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Abstract

In recent years, with the growing demand for ubiquitous connectivity and

new services, and the rapid growth of the Internet and data center traffic,

the energy consumed by Information and Communication Technology (ICT)

systems is increasing. The focus on the energy performance of ICT is driven

by macro trends related to Economy, Ecology and Engineering.

Economy is tightly connected to cost control in the telecommunication indus-

try where the primary focus lay on energy related operating expense. Hence,

mobile operators are more and more motivated to seek ”green” approaches

that reduce the energy consumption of mobile cellular networks.

Ecology has a clear connection to regulatory aspects based on a societal wish

to reduce climate impact as well as national security political aspects like

dependence of imported energy supply.

The fundamental aspect of Engineering refers primarily to the technical in-

novation possibilities opening up when new technical challenges are intro-

duced: it is important both for the scientific community and industry in

general to take these challenges seriously, to state a good example in terms

of technical solutions and also to demonstrate the claims of the ICT sector

to positively impact other sectors shares of global greenhouse gas (GHG)

emissions, known as the ”enablement effect” of ICT.

This thesis focuses on the emerging research topic ”green (energy-efficient)

mobile networks” that has drawn huge attention recently from both academia

and industry. This topic is highly motivated due to important environmental,

financial