design and implementation of an audio-guide de-

ployed on a wearable embedded system that understands the interests of

the user providing, at the same time, detection and automatic recognition

of artworks within a museum. The profiling is achieved by analyzing user

behavior and human factors deductible in real-time through estimates of
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interests based on user proximity and direction, movements, and context

understanding. Detection of situations such as occlusions and distractions

are inferred through these analysis.

The final two Chapters, 11 and 12, deal with the last of the environments,

i.e. the space of virtual reality that can be experienced through new digital

technologies. One peculiar need that is being addressed is how the user can

experience virtual worlds through a gestural, natural and human friendly in-

terface. Chapter 11 presents a demo application through which innovative

methods for interaction and locomotion have been studied and assessed in a

virtual museum. Chapter 12 addresses the more specific subject of voice

interaction. Voice interaction is a digital trace poorly exploited in human

computer interaction systems although research on voice recognition systems

is quite popular. The Chapter point-out which are the issues currently still

open for its adoption in real systems, and proposes paradigms and strategies

of use that could be useful especially for certain categories of users, such

as people with motor disabilities who otherwise would not be able to visit

certain places.

Given the variety of topics discussed and the different HCI systems de-

scribed in the thesis, although all designed with the aim to provide profiling

solutions for the improvement of adaptability and personalization in user

interfaces, related work is provided in the context of each Chapter.
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Chapter 2

The Role of User Profiling in

Detecting Functional Areas in

Cities

It would be very difficult even for a resident to characterize the

social dynamics of a city and to reveal to foreigners the evolv-

ing activity patterns which occur in its various areas. To address

this problem, however, large amount of data produced by location-

based social networks (LBSNs) can be exploited and combined

effectively with techniques of user profiling. The key idea intro-

duced in this Chapter is to improve city areas and venues clas-

sification using semantics extracted both from places and from

the online profiles of people who frequent those places. Results

of this methodology are presented in LiveCities (see Appendix 1),

a web application which shows the hidden character of several

italian cities through clustering and information visualisations

paradigms. In particular in-depth insights are given for the city

of Florence, IT, for which the majority of the data in the dataset

have been collected. The system provides personal recommen-

dation of areas and venues matching user interests and allows

the free exploration of urban social dynamics in terms of people

lifestyle, business, demographics, transport etc. with the objective

to uncover the real ‘pulse’ of the city. We conducted a qualitative

validation through an online questionnaire with 28 residents of

9
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Florence to understand the shared perception of city areas by its

inhabitants and to check if their mental maps align to our results.

Our evaluation shows how considering also contextual semantics

like people profiles of interests in venues categorisation can im-

prove clustering algorithms and give good insights of the endemic

characteristics and behaviours of the detected areas. 1

2.1 Introduction

An analysis capable to convey to a realistic and truthful representation of

a city and of the activities that take place in its areas must necessarily

take into account not only human mobility but also users’ socio-economic

characteristics and interests distribution. Emerging social realtime systems

offer an opportunity for the computation in the field of spatial data mining

due to the huge amount of geo-localised data they continuously produce and

that can be considered real human sensor data.

There exist a considerable number of works addressing geographical mod-

elling of information derived from widespread LBSNs like Twitter and Foursquare.

Some recent studies analyse social media streams to obtain contextual se-

mantics for city zones and venues whilst others focus more on human mo-

bility. In [67] user’s positions are observed predicting the locations of new

tweets. A sparse modelling approach is exploited which uses global, regional

and user dependant topics and terms distribution in order to geo-reference

topics on areas. Resources detected from geo-localised Twitter messages are

also utilized to infer transient representation of volatile events happening at

venues in [21]. Foursquare places categories are used to create footprints

of areas and users in [111] by means of spectral clustering. On the other

hand, as regard to more focused works on urban computing, in [26] check-

ins are used to understand mobility patterns and how these are influenced

by users’ social status, sentiment and geographic constraints. In the Live-

hoods project Cranshaw et al. [31] cluster Foursquare venues using spatial

and social proximity introducing a new user-based ‘bag-of-chekins’ similar-

ity algorithm. Although their approach is effective in capturing the social

dynamics of cities according to people movements, it is completely lacking

1This Chapter has been previously published as “User Profiling for Urban Comput-

ing: Enriching Social Network Trace Data” in Proceedings of the 3rd ACM Multimedia

Workshop on Geotagging and Its Applications in Multimedia, 2014 [55].
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in considering who those people are and which are their motivations.

The key idea that is proposed in LiveCities instead is that city venues

are characterizable both by static features, i.e. categories assigned by LB-

SNs on the basis of their type of service, and by dynamic features, i.e. the

distribution of the interests of the people who checked-in there, which can

change over time. To accomplish this we extract users’ profiles of inter-

ests and users’ geo-localised media automatically from Facebook, then we

categorize detected venues using Foursquare APIs and, finally, we weights

these features on the basis of semantic similarities and interests distribution.

The main contribution of this Chapter is to present a clustering module for

city areas identification and classification based on an innovative features

selection approach and to show the web application developed for clusters

visualization and venues recommendation.

2.2 The System

2.2.1 Dataset

Through a Facebook app we have collected and gained access to 8839 user

profiles, from which we extracted 124790 checkins and identified 52767 venues.

Location information is available on Facebook from 2010. Facebook Places

started out as a mobile application for people to check into business loca-

tions, then it was integrated in Facebook featuring a location tagging tool.

People on Facebook can tag specific locations in status updates, image posts,

or video posts. Others members can also tag their Facebook friends in spe-

cific locations within their updates and posts. Since the most part of the

people registered in the application is resident of Florence and its surround-

ings we chose to conduct our evaluation on this city. The data used for the

tests consists of 24031 check-ins and 5321 venues in Florence. Considered

that Florence population counted 366443 in January 20132 this is a large

amount of information. Places were identified in updates, post and events

in which the users participated and photographs they were tagged in. Each

place has been categorised using the Foursquare API to assign a static la-

bel representing the venue’s macro-category. As for profiling, users’ interests

were extracted by retrieving the categories of Facebook pages for which users

expressed a ‘like’. There are total 398884 ‘likes’ distributed in 216 Facebook

2http://demo.istat.it/bilmens2013gen/index.html. Istat data, January 2013

http://demo.istat.it/bilmens2013gen/index.html
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Figure 2.1: LiveCities clusters visualization of Florence, IT. The figure shows

a comparison between the clustering visualization based on Foursquare cat-

egories and the results of our methodology that considers people interest

distribution (Socially aware clustering).

categories. User’s data is the main reason for which we chose the Facebook

APIs to build our dataset instead of the Foursquare or Twitter APIs, com-

monly used by works in the field [120] [21] [67] [31] [26]. In this respect we

can say that Facebook offers, in addition to check-ins data, a higher degree

of contextual awareness and an ‘environment’ exploitable to enrich check-ins

semantics.

2.2.2 Clustering module

LiveCities uses k -means clustering to partition the venues dataset into k

groups. We run the algorithm on the features selected on the basis of the

main idea of this work that people semantics and semantic distances can be

exploited to refine places categorisation. Clustering was performed for each

city with similarity distances based on different features:

• Geographic: latitude and longitude;

• Foursquare based: latitude, longitude, Foursquare venue’s category;

• Socially aware: latitude, longitude, Foursquare venue’s category, a

weighted vector of interests of the users who checked-in.
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These three modalities of features selection have been essential in order

to conduct the evaluation and to measure the improvements of our approach

(i.e. socially aware). One of the very first problem we have to tackle in

our data is that Facebook ‘likes’ categories show an unbalanced distribution.

The reason is that some interests like “music” or “sport” are more commonly

shared between users than others and that Facebook pages in these categories

are more widespread.

To solve this issue, we calculate the weight of a category of ‘likes’ on a

venue considering three factors: 1) percentage of ‘likes’ in each category for

all the people who checked-in, 2) probability of a generic ‘like’ to belong to a

category, 3) semantic distance between each ‘likes’ category and the assigned

Foursquare category. Formally, supposing we have a vector F of iF Facebook

places and also a set of L users’ ‘likes’ for each venue, denoting as c a ‘likes’

category, we can compute the weight w for each c ∈ iF as follows:

w(c, iF ) = percentage(c, iF ) · log10

(
10

P (c)

)
· correlation(c, iF )

The function uses de facto a TF-IDF approach. With P (c) we mean the

probability in 2) calculated and normalised on the basis of the distribution of

the category ‘likes’ in all the dataset ‘likes’. The correlation function instead

uses a semantic distance to compute the affinity between ‘likes’ categories

and the Foursquare venues. Distances are pre-calculated and obtained using

the Wikipedia Link-based Measure (WLM) by Milne et al. [158]. WLM is

a measure for the estimation of the semantic relatedness of two Wikipedia

articles through the comparison of their links. In our dataset there is a total

number of 216 Facebook categories for pages and 397 types of Foursquare

venues, this means that it was necessary to calculate 85752 correlations. To

accomplish this, every resource (Facebook category or venue type) has been

associated to a corresponding Wikipedia article. We experimented two ap-

proaches: 1) manual association, 2) using the MediaWiki API to retrieve

possible articles’ matching titles and filtering the results using Latent Se-

mantic Analysis (LSA). Both gave almost the same accuracy. There are two

version of the WLM algorithm, the first considers in-bound links and is mod-

eled after the Normalized Google Distance, and the other uses out-bounds

links and is defined by the angle between the vectors of the links found

within the two articles calculated with the cosine similarity. In LiveCities

we re-implemented the algorithm in the latter version because less compu-

tationally expensive. To improve the correlation measure, we also observed
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that when two resources have an high semantic relatedness, often one of the

two article contains a link to the other. When this condition occurs, we add

a bonus to the correlation value.

2.2.3 User interface, personalization and recommenda-

tion

LiveCities features a web application based on the principles behind visual

analytics for dynamically exploring time-varying, localised and multivari-

ate attribute data relative to city venues and venues customers. LiveCities

provides a map based interface and exposes advanced visual components in-

tended to maximise 1) explorative data analysis and 2) service targeting and

personalisation.

The application provides two main views, a search view and a clusters

view. The search view has been designed as a traditional geographic search

interface for venues and it allows users to efficiently filter data by categories

or by people interests on the map. The cluster view instead visualises the

results of the k -means algorithm. There are three types of visualisation on

the basis of three different features selections: 1) geographic, 2) Foursquare-

based, 3) socially aware (our approach which takes into account people in-

terests and semantic distances), cfr. Fig. 2.1. Clusters can be visualized as

typed squared icons or as set of points. The squared based visualisation uses

icons as representative of the ‘centers of mass’ of the detected clusters and

allows a less bulky visual access to the information, whilst the points based

view show on the map all the venues in the dataset.

Clusters are characterised by different colors, each one corresponding to

9 general Foursquare categories. Points transparency is directly proportional

to the computed semantic affinity of the venue category to the cluster clas-

sification. In this way colour information is exploited in order to effectively

depict points distribution per cluster. Clusters boundaries are visualized on

user interaction hovering with the mouse over the map, and are calculated

using the convex hull algorithm. Users can have statistic insights on clusters

and venues through an interactive tooltip, cfr. Fig. 2.2. In particular clus-

ter’s insights present the histogram of venues categories in the cluster and, for

each column, the actual geo-referenced venue’s place. Venue’s insights show

the distribution of interests of people who checked-in and provide address

details and routing. Stars (from 1 to 3) on columns and venues represent

recommended resources. LiveCities provides Facebook Login and it profiles
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Figure 2.2: 1) Insights of a cluster, showing the histogram of venues cate-

gories and 2) the distribution of people interests on a venue.

users evaluating their Facebook ‘likes’ on pages, obtained with the Facebook

APIs. Recommendation of areas and venues in LiveCities tries to maximise

an objective function

max
p∈places

f(p, logged user)

The f estimates the correlation between the user profile of interests and

the characteristics of city areas and venues. The semantic relatedness is

computed using the WLM measure and weighting suggestions on the basis

of users affinity with area’s categories and individual venues.

2.3 Results and evaluation

A preliminary estimation of the results has been conducted for the city of

Florence comparing outputs from the three different clustering procedures.

We created an online questionnaire with the intent of receiving feedback

from city residents about how they perceive the different areas of the city.

The questionnaire shows users a map of the city, divided into 15 numbered
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cells. For each cell, we asked the users to assign labels, according to their

mental maps, selecting up to three different categories among those used by

LiveCities. We collected answers from 28 users, among 20 and 56 years old

and for the most part affirming to have sufficient, good or excellent knowl-

edge of the city (only 4% of the interviewed declared to have an insufficient

knowledge). Since clusters shapes are irregular, a single cell can comprehend

one or more clusters. On this basis we evaluate how interviewed people la-

beling of city areas aligns with detected clusters measuring the displacement

in the weights of its venues categories. Let An be the area of predefined

cells adopted in the questionnaire, with n ∈ [1, 15], we consider the set of

clusters OCn that have some overlapped area with An. Formally, for each

geographical cluster Ci with i ∈ [1,K], where K is the number of output

clusters of k -means algorithm, Ci ∈ OCn only if An ∩ Ci 6= ∅. Clusters

are described with a multi-dimensional vector formed by weights wcat for

every category of the system, with 0 ≤ wcat ≤ 1. We define the vector that

describe OCn by computing mean values of the clusters contained in OCn.

We use the data obtained by the questionnaire, represented as a vector of

categories weights for every area An, as testing data. We can so calculate

the Mean Squared Error (MSE) between the expected values (weights in

An) and the predicted values (weights in OCn). As an example, figure 2.3

shows intra-categories MSE of each of the three clustering methods for the

cell A14. We repeat those steps for every n in order to obtain a global MSE

of every clustering method (i.e. geographical, foursquare based and socially

aware). The results are the following:

MSEgeo 0.059

MSEfoursquare 0.062

MSEsocial 0.046

Results show that the MSE in the socially aware clustering approach is

lower than with the other ones. Even if the conducted study is still prelimi-

nary, results may suggest that our method tend to reflect more correctly the

perception that inhabitants have about the characteristics of city areas.

2.4 Conclusions

LiveCities is a web application designed to provide users with a dynamic

view of the social patterns characterizing city areas and to facilitate resi-

dent and visitors in finding places and zones likely to be of interest. Urban
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Figure 2.3: Comparison of the MSE in every category for each clustering

approach in a case study area of the city.

computation can have a lot of applications, from marketing to trade area

analysis, buildings design, urban planning, demographics, entertainments,

or simply citizens’ life practice. LiveCities offers pictorial depictions of cities

and exploits information visualization techniques in order to shed new light

on cities inner workings and on the relationship between people and the en-

vironments which they inhabit. In turn it can help to reveal the real ‘fabric’

cities are woven out. In this Chapter it is shown an innovative methodol-

ogy for features selection and clustering. K -means is used in order to group

venues on the basis both of topological and sociological features. With so-

ciological features we mean that venues are somehow representable not only

by their static category assigned by LBSNs but also by the ‘bag-of-interests’

of the people who checked-in. We also presented the web interface as well

as the recommendation and personalisation module. Finally a preliminary
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evaluation has been conducted through an online questionnaire. Results are

encouraging and show that our approach deserves to be deepened and that

LiveCities can be an useful web tool to suggest to users how to enjoy the

best of the places in which they live.



Chapter 3

Geolocated Events Detection in

Twitter Data

This Chapter presents a system for the detection and validation

of macro and micro-events in cities (e.g. concerts, business meet-

ings, car accidents) through the analysis of geolocalized messages

from Twitter. A simple but effective method is proposed for un-

known event detection designed to alleviate computational issues

in traditional approaches. The method is exploited by a web in-

terface that in addition to visualizing the results of the automatic

computation exposes interactive tools to inspect, validate the data

and refine the processing pipeline. Researchers can exploit the

web application for the rapid creation of macro and micro-events

datasets of geolocalized messages currently unavailable and needed

to perform accurate supervised events classification on Twitter.

The system has been evaluated in terms of precision. 1

3.1 Introduction

Social networking sites such as Twitter have become platforms where people

communicate and share knowledge on a daily basis through text messages,

photos, videos. This huge amount of social data produced by participatory

1This Chapter has been previously published as “Separating the Wheat from the Chaff:

Events Detection in Twitter Data” in Proceedings of the Content-based Multimedia In-

dexing International Workshop (CBMI 2017) [49].

19
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and crowd-generated sensing represent an opportunity to extract knowledge

and give valuable insights on urban dynamics. The flow of information from

Twitter is realtime, covers diverse topics and can describe actual events.

These events can even be quite small such as parties, companies’ presenta-

tions, road accidents and so on. Well-established networking mechanisms

can improve the information gain through the analysis of this flow’s dynam-

ics. Number of messages in time, social reactions such as likes, retweets

and direct replies, geolocation along with multimedia features can be pro-

cessed in order to detect the occurrences of events using statistical models.

In November, 2016 Twitter counted 317 active millions users. Roughly 80%

of these users access the platform through a mobile device and about 2%

of them choose to share their GPS location. This is a small percentage but

nevertheless it is a large number of people who produce significant contex-

tual information, especially in densely populated urban areas.

In this Chapter a method for unknown event detection is proposed which

relies on this geolocated data. The method uses a lightweight statistical

approach and can alleviate common issues on this subject related to com-

putational cost and systems scalability. Most of the works in the literature

exploit content-based unsupervised approaches for event detection with a

considerable computational complexity (see Sec.3.2). The huge amount of

text streams to be processed in realtime, the sparsity of geolocalized data

and the noisy nature of Twitter messages are some of the main obstacles

researchers have to cope with. These issues make often unfeasible an imple-

mentation in a real system.

In this Chapter we describe a method based on geographic spatial grids

and implemented in a processing pipeline, explained in Sec. 3.3, which com-

bines several algorithms for statistical analysis without exploiting mining

techniques highly computationally intensive. The approach focuses on the

analysis of temporal and spatial characteristics of tweets distributions in or-

der to detect abnormalities and accumulations. The method can be effective

for macro and micro-events detection as it accounts for the historical time

series in terms of volumes and density of data. Supervised approaches can

of course perform better but they may require an hard and time consuming

work for tweets discovery and labeling not feasible for unspecified events. In

order to support supervise classification, our method has been implemented

in a web interface which provides researchers with tools to validate and cat-
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egorize events automatically discovered by the system and to store them in

datasets of geolocated tweets. To the best of our knowledge, there are no

datasets of Twitter macro and micro-events available to researchers which

contain exclusively geolocated data and cover diverse topics. Sec. 3.5 reports

the result of an evaluation of our system in building a dataset of events with

geolocated messages published in London and New York.

3.2 Related Work

Previous studies have addressed the problem of detecting events in social

data and specifically on Twitter through the identification of abnormalities

in its temporal flow. Exploited features are mainly frequency and density

of terms, hashtags, named entities, reactions, emoticons. All these works

use a variety of techniques ranging from K-means clustering, SVM, gradient

boosted decision trees to generative language models and temporal query

expansion [11,95,97,118,128].

Wang et al. [154] improve clustering quality enriching Twitter messages

with term expansion on Wordnet. Generative models and statistical clus-

tering on textual data from Twitter has been used more recently in [153]

and [85]. Nguyen et al. [108] consider keyword occurrences (Occurence-

Score) over time, number of participants involved (Diffusion-Degree) and

speed of information spread (Diffusion-Sensitivity) to calculate the probabil-

ity that an event occurred on the basis of term score distribution. Hierarchi-

cal clustering of terms and Wordnet expansion have been used in [147] for

emerging event detection. The authors observe changes in events’ popularity

defined as number of messages in events clusters. Irregularities in the rate

of messages are exploited in [121] and in [61] where also location and topical

clustering is performed. As regard to applications, closest to our work is

the CityBeat [163] system which detects abnormal signals combining time

series and classification methods based on spatial, meta, textual and histor-

ical features. The main issue with existing approaches on event detection

from tweets is mainly the computational cost of extracting and elaborating

a lot of features. Twitter messages are composed by very small sentences

filled with mispelled words, hashtags, symbols, urls that need to be cleaned

and normalized. This noisy realtime data is huge and not easily manageable

from a computational point of view. Studies such as [85, 108, 153, 154] aim

to function in real-time on all this data but their performance is poor in
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terms of processing time and system scalability. Furthermore performances

are evaluated only on small corpora or not evaluated at all.

For addressing these challenges, we propose a processing pipeline designed

keeping in mind that an event occurs in time and space. From our per-

spective, in order to reduce processing time and implement algorithms in

a usable tool it is feasible to reverse common approaches and to take into

account exclusively geolocated data. This may be regarded as a limit but

we think it is definitely a plus for the main objective of our system which

is the implementation of a method for the detection of geolocalized macro

and micro-events exploited by a tool for events datasets creation. In fact,

this choice 1) decreases false positives; 2) filters the information reducing the

amount of data to be processed; 3) allows the rapid creation of datasets of

events through our tool, that otherwise would require a considerable amount

of work for searching and inspecting the Twitter knowledge-base.

Our pipeline combines some algorithms and techniques, explained in Sec. 3.3

and is implemented in a web system. The system provides an exploratory in-

terface which allows to refine and improve the detection adjusting the spatial

and temporal parameters exploited by the algorithms, allowing a fine-grained

analysis which works on subsets of data. The main outcome of this work is

the design and implementation of a lightweight and configurable system for

1) the semi-automatic detection of macro and micro-events of urban geo-

data extracted from Twitter (see Sec. 3.3) and 2) the easily creation and

management of datasets of micro-events, currently unavailable for research

studies on Twitter data2.

3.3 Detection and Mining

The proposed processing pipeline used in the system contemplates three

main steps: a) tweets extraction; b) abnormalities detection; c) mining and

visualization.

Tweets extraction tweets are extracted daily through the Twitter API

using the Java library twitter4j 3 and stored in a mySQL database for post-

processing.

