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Abstract 

Animal welfare is a rather complex concept. It includes various different facets 

that make it difficult for scientists to produce an ultimate definition. Leaving out ethical 

discussions, science aims at finding key concepts that could work as objective indicators 

for the welfare status of farmed animals. Among the commonly accepted indicators, 

disease presence in dairy farms is of main importance. The negative impact of diseases 

on animal welfare and productive performances is straightforward. Recently, however, 

great attention has been given to the environmental conditions where the animals are 

reared. Specifically, the heat stress issue has been addressed in different papers 

available in scientific literature. 

In this PhD thesis, rumination fills a key role in animal welfare definition. This 

physiological process, which differentiates and characterises ruminants from the rest of 

the mammals, has been thoroughly studied. Mechanisms involved in rumination are 

well known, as well as the diseases that strike the rumen. However, rumination is still 

poorly considered in the general context of welfare in dairy cows. 

In the papers produced during this PhD project and presented in Part II (some of 

them already published on international journals), rumination relationships with the 

main factors influencing animal welfare were studied. In the first paper, heat stress 

effects on rumination time were described. The paper shows that rumination decreases 

when discomfort caused by heat stress increases. In the second paper, rumination was 

hypothesised as a predictor for various diseases groups, commonly affecting dairy 

farms. Other results are presented as drafts of papers that will be submitted to 

international journals as soon as ready. The first draft explores the heritability of 

rumination and its genetic correlation with milk production traits. Only few studies can 

be found in literature about rumination heritability, and none of them evaluated the 

same genetic relationships we investigated. Lastly, in the second draft a first rough 

attempt to build a predictive model for diseases prediction was made. Fine tuning is still 

needed to improve the obtained results. Minor results are presented as abstracts (oral 

presentations at two international meetings) in the last section of Part II.  
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Riassunto 

Il benessere animale è un concetto alquanto complicato e comprende svariate 

sfaccettature che rendono la sua definizione un tema tuttora discusso dagli scienziati. 

Tralasciando discussioni di carattere etico, la scienza punta ad individuare dei concetti 

chiave che possano fungere da indicatori oggettivi per la valutazione dello stato di 

benessere di un animale allevato dall’uomo. Fra gli indicatori più comunemente 

accettati troviamo la presenza di patologie nell’allevamento, il cui effetto negativo sul 

benessere è ben chiaro; recentemente, però, grande attenzione è stata posta anche 

sulle condizioni ambientali in cui gli animali vengono allevati e, nello specifico, la 

questione dello stress da caldo è stata affrontata in vari lavori disponibili in letteratura 

scientifica. 

In questa tesi di dottorato, il ruolo chiave nella definizione del benessere viene 

ricoperto dalla ruminazione: questo processo fisiologico, che differenzia e caratterizza i 

ruminanti dal resto dei mammiferi, è stato largamente studiato per quanto riguarda 

funzionamento, utilità e patologie, ma viene ancora poco considerato nel quadro 

generale dello stato di salute delle bovine da latte. 

Nei lavori prodotti e presentati nella Parte II (in parte già in fase di pubblicazione), 

la ruminazione viene studiata in relazione ai principali fattori che influenzano il 

benessere animale: nel primo articolo, sono stati studiati gli effetti dello stress da caldo 

sulla ruminazione stessa, ed è stato dimostrato come, all’aumentare del disagio 

prodotto da questo effetto negativo, la ruminazione giornaliera ne risenta. Nel secondo 

articolo, invece, la ruminazione è stata proposta come predittore della comparsa di 

alcuni gruppi di patologie che comunemente affliggono le stalle da latte. Altri risultati 

sono presentati come bozze di lavori, i quali verranno sottomessi a riviste internazionali 

non appena terminati. La prima bozza esplora l’ereditabilità del tratto ruminazione e la 

correlazione genetica con altri tratti produttivi. Pochi studi in letteratura trattano 

l’argomento, e nessuno di essi analizza queste correlazioni. Infine, nella seconda bozza, 

un primo tentativo di creare un modello predittivo per varie patologie è stato provato. 

Altri risultati minori sono presentati come abtract alla fine della Parte II. 
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1.  INTRODUCTION 

1.1 ANIMAL WELFARE 

Dictionaries define animal welfare as the “protection of the health and well-being 

of animals”. This is, however, a semplicistic definition of something that is, in reality, a 

complex concept to explain. This is due, for example, to the fact that animal welfare is 

composed by highly multidimensional factors (Fraser, 1995) and, therefore, its 

assessment is quite complicated. Furthermore, differences in cultural heritages, 

traditions and religious faiths make it difficult to agree on some aspects of animal 

welfare (Szűcs et al., 2012). Scientifically speaking, but still in a broad and quite generic 

sense, animal welfare could be defined as the state of an animal regarding its attempt 

to cope with the environment it lives in (Broom, 1986). The most accepted practical 

definition, which outlines the main welfare issues related to animal farming, are the 

“Five Freedoms”. The rough concept of these freedoms originated in December 1965 

from a report of the UK Technical Committee. This Committee was charged to study the 

welfare status of animals reared under intensive husbandry systems in response to the 

book “Animal Machines” published in 1964 by Ruth Harrison (Jun 1920 – Jun 2000). In 

her book, the British animal welfare activist described the harsh condition suffered by 

animals reared in intensive farms. This report (known as the Brambell Report, named 

after Professor Francis W. R. Brambell, Feb 1901 – Jun 1970, which led the investigation) 

stated that farmed animals should have the freedom “to stand up, lie down, turn 

around, groom themselves and stretch their limbs”. Later on, the British Government 

established in July 1979 the Farm Animal Welfare Council, which updated the Brambell 

Report to account for recent attention to behaviour and, by the end of that year, 

officially listed the “Five Freedoms” as they are known today: 

1. Freedom from thirst, hunger and malnutrition; 

2. Freedom from discomfort; 

3. Freedom from pain, injury and disease; 

4. Freedom to express normal behaviour; 

5. Freedom from fear and distress. 

The Five Freedoms address both the physical fitness and the mental suffering. 

Although absolute attainment of all Five Freedoms is unrealistic, they should be used as 
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practical guidelines to assess the strengths and weaknesses of any husbandry system. 

Since the complete absence of any stress in impossible to achieve, aim of these 

freedoms is to prevent suffering, which may occur when an animal fails to cope with 

stress (Webster, 2001). 

In the last years of the XXth century, animal welfare has become a major research 

area in animal husbandry. Various scientific studies based on animal welfare assessment 

were funded because of both the ethical concerns over the quality of life of animals and 

the increasing interest of many countries’ agricultural policy on quality rather than 

quantity (Thornton, 2010). Furthermore, the public opinion started looking to such 

research for guidance regarding these concerns (Fraser et al., 1997). So far, no absolute 

nor ultimate criteria underlying animal welfare standards have been defined. Thus, 

assessment of animal well-being is outlined by guidelines only. An example is the 

Scientific Opinion by the European Food Safety Authority (EFSA), titled “Guidance on risk 

assessment for animal welfare” (published in January 2012) which tried to provide some 

methodological guidance to address this topic.  

Animal welfare standards are conventionally divided into resource-based and 

animal-based standards, according to the criteria underlying them. Resource-based 

standards describe the environment in which the animal lives (that is determined by the 

resources of the owners of the animals themselves). On the other hand, animal-based 

standards describe the actual state of the analysed animal. As the resource-based 

assessment can fail to properly answer questions about some aspects of an animal 

welfare (one example is the behavioural, or “psychological”, state: distress, fear or 

anxiety), there has been a rising interest in developing animal-based methods, more 

reliable in assessing welfare of farmed animals (Webster, 2009). To fulfil this target, 

there is a strong need to define objective parameters, tied to single animal and herd 

healthiness (e.g., presence of various diseases in a farm). Unfortunately, these 

parameters are difficult to record because of their quantity and complexity. 

Diseases are one of the key factors affecting the efficiency of farms (Heikkilä et 

al., 2012). Mastitis, for example, is considered the most costly disease in dairy farming 

(Seegers et al., 2003), but the economic impact of other diseases is not ignorable. 

Although disease prevention is a fundamental element in livestock production system 

(Schwabenbauer, 2012), it is a goal often difficult to pursue. The early detection of the 

abovementioned diseases is, therefore, important (de Mol et al., 1999; de Mol et al., 

2013), and even more useful would be to find some indicators able to predict their onset 

before the clinical symptoms appear. 
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1.1.1 HEAT STRESS 

In addition to health status’ parameters, environmental parameters also play a 

key role in animal welfare. Scientists define “thermo-neutral zone” that situation of 

thermal equilibrium between the animal and the environment where it lives (Nardone 

et al., 2010). In lactating dairy cows, the “thermo-neutral zone” is defined in the range 

between 5°C and 26°C (Berman et al., 1985; Roenfeldt, 1998). That said, heat stress 

defines all the changes in animal physiology towards a disorder status (e.g., production 

declines and its composition changes) whenever the temperature exceeds this thermal 

zone, trespassing either the upper or lower limit (Johnson, 1980). Heat stress (i.e., the 

non-physiological status of an animal that is subject to high temperatures and/or 

humidity) is an important threat to cattle breeding, especially in the Mediterranean 

basin, which is supposed to undergo a gradual increase in temperature and humidity in 

the coming years up to 2050 (Segnalini et al., 2013). Moreover, the current trend in the 

dairy industry is towards fewer but larger farms, rearing a great number of animals in 

the same structure (Winsten et al., 2010). Overcrowding, higher temperatures, and 

humidity can indeed result in harsh conditions for dairy cows. Responses of dairy cows 

to heat stress are copious: for example, raised respiration rates (Omar et al., 1996), and 

panting and sweating (Blazquez et al., 1994). However, these responses are not always 

enough, and animals fail to cope with their environment. This is especially true in high-

yielding cow that are continuously subject to high metabolic stress due to the high milk 

production (Bernabucci et al., 2014). In these animals, associations between heat stress, 

milk yield and reproductive performances have recently been studied by scientists 

(Kadzere et al., 2002). 

The various effects of length, severity, and interactions with the lactation phase 

are still unknow. An overall evaluation of heat stress could be assessed by body 

temperature measuring, which is highly susceptible to hot environmental temperatures 

(Araki et al., 1984). One of the most used indexes to quantify heat stress is the 

Temperature-Humidity Index (THI, Hahn et al., 2003). This index combines the ambient 

temperature and the relative humidity into a single parameter. Other environmental 

variables (e.g., solar radiation or wind) are not included in THI equation. THI is known to 

be inversely related to productive and reproductive performances in dairy cows 

(Bouraoui et al., 2002; Biffani et al., 2016), but it is still less clear its relationship with 

rumination. THI could be an important welfare index, and could be used to automatically 

activate cooling systems in barns, but its relationships with rumination and other 

physiological and pathological events must yet be further explored. 
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1.2 RUMINATION 

Differently from monogastrics (e.g., human, horse, pig, rabbit…) the ruminants' 

digestive tract consists of a complex four-compartment stomach. It includes the rumen, 

the reticulum, the omasum, and the abomasum. The abomasum (also called the true 

stomach) is comparable to the stomach of the non-ruminant, and it is the only 

compartment with a glandular lining. It secretes hydrochloric acid and digestive 

enzymes, needed for the breakdown of feeds. It normally lies on the floor of the 

abdomen, but, due to the presence of high quantity of gasses, can sometimes move 

upwards, this phenomenon being called abomasum displacement. The omasum is a 

globe-shaped structure (also called the "manyplies") that contains leaves of tissue, 

stratified like pages in a book. It absorbs water and other substances from digestive 

contents. The reticulum is a pouch-like structure in the forward area of the body cavity, 

and the structure of the internal wall resemble a honeycomb. A small fold of tissue lies 

between the reticulum and the rumen, but the two are not actually separate 

compartments. Heavy or dense feed and metal objects eaten by the cow drop into this 

compartment and this is frequently the cause of severe lacerations of the tissues. Lastly, 

the rumen (which is placed on the left side of the animal) is the largest of the four 

compartments and is divided into several sacs. The rumen main function is to act as a 

fermentation vat. The rich symbiotic microbial population in the rumen (between 108 

and 1010 microorganisms per gram of rumen content. Wilson and Briggs, 1955) digests 

or ferments feed eaten by the animal. Specifically, the microbial community composed 

by bacteria, protozoa, and fungi break down cellulose and lignin, aiding their digestion 

and producing volatile fatty acids, essential amino acids, and proteins, which are then 

absorbed into the rumen. This production supplies about 60-80% of the cow’s energy. 

Conditions within the rumen favor the growth of microbes. The pH normally ranges 

between 6.5 and 7.2, with a temperature ranging from 37.8 to 40°C. Changes in pH levels 

compromise cow healt (Plaizier et al., 2008), affecting, for example, feed intake, milk 

production, and causing different severe diseases (e.g., diarrhea, laminitis and 

inflammation). To prevent these changes, large amounts of saliva, which act as a buffer 

for the ruminal pH (Beauchemin, 1991), are produced each day. 

Rumination is defined as the regurgitation of ingesta, followed by remastication 

and reswallowing (Erina et al., 2013). It provides for effective mechanical breakdown of 

roughage and thereby increases substrate surface area to fermentative microbes. 

Regurgitation starts with a contraction that allows a bolus of ingesta to enter the 

esophagus, in conjunction with relaxation of the distal esophageal sphincter. The bolus 

is then carried into the mouth by reverse peristalsis, where it is remasticated and 

reswallowed. Rumination occurs predominantly when the animal is resting, and, on 

average, cows spend about 8 hours per day ruminating. Different studies have shown 
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that non-physiological conditions such as acute stress (Herskin et al., 2004), anxiety 

(Bristow and Holmes, 2007), and diseases (Stangaferro et al., 2016a; b; c) affect 

rumination time by significantly decreasing it. Rumination could be, therefore, a 

valuable indicator of the welfare status of dairy cows. However, excluding the 

physiological point of view, which has been studied for decades, other aspects (e.g., 

heritability) of rumination are still not fully understood. 

1.2.1 HERITABILITY 

Although rumination process have been studied thoroughly from both the 

physiological and the pathological point of view, its heritability is still almost completely 

uninvestigated. Heritability is a statistic, widely used in animal breeding and in human 

population genetics, that estimates the degree of variation in a phenotypic trait (in a 

specific population) that is due to genetic variation between individuals in that 

population (Wray and Visscher, 2008). Heritability is a population parameter and, 

therefore, it depends on population-specific factors. This means that the heritability of 

the same trait could vary between different populations of the same animal breed. 

Nevertheless, it can be noticed that heritabilities are often similar across populations 

(Visscher et al., 2006). Heritability could be estimated on two different levels. When 

considering all the genetic contributions to the phenotypic variance (i.e., including 

additive, dominant, and epistatic components), the statistic is called “broad-sense” 

heritability (denoted by an upper case H2), and is defined as: 

𝐻2 =  
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝑃)
 

where Var(G) is the variance of the genotype, and Var(P) is the phenotypic variance, that 

is the sum of the genotypic variance, the environmental variance, and twice their 

covariance. However, in animal breeding, it is more commonly used the “narrow-sense” 

heritability (denoted by a lower case h2), in which only the additive variance part of the 

whole genetic variance is used. This variance represents the genetic component passed 

from parents to their offspring (i.e., the component responsible for the resemblance 

between parents and offspring; Hill et al., 2008), thus this is a key variable for selection 

and breeding. “Narrow-sense” heritability is defined as: 

ℎ2 =  
𝑉𝑎𝑟(𝐴)

𝑉𝑎𝑟(𝑃)
 

where Var(A) is the variance of the additive portion of the genotype, and Var(P) is as 

defined in the previous equation (Kempthorne, 1957). 
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To be a valuable selection criterion, rumination should have a moderate-to-high 

heritability and should be genetically correlated to other meaningful factors. Ranging 

from 0 to 1 (given its definition as a ratio), a heritability value of 0 means that no additive 

variance is available in the population, and values close to 0 describe a low heritable 

trait (fitness traits, for example, often have a low heritability; Visscher et al., 2008). On 

the other hand, a heritability value of 1 means that all of the variability in the phenotype 

is due to the additive part, meaning that the environment has no effect on the trait. 

Values close to 1 describe a high heritability (e.g., human height; Macgregor et al., 2006). 

1.3 MACHINE LEARNING 

The term “machine learning” was coined in 1959 by Arthur L. Samuel (Dec 1901 

– Jul 1990) an American pioneer in artificial intelligence, and describes the branch of 

computer science that gives "computers the ability to learn without being explicitly 

programmed". Machine learning is based on the construction of algorithms that can 

learn how to make data-driven prediction or decision. The first computer learning 

program was written by the abovementioned Samuel while he was working for the IBM, 

and was a checkers game (Samuel, 1959). This software was perfected through time by 

other ingeneers and, eventually, the IBM’s Deep Blue chess-playing computer defeated 

in May 1997 the reigning world champion Garry Kasparov. 

Machine learning can be classified into two main categories, based on different 

tasks and input given: supervised learning and unsupervised learning. In the former 

category, the programmer gives the computer both the input and its related desired 

output (labelled training data). Analysing the training data, the algorithm maps the given 

examples and will then apply what was learned to new data. This type of analysis is 

commonly used when the classification of data is already known, and the aim of the 

analysis is to attribute new records to the abovementioned data. In the latter category, 

no labels are given to the training data. These algorithms analyse data to discover hidden 

patterns and are used when it is of interest to search the data for common features that 

can cluster them together. 

While being largely used in various fields of human medicine (e.g., Prosperi et al., 

2013; Erus et al., 2014), sociological economy (e.g., Lee et al., 2014) and even in 

insurance companies surveys (e.g., Zhu and Welsch, 2015), machine learning is still 

scarcely exploited in animal sciences. 