2Video available at https://vimeo.com/miccunifi/twitter-events-detection
3http://twitter4j.org/en

https://vimeo.com/miccunifi/twitter-events-detection
http://twitter4j.org/en
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Abnormalities detection we use a grid-based method to analyze all the

geo-referenced data in a certain urban area. The area is divided arbitrarily

in cells of predefined dimensions. Tweets in each cell of the grid are analyzed

with our method which combines temporal and spatial density analysis. The

idea of the method is to firstly divide tweets spatially into a grid, then to

use time series analysis (exploiting DTW and Crest Detection) to detect

anomalies in the volume of tweets of the cell, and finally exploit spatial

clustering to infer a possible event from anomalies. For each cell c, we create

a time series V containing the number of unique users per hour who have

published at least a geolocated tweet in the cell c. We define a time interval

T (e.g. 24 hours), and we divide the initial time series V in windows of

size T obtaining a set of time series Vi, with i ∈ [0, Nwindows]. We then

compute the average time series V . On this basis we perform our method

for abnormalities and event detection which consists in a pipeline of three

core algorithms described below:

1. DTW Dynamic Time Warping is an algorithm which allows to measure

the similarity and the distance between two time-series. DTW is widely

adopted in information retrieval to cope with deformations of time-dependent

data [134]. For each time window i, we compute the DTW distance between

the time series Vi and the average time series V , obtaining a measure of

distance di. To detect windows of time where the distribution of tweets is

unusual, we consider the average of the distance d and the standard deviation

σd. All the time series for which di > d + σd or di < d + σd are considered

as abnormalities and sent to the step 2 (Crest Detection).

2. Crest-detection is an algorithm which uses peaks windowing in order to

detect anomalies in data distribution. We consider the time series marked as

abnormal in step 1. For each time-step t, t ∈ [0, T ], we compare the values

of unique tweetters in that hour v(t) with the values of the time series in a

temporal interval of size Γt that precedes and follows t. A peak is detected

at time t if v(t) >
∑
j=1,..,Γt

v(t − j) + ε and v(t) >
∑
j=1,..,Γt

v(t + j) + ε.

Values of Γt and ε are set to 2 as default (customizable through the interface,

see Sec. 3.4)

3. DBSCAN Density-based spatial clustering of Applications with Noise [42]

is a data clustering algorithm that given a set of point in the space groups

together the points that are closer in the distribution. The algorithm di-

vides the points (i.e. tweets with lat, lng) in ‘core points’, ‘border points’
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and ‘noise points’. A point p is a ‘core point’ if at least a minimum number

minPts of points are comprised in a distance ε and are directly reachable

from p. Mutually density-connected ‘core points’ form a cluster. A point

q is a‘border point’ part of the cluster if a path exists between p and q so

that all the ‘core points’ in the cluster are density-reachable from any point

of the cluster itself. All the other not reachable points are considered ‘noise

points’. An event is proposed by the system if at least one cluster is detected

by DBSCAN for the tweets posted during the temporal interval of the peaks

detected in step 2. As default the system sets ε = 5 meters and minPts = 3

(customizable using the interface).

Mining and visualization Once the event clusters has been identified

by the DBSCAN algorithm, the event is visualized on the web interface

and positioned in its center of mass with respect to the geolocalization of

each tweet (see Sec. 3.4). Text mining is performed on the tweets that

are part of the cluster in order to show content features of the detected

event. We extract: I) most frequent words; II) hashtags; III) named entities

(i.e. timestamps, names of persons and organizations, places); IV) attached

photos and videos; V) part-of-speech tagging. Visualization of metadata and

related multimedia material is essential in order to help users in verifying

the correctness of the event detection and to build categorized datasets.

3.4 The Web Interface

The Web Interface (a video reference is available in Appendix 2) has been

developed in Java and deployed as a servlet in a Tomcat container 4. The in-

terface has been designed with the main goal to visualize on a map the results

of the automatic event detection pipeline described in Sec. 3.3. Furthermore,

the web system exposes semi-automatic tools which may help researchers to

tune the exploited algorithms in order to improve the event detection. Not

least, the system allows the creation of datasets of events from Twitter.

The interface provides two main views (see Fig. 3.1), both map-based 5,

with two different access levels: 1) the visualization view shows on the map

the events automatically detected by the system; 2) the validation view al-

lows an authorized user to confirm (or not) the correctness of the detection

4http://tomcat.apache.org/
5Interactive maps are provided using http://leafletjs.com/

http://tomcat.apache.org/
http://leafletjs.com/
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and to customize the search. In the visualization view each event is repre-

sented by a marker that can have three color: blue, red and green. Blue pins

are the events detected by the algorithm but still not validated by a human;

red and green pins instead are events respectively misclassified or correctly

classified as confirmed by a user. The user can search and zoom the map and

define a temporal range for the visualization of events detected by the algo-

rithm with the defaults parameters. Each marker can be activated in order

to open an info-box window which shows the data and metadata associated

with the event: the hour, the category and all the extracted features (tweets,

word occurrences, related multimedia, named entities, POS tagging). Au-

thorized users can access the editing and validation view. The view shows

a transparent grid super-imposed on the geographic area of interest. The

dimensions of the cells of the grid are predefined and the grid is positioned

arbitrarily to cover all the geolocalized tweets published in a configurable

radius. The user can select a cell, as shown in Fig. 3.1, in order to show

an info-box where all the events detected in that area can be inspected.

In this modal interface the user is also provided with advanced graphical

widgets through which he can adjust the several parameters used by the

algorithms. Hence, the computation can be started again asynchronously

in order to discover events previously not detected by the algorithm with

the default parameters. Configurable parameters are: 1) the position and

the dimensions of the grid cell (Fig 3.2.1); 2) the time interval of the event

detection; 3) the time period and/or periodicity over which to calculate the

average and the standard deviation of the DTW distances for the cell; 4) the

threshold value over the average plus the standard deviation beyond which

the system reports an abnormality; 5) the time window and the ε used in

the crest-detection algorithm (Fig. 3.3); 6) the minPts and the ε used by

the DBSCAN algorithm for the identification of clusters of tweets on the

peaks detected by the Crest Detection algorithm (Fig. 3.2.2). The flexibility

provided by the system in tuning parameters as well as the configurability of

spatial cells dimensions, density and time intervals allow the system to work

in realtime on subsets of data with good performance. Furthermore, the

choice between periodicity and/or temporal continuity for the computation

of historical data can improve the search. In general big events tend to be

periodical (e.g. football games are usually played every two weeks) and an

abnormality could be detected comparing, for example, the time series of the

day to the time series of the last ten days. On the contrary, a micro-event
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Figure 3.1: The two main views of the system: 1. Visualization. 2. Editing

and Validation

such as a small company meeting can increase the number of tweets in a

certain day with respect to a periodicity average (e.g. every Thursday) but

not in a continuous time interval.

3.5 Evaluation

To evaluate the detection accuracy of our system we manually validated the

events automatically discovered between March 31 and April 9, 2016. The

tweets published in the city centers of two big cities in these ten days, London

and New York, were analyzed. This time period was chosen since the interval
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Figure 3.2: In 3.2.1: the draggable and resizable widget to select a specific

area on the map. In 3.2.2: ε and minPts of DBSCAN can be defined

dragging the circles’ circumference on a distribution of points.

Figure 3.3: Time series of Twitter users who published geolocalized posts in

Trafalgar Square, London, on 2016, April 1. The system detected 4 events at

7am, 11am, 2pm and 7 pm. ε and time interval can be changed interactively

resizing the gray rectangle on the time series plot.

registered the highest number of tweets in the year. In details 17176 users

published 44932 tweets in London, while 17378 users published 43186 tweets

in New York provided with geolocalization. The system detected a total
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of 1240 events, 340 in London and 900 in New York using the algorithms

with default parameters. The significant difference in the events’ count is

probably due to the diversity in population density in the two city centers

(30000/km2 in Manhattan and between 10.000/km2 and 15.000/km2 in the

central districts of London). The overall error rate of the classification was

0.43 with 190 confirmed events in London and 516 in New York. This is a

very good result in terms of precision, not far from state-of-the-art supervised

approaches for event detection which range from 0.64 to 0.85 [61]. Results of

a recent method following a more similar approach on geolocated tweets and

Instagram photos [121] achieved a precision of just 0.20. The recall of the

system has not been computed due to the unavailability of Twitter annotated

datasets of macro and micro-events provided with geolocated messages.

3.6 Conclusion

In this Chapter we have presented a lightweight method for the automatic

detection of unknown macro and micro-events exploiting geolocalized data

from Twitter. The system uses a combination of algorithms to discover

possible events using a pure statistical approach. The method is exploited

by a web system which helps researchers in building datasets of geolocalized

events. Default parameters of the algorithms can be changed on the fly in or-

der to refine the detection and to validate and categorize the events proposed.

These data can be useful to other researchers for improving supervised event

detection and classification techniques on Twitter messages.
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Chapter 4

Recommending personal

itineraries in outdoor scenarios

through a mobile application

Roadie is a mobile application for the planning and the recom-

mendation of tourism routes in cities. Recommendation is achieved

profiling users in a semi-automatic way via social network anal-

ysis and profile curation, and by monitoring user activity analyz-

ing data coming from devices’ physical sensors. Routes consist

of several POIs (Point Of Interests) that can be automatically or

manually enriched with geo-events and geo-services obtained dy-

namically from the web, categorized and suggested using semantic

analysis. 1

Roadie2 is a mobile-based application with two main goals: 1) to provide

accurate recommendations of city itineraries enriched with thematic sugges-

tions based on user profiling, 2) to let the user manually create and edit

his/her personalized tours through the city. The main contribution of the

application is to provide a multi-dimensional contextual approach [60] for

recommendation. In fact Roadie combines user profiling on social networks,

location-awareness, semantic analysis and activity recognition by sensing in

1The work presented in this Chapter has been published as “Roadie: Mobile Seman-

tic Tourism Routes” in Proc. of IEEE International Conference on Multimedia & Expo

(ICME) - Demo Session, 2015 [56].
2Video reference available in Appendix 3

29



30
Recommending personal itineraries in outdoor scenarios through

a mobile application

order to improve the personalization and the recommendation of city tours

in mobile electronic guide systems.

4.1 The system

Roadie has been developed in Java as a native mobile application using the

Android SDK. The back-end is written in PHP. All the data are stored in a

MySQL database. The system (Fig. 4.1) is composed by four core modules

which are respectively in charge of: 1) grabbing POIs, venues and events, 2)

categorising data in real-time, 3) profiling users, 4) recommending routes.

Figure 4.1: Roadie System Architecture.

4.1.1 Data Collection

Roadie uses two types of geolocalized data: static data, which doesn’t need to

be updated frequently, such as POIs and venues, and dynamic data, mainly

constituted by events, which change continuously in time. POIs are city

attractions retrieved querying the MediaWiki API3. For each POI a textual

abstract, a representative image, and place categories (e.g. church, museum,

palace, etc.) are collected. GeoNames API4 is exploited in order to get POI’s

latitude and longitude. Venues are places in the city which can offer visitors

3http://bit.ly/RywgdI
4http://www.geonames.org/
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commodities, leisure and entertainment services, such as shops, restaurants,

nightclubs etc. These data are obtained using Foursquare API. Roadie uses

events to enrich the visitor experience in the city. Events are characterized

by having an exact start time and duration and are retrieved daily by the

grabbing module from two sources: the OpenData (for the demo we used

data published by the municipality of Florence, IT) and the Eventful API5.

The first is an institutional source which provides especially art exhibitions

and events, the latter instead is user-generated and concerns, for the most,

musical events and shows.

4.1.2 User profiling

Roadie builds a model of the user profile of interests exploiting user informa-

tion from the Facebook Graph API through Facebook Login. User interests

are extracted by analysing the categories of Facebook pages for which the

user expressed a ‘like’. Additional basic demographic data such as age, gen-

der and residence are also collected. In order to assign profiles to users that

are not able or reluctant to connect their Facebook profile, we adopt an

inference method based only on the demographic infos. Given the user u,

Roadie looks for similar registered users and gets a subset of users Su. From

Su, the most frequent categories of interest are extracted and assigned to the

interest profile of u.

Monitoring user activity

Roadie exploits also physical sensors available in mobile devices in order

to observe user behaviors and to refine his/her profile model. We iden-

tify two possible meaningful activities for the tourism domain: 1) speed

of user’s movements between geographic positions is monitored in order to

estimate running/jogging activity, 2) altitude peaks are analyzed by a prob-

abilistic model to assess a user preference for climbing or panoramic views.

An asynchronous thread processes data from sensors even when the mobile

application is in background, allowing a continuous monitoring of the user

movements. To minimize battery consumption, data are sampled and pro-

cessed every 60 seconds. Furthermore, the thread is stopped in case of a

low battery level (less than 25 %). Activities, when detected, are associated

5http://opendata.comune.fi.it/, http://api.eventful.com/
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Table 4.1: User actives and related detected interest
Activity Analyzed data Extracted

interest

Running Speed from GPS data Sport

Sightseeing Peaks in Altitude Lookout

with corresponding categories in the knowledge-base and in user profiles as

summarized in table 4.1.

Categorization of resources and Recommendation

The categorization module is responsible to classify all the resources com-

ing from the grabbing module and to compute a semantic similarity between

user preferences and resources to be suggested. Roadie adopts a taxonomy of

19 macro-categories that has been manually defined in order to exhaustively

represent both user interests and venues/events. Since data are continuously

updated from heterogeneous sources (e.g. events from Eventful, user inter-

ests from Facebook, venues and places from Foursquare), uncategorized or

labeled with different categories, Roadie analyses textual information in or-

der to map these data according to the system’s taxonomy. A max similarity

score is computed between each item c of the taxonomy and a provided or

inferred resource category r using the function sim(c, r) ∈ [0, 1]. The correla-

tion is estimated using a semantic text similarity technique [65]. The method

is based on distributional similarity and Latent Semantic Analysis (LSA),

further complemented and improved with semantic relations extracted from

WordNet6. Recommendation of routes is based on several factors: context

inference, profile of interest computed analyzing social network data, user

activities detected from device sensors. Given the user location, the rec-

ommended routes are built through the MapQuest Route Service7 trying

to maximize the ratio between the number of attractions to visit and the

available time. Venues, places and events with the highest semantic similar-

ity to the user profile of interests are categorized and suggested, ordered by

distance from the user.

6https://wordnet.princeton.edu/
7http://mapq.st/1jAVgeL
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4.2 The application

Roadie is a native mobile application developed in Java using the Android

SDK. The interface is composed by four main views: 1) recommended routes,

2) route creation, 3) profile and 4) saved routes. Roadie features Facebook

Login as well as app registration. The profile view shows demographic data

and all the automatically detected interests. These can be edited adding

or removing items from the system taxonomy. The recommended routes

view provides a scrollable list by which the user can select different the-

matic itineraries on the basis of his/her interests. For example, if the system

detected sport and literature as the main user interests, the recommended

route is enriched with sport or public readings events going on at the mo-

ment in the city. All the routes are presented on interactive maps provided

by the OpenStreetMap8 service exploiting MapQuest web mapping features.

Recommended routes can be edited manually directly on the map or users

can utilize the route creation view to plan their visit from scratch. To this

end Roadie provides smart suggestions mechanisms which offers an unified

perspective for tourist attractions and contextual services. First of all, it

proposes POIs taking into account user position. Each time the user selects

a POI the system suggests other possible POIs nearby. Otherwise he/she

can search for one. Once the route has been defined, it can be enriched

with venues and events relevant with user interests and POIs he/she has

planned to visit. Imagine a use case scenario where a user is building a route

that will take him from the Florence Cathedral through the Uffizi Gallery

and then to Piazzale Michelangelo in Florence, IT. If the system detected

that sport and food are among user interests, he/she will be suggested the

nearest restaurant to the Uffizi Gallery for lunch or to take part in a run-

ning race scheduled for that day and starting from Piazzale Michelangelo.

The sport interest may have been manually added by the user, inferred from

Facebook data analysis or detected by Roadie monitoring data from the user

smartphone sensors, assuming that the user is a regular jogger.

8http://www.openstreetmap.org/
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Chapter 5

Exploring Outdoor Urban

Scenarios through Spherical

Images Navigation

Commonly, immersive and virtual reality systems simulate real

environments exploiting 3D computer graphics. This entails a

considerable work to be done in models development and objects

textures mapping in order to obtain a good degree of realism. Fur-

thermore, the excessive complexity and the high rendering quality

of the models can compromise system performance, especially in

a web environment. This paper describes a vision based approach

which allows a user to immersively navigate a real cultural envi-

ronment through a lightweight web based system for the interac-

tive walk-through and browsing of an ordered sequence of spherical

panoramas. 1

5.1 Introduction

In the last few years web browsers have been providing an increasing sup-

port to third dimension technologies, although 3D rendering engines are

1The work presented in this Chapter has been published as “Exploring 3D Virtual

Environments through Optimized Spherical Panorama Navigation” in Proc. of IEEE In-

ternational Conference on Multimedia and Expo (ICME 2015) - Demo Session, 2015 [48].
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not fully ubiquitous and there are still some issues regarding the perfor-

mance and realism of these systems. Many researchers have then focused

on panoramic images due to their attractive and immersive display usage,

first of all focusing on how to build a panorama starting from image se-

quences (two or more) [28], and then addressing the panorama navigation

issues. Several works exist which use different mapping representations for

outdoor panorama navigation, for example Google Street View [5]. However

the navigation metaphor is often more intended to give users a good experi-

ence of exploring one panorama (panning, zooming and titling), rather than

to optimize the switching from one panorama to another giving a realistic

impression to the users. The main goals of this system instead have been to

enable smooth transitions across panoramas so as to reduce their perceived

discontinuity and to propose an innovative interaction metaphor for a better

multimedia fruition including 3D models, PDFs, galleries of images/videos

and indoor panoramas related to the Point Of Interests (POIs) distributed

along a cultural walkthrough.

The paper is organized as follows. We discuss the image-based method for

panoramas transition in Sec. 5.2.1. Sec. 5.3 presents the web interface and its

interaction design metaphor. Sec. 5.4 outlines conclusions and future work.

5.2 Optimised spherical panorama navigation

A spherical panoramic image is created by warping the radially undistorted

perspective images onto a unit sphere assuming one virtual optical center in

which the user is supposed to watch at the panorama. Navigation within

a single panorama is provided by two main actions: dragging and zoom-

ing; navigation among different panoramas is performed through a smooth

transition with the replacement of the panoramic texture. In order to sup-

port the navigation between panoramas the interaction design model uses

a metaphor based on the zooming action of the user: the transition takes

place only when the current zoom level exceeds a particular threshold (see

Sec. 5.2.1). In order to minimize the gap in the transition between the

two scenes, we studied and developed an algorithm that performs sub-scene

matching.
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5.2.1 Sub-scene matching algorithm

The sub-scene matching algorithm is exploited in order to find the best

zoom factor threshold for triggering the transition to the next (or previous)

panorama. Given two images Ik and Ik+1 we want to find the rectangular

sub-region of Ik whose content is most similar to Ik+1. The sub-region and

Ik+1 must have the same aspect ratio, although their size is expected to be

different. Let us introduce the following notation:

• wk and hk are the width and height in pixels of the image Ik;

• the function Crop(I, x,∆x, y,∆y) returns the rectangular sub-region of

the image I identified by the bottom-left coordinates (x, y) and the top-

right coordinates (x+ ∆x, y + ∆y);

• the function D(In, Im) returns the dissimilarity between the content of two

images In and Im : zero in the case that the content of the two images

is the same and a number greater than zero otherwise. The measure of

dissimilarity is invariant to the size of the two images.

Identification of the rectangular sub-region of Ik that best matches the con-

tent of Ik+1 in correspondence to the inward direction is accomplished by

minimisation of the following cost function with respect to the three variables

(x, y, η): {
(x0, y0, η0) = arg[minx,y,ηD(f(x, y, η), Ik+1)]

f(x, y, η) = Crop(Ik, x, x+ ηwk+1, y, y + ηhk+1)
(5.1)

The result of Eq.(5.1) is the triplet (xo, yo, ηo) of the variables that minimise

the cost function; they are the coordinates of the bottom-left vertex of the

sub-region Po = (xo, yo) and the zoom factor Zo = 1/ηo to be applied to

the sub-region of Ik in order to match the size of Ik+1. Experimentally, we

observed that computation of the dissimilarity function D(In, Im) through

the distance of the image histograms provides higher effectiveness compared

to solutions based on scale invariant local keypoint descriptors such as SIFT.

This is mainly caused by the fact that in the general case, the scenes repre-

sented in two consecutive panoramic images can differ significantly in some

parts, due to severe occlusions that can take place depending on the 3D

structure of the scene captured by the panoramic images. To reduce the

computation time associated with the minimisation of the cost function and

speed up the computation of the histograms we adopted the technique of

Integral Histograms [119].
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5.3 Application Interface

The system (see additional material reference in Appendix 4) has been devel-

oped as a web application based on HTML5, CSS3, Javascript and WebGL

and has been implemented using the 3D ‘open source’ library three.js2. The

navigation among spherical images has been carried out through the dy-

namic replacement of the texture mapped into the sphere, according to user

interaction. The update of the texture is done taking into account the opti-

mal zoom factor threshold for the transition (see Sec. 5.2.1). This can occur

when the user zooms in the outward direction and exceeds the threshold pre-

computed by the sub-scene matching module. Otherwise, when the direction

of zooming is not aligned to the outward direction the rendered image is pro-

gressively magnified—and the field of view is reduced accordingly—until the

maximum zoom level is reached. The application can be configured in order

to show interactive hotspots in the virtual walkthrough. Each hotspot can

be activated by users and it provides several multimedia additional material

about specific POIs. Hotspots are constituted by four graphic icons arranged

in a circular menu. Each item represents one of the following multimedia cat-

egories: 1) gallery of images/videos (yellow icon), 2) PDF (red icon), 3) 3D

object (green icon) , 4) Indoor panorama (blue icon), cfr. Fig. 5.1. All these

multimedia artifacts are shown inside a floating panel oriented contextually

to the panoramic environment and are arranged in real-time by the system

with the best spatial position according to the user point-of-view. In this

way, the application overcomes the limitation of standard panorama-based

interfaces in which additional content (3D or 2D) is shown in two-dimensional

lightboxes covering the main navigation area. Furthermore, hotspots can be

dragged using an handle at the centre in order to let users better organise

the content in the interface view. Context awareness is provided through a

mini-map at the bottom-left angle of the screen. Position and orientation

are shown on the map and a little circular handle on the route path can

be dragged in order to move to different panoramas. POIs, hotspots and

associated multimedia materials are searchable using an autosuggest input

field.