In this PhD thesis, three machine learning methods were used and are illustrated 

in the following paragraphs. 
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1.3.1 RANDOM FOREST 

The Random Forest method (RF) is an ensemble learning method based, mainly, 

on decision-trees. RF develops a collection of tree-structured classification models: in 

each model, a multitude of decision trees are constructed, and each contributes an 

opinion of how the data should be classified (Breiman, 2001). The first RF algorithm was 

created in the late ‘90s (Ho, 1998) and it was later extended and perfected by Leo 

Breiman and Adele Cutler, that trademarked the term “Random Forests” in 2006 (U.S. 

trademark registration number 3185828, registered 2006/12/19).  

RF algotihms build a forest of uncorrelated trees using a Classification And 

Regression Tree (CART) analysis, in which trees could be, as the term suggests, 

classification trees or regression trees. Classification trees analyse the input and operate 

with a categorical approach. Their predicted outcome is a class attribution. Differently, 

regression trees perform a regression on the input. Their predicted outcome is, 

therefore, a number. Each tree is composed by nodes, which represent one piece of 

information that is going to be processed, interconnected in an ordered way. According 

to the botanic-like nomenclature, each tree starts from a root (the input of the 

algorithm), moves through branches (“internal nodes” that receive one input and, after 

some processing, pass an output to other nodes), and, eventually, end in leaves 

(“external nodes” that receive an input, but return an output outside of the algorithm). 

In order to reduce bias, the RF creates a large number of trees applying a bootstrap 

aggregatin (or bagging) general technique: over a repeated number of sample selection 

from the input data, different trees are fitted. This procedure increases the 

performances of the model because it decreases the variance, still without increasing 

the bias. While a single decision tree could be prone to be biased by background noise 

in the training set, the average of many uncorrelated trees should be more robust. 

Overfitting is a minor problem with RF, because of the use of a large number of trees 

and due to the Strong Law of Large Numbers (i.e., the average of the results obtained 

from a large number of trials should be close to the expected value, and will tend to 

become closer as more trials are performed). 

In Figure 1 is shown a simple example of a CART tree, showing the survival 

probability of a passenger during the sinking of the RMS Titanic (Apr 1912). The root 

node performs a first classification regarding the sex of the passenger. This node has 

two possible outcomes, the first leading to an internal node (i.e., a branch) with a new 

classification to perform, and the second to an external node (i.e., a leaf) giving a survival 

probability output for each data that correspond to class attributed by the root node 

(i.e., gender: female). Thus, a female passenger had a survival probability of 36%. This 

classification procedure will go through the whole tree, repeated for each data input. 
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Figure 1. A tree showing survival of passengers on the Titanic ("sibsp" is the number of spouses or siblings 

aboard). The figures under the leaves show the probability of survival and the percentage of observations in 

the leaf. By Stephen Milborrow - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=14143467 

1.3.2 NEURAL NETWORKS 

The Neural Networks technique (NN) was developed in artificial intelligence field, 

with the aim to imitate the structure and function of the human brain, simulating human 

intelligence, learning independently and quickly, adapting continuously, and applying 

inductive reasoning to process knowledge (Zahedi, 1991). The theoretical bases of NN 

was defined in 1943 by Warren S. McCulloch (Nov 1898 – Sep 1969) and Walter Pitts 

(Apr 1923 – May 1969), which created the first computational NN model based on 

mathematics (McCulloch and Pitts, 1943). The first NN implementation dated back to 

1957, when Frank Rosenblatt (Jul 1928 – Jul 1971) invented the perceptron algorithm. 

The perceptron is a particular type of classifier (supervised learning binary classifier), 

that can decide whether or not an input is to be assigned to a specific class or not. 

NN is based on a collection of units called artificial neurons, in analogy with axons 

in a biological brain. Input neurons, similarly to root nodes in RF, are the starting point 

of the network and, thus, have no predecessors. They are the input interface between 

the network and the user. Output networks, differently, are the output interface of the 

network and, just like leaves in RF, do not pass the signal to other neurons. Each 

connection (or synapse) between artificial neurons can transmit a signal to another 

neuron, and the sum of these connections make the network.  

NN neurons are organised in layers (Figure 2). Each layer usually gathers all the 

neurons that perform similar transformations on their inputs. Layers that contain 



21 
 

neurons that are not input nor output neurons are called hidden layers, since they are 

not interfaced with the user outside the network.  

 

Figure 2. A Neural Network representation: each circular node indicates a neuron, and arrows are the 

connections between them. Three layers can be seen here, namely input (red), hidden (blue), and output 

(green). By Glosser.ca - Own work, Derivative of File: Artificial neural network.svg, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=24913461 

Neurons and synapses may have a weight that can be defined by the programmer 

or, more commonly, varies as learning proceeds. Changes in weights can increase or 

decrease the strength of the signal that each neuron sends to the connected receiving 

neurons. Furthermore, each neuron may have an activation threshold. Only if the 

aggregated signal is below (or above) that threshold the downstream signal is sent. 

1.3.3 LINEAR DISCRIMINANT ANALYSIS 

Linear Discriminant Analysis (LDA) is a technique that works similarly to an 

ANOVA and a regression method, but uses categorical dependent variables instead of 

continuous ones (McLachlan, 2004). LDA is also related to principal component analysis 

and factor analysis, since they both search the data to find linear combinations of 

variables able to explain at best the data structure. LDA is a generalization of Fisher’s 
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linear discriminant (Fisher, 1936), which is a statistical method used to find a linear 

combination of features that separates two classes of objects. The obtained linear 

combination can be therefore used as a linear classifier. In addition, LDA is commonly 

used as a dimensionality reduction technique in association with other machine learning 

applications. 

LDA searches for the best direction (or directions) in the variables space, which 

can highlight a distinct separation of the groups. LDA builds a new variable by linearly 

combining the original ones, making sure that the variability between groups remains 

greater than the one whithin groups. In Figure 3 is shown a made-up example of two 

groups of points (blue and red circlets) that are plotted on a 2D plot. With a linear 

combination of the original variables (i.e., by projecting the points on a new axis), and 

given the selection of the best discerning direction (i.e., following the dashed line), a 

new set of points will be obtained. Those new points can be used to divide the original 

data in the observed classes. 

 
Figure 3. Linear discriminant analysis plot example: the two groups (blue and red circlets) can be identified 

when projecting the points following the dashed line.  
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2.  AIM OF THE STUDY 
 

Aim of this project was to apply statistical models to the prediction of the 

wellness status of dairy cows through the prediction of common diseases (namely 

mastitis, lameness, and dysentery) and other welfare threats (e.g., heat stress) reported 

in dairy farms. Different statistical approaches were applied, from simple regression to 

more advanced machine learning-based techniques. The relationships between 

rumination and other variables recorded from automatic recording systems were 

evaluated, since few information could be obtained from bibliographic searches. 

Furthermore, the genetic components of rumination and its correlation with well-

studied variables (e.g., milk production) were investigated.  

We selected phenotypes to be used as predictors among the ones commonly 

available in commercial farms. The rationale behind this choice is the will to build the 

basis for a future tool able to guide breeders in their work. Therefore, despite their 

potential importance, predictors that are usually obtained with experimental protocols 

or that needed expensive equipment to be measured (for example, the daily intake of 

each animal in the farm or blood metabolites analysis) were not considered. 

 

The papers presented in Part II represent the main topics analysed: 

1. Heat stress effects on rumination 

2. Effects of diseases1 on rumination and their prediction 

3. Heritability of the rumination trait  

                                                                 
1 namely mastitis, lameness, and dysentery 
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3.  MATERIAL AND METHODS 

In this chapter are described the generic materials and methods used through all 

the analyses performed during the PhD project. Specific details, parameters, and/or 

other peculiar materials and methods can be found in their respective papers in Part II. 

3.1 FARMS AND ANIMALS 

Five farms, one experimental and the others commercial, were monitored during 

this project (see Table 1 for summarised details).  

 

Farm code Type Location N° total 
animals 

Monitored 
period 

BUL commercial Pegognaga 
(Lombardy) 

454 24/09/14 - 
30/04/17 

MIL commercial Spino d’Adda 
(Lombardy) 

468 24/09/14 - 
30/04/17 

PAS commercial Spilamberto 
(Emilia-Romagna) 

174 24/09/14 - 
30/04/17 

SAV commercial Pavullo nel 
Frignano (Emilia-
Romagna) 

228 08/02/16 - 
23/05/17 

TAD experimental Gariga di 
Podenzano 
(Emilia-Romagna) 

269 24/09/14 - 
31/03/17 

Table 1. List of farms information: type of farm, location, number of total animal monitored during the project, 

and the range of monitored days. 

Farms were selected according to the two following criteria: 

 Breed (Holstein Friesian); 

 Presence of an automatic recording system (see Paragraph 3.2.1). 

 

The farms are all located in Northern Italy (Figure 4), two in Lombardy and three 

in Emilia-Romagna regions. The farms share a similar rearing system (which is the most 

common in that area) consisting in freestall barns, often open on two to four sides, with 

small open-space areas. The area in which the farms are located is the Po Valley, the 

major Italian plain, which originated by the sediments transported by the river Po. This 

area was chosen because of the large diffusion of Holstein dairy cattle farming and the 

high temperatures and humidity during summer. 
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Figure 4. Northern Italy, map detail. Red pointers mark the location of the farms. 

Data from all the animals in the farms equipped with the automatic recording 

system sensor were gathered. 

3.2 DATA COLLECTION 

With few exceptions, described in the Material and Methods section of the 

relative papers, data was collected from three main sources. Animal-based information 

(e.g., RT and milk production) were gathered from the automatic recording system used 

in the farms, along with anagraphic data from the annexed herd management software. 

Environmental data was recorded with weather stations we installed in each farm. 

Lastly, sanitary information (available only for BUL farm) were gathered from the 

farmer’s logbook.  

3.2.1 AUTOMATIC RECORDING SYSTEM 

The automatic recording system used in all the studies presented in this thesis is 

the Heatime® Pro system (SCR Engineers Ltd., Hadarim, Netanya, Israel). The system is 

composed of a neck collar with a tag containing a microphone with a microprocessor to 

monitor rumination and a 3-axis accelerometer to quantify activity. Each milking stall 
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entrance in the farms was equipped with a single long-distance antenna, which read the 

specific signal coming from the tag on each cow. Schirmann et al. (2009) performed a 

third-party validation on this technology and confirmed the monitoring accuracy of the 

recorded variables. The herd management software, DataFlow™ II (SCR Engineers Ltd.), 

subsequently processes the raw data from the tag. The farmer can, furthermore, insert 

in the software additional information about each cow (e.g., ID number, age, parity …), 

along with the daily milk production registered by the parallel milking parlour. 

Customisable reports are then downloadable from the software in .xls format. 

As per our farm selecting criteria, the automatic recording system was already in 

use in the selected farm when the PhD project started. Therefore, no habituation period 

for the cows to get used to the neck tag was needed. Furthermore, since this is a 

common management tool and not a veterinary nor an invasive device, no 

authorizations from an ethical committee were required. 

A new feature was added to this system with a new tag released during 2015 that 

contains a termometer in addition to the michrophone and the accelerator. This new 

release allows the system to evaluate heat stress in animals. Since this update was not 

available at the beginning of this project, we provided weather stations and installed 

them on farm. 

3.2.2 WEATHER STATIONS 

Ambient temperature and relative humidity were recorded using a HOBO® Micro 

Station Data Logger (Onset®, Cape Cod, MA, USA) installed inside the barn (next to the 

pen, just high enough to be out of cows’ reach) and equipped with a 12-bit 

temperature/RH sensor cable. Both ambient temperature and relative humidity were 

measured once a minute and recorded as a mean value every 5 min. The guaranteed 

working range, as indicated in the manufacturer manual, was from 0°C to 50°C with an 

accuracy of ± 0.2 °C for the ambient temperature and from 10% to 90% with an accuracy 

of ± 2.5% for the relative humidity. 

The first weather station was installed in the experimental farm (TAD) on the 15th 

of April 2015. In the commercial farms, the remaining weather stations were installed 

on the 22nd and 25th of February (MIL and BUL, respectively), and on the 7th of June 2016 

(PAS and SAV, on the same day). 

3.3 STATISTICAL ANALYSES 

Statistical analyses were performed using the free software R (version 3.2.5; R 

Foundation for Statistical Computing, Vienna, Austria). R is an open source programming 

language and software environment for statistical computing and graphics that 
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stemmed from the S statistical language, developed in 1976 by researchers of the Bell 

Laboratories (Becker et al., 1988). Basic functions in R can be extended via packages, 

collections of new R functions, data, and compiled code in a well-defined format. 

Packages are available for download from the Comprensive R Archive Network (CRAN), 

a network of web servers around the world that store identical, up-to-date, versions of 

code and documentation for R. 

Mixed models and machine learning algorithms were applied to the gathered 

data in this PhD project. Mixed models are statistical models that contain both fixed 

effects and random effects. While the fixed effects represent the observed quantities of 

the variables (treated as if they were non-random), random effects represent those 

variables whose effects arise from random causes. This type of statistical models, first 

introduced by the British statistician and biologist Ronald Fisher to study the correlation 

of different traits between relatives (Fisher, 1919), are particularly useful with datasets 

containing repeated measures on the same statistical unit. In all the papers, mixed 

models were fitted using the lme4 package (Bates et al., 2015), and their statistical 

significance was then checked with the lmerTest package (Kuznetsova et al., 2015). 

3.4 MACHINE LEARNING TECHNIQUES 

All machine learning techniques were implemented using the caret package 

(Kuhn, 2016). For all the techniques, the original dataset was subsetted in a training and 

a validation datasets, consisting of the 80% and the 20% of observation, respectively. A 

3 times repeated 10-folds cross-validation method was performed for the training phase 

of the models. Trained models were used to predict presence/absence of the disease in 

the validation phase. For each model, the sensitivity, specificity, positive predictive 

value, and negative predictive value were calculated to evaluate the performance of the 

techniques.  
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Abstract  

The objective of this study was to investigate the relationship between Temperature-

Humidity Index (THI) and Rumination Time (RT) in order to possibly exploit it as a useful 

tool for animal welfare improvement. During summer 2015 (1 June – 31 August), data 

from an Italian Holstein dairy farm located in the North of Italy were collected along with 

environmental data (i.e., ambient temperature and relative humidity) recorded with a 

weather station installed inside the barn. Rumination data were collected through the 

Heatime® HR system (SCR Engineers Ltd., Hadarim, Netanya, Israel), an automatic 

system composed of a neck collar with a Tag that records the RT and activity of each 

cow. A significant negative correlation was observed between RT and THI. Mixed linear 

models were fitted, including animal and test-day as random effects, and parity, milk 

production level and date of last calving as fixed effects. A statistically significant effect 

of THI on RT was identified, with RT decreasing as THI increased. 

 

Keywords: dairy cow, heat stress, temperature-humidity index, rumination time, 

animal welfare 
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Implications  

Heat stress in dairy cows is a topic of high economic importance, since it reduces both 

productive and reproductive performances and health and welfare. This is especially 

true in the Mediterranean basin, where a gradual increase in temperature and humidity 

is expected in the coming years. Cooling systems help in reducing heat stress in dairy 

cows, but could be expensive if used when unnecessary. This study aims to deepen the 

knowledge about the effects of heat stress on rumination, electronically monitored, and 

to establish the basis for future research investigating the possibility of using this 

relationship as a useful alert. 

 

Introduction 

One of the major external factors that can negatively affect the performance of dairy 

cows is the thermal environment in which they live (Nardone et al., 2010). This finding 

is especially true in high-yielding animals of high genetic merit, which are very sensitive 

to heat stress (Bernabucci et al., 2014). Several studies hypothesized the “thermo-

neutral zone” (i.e., the thermal equilibrium between the animal and the environment 

where it lives) for lactating dairy cows to be between 5 and 25-26°C (Berman et al., 1985; 

Roenfeldt, 1998). Whenever the temperature exceeds this thermal zone, trespassing 

either the upper or lower limit, animal physiology changes to a disorder status in which, 

for example, milk production declines and its composition changes (Johnson, 1980). 

Heat stress is an important threat to cattle breeding, especially in the Mediterranean 

basin, which is supposed to undergo a gradual increase in temperature and humidity in 

the coming years up to 2050 (Segnalini et al., 2013). Moreover, the current trend in the 

dairy industry is towards fewer but larger farms, rearing a great number of animals in 

the same structure (Winsten et al., 2010). Overcrowding and higher temperatures and 

humidity can indeed result in harsh conditions for dairy cows. 

Responses of dairy cows to heat stress are copious: e.g., raised respiration rates (Omar 

et al., 1996), and panting and sweating (Blazquez et al., 1994). However, to date, few 

studies have analysed the effects of heat stress on health and rumination activity of 

cattle. Rumination, described by Erina et al. (2013) as the process of regurgitation, 

remastication, salivation, and swallowing of ingesta to reduce the particle size of 

feedstuffs and enhance fibre digestion, is a key physiological function in ruminants, and 

is associated with cow welfare (Bar and Solomon, 2010). Feeding variables (e.g., feed 

intake) have the largest effect on rumination, being intrinsically connected to this 

function. However, in commercial farms, recording of feeding information is not so 

common, and it’s almost impossible to calculate feed intake for each animal. It is, 

instead, quite common among breeders to group animals on their productive level, 

optimizing the quantity and quality of feed (Spahr et al., 1993). 
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Despite its importance, the effects of length, severity, and timing with respect to stage 

of lactation of heat stress on health and rumination are still unknown. The overall effect 

of heat stress has been assessed by measuring body temperature of dairy cows, which 

shows a high susceptibility to hot environments (Araki et al., 1984). The Temperature-

Humidity Index (THI) combines ambient temperature and relative humidity into a single 

value, and is a commonly used index (Hahn et al., 2003) to assess the effects of 

environmental temperature on dairy cows. However, THI does not include in its 

equation the effects of other environmental variables (e.g., solar radiation, wind). 