2http://threejs.org/
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Figure 5.1: Examples of interaction with an hot-spot: Indoor panorama

5.4 Conclusion

In this Chapter a web tool for an immersive interactive walk-through in an

urban cultural scenario has been presented. We propose a new interface

and interaction metaphor for accessing cultural content. An optimization

method for the transition between spherical images based on a Sub-scene

matching paradigm is also shown.
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Chapter 6

How Human Factors can

improve Video

Recommendation on Social

Networks

In this Chapter we propose a method for video recommendation in

Social Networks based on crowdsourced and automatic video an-

notations of salient frames. We show how two human factors,

users’ self-expression in user profiles and perception of visual

saliency in videos, can be exploited in order to stimulate anno-

tations and to obtain an efficient representation of video content

features. Results are assessed through experiments conducted on

a prototype of social network for video sharing. Several baseline

approaches are evaluated and we show how the proposed method

improves over them. 1.

1A preliminary version of the work presented in this Chapter has been published as

“A system for video recommendation using visual saliency, crowdsourced and automatic

annotations” in Proceedings of the 23rd ACM international conference on Multimedia,

2015 [52] and then as “Item-Based Video Recommendation: An Hybrid Approach con-

sidering Human Factors” in Proceedings of the 2016 ACM on International Conference

on Multimedia Retrieval, 2016 [51]
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6.1 Introduction and Related Work

Collaborative Filtering (CF) is a technique often used by Recommender Sys-

tems (RSs) which aims at predicting interesting items to a user based on the

preferences, explicit and implicit, of other users. A standard item-based

video RS builds its prediction model considering user preferences for videos,

expressed according to ratings, and suggests potential videos of interests

comparing their distributions. Hybrid approaches in RSs have been proved

to give best results [46]. These approaches combine CF with content-based

techniques and reduce issues related to the large amount of data to be an-

notated and data sparsity. Recommending relevant videos can help users to

find the most pertinent content according to their view habits or preferences.

As shown in [173], recommendation is a powerful force in driving users to

watch other videos, much more than direct search of new videos. Hybrid

approaches presented in the literature typically exploit textual video meta-

data, sometimes complemented by multimedia content analysis [167], user

profiling, social features and User-Generated Content (UGC) [12, 33, 91].

Crowdsourced data is usable information that can be leveraged to improve

different online services. In [30] crowd-sourced annotations are used to create

video previews that are more related to the queries of the users, to improve

video retrieval. In [137] the performance of a video retrieval system based on

crowd-sourced annotations of sport videos shows that despite the heterogene-

ity and poor quality of the annotations, they are close to ground-truth. Time

accurate annotations of social videos, based on user comments and tempo-

ral, personalized topic modeling, has been proposed in [161]. In [165] a large

crowd-sourcing experiment has been carried out to analyze the differences

between “timed” tags (i.e. added to a specific time-code in a video) versus

“timeless” tags. The authors observed that most of the visually-related tags

are relevant for short segments of the video, i.e. people tend to tag when

something is “flashed” in the video. We build on top of these studies and

propose the adoption of an hybrid approach in which a brief and compre-

hensive representation of video content can improve the performance of a

standard recommender based on CF (i.e. using only ratings). The approach

relies on content-based features gathered both through crowd-sourced and

CNN-based classifiers annotations. The dataset has been collected through

a prototype of a Social Network (SN). Annotations collection is improved

exploiting two human factors: i) user profile interfaces and ii) video frames

visual saliency. The main goals are: i) to increase the number of crowd-
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sourced annotations, that provide an enrichment of automatic video anno-

tations; ii) to improve the quality of video recommenders through video

content analysis.

The Chapter is organized as follows: in Sec. 6.2 the social network ar-

chitecture and modules are described. Experimental results are presented

in Sec. 6.3 to show the influence of user profiles and visual saliency on the

collection of user annotations of videos. Evidence is given that systems fea-

turing a user profile interface stimulates user activity, increasing the number

of annotations. We also show that frames with an high visual saliency are

more likely to be annotated; this can be used as a criterion i) to suggest to

users relevant frames; ii) to filter relevant frames for automatic annotation.

The recommender is evaluated in Sec. 6.3.3.

6.2 The system

The item-based RS has been implemented in a prototype of a SN (video

reference available in Appendix 5). The idea behind the SN is to exploit

user profiling techniques to propose to the user targeted recommendations

of videos, exploiting suggestions of topics of interest and similar users. This

is achieved tracking user’s activities on the SN, such as comments, number

of video views, click-through data and video ratings. Users can comment

videos at frame level tagging concepts derived from Wikipedia. All the con-

cepts manually added are clustered in 54 categories using Fuzzy K-Means

and classified using a semantic distance [99] with a kNN approach. Catego-

rized resources in videos are used to build a vector describing video content,

then exploited in the RS. The SN also allows users to build a public personal

profile of resources of interest from those extracted from comments or added

by the SN users. The profile module is exposed relying on the hypothesis

that self-expression and self-esteem can be exploited to engage the user in

the annotation process, in this way easing the collection of crowd-sourced

annotations. Salient frames of each video are extracted and related users

activity on them is monitored in order to verify if visual saliency can af-

fect user engagement with the system. The positive correlation, verified in

Sec. 6.3.2, is exploited at the interface level for easing the annotation process

proposing a widget of most salient frames above each video. Automatic video

annotations are then extracted using a CNN-classifier on the more salient

frames.
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User profile interface As noted in [171], profile curation is inherent to

the use of SNs since management of personal content is integrated with its

generation. The content that people choose to share online has to do with

how they curate their self-image and present themselves to others. In a 2013

survey, participants ranked their relational identities as most important to

them when sharing content on social media [102]. SNs such as Facebook

and LinkedIn, for example, are commonly regarded as a space for personal

self-expression and self-promotion [149]: users shape their identities in order

to gain popularity and reach more and more recognition and connectedness.

Our prototype system provides users with a public profile that can be curated

in a semiautomatic way. The profile shows user’s last comments and annota-

tions as well as annotated video frames and tagged Wikipedia resources with

thumbnails. A profiling algorithm categorizes annotations and automatically

proposes inferred user interests. Each user can present himself with a set of

categories that are visually shown on his profile. Resources annotated by SN

users, automatically categorised, are suggested as items that users can drag

and promote in their public profile for each detected user interest, as shown

in Fig. 6.1.

Many factors influence users’ continued intention to use SNs such as so-

cial interactions, knowledge expansion and targeted recommendations [86].

The users’ desire of social interactions has been demonstrated to increase the

number of likes and comments in [68]. The assessment of users engagement

with content gives the opportunity to improve targeted services and recom-

mendation. User propulsion at showing knowledge for self-promotion is used,

for example, by platforms such as LinkedIn (Q&A) and StackOverflow as a

mean to increase the quality and number of crowdsourced annotations but,

to the best of our knowledge, there is not a study in the literature which

confirms that user profile interfaces affect and improve user activity in SNs.

In 6.3.1 we have conducted a controlled experiment to show how the user’s

effort to shape his public identity can be exploited to increase user’s activity

and production of crowdsourced annotations.

Visual saliency We propose the use of visual saliency in SN systems and

interfaces at two levels: i) at the automatic annotation level to reduce the

computational cost of processing all the frames; ii) at the interface level

to propose to the users possible frames of interest. The SN prototype also

features a salient frames carousel above each video to ease the addition of
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Figure 6.1: User profile interface: the user can publish resources of interest

dragging suggestions from the below to the above carousel.

crowdsourced comments. Videos are preprocessed to eliminate letterboxing

(i.e. black bars in videos). Then, visual saliency maps are extracted for

all the video frames. Maps are defined by a visual attention model which

uses a dynamic neural network on multiscale image features computed with

the iLab Neuromorphic Toolkit [105]. Salient frames in the video carousel

are selected by identifying the peaks of saliency using the crest detection

algorithm proposed in [156]. Automatic annotation is performed on frames

selected computing the average saliency of the video and choosing those

above the average, to have a dense sampling of video content.

Crowdsourced annotations Users can comment videos at frame level

and add semantic references to Wikipedia entities using an autosuggest wid-

get, as shown in Fig. 6.2. Wikipedia entities are also extracted automatically

using entities detection.

A carousel of the most salient frames is also shown above the video player

as a video summary. This facilitates fast and accurate annotations at exact
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Figure 6.2: Wikipedia annotation in video frame-level comments.

timecodes, since users are more likely to interact with salient frames rather

than with the less visually interesting ones. A vector of categories C, with

the same dimensionality of the SN categories taxonomy, is used to represent

video content. Each category in C is assigned with a weight defined by

the average of the semantic distance of each annotation to the categories’

taxonomy. This semantic relatedness between the terms is obtained using

the Wikipedia Link-based Measure [99].

Visual features Automatic annotation of all the frames of the videos in

a SN is a time-consuming task which requires a lot of resources. In the

proposed SN video frames are subsampled according to their visual saliency,

allowing the system to scale while maintaining a reasonably dense sampling

of video content. The convolutional network used was trained on the Im-

ageNet ILSVRC 2014 dataset to detect 1000 synsets. A very deep CNN

with 16 layers [23] was used to extract the final output layer for each frame,

containing 1,000 object probabilities. Video content is represented using

a Bag-of-Words (BoW) approach. The features vector is computed using

the frequency of occurrence of detected concepts with a probability above a

threshold, then also complemented by crowdsourced annotations.
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The Recommender Compared to user-based CF approaches, item-based

recommenders minimise the sparse item ratings issue, are scalable and in

general perform better than user-based recommenders [129]. The proposed

hybrid RS adopts a solution that combines a semantic pre-filtering of content

with an item-based algorithm. Videos are represented using a feature vector

that concatenates the histogram of the categories of the crowdsourced com-

ments and the BoW description obtained using the CNN classifier. User’s

rating on a video is computed combining explicit and implicit activity. Users

can explicitly vote a video on a 5 point scale with a visual widget. Number of

visualizations, frame browsing and annotations are also taken into account.

In order to reduce the dimensionality of the item-item matrix used by the al-

gorithm, a pre-filtering on the set of possible videos to suggest is performed.

Given a user u, we extract a set Fu of videos for which u generated a rating.

For each video vi contained in Fu, the system selects the top-N similar videos

creating a subset of similar videos Si. The set of videos that will be used for

the item-based recommender for user u is then composed by the union of all

the subsets Si, namely:

Ru =

|Fu|⋃
i=1

Si. (6.1)

The set of video Ru ∪ Fu is used to create the item-item matrix used for

recommendation. This set is significantly smaller than the whole collec-

tion of videos contained in the system. The pre-filtering step uses several

approaches in order to infer the top-N similar videos. These approaches,

reported in Sec. 6.3.3, exploit automatic and crowd-sourced annotations as

well as visual saliency, and use distance measures to compute the overlap

between histograms distributions.

6.3 Experimental results

Recommendation is a prediction problem: the system should be able to

predict the user’s level of interest in specific items (e.g. videos) and rank

these according to their predicted values [101]. In order to evaluate the

accuracy of the prediction, a percentage of the collected data, represented

by users ratings on videos, is extracted and used as test data, not used to

train the RS. The RS produces rating predictions for the missing test data,

that are compared to the actual values in order to evaluate the accuracy. The

performance is evaluated using Root Mean Square Error (RMSE). The more
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accurately the RS predicts user ratings, the lower the RMSE will result. The

SN dataset is composed by 632 videos, of which 468 have been annotated

with 1956 comments and 1802 annotations. 613 videos were rated by 950 of

the 1108 users of the prototype SN.

6.3.1 User profile interface

An A/B test experiment was conducted at the interface level to test the

user profile influence on users’ comments activity. The experiment was run

on all the active users of the prototype SN for three months. Users were

exposed to one of two variants of the SN, featuring (i.e. the variant) or not

(i.e. the control) the profile curation interface. The variant was introduced

in the third month, so that the number of users exposed to the variant

is smaller than that of the control interface. Users who logged into the

system and commented on videos since the third month were assigned to

the variant (group B), whilst the others were assigned to the control group

(group A). In this period of time there were 464 active users (321 in group

A and 143 in group B) with a conversion rate of 3.75 and 5.81 average

comments. User annotation average increased by a factor of 2.06. The

result was statistically significant and validated by a t-test that gave a t-

difference = -2.684. Minimum sample size for the evaluation criterion validity

was calculated and resulted in 127 for both group A and group B with an

optimum allocation ratio of 3.42. Results show a positive correlation between

the use of the user profile interface and the increment in user annotations,

and suggest that modules for profile curation can be effective in improving

conversion rate in user online activity (e.g. videos annotations).

6.3.2 Visual saliency and manual annotations

The impact of the visual saliency of video frames on user comment activity

has also been tested. In the experiment were considered: i) the number of

comments added without using the most salient frames carousel and ii) all

the comments, i.e. adding also those coming from a click in the carousel.

Results of case i show that 53.5% of user comments are on frames with a

saliency above the average saliency of the videos, and that the percentage

of frames above the average saliency is 46.5%. Therefore, salient frames

receive more attention by users, although not considerably. Results improve

consistently considering also carousel driven annotations as in case ii : in fact



6.4 Conclusions 49

the percentage of comments increases to 65.24%. Percentage of comments

carousel driven is 24.01% of the overall dataset, showing that one out of four

comments are added using the carousel: it is an high percentage considering

threaded comments, added by users in response to others. So, it can be said

that salient frames suggestion can be useful if proposed in a web interface as

to visually capture the user’s attention and help in the annotation tasks.

6.3.3 Recommendation

The RS is evaluated, in terms of RMSE, comparing it to several baselines: i)

standard item-based RS, that considers users ratings of all the videos; ii) RS

working on a selection of videos, based on similarity computed using system

categories only (no BoW content description); iii) RS working on a selection

of videos, based on content similarity (i.e. automatic annotations) computed

on n randomly selected frames; iv) RS working on a selection of videos, based

on content similarity computed on n frames with visual saliency above the

average; v) RS working on a selection of videos, based on content similarity

computed on a) frames with visual saliency score above the average and b)

crowd-sourced annotations.

Results are reported in Fig. 6.3 and show how the proposed v) approach

results in a lower RMSE value than all the other approaches. In particular,

it can be observed that video representation using salient frames improves

over random selection, and that the addition of semantics extracted from

manual annotations provides another improvement. In this experiment the

threshold used to select the confidence scores of the classifiers is 0.85. In

a second experiment we have evaluated the effect of the confidence of the

classifier, using a threshold of 1. In this case the RMSE is further improved

from 0.97 to 0.86.

6.4 Conclusions

In this Chapter we presented a system to improve an item-based video RS.

The RS uses a reduced item-item matrix, computed from content based de-

scription of videos obtained from crowd-sourced and automatic annotations.

User engagement through profile curation and visual saliency has been used

i) to increase the number of crowd-sourced annotations, presenting the most

relevant frames to users, and ii) to address system scalability in terms of
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Standard Video 
Categories

Automatic 
annotation on 
random 
frames

Automatic 
annotation on 
salient 
frames

Automatic 
annotation on 
salient 
frames + 
manual 
annotation 
(proposed 
method)

RMSE 1,2322 1,1713 1,123 1,059 0,9711

0

0,186

0,371

0,557

0,743

0,929

1,114

1,3

Method

0,971
1,059

1,1231,1711,232

RMSE 

Standard
Video Categories
Automatic annotation on random frames
Automatic annotation on salient frames
Automatic annotation on salient frames + manual annotation

Figure 6.3: Comparison of the proposed recommender (rightmost result)

w.r.t. baselines in terms of RMSE.

automatic annotation, reducing the number of frames to be processed. The

effectiveness of exploiting human factors for user engagement (i.e. self-esteem

in user profile interfaces and visual saliency) is evaluated by user experiments

on a SN prototype. Experiments show also that the proposed RS improves

over the standard implementation of an item-based algorithm, and that the

combination of manual and automatic annotations is more effective than the

use of a single type of annotations. A positive correlation of the two human

factors with the performance of the RS is not yet fully demonstrated, but it

can be hypothesized and it is worth of further investigation.
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Chapter 7

Recommendation in Contextual

Social Networks

In this Chapter we propose methods to be used in contextual so-

cial networks for the recommendation of potential friends, local

experts and targeted services. The recommendation is based on

an hybrid approach which combines content-based techniques, col-

laborative filtering and social media analysis. We also introduce

the concept of co-located social network, explain why and how it

can improve user engagement and, finally, we present the results

in a mobile web-based social network application available only in

the check-in area of an airport. The friend prediction algorithm

has been evaluated through a user study on the demo application

to measure the effectiveness of the recommendation. 1

7.1 Motivations and Previous Work

With regard to context-based applications, the concept of context can be

referred to where a user is, who she/he is with and what resources are

nearby [132]. Contextual social networks can be seen as a variant of social

networks where information about context is incorporated into the social

network services [159]. Knowledge that can be extracted from online social

1Part of this Chapter has been published as “PITAGORA: Recommending Users and

Local Experts in an Airport Social Network” in Proceedings of the 23rd ACM international

conference on Multimedia, pp. 755-756, 2015 [50].
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network (e.g. Facebook and LinkedIn), along with information about the

location, can be exploited in order to build a variety of contextual services,

such as recommendation of people and activities.

In this Chapter we propose techniques of data analysis from social media

to enhance friend and local experts recommendation for a social network

only available in the subnet of a building, in the specific in the check-in area

of an airport. The demo of the social network is a mobile web application

we developed to collect data, test and validate the system. The proposed

architecture, however, can be applied also in other domains and real loca-

tions where social networking applications could be used to offer contextual

services. Contextual social networking techniques can be effective inside an

airport, but also elsewhere, as better as the needs of visitors can be identified.

In the check-in area of an airport people basically has to optimise their time

and have the opportunity to get in touch with other people. Usually passen-

gers are in airport for business trips or leisure and, in both cases, it has been

demonstrated that they are more open to new experiences and social inter-

actions than usual. In fact, some experiments [126] has been conducted that

show how strangers in airport departure lounges have an higher degree of

disposability to self disclosure. Recommendations systems for friend predic-

tion are very popular on the web but they still lack a footprint that can link

social network users, temporarily co-located in the same place, to the services

and opportunities of the place itself. Also the so-called contextual social net-

works are somehow ephemeral, based on general data such as social relation,

interaction data, individual preference or interpersonal influence [73]. These

networks foster meaningful interactions based on real relationships, shared

interests, activities but can acquire a real value only taking into account

the real intentions of users, especially in a situation where a lot of people is

co-located. In the case of an airport lounge, for example, the destination of

a passenger, the type of trip (professional or not professional) or the shops

present in the building are definitely essential infos from which friendship

prediction or content recommendation based on user profiles can really ben-

efit. A lot of works have been published in the last years addressing the

problem of recommendations in Location-based Social Networks (LBSNs)

using content based recommendation and collaborative filtering both for the

suggestions of potential friends and the discovery of popular users (e.g. local

experts, opinion leaders). At this regard content-based recommenders are

costly, need maintenance, don’t consider social opinion but are a valuable
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solution in particular to solve the cold start scenario. Collaborative filtering

instead considers similar user preferences and uses a similarity model for

score prediction. If it solves issues related to maintenance and availability

of community opinion informations, suffers from possible issues due to data

sparsity and system scalability [8]. Friends recommendation can be achieved

analysing online user profiles and social graph interactions [25]. In this re-

spect common connections or users degree of separation can be a valuable

information especially if users accessing the network are co-located in the

real world. Other Standard recommendation approaches are based again on

content based analysis and collaborative filtering but also considering the

social graphs and social interactions. A matrix factorization method which

uses individual preference and interpersonal influence to improve the accu-

racy of social recommendation is proposed in [73]. The work stresses the

fact that social influence is a powerful force which governs the dynamics of

a social network. Some works exploit user location histories for recommen-

dation. A correlation between different places and cities visited by users

is computed on the basis of the trajectories followed by several people in

local areas in [150] considering location-location distance and sequential or-

dering of visiting patterns. Zheng et al. [172] recommend local experts in a

city analysing user location histories as GPS trajectories through a Hyper-

text Induced Topic Search inference model over a Tree-Based Hierarchical

Graph. At this end user’s geo-tagged social media content has also been

exploited [4].

Recommendation approaches we propose are exploited and validated in

a mobile contextual social network designed to be used by passengers inside

of an airport structure: the network allows the user to obtain infos on his

flight (e.g. status, time to gate close etc.), to interact with other passengers

sharing his volatile or professional interests (e.g. to chat) and to receive per-

sonalized recommendations based on his/her preferences. The main goal is

to improve the users travel experience bridging the gap between physical and

virtual world exploiting traces and data available in Location Based Social

Networks (LBSN) or collected through the application. Users can connect

through Facebook and LinkedIn and their online data is used to build users’

interests profiles and to recommend similar people and services. Destination

information is exploited to suggest local destination experts present at the

airport or on the same flight; retails semantics are used to suggest activities

and places for dating through profile content analysis and matching between
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the users’ mutual interests.

The remainder of this Chapter is organised as follows: Sec. 7.2 describes

the overall system, focusing on the two main recommendation modules:

friends prediction in Sec. 7.2.1 and local experts suggestion in Section 7.2.2.

Evaluation and experiments on the recommendation system are proposed in

Sec. 7.3.

7.2 Contextual social network

The end user interface (a link to a video demo is provided in Appendix 6)

has been developed as a mobile web application to be used in the context of

a lounge of an airport. The goal of the application is to improve passengers

experience providing a social network of co-located users able to recommend

people and services contextual to the location and the user intentions. The

application allows the user to search and display flight infos, to check the

presence of other passengers on his same flight and to communicate with

them through a real time chat. The main purpose of the application is to

enhance the social interaction between users that are present in the airport

at the same time. Recommendations are mainly constituted by suggestions

of other users who share the same interests as well as of services within the

airport (e.g. retails). The application also provides the passenger with a

recommendation system of local experts, present at the airport, on the basis

of his/her flight destination. The system uses an hybrid approach to the rec-

ommendation problem combining content-based filtering and collaborative

filtering. Hybrid approaches have been proved to give better results than

content-based filtering and collaborative filtering techniques solving issues

related to the large amount and the sparsity of the data [46].