Several studies have already highlighted the negative relationship between THI and 

productive and reproductive performances in dairy cows (Bouraoui et al., 2002, García-

Ispierto et al., 2007, Bernabucci et al., 2014, Biffani et al., 2016), but few studies 

investigated the relationship between THI and Rumination Time (RT). Soriani et al. 

(2013) found a significant negative correlation (r = -0.32; p< 0.05) between THI and RT, 

but the study was conducted monitoring only 21 cows. 

Based on the aforementioned relationships, THI might be useful as a welfare index. THI 

recording could be implemented into automatic system programmed to send an alert 

directly to farmers, who can subsequently act to resolve or reduce the heat stress 

suffered by their animals. Several studies have already shown that the use of a cooling 

system helps in reducing the negative effects of heat stress in dairy cows (Frazzi et al., 

2000, Calegari et al., 2016), thus an automatic activation based on a THI threshold could 

lead to further improvements. Indeed, some commercially available systems that can 

activate cooling apparatus based on THI levels already exist. 

THI can be easily obtained at farm level by installing devices for temperature and 

humidity recording, but their distribution is still limited. On the other hand, automated 

recording devices to monitor cow behaviour (e.g., RT) are becoming increasingly 

common at farm level. Information could indeed be paired and used to disentangle their 

relationship.  Eventually, evidences can be gained whether RT might be used as a 

potential and more comprehensive indicator of animal welfare than THI. The objective 

of the present paper is to investigate the relationship between THI and RT in dairy cows 

using data collected during a hot summer in a temperate area of the Mediterranean 

basin. 

 

Material and Methods  

Animal and environmental data collection 

Data were collected from 122 Italian Holstein cows, reared in the Tadini Dairy Park 

experimental farm, located in Gariga di Podenzano, province of Piacenza, Northern Italy 

(geographical position: 44° 58’ 55.0” N, 9° 40’ 58.8” E; 68 m above the sea level). Cows 

were located in a freestall barn, North-South oriented, without any ventilation system, 
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and open on all of the four sides. All of the animals inside the barn were used for this 

study. The mean age (± SD) of the animals was 46.67 ± 17.56 months and the average (± 

SD) daily milk production was 28.17 ± 9.60 kg. Animals were classified by parity as “1”, 

“2” and “3plus” (all the cows after the third calving) and were 48, 34, and 44, 

respectively. Although recent studies confirmed a significant relationship between RT 

and both respiration rate and panting (Magrin et al., 2016), this information is not 

available in commercial farms and was not considered in the present study. 

Ambient Temperature and Relative Humidity (AT and RH, respectively) were recorded 

from the 1 June to the 31 August 2015 using a HOBO® Micro Station Data Logger 

(Onset®, Cape Cod, Massachusetts USA) installed inside the barn (next to the pen, just 

high enough to be out of cows’ reach) in April 2015 and equipped with a 12-bit 

Temperature/RH sensor cable. Schüller and Heuwieser (2016) suggested that climate 

conditions should be obtained at cow level because of microclimatic differences that 

occur in dairy barns. However, since the barn was open on all of the four sides, fresh air 

supply and air recirculation was similar for all the animals and areas with different 

microclimates were less likely to generate. Any variability due to this issue was absorbed 

by the random effects of the models (namely animal and date-test effects).   

Both AT and RH were measured once a minute and recorded as a mean value every 5 

minutes. The guaranteed working range, as indicated in the manufacturer manual, was 

from 0 to 50°C with an accuracy of ± 0.2°C for the AT and from 10 to 90% with an 

accuracy of ± 2.5% for the RH. 

Descriptive statistics for the three months (June, July, and August) were calculated and 

the difference between the means was statistically evaluated with a Tukey’s Honest 

Significant Difference (HSD) test, a multiple comparison followed by a statistical test 

with a distribution similar to a t distribution. The HSD test was performed using the 

HSD.test function from the R package agricolae (de Mendiburu, 2016). 

The RT was measured and summarised in 2-h intervals using the Heatime® HR system 

(SCR Engineers Ltd., Hadarim, Netanya, Israel). The system is composed of a neck collar 

with a tag containing a microphone to monitor rumination and an accelerometer to 

quantify activity, as validated by Schirmann et al. (2009). The raw data are subsequently 

processed by the DataFlow™ II software (SCR Engineers Ltd.) provided by the farm with 

additional information about each cow, namely ID number, age, parity, dates of calving, 

days in milk (DIM), and the daily milk production registered by the linked parallel milking 

parlour. Each stall entrance was equipped with a single long-distance antenna, which 

read the specific signal coming from the rumination monitoring tag on each cow. A 

possible critical point of this study was the possible issues due to mis-identification of 

the animals at the milking parlour. Given the small dimensions of the herd and the 
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milking parlour, the probability for cows to switch their positions once passed the 

identification antennae was low. We acknowledge that this could be an issue in larger 

farms. Furthermore, in order to check possible wrong association between cow ID and 

production/rumination data, consecutive recordings from the same cow were visually 

inspected in order to identify unexpected patterns and to remove potential outliers. 

Temperature Humidity Index 

THI was calculated according to the equation from Vitali et al. (2009): 

THI= (1.8 x AT +32) - (0.55 -0.55 x RH) x [(1.8 x AT+32)-58], 

where AT is expressed in degrees Celsius and RH as a fraction of the unit. The (1.8 x AT 

+ 32) term is used for the conversion from degree Celsius to Fahrenheit. Following Hahn 

et al (2003), six THI thresholds for heat stress classification were used, namely “safe” 

(THI < 68), “mild discomfort” (68 ≤ THI < 72), “discomfort” (72 ≤ THI < 75), “alert” (75 ≤ 

THI < 79), “danger” (79 ≤ THI < 84), and “emergency” (THI ≥ 84). After merging weather 

and rumination data, a mean value for each 2-h interval was estimated for THI, using AT 

and RH information. 

Statistical analyses 

The correlation between THI and RT was calculated using the cor function in R (R Core 

Team, 2014). The effect of THI on RT was analysed with a 2-step procedure: in the first 

step, RT was adjusted for a set of fixed and random effects (excluding the THI), fitting 

the following mixed linear model (model 1): 

RTijklm = animali + parj + prod_lvlk + calvl + datem + εijklm, 

where RTijklm is the rumination time in 2-h intervals; animali is the random effect of the 

ith animal (in order to take account of the correlation between measurements recorded 

from the same animal); parj is the fixed effect of the parity order j; prod_lvlk is the fixed 

effect of the animal milk production level k, classified based on the calculated 

production tertiles (low, mid and high) of animals grouped by parity and lactation phase 

(DIM < 60, 60 <= DIM < 100, DIM >= 100); calvl is the fixed effect of the month and the 

year of the last calving event class l (format mmyyyy); datem is the random effect of the 

mth test day; and εijklm is the random residual effect. 

In the second step, THI (factor with 6 classes, as previously defined) were added as a 

fixed effect to model 1: 

RTijklmn = animali + parj + prod_lvlk + calvl + datem + THIn + εijklmn (model 2), 
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where THIn is the fixed effect of the nth THI class.  

Both models were performed using the lmer function of R package lme4 (Bates et al., 

2015) which fits mixed model by Restricted Maximum Likelihood (REML) t-test using 

Satterthwaite approximations to degrees of freedom.  

Subsequently, statistical significance of the model was checked with the lmerTest 

package (Kuznetsova et al., 2015). The package updates the existing function anova with 

the capability to evaluate statistical significance of fixed effects in a mixed model adding 

both Least Squares Means (LSM) and confidence intervals. Q-Q plots were used to check 

residuals distribution. Finally, in order to test the effect of THI on RT, model 1 and model 

2 were compared by a simple ANOVA. 

Results  

Environmental data 

In order to check the logger recording activity, AT and RH recorded during April 2015 

were compared with data collected from an external professional weather station, 

located nearby (< 1 km). The two datasets showed a Pearson correlation rate of 98%, 

with the values of on-farm temperature and humidity always being slightly higher than 

the external ones, most likely due to the heat dissipation mechanisms (e.g., sweat 

evaporation and breathing) of the animals. Schüller et al. (2013) stated that to assess 

heat stress accurately is mandatory to measure the relevant climate data inside the barn 

to avoid underestimation of heat stress. However, we did not find such a strong 

underestimation in our study: this is most likely due to the different distance between 

the meteorological station and the barn in our and their study (< 1 km and 18 km, 

respectively).  

A total of 288 AT and RH records per day were collected in June (n = 8640), July (n = 

8928) and August (n = 8928). For each record, THI was calculated. Descriptive statistics 

for the three months are summarised in Supplementary Table S1. For each of the three 

months, the monthly THI mean was over the “safe” condition threshold: specifically, 

“mild discomfort” in June, “discomfort” in August and “alert” condition in July, which 

was the hottest summer month. Furthermore, the daily THI mean reached the “danger” 

condition threshold in three consecutive days, from the 5th to the 7th of July. The 

numbers of total days and maximum consecutive ones per THI category are reported in 

Table 1. 
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Rumination Time and fitted models 

Descriptive statistics for the RT are summarized in Supplementary Table S2. Pearson 

correlation between RT and THI showed a significant unfavourable correlation (-0.22, p 

< 0.001), in agreement with Soriani et al. (2013). 

The fixed effects from Model 1 (estimated values, SEM and p-values reported in Table 

2) were statistically tested, and the results are summarised in Table 3. Random effect 

variances are in Table 4. Cow and test-day accounted for approximately 5.4% and 1.3% 

of the overall variance, respectively. The adjusted R2 of this model was 0.07 (calculated 

as suggested by Xu, 2003). The fitted values from the model were plotted versus the 

residuals of the same (calculated using the resid function of R), showing a symmetrical 

distribution without any clear pattern, suggesting that a linear model was suitable for 

our data.  

Milk production level and the date of last calving had significant associations with RT (p 

< 0.001 for both the variables), while parity did not (p = 0.106). Using mid-production 

level as reference class, both high- and low-production levels showed a significant 

association with RT: the former increasing by 1.147 min ± 0.212 per unit (p < 0.001), and 

the latter decreasing by 1.492 min ± 0.207 per unit (p < 0.001). This result, together with 

a correlation of 20.2% (p < 0.001), confirmed the hypothesis validated by Moallem et al. 

(2010), in which RT and milk production are positively related. Differently, Byskov et al., 

2015, conducted a similar study in experimental farms where feeding data was available. 

A negative correlation was found between milk production and RT in minutes per 

kilogram of DMI. Although accounting for DMI in RT could result in more precise results, 

it is important to keep in mind that usually, in commercial farms, it is not possible to 

quantify DMI for each animal. Regarding the month/year of last calving event, all of the 

different classes resulted in a statistically significant difference from the 092014 (i.e., 

September 2014) reference level. 

In the second step of this work, Model 2 (which included the THI effect) was fitted, its 

fixed effects (estimated values, SEM and p-values reported in Table 3) were statistically 

tested, and the results are summarised in Table 4. THI effect was statistically significant 

and RT decreased by 9.36, 13.33, 19.44, 25.64 and 32.19 min/2h per unit by a mild, 

discomfort, alert and danger THI status, respectively. Changes in RT due to different milk 

production in Model 2 were smaller than in Model 1. The greater effect that THI has on 

RT could have partially masked milk production effect on the dependent variable of the 

study, resulting in the observed minor effect on RT. As expected, parity didn’t have a 

significant effect on RT in Model 2 either. With the inclusion of the THI effect in model 

2 (Table 5), the variance explained by both test-day and animal effect increased. Indeed, 

the residual variance of model 2 was lower than the one in model 1, confirming that the 
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new added variable explained part of the remaining variability of the first model. Over 

the total variance, in the second model, the between-cow variation accounted for 

approximately the 5.7%, while between-date variation accounted for the 5.2%. LSM of 

RT by THI levels were calculated and presented in Figure 1. 

The differences between the two models were tested by ANOVA, resulting statistically 

significant (p < 0.001). Both the AIC and the BIC were smaller for model 2, suggesting a 

better fit of the data. Adjusted R2 for model 2 (calculated as suggested by Xu, 2003) was 

0.13, showing a two-fold increase with respect to model 1. 

Discussion 

The results presented in this study confirm a significant unfavourable association 

between THI and RT in Holstein dairy cows: when THI increases (i.e., increasing heat 

stress), a reduction in the RT occurs. An intuitive explanation could be that heat stress 

is known to activate physiological and metabolic responses to cope with the not optimal 

environmental conditions. These responses might involve, for example, a reduction in 

feed intake which eventually causes a reduced RT. This negative correlation between RT 

and THI is furthermore confirmed by similar findings from a previous study (Soriani et 

al., 2013). 

The two fitted models (with and without THI as fixed effect, respectively) were 

statistically different. This result supports the hypothesis that a significant association 

does exist between THI and RT, the latter showing a decrease as the THI classes shifted 

from “safe” to “emergency”. The THI classes adopted here are effectively describing a 

different response to a growing non-optimal climate, as highlighted by the statistical 

difference between the effects on RT at different classes. Furthermore, adding the THI 

to the other factors statistically improved the goodness of fit of the model (two-fold 

increase in adjusted R2). 

The effect of milk production was included in the model as a categorical effect using 3 

classes (namely, low-, mid- and high-productive) and not as a linear or non-linear 

covariate. The rationale behind the use of such an approach was mainly due to an 

attempt to reduce model complexity, especially because of the limited number of 

available records. Nevertheless, both model 1 and 2 were also fitted including milk 

production as linear and/or quadratic effect but results did not change. Milk was 

included as an independent variable in the model to assess the association between 

variations in RT and changes in milk production. There is a positive correlation between 

the two variables, with RT increasing in high-productive animals and decreasing in low-

productive ones. This association confirmed the results previously obtained by other 

authors (Moallem et al., 2010). However, a different result was reported by Byskov et 
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al., 2015, were the correlation between RT (expressed in minutes per kilogram of DM 

intake) was negative. The association presented here could be therefore biased due to 

the absence of feed intake information. Nevertheless, Byskov et al., 2015 reported that 

variation in feed intake took into account for 32% of the variation in RT, whereas 48% of 

the total variation in RT was found between-cows. Considering that our model took into 

account the between-cows variation, which represents almost half of the total variation, 

introduced bias due to the absence of feed intake recording should not invalidate our 

results and, therefore, could be a reasonable compromise between scientific precision 

and commercial farm needs, where feed intake is rarely recorded. 

The correlation between THI and RT presented in this study suggests that rumination 

could be a valuable tool for evaluating the heat stress effect on Holstein dairy cows. 

Further studies are needed to confirm the potential predictive use of the RT changes. 
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Table 1. Numbers of total days and consecutive ones per Temperature-Humidity Index 

(THI) category: “safe” condition (THI < 68), “mild discomfort” (68 ≤ THI < 72), 

“discomfort” (72 ≤ THI < 75), “alert” (75 ≤ THI < 79), “danger” (79 ≤ THI < 84), and 

“emergency” (THI ≥ 84). 

THI category Number of total days Number of maximum 

consecutive days 

 Jun Jul Aug Jun Jul Aug 

safe 5 0 3 2 0 2 

mild 

discomfort 
16 1 12 12 0 8 

discomfort 6 4 8 4 2 3 

alert 3 23 8 3 18 6 

danger 0 3 0 0 3 0 

emergency 0 0 0 0 0 0 
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Table 2. Model 1. Fixed effects estimates, standard error of the means and significance 

by p-value 

Fixed effects Estimate SEM p-value Significance† 

Intercept 39.389 1.625 < 0.001 *** 

par: 1 0 - - - 

par: 2 1.536 1.233 0.216 ns 

par: 3plus -1.271 1.211 0.297 ns 

prod_lvl: mid 0 - - - 

prod_lvl: high 1.147 0.212 < 0.001 *** 

prod_lvl: low -1.492 0.207 < 0.001 *** 

calv: 092014 0 - - - 

calv: 082014 4.669 2.175 0.032 * 

calv: 102014 5.196 2.145 0.016 * 

calv: 112014 9.334 1.841 < 0.001 *** 

calv: 122014 8.482 2.492 < 0.001 *** 

calv: 012015 10.523 2.303 < 0.001 *** 

calv: 022015 5.274 2.370 0.028 * 

calv: 032015 11.462 2.076 < 0.001 *** 

calv: 042015 10.691 2.181 < 0.001 *** 

calv: 052015 9.004 3.103 0.005 ** 

calv: 062015 7.060 3.365 0.039 * 

calv: 072015 11.281 1.832 < 0.001 *** 

calv: 082015 7.010 1.611 < 0.001 *** 

†The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < 
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Table 3. Model 2. Fixed effects estimates, standard error of the means and significance 

by p-value 

Fixed effects Estimate SEM p-value Significance† 

Intercept 52.081 1.685 < 0.001 *** 

par: 1 0 - - - 

par: 2 1.654 1.239 0.185 ns 

par: 3plus -1.198 1.218 0.328 ns 

prod_lvl: mid 0 - - - 

prod_lvl: high 1.078 0.205 < 0.001 *** 

prod_lvl: low -1.466 0.200 < 0.001 *** 

calv: 092014 0 - - - 

calv: 082014 4.793 2.141 0.025 * 

calv: 102014 5.460 2.120 0.011 * 

calv: 112014 9.599 1.839 < 0.001 *** 

calv: 122014 8.719 2.500 < 0.001 *** 

calv: 012015 10.777 2.308 < 0.001 *** 

calv: 022015 5.558 2.375 0.021 * 

calv: 032015 11.726 2.077 < 0.001 *** 

calv: 042015 10.962 2.184 < 0.001 *** 

calv: 052015 9.210 3.119 0.004 ** 

calv: 062015 7.322 3.383 0.033 * 

calv: 072015 11.560 1.813 < 0.001 *** 

calv: 082015 7.230 1.581 < 0.001 *** 

†The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < ns  
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Table 3 (continued). Model 2. Fixed effects estimates, standard error of the means and 

significance by p-value 

Fixed effects Estimate SEM p-value Significance† 

THI: safe 0 - - - 

THI: mild 

discomfort 

-9.360 0.221 < 0.001 *** 

THI: discomfort -13.334 0.244 < 0.001 *** 

THI: alert -19.441 0.265 < 0.001 *** 

THI: danger -25.640 0.327 < 0.001 *** 

THI: emergency -32.192 1.145 < 0.001 *** 

†The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < ns 
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Table 4. Statistical test for fixed effects from both Model 1 (including parity, par, milk 

productive level, prod_lvl, and the month and the year of the last calving event, calv, in 

the observed Italian Holstein herd) and Model 2, including the Temperature-Humidity 

Index (THI) in addition to the previous model parameters. 