7.2.1 Users Recommendation and friends prediction

Users are profiled analysing data extracted by their Facebook and LinkedIn

accounts and represented as a graph of users, interests and demographic infos

modelled with hierarchical relationships. The different nature of this data is

exploited in order to obtain recommendations concerning leisure (Facebook)

and professional aspects (LinkedIn). When the user logs into the system

using one of the two possible networks the following data are extracted:

• demographic infos, level of education, job history (Facebook and LinkedIn);
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• photo albums (Facebook)

• groups and companies followed (LinkedIn)

.

Users’ recommendation in the airport mobile contextual social network,

is presented in two ways: as a list of possible friends and as a list of categories

of interests extracted from Facebook that groups those friends (see Fig. 7.1).

Friends recommendation is based only on Facebook profiles but the same

approach could be used also for any other social network. Profiles are de-

scribed as vectors of pages on which users have expressed a ‘like’. Although

a standard collaborative filtering approach could have been used to estimate

a neighborhood of similar users, a main issue has to be addressed that is

the sparsity of the dataset: in fact the number of Facebook pages is much

bigger than the number of ‘likes’ that a single user can express. In order

to solve the sparsity problem, the user recommendation module uses the co-

occurence matrix approach to estimate additional possible items of interests.

Users’ recommendation is then achieved with a standard user-based algo-

rithm considering the distribution of user interests and computing a users’

neighborhood with the Euclidean distance. Sparsity reduction is performed

offline, using an item-based algorithm. Initially, a vector of user’s preferences

P is created. User’s preference for each page is boolean: 0 if the user doesn’t

like the page, 1 otherwise. A matrix M of co-occurrence of ‘likes’ on pages

is created for all the users in the system.

For example, given the following matrix M of co-occurrence calculated

for 7 items and a vector of preferences Pu for a user u, the product rows

to columns between M and Pu returns a vector Ru containing the inferred

preferences.



i1 i2 i3 i4 i5 i6 i7

i1 5 3 4 4 2 2 1

i2 3 3 3 2 1 1 0

i3 4 3 4 3 1 2 0

i4 4 2 3 4 2 2 1

i5 2 1 1 2 2 1 1

i6 2 1 2 2 1 2 0

i7 1 0 0 1 1 0 1


∗



Pu

1.0

0.0

0.0

1.0

1.0

0.0

1.0


=



Ru

12.0

6.0

8.0

11.0

7.0

5.0

4.0


In this example, rating for items i2, i3 and i6 are inferred using an item-

based similarity, even if the user never explicitly added a preference. The
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Figure 7.1: Recommendation of friends as proposed in the application, along

with common items and interests.

final vector representing user u is created starting from Ru using an higher

weight for the items that explicitly were preferred by the user (i.e. items

that have value 1 in Pu) and a lower weight for the inferred items. To create

an ordered list of suggestion for the user u we use Euclidean distance on

the preferences vector, finding the nearest-N users. An additional score is

finally added for users that share the same demographic data or professional
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history. Performance of the users recommender is evaluated in Sec. 7.3.

7.2.2 Local Experts Recommendation

The identification of local experts is obtained through the analysis of so-

cial media extracted from Facebook. In particular user travels and loca-

tion history are computed analysing geo-tagged pictures and identifying

photo albums, birthplaces and places of residence and exploited to produce

destination-based recommendations. The mobile app of the contextual so-

cial network provides a way for users to select his/her flight and destination.

The goal of the local experts recommender is to suggest users that have an

high level of travel experience about the flight city destination or region.

The proposed method for local expert computation is based on the ap-

proach proposed in [172], where human location history is exploited in order

to recommend cities Point-Of-Interests. Our approach complements this

computation considering not only the user travel experience but also the

correlation and the distance between cities. Given a set of users U and a set

of visited cities C, a matrix V is defined where the item vij of V represents

how many times the user ui has visited the city cj , with 0 ≤ i < |U | and

0 ≤ j < |C|. Visited cities are extracted from user activity in the social

network application: we consider the selection for a flight destination on

the mobile application as a visit. The travel experience vector E of users

is calculated iteratively on the basis of the number of travels in cities as it

follows:

En = En−1 · V · V T (7.1)

In (7.1) En indicates the vector E at the n iteration that is initialized

with E0 = (1, 1, · · · , 1). The vector E is then normalized, dividing by its

highest value.

The correlation CORR(ci, cj) between two cities ci and cj is expressed as:

CORR(ci, cj) =
∑
uk∈U ′

α ∗ ek (7.2)

where U ′ represents the group of users who has visited both ci and cj ,

ek is the component of E relative to the user uk. The weight factor α, with

0 < α ≤ 1 is defined taking into account the Euclidean distance between

latitude and longitude of the two cities. Finally, we need to compute user’s

level of experience of a user u for a given city c. To this end, we define nk as
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Figure 7.2: Local Experts Recommendation. Photos published in Facebook

albums and used in the recommendation are shown. The expert will be on

the same flight and users can chat.

the number of visits of the user u in the city ck, based on previous activity

on the network (i.e. previous flight destinations). We also extract from

Facebook the number of geo-tagged photos pk that the user has published

in ck .

From these data, a rating expu,c can be assigned to user for a city as:

expu,c =

|C|∑
k=0

(1 + pk) ∗ nk ∗ CORR(c, ck) (7.3)

We also consider if a user lives (or has lived) in c or if she had education-

al/professional history in the city, adding points to the rating expu,c. Local

experts whose score is greater than a threshold are shown as a list of rec-

ommendation, in descending order, in a dedicated view of the mobile app as

shown in Fig. 7.2.
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7.3 Evaluation

The proposed friends recommendation system is based on the ranking of user

similarities and can be therefore seen as an information retrieval system, con-

sidering a user as a query term. To evaluate the relevance of recommended

potential friends we have exploited the normalized Cumulative Discounted

Gain (nDCG) [71] measure. The intention of the evaluation is to compare

the generated list of recommended people with the ideal list created from a

relevance score given by the user. We collected a ground truth asking 150

users to express a relevance score (on a 0 to 3 scale) for the first J people

suggested by the system when they use the application. For example, for a

suggested list of people ordered by the recommender as (P1, P2, P3, P4),

the user provides as ground truth the relevance vector of scores (1, 3, 2,

0). For each list of recommended potential friends for these users, we can

obtain a score list where the scores are provided by ground truth. Assuming

each user u expressed a relevance ruj from being recommended an item j,

the average Discounted Cumulative Gain (DCG) for a list of J items and N

users is computed as

DGC =
1

N

N∑
u=1

J∑
j=1

ruj

max(1, log2 j)
(7.4)

In this experiment, a logarithm with base 2 is used to ensure all positions

are discounted. The nDCG is the normalized version of DCG given by

nDCG =
DCG

DCGi
(7.5)

where DCGi is the ideal DCG, computed on the model distribution of rel-

evance depending on the number of items J as shown in Table 7.1. We

calculated nDCG for the top-J item, resulting in values of 0.767 with j=5

and 0.872 for j=10.

7.4 Conclusions

In this Chapter we have described mechanisms of friends prediction and

recommendation, and suggestion of local experts for a contextual social net-

work designed to be used in real-time by passengers in the check-in area of

an airport. We motivate the work with the need, for a social network that
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Table 7.1: Ideal relevance and computed nDCG for top-J recommended items

J Ideal Relevance nDCG

5 (3,3,2,1,0) 0.872

10 (3,3,2,2,2,1,1,0,0) 0.767

pretend to be contextual, to adapt itself to services and intentions of volatile

and co-located groups of persons, such as a lounge of an airport. We pro-

pose a novel approach to the refinement of friends recommendation strategies

which takes into account profiling techniques from social network analysis

(e.g. Facebook and LinkedIn) and inferred ratings for users’ neighborhood

detection and identification. A method for local experts recommendation

is also proposed which improves from previous work exploiting social me-

dia analysis. Use cases are shown through a developed mobile web app by

which users can search for flights, destinations and facilities infos and receive

targeted services and recommendations. Finally we evaluate the recommen-

dation and the effectiveness of the overall system with a user study based on

the nDCG measure which shows good results.



Chapter 8

A Framework for Indoor

Navigation in Museums

Exploiting Passive User

Localization

In this Chapter we present smArt, a low-cost framework to

quickly set up indoor exhibits featuring a smart navigation sys-

tem for museums (a link to a demo video is provided in Appendix

7). The framework is web-based and allows the design on a dig-

ital map of a sensorized museum environment and the dynamic

and assisted definition of the multimedia materials and sensors

associated to the artworks. The knowledge-base uses semantic

technologies and it is exploited by museum visitors to get direc-

tions and to have multimedia insights in a natural way. Indoor

localization and routing is provided taking advantage of active and

passive sensors advertisements and user interactions. In this way

we overcome the Global Positioning System (GPS) unavailability

issue in indoor environments. 1

1This chapter has been published as “smArt: Open and Interactive Indoor Cultural

Data” in Proceedings of the 23rd ACM International Conference on Multimedia, pp. 807-

808, 2015 [57].
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Passive User Localization

8.1 Context and Motivation

The problem of linking physical spaces with structured data is urgent con-

sidering from the one hand the opportunities offered by the evolution of the

semantic web and from the other the increasing adoption of the so-called

Internet-Of-Things (IOT). Furthermore, managers in the cultural heritage

need easy to use tools to promote, curate and publish cultural data that may

be exploited at several levels by students, tourists, professionals, researchers

and so on. To this end tools have to provide museum curators with facilities

for artworks’ search, browsing and collection, and not at least the opportu-

nity to make cultural resources available as public structured data on the

web. At the same time, nowadays, real spaces can easily be made reac-

tive and low-cost solutions are desirable. smArt fulfills these requirements

and provides a tool where cultural resources can be browsed and published,

from and on the web, using a big and extendable repository (i.e. DBPe-

dia dataset2). Data can be enriched with sensors information for ad hoc

deployable installations. In details, the web application allows to associate

artworks in a semi-automatic way with different types of sensors and features

proximity sensing and routing in an indoor environment. This is not trivial:

in fact while tourism electronic guides for outdoor are widespread and pro-

vide access to contextual multimedia data relying on GPS technology, things

are more difficult in indoor where GPS is not available. Sub-room indoor

localisation is an active area of research which includes applications in reac-

tive indoor spaces. smArt exploits Bluetooth Low Energy (BLE) beaconing,

in synergy with other tools, as an indoor positioning and routing technol-

ogy. Bluetooth Estimote Beacons3 and automatic generated QR codes can

be automatically and manually associated to artworks or locations in the

knowledge-base and then physically positioned. Cited technologies are low

or without cost and don’t involve an infrastructural overhead: two common

requirements for cultural public institutions.

8.2 The System

The system is mainly composed by two modules: 1) a web-based application

for the semi-automatic ingestion and management of Open Linked Data

2See http://bit.ly/1HxOUVI
3See http://bit.ly/1d7dZdB
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regarding the cities of Venice, Rome and Florence in Italy; 2) a mobile

Android application which exploits the data generated by the web app and

reacts to the expected signals in the real environment.

8.2.1 Configuring the environment: the Web Applica-

tion

The web application is used for the ingestion, creation and management of

data concerning museums. It provides a graphical user interface for building

data and components mashups in order to configure a sensorized environ-

ment. Users are enabled to ‘pipe’ several interface components and then set

up rules for how content should be modified. There are three main compo-

nents: 1) City Component: it allows to choose cities from which to select

public multimedia data; 2) Museum Component: it is used to collect, aggre-

gate and enrich data about museums and artworks from DBPedia through

Open Linked Data; 3) Sensor Component: it can be applied to artwork

collections in order to automatically associate physical sensors. Components

are managed and organised on the interface using a drag-and-drop paradigm.

A component is shown as a circle icon with a label and an image. When

dragged on other components icons can make appear contextual menus in

order to apply modifiers. The Museum Component provides contextual pan-

els to search museums, select and associate sensors to artworks (i.e. Beacons

or QR codes). Furthermore, for each museum the user can: 1) interactively

draw the museum map of the environment to be sensorized; 2) decide the

location of the artworks; 3) define the access point to the museum halls

and finally 4) mark out all the trajectories that visitors can use to reach

the artworks. All this infos are then used by the mobile application to pro-

vide localization and routing systems to museum visitors. The web app has

been developed in HTML5 for the client and uses PHP and MySQL on the

server for metadata storing. Storing and communication with the semantic

knowledge-base is performed through RDF and Sparql Queries to a self-

hosted DBPedia endpoint. The knowledge-base is reachable on a self-hosted

Virtuoso Server4 and it uses triple-store dumps of Wikipedia frequently and

automatically updated.

4See http://bit.ly/1BqKEVP
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8.2.2 Mobile App, Localisation and Routing

smArt mobile application allows the visitor to localise herself in the indoor

museum and provides a routing system to guide the user to artworks of in-

terest on the basis of the data generated by the web application. The app

has been designed with the aim to enhance the user experience of a visitor

approaching or searching for an artwork and provides multimedia insights

exploiting natural interaction paradigms. It is well known that GPS is not

working in indoor locations due to the poor signal coverage. Furthermore,

indoor localisation is particularly challenging for several reasons: presence of

obstacles and moving people, interference caused by other electronic devices

etc. Standard solutions contemplate active (QR code scanning, NFC) and

passive sensors (beacon bluetooth for proximity detection or triangulation

for exact location). smArt exploits bluetooth beacons which are cheap and

well supported and require a low level of interaction. As an alternative each

artwork can be automatically or manually associated to QR codes which

have no cost but need more user participation.

The app has been developed as an Android application and uses an SQL Lite

database generated by the web application and stored on a server. The inter-

face has been designed following the Google guidelines for material design.

The main interface is map based and provides outdoor navigation. Through a

sliding-up panel the user can check his localisation and browse all the nearby

museums where an interactive exhibit has been set up. Google directions are

also provided. When a user approaches a museum she is notified on the app

interface of the possibility to switch to an indoor map visualisation. The

map is rendered in realtime on the device using canvas and vector shapes.

Zoom and drag gestures are enabled. Artworks equipped with a sensor are

visualised on the map as icons. Once the user has localised herself or the

app has identified her location, the user can select any artwork on the map

or using the sliding panel in order to be suggested with the shortest path to

it. User location is acquired when the app receives the unique identifying

information broadcasted by a beacon via bluetooth or when the user scans

a QR code associated with an artwork or provided as a localisation hotspot

in the museum. A background service is always active and listens to BLE

advertisements. When the device receives the signal, the user is notified and

contextual artwork multimedia data are shown.

The indoor engine is in charge to draw and manage the map and the naviga-

tion system: paths are computed modelling the information about museum
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rooms and artworks as a graph of traversable spots. Spots have been de-

fined and arranged by the web app user on the map and can be sensorized

artworks, path spot, door spot or museum visitor localisation spots. The

shortest path to an artwork is estimated on the fly by the indoor engine

using the Dijkstra’s algorithm and then visualised on the map. The engine

provides also a completely automatic system to calculate the shortest path

in the case that the web app user has not marked the path spots required

to navigate from an artwork or a localisation in a room to another. This

is achieved using automatic 2D polygon convex partitioning of the museum

map: the Hertel-Mehlhorn algorithm is exploited which is never worse than

2r + 1 pieces, where r is the number of reflex vertices. Once the polygon is

partitioned the center of mass of each partition is identified and treated as

a path spot to be used in the graph by the Dijkstra’s algorithm to build the

itinerary from the user position to the artwork of interest. The algorithm

allows to face situations where the map is a regular polygon but paths from

an artwork or a localisation in a room to a target artwork in another room

could cross the museum hall walls resulting in a wrong feedback to the user.

8.3 Conclusions and Future Work

In this Chapter we present a web-based framework designed for museum

curators to manage and set up easily interactive exhibits in a sensorized

environment. Museums, artworks and associated multimedia materials are

retrieved from and saved to the web using Open Linked Data. Artworks can

be placed on the map and associated with cheap and easy to install actuators

to be placed in the real museum environment. Exploiting these data museum

visitors equipped with an ad hoc mobile app can enjoy interactive exhibits

in an effective and natural way. Future work will focus on the refinement

of methods for the reduction of localization errors using BLE technology. A

good starting point are the results in [93].
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Chapter 9

Indoor Museum Exploration

and User Engagement through

Mobile Apps and Computer

Vision: Imaging Novecento

Imaging Novecento is a native mobile application that can be used

to get insights on artworks in the “Museo Novecento” in Florence,

IT. The App provides smart paradigms of interaction to ease the

learning of the Italian art history of the 20th century. Imaging

Novecento exploits automatic approaches and gamification tech-

niques with recreational and educational purposes. Its main goal

is to reduce the cognitive effort of users versus the complexity and

the numerosity of artworks present in the museum. To achieve

this the App provides automatic artwork recognition. It also uses

gaming, in terms of a playful user interface which features state-

of-the-art algorithms for artistic style transfer. Automated pro-

cesses are exploited as a mean to attract visitors, approaching

them to even lesser known aspects of the history of art (a link to

a video of the system is available in Appendix 8). 1

1This Chapter has been published as “Imaging Novecento. A Mobile App for Au-

tomatic Recognition of Artworks and Transfer of Artistic Styles” in Digital Heritage.

Progress in Cultural Heritage: Documentation, Preservation, and Protection: 6th Inter-

national Conference, EuroMed 2016, Nicosia, Cyprus, October 31 – November 5, 2016,
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9.1 Introduction

Modern museums can provide new paradigms for experiencing artworks.

Thanks to the technological development, novel initiatives include perva-

sive uses of tech to create interactive experiences for visitors throughout a

museum. However, making content relevant and appealing through these

modern technologies is a difficult problem, requiring more and more inter-

activity as the audience is shifting towards a ‘multimedia point of view’.

Moreover, while the massive amount of available artworks constitutes a huge

resource for education and recreation purposes, it can also be a cognitive

burden for visitors.The cognitive process related to learning has been an ac-

tive subject of study in recent decades. According to cognitive load theory,

learners must cope with a certain level of cognitive effort to process new

information [114]. In this regard, multimedia education, defined as “pre-

senting words and pictures that are intended to foster learning” [96], can be

an effective remedy because it facilitates the activation of sensory and cog-

nitive perceptions (e.g. visual and notional memory), avoiding visitors from

information overloading. This can also be reinforced by gamification, that

is the use of playful experience to help a user find personal motivations and

engagement with serious content [124]. This combination can enhance the

visitor’s involvement and further lower its cognitive effort. Using gamified

applications, museum visitors have the opportunity to feel the emotion of a

game, share results with friends on social networks or become part of a game

community [107]. This aspect of learning through gaming is even more valu-

able in the context of the “Bring Your Own Device” (BYOD) approach [6]

that allows on demand access to digital content on personal devices. The

BYOD approach and gamification have been identified in the NMC Horizon

Report 2015 to be increasingly adopted by museums in one year’s time or less

for mobile and online engagement [75]. In this Chapter we report our expe-

rience in embedding these concepts into Imaging Novecento, a system built

around a mobile application developed for the museum “Museo Novecento”

in Florence, IT. We aimed at improving the learning process of the visitors

by exploiting a simple gamification paradigm, and at reducing visitors cogni-

tive load. To this end, we also developed a state-of-the-art computer vision

system that is able to 1) recognize artworks from photos; 2) apply their style

to user photos.

Proceedings, Part I, pp. 781-791, 2016 [10].
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9.1.1 The Museo Novecento in Florence and Innove-

cento

The “Museo Novecento” in Florence, IT, is a museum opened on June 24,

2014. The museum is dedicated to the Italian art of the 20th century and

offers a selection of about 300 artworks distributed in fifteen exhibition halls

on two levels. The venue is located in the former hospital of the “Leopoldine”

in Piazza Santa Maria Novella. The museum has been an example of innova-

tion since its genesis, thanks to the prompt adoption of the latest multime-

dia technologies. In March 2015, in order to improve the visitor experience,

the Municipality of Florence has published an open call “INNOVecento -

Novecento Museum Innovation Lab” inviting companies and professionals

to propose ideas and solutions based on ICT. Five companies specialized in

technologies applied to cultural heritage have already responded to the call

which, at the time of writing, is still open. As NEMECH, centre of compe-

tence of the Tuscany region in Italy, we proposed Imaging Novecento. The

App features automatic recognition of artworks through the visitor’s smart-

phone and automatic transfer of artistic styles from artworks. These styles

can be applied to user images.

9.1.2 Motivations and design

The target of the App is rather wide. Although Imaging Novecento can be

used by anyone (e.g. tourists and residents), during the design process we

identified a specific audience. We mainly target the App towards people in

a relatively young age (between 14 and 30 years old), more accustomed to

digital technologies, open to technological innovation and to gamification.

One of the main ideas of the App is to exploit the pervasiveness of mobile

cameras in modern smartphones to reduce the cognitive effort required to

museum visitors. In fact, despite themed rooms and the ubiquitous explana-

tory cards, users can still be overwhelmed by the great number of artworks

present in the museum. Labels in museums can be very concise or, on the

contrary, can be filled with lots of explanation, often generic, not highlight-

ing salient features of individual paintings. By using Imaging Novecento,

the visitor can take a picture of the artwork he is interested in. The App

will automatically recognize the painting and provide related information.

Another reason for the adoption of this automatic process is the resistance

of museums’ curators to place or attach additional materials, such as QR
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codes or BLE iBeacon [66], next to artworks. Furthermore, tourists and

school groups are usually ‘hit-and-run’ visitors who tend to rapidly forget or

do not have the time to process the overload of information. To solve this

issue, Imaging Novecento leverages a playful feature that employs state-of-

the-art algorithms for transferring artistic styles from recognized artworks

to user images. This is done using a gamification paradigm at the interface

level. Gamification techniques have been proved to be useful in engaging

students in the learning process, improving their skills and maximizing their

long-term memory [34].