Fixed effects Sum Sq P-value Significance1 

Model 1    

par 2113 0.1063 ns 

prod_lvl 52024 < 0.001 *** 

calv 30317 < 0.001 *** 

Model 2    

par 2016 0.1008 ns 

prod_lvl 48215 < 0.001 *** 

calv 30047 < 0.001 *** 

THI 3098050 < 0.001 *** 

1 The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < ns. 
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Table 5. Random effects, variances and standard deviations from both Model 1 

(including parity, par, milk productive level, prod_lvl, and the month and the year of the 

last calving event, calv, in the observed Italian Holstein herd) and Model 2, including the 

Temperature-Humidity Index (THI) in addition to the previous model parameters. 

Random effects Variance Std. Dev. 

Model 1   

animali 26.729 5.170 

datem 6.313 2.513 

residual 460.319 21.455 

Model 2   

animali 27.22 5.22 

datem 24.94 4.99 

residual 428.95 20.71 
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Figure 1. Least Squares Means of Rumination Time (RT) by Temperature-Humidity Index 

status in the observed Italian Holstein herd. 
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Summary 

We examined the hypothesis that rumination time (RT) could serve as a useful predictor 

of various common diseases of high producing dairy cows and hence improve herd 

management and animal wellbeing. We measured the changes in rumination time (RT) 

in the days before the recording of diseases (specifically: mastitis, reproductive system 

diseases, locomotor system issues, and gastroenteric diseases). We built predictive 

models to assess the association between RT and these diseases, using the former as 

the outcome variable, and to study the effects of the latter on the former. The average 

Pseudo-R2 of the fitted models was moderate to low, and this could be due to the fact 

that RT is influenced by other additional factors which have a greater effect than the 

predictors used here. Although remaining in a moderate-to-low range, the average 

Pseudo-R2 of the models regarding locomotion issues and gastroenteric diseases was 

higher than the others, suggesting the greater effect of these diseases on RT. The results 

are encouraging, but further work is needed if these models are to become useful 

predictors. 
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Over recent years animal welfare has become a major research area in animal 

husbandry. This increasing interest has been driven both by ethical concerns and by the 

increasing attention of consumers on product quality rather than quantity (Thornton, 

2010). One of the most accepted definitions of the animal welfare concept is the ‘five 

freedoms’, formalised in July 1979 in a report by the UK’s Farm Animal Welfare Advisory 

Committee. A review by Webster (2001) is available, where these ‘freedoms’ are listed 

and explained. Nevertheless, being a multidimensional factor (Fraser, 1995), animal 

welfare assessment is not straightforward and it is dependent on different human 

cultures, traditions and religious faiths (Szücs et al. 2012). 

Rumination is described as the process of regurgitation, re-mastication, salivation, and 

swallowing of feed to reduce the particle size and enhance fibre digestion (Erina et al. 

2013). Rumination Time (RT, i.e., the number of minutes spent by a cow during a 

determined time interval) has been associated with rumen welfare, since it increases 

the production of saliva, which acts as a buffer for the ruminal pH (Beauchemin, 1991). 

The development in the early 2000s of automatic systems able to record and store a 

large amount of different parameters related to milk yield and cow activity, including 

RT, increased the possibility to investigate changes in RT and its relationships with other 

animal-related factors. Some studies have shown that a RT decrease might be an 

indicator of unfavourable psychological (acute stress: Herskin et al. 2004; anxiety: 

Bristow & Holmes, 2007) and pathological (hypocalcaemia: Hansen et al. 2003) 

conditions. More recently, RT has been further investigated to assess its relationship 

with the physiological changes linked with calving and oestrus events. Clark et al. (2015) 

correlated RT and activity time, concluding that there was a distinct decline in the 

duration of rumination pre-partum, which could be successfully used to predict the 

cows’ day of calving. Dolecheck et al. (2015) described the oestrus-related changes in 

parameters automatically recorded by different commercial systems and assessed the 

potential use of this data collecting technology for oestrus detection. The relationship 

between RT and diseases has not been fully investigated yet. Some recent studies 

showed that common dairy farm diseases significantly decrease the RT (Van Hertem et 

al. 2013; Liboreiro et al. 2015; Talukder et al. 2015). Stangaferro et al. (2016a, b, c) 

demonstrated that metabolic and digestive disorders, mastitis, and metritis have a 

negative effect on RT and could be predicted by analysing patterns in RT changes. 

The hypothesis tested in this study is that, by predictive modelling, a trait recorded by 

automatic systems (e.g., RT) could be used as predictive tools for incoming diseases. 

Furthermore, the aim of this study was also to describe changes in RT in the days before 

the recording of different diseases. 
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Material & Methods 

Data collection 

The animals monitored in this study were 259 Italian Holstein cows reared in a 

commercial farm located in Mantua province, Lombardy (Northern Italy). All the animals 

were fed total mixed ration (TMR), milked twice a day and grouped in pens (lactating, 

pre-calving, and infirmary). RT data were recorded using the Heatime HR system (SCR 

Engineers Ltd., Netanya, Israel) from the 24th of September 2014 to the 6th of October 

2015, for a total of 377 consecutive days. This system is composed of a neck collar with 

a tag containing a microphone to monitor rumination and an accelerometer to quantify 

activity (as validated by Schirmann et al. 2009). The raw data are then processed and 

summarised as 2-h intervals by the herd management software DataFlow II (SCR 

Engineers Ltd.), where all the information regarding each single animal (e.g., ID number, 

age, parity) is recorded, and then downloaded in a spreadsheet file. 

The list of diseases was obtained from the farm management software, where they were 

recorded soon after the veterinary diagnosis, both during routine or requested visits to 

the farm. Their incidence is reported in Table 1. All of the recorded diseases were used 

in this analysis, regardless of their known effect or association with RT changes. 

Excluding mastitis, other diseases recorded in the software were grouped into three 

main classes, according to a veterinary classification: reproductive system diseases (i.e., 

metritis, retained foetal membranes, and ovarian cysts), locomotor system issues (i.e., 

lameness and generic leg infections), and gastroenteric diseases (i.e., abomasal 

displacement and dysentery). Other than the disease presence, no other information 

was available (e.g., no specific details on which type of mastitis or infection was 

diagnosed). In order to create a case-control dataset, for each disease, only the cows 

that manifested a disease at least once were kept in the dataset, hence removing all the 

animals that did not experience any disease during the study. Furthermore, all of the 

diseases were then summarised in a ‘generic disease’ variable, which described with 1/0 

(i.e., presence/absence, respectively) the occurrence of at least one sanitary event. 

Statistical analysis 

This study was composed of two main parts: in the first one, mixed models were used 

to analyse the effects of diseases on 2-h rumination time. All the models were fitted 

using the lme4 package (Bates et al. 2015) in R (version 3.2.5; R Foundation for Statistical 

Computing, Vienna, Austria). Subsequently, the statistical significance Q3 of the model 

was checked with the lmerTest package (Kuznetsova et al. 2015). Model 1 was fitted 

with the general disease variable: 

Model 1)  rum_meanijk = generic_diseasei + datej + animalk + εijk, 
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where rum_meanijk is the mean rumination time for animal k affected by a generic 

disease in test-day j; generic_diseasei is the presence or absence of an unhealthy status; 

animalk is the random effect of the kth animal; datej is the random effect of the jth test 

day; and εijk is the random residual effect. 

Model 2 was fitted including as independent variables each disease category: 

Model 2)  rum_meanijklmn = reprodi + mastj + locomk + gastroentl + animalm + 

daten + εijklmn, 

where rum_meanijklmn is the mean rumination time for the animal m in the test-day n, 

affected or not by reprod i, mast j, locom k, and gastroent l; animalm and daten are the 

random effects; and εijklmn is the random residual effect. 

In the second part of this study, a sliding windows approach was applied to the data to 

investigate the change in rumination time in a total of six different windows before and 

after the disease event (i.e., generic disease, reproductive diseases, mastitis, locomotor 

system issues, and gastroenteric diseases): the windows dimensions were of 1, 3, and 5 

d, symmetrically set around the disease event. This approach is widely used in genomic 

analyses (e.g., linkage disequilibrium and signatures of selection identification), but is 

seldom applied outside of this field. On each window, the 2-h rumination mean, 

standard deviation (SD), and slope (from a linear regression of the rumination on the 

days in the window) were calculated. Furthermore, for each of these new parameters, 

summary statistics (i.e., mean ± SD) were calculated. Four different generalised linear 

models (Logistic regression) were then fitted on the window before the sanitary record, 

each with the disease event as a binary response (i.e., presence/ absence: 1/0) and the 

afore-mentioned calculated parameters as predictors (Models 3.a to 3.d): 

3.a)  disease = rum_mean 

3.b)  disease = rum_sd 

3.c)  disease = rum_slope 

3.d)  disease = rum_mean + rum_sd + rum_slope 

where disease is the presence or absence of one of the five cases analysed; rum_mean 

is the averaged rumination time in the window; rum_sd is the standard deviation of the 

rumination in the window; and rum_slope is the coefficient from the regression of the 

RT on the days in the window. AIC (Akaike information criterion) and McFadden’s 

Pseudo R2 (McFadden, 1974) were calculated to compare the models and assess which 

predictors and which window best fitted the data. 
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Results 

Single Variable Comparison 

The mean (±SD) RT of the animals in the herd, throughout the whole 377 d, was 46·99 ± 

11·07 min/2 h. The effect of the disease presence on the 2-h RT was significant in every 

analysed case (P = 0·001 and P < 0·001, locomotor issues and all the other cases, 

respectively). Gastroenteric diseases had the largest effect, lowering RT by 9·91 min/2 

h, while reproductive ones had the smallest, 1·08 min/2 h. Only three cows suffered 

from gastroenteric diseases, therefore, even if highly significant, the result must be 

interpreted with caution. The differences between the means (in min/2 h), the number 

of cows analysed, the ratio between positive and negative cases (case-control ratio), and 

the P-value from at-test, performed to assess if the differences between the two 

statuses were significant, are reported in Supplementary Materials, Table S1. 

Multiple Variables Comparison. 

The fixed effects of Model 1 (estimated values, SEM and P-values) are reported in Table 

2, and their analysis of variance is reported in Table 3a. The random effects variances 

and standard deviations are reported in Table 3b. In this model, the diseased status had 

a significant effect (P <0·001) on RT, lowering it by 2·22 min/2 h. The inclusion of the 

effect of the parity as predictor in the models was considered. However, with the 

inclusion of this effect in a preliminary test, the resulting model had the worst fit on our 

data (probably because this effect was confounded with the animal and date random 

effects), and parity was therefore removed. The variance explained by the animal effect 

was 12·33 % of the total variance explained, and it was 6·30 times larger than the day 

effect variance. McFadden’s Pseudo-R2 of the model was 14·8 %. The fixed effects of 

Model 2 (estimated values, SEM and P-values are reported in Table 2) were statistically 

tested in the same way as Model 1, and the results are summarised in Table 3a, while 

the random effects variances and standard deviations are reported in Table 3b. The 

featured diseases in this model negatively affected RT, with a RT decrease which ranged 

from −1·73 to −5·76 min/2 h (reproductive and gastroenteric diseases, respectively). 

Similarly to the results of the general disease model, the variance explained by the 

animal effect (12·27 %of the total variance explained) was larger than the date effect 

(6·25 times larger). Pseudo-R2 of the model was 14·8 %. Least Square Means (LSM) of 2-

h RT by the different diseases are reported in Fig. 1. LSM were calculated for each single 

couple of diseased/non-diseased animals and were, therefore, different for different 

classifications. Variance inflation factor (VIF) was used as a diagnostic for 

multicollinearity within the models. In both of the models, multicollinearity was 

negligible. ANOVA was subsequently performed to assess which model (general disease 
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variable vs. grouped diseases) better fitted the data: the two models were statistically 

different (P < 0·001). 

Sliding windows analysis 

Regarding the sliding window analysis, summary statistics of the three disease 

predictors related to RT (i.e., mean, SD, and slope), for both the window before and after 

the disease event, are shown in Supplementary Materials, Table S2. In order to 

investigate if the pathological event changed the observed parameters ‘before’ and 

‘after’ event occurrence, a t-test with a threshold of 0·05 for the P-value was used. For 

the generic disease analysis, only the slope was statistically different from before to 

after the event (different in all the three window’s sizes). In the reproductive system 

diseases analysis, significant differences were identified only in the slope for windows’ 

sizes of 3 and 5 d. In the mastitis analysis, the 1 d window mean and all the slopes were 

statistically different. In the locomotor system issues analysis, the 5 d window mean and 

all the slopes excluding the one in 1 d window were statistically different. Lastly, in the 

gastroenteric diseases, a similar pattern as in the locomotor system issues were 

observed, i.e., all the slopes excluding the one in 1 d window were statistically different. 

Logistic models were also fitted to the data: the estimate of the β, the odds ratio for the 

disease presence, the AIC of the model, and its Pseudo-R2 are reported in 

Supplementary Materials, Table S3. In all of the five cases, the best model (i.e., lower 

AIC and higher Pseudo-R2) was always Model 3.d, which fitted all the three considered 

predictors. For the generic disease analysis, mean, SD, and slope models showed 

significant effects in models from 3.a to 3.c (with a maximum Pseudo-R2 of 2·99, 0·95, 

and 6·02 %, respectively), with the only exception of the 1 d window SD models, in which 

the effect is not significant. In Model 3. d, SD was never significant. Nevertheless, this 

model had the highest Pseudo-R2 and the lowest AIC for all the three windows’ sizes. 

The reproductive system diseases model analysis showed a similar situation of the 

general disease analysis, although with lower Pseudo-R2 values. Another important 

difference was the complete non-significance of all the models using SD as a predictor 

(Model 3.b). The mastitis model analysis had a similar pattern as the general disease 

one: the only non-significant window’s size in the single-predictor models (i.e., Model 

3.a to 3.c) was the Model 3.b, window’s size of 1 d (SD). The maximum Pseudo-R2 were 

1·50, 1·14, and 4·10 %, respectively. Regarding Model 3.d, with window’s size of one, SD 

was not significantly effective on RT. The locomotor system issues analysis showed a 

different pattern from the previous ones: the mean RT model (Model 3.a) had Pseudo-

R2 tenfold higher than generic disease, reproductive diseases and mastitis ones. Similarly 

to the reproductive diseases analysis, however, Model 3.b was never statistically 

significant. Lastly, the gastroenteric diseases model analysis had, on average, the highest 

Pseudo-R2 of all the analyses. The only non-significant window’s size was the 1 d slope 
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window. In the models with the three predictors (i.e., Model 3.d), both SD and slope 

were never statistically significant. Nevertheless, the Pseudo-R2 ranged from 43·89 to 

58·81 %. 

The best models for each case, selected using the AIC and the Pseudo-R2 as criteria, were 

always Model 3.d, but with a window’s size of 5 d for the generic disease (Pseudo-R2 = 

6·47 %), a window’s size of 3 d for reproductive diseases (Pseudo-R2 = 7·16 %), a 

window’s size of 1 d for mastitis (Pseudo-R2 = 5·61 %), a window’s size of 5 d for 

locomotor issues (Pseudo-R2 = 16·17 %), and a window’s size of 1 d for gastroenteric 

diseases (Pseudo-R2 = 58·81 %). 

Discussion 

Automated rumination and activity monitoring could be used to identify diseases earlier 

than through clinical diagnosis performed by trained personnel. This confirms the results 

obtained by Stangaferro et al. (2016a, b, c). All the comparisons between mean RT of 

diseased and non-diseased animals resulted statistically significant. Nonetheless, the 

differences were small and this type of comparison does not account for any interaction 

between variables and, therefore, it can identify large effects only. However, all of the 

different diseases’ effects were confirmed as statistically significant in the multiple 

variable approach too. The difference between the effects in the single and in the 

multiple variable comparison comes from the effect of the cow and the test-day, taken 

into account as random effects using the mixed model in the latter. These random 

effects should reduce the bias due to the correlation between the repeated measures. 

The variance explained by the animal effect was larger than the date effect variance in 

both cases (i.e., general and grouped disease), suggesting that the observed variability 

is mainly due to the animal effect rather than to the testday. This result is in accordance 

with the one from Byskov et al. (2015), where the authors observed that the 48 % of the 

total variation in RT was due to the animal effect, whereas feed intake accounted for 

the 32 %.  