9.1.3 Previous work

Several previous works have addressed the problem of providing an engaging

experience to museum visitors. Rapid technological development has led to

the implementation of a lot of applications. There are several active trends

for virtual museums: immersive reality [58, 92], natural interaction instal-

lations [9, 44], mixed reality, mobile applications [24, 168]. While they all

offer increasing engagement of visitors, only recently studies on the effects

of audience have been carried out [75, 112]. In particular, a recent audience

study has been conducted on the case of the “Keys to Rome” international

exhibition, hosted at the “Imperial Fora Museum” in Rome in 2015, to as-

sess the impact of these technologies on cultural heritage. The exhibition

was made up of 11 digital installations and applications, installed in the

museum [112]. The study highlights some fundamental aspects that must

be taken into account when designing applications for virtual museums: 1)

the majority of museum visitors are tourists and school groups; 2) visitors

generally require applications with an high level of interactivity, particularly

on their mobile devices; 3) it is essential for the UX design to use metaphors

of informal learning capable to stimulate attention, memory and engagement

(e.g. through gamification) in visitors.

Automatic artwork recognition Automatic artwork recognition is a

long standing problem in applications for cultural heritage. Descriptors

such as SIFT and SURF have been used for years in order to address this

task [127, 142] due to their accuracy in recognizing paintings. Crowley and

Zisserman [32] retrieve artworks finding object correspondences between pho-

tos and paintings by using a deformable part based method. More recent

approaches for artwork recognition adopt Convolutional Neural Networks
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(CNN) as in [2], where a holistic and a part based representation are com-

bined. Peng and Chen [115] exploit CNNs to extract cross-layer features

for artist and artistic style classification tasks. Artistic style recognition is

also performed in [77] on two novel large scale datasets. Similarly to these

works, we explore the use of CNNs features but we aim to obtain a global

representation that is semantically meaningful and also capable of retaining

low level visual content information. Artwork recognition has also been used

with wearable devices, as in [9] where the user’s position is jointly estimated

with what he is looking at.

Artistic style transfer Regarding the application of artistic style to pho-

tos, a lot of research has been done in the past. The problem of rendering

a given photo in the style of a particular artwork is known in literature

as a branch of non photo-realistic rendering [83]. This class of works use

texture transfer [37,164] to achieve style transfer. These techniques are non-

parametric and directly alter image pixels of the content image into pre-

defined styles. Another direction of work focuses on the idea of separating

style and content in order to ‘remix’ them together in different configura-

tions. First works were evaluated on much simpler images such as characters

in different handwritings [143] or images representing human body configu-

rations [38]. Only recently, the breakthrough paper from Gatys et al. [59]

showed the possibility of disentangling the content from the style of nat-

ural images by using a convolutional neural network based representation.

The advantage of this approach is the capability of performing style transfer

from any painting to any kind of content images. The approach was re-

cently extended with a more advanced perceptual loss [74] and also applied

to movies [1] by considering the optical flow.

9.2 The System

The system is composed by two main components: a mobile App and a

computer vision system responsible to address the two tasks of automatically

recognize artworks and apply artwork styles to user photos. The mobile App

is used by the visitor in the museum and is the fulcrum of the user interaction.

Once installed by the user in his mobile phone, it allows to take pictures,

deliver artwork information and request the style transfer to new photos.

Due to the limited amount of computational power available on most mobile
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devices, the computer vision system is deployed on a scalable web server

system that processes requests from the mobile App. Since the two tasks

use quite different technologies, we discuss them separately in the following

sections.

9.2.1 The Mobile App

Imaging Novecento has been developed as an Android application using

Ionic 2. Ionic is a framework, based on Sass and AngularJS, for building

highly interactive native web apps through mobile-optimized HTML, CSS

and JS components and tools. Imaging Novecento is a contextual App

that can be used exclusively inside the Museo Novecento in Florence. An

information flyer of the App is delivered to the visitor at the ticket office.

In the flyer there are a QR code, through which the visitor can download

the App from the Google Play store, and the list of the artworks on which

the App can perform the automatic recognition and style transfer processes.

The list comprises a selection of twenty artworks for which the museum’s

curators have provided multimedia materials. The App interface (Fig. 9.1)

is quite simple and is organized in two main views: 1) the Camera View and

2) the Artwork Details view.

Figure 9.1: Imaging Novecento in action: 1) the user takes a picture of an

artwork; 2) the artwork is recognized and insights are shown; 3) the user

selects a photo from his own gallery in order to apply that artwork style and

to share the results on social networks.

The Camera View allows the visitor to frame one of the artworks on the

list in order to have it immediately recognized by the automatic system.

Proper feedback is given in case the recognition is not successful. Once

2http://ionicframework.com/

http://ionicframework.com/


9.2 The System 73

the artwork is recognized, the Artwork Details view is activated. In this

view, exhaustive but concise information about the author, the history of

the artwork and its artistic style are given. An infographic is presented to

the user. It works as a “call to action” for enabling the transfer of the

recognized painting style to a photo from the user’s device gallery. The

infographic provides an animated preview that shows the result of the artistic

style transfer on a predefined picture. After the image has been successfully

uploaded, the remote process for style transfer is performed. The result of

the elaboration is then sent to the user in a few minutes by email. The image

has a resolution of 900px wide preserving the original image aspect ratio and

can be shared on the most popular social networks (e.g. Facebook).

9.2.2 Automatic Artwork Recognition

Artwork recognition is performed through a Python web server with a REST

interface. The server processes the image and returns the ID of the recog-

nized painting. The recognition step combines modern deep features with

classical Support Vector Machines (SVM) in order to classify photos of paint-

ings. Image features are extracted using a deep convolutional neural network

(CNN), and are then evaluated using a set of classifiers, one for each rec-

ognizable artwork. The neural network we adopted is the Caffe reference

model [72], fine-tuned for style recognition using the FlickrStyle dataset [77]3.

In order to obtain a representation which is at the same time semantically

meaningful and capable of retaining low level visual content information, we

extract image features from an intermediate level of the network. In particu-

lar, we adopt the pool5 feature map, the latest one before the fully connected

(FC) layers of the CNN. In fact, FC layers trade spatial information for a

more semantic representation, which is highly coupled with the task and

with the visual domain on which the network has been trained. This choice

is therefore motivated by the fact that our visual domain, while being quite

close, is different from the one of FlickrStyle. Moreover, since a sufficiently

large dataset was not available to perform a further fine-tuning step, SVM

classifiers have been trained to adapt the framework to the App’s domain

and be able to classify artworks correctly. For training the classifiers we

used approximately 1,800 images, gathered at the museum using different

smartphones and tablets, namely Galaxy S4, Galaxy Tab, iPhone 6, iPad

3the network is available online at http://caffe.berkeleyvision.org/gathered/

examples/finetune_flickr_style.html

http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
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Figure 9.2: Samples from the dataset collected at the museum. On the first

row standard pictures are shown, depicting the painting in their entirety. On

the second row instead, are reported more challenging photos, due to blur,

occlusion or rotation.

Mini and OnePlus One. These images represent all of the twenty artworks

plus a ‘negative’ set of images containing other scenes and paintings inside of

the museum. They are used to reduce the false positive rate when the user

accidentally attempts to recognize other paintings. All the classifiers are One

vs All SVMs. During the evaluation phase, the ID of the highest scoring one

is returned to the mobile App, if it scores above a cross validated threshold.

Details about the recognized artwork are then provided to the user, who can

upload a personal photo to get the style of the painting transferred on to it.

Calls to the web server are handled asynchronously and each request takes

approximately 300ms on a CPU.

In order to test the recognition accuracy we collected an additional set of

photos which were not used for training. For each one of the twenty artworks

in our system, we collected approximately 30 photos taken from different

viewpoints, with different scales and degrees of occlusion. Fig. 9.2 shows

some of the photos from the test set. Some of them are “difficult” in a sense

that might be blurred or taken from challenging viewpoints and artworks may

be partially occluded by other visitors. Despite these difficulties our system

achieves an overall good performance with a mean accuracy of 94.01%. In

detail, in Fig. 9.3 we report the confusion matrix for the twenty artworks

in the test set, showing how often each painting is correctly classified or

confused with other artworks. As can be seen, the majority of artworks are

perfectly recognized. Only four artworks have performance slightly inferior

to 0.9, due to the difficult lightening conditions present in their specific

locations at the museum.
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Figure 9.3: Confusion matrix for the artwork recognition module. Each row

indicates the percentages of correct and incorrect classifications for a given

artwork.

9.2.3 Artistic style transfer

From the Artwork Detail view of the mobile App, the user has the possibility

to upload a personal image on which the style of the artwork will be applied.

In this way, entertaining personal pictures that share similarities with the

artworks can be obtained and shared on social networks. As a result, a

visit at the museum can become a playful experience, combining gaming

and learning aspects for young visitors. We base our approach on that of

Gatys et al. [59], that is capable of freely mixing style and content of two

different photos. The main advantage of this approach is its broad applica-
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bility to different styles, in contrast to fixed handcrafted styles [37,164]. This

allows a museum curator to easily add new artworks in the system without

requiring the development of a new transfer style algorithm. Following [59],

our approach uses a CNN to derive a neural representation of content and

style. The feature responses of a pre-trained network on object recognition

(VGG-19 [135]) are used to capture the appearance of an artwork image

and the content of a user photo under the form of texture information. We

start from a blank novel image that is altered with back-propagation until

its neural representation is similar in terms of euclidean distance to the style

and content representations.

Figure 9.4: Two examples of image stylization: 1) Baccio Maria Bacci, “Il

tram di Fiesole”, applied to a picture of the Battistero in Florence, IT; 2)

Alberto Moretti, “Malcom X ed altri”, applied to a picture of Piazza della

Repubblica, also in Florence.

Unfortunately, the generation of the image is quite computational inten-

sive. For an image of 900 pixel large, it takes about ∼90 seconds on a K80

NVIDIA GPU. As a result, the requests have to be handled offline since it

is not possible to obtain the output image in few seconds. Considering also

that multiple requests can be made at the same time from multiple users,

we implemented a scalable web server that is able to be easily deployed on

several interconnected nodes. Web requests are handled in Python and en-
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queued to a distributed queue run by a Celery4 server. By treating each

request as a single unit task, it allows to process the images in a distributed

batch fashion on several GPUs and several servers if available. After com-

pleting the computation, each output image is sent to the user via email,

together with a description of the artwork. We also include links to share

the image to several social media, with the aim of enabling viral publicity of

the museum.

9.3 Conclusion

In this Chapter We presented the Imaging Novecento App, developed for the

“Museo Novecento” in Florence, IT. Following previous studies on cultural

heritage audience and applications, the App aims at enhancing the experi-

ence in the museum reducing cognitive load and exploiting gamification. The

App automatically recognizes a selection of paintings and provides insights

on artworks and their authors. The user can upload a personal picture with

his smartphone to get it stylized with the recognized artwork style. He also

has the possibility of sharing it on social networks. In the Chapter we show

how computer vision technologies can be exploited to increase interactivity

and reduce cognitive load. This can attract the targeted audience to the

museum and further engage people with content.
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Chapter 10

Context Aware Smart Audio

Guides: Design and

Implementation Strategies

In this Chapter we address the problem of creating a smart audio

guide that adapts to the actions and interests of museum visitors

(a link to a vidio showing the system in action is provided in

Appendix 9). As an autonomous agent, our guide perceives the

context and is able to interact with users in an appropriate fash-

ion. To do so, it understands what the visitor is looking at, if

the visitor is moving inside the museum hall or if he is talk-

ing with a friend. The guide performs automatic recognition of

artworks, and it provides configurable interface features to im-

prove the user experience and the fruition of multimedia materi-

als through semi-automatic interaction. Our smart audio guide

is backed by a computer vision system capable to work in real-

time on a mobile device, coupled with audio and motion sensors.

We propose the use of a compact Convolutional Neural Network

(CNN) that performs object classification and localization. Using

the same CNN features computed for these tasks, we perform also

robust artwork recognition. To improve the recognition accuracy

we perform additional video processing using shape based filter-

ing, artwork tracking and temporal filtering. The system has been

deployed on a NVIDIA Jetson TK1 and a NVIDIA Shield Tablet

79
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K1, and tested in a real world environment (Bargello Museum of

Florence). 1

10.1 Introduction

Digital and mobile technologies are becoming a key factor to enhance vis-

itors’ experiences during a museum visit, e.g. creating interactive and per-

sonalized visits. Personalization is viewed as a factor in enabling museums

to change from “talking to the visitor” to “talking with the visitors”, turn-

ing a monologue to a dialogue. This applies especially to audio guides since,

similarly to a real museum guide, they must adapt their content to the needs

and interests of the visitors [15]. Whether personalization addresses on-line

exhibitions [15], on-site display of artworks [76], or both on-line and on-

site [155], there is a need to obtain information about the behavior of the

visitor, e.g. what he is looking at, for how long, and what other events hap-

pen during the visit. In this Chapter we address the problem of creating a

smart audio guide that adapts to the actions and interests of the visitor of

a museum, understanding both the context of the visit and what the visitor

is looking at. The goal of this work is to implement a real-time computer

vision system that can run on wearable devices to perform object classifica-

tion and artwork recognition, to improve the experience of a museum visit

through the automatic detection of the behavior of users. Object classifi-

cation, sensors and voice activity detection help to understand the context

of the visit, e.g. differentiating when a visitor is talking with people or his

sight is occluded by other visitors, e.g. understanding if he has friends that

accompany him during the visit to the museum, or he is just wandering

through the museum, or if he is looking at an exhibit that interests him.2

Artwork recognition allows to provide multimedia insights of the observed

item automatically or to create a user profile based on what artworks a user

is looking at and for how long.

1This Chapter has been published as “Deep Artwork Detection and Retrieval for Au-

tomatic Context-Aware Audio Guides” in ACM Transactions on Multimedia Computing

Communications and Applications, 35, pp. 1-21, 2017 [133] and as “Portable computer

vision for new intelligent audio guides” in EVA 2017 Florence - Electroning Imaging &

the Visual Arts, 2017 [14]
2https://vimeo.com/187957085

https://vimeo.com/187957085
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10.2 Related Work

Personalized museum experience.

The personalization of a museum visit may address the on-line experience in

a virtual museum, the on-site experience in the museum itself, or both cases.

In [15] web personalization in museums is motivated by the advantages

that it provides in improving usability of museum web sites and the facilita-

tion of the learning process implied in a visit. Personalization is considered

a new communication strategy that improves relationships between visitors

and the institution. In [155] it is presented the Cultural Heritage Information

Personalization (CHIP) system, that bridges on-line and on-site tour guides

creating a personalized visit tour through a web site and then downloading

the guide on a mobile device with RFID sensors that track the visitor in

the museum. Tour information and the rating of artworks, if provided by

users, are then sent back to the web site to update the user profile. Inter-

active digital guides have been used in [169] and [82] to analyze and predict

the behavioral patterns of museum visitors, according to four main patterns

that were initially identified through ethnographic observations by [39]. The

works show that the four patterns can be identified using features such as

average time spent on each artwork, percentage of observed artworks, etc.

In [78] augmented reality (AR) on a mobile device is coupled with a person-

alized interactive storytelling experience, e.g. adapting the guide based on

the age of the visitor, providing a gamified experience to children. In [76] a

non-intrusive computer-vision system has been presented, based on person

re-identification of museum visitors observed through surveillance cameras.

The system identifies the artworks that are observed by museum visitors

and measures how much time is spent looking at each artwork, to create a

personalized user profile. At the end of the tour the user profile is used to

create a personalized exploration of multimedia content on an interactive ta-

ble, providing more information on the items that most attracted the visitor,

and suggesting additional visits and tours.

Object detection and recognition

After the breakthrough of convolutional neural networks in image classifi-

cation brought by Krizhevsky et al. [81], several works have used similar or

derived strategies to solve other image and video related tasks [41,62,63,125].
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A simple, yet dramatically effective strategy pioneered by Girshick et al. is

to extract CNN features from regions of an image. Further improvements in

localization and accuracy are obtained using a bounding box regressor and

fine-tuning the CNN features on the detection task. The task of computing

a full forward pass for every sub-window is extremely time expensive even

for moderately shallow networks. More up-to-date works [62,125] avoid this

burden by computing a single full resolution convolution on the whole frame

and then performing classification and bounding box regression over a region

of interest computed over the last convolutional layer. Fast R-CNN avoided

the computation of multiple full forward passes, nonetheless it required ex-

pensive resources to compute object proposals, often generated with low-level

features such as edges [174]. Ren et al. [125] removed this further computa-

tion bottleneck by learning a lightweight object proposal sharing the same

features of the network used for object detection.

A more recent class of approaches tries to generate a set of class-labeled

bounding boxes with a single pass of a convolutional network [89,123]. Red-

mon et al. argue that You should Only Look Once (YOLO) at frames, using

an architecture inspired by Inception [140] focused on reducing the network

size and the computation. The main idea is to produce, as an output, a ten-

sor of size N ×N × |C| × 5, representing the coordinates and probabilities,

for each of the C categories, for N2 evaluated locations. Liu et al. proposed

an approach named Single-Shot Detection (SSD), which is very similar to

YOLO, but differs in the fact that it removes all fully connected layers al-

lowing to predict bounding box using small convolutional filters on the last

convolutional activation map. One advantage of SSD is that it allows to

evaluate more windows, at multiple scales, by computing convolutions on

previous output layers.

Content-based retrieval for Cultural Heritage

Over the years several methods and applications of content-based image

retrieval (CBIR) techniques have been applied to the domain of cultural

heritage.

A comparison of different techniques, based on engineered and learned

features, for image classification and retrieval in cultural heritage archives

has been presented in [116]. The authors of this work highlight two issues

when applying current state-of-the-art CBIR techniques in the cultural her-

itage domain: i) often there is need to account for both micro properties, such
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as brush strokes, and macro properties, such as scene layout, in the design of

similarity metrics; ii) datasets are, paradoxically, relatively small, with few

images for each item, thus hindering methods that require large scale train-

ing datasets. A model to support recognition of complex 3D monuments

such as statues was proposed in [35]; in the proposed approach salient SIFT

points are selected using a measure of mutual information to reject points

that are part of background. A method for painting classification, in terms

of artist and style, has been proposed in [3]. Paintings are represented using

the concatenation of two Fisher Vectors that represent the whole image and

salient parts of the image. In [88] a late fusion of global and local CNN

features is used to classify images taken during cultural events.

Object recognition on mobile devices

The availability of multi-core CPUs and GPUs on mobile devices has recently

allowed to implement multimedia and computer vision methods on smart-

phones, with particular attention to convolutional neural networks. In [166]

an analysis of the best CNN architectures for mobile devices has been per-

formed, evaluating the impact of using NEON SIMD instructions available

on ARM CPUs and BLAS routines. The authors propose to use a Network-

In-Network (NIN) architecture, where neuron weights are compressed with

Product Quantization, to reduce the memory occupation of the CNN net-

work. This solution has been employed to implement a mobile system for

food recognition, presented in [141]. The problem of food recognition using

mobile devices has been addressed also in [98], where different CNNs are used

to segment food, estimate the 3D volume and classify food, so to provide an

estimation of the calories; however only the CNN for food classification has

been ported to a mobile device. Speed improvement and memory require-

ments reduction of CNN execution, for mobile devices, has been obtained

in [162] through weights quantization of fully connected and convolutional

layers, and applying an error correction technique to minimize the estimation

error of each layer. In [69] a framework to execute deep learning algorithms

on mobile devices has been presented. The framework uses OpenCL to ex-

ploit the GPUs. The framework addresses the problem of thread divergence

in GPUs through data padding. In [84] has been presented a framework

for GPU-accelerated CNNs on Android devices, that uses SIMD instruction

on mobile GPUs, parallelizing some types of layers on GPUs and others,

that are less computationally intensive, on CPUs. The framework has been
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released as open source.

Voice Activity Detection

Voice activity detection (VAD) is the process of detecting when humans

are speaking in a given audio stream. It is essential to improve further

processing like automatic speech recognition or saving bandwidth in audio

coding or conference systems.

The first VAD system was first investigated in the fifties to be used on

TASI systems [18]. Early approaches to this problem were based on heuris-

tics and simple energy modeling, by thresholding or observing zero-crossing

rate rules [160]. These methods work well in settings where no background

noise is present. More recent methods address this limitation by employing

autoregressive models and line spectral frequencies [103] to observe signal

statistics in current frame and compare it with the estimated noise statistics

with some decision rules. However, most of these conventional algorithms as-

sume that noise statistics are stationary over long periods of time, more than

those of speech. Given the extreme diversity and rapid changes of noise in

different environments, they can’t detect occasional presence of speech. The

most recent class of approaches for VAD are that of data-driven methods,

that avoid to make assumption over the noise distribution. They usually

use a classifier trained to predict speech vs non-speech given some acous-

tic features [40, 100]. Anyway, their performance degrades when the back-

ground noise resembles that of speech. The state-of-the-art methods exploit

long-span context features learned through the use of recurrent neural net-

works [36, 43, 152] to adapt the classification on the basis of the previous

frames.

The method presented in this Chapter addresses the problem of creating

a personalized on-site museum experience using a non-intrusive computer

vision algorithm that can be executed on board of an audio guide. Un-

like works such as [84] and [69], no special framework has been used, and

the problem of computational costs has been addressed using: i) a CUDA

implementation of a CNN running on NVIDIA portable GPUs, and ii) de-

signing the algorithm to exploit the same features used for object detection,

classification and retrieval. The problem of the scarcity of training data,

highlighted in [116], has been solved applying fine tuning to a pre-trained

CNN. Moreover, we exploit on-board sensors and recent recurrent neural
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networks for voice detection to further understand the context of the wearer,

like its movements and its interactions with other people.

The remainder of the Chapter is organized as follows:in Sect. 10.3 we

describe the overall system architecture and its sub-systems; in Sec. 10.4

we describe our efficient method for detecting objects and how we obtain a

reliable artwork identification using tracking and retrieval. Sec. 10.5 outlines

the context modeling module based on voice and sensor input processing.

The full system, comprising also the Android App is described in Sec. 10.6.

Finally in Sec. 10.7 and Sec. 10.8 we present quantitative results on our

system together with an user experience evaluation, then drawing conclusions

in Sec. 10.9.

10.3 The System

The system we propose comprises several components that work together to

enable a smart experience. Fig. 10.1 shows an architectural diagram illus-

trating the main submodules of the system. From a higher level view of our

system, two main sub-systems are identified, one responsible to recognize

artworks, (providing Artwork id) and one to model the User status. They

generate input signals for the Playback Control module which is responsible

to play descriptions at appropriate time. Our system senses the environment

through three main channels: a camera, a microphone and movement sen-

sors. The three sources are accessed through an Android App which is also

responsible as a front-end of the whole system. The camera is used to under-

stand what the user is looking at. A computer vision system is responsible

to detect objects (Object Detector) and recognize what artwork the user is

looking at (Artwork Recognition). Two sub-modules are highlighted in the

recognition step: the first retrieves the most similar artwork from a database

of known artworks and the second performs tracking to smooth out wrong

predictions. The Context Modeling module receives three behavioral signals:

People Detections, Voice Activity Detection, and Walking Detection. These

signals concur in generating a User Status signal. The microphone is used as

a source for Voice Activity Detection, and movement sensors are necessary

for Walking Detection.
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Figure 10.1: The overall system architecture.

10.4 Efficient Object Detection and Recogni-

tion

The smart audio guide we developed is based on an efficient computer vision

pipeline that simultaneously performs artwork localization and recognition.

The guide requires two main computer vision tasks to be solved: i) detection

of relevant object categories: e.g. persons and artworks; and ii) for every de-

tected artwork, reliable recognition of the specific artwork framed. Moreover,

since we are dealing with a sequence of frames, in order to improve artwork

recognition we take advantage from temporal coherence to make the output

more stable. Our system is based on YOLO [123], that is demonstrated to

obtain accurate results even for moderate size networks. The main advan-

tage of YOLO can be read in its acronym, i.e. it requires to look at the

image only once. The process to generate scored boxes for each category of

interest can be summarized as in the following. The whole image is split in

7×7 blocks. For each of the 49 regions a tensor of 5×2×|C| is output. This
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tensor encodes two box predictions for each of the |C| classes. Boxes are

represented as a tuple 〈x, y, h, w, s〉. Non maximal suppression can be used

to avoid multiple prediction for the same object. The confidence accounts

for the accuracy of the bounding box and the probability of that class being

present inside the given. Differently from SSD [88], which is based on VGG-

16, our YOLO-based classifier uses a much smaller network that allows the

classifier to adhere with the memory requirements of an embedded system

like the NVIDIA Tegra TK1 SoC. The architecture is derived from Tiny Net,

a small CNN pre-trained on ImageNet, which allows the application to run

at 10 FPS and fitting on the memory of a Shield Tablet.

Wn

Hn

Cn

Wn,bb

Hn,bb

Cn

Figure 10.2: Feature extraction procedure for an artwork detection on a

single convolutional feature map.

The system network was fine-tuned to recognize artworks and people

using our dataset. Recognizing people is relevant for two reasons: first we

can exploit the presence of people in the field of view to create a better

understanding of context, see Sec. 10.5; secondly, without learning a person

model, it is hard to avoid false positives on people, since artwork training

data contains statues, which may picture human figures. Learning jointly

a person and an artwork model, the network features can be trained to

discriminate between this two classes.
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10.4.1 Artwork recognition

The rich features computed by the convolutional layers are exploited and

re-used to compute an object descriptor for artwork recognition.

6.3 Esperimenti di recognition 40
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Figura 6.3: Output dei layers convoluzionali di YOLO tiny. Parten-

do dall’immagine di input, di dimensione 448×448×3, abbiamo numerato i

layers convoluzionali della rete da 8 a 0. Ciascun layer n ha come output

una mappa di features di dimensione Wn × Hn × Cn (dove Wn e Hn sono

uguali, ad esempio il layer 3 ha output di dimensione 14×14×512). Non

sono mostrati né i layers di max pooling, interposti tra tutti i layer convolu-

zionali numerati da 8 a 3, né i layers fully connected, che si possono trovare

a seguito del layer numerato con 0.

6.3.1 Scelta dei layers per recognition

Come visto nel Capitolo 5.2.2, per ogni bounding box contenente un’opera

d’arte il nostro sistema genera un vettore di features ad essa associato. Que-

sto vettore di features è costruito utilizzando features selezionate ed estratte

dagli output dei layers convoluzionali della CNN di tipo tiny di YOLO da noi

addestrata, di cui abbiamo parlato nel Capitolo 4.2. In Figura 6.3 possiamo

vedere gli output dei 9 layers convoluzionali utilizzabili per la costruzione del

vettore di features. Per selezionare quali di questi usare, abbiamo effettuato

alcuni esperimenti variando i layers utilizzati. In particolare, i layers da 0

a 2 sono stati esclusi da alcuni test preliminari, poiché, oltre a non essere

risultati buoni nei test per la recognition, come si vede in Figura 6.3, pos-

siedono Wn e Hn troppo piccoli e questo rende a loro volta troppo piccole le

bounding box proiettate sulle mappe di features.

Per ogni insieme di layers provato, abbiamo costruito delle curve di Precision-

Recall. Partendo da una bounding box di query, selezionata dal dataset per

recognition, abbiamo calcolato i valori di precision e di recall all’aumentare

del numero di bounding box restituite dalla query di recognition. Questi

valori di precision e recall sono stati mediati per ogni bounding box di query

considerata.

I risultati più interessanti, ottenuti al variare dell’insieme di layers utilizzato,

si possono vedere in Figura 6.5. Da questi risultati si nota come il miglior in-

Figure 10.3: Our network architecture, with tensor size and layer numbering.

To ensure ease of deployment and update of the system, we base our art-

work recognition system on a simple nearest neighbor step. We need to fulfill

two important requirements: first our feature should be lightweight, i.e. low

dimensional, in order to be stored on the device and reduce the computa-

tion time for feature comparison; second we must compute a discriminative

representation for a region of the frame that may differ in size and aspect

ratio. To obtain a low dimensional fixed size descriptor of a region, we apply

a global max-pooling over convolutional feature activation maps, as shown

in Fig. 10.2. To increase the discriminative power, we concatenate such de-

scriptor computed on two different feature maps. The region is remapped

from the frame to the convolutional activation map with a simple similar-

ity transformation. Considering the activation map of the nth convolutional

layer, we have a tensor dimension of Wn ×Hn × Cn. After the reprojection

of the bounding box onto the feature map we end up with a smaller ten-

sor with a size of Wn,bb ×Hn,bb × Cn; Wn,bb and Hn,bb depend both on the

network layer and the bounding box geometry, while Cn depends solely on

the network layer and represents its number of channels. The max-pooling

operation of the Cn channels over the Wn,bb × Hn,bb values generate a fea-

ture vector that is independent from the dimension of the bounding box.

Considering the architecture in Fig. 10.3 one could wonder which features

are best to recognize the specific framed artwork, since leftmost layers have

higher resolution and mostly represent the low-level structure of the image,

while rightmost ones, are low resolution but encode higher level information,

closer to the image semantics. After an experimental evaluation, which is

detailed in Sect.10.7, we selected, as combination, the features from layers
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3 and 4, yielding a feature of size 768. The final bounding box descriptor is

obtained by concatenation of the two max-pooled regions values and is L2-

normalized. Considering a pre-acquired dataset of artwork patches pi ∈ D
and their artwork labels y, for each detected artwork d we predict a specific

artwork label yp̂ finding the nearest neighbor patch

p̂ = arg max
i
〈pi, d〉 (10.1)

The recognition system observes each frame independently and predicts art-

work labels according to Eq. 10.1, this approach, in case of motion blur or

quick lighting changes may produce incorrect recognition results. In the fol-

lowing we detail how we exploit temporal coherence to produce a more stable

recognition output.

10.4.2 Artwork Tracking and Temporal Smoothing

High recognition accuracy is a requirement for the audio-guide, since mis-

taking an artwork for another may result in a bad user experience, e.g. this

would result, at the interface level, in the audio guide presenting an artwork

different from the one that is actually observed. This is an extremely crit-

ical aspect and must be addressed, in order to improve the stability of the

recognition system. We devise three strategies, based on the user location

with respect to the artwork of interest and the continuous tracking of object

bounding boxes. To reduce the error rate our idea is to avoid performing

artwork recognition on objects that may be too far from the user. Farther

objects are unlikely to be of interest for the user, moreover the feature com-

puted on a smaller bounding box has little discriminative power and likely

leads to erroneous recognition. Computing the actual metric distance from

an artwork requires to perform real-time camera tracking and scene mapping.

We believe that this accurate information is not required for our task and

therefore we rely on a simple heuristic, comparing the areas of an artwork

detection and the whole frame as in the following:

wbbhbb
WH

> T (10.2)

where WH is the frame area and wbb and hbb are bounding box width and

height respectively, and T is a threshold (Fig. 10.4) empirically fixed. We

name this strategy Distance. In our experiments we obtained the best results

for T = 0.1, that as can be seen in Sec. 10.7.4, allows to reduce false
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recognitions by 50% w.r.t. not using the heuristic, at the cost of introducing

a small number of missed recognitions.

Figure 10.4: Shape based filtering: artwork in yellow (left) is not considered

for recognition, not satisfying Eq. 10.2, while the other is recognized as

“marzocco” (the heraldic lion symbol of Florence).

Considering that there is continuity when the user walks around in the

area, an artwork recognized frequently across a very short amount of time is

probably the most correct. To exploit this, we continuously predict artwork

labels as described in Sec. 10.4.1, but we consider a prediction only after it

persists for M frames. We name this strategy Consistency. We implement

it by tracking all artwork detection boxes with a greedy data association

tracking-by-detection algorithm, requiring an IoU of consecutive bounding

boxes of 50%. An example of this tracking is shown in Fig. 10.5.
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Figure 10.5: Example of artwork tracking, with M = 15. Only after a stable

recognition over M frames the system labels the artwork.

With the same principle, it is unlikely that the user moves quickly from

an artwork to another in just few frames. So, after the system recognizes an

artwork, it continuously output its label proportionally to the elapsed time

since the recognition. We call this strategy Persistence. We increment a

counter p every time the recognition label for a box is unchanged, keeping

track of the most frequent label y. Every time a label y∗ is different from y

we decrement p. We predict the artwork identity as y∗ only if p > P > M .

This technique greatly reduces the number of false recognitions. In our

experiments best results were obtained for M = 15 and P = 20.

10.5 Context Modeling

To pursue the idea of an autonomous agent that is able to understand when

it is the time to engage the user and when it should be inactive, it is essential

to understand the context and the status of the wearer. In addition to the

observation of the same scene the user is viewing through the wearable cam-

era, we also try to understand if the user is busy following or participating

in a conversation and if he is moving around the room, both independently

from the visual data.
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10.5.1 Detecting conversations

Our audio-guide should be able to understand when the user is engaging

in a conversation, if his field of view is occluded by other visitors or he is

paying attention to another person or an human guide. In that event, it is

reasonable to stop the audio-guide or temporarily interrupt the reproduc-

tion of any content, in order to let the user carry out his conversation. This

should be of high priority and it should be performed even if the user is

standing in front of an artwork. To identify this scenario, we use the device

microphone to detect the presence of a nearby voice. We chose to employ

a Voice Activity Detection (VAD) system for this task. Typically, muse-

ums are mostly quiet environments where people tend to remain silent, to

appreciate the artworks, and briefly talk between each other. Nonetheless,

in some cases the environment can be noisy with the presence of music in

background or some environmental noise. This requires the adoption of a

VAD with automatic noise adaptation. The system will listen continuously

to the environment, adapt to the local environment noise and detect when

voice is present. Therefore, in order to run in real-time together with the

computer vision module, it is essential to provide a lightweight system with

low computational complexity. We adopted the system from [43], that is

a state-of-the-art method based on a Long Short Term Memory recurrent

neural network. This approach is able to model long range dependencies

between the inputs (and thus accurately model environmental noise) and is

highly scalable. The computational complexity for evaluating the networks

is linear with respect to the number of input frames. Only a constant num-

ber of operations needs to be performed for every audio frame. We use the

open source implementation and model available in the OpenSMILE frame-

work 3. Considering that a positive voice identification stops the playing of

any description, it is imperative that the classifier has a low false positive

rate. Unexpectedly stopping the reproduction due to a classifier error may

result in a poor user experience. To this end, we evaluate an entire second

of audio before emitting the prediction. We choose to use a classifier with

a granularity of 0.01, so that, by exploiting all the predictions in this time

frame, we can increase the stability of the prediction. The final prediction is

the mean over the single classifications. We threshold this value according

to the expected false positive rate, measured empirically on our dataset.

3http://audeering.com/research/opensmile/
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10.5.2 Sensors for walking detection

An important hint for understanding the context of the user is given by its

movements. Standing still, walking or sitting can signal if the user is paying

attention to some artwork or if he is uninterested in what he is looking at.

We make use of this information for mainly two purposes:

• If the user is walking fast then he is not probably interested in the

visible artworks. This means that even if the visual system detects and

recognizes an artwork, the audio description should not be started.

• If the user is standing still in front of an artwork and he is listening

to the audio description, this should not be stopped, even if the visual

system stops recognizing the artwork. This can happen mostly because

of occlusions due to other people walking or standing between the

visitor and the artwork.

To perform walking detection we use accelerometer data. We estimate the

mean and standard deviation of acceleration magnitude from the training

set. We subtract the mean from the acceleration magnitude and then we

filter out peaks below the standard deviation. We consider each peak as a

step. We then take into account a sliding window of 1 second, and consider

the subject walking if at least a step is detected in the given window. To

detect if a person changes the facing direction, we estimate the orientation

variation using gyroscope data. We average the orientation vector over the

same 1 second sliding window. The facing direction is considered changed if

the current orientation vector differs from the average for at least 45◦.

10.6 System Implementation

The proposed system has been initially developed using a NVIDIA Jetson

TK1 board, to test the performance of the vision system, introduced in

Sec. 10.4, using a device designed for embedded systems. The board has

a NVIDIA Kepler GPU with 192 CUDA cores, and an NVIDIA 4-plus-1

Quad-core ARM Cortex A15 CPU. Then the audio-guide application, named

SeeForMe, has been deployed on an NVIDIA Shield Tablet K1 that has the

same computational capabilities of the TK1 board, but it runs Android 5.0

instead of Linux, and it allows to develop a user friendly application that

can support the visitor in his museum experience.
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Figure 10.6: A visitor with the device camera in the pocket

We designed the application to handle three different user scenarios: (i)

the user makes use of the application in a fully-automated way (placing the

device in a front pocket with the camera facing forward, or hanging it on

the chest using a special support), as shown in Fig. 10.6. In this scenario

the system does not need any interaction and continuously observes the

surroundings using the camera, choosing when to start and stop the audio

by analyzing the user’s behavior; in this modality the user can still interact

with the application by using voice commands that are elaborated by the

operating system and translated in the form of actions such as start/stop

the audio; (ii) the user makes use of the application actively in a semi-

automated way: after pointing the device towards the artworks the visitor

is interested in, the system detects the artwork and provides the contextual

audio guide, for which the audio can be started and stopped automatically

or manually by the user; (iii) the user has completed the tour and wants to

revisit his experience: to this end, the application provides a visual history

of the tour represented as a carousel of artworks in temporal order. Through

the carousel the user can select the artworks he visited, have multimedia

insights and replay the audio guide.

Several application properties and modalities can be configured in the

mobile app guide through a contextual menus reachable from the top right

corner of the navigation bar. In Fig. 10.8 it is shown the contextual menus

where there are two main modes: i) Blur mode, ii) Auto mode. The first

one enables an app feature which blur the background of the artwork being

framed by the visitor in order to focus his attention on the target. The Audio

mode instead activates the automatic mode for the control of the guide audio

stream. Voice Commands and interaction can also be enabled and disabled.
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Figure 10.7: (left) the user is listening to the description of the artwork,

(center) the user is reviewing an item in the history, (right) the user is

speaking with someone not focusing on any artwork,

Finally, a range in seconds can be defined to set a custom temporal window

between the instant that the system recognizes the artwork and the start of

the audio guide reproduction (these delay is marked visually by the green line

in the icon which animates until it closes the circle, as shown in Fig. 10.8).

The mobile app has been developed using the Android SDK. The inter-

face follows the guidelines of material design proposed by Google 4. SQLite

is used to persist the information on the device local storage. Communica-

tion between the app and the YOLO module is carried out using Java Native

Interface (JNI) which enables the Java code running in the Java Virtual Ma-

chine (JVM) to call and be called by native applications. Data-interchange is

performed through JSON messages. In particular, the YOLO module com-

municates with the mobile app passing data related to the current frame of

the camera stream. This data comprises detected and recognized artworks

and persons, with the coordinates of their bounding box, and booleans indi-

cating if external speech and user movements have been detected.

4https://material.google.com/
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Figure 10.8: The contextual menus to configure the app properties. Here it

is shown the appearance of the interface in blur mode.

10.7 Experimental Results

10.7.1 Dataset

We collected a dataset from footage captured in the Bargello Museum in

Florence. Bargello Museum hosts a variety of artworks, featuring a large

hall (Donatello Hall) with several masterpieces from Donatello. We use this

hall as our testing ground. The collected data serves two distinct purposes:

train and evaluate the object detector described in Sect. 10.4, and evaluate

the full artwork recognition system. Artwork imagery has been collected in

a diverse set of illumination and viewpoint conditions. In fact, the Donatello

Hall is an extremely challenging environment featuring a high ceiling with

large glass windows. Therefore depending on the time of the day and the

weather condition, artwork appearance may change significantly, because of

light diffusion and camera sensor saturation. We collect 1, 237 images from

all the statues in the Donatello Hall, in different lighting and viewpoint condi-
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tions. For the object detection task we extract a subset of annotated images,

splitting the data in training and testing. Artworks appearing in the training

set do not appear in the testing set to correctly evaluate the performance

of the detector. We added person images from PASCAL VOC2007 in order

to have a more balanced training set. Fine-tuning our small network does

not require a huge amount of data; we simply collected a balanced dataset

of ∼ 300 person and ∼ 300 artwork images. We used vertical image flipping

in training as data augmentation.

To evaluate the recognition system we annotated a larger set of images

with the artwork id. To easily collect our recognition database we developed

a tool based on our detection pipeline. We use our artwork detector to

generate bounding boxes and the tracker described in Sect. 10.4.2, to link all

boxes in a sequence, after a sufficient amount of frames of an artwork has been

collected the user may simply select an existing id or enter a new record in the

database. Considering the non-parametric nature of the recognition system

discussed in Sect. 10.4.1, this process can be run multiple times to enrich

the dataset. Finally, to test our full pipeline, we use sequences accounting

for 8, 820 frames. We also pay attention to include shots where multiple

artworks are visible. In each frame, we annotated the bounding box and the

label of each visible artwork. At the end of the process we collected a total

of ∼ 250 seconds of video with 7, 956 detections.

10.7.2 Artwork detection

In the first experiment, we evaluate the performance of the artwork detection

system. After performing the fine-tuning of the network on our dataset, we

run the trained detector on the test set and measure the average precision.

As described in Sec. 10.4, we aim at detecting the artworks that are in front

of the wearer and give less importance to the ones in the distance. As a

result, we only consider detections of a minimum area T that are indicative

of a small distance from the user. We report in Fig. 10.9 the average

precision obtained by the detection system when varying the minimum area

of the considered detections. The area is normalized with respect to the

dimension of the video frame. It can be observed that the average precision

increases with the minimum area of the box and reaches the maximum value

of 0.9 at 40% of the area. This means that the classifier is more effective at

recognizing nearer artworks. We note that increasing the minimum box size

area is not always a guarantee that the detector will be more precise. While
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far detections are very prone to errors due to the small object scale, some

detection errors may also be present at a near distance due to blur.
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Figure 10.9: Average precision of

artwork detection when varying

the minimum box area.
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Figure 10.10: Precision-recall

curve for artwork detection using

a threshold T = 0.1.

Selecting a good value for the minimum box area is therefore a trade-off

between a good precision and the proximity that a wearer has to be to an

artwork. We chose the final value of T = 0.1, that provides a significant

improvement of precision over the bare detector output and a maximum

distance of ∼ 5 meters. In Fig. 10.10 we show the precision-recall curve

relative to the final T value. Our system has a very good precision at high

recall rates. Hence, the curve exhibit only a small amount of loss in terms

of precision until 0.8 recall. We note that higher recall can not be reached

due to the T threshold selected according the results reported in Fig. 10.9.

For this reason, the curve is truncated at that point.

10.7.3 Artwork recognition: nearest neighbour evalua-

tion

In this experiment we evaluate the effect of the number of nearest neighbors

on artwork recognition, in terms of precision. Descriptors are computed con-

catenating two layers of the network, according to the approach described

in Sect. 10.4.1. Results are plotted in Figure 10.11 with accuracy using 1

nearest neighbour, where features extracted from layers 3 or 4 are combined

with the other layers. The figure shows again that the combination of the

3rd and 4th layers provides the best results. In Figure 10.12 we report the

accuracy when varying the number of nearest neighbours using the just se-

lected best combination. We observe that 1 nearest neighbor provides the

best performance in recognizing an artwork. Accuracy degrades when more
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nearest neighbours are used in voting the correct artwork id. This is due to

the fact that the environment we are testing the system in, has high vari-

ability in lighting conditions. Moreover we acquired multiple poses for each

artwork. It is clear that for each query only a few samples will be in the

similar pose/lighting conditions while increasing the amount of neighbours

will just add noisy data to the vote pool.
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Figure 10.11: Recognition accu-

racy of combinations of layer 3 and

4 with layers [3, . . . , 8].
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Figure 10.12: Recognition accu-

racy of the best layer combination

(layers 3-4), varying the number of

nearest neighbors.

10.7.4 Temporal Processing Evaluation

In order to measure the effectiveness of the three strategies for temporal pro-

cessing described in Sec. 10.4.2, we perform an experiment where several of

their combinations are tested. The annotated video sequences are thus fed to

a simulation of the system, where each combination of output bounding box

and label is tracked and compared to the ground truth data. The thresholds

are fixed at T = 0.1, M = 15 and P = 20. We measure the number of

detections where the artworks are correctly and incorrectly labeled, and the

number of times the system chose to output the “generic” artwork label.

We report in Table 10.1 the result of the evaluation. In the first test

(T1), we measure the performance of the system without any additional cri-

terion as baseline, i.e. the frame by frame output of the recognition system.