Compared through ANOVA, the two models were statistically different. Specifically, the 

model including specific variables for each disease fits the data better. Using mixed 

models, the effect of diseases on RT was confirmed in this study, though the model could 

be improved by adding further predictors (e.g., feed intake and diet of the animals, 

which was not available for this experiment). Results obtained with mixed models are in 

accordance with, and further expand, the results by Stangaferro et al. (2016a, b, c). 

With the sliding windows approach, we wanted to test if different features of RT in the 

days before a disease diagnosis could be predictive of the disease itself. This 

predictability would be desirable, since the detection of a disease as early as possible 

allows for a more immediate sanitary intervention. The features selected were the 

mean, the SD, and the regression slope of RT on time to disease. A difference in the 
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slope before and after the diagnosis means that the rumination changes its trend 

(negative or positive). In the significant cases, the ‘after’ windows showed a positive (or 

less negative) trend, while the ‘before’ window had always a negative one: these results 

could suggest that these diseases affect rumination time, lowering it, and, since in our 

data the recorded event corresponds to the veterinary visit and the treatment 

beginning, we saw the improving of the rumination in the ‘after’ window due to medical 

treatment. From a descriptive point of view, SD of the RT was never statistically different 

before and after the disease event, while the mean showed a difference in the day 

before mastitis only. Of the selected feature, then, only the slope should be considered 

as a predictor, though the best model was always the one using all of the three features. 

The benefits from including mean and SD in the model are larger than the disadvantages, 

and this is probably due to a better representation of the phenomenon. 

Different diseases could be predicted using different window size. Specifically, mastitis 

and gastroenteric diseases are better described by the models using one single day 

before the clinical diagnosis, while reproductive diseases and locomotor issues by the 

ones using 3 and 5 d, respectively. The Pseudo-R2 of the reproductive diseases and 

mastitis predictive models was low. This could be due to the moderate ability to identify 

mild cases of metritis (Stangaferro et al. 2016c) and mastitis caused by pathogens other 

than Escherichia coli through rumination changes. As stated by Stangaferro et al. 

(2016b), intramammary infections caused by E. coli are more easily identified because 

they are characterized by a severe inflammatory response, including sudden shock, 

sepsis, and often death. On the other hand, even with a small number of animals with 

gastroenteric disease, models predictive for these diseases had the highest Pseudo-R2, 

in accordance with the high sensitivity detected by Stangaferro et al. (2016a). Locomotor 

issues, which were not analysed in the abovementioned studies, showed a Pseudo-R2 in 

between the other cases. 

The difference in the window size in each different disease could be due not only to the 

higher or lesser effect of each disease on RT, but also to the different reaction time of 

the farmer in response to the different symptoms detected on his animals. Different 

diseases are perceived differently by farmers (e.g., mastitis is, from a commercial point 

of view, a greater concern than other diseases) and, therefore, they could require 

veterinary intervention with different urgency. Moreover, in order to obtain accurate 

estimates at enough distance from the event it is necessary for the farmer to carefully 

consider the occurrence of the events. 
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Conclusion 

In this study we observed that common farm diseases (i.e., reproductive diseases, 

mastitis, locomotor system issues, and gastroenteric diseases) significantly affect the 2-

h interval RT, lowering it in comparison to the one of healthy animals. Further studies 

are needed to fully assess the suitability of RT for predicting the onset of these diseases 

in individual animals. The growing presence of automatic recording systems, even in 

medium-small farms, will allow researchers to have larger datasets for modelling 

studies. 

 

Supplementary material 

Supplementary material for this article can be found in Annex II. 
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Table 1. Recorded diseases and relative incidence in the data, in descending order. 

Disease Incidence 

Generic diseases 57.14 % 

Reproductive diseases 34.36 % 

Mastitis 32.43 % 

Locomotor issues 8.11 % 

Gastroenteric diseases 1.16 % 
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Table 2. Models 1 and 2, 2-h interval. Fixed effects estimates, standard error of the 

means and significance by p-value. The significance codes are: 0 < *** < 0.001 < ** < 

0.01 < * < 0.05 < . < 0.1 < ns. 

Fixed effects Estimate SEM p-value Significance 

Model 1     

Intercept 47.46 1.63 < 0.001 *** 

generic_disease -2.22 0.15 < 0.001 *** 

Model 2     

Intercept 47.41 0.26 < 0.001 *** 

reprod -1.73 0.17 < 0.001 *** 

mast -4.07 0.33 < 0.001 *** 

locom -1.76 0.65 0.007 ** 

gastroent -5.76 0.95 < 0.001 *** 
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Table 3. Models 1 and 2, 2-h interval. a) Statistical test for fixed effects. The significance 

codes are: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ns. b) Table of random effects, 

with their variances and standard deviations. 

a)       

Fixed effects Sum Sq Mean Sq df F-value p-value (> F) Significance 

Model 1       

generic_disease 23387 23387 1 223.22 < 0.001 *** 

Model 2       

reprod 11305.8 11305.8 1 107.969 < 0.001 *** 

mast 15909.8 15909.8 1 151.938 < 0.001 *** 

locom 761.5 761.5 1 7.273 0.007 ** 

gastroent 3862.2 3862.2 1 36.883 < 0.001 *** 

       

b)       

Random effects Variance Std. Dev.     

Model 1       

animali 15.065 3.881     

datej 2.392 1.547     

residual 104.772 10.236     

Model 2       

animali 14.983 3.871     

datej 2.396 1.584     

residual 104.713 10.233     
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Figure 1. LSM of Rumination Time (RT) by specific disease presence (i.e., “Diseased”) or 

absence (i.e., “Non-diseased”), calculated for each single couple of diseased/non-

diseased animals. The number of diseased animals for each disease is 126 (generic 

diseases), 66 (reproductive diseases), 68 (mastitis), 16 (locomotor issues), and 3 

(gastroenteric diseases). 
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SUMMARY 

So far, researchers and farmers used rumination only as a key monitor of dairy cow 

health at farm level. However, investigating its genetics parameters and its correlation 

with other important productive features may turn this management tool in a new 

informative selection criterion for the dairy cattle breeding strategies. Recently, 

rumination heritability was estimated in few papers, along with its genetic correlation 

with feed efficiency. However, no evaluation in scientific literature are available on its 

genetic correlation with milk production and composition parameters. Therefore, the 

objective of this study was to estimate the heritability of rumination and its genetic 

correlation with milk production, milk composition (i.e., protein yield, fat yield, and the 

fat/protein ratio), and the somatic cells count. The estimated rumination heritability was 

0.34. Regarding milk production and composition traits, the heritabilities were 0.35 (milk 

production), 0.53 (protein yield), 0.44 (fat yield), and 0.32 (fat/protein ratio). The 

somatic cells count heritability was 0.23. 
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1. INTRODUCTION 

Rumination is the process of regurgitation, remastication, salivation, and swallowing of 

ingesta (Erina et al., 2013). Rumination is a key physiological function that provides for 

effective mechanical breakdown of roughage, and thereby increases substrate surface 

area to fermentative microbes. The microbial community composed by bacteria, 

protozoa, and fungi break down cellulose and lignin, aiding their digestion and producing 

volatile fatty acids, essential amino acids, and proteins, which are then absorbed into 

the rumen. This production supplies about 60-80% of the cow’s energy. Rumination is 

nowadays often included in automatic recording systems that monitor the welfare 

status of the dairy cows, and these systems are commonly available in commercial farms 

(Borchers & Bewley, 2015). Since the abovementioned automatic recording systems 

record information on a high frequency (often recording every minute and then 

summarising data on an hourly basis), there is a large amount of data to be used as a 

new informative selection criterion in dairy cattle breeding strategies. 

Although rumination process has been studied thoroughly from both the physiological 

and the pathological point of view, its heritability is still almost completely 

uninvestigated. To be a valuable selection criterion, rumination should have a moderate-

to-high heritability and should be genetically correlated to other meaningful factors. 

Only recently, a first estimate of rumination heritability was calculated in Danish 

Holstein dairy cows and it was 0.32, a value usually considered as moderate heritability 

(Byskov, Fogh, & Løvendahl, 2017; average value between two heritabilities estimated 

in two different herds). In the abovementioned study, they calculated the genetic 

correlation between rumination and feed-related variables. It was showed that 

rumination is negatively correlated with dry matter intake and residual feed intake. 

However, the genetic correlation with other variables (namely energy-corrected milk) 

were not statistically significant. 

Other meaningful parameters in dairy cow’s selection system are the ones related to 

milk production and composition. Variables like milk yield (MY), protein (PY) and fat (FY) 

content, and somatic cells count (SCC) have been studied thoroughly, and their 

heritabilities were evaluated in various herds, breeds, and environments. As a few 

examples, MY heritability value was 0.30 in Japanese Holstein cows (Suzuki & van Vleck, 

1994), 0.39 in Holstein reared in the UK (Kadarmideen, Thompson, & Simm, 2000), and 

0.48 in a Holstein Fresian and Dutch Fresian crossbred population (Hoekstra, van der 

Lugt, van der Werf, & Ouweltjes, 1994). In the abovementioned works, PY heritability 

was 0.26 and 0.33 (Japanese and Dutch Holsteins, respectively), while FY heritability was 

0.30 and 0.36 (again, Japanese and Dutch Holsteins, respectively). SCC heritability values 

from scientific literature are lower than the values of milk production and composition 
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heritabilities. As examples, SCC heritability was 0.08 in Swedish Holstein and Canadian 

dairy cows (Emanuelson, Danell, & Philipsson, 1988, and Kennedy, Sethar, Moxley, & 

Downey, 1982, respectively) and 0.18 in Danish dairy cows (Lund, Miglior, Dekkers, & 

Burnside, 1994). 

As of today, the genetic correlation between these milk production parameters and 

rumination has not been evaluated yet. Thus, the aim of the study was to investigate 

the genetic variation and to estimate the heritability of rumination time and its genetic 

correlation with MY, PY, FY, and SCC. 

2. MATERIALS AND METHODS 

2.1 Data 

The Heatime HR system (SCR Engineers Ltd., Netanya, Israel) automatic recording 

system was used in this study. This system is composed by a neck collar with a tag 

(placed on the left side of the neck) containing a microphone to monitor rumination and 

a 3-axis accelerometer to quantify neck activity. Third-party validation on this 

technology was performed Schirmann et al. (2009), which confirmed the monitoring 

accuracy of the recorded variables. Other information regarding the animal (e.g., ID 

number, age, parity) were collected from the annexed herd management software. 

Records for 710 Holstein dairy cows were available in the dataset, coming from four 

different farms, all located in Po Valley, Northern Italy. For each record, sire, dam, parity 

and age at last calving were gathered from the herd management software, while 

rumination time, MY, and days in milk (DIM) were gathered from the automatic 

recording system. PY, FY, and Log SCC data were gathered from the functional controls 

performed by the Italian Breeder’s Association. Contemporary groups were defined by 

merging herd, year, and month of the test-day, and groups containing less than five 

animals were not studied further. 

Records were split in three subsets, according to the lactation phase in which the test-

day was. The three lactation phases were defined as early phase (0-60 days from 

calving), mid phase (61-150 days from calving), and late phase (151-300 days from 

calving). Data editing and descriptive statistics were performed using R (version 3.2.5; R 

Foundation for Statistical Computing, Vienna, Austria). 

2.2 Statistical models 

The (co)variance and breeding values were estimated by bi- and tri-characteristic 

Bayesian models using the Gibbs sampler of the GIBBS3F90 software (Misztal, 2012). 

The model used in this study included random direct genetic effects, the random animal 
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effect, the age at last calving and DIM (as covariate variables), the parity and the effect 

of contemporary groups (as factor variables). Rumination, MY, PY, FY, FY/PY, and LogSCC 

were the traits to be evaluated. The matrix model used for rumination was: 

y = Xβ + Zɑ + e 

where y = vector of observations of the dependent variable (rumination); β = vector of 

contemporary group, associated with y through the incidence matrix of X; a = vector of 

random effects of additive genetic value of the animal associating a with y through the 

incidence matrix Z; and e = vector of residual effects. 

For the Bayesian analysis, the effects included in the model were considered to be 

random variables. For the value of b, an informative a priori distribution based on 

bibliographic reference values for the breed in the study was assumed. 

Initially, for all traits, a single chain of 400,000 iterations was used, with a period of 

disposal (i.e., "burn-in") of 40,000 iterations, and a sampling interval (i.e., "thinning") of 

10. However, these values in some cases have been altered according to the need to 

adjust for convergence (Raftery & Lewis, 1992). The convergence of the Gibbs chain was 

therefore tested by the criterion of Geweke. The convergence of the algorithm was 

verified with a significance level of 0.05 for the test, under the null hypothesis. In this 

case, the test considers the null hypothesis to be the convergence of the chain; therefore 

the larger the p-value (˃ 0.05) the greater is the convergence of the chain (Geweke, 

1992). The Bayesian Output Analysis (BOA version 1.1.5) package (Smith, 2005) was used 

to calculate the mean and the SD for all parameters from the individual marginal 

posteriors. 

The coefficient of direct heritability for all variables was estimated by:  

h2 = σ2a / σ2p 

3. RESULTS 

Descriptive statistics of the variables and analysed traits are presented in Table 1. 

ANOVA confirmed that rumination is statistically different (P < 0.05) between the 3 

lactation phases. Specifically, rumination is higher during an early lactation phase, and 

drops shifting to the late phase. Regarding the analysed traits, MY is different between 

lactation phases (P < 0.05) and is higher during the mid phase. PY is statistically different 

as well (P < 0.05), increasing through the phases. FY in early and late phases is not 

statistically different (P = 0.1). However, it is statistically lower (P < 0.05) during the mid 

phase. The FY/PY ratio statistically decreases through the lactation phases (P < 0.05). 



88 
 

Lastly, the LogSCC is statistically different (P < 0.05) through all the phases, with the 

highest value during the late phase. 

The heritability of rumination was evaluated using both REML and Bayesian approaches. 

The two approaches gave similar results, thus only the GIBBS sampling method results 

(Bayesian approach) are reported here (Table 2). The mean heritability of rumination 

trait, on average, was 0.34. Specifically, it was 0.32 in early lactation phase, 0.34 in mid 

lactation phase, and 0.35 in late lactation phase. This results confirms what obtained by 

Byskov et al. (2017).  

The genetic correlation between rumination and milk production parameters were 

generally moderate-to-low, and ranged from -0.40 (rumination vs FY/PY ratio, early 

lactation phase) to 0.13 (rumination vs MY, mid lactation phase). Specifically, the genetic 

correlation between rumination and MY during the early phase was slightly negative (-

0.04), while it was positive in both the mid and late phases (0.13 and 0.12, respectively). 

The genetic correlation with PY and FY was negative for all the lactation phases (0.00, -

0.05, and -0.17 in PY, and -0.39, -0.22, and -0.33 in FY for early, mid, and late phases 

respectively), and, straightforwardly, the genetic correlation between rumination and 

FY/PY ratio was similarly negative (-0.40, -0.23, and -0.32 for early, mid, and late phases 

respectively). The genetic correlation with LogSCC ranged from -0.10 (late lactation 

phase) to 0.30 (early lactation phase), with a value of -0.05 for the mid phase.  

The heritabilities of milk production parameters had much more variability through the 

lactation phases than the rumination one. MY heritability, on average, was 0.35, but 

increased through the phases (0.14, 0.39, and 0.53 for early, mid, and late lactation, 

respectively). The same increasing trend was shown by PY (mean value of 0.53, with 

0.25, 0.50, and 0.83 for early, mid, and late lactation, respectively), FY (mean value of 

0.44, with 0.18, 0.46, and 0.68 for early, mid, and late lactation, respectively), and FY/PY 

ratio (mean value of 0.32, with 0.14, 0.33, and 0.50 for early, mid, and late lactation, 

respectively). Lastly, LogSCC heritability, on average, was 0.23, with a similar heritability 

in early and late phases (0.25 and 0.26, respectively) and a lower one (0.19) in mid phase. 

4. DISCUSSION 

The descriptive statistics did not show any abnormal behaviour regarding variables and 

traits. The higher value of rumination in the early phase compared to the other two 

phases’ ones is easily explained by the fact that cows need a high amount of energy 

during this phase. Thus, they will eat more and, subsequently, ruminate more. MY 

reached its highest value during the mid lactation phase, which covered the productivity 

peak of the lactation. Furthermore, PY and FY were lower in the phases with a higher 

MY, which is a known phenomenon. Laevens et al. (1997), showed that in 
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bacteriologically negative cows the SCC is not affected by the lactation stage. However, 

they found a significant effect of lactation phase when bacteriologically positive cows 

were involved. This second result, which was obtained in similar conditions, is in 

agreement with our results. 

The heritability estimated in the analysed population was similar to the only other 

heritability value that was present in scientific literature, which was estimated by 

Byskov, Fogh, & Løvendahl (2017) in a population of Danish Holstein cows. The average 

value found in this study (0.34), is considered a moderate value for heritability, meaning 

that it could be possible to use this trait in animal selection. Furthermore, we showed 

that the heritability of rumination trait is nearly constant during the whole lactation, 

with a difference of 0.03 points between the early and late phases of lactation. This 

result further confirm the possibility to use this trait in a selection strategy. 

The average genetic correlation between rumination and MY during the entire lactation 

was close to zero (0.07), meaning that the two traits have an almost null genetic 

association. Therefore, rumination could not be a proxy for MY selection. The MY 

heritability value estimated in this study changed heavily during the lactation phases, 

with the highest value during the late phase. This means that persistency of milk 

production is a highly heritable trait. The average value through the lactation was 0.35, 

similar to the values obtained in other Holstein herds in Europe. 