We observe that the system outputs the correct artwork for the majority

of the detections (∼ 70%), while about 30% were labeled as an incorrect
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Table 10.1: Performance by applying the three strategies for tem-

poral smoothing: C stands for Consistency, D for Distance and P for

Persistence. We report the number of detections where, respectively, the

artwork was correctly recognized, the artwork was misplaced for another one

and where the system chose to output a generic “artwork” label.

Test Strategy Correct Incorrect Skipped

C D P

T1 7 7 7 5,598 (∼70%) 2,358 (∼30%) 0 (0%)

T2 7 3 7 5,334 (∼67%) 1,267 (∼16%) 1,355 (∼17%)

T3 3 7 7 4,475 (∼56%) 36 (∼0%) 3,445 (∼43%)

T4 3 3 7 4,363 (∼55%) 11 (∼0%) 3,582 (∼45%)

T5 3 7 3 5,141 (∼65%) 61 (∼1%) 2,754 (∼35%)

T6 3 3 3 4,966 (∼62%) 22 (∼0%) 2,968 (∼37%)

artwork. By adding the Distance criterion, we see in test T2 that a slightly

lower amount of detections were correctly labeled, but about half of the in-

correct recognitions were considered generic, instead. This confirms that a

large amount of errors are made on farthest artworks, since they are more

difficult to recognize. In test T3, we observe the outcome of the Consistency

strategy. In this case, almost all the incorrect artwork recognition are suc-

cessfully exposed and classified as generic artwork output. This is due to

the uncertainty of the vision system that rapidly shifts its prediction from

frame to frame. In test T4, as seen in T2, adding the Distance criterion

to Consistency, reduces the Incorrect recognitions. While the Consistency

criterion by itself is able to almost nullify the incorrect recognitions, it is not

robust to sparse errors. In fact, the system often swings from the correct

recognitions to the generic label. This issue is resolved when combining this

stringent strategy with the Persistence one, in test T5. This is visible quan-

titatively in the gain of the number of correct recognitions and the relative

decrease of generic outputs, at the expense of increasing the incorrect ones.

Combining all the criteria, as in T6, leads to a very low number of incorrect

detections and a reasonable number of neutral artwork outputs, confirming

our intuition about the efficacy of the three strategies. With only 22 wrong

detections, the system predicts a wrong label approximately less than one

cumulative second every ∼ 5 minutes of video.
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10.7.5 Voice Detection Evaluation

In this experiment we test the performance of the voice activity detection

system on our dataset. We consider two simple strategies to emit a classi-

fication per second, namely Sample and Mean. The Sample strategy is just

evaluating the classifier on a single audio frame per second, sampled at the

beginning of a new second. This has the advantage to require only a single

evaluation of the net. The Mean strategy, instead, consider all the predic-

tions of net in a second and finally emits the mean of the values. This is

more robust to the fluctuations of the classifier, at the expense of running

the net continuously. With both strategy, in order to minimize the number

of false positives, we measure the performance of the classifier varying the

positive threshold.
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Figure 10.13: Receiver operating characteristic curve of the tested voice

activity classifiers.

We report the receiver operating characteristic (ROC) curve of the two

strategies in Fig. 10.13. We observe that both strategies have a high area

under the curve (AUC), meaning that they correctly predict the presence

of the voice most of the time. The Mean strategy has a higher AUC and

has always an higher true positive rate at the same false positive rate than
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Table 10.2: Functions comparison of our guide with respect to hu-

man and traditional audio guides

Type Instrumental Social Interactional Communicative

Human Guide ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Audio Guide ∗ – – ∗ ∗

SeeForMe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Sample. This confirms that the Mean strategy is more robust than Sample.

10.8 User experience evaluation

Modern tourist guides have their origins dating up to 17th and 18th centuries

Grand Tour, and their role has become a key component in modern tourism

experiences and applications. Guide functions can be highly specialized and

require a lot of expertise and interpersonal skills to satisfy tourist needs. [29]

describes guide roles as characterized by instrumental (guide), social (ani-

mator), interactional (leader) and communicative (intermediator) functions.

Instrumental functions represent services capable to convey essential tourism

information such as path finder to artworks location and related infos. Inter-

actional features offer the ability to create a relation between the user and the

contextual environment (e.g. informations about artworks). Improving this

ability also means improving interaction. Sociality involves all the activities

aiming at engaging the users with collaborative and not isolated experiences.

Communicative functions facilitate access to artwork insights and targeted

content, e.g. pointing out objects of interest. All these functionalities are ful-

filled at their best by humans and modern audio guides have only partially

replaced the complex role of the human guide. On the other hand the use of

technology has improved aspects such as efficiency, sociality and autonomy

in providing information communication under the so-called smart tourism

paradigm. In Table 10.2 we compare guide-role functions as provided by

human and traditional audio-guides with those available in our system.

The main differences between traditional audio guides and our system

can be found in the interactional and social aspects of the provided experi-

ence. In traditional audio-guides the fruition of content is for the most part

passive and the user has a low control on the reproduction of content. As
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regard to this, SeeForMe offers a more user friendly experience giving the

possibility to interrupt the audio playback manually and automatically, and

to restart the reproduction from the last point. Playback control can be

achieved also using voice commands. Furthermore, activation of contents in

audio-guides is cumbersome: locations or room numbers have to be searched

and inserted manually reducing usability whilst SeeForMe allows automatic

artwork recognition; this fact results in further differentiation of the Instru-

mental function, even in case of automatically triggered guides (e.g. those

using RFID): an audioguide, being completely passive can not direct the vis-

itor, while SeeForMe, highlighting the presence of other artworks as shown

in Fig. 10.8, can direct the visitor within the museum. As for sociality,

if it is true that social networking mechanisms are commonly provided in

tourism apps for mobile phones, these functionalities are intended for vir-

tual or remote users and not real companions. Indeed, audio-guides hinder

communication between visitors (especially group visitors) and make people

feel isolated, causing them to stop using devices and applications in order to

join others. SeeForMe in this sense is more social because it automatically

understands the context detecting if the user loses attention or simply is

speaking with someone else, adapting the interaction with the system con-

sequently.

In order to assess the whole experience offered by the system in a real

environment, we conducted an evaluation of its usability. According to ISO,

usability is defined as “the extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency, and satisfaction

in a specified context of use”. However, there are several usability models

and types of assessments, like ISO standards on quality models (ISO 9126),

user-centered design (ISO 9241) or user-centered approaches. A review of

techniques for mobile application usability evaluation is provided in [106].

The usability study was performed with the popular Standard Usability Scale

(SUS) [16], that follows a user-centered approach. Testing a user interface

with SUS means, given a scenario of use and one or more tasks to solve,

administer a 10 point questionnaire to a group of users. SUS is a Likert

scale [145], therefore questions address extreme cases, with opposite mean-

ing and alternating positive with negative sentences. Answers to questions

are numbers from 1 to 5, expressing all ranges from “Strongly Disagree” to

“Strongly Agree”. This testing strategy has been proved effective in remov-

ing acquiescence bias. The alternation of positive and negative items makes
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sure that users read it carefully. Nielsen states that it is sufficient to collect

5 polls to find the 85% of design errors of an interface or experience [109];

in these tests we recruited twelve persons, divided in two groups of six peo-

ple each. We tested two different scenarios, supervised and unsupervised,

in which users were asked to perform two simple tasks: i) “Activate the

audio-guide for one or more artworks of your interest”, ii) “After the visit,

use the app to find again the information about one artwork you have seen”.

In the former a group of people receives a spoken detailed description of

our system, thoroughly explaining the Android app functionalities and also

detailing insights on the recognition engine. In the latter scenario instead,

users are given the same two simple tasks but without any explanation on

the application functions. After normalization SUS scores are expressed in

the range [0−100]. They do not represent percentages but can be interpreted

with an adjective rating [7]. A score over 68 means that the user interface

or experience design is above average [130] and that tasks can be completed

without too much fatigue. Scores above 80 usually means that the interface

is correctly designed and that the user experience is enjoyable.

We obtained an average SUS of 74.0 for the unsupervised scenario and

79.5 for the supervised scenario. The small gap in scores measured in the

two scenarios, and their closeness to 80, means that the user interface is easy

to use and that the training provided by expert users is not strictly required

to perform tasks correctly. Nonetheless, considering that the user experience

increased when users received a brief tutorial on the features and technical

details, means that there is some room for further improving the design of

interface and user experience of our app.

Users, when interviewed, mostly agreed that the automatic start/stop

of the guide is the feature that makes the experience smooth. Regarding

negative aspects of our system, most of the points made by users were about

the need to access menus to change the language or other options.

10.9 Conclusion

We have presented a system running on the NVIDIA Jetson TK1 and on

NVIDIA Shield Tablet K1. Our approach jointly solves two problems: con-

textual analysis and object recognition. We apply our efficient video pro-

cessing pipeline and multi-sensor analysis to improve museum experience.

Our method allows to profile in real-time visitor interests and to provide
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instantaneous feedback on the artworks of interest. We exploit audio and

sensor data to improve the user experience reducing the intrusiveness of the

smart audioguide. Our Android app, allows users to switch between a fully

automated experience to a more interactive mode. Moreover, after a visit is

completed it is possible to for the user to look back and listen, or read, again

about the artwork that gathered his interest. Usability testing revealed few

pitfalls of our experience design, but users where satisfied on average and

provided some suggestions to improve the user interface further.
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Chapter 11

Immersive Virtual

Environments: Gestural Input

to Move and Interact Naturally

In this Chapter we evaluate methods to move ‘naturally’ in an Im-

mersive Virtual Environment (IVE) visualized through an Head

Mounted Display (HMD). Natural interaction is provided through

gesture recognition on depth sensors’ data. Gestural input solu-

tions in the literature to provide locomotion are discussed. Two

new methods for locomotion are proposed, implemented in a frame-

work used for comparative evaluation. Perceived naturalness and

effectiveness of locomotion methods are assessed through quali-

tative and quantitative measures. Extensive tests are conducted

on the locomotion considering also: 1) obstacles in navigation;

2) interaction with virtual objects during locomotion. This is

done with the aim to identify methods capable to provide a full

body experience in an IVE. Results show that one of the methods

for locomotion we propose has a performance comparable to es-

tablished techniques in literature. Outcomes may be exploited to

improve the naturalness of users’ movements in IVEs and help

to unlock new strategies in providing IVEs for learning, training,

collaboration and entertainment, also with respect to users with

107
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disabilities. 1

11.1 Introduction and Related Work

Effective IVEs require intuitive interfaces controlled in a way that resembles

real world experiences [146]. ‘Incompatible spaces’ is a common issue that

researchers in HCI have to face when providing natural interaction in IVEs.

In fact, IVEs allow free movement and infinite walking but the physical

environment where the simulation is taking place presents spatial constraints.

There are several solutions in the literature to allow infinite walking in IVEs,

still maintaining in users a realistic sensation of walking. These solutions can

be classified in four groups which exploit:

a) Additional Hardware: unidirectional and omnidirectional treadmills, foot-

pads and rotating spheres have been used to simulate natural walking main-

taining fixed the user position in the environment [70,136]. These approaches

are not easy to set up, require to secure users, are cumbersome and costly.

Furthermore Natural User Interfaces (NUIs) do not contemplate the media-

tion of physical devices as controllers;

b) Redirected Walking : a set of reorientation and repositioning techniques

which exploit virtual stimuli [138], e.g. giving the impression of walking

straight to users moving in a circle [122] or using procedural layout gen-

eration [151]. Although these methods provide a good sense of presence,

obstacles and physical constraints of the environment are still an issue;

c) Software-based navigation: interfaces featuring positional tracking sup-

ported by navigation tools. In [19] the tracking area, visualised as a ‘magic

carpet’, can be repositioned using an appropriate tool for long-distance navi-

gation. In [27] positional tracking is used in a restricted walking space whose

physical boundaries, displayed in the IVE as a barrier tape, can be moved

with a joystick. These solutions are not fully natural and require from users

additional cognitive efforts while moving;

d) Gesture Recognition using cameras: vision-based methods for locomotion

recognition have the advantage of not requiring additional hardware as in-

terface controller. They solve several issues with respect to the solutions in

a) and b), i.e. infinite walking and space constraints. However, it is difficult

1The work presented in this Chapter has been published as “Locomotion by Natural

Gestures for Immersive Virtual Environments” in Proceedings of the 1st International

Workshop on Multimedia Alternate Realities (AltMM ’16), 2016 [53].
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to design and agree on a natural gesture to move. Furthermore, fatigue can

affect the use of gesture-controlled interfaces, especially when reproducing a

continuous action such as walking.

Methods of locomotion proposed in this Chapter fall within solutions in d).

These are the most appropriate for NUIs mimicking real world interactions

without the need of specific controllers. Several gestures have been defined in

the literature which allow infinite walking in IVEs. Walking-In-Place (WIP)

is the most common interaction paradigm: users can move in the IVE while

remaining stationary [45,122,157].Although WIP is usually referred as a form

of compensating locomotion, the gesture is less frustrating for users than

natural locomotion. Users moving naturally should repeatedly go forward

and backward due to physical space constraints [110]. The Shake-Your-Head

gesture in [144] allows the user to interact with the interface through head

oscillations (i.e. as a transposition of the head movements observable in

natural walking). Unlike the WIP technique, the user can both stand or sit

in front of the interface. This solves the fatigue problem caused by both

standing and walking. Arm-Swing is a gesture performed oscillating the

arms alternatively along the hips by a person as it is observed in natural

walking. There’s no implementation in the literature of a specific recogniser

for Arm-Swing but the gesture is ranked second in the user study conducted

in [110] where participants were given complete freedom in choosing gestures

to complete tasks in a videogame. Free hand interactions have also been

proposed and evaluated in literature to support locomotion in IVEs [20] as

a mean to determine the direction of the movement.

The Chapter is organized as follows: in Sec. 11.2 we discuss the locomo-

tion methods proposed and used in the evaluation; in Sec. 11.3 the frame-

work and the input/output devices are presented; results, assessed through

qualitative and quantitative experiments, are shown in Sec. 11.4.

11.2 Natural Interactions

Defining gestures in 3D IVEs exploiting natural interaction is easier than

in 2D interfaces for the higher expressiveness that can be obtained by users

simply acting like they do in the real world. ‘Guessability’ studies exploiting

user-centered design show that in this scenario users’ gestures are dominantly

physical (e.g. walking moving knees) and metaphorical (e.g. selecting objects

through pointing) [110, 117]. Building upon these studies, we evaluate four
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gestures for locomotion in IVEs (see Fig.11.1). Among these gestures, two

are derived from the literature whilst the two others are novel. Locomotion

methods have been chosen considering: 1) if gestures have been validated in

similar studies; 2) the naturalness of the gestures with respect to the real

world.

WIP (Walk-In-Place) The user walks in a stationary position. It is the

most used in the literature, validated through qualitative and quantitative

studies [45,79,122,157];

Swing (Arms Swing) The idea is to replicate the natural oscillations of

the arms during locomotion. It is a gesture demonstrated being actually

performed by users freely interacting with a IVE [110];

Tap We propose a metaphorical gesture [117] for locomotion consisting in a

tap with the index finger in the direction the user wants to start walking. It

is a gesture not so far from the real world: people commonly use the index

finger to show a walking direction;

Push We propose a metaphorical gesture consisting in closing and opening

the hand while translating the hand itself forward with respect to the user

elbow. In the real world it is the typical gesture to control locomotion

machines moving a lever.

Figure 11.1: The four evaluated gestures for locomotion.
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Shake-Your-Head gesture was not included in the study for two main rea-

sons: 1) it can neither be classified as a natural gesture nor as a metaphori-

cal one because the gesture has never been proposed by users in guessability

studies; 2) it may cause motion sickness if used repeatedly in a HMD setup.

As regard to locomotion we must point out that the framework provides dis-

crete and not continuous gestures in time. The reason is that users are aware

of the fact that they are using methods of compensating locomotion and not

natural locomotion. This is an essential feature for the usability of the IVE

that otherwise: 1) it would strain too much the user with continuous activity

(i.e. using WIP and Swing); 2) it would force the user to hold at least one

of the hands always busy making it difficult to interact with virtual objects

(i.e. using Tap). Once activated locomotion can be stopped with a ‘Stop

gesture’ that the user can perform opening his hand in his field of view. This

gesture is motivated in [117] where it is demonstrated to be the preferred

one by users performing a generic ‘stop’ action.

11.3 The Framework

The framework (link to the demo video available in Appendix 10) consists

in a library we developed that enables a first person controller to navigate

and interact in IVEs created for the Unity3D engine2 moving through the

natural gestures described in Sec. 11.2. Basic interaction with virtual objects

is also made available. The library allows to easily connect the interactive

IVE with output and input devices, namely with an Head Mounted Display

which visualises the 3D environment, and two tracking devices which provide

the motion data gestures’ detection relies on:

• A Kinect v23. It tracks 25 body joint with millimetre accuracy and pro-

vides frame by frame data by which the WIP and the Swing gestures for

locomotion are detected;

• A Leap Motion4. It tracks positions and rotations of each finger bone (24

per hand); mounted on the HMD facing in the user’s field of view it is used

to track hand movements and detect Tap and Push gestures for locomotion,

Stop for interrupting locomotion, and gestures for interaction with virtual

objects (i.e. pointing and grabbing).

2https://unity3d.com/
3https://developer.microsoft.com/en-us/windows/kinect
4https://www.leapmotion.com/
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For WIP and Swing gestures recognition we exploited the Microsoft Vi-

sual Gesture Builder NUI tool that generates gesture databases used to

perform run-time detection through machine learning techniques (e.g. Ad-

aBoost) applied to skeleton data. Leap Motion SDK instead provides Tap

and Grab gestures recognition natively. For Push and Point gestures we have

trained ad hoc classifiers. Looking direction equals walking direction in HMD

for all the different gestures. The library also includes UI components helpful

to the user while exploring the IVE. Indicators of current direction and state

of gesture recognition are superimposed on the 3D environment in order to

give users proper awareness due to the absence of proprioceptive feedback.

Furthermore, a virtual representation of user’s hands is provided in the 3D

environment to enhance sense of presence and ease virtual interactions.

11.4 Experimental results

An evaluation was conducted to determine how the proposed methods for

locomotion in IVEs perform in terms of effectiveness and perceived natural-

ness. The four locomotion methods presented in Sec. 11.2 (i.e. WIP, Swing,

Tap, Push) are evaluated comparatively, asking users to complete tasks of

increasing difficulty.

Participants and procedure Evaluation was conducted with 19 partic-

ipants (11 males and 8 females) aged between 21 and 39 years old (average

26.4, σ = 5.8). None of the participants had previous experience with IVEs

or HMDs, but they reported a medium to high familiarity with technology

(average of 4.4 on a 1 to 5 rating scale) and previous experience with first-

person video games (average of 3.8 on a 1 to 5 rating scale). Locomotion

methods and gestures for interactions were explained to all participants be-

fore the test. At the end of the session, participants were asked to fill a

questionnaire.

Tasks and setting For the tests we created an IVE representing a forest.

Two position in the virtual environment were defined by visual markers: a

starting position A and a destination position B (see Fig.11.2). Participants

were asked to perform six tasks using all the four locomotion methods. In

the easiest task users were asked to move from A to B. Other tasks were de-

fined combining further difficulties such as going back to position A, avoiding
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Figure 11.2: Task scenarios (i.e. T1, T2, T3).

obstacles placed along the locomotion path and, at the same time, bringing

an object from a position to another. Most of the cited works in the lit-

erature evaluate the naturalness of gestures for locomotion and interaction

with virtual objects as separate topics [20, 113, 170] and, to the best of our

knowledge, solving both problems together it is still an open issue which

needs to be addressed in IVEs applications. For this reason, we introduced

some tasks that contemplate the use of the Grab gesture to relocate a virtual

object in the environment. The following tasks were defined:

T1 Move from position A to position B.

T2 Move from position A to position B and back to A.

T3 Move from position A to position B, avoiding obstacles on the path.

T4 Move from position A to position B and then back to A, avoiding ob-

stacles on the path.

T5 Move from position A to position B, grab an object and then bring it

back to A.

T6 Move from position A to position B, grab an object and then bring it

back to A, avoiding obstacles on the path.

The order of the used locomotion methods was randomized so to elim-

inate potential order-related bias. Since the Swing and Grab gestures are

incompatible (i.e. Swing assumes that both arms are occupied), results of

T5 and T6 are n.a.



114
Immersive Virtual Environments: Gestural Input to Move and

Interact Naturally

Measures Locomotion techniques in the framework were evaluated using

both qualitative and quantitative methods. Naturalness and effectiveness of

locomotion were assessed using the following measures:

Perceived Naturalness. Following the heuristic evaluation method for nat-

ural engagement in IVEs proposed in [139], we provided a questionnaire to

collect subjective measures of naturalness of locomotion gestures from the

participants, expressed on a 1 to 7 scale.

Overall preference. At the end of each session, we asked users to indicate

which method they preferred.

Time Completion. A quantitative measure of the time required to com-

plete each task. We did not define a maximum execution time and all users

were able to complete all the tasks.

Collision Avoidance. This measure was proposed in [90] as a meaningful

way to evaluate locomotion in IVEs. In two of the tasks including obstacles

(i.e. T4 and T6) we counted the number of collisions occurred.

Figure 11.3: Perceived Naturalness of locomotion methods. The higher the

better. The black bars stand for the standard deviation.
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Results Qualitative and quantitative results were statistically analysed to

obtain a comparative evaluation of the four locomotion methods. Qualitative

comparison in terms of Perceived Naturalness is shown in Fig. 11.3. All

methods have a good rating, but highest scores were obtained by WIP (avg

5.47, mdn 5) and Tap (avg 5.02, mdn 5). Results of the Time Completion

(see Table 11.1) and Collision Avoidance (see Table 11.2) tests reveal sensible

differences between methods in terms of effectiveness. WIP and Tap methods

result to be the fastest and less prone to collisions in almost every task. Tap

in particular performs better than other methods in T5 (Table 11.1) and in

T4 and T6 (Table 11.2). The gesture seems to overcome WIP in tasks that

contemplate hand-based interaction (i.e. Grab) and Collision Avoidance. An

explanation could be given by the verbal considerations of some testers that

reported WIP to require a sort of bilateral integration between hands and

legs. Results from the Overall preference questionnaire indicate that more

than half of testers (10 out of 19) would choose Tap as locomotion method,

while the remaining preferences were for Push (6 out of 19) and WIP (3 out

of 19). The outcomes of the evaluation suggest that even though WIP is

by far the most used locomotion technique in IVEs, novel gestures such as

Tap could be adopted with comparable results in terms of effectiveness of

user experience. Results in Tables 11.1 and 11.2 are preliminary: analysis

of variance for statistical significance of means between groups of testers are

needed and will be the subject of future work.