The average genetic correlation between rumination and PY was -0.11, indicating a weak 

negative genetic association. PY heritability in our population was 0.53, much higher 

than what is reported in literature (0.26 and 0.33, Japanese and Dutch Holsteins, 

respectively). FY genetic correlation with rumination was negative as well, but it was 

higher in absolute value (-0.31). This correlation is unfavourable, since an increase in 

daily rumination time would lead to a decrease in FY in milk. FY heritability was 0.44, 

higher than what reported for other Holstein populations (e.g., 0.30 and 0.36, Japanese 

and Dutch Holsteins, respectively). Regarding the FY/PY ratio, which is used as indicator 

for subclinical ketosis diagnosis (Jenkins et al., 2015), its correlation with rumination was 

-0.32, and its heritability was 0.32. Given this negative association, selection for higher 

daily rumination time would have negative effects on this ratio. 

Lastly, the heritability of LogSCC was 0.23, similar to what reported in Danish Holstein. 

LogSCC average genetic correlation with rumination was weak (0.05), although it was 

higher during the early phase of lactation (0.30). 
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5. CONCLUSIONS 

In conclusion, rumination was found to have a moderate heritability in Holstein dairy 

cows reared in Northern Italy. However, its negative (although weak) genetic 

correlations with milk production traits, along with the positive association with somatic 

cells count, showed that daily rumination time is not a suitable proxy for production 

performances selection. 
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Table 1. Descriptive statistics (mean ± SD) of the variable available in the datasets, 

divided in early (0-60 days), mid (61-150 days), and late (151-300 days) lactation 

phases. 

Phase Parity 

Age at 

calving 

(m) DIM 

Rum 

(min/ d) MY PY FY FY/PY LogSCC 

Early 2.1 ± 

1.2 

40.2 ± 

17.5 

32.7 

± 9.9 

512.9 ± 

109.5 

37.4 ± 

10.2 

3.1 ± 

0.3 

4.0 

± 

1.0 

1.3 ± 

0.3 

237.9 ± 

647.1 

Mid 2.0 ± 

1.2 

44.4 ± 

21.5 

103.9 

± 

13.5 

508.9 ± 

101.4 

38.5 ± 

8.4 

3.2 ± 

0.3 

3.8 

± 

0.6 

1.2 ± 

0.2 

226.0 ± 

465.1 

Late 1.9 ± 

1.1 

48.5 ± 

24.2 

250.4 

± 

59.7 

487.3 ± 

108.9 

30.8 ± 

6.9 

3.5 ± 

0.3 

4.0 

± 

0.6 

1.1 ± 

0.1 

268.6 ± 

458.9 

Abbreviations: DIM, days in milk; Rum, rumination time; MY, milk yield; PY, protein 

yield; FY, fat yield; FY/PY, fat and protein yields ratio; LogSCC, somatic cell count on a 

logarithmic base. 
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Table 2. Heritability (h2, mean ± SD) and correlation (r) for rumination (Rumin) versus 

milk yield (MY), protein yield (PY), fat yield (FY), fat/protein (FY/PY) ratio, and Log 

somatic cell count (LogSCC) in the three lactation phases (namely, early: 0-60 days; 

mid: 61-150 days; and late: 151-300 days). For each couple of traits, additive (σa
2) and 

residual (σe
2) variances are reported. 

Parameter Phase 

Rumination  Second trait   

σ2
a σ2

e h2  σ2
a σ2

e h2  r 

Rumin vs 

MY 

Early 2399.4 

± 

425.9 

5164.8 

± 

358.3 

0.32 ± 

0.05 

 8.35 ± 

2.79 

51.57 

± 3.20 

0.14 ± 

0.04 

 -0.04 

Mid 2543.9 

± 

414.2 

4967.6 

± 

330.8 

0.34 ± 

0.05 

 15.70 

± 2.39 

24.84 

± 1.73 

0.39 ± 

0.05 

 0.13 

Late 2830.7 

± 

487.7 

5442.0 

± 

386.7 

0.34 ± 

0.05 

 14.91 

± 1.70 

13.52 

± 0.99 

0.53 ± 

0.04 

 0.12 

Rumin vs 

PY 

Early 2437.4 

± 

412.9 

5154.7 

± 

352.1 

0.32 ± 

0.05 

 0.02 ± 

0.00 

0.06 ± 

0.00 

0.25 ± 

0.04 

 0.00 

Mid 2504.6 

± 

419.6 

4998.9 

± 

338.9 

0.33 ± 

0.05 

 0.02 ± 

0.00 

0.02 ± 

0.00 

0.50 ± 

0.04 

 -0.05 

Late 2961.8 

± 

493.4  

5379.9 

± 

377.4 

0.36 ± 

0.05 

 0.05 ± 

0.00 

0.01 ± 

0.00 

0.83 ± 

0.02 

 -0.17 

Rumin vs 

FY 

Early 2437.4 

± 

412.9 

5154.7 

± 

352.1 

0.32 ± 

0.05 

 0.10 ± 

0.03 

0.46 ± 

0.03 

0.18 ± 

0.04 

 -0.39 

Mid 2504.6 

± 

419.6 

4998.9 

± 

338.9 

0.33 ± 

0.05 

 0.16 ± 

0.02 

0.19 ± 

0.01 

0.46 ± 

0.04 

 -0.22 

Late 2961.8 

± 

493.4  

5379.9 

± 

377.4 

0.36 ± 

0.05 

 0.21 ± 

0.02 

0.10 ± 

0.01 

0.68 ± 

0.03 

 -0.33 
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Table 2 (continued). Heritability (h2, mean ± SD) and correlation (r) for rumination 

(Rumin) versus milk yield (MY), protein yield (PY), fat yield (FY), fat/protein (FY/PY) 

ratio, and Log somatic cell count (LogSCC) in the three lactation phases (namely, early: 

0-60 days; mid: 61-150 days; and late: 151-300 days). For each couple of traits, 

additive (σa
2) and residual (σe

2) variances are reported. 

Parameter Phase 

Rumination  Second trait   

σ2
a σ2

e h2  σ2
a σ2

e h2  r 

Rumin vs 

FY/PY 

ratio 

Early 2465.1 

± 

420.5 

5127.9 

± 

350.4 

0.33 ± 

0.04 

 0.01 ± 

0.00 

0.06 ± 

0.00 

0.14 ± 

0.04 

 -0.40 

Mid 2556.4 

± 

417.0 

4958.9 

± 

329.4 

0.34 ± 

0.05 

 0.01 ± 

0.00 

0.02 ± 

0.00 

0.33 ± 

0.04 

 -0.23 

Late 2949.4 

± 

509.0 

5378.8 

± 

385.9 

0.35 ± 

0.0 

 0.01 ± 

0.00 

0.01 ± 

0.00 

0.50 ± 

0.04 

 -0.32 

Rumin vs 

LogSCC 

Early 2372.6 

± 

425.9 

5183.7 

± 

358.5 

0.31 ± 

0.05 

 0.85 ± 

0.18 

2.62 ± 

0.17 

0.25 ± 

0.05 

 0.30 

Mid 2525.9 

± 

417.8 

4973.4 

± 

336.4 

0.34 ± 

0.05 

 0.58 ± 

0.14 

2.51 ± 

0.15 

0.19 ± 

0.05 

 -0.05 

Late 2863.3 

± 

486.0 

5423.2 

± 

379.7 

0.35 ± 

0.05 

 0.58 ± 

0.11 

1.67 ± 

0.11 

0.26 ± 

0.04 

 -0.10 
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ABSTRACT 

The aim of this study was to determine prediction efficacy of 3 common dairy cows’ 

diseases (i.e., mastitis, lameness, and dysentery) using different machine-learning-based 

techniques (namely Random Forest, Neural Networks, and Linear Discriminant Analysis). 

Data recorded from automatic systems available for farmers and data from herd 

management software (e.g., age, parity, and DIM) were used as predictors. The best 

predictive results were obtained for dysentery, while mastitis prediction showed lower 

performances. We showed in this work that, even with sanitary information recorded 

by farmers, it is possible to have a first attempt of disease prediction. Using experimental 

data in future studies may improve results, towards the realization of a prediction tool 

that would be valuable to farmers, giving them the possibility to start with the 

treatments on an early stage of the disease. 

INTRODUCTION 

Animal health is one of the key factors affecting the efficiency of farms (Heikkilä et al., 

2012). Mastitis, lameness, and dysentery are three common diseases that afflict dairy 

farms worldwide. Mastitis is considered the most costly disease in dairy farming 

(Seegers et al., 2003), but the economic impact of the other two diseases is not ignorable 

(Bennett et al., 1999). Although disease prevention is a fundamental element in livestock 

production system (Schwabenbauer, 2012), it is a goal often difficult to pursue. The early 

detection of the abovementioned diseases is, therefore, important (de Mol et al., 1999; 

de Mol et al., 2013), and finding some indicators able to predict their onset before the 

clinical symptoms appear would be greatly beneficial for the farm management.  

Precision dairy monitoring technologies are a valuable tool to gather a large amount of 

data regarding a variety of variables, and are a valid alternative to the time-consuming 

subjective observation. Many of these technologies, developed in early 2000s, are 

nowadays commonly used on dairy farm (Borchers and Bewley, 2015). Recent studies 

have shown that variability in traits recorded with these systems (e.g., rumination time) 

is related to pathological statuses. For example, Van Hertem et al. (2013) associated 

changes in rumination, milk yield, and neck activity to lameness and validated a logistic 

regression model to detect clinical symptoms. Through machine-learning approaches, 

data coming from those automatic monitoring systems have been already used for the 

detection of mastitis (Cavero et al., 2008), oestrus (Firk et al., 2003) and calving 

(Borchers et al., 2017). However, to our knowledge, there are few or even no studies in 

scientific literature regarding the use of these techniques to predict diseases instead of 

detecting them.  
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Aim of this study was to determine the efficacy of different machine-learning-based 

techniques in predicting mastitis, lameness, and dysentery using data coming from 

automatic recording systems and other herd management software. 

MATERIALS AND METHODS 

Data Collection and Editing 

The automatic recording system used in this study was the Heatime HR system (SCR 

Engineers Ltd., Netanya, Israel). This system is composed by a neck collar with a tag 

(placed on the left side of the neck) containing a microphone to monitor rumination and 

a 3-axis accelerometer to quantify neck activity. Schirmann et al. (2009) performed a 

third-party validation on this technology and confirmed the monitoring accuracy of the 

recorded variables. The herd management software DataFlow II (SCR Engineers Ltd.) 

then processes the raw data, considering all the information regarding each single 

animal (e.g., ID number, age, parity). Data from the automatic recording system were 

collected for 950 consecutive days, from the 24th of September 2014 to the 30th of April 

2017. The herd consisted of 454 Italian Holstein cows reared in a commercial farm, 

located in the Po Valley, Northern Italy. All the animals were fed total mixed ration 

(TMR), milked twice a day and grouped in pens (lactating, pre-calving, and infirmary). 

The system was already in use in the selected farm when we started collecting data, 

therefore no habituation period was needed. 

Ambient temperature and relative humidity were recorded throughout the whole 

period using a weather station installed inside the barn. The weather station was 

equipped with a 12-bit temperature/RH sensor cable. Temperature–Humidity Index 

(THI), which combines ambient temperature and relative humidity into a single value, is 

a commonly used index (Hahn et al., 2003) to assess the effects of environmental 

temperature on dairy cows. THI was calculated according to the equation from Vitali et 

al. (2009): 

THI = (1.8 x T + 32) – (0.55 – 0.55 x RH) x [(1.8 x T + 32) – 58] 

where the ambient temperature (T) is expressed in degrees Celsius and the relative 

humidity (RH) as a fraction of the unit. The (1.8 × T + 32) term is used for the conversion 

from degree Celsius to Fahrenheit. 

The final variables considered in this study were age (months) and parity of the animal, 

DIM, Rumination Time (RT, min/day), Activity Time (AT, units/day), daily milk production 

(kg/day), and the THI. Sanitary records were obtained from the farm management 

software, where they were recorded soon after the diagnosis of the veterinary, both 
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during routine or requested visits to the farm. Other than the disease presence or 

absence (binary variable 1/0), no additional information was available (e.g., no specific 

details on which type of mastitis or how severe the lameness was). Among the available 

diseases, mastitis, lameness and dysentery were selected. These 3 diseases are widely 

common in dairy farms. Furthermore, they were selected to have diseases with a 

different number of cases in our dataset (namely, high number of cases for mastitis, 

medium number of cases for lameness, and low numerosity for dysentery). The 

complete dataset was divided in 2 subsets, grouping primiparous animals and 

pluriparous ones, respectively. The total number of the animals is not equal to the sum 

of primiparous and pluriparous animals since some animals calved during the 

monitoring period and thus shifted between parity classes. Since in our datasets the 

numerosity of disease and non-disease records was highly unbalanced, we decided to 

remove records regarding days when all the cows were non-diseased, thus keeping only 

days with at least one disease record. We are aware that reducing the number of 

observations could lead to a less precision of the predictive modelling results. However, 

the models could not manage the original high-unbalanced data. Furthermore, in order 

to create a case-control dataset, for each disease, only the cows that manifested it at 

least once were kept in the dataset, hence removing all the animals that did not 

experience any disease during the study. Finally, 3 different datasets were selected after 

data pruning, in which RT, AT, milk and THI were summarized as means of the day before 

(1-day window), from 3 to 1 days before (3-days window), and from 5 to 1 days before 

(5-days window) each recording day. 

For each of the 3 diseases, we calculated the number of recorded cases. Regarding 

mastitis, we recorded 146 cases in 84 primiparous animals (of which 50 animals with 

single cases and 34 animals with, on average, 2.8 cases each), and 249 cases in 115 

pluriparous ones (of which 51 animals with single cases and 64 animals with, on average, 

3.1 cases each). Regarding lameness, we recorded 27 cases in 26 primiparous animals 

(of which 25 animals with single cases and 1 animal with 2 cases), and 48 cases in 35 

pluriparous ones (of which 26 animals with single cases and 9 animals with, on average, 

2.4 cases each). At last, regarding dysentery, we recorded 7 cases in 7 primiparous 

animals, and 10 cases in 9 pluriparous ones (of which 8 animals with single cases and 1 

animal with 2 cases). 

Statistical Analysis and Prediction Model 

Statistical analyses were performed using R (version 3.2.5; R Foundation for Statistical 

Computing, Vienna, Austria). A relative importance analysis was performed on our 

predictors using the Partial Least Squares (PLS) method in the pls package (Mevik and 
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Wehrens, 2007). PLS is a dimension reduction technique that maps the predictor 

variables to a smaller set, which maximally explain the outcome variable.  

Then, machine-learning techniques were applied to the datasets to predict mastitis, 

lameness, and dysentery. All machine-learning techniques were implemented using the 

caret package (Kuhn, 2016). Specifically, Random Forest (RF), Neural Network (NN), and 

Linear Discriminant Analysis (LDA) techniques were selected. The RF method is based on 

decision-tree classification and develops a group of tree-structured classification 

models. Each tree contributes an opinion of how the data should be classified (Breiman, 

2001). NN technique was developed in artificial intelligence field, with the aim to imitate 

the structure and function of the human brain, simulating human intelligence, learning 

independently and quickly, adapting continuously, and applying inductive reasoning to 

process knowledge (Zahedi, 1991). LDA is a technique that works similarly to an ANOVA 

and a regression method, but uses categorical dependent variables instead of 

continuous ones (McLachlan, 2004). For all the techniques, the original dataset was 

splitted in a training and a validation datasets, consisting of the 80% and the 20% of 

observation, respectively. A 3 times repeated 10-folds cross-validation method was 

performed for the training phase of the models. Trained models were used to predict 

presence/absence of the disease in the validation phase. For each model, the sensitivity, 

specificity, positive predictive value, and negative predictive value were calculated to 

evaluate the performance of the techniques. 

RESULTS AND DISCUSSION 

Data descriptive analysis 

For each disease, only the animals that experienced it at least once were kept in the 

dataset, in order to obtain a case/control scenario. We decided to keep rows with 

missing data to minimize the loss of records in the first part of the analysis (i.e., 

descriptive and PLS). We calculated summary statistics of the predictors for primiparous 

and pluriparous animals (Table 1). Month of recording was initially used as predictor, 

but its effect introduced confounding into the model. This is due to the correspondence, 

at least in the Italian scenario, between high THI and summer months (namely, June, 

July, and August). Month of recording was therefore removed from the predictors used. 

We tested the correlation between predictors. Age and parity, as expected, showed a 

strong correlation (Mastitis dataset: 87.7%, P < 0.001. Lameness dataset: 89.7%, P < 

0.001. Dysentery dataset: 92.9%, P < 0.001). However, they both were kept in the 

analysis, because in the predictive modeling part of this study we observed that models 

missing one of these two predictors showed lesser accuracy in comparison with models 

including both. 
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To assess which predictor was the most important relatively to each dataset, we 

performed a relative importance analysis using the PLS method (Supplemental Figures 

S1, S2, and S3). Regarding mastitis prediction, the most important predictor in the 1 and 

3-days windows (for both primiparous and pluriparous cows) and in 5-days window 

(pluriparous only) was the THI. It was a positive predictor (risk factor), meaning that high 

levels of THI (i.e., heat stress) increased the probability for a cow to develop mastitis. In 

the same windows, for both primiparous and pluriparous cows, milk production and DIM 

were important negative predictors (protective factors). Daily milk was lower in mastitic 

animals (t-test, P < 0.001), and this result is quite straightforward. Animals that had a 

high milk production and an advanced phase of lactation in the days before the sanitary 

event have a lower probability to have mastitis. Differently, in the 5-days window of the 

primiparous animals, the most important predictor was milk production (negative 

predictor; protective factor). THI was the second most important variable and was a 

positive predictor (risk factor). This confirms the results reported in the review by Pragna 

et al. (2017): heat stress can cause immunosuppression in dairy cattle, and the higher 

udder temperature can lead to mastitis. 

Regarding lameness prediction, the scenario was more various than in mastitis 

prediction. In pluriparous animals the most important positive predictor (risk factor) was 

always parity, probably due to the older age of those animals compared to the 

primiparous ones. THI as well was an important positive predictor (risk factor). From this 

analysis, age resulted being a negative predictor (protective factor). This result is 

counterintuitive, and could be due to the correlation between age and parity, where the 

latter absorbed the majority of the importance. In the primiparous cows, the most 

important predictor was different in each of the 3 windows datasets. In 1-day window, 

the most important was DIM (negative predictor; protective factor). During an early 

phase of lactation, primiparous animals are physiologically more stressed than 

pluriparous, and this could cause the higher number of lameness cases in association 

with low DIM. In both 3 and 5-days windows, the main predictors were THI (positive 

predictor; risk factor), milk production (positive predictor; risk factor), and DIM 

(negative predictor; protective factor), but their relative importance was different 

among the 2 datasets. THI was the most important predictor in the 3-days window, while 

milk production was the most important one in the 5-days window. 

Lastly, regarding dysentery prediction, the most important predictors were age and 

parity (primiparous and pluriparous animals, respectively), and they both were negative 

predictors (protective factors). This result is straightforward, being dysentery mainly a 

juvenile disorder (except for viral forms, e.g., Winter Disentery caused by bovine 

coronavirus - Toftaker et al., 2017). THI was an important positive predictor (risk factor) 
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in primiparous cows only. In our interpretation, heat stress, especially regarding 

gastroenteric issues, affects primiparous animals more strongly than pluriparous ones. 

Predictive modelling 

We then used RF, NN, and LDA machine-learning techniques on the 3 datasets (1, 3, and 

5-days windows) in both primiparous and pluriparous per each disease. Even after the 

pruning described in the Materials and Methods paragraph, the mastitis data was 

unbalanced, with a number of non-diseased records 100-fold higher than the diseased 

ones. Therefore, we decided to reduce the number of non-diseased records by keeping 

only the 10-days range of non-diseased around diseased records. In the reduced dataset, 

non-diseased records were 6-fold more numerous than diseased ones. In Tables 2 and 

3 (primiparous and pluriparous, respectively), we summarized the models’ performance 

indicators, namely sensitivity (calculated as True Positives / (True Positives + False 

Negatives)), specificity (True Negatives / (True Negatives + False Positives)), positive 

predictive value (True Positives / (True Positives + False Positives)), and negative 

predictive value (True Negatives / (True Negatives + False Negatives)).  

In primiparous animals, the machine-learning techniques we used performed poorly for 

mastitis prediction, with RF applied to the 5-days window as the best model (although 

with a sensitivity of 9.1%). While the model almost always correctly assigned non-

diseased cases, this technique could not assign the diseased to their true class. NN and 

LDA could not identify any of the diseased cases, and therefore scored a sensitivity of 

0% for all the datasets. This negative result could be due to different reasons: for 

example, the dataset, even if previously reduced and pruned of the excessive number 

of non-diseased cases, was still unbalanced. Furthermore, it is possible that the selected 

predictors were not enough or could not fully describe the mastitis event. Regarding 

lameness, NN and LDA had the same negative results as in the previous disease. All of 

the records in validation sets were assigned to the non-diseased class, even if they were 

diseased. RF, on the other hand, performed better than the same technique applied to 

mastitis. For all the 3 window datasets, the sensibility of the models was 12.5%. The 

Positive predicted value (i.e., the number of true positives divided by the number of 

positive calls) was 100%, meaning that all of the records assigned as diseased were truly 

diseased. The prediction efficiency of dysentery was positive. All the techniques 

correctly assigned each new diseased record in the validation set to the diseased class, 

while misassigning only a few non-diseased records. RF scored a 100% precision for both 

sensitivity and specificity, and was, therefore, the best technique to predict dysentery. 

This high precision in primiparous cows could be because dysentery is typically a juvenile 

disease, and therefore the predictors were enough to describe it in these datasets. We 

must say that it could be also possible that the better results in dysentery compared to 
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mastitis and lameness could be due to overfitting, even though this possibility should be 

low because of the repeated cross-validation used on training datasets and the 

subsequent use of an external validation dataset. 

In the pluriparous dataset, none of the techniques could predict mastitis correctly. The 

only dataset with a sensitivity different from 0 was the 5-days window in RF (sensitivity 

2.4%). Surely, since we collected sanitary data recorded by the farmer, we were aware 

of their possible low accuracy. For example, the etiology of mastitis affects its harshness, 

and mastitis caused by E. coli, characterized by severe inflammatory responses, are 

more easily identified through changes in physiological activities, like RT (Stangaferro et 

al., 2016). Regarding lameness, similarly to primiparous cows, only the RF technique 

could predict the disease. However, in this second case, the RF models performed 

better, with a maximum sensibility of 72.9% in the 5-days window. This better result in 

older cows compared to the primiparous datasets could be because lameness is more 

common in old animals, and therefore more easily detected and predicted by the model. 

Dysentery prediction performed similarly to the primiparous scenario regarding RF, 

while NN and LDA had lower sensibility. We could apply the same reasoning used 

previously with the primiparous animals: being dysentery a typically juvenile disease, 

prediction performed better in young animals (i.e., primiparous) than in old ones (i.e., 

pluriparous). 

CONCLUSIONS 

In this work, we showed that it is possible to predict diseases using data automatically 

gathered by recording systems already largely available on dairy farms. The critical point 

of this study was the usage of non-experimental sanitary information, recorded by the 

farmer, which were not always accurate. Using machine-learning techniques, disease 

prediction is a possible goal to achieve, although this is not an easy task. Future works, 

in which experimental data regarding sanitary information (e.g., the etiology and the 

severity of diseases) will be used, would further improve the results obtained here. 

ACKNOWLEDGMENTS 

The authors thank SCR Engineers Ltd. (Hadarim, Netanya, Israel) for supplying the 

technologies used in this study, Milkline Srl (Gariga di Podenzano, Piacenza, Italy) for the 

technical support and “Bulgarelli Giacomo e Astore” dairy farm for the herd rumination 

raw data and health status recordings. 

 

 



105 
 

REFERENCES 

Bennett, R.M., K. Christiansen, and R.S. Clifton-Hadley. 1999. Estimating the costs 

associated with endemic diseases of dairy cattle. J. Dairy Res. 66:455–459. 

Borchers, M.R., and J.M. Bewley. 2015. An assessment of producer precision dairy 

farming technology use, prepurchase considerations, and usefulness. J. Dairy 

Sci. 98:4198–4205. doi:10.3168/jds.2014-8963. 

Borchers, M.R., Y.M. Chang, K.L. Proudfoot, B.A. Wadsworth, A.E. Stone, and J.M. 

Bewley. 2017. Machine-learning-based calving prediction from activity, lying, 

and ruminating behaviors in dairy cattle. J. Dairy Sci. 100:5664–5674. 

doi:10.3168/jds.2016-11526. 

Breiman, L. 2001. Random Forests. Mach. Learn. 45:5–32. 

Cavero, D., K.-H. Tölle, C. Henze, C. Buxadé, and J. Krieter. 2008. Mastitis detection in 

dairy cows by application of neural networks. Livest. Sci. 114:280–286. 

doi:10.1016/j.livsci.2007.05.012. 

Firk, R., E. Stamer, W. Junge, and J. Krieter. 2003. Improving oestrus detection by 

combination of activity measurements with information about previous oestrus 

cases. Livest. Prod. Sci. 82:97–103. doi:10.1016/S0301-6226(02)00306-8. 

Hahn, G.L., T.L. Mader, and R.A. Eigenberg. 2003. Perspective on development of 

thermal indices for animal studies and management. EAAP Tech. Series. No. 7. 

Wageningen Academic Publishers, The Netherlands. 

Heikkilä, A.-M., J.I. Nousiainen, and S. Pyörälä. 2012. Costs of clinical mastitis with special 

reference to premature culling. J. Dairy Sci. 95:139–150. doi:10.3168/jds.2011-

4321. 

Kuhn, M. 2016. caret: Classification and Regression Training. 

McLachlan, G.J. 2004. Discriminant Analysis and Statistical Pattern Recognition. Wiley 

series in probability and statistics. Hoboken, N.J. 

Mevik, B.-H., and R. Wehrens. 2007. The pls Package: Principal Component and Partial 

Least Squares Regression in R. J. Stat. Softw. 18. doi:10.18637/jss.v018.i02. 

de Mol, R.M., G. André, E.J.B. Bleumer, J.T.N. van der Werf, Y. de Haas, and C.G. van 

Reenen. 2013. Applicability of day-to-day variation in behavior for the 



106 
 

automated detection of lameness in dairy cows. J. Dairy Sci. 96:3703–3712. 

doi:10.3168/jds.2012-6305. 

de Mol, R.M., A. Keen, G.H. Kroeze, and J.M.F.H. Achten. 1999. Description of a detection 

model for oestrus and diseases in dairy cattle based on time series analysis 

combined with a Kalman filter. Comput. Electron. Agric. 22:171–185. 

doi:10.1016/S0168-1699(99)00016-2. 

Pragna, P., P.R. Archana, J. Aleena, V. Sejian, G. Krishnan, M. Bagath, A. Manimaran, V. 

Beena, E.K. Kurien, G. Varma, and R. Bhatta. 2017. Heat Stress and Dairy Cow: 

Impact on Both Milk Yield and Composition. Int. J. Dairy Sci. 12:1–11. 

doi:10.3923/ijds.2017.1.11. 

Schirmann, K., M.A.G. von Keyserlingk, D.M. Weary, D.M. Veira, and W. Heuwieser. 

2009. Technical note: Validation of a system for monitoring rumination in dairy 

cows. J. Dairy Sci. 92:6052–6055. doi:10.3168/jds.2009-2361. 

Schwabenbauer, K. 2012. The role of economics for animal health policymakers. 

EuroChoices 11:18–22. doi:10.1111/j.1746-692X.2012.00229.x. 

Seegers, H., C. Fourichon, and F. Beaudeau. 2003. Production effects related to mastitis 

and mastitis economics in dairy cattle herds. Vet. Res. 34:475–491. 

doi:10.1051/vetres:2003027. 

Stangaferro, M.L., R. Wijma, L.S. Caixeta, M.A. Al-Abri, and J.O. Giordano. 2016. Use of 

rumination and activity monitoring for the identification of dairy cows with 

health disorders: Part II. Mastitis. J. Dairy Sci. 99:7411–7421. 

doi:10.3168/jds.2016-10908. 

Van Hertem, T., E. Maltz, A. Antler, C.E.B. Romanini, S. Viazzi, C. Bahr, A. Schlageter-

Tello, C. Lokhorst, D. Berckmans, and I. Halachmi. 2013. Lameness detection 

based on multivariate continuous sensing of milk yield, rumination, and neck 

activity. J. Dairy Sci. 96:4286–4298. doi:10.3168/jds.2012-6188. 

Vitali, A., M. Segnalini, L. Bertocchi, U. Bernabucci, A. Nardone, and N. Lacetera. 2009. 

Seasonal pattern of mortality and relationships between mortality and 

temperature-humidity index in dairy cows. J. Dairy Sci. 92:3781–3790. 

doi:10.3168/jds.2009-2127. 

Zahedi, F. 1991. An introduction to Neural Networks and a comparison with artificial 

intelligence and expert systems. Interfaces 21:25–38.  



107 
 

Table 1. Summary statistics of the variables used to predict the diseases in primiparous 

and pluriparous Holstein dairy cows. The significance codes are: 0 < *** < 0.001 < ** < 

0.01 < * < 0.05 < ns 

Variable1 

Primiparous  Pluriparous  Statistical 

significance of 

difference (t-

test) 
Mean ± SD  Mean ± SD 

 

Age 

(months) 
34.3 ± 12.6  57.6 ± 16.4  *** 

Parity 1  2.9 ± 1  *** 

DIM 185.8 ± 121.9  174.8 ± 115.8  *** 

RT (min/day) 564.7 ± 88  565.9 ± 87.1  ** 

AT 

(units/day) 
612.7 ± 137.1  608.9 ± 134.1  *** 

Milk 

production 

(kg/day) 

29.9 ± 8.5  30 ± 8.6  ns 

1Variables abbreviations: RT = daily Rumination Time; AT = daily Activity Time.  
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Table 2. Summary of different machine-learning techniques (namely Random Forest, 

Neural Networks, and Linear Discriminant Analysis) predictive ability for mastitis, 

lameness, and dysentery in primiparous Holstein dairy cows. 

Disease 

Techni

que1 Subset 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

p-

value
2 

Mastitis RF 1-day 25.8 95.4 57.1 84.4 ns 

3-days 22.6 99.2 87.5 84.3 ns 

5-days 29.0 99.2 90.0 85.4 ns 

NN 1-day 0.0 100.0 - 80.8 ns 

3-days 0.0 100.0 - 80.8 ns 

5-days 3.2 100.0 100.0 81.3 ns 

LDA 1-day 6.5 96.9 33.3 81.3 ns 

3-days 9.7 96.9 42.9 81.8 ns 

5-days 12.9 96.9 50.0 82.4 ns 

Lameness RF 1-day 26.7 100.0 100.0 93.5 ns 

3-days 26.7 99.4 80.0 93.4 ns 

5-days 26.7 100.0 100.0 93.5 ns 

NN 1-day 0.0 100.0 - 91.3 ns 

3-days 0.0 100.0 - 91.3 ns 

5-days 0.0 100.0 - 91.3 ns 

LDA 1-day 0.0 100.0 - 91.3 ns 

3-days 0.0 100.0 - 91.3 ns 

5-days 0.0 100.0 - 91.3 ns 

1Techniques abbreviations: RF = Random Forest; NN = Neural Networks; LDA = Linear 

Discriminant Analysis. 

2p-value referred to the significance of the difference between the model accuracy and 

the no-information-rate. The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 

0.05 < ns   
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Table 2 (continued). Summary of different machine-learning techniques (namely 

Random Forest, Neural Networks, and Linear Discriminant Analysis) predictive ability for 

mastitis, lameness, and dysentery in primiparous Holstein dairy cows. 

Disease 

Techni

que1 Subset 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

p-

value
2 

Dysentery RF 1-day 100.0 100.0 100.0 100.0 *** 

3-days 100.0 100.0 100.0 100.0 *** 

5-days 100.0 100.0 100.0 100.0 *** 

NN 1-day 97.2 100.0 100.0 99.1 *** 

3-days 100.0 100.0 100.0 100.0 *** 

5-days 100.0 100.0 100.0 100.0 *** 

LDA 1-day 100.0 100.0 100.0 100.0 *** 

3-days 100.0 100.0 100.0 100.0 *** 

5-days 100.0 100.0 100.0 100.0 *** 

1Techniques abbreviations: RF = Random Forest; NN = Neural Networks; LDA = Linear 

Discriminant Analysis. 

2p-value referred to the significance of the difference between the model accuracy and 

the no-information-rate. The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 

0.05 < ns   
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Table 3. Summary of different machine-learning techniques (namely Random Forest, 

Neural Networks, and Linear Discriminant Analysis) predictive ability for mastitis, 

lameness, and dysentery in pluriparous Holstein dairy cows. 

Disease 

Techni

que1 Subset 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

p-

value
2 

Mastitis RF 1-day 11.9 95.1 41.7 78.7 ns 

3-days 2.4 97.2 20.0 77.3 ns 

5-days 9.5 95.1 36.4 78.3 ns 

NN 1-day 0.0 100.0 - 77.4 ns 

3-days 0.0 100.0 - 77.4 ns 

5-days 0.0 100.0 - 77.4 ns 

LDA 1-day 0.0 100.0 - 77.4 ns 

3-days 0.0 100.0 - 77.4 ns 

5-days 0.0 100.0 - 77.4 ns 

Lameness RF 1-day 69.1 99.9 96.7 98.6 *** 

3-days 69.1 99.9 96.7 98.6 *** 

5-days 71.4 99.9 96.8 98.8 *** 

NN 1-day 0.0 100.0 - 95.8 ns 

3-days 0.0 100.0 - 95.8 ns 

5-days 0.0 100.0 - 95.8 ns 

LDA 1-day 0.0 100.0 - 95.8 ns 

3-days 0.0 100.0 - 95.8 ns 

5-days 0.0 100.0 - 95.8 ns 

1Techniques abbreviations: RF = Random Forest; NN = Neural Networks; LDA = Linear 

Discriminant Analysis. 

2p-value referred to the significance of the difference between the model accuracy and 

the no-information-rate. The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 

0.05 < ns . 
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Table 3 (continued). Summary of different machine-learning techniques (namely 

Random Forest, Neural Networks, and Linear Discriminant Analysis) predictive ability for 

mastitis, lameness, and dysentery in pluriparous Holstein dairy cows. 

Disease 

Techni

que1 Subset 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

p-

value
2 

Dysentery RF 1-day 100.0 99.2 97.0 100.0 *** 

3-days 100.0 99.2 97.0 100.0 *** 

5-days 100.0 99.2 97.0 100.0 *** 

NN 1-day 76.9 91.5 70.4 93.8 *** 

3-days 69.2 93.1 72.6 92.0 *** 

5-days 81.5 91.1 70.7 94.9 *** 

LDA 1-day 44.6 93.9 65.9 86.6 * 

3-days 46.2 93.9 66.7 86.9 * 

5-days 47.7 93.5 66.0 87.2 * 

1Techniques abbreviations: RF = Random Forest; NN = Neural Networks; LDA = Linear 

Discriminant Analysis. 