Table 11.1: Time Completion in seconds. The lower the better.

WIP Swing Tap Push

Avg σ Avg σ Avg σ Avg σ

T1 15 2 15 2 16 3 21 6

T2 40 7 39 6 30 2 35 5

T3 17 2 19 7 20 5 26 9

T4 43 10 42 10 37 6 52 16

T5 56 13 n.a. n.a. 51 9 64 21

T6 53 21 n.a. n.a. 57 23 75 34
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Table 11.2: Collision Avoidance results showing number of collisions. The

lower the better.

WIP Swing Tap Push

Avg σ Avg σ Avg σ Avg σ

T4 0.46 0.78 0.54 0.77 0.38 0.61 0.84 0.98

T6 0.92 1.11 n.a n.a 0.61 0.96 1.00 0.91

11.5 Conclusions

Providing IVEs’ users with the best natural experience is a challenging task.

Commonly IVEs are mediated by displays mounted on the head and there’s

a physical gap between real and virtual space. Infinite locomotion in virtual

environments collides with the constraints of their fruition in spaces closed

by walls or obstructed by obstacles. Natural interaction provides a solution

to these issues through gesture recognition. We identify and comparatively

evaluate four methods of locomotion (i.e. WIP, Tap, Swing, Push). Qual-

itative and quantitative experiments are conducted through user testing.

Results show that two of the four methods perform better than the others

(i.e. WIP and Tap) and that the Tap gesture we propose has similar and

in some tasks better performance than the well established WIP locomotion

technique. This evidence may be useful to researchers and interaction ex-

perts for designing IVEs and for providing whole body natural experiences.

Furthermore, performance of Tap suggests that hand-based gestures for lo-

comotion deserve further investigation. Although being metaphorical the

Tap gesture was perceived as natural by testers. Its adoption could provide

some advantages in certain scenarios: for example, it could be used in con-

figurations with a seated user, resulting in a reduction of physical fatigue,

and improve accessibility to IVEs even for users with reduced mobility.



Chapter 12

Human-centered Solutions

Exploiting Voice Commands to

Experience a Virtual Museum

In this Chapter we present a system for immersive experiences

in museums using Voice Commands (VCs) and Virtual Reality

(VR). The system has been specifically designed for use by people

with motor disabilities. Natural interaction is provided through

Automatic Speech Recognition (ASR) and allows to experience

VR environments wearing an Head Mounted Display (HMD), i.e.

the Oculus Rift. Insights gathered during the implementation and

results from an initial usability evaluation are reported. 1

12.1 Introduction

Nowadays, personalized mobile museum guides, augmented reality systems

featuring see-through technology and HMD VR systems are the most popular

trends for providing visitors with rich context-aware information in cultural

heritage apps [148]. However, such technologies pose limitations to users

with motor disabilities as they assume the ability to hold a device or to

move and interact with the surrounding real or virtual Immersive Museum

1Part of this Chapter has been published as “Natural Experiences in Museums through

Virtual Reality and Voice Commands” in Proceedings of the 23rd ACM international

conference on Multimedia, 2017 [47].
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Environment (IME) through controllers or natural gestures [54]. In latest

years there has been a significant raise of voice interaction in games and ‘seri-

ous games’. This is due to the proliferation of consumer devices with built-in

capabilities for Automatic Speech Recognition (ASR) such as the Microsoft

Kinect as well as to improvements of these systems in terms of recognition

rates. However, though voice interaction has long been of interest to HCI as

perceived like a natural way of communicating with a computer, it has not

yet freed itself from being regarded as a supplement to traditional controller-

based or gestural input. In fact, there is still little research on how to exploit

progress in ASR for developing effective and accessible speech controlled in-

terfaces [104].Nevertheless, some examples exist of humanoid conversational

agents in Museum applications, but dialogue is poorly supported [13] and,

also in advanced immersive solutions which exploit HMD, is restricted to few

words [94]. In this regard, there are still significant issues related to the use

of VCs in ‘games’ and interactive exhibits that can be summarized as follows:

1) perceived distance between the player and the game character defined as

‘identity dissonance’ in [22]; 2) the social context where voice interaction

takes place (e.g. the quiet environment of museums, privacy concerns); 3)

errors in ASR (due to noise, spelling, etc.); 4) restricted freedom of speech in

limited domain applications with VCs constituted by simple words or short

phrases due to the difficulty of ASR in the wild.

In this demo we propose some ideas on how to alleviate these issues experi-

encing an IME displayed through an HMD and made walkable using VCs.

The system was conceived as a natural interface for users with motor disabil-

ities, so that they can visit a museum not only remotely but also exploiting

VCs exclusively. The player can navigate the museum and obtain informa-

tion through Voice Commands to a Virtual Museum Guide agent (VMG).

Commands have a certain degree of freedom since are automatically fed and

augmented via a semantic storage provided with a reasoner capable of infer-

ring concepts.

12.2 The system

The system (link to a demo video is provided in Appendix 11) is composed

by three main modules, implemented in a library for Unity 3D2, respectively

in charge of: 1) importing and setting up the IME; 2) performing ASR,

2https://unity3d.com

https://unity3d.com
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augmenting and detecting Voice Commands; 3) allowing interaction and

navigation in the environment.

Setting up the Environment The library allows to insert and place

artworks (paintings and sculptures) in a 3D Museum model using Unity

scripts, that can be attached to 3D objects. Artworks can be described using

triples {s, p, o} through ontologies imported in or created by the system (e.g.

specifying image URIs, authors and artistic movement artists belong to).

Possible questions can be defined as instances of the Question class through

a script attached to the First Person Controller. Multiple ontologies can

be used and extended creating new classes, instances and properties which

support both literals and resources. For parsing and managing ontologies and

triples in Unity the system exploits the dotNetRDF Opensource Library3.

Statements are saved in N-Triples format and then imported in the Apache

TDB Jena semantic storage4.

Speech Recognition Speech Recognition is performed by the System ex-

ploiting the Microsoft Speech API (SAPI) 5.3, the native API for Windows5,

and mapping VCs to a dynamic grammar using rules. This is done in or-

der to allow the user to ask questions and express commands in the virtual

space. Rules define patterns and word sequences to be matched against the

vocal input. Rules are represented as a graph of states. States (or group

of words) are part of a sentence which mark a particular part-of-speech in

the context (they identify the relationship of a state with adjacent and re-

lated states in the sentence; e.g. subject, predicate and direct objects).

Rules and patterns are described in an XML-format grammar that con-

forms to the Microsoft Speech Recognition Grammar Specification (SRGS)

Version 1.0. The grammar contains variants of interrogative, exhortative

and desiderative sentences and is dynamically created through SPARQL

queries. In this way, questions and requests by the user in the domain

are intended as voice commands by the natural interface. A predefined set

of instances of a vc:Question and vc:Request classes has been provided with

the library. Requests and questions have three default properties which

are vc:hasSubject, vc:hasPredicate and vc:hasDirectObject. The instances of

these classes vc:hasSubject rdfs:range vc:Character ; vc:hasPredicate rdfs:range

3http://www.dotnetrdf.org/
4https://jena.apache.org/
5http://bit.ly/2qNEnWF

http://www.dotnetrdf.org/
https://jena.apache.org/
http://bit.ly/2qNEnWF
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vc:Predicate and vc:hasDirectObject rdfs:range vc:Artwork, vc:Artist, vc:ArtisticMovement.

Direct objects are resources retrieved dynamically form the semantic storage

via SPARQL and added setting up the environment in the Unity 3D Editor

(e.g. “I’d like to see ‘The Scream’ by Edvard Munch”). Inference is also

provided by the system. For example, given that:

Class(vc:ActionPainter complete intersectionOf(vc:Artist

restriction(vc:exponentOf someValuesFrom(a:ActionPainting))))

Class(vc:AbstractPainter complete intersectionOf(vc:Artist

restriction(vc:exponentOf someValuesFrom (vc:AbstractArt))))

Class(vc:ActionPainting partial vc:AbstractArt)

The following class inference can be derived:

• an Action Painter is an exponent of the Action Painting;

• Action Painting is a type of Abstract Art;

• an Action Painter is an exponent of the Abstract Art, so must be an

Abstract Painter.

When concepts are inferred, the grammar is updated and rules added so that

the user may ask additional questions such as “Which types of abstract art

are present in the museum?” or “Is Jackson Pollock an abstract painter?”.

The inference engine solves in part the issue n. 4 expressed in Sec. 12.1

allowing more flexibility in questions and commands.

Interaction and Visualization The virtual museum is visualized through

the Oculus Rift which provides immersion. The system has been designed to

be used by people with motor disabilities in their own rooms or in a dedicated

private space in this way excluding the social context of the interaction, and

consequently embarrassment and privacy concerns related to VCs, and en-

vironmental noise (i.e. issue n. 2 and n. 3 in Sec.12.1). In order to increase

naturalness, the user experiences the environment as a First Person Viewer.

He is guided inside the museum by a VMG agent to whom he can ask ques-

tions using voice. In this scenario, the player has not to embody himself with

a virtual representation. This mitigates the ‘identity dissonance’ issue (i.e.

n. 1 in Sec. 12.1). Furthermore, verbal immediacy is demonstrated to have

a significant impact on learning and sense of presence in IMEs [13, 64, 80].

To ease the user interaction, upon first access the agent lists the possible

vocal questions the virtual visitor can ask. There are three default question
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instances in the semantic storage: 1) “Which artistic movements are dis-

played in the museum?”; 2) “What artists are there in the museum?” and

3) “What artworks are there in the museum?”. Additional questions, that

dynamically populate the grammar for ASR, can be added manually through

ontologies or inferred by the reasoner. Text-To-Speech (TTS) synthesis is

used by the guide to explain possible questions and to give responses. Once

the user has asked the question of interest, the ASR takes the audio stream

as input and turns it into a text transcription. Acoustic models, lexicons and

language models are used to search the best match of the input with the tex-

tual instances present in the grammar. Let’s say that the user ask question

1). The question is interpreted as a VC and mapped to a SPARQL query.

Consequently, the guide will list all the pertinent information retrieved or

inferred by the reasoner to the user using TTS. Then she will ask the user

which artistic movement he is interested in. So the conversation can go on,

and the user can make new requests (desiderative or imperative) to the agent

who can satisfy them in two ways: 1) explaining the concept and asking new

questions (e.g. listing all the artists of a particular movement) or 2) guiding

the user to and describing an artwork of interest if he expresses the desire

to know more about it (e.g. “I’d like to see ‘The Starry Night’ by Vincent

Van Gogh”). In the latter case, the VMG guides the visitor to the place

where the artwork is located walking through the halls of the museum. The

idea is to give the user the natural impression of following behind a guide

while she explains what she and the visitor are going to see. To make the

guide move naturally through the museum environment avoiding obstacles

(e.g. walls, sculptures) the A* algorithm is exploited. A* is an algorithm

for path finding which can compute the shortest path between vertices in a

graph. Given the 2D museum map, all the walkable surface and obstacles

are mapped to a fine-grained grid modeled as a graph. The A* algorithm is

able to find the least cost path from an initial node to a goal node. How the

interaction between the player and the guide works is demonstrated in our

demo video.

The usability of the system was preliminarily tested using the popular Stan-

dard Usability Scale (SUS) [17]. 10 users were asked to perform the task

of navigating the museum using VCs obtaining insights from the VMG on

at least an artistic movement and an artwork. Average SUS score was 71.0.

Scores are in the range [0−100] and over 68 mean that the interaction design

is above average [131].
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12.3 Future Work

ASR and language processing are going to be used in order to understand

more complex types of phrases (not only factual, but also convergent, diver-

gent, evaluative) [87]. Guide mouth’s movements have to be made realistic

and naturalness of TTS synthesis needs improvements. More accurate us-

ability tests with users with motor disabilities should be conducted.
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Conclusion

This thesis has addressed the subject of the use of personal user digital traces

for improving human computer interaction systems. Possible strategies for

the use of these traces depend on the different environments and contexts

they are exploited in and through which digital technologies, either in on-

line communities, for outdoor, contextual, indoor environments or in virtual

spaces.

13.1 Summary of contribution

As regard to outdoor spaces algorithms and systems for the identification

of functional areas in cities and detection of geolocalized micro and macro-

events have been presented in Chapter 2 and Chapter 3. Recommendation,

routing systems and immersive browsing interfaces for experiencing urban

scenarios and to enrich itineraries visits are described in Chapter 4 and Chap-

ter 5. Improvements to standard recommenders through the exploitation of

human and psychological factors, context analysis and collaborative filtering

for online communities are shown in 6 and in Chapter 7. Paradigms and best

practices for user analysis and context exploitation through smart portable

and wearable applications are reported with several examples in Chapter 8, 9

and 10. New methods for the development of natural and human-centered

interfaces in virtual worlds are presented and assessed with good results in

Chapter 11 and Chapter 12.

We believe that one of the main and general contributions of this thesis is

that of having given an extensive overview of the different levels of digital
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traces needed to develop smart and at the same time adaptive systems. This

adaptability has to be provided considering first of all the person who is us-

ing a technology with all his interests, behaviors and psychological concerns.

Also the context in which the user is making the experience, the situation,

the chronotope he is living in and his status, permanent or momentary, are

factors that cannot be disregarded.

13.2 Directions for future work

All the studies and technologies presented in this thesis have great room

for progresses both as regard to user profiling techniques and to the im-

provement of human computer interaction system. Dedicated directions for

future work are reported at the end of each chapter. We believe, however,

that the research of this thesis could really benefit in deepening arguments

relating to sociology, psychology, linguistics, ergonomics and communication

sciences. A synergy of these different disciplines could surely help in finding

effective scope to real systems and targeted service exploiting advances in

technologies such as artificial intelligence, virtual reality and natural inter-

action. Furthermore, from our point of view it can be stressed that a real

human centered approach should register and analyze all the digital traces

produced by users in a synergistic way because this is an essential point in

designing adaptive, usable and effective new technologies.



Chapter 14

Appendix: Resources and

additional materials

This appendix provides references to software and audio video/materials

available on the Internet that show and clarify the results achieved and the

software produced and described in the Chapters of this thesis.

References

1. Chapter 2: The Role of User Profiling in Detecting Functional Areas

in Cities

• Video: http://vimeo.com/miccunifi/livecities,

• Article: http://bit.ly/2lPBZN9

2. Chapter 3: Geolocated Events Detection in Twitter Data

• Video: https://vimeo.com/208471410,

3. Chapter 4: Recommending personal itineraries in outdoor scenarios

through a mobile application

• Video: https://vimeo.com/80909065,

• Article: http://bit.ly/2CkU1Ot

4. Chapter 5: Exploring Outdoor Urban Scenarios through Spherical

Images Navigation
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• Article: http://bit.ly/2lPhHmR

5. Chapter 6: How Human Factors can improve Video Recommendation

on Social Networks

• Video: https://vimeo.com/143007208

• Article: http://bit.ly/2ENcaps

6. Chapter 7: Recommendation in Contextual Social Networks

• Video: https://vimeo.com/126927488

• Article: http://bit.ly/2Cy6xNz

7. Chapter 8: A Framework for Indoor Navigation in Museums Exploit-

ing Passive User Localization

• Video: https://vimeo.com/149164520

• Article: http://bit.ly/2lPX4H6

8. Chapter 9: Indoor Museum Exploration and User Engagement through

Mobile Apps and Computer Vision: Imaging Novecento

• Video: https://vimeo.com/177092446

• Article: http://bit.ly/2CxIEG1

9. Chapter 10: Context Aware Smart Audio Guides: Design and Imple-

mentation Strategies

• Video: https://vimeo.com/187957085

• Article: http://bit.ly/2CKRKwX

10. Chapter 11: Immersive Virtual Environments: Gestural Input to

Move and Interact Naturally

• Video: https://vimeo.com/172710194

11. Chapter 12: Human-centered Solutions Exploiting Voice Commands

to Experience a Virtual Museum

• Video: https://vimeo.com/218445327

http://bit.ly/2lPhHmR
https://vimeo.com/143007208
http://bit.ly/2ENcaps
https://vimeo.com/126927488
http://bit.ly/2Cy6xNz
https://vimeo.com/149164520
http://bit.ly/2lPX4H6
https://vimeo.com/177092446
http://bit.ly/2CxIEG1
https://vimeo.com/187957085
http://bit.ly/2CKRKwX
https://vimeo.com/172710194
https://vimeo.com/218445327


Chapter 15

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

Books

1. A. Ferracani, D. Pezzatini, L. Seidenari and A. Del Bimbo, “Natural In-

teraction in Medical Training. Tools and Applications”, SpringerBriefs in

Human-Computer Interaction, to appear, 2017

International Journals

1. L. Seidenari, C. Baecchi, T. Uricchio, A. Ferracani, M. Bertini, A. Del

Bimbo “Deep Artwork Detection and Retrieval for Automatic Context-Aware

Audio Guides”, in ACM Trans. Multimedia Comput. Commun. Appl., 35,

1-21, 2017.

2. S. Karaman, A. Bagdanov, L. Landucci, G. D’Amico, A. Ferracani, D.

Pezzatini, A. Del Bimbo. “Personalized multimedia content delivery on an

interactive table by passive observation of museum visitors”, in Multimedia

Tools and Applications, vol. 75-7, 2016.

International Conferences and Workshops

1. A. Ferracani, D. Pezzatini, L. Landucci, G. Becchi, A. Del Bimbo “Sep-

arating the Wheat from the Chaff: Events Detection in Twitter Data”, in

1The author’s bibliometric indices are the following: H -index = 7, total number of

citations = 152 (source: Google Scholar on Month October, 2017).
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Proceedings of the Content-based Multimedia Indexing International Work-

shop (CBMI 2017), Florence (IT), 2017.

2. A. Del Bimbo, M. Bertini, L. Seidenari, C. Baecchi, T. Uricchio, A. Ferra-

cani “Portable computer vision for new ”intelligent” audio guides”, in EVA

2017 Florence - Electroning Imaging & the Visual Arts, Florence (IT), 2017.

3. A. Ferracani, L. Landucci, M. Faustino, G. X. Giannini, A. Del Bimbo.

“Natural Experiences in Museums through Virtual Reality and Voice Com-

mands”, in Proceedings of the 25rd ACM international conference on Multi-

media, Silicon Valley, 2017.

4. F. Becattini, A. Ferracani, L. Landucci, D. Pezzatini, T. Uricchio, A. Del

Bimbo. “Imaging Novecento. A Mobile App for Automatic Recognition of

Artworks and Transfer of Artistic Styles”, in Proceedings of Digital Heritage.

Progress in Cultural Heritage: Documentation, Preservation, and Protection:

6th International Conference (EuroMed 2016), pp. 781-791, Nicosia, Cyprus,

2016. (Best Paper Award)

5. A. Ferracani, D. Pezzatini,J. Bianchini, G. Biscini, A. Del Bimbo. “Loco-

motion by Natural Gestures for Immersive Virtual Environments”, in Pro-

ceedings of the 1st International Workshop on Multimedia Alternate Realities

(AltMM ’16), Amsterdam (NL), 2016.

6. A. Ferracani, D. Pezzatini, M. Bertini, A. Del Bimbo. “Item-Based Video

Recommendation: An Hybrid Approach considering Human Factors”, in

Proceedings of the 2016 ACM on International Conference on Multimedia

Retrieval, Firenze, 2016.

7. A. Ferracani, D. Pezzatini, R. Del Chiaro, F. Yang, M. Sanesi, A. Del

Bimbo. “smArt: Open and Interactive Indoor Cultural Data”, in Proceed-

ings of the 23rd ACM International Conference on Multimedia, Brisbane,

Australia, 2015.

8. A. Ferracani, D. Pezzatini, M. Bertini, S. Meucci, A. Del Bimbo. “A

system for video recommendation using visual saliency, crowdsourced and

automatic annotations”, in Proceedings of the 23rd ACM International Con-

ference on Multimedia, Brisbane, Australia, 2015.

9. A. Ferracani, L. Landucci, P. Pala. “Exploring 3D Virtual Environments

through Optimised Spherical Panorama Navigation”, in Proceedings of IEEE

International Conference on Multimedia and Expo (ICME 2015) - Demo

Session, 2015.

10. A. Ferracani, D. Pezzatini, A. Del Bimbo. “Roadie: Mobile Semantic

Tourism Routes”, in Proceedings of IEEE International Conference on Mul-

timedia and Expo (ICME 2015) - Demo Session, 2015.



129

11. A. Ferracani, D. Pezzatini, A. Benericetti, M. Guiducci, A. Del Bimbo.

“PITAGORA: Recommending Users and Local Experts in an Airport So-

cial Network”, in Proceedings of the 23rd ACM International Conference on

Multimedia, Brisbane, Australia, 2015.

12. A. Ferracani, D. Pezzatini, A. Del Bimbo. “User Profiling for Urban Com-

puting: Enriching Social Network Trace Data”, in Proceedings of the 3rd

ACM Multimedia Workshop on Geotagging and Its Applications in Multime-

dia, Orlando, Florida, 2014.

National Conferences

1. L. Seidenari, C. Baecchi, T. Uricchio, A. Ferracani, M. Bertini, A. Del

Bimbo. “Object Recognition and Tracking for Smart Audio Guides”, in

Proceedings of the 14th Italian Research Conference on Digital Libraries,

Udine, Italy, 2018. To appear.

Extended Abstracts

1. L. Seidenari, C. Baecchi, T. Uricchio, A. Ferracani, M. Bertini, A. Del

Bimbo. “A Framework for Web-based Social Multimedia Search Engines”,

in 5th Workshop on Web-scale Vision and Social Media (VSM), ICCV 2017,

Venezia, Italy, 2017. (Published on the website https://goo.gl/Fr47W2)

https://goo.gl/Fr47W2
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