2p-value referred to the significance of the difference between the model accuracy and 

the no-information-rate. The significance codes are: 0 < *** < 0.001 < ** < 0.01 < * < 

0.05 < ns . 
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Published in: Journal of Animal Science 2016, 99 (s5): 187-188 

 

Oral communication 

Daily rumination time in Italian Holstein cows: Heritability and correlation with 

milk production. 

R. Moretti1*, R. Bozzi1, C. Maltecca2, F. Tiezzi2, S. Chessa3, D. Bar4, and S. Biffani3 

1 University of Florence, Italy,  
2 North Carolina State University, Raleigh,  
3 Institute of Agricultural Biology & Biotechnology-CNR, Lodi, Italy,  
4 SCR Europe, Gariga di Podenzano, Italy. 

 

* Presenting Author. “Breeding and genetics: Selection for health and fertility” 

Session, July 21, 2016. 

 

 

Abstract text 

 

The aim of the study was to investigate the genetic variation of daily rumination time 

(min) and its correlation with test-day milk production (kg). Data for the analysis 

consisted of 91,589 records for rumination time and milk yield from 398 cows (age: 

43.21 ± 16.11 months), collected from September 2014 to October 2015 in two Italian 

Holstein herds (TAD and MIL). There were 493 calvings and data distribution across 

parities was 46.4%, 26.7% and 26.7% for first, second and later parities, respectively. 

DIM classes were defined as one class for every 30d resulting in 11 classes and there 

were a total of 378 herd-test day contemporary groups. The average rumination time 

was 513.51 ± 115.84 min and the average milk yield was 33.59 ± 9.18 kg. 
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Pedigree information was available for 11,634 animals. A Repeatability Animal Model 

was fitted using the AIREMLF90 software. Herd, year/month of calving, and DIM classes 

within parity were treated as fixed effects, while herd-test-day, permanent 

environmental, and the additive genetic cow effects were treated as random. 

Rumination time was longer in pluriparous than in primiparous cows and showed a 

decreasing trend across DIM. On average, at the beginning of the lactation, pluriparous 

cows ruminated 75 min longer than primiparous. As expected, pluriparous cows had a 

higher production levels across DIM than primiparous, with a peak around DIM class 2 

and 3 (i.e., 60-90 d). The herd with the highest daily rumination time had the lowest milk 

production yield: the fixed effects solutions were 569.5 min and 25.8 kg (Herd TAD; 

rumination time and milk yield, respectively) and 446.4 min and 31.9 kg (Herd MIL; 

rumination time and milk yield, respectively). The heritabilities for test-day milk yield 

and daily rumination time were 0.13 (SE = 0.06) and 0.32 (SE = 0.09), respectively. 

Although the negative phenotypic correlation observed, genetic correlation between 

the two traits was 0.38 (SE = 0.47); this high standard error is possibly the consequence 

of the dataset dimension. So far, rumination time has been used as a key monitor of 

dairy cow health at farm level. Investigating its genetics aspect and the relationship with 

other important yields and health traits may turn this management tool in a new 

informative selection criterion for the dairy cattle breeding strategies. 

Keywords: Rumination time, Milk production, Genetic variation  
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XXII Congress of the Animal Science and Production Association 

13 – 16 June 2017, Perugia (Italy) 

Published in: Italian Journal of Animal Science 2017, 16 (s1): 50-51 

 

Oral communication 

Predictive models for locomotion issues in Italian Holstein dairy cows. 

Riccardo Moretti1*, Stefano Biffani2, Stefania Chessa3, Riccardo Bozzi1 

1 Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente, 

University of Firenze, Italy 
2 Associazione Italiana Allevatori, Roma, Italy 
3 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 

Lodi, Italy 

* Presenting Author. “Husbandry, welfare and behaviour” Session, June 14, 2017. 

 

 

Abstract text 

 

Locomotion system issues are major issues in dairy herds, affecting both animal welfare 

and farm productivity. Early detection could improve the effectiveness of treatments 

and increase the chances to cure lame cows. Currently, locomotion issues detection 

requires direct observation of cows walking (locomotion score). However, this is a time-

consuming task and is not always an available option in large dairy farms. Aim of this 

preliminary study was to build a predictive model for locomotion system issues in Italian 

Holstein dairy cows using some novel phenotypes from automatic recording systems 

(milking parallel parlour and SCR Heatime and DataFlow2 system) as predictors. Data 

was recorded from a commercial farm located in the province of Mantua (Lombardy, 

Northern Italy) for a total of 413 animals, daily monitored for two years (Sep. 2014 – Dec 

2016). The response variable was binary (0/1: healthy and diseased, respectively). The 

selected variables were daily rumination time, parity, DIM, daily milk production, daily 
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activity and month of recording. Summary statistics (mean and SD) were calculated: 

rumination time, 563.28 ± 88.48 min/day; parity, 1.93 ± 1.28; DIM, 171.34 ± 124.14 days; 

milk production, 24.14 ± 13.74 kg/day; activity, 614.00 ± 134.64 min/day. DIM were 

classified in four classes to assess the potential effect of the lactation stage: dry, early, 

mid, and late lactation (no lactation, <120 days, 120-240 days, and >240 days, 

respectively). Three different datasets were prepared, where rumination, milk, and 

activity were averaged as means of 1, 3, and 5 days before the response variable record. 

On each dataset, two models were fitted: logistic regression and random forest. All the 

analyses were performed in R using the caret package. Data were divided into a training 

and a testing dataset (proportion 80/20). Training data was used to train two different 

algorithms which were used to predict the class variable. The two selected algorithms 

were: 1. a logistic regression 2. a random forest.  

For all the datasets, logistic regression was not able to predict diseased individuals, 

assigning all to the ‘healthy’ class. Random forest performed better, although with a 

high-class error. The 5-days window had the lowest OOB error rate (0.24%) and the 

lowest class error (0.71). Further tuning of the selected models will be necessary to build 

a valuable tool to predict locomotion system issues. 

Acknowledgement 

The authors thank SCR Engineers Ltd. (Hadarim, Netanya, Israel) and Milkline Srl (Gariga 

di Podenzano, Piacenza, Italy) for supplying the technologies used in this study, and 

“Bulgarelli Giacomo e Astore” dairy farm for the herd rumination raw data and health 

status recordings. 
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GENERAL DISCUSSION AND CONCLUSIONS 
Different machine learning techniques were applied to the data gathered during 

this PhD project, and the relationships between rumination time and other variables 

were evaluated. In the first paper presented in this thesis, the effects of heat stress on 

rumination were assessed. A statistically significant unfavourable association was found: 

an increase in THI led to a reduction in rumination time. This association is likely to be 

due to the activation on responses to cope with the environment, which might involve 

a reduction of feed intake, leading to rumination decrease. Mixed models, including THI 

amongst the predictors for rumination changes, confirmed the abovementioned 

association. THI could be therefore suitable as predictor in a predictive model involving 

rumination changes prediction. This result highlights the need to consider heat stress 

when dealing with dairy cow’s welfare. This is especially true in high-yielding cows, 

which are more sensitive to heat stress, since their termic balance is already stressed by 

the high metabolic requirements to produce large amounts of milk. 

In the second paper, a step forward was made, and diseases were added in a 

mixed model to study if there was a change in rumination time before their onset. From 

the obtained results, it is plausible to assume that rumination time could be used as a 

predictor for diseases’ onset. This could have important implications in farmed animal 

management, since the detection of a disease as early as possible allows for a more 

immediate sanitary intervention, usually leading to a better and faster recovering from 

the disease. Different diseases have different prediction efficacy, due to their different 

features. For example, diseases like mastitis and gastroenteric diseases predictive 

models performed better when using short-term data (i.e., one day before the 

veterinary diagnosis), while others (e.g., lameness) could be predicted with larger 

advance. 

In Draft I and Abstract I, the heritability of rumination and its genetic correlations 

with productive parameters was studied. Rumination in the analysed population was 

moderate (0.34), but the genetic correlations were unfavourable. Specifically, 

rumination was negatively correlated with milk production traits and positively 

correlated with somatic cells count. Although weakly correlated, selection for a higher 

rumination could lead to negative results on milk productivity. Therefore, attention is 

needed regarding the introduction of rumination in a breeding selection plan. 

In Draft II, machine learning techniques were used to build models to predict the 

onset of three different diseases (namely mastitis, lameness, and dysentery). A 

preliminary analysis was conducted on lameness alone, and it was presented as oral 

communication during the XXII Congress of the Animal Science and Production 

Association (Abstract II). In these works, the prediction efficacy of different machine 

learning techniques was tested. As expected, different techniques had different 
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accuracy, due to the different types of algorithms and statistical approaches. Further 

tuning of the different algorithms will be performed before proceeding to the 

submission of the paper to an international journal for peer reviewing. One of the critical 

points of all the works in this project including diseases’ prediction was the usage of non-

experimental sanitary information, recorded by the farmer, which were not always 

accurate. 

 

In conclusion, rumination is a valuable trait in cows, covering a key role in animal 

welfare. Furthermore, rumination is deeply interconnected to various other features, 

both animal-related (e.g., diseases and milk production) and environment-related (e.g., 

THI). In addition, automatic recording systems proved themselves a valuable source of 

low-cost data, which is usually available in commercial farms but is often 

underestimated and scarsely used. The large amount of available recorded data reduces 

the bias due to the usage of non-experimental data, and this proves valuable when 

dealing with commercial systems. 
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Supplementary Material 

Heat stress effects on Holstein dairy cows’ rumination 

Table S1. Descriptive statistics for Ambient Temperature (AT), Relative Humidity (RH), 
recorded inside the barn and the calculated Temperature-Humidity Index (THI) by 
month. All the means are in a “mean ± standard deviation (SD)” format and refer to the 
total of the monthly records 

SUMMER 2015 June July August 

AT (°C) 

Mean ± SD 

Min 

Max 

23.28a ± 3.84 28.04b ± 3.68 24.61c ± 4.28 

14.94 19.81 16.67 

31.99 35.34 35.03 

RH (%) 

Mean ± SD 

Min 

Max 

64.41a ± 14.57 57.64b ± 11.47 64.49a ± 15.76 

35.14 34.15 32.99 

94.20 83.42 95.45 

THI 

Mean ± SD 

Min 

Max 

70.32a ± 4.43 76.43b ± 3.96 72.15c ± 4.66 

58.77 66.17 61.48 

80.00 84.81 82.17 

a,b Values within a row with different superscripts differ significantly at P<0.05.  
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Table S2. Descriptive statistics for the observed 2-h and daily Rumination Time (RT) by 
month in the Italian Holstein herd. All the means are in a “mean ± standard deviation 
(SD)” format and refer to the total of the monthly records 

SUMMER 2015 June July August 

2-h RT 
(min/2h) 

Mean ± SD 48.79a ± 22.30 46.22b ± 21.78 48.93a ± 22.82 

Min 0 0 0 

Max 120 120 120 

Daily RT 
(min/day) 

Mean ± SD 585.41a ± 92.01 554.65b ± 103.52 586.78a ± 91.79 

Min 37 61 97 

Max 853 860 1028 

a,b Values within a row with different superscripts differ significantly at P<0.05. 
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Supplementary Material 

Rumination time as a potential predictor of common diseases in high-
productive Holstein dairy cows 

Table S1. Differences between the mean Rumination Time (RT, expressed in min/2h) in 
absence or presence of the disease and their t-test p-value. 

Disease Interval 
Num 
cows 

case-
control 
ratio 

Mean RT 
(absence) 

Mean RT 
(presence) 

Mean 
difference 

p-
value 

Generic 
diseases 

2-h 126 1:2.35 47.00 45.73 1.27 
< 
0.001 

Reproductive 
diseases 

2-h 66 1:0.85 46.92 45.84 1.08 
< 
0.001 

Mastitis 2-h 68 1:39.51 47.43 42.59 4.84 
< 
0.001 

Locomotor 
issues 

2-h 16 1:34.51 45.59 43.19 2.40 0.001 

Gastroenteric 
diseases1 

2-h 3 1:14.49 47.67 37.76 9.91 
< 
0.001 

1 Only three animals suffered from gastroenteric diseases, therefore, even if highly 
significant, caution should be used with this result. 
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Table S2. Mean ± SD of rumination mean, rumination SD, and slope (from the regression 
line) before and after different sanitary events (a – e). The differences between before 
and after the events were tested using t-test (row by row and couple-wise): the 
superscripts (i.e., a and b) identify the couples which elements were significantly 
different (P < 0.05). 

a) Generic disease 

Window 
size 

 Mean  SD  Slope 

 Before After  Before After  Before After 

1  
42.01 ± 
11.47 

41.28 ± 
10.21 

 
9.61 ± 
5.36 

9.56 ± 
5.75 

 
-4.84a ± 

7.00 
-2.39b ± 

7.01 

3  
43.83 ± 

7.96 
43.51 ± 

7.82 
 

10.54 ± 
3.87 

10.36 ± 
3.43 

 
-1.04a ± 

1.72 
0.29b ± 

1.54 

5  
44.62 ± 

6.90 
44.61 ± 

6.89 
 

10.35 ± 
3.34 

10.17 ± 
2.80 

 
-0.54a ± 

0.78 
0.28b ± 

0.81 

b) Reproductive diseases 

Window 
size 

 Mean  SD  Slope 

 Before After  Before After  Before After 

1  
42.53 ± 
11.13 

43.29 ± 
8.82 

 
9.11 ± 
4.73 

7.91 ± 
4.12 

 
-3.56 ± 

6.75 
-3.60 ± 

5.63 

3  
44.71 ± 

7.21 
43.39 ± 

6.58 
 

10.31 ± 
4.45 

9.16 ± 
3.22 

 
-1.23a ± 

1.82 
-0.38b ± 

1.46 

5  
45.29 ± 

6.05 
43.86 ± 

6.63 
 

10.01 ± 
3.61 

9.26 ± 
2.46 

 
-0.52a ± 

0.81 
-0.04b ± 

0.62 

c) Mastitis 

Window 
size 

 Mean  SD  Slope 

 Before After  Before After  Before After 

1  
43.95a ± 

9.36 
41.30b ± 

9.76 
 

10.05 ± 
5.98 

11.19 ± 
6.65 

 
-5.64a ± 

6.50 
-2.54b ± 

8.29 

3  
44.65 ± 

6.72 
43.73 ± 

7.67 
 

10.57 ± 
3.68 

11.11 ± 
3.63 

 
-0.77 a ± 

1.53 
0.33b ± 

1.40 

5  
45.33 ± 

6.17 
45.08 ± 

6.35 
 

10.51 ± 
3.17 

10.82 ± 
2.89 

 
-0.41a ± 

0.67 
0.34b ± 

0.85 
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Table S2. (continued) Mean ± SD of rumination mean, rumination SD, and slope (from 

the regression line) before and after different sanitary events (a – e). The differences 

between before and after the events were tested using t-test (row by row and couple-

wise): the superscripts (i.e., a and b) identify the couples which elements were 

significantly different (P < 0.05). 

d) Locomotor system issues 

Window 
size 

 Mean  SD  Slope 

 Before After  Before After  Before After 

1  
35.15 ± 
12.42 

38.35 ± 
10.47 

 
7.06 ± 
3.75 

8.39 ± 
3.97 

 
-3.41 ± 

4.61 
-0.17 ± 

5.76 

3  
36.94 ± 

8.61 
42.15 ± 

7.38 
 

9.78 ± 
3.37 

9.61 ± 
2.79 

 
-0.79a ± 

1.49 
0.95b ± 

1.62 

5  
37.76a ± 

6.95 
42.51b ± 

5.86 
 

10.17 ± 
2.67 

9.59 ± 
2.55 

 
-0.64a ± 

0.70 
0.46b ± 

0.72 

e) Gastroenteric diseases 

Window 
size 

 Mean  SD  Slope 

 Before After  Before After  Before After 

1  
19.81 ± 

8.76 
28.00 ± 
12.72 

 
14.15 ± 

7.91 
10.83 ± 

8.05 
 

-7.13 ± 
16.26 

2.83 ± 4.58 

3  
35.78 ± 

6.23 
36.47 ± 
16.96 

 
16.32 ± 

3.66 
11.28 ± 

5.84 
 

-4.55a ± 
0.83 

1.55b ± 
1.75 

5  
39.51 ± 

5.50 
38.21 ± 
16.31 

 
15.56 ± 

4.57 
11.14 ± 

4.28 
 

-2.22a ± 
0.43 

0.75b ± 
0.13 
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ANNEX III 
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Supplementary Material (DRAFT) 

Prediction of mastitis, lameness, and dysentery in Holstein dairy cattle 
using machine-learning techniques 

Figure S1. Relative importance analysis (by Partial Least Squares method) of mastitis 
predictors in primiparous and pluriparous Holstein dairy cows, repeated for the 3 
datasets (1, 3, and 5-days windows). Dark grey indicates positive predictors (risk factors), 
while light grey indicates negative predictors (protective factors). 
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Figure S2. Relative importance analysis (by Partial Least Squares method) of lameness 

predictors in primiparous and pluriparous Holstein dairy cows, repeated for the 3 

datasets (1, 3, and 5-days windows). Dark grey indicates positive predictors (risk 

factors), while light grey indicates negative predictors (protective factors). 
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Figure S3. Relative importance analysis (by Partial Least Squares method) of dysentery 

predictors in primiparous and pluriparous Holstein dairy cows, repeated for the 3 

datasets (1, 3, and 5-days windows). Dark grey indicates positive predictors (risk 

factors), while light grey indicates negative predictors (protective factors). 

 

 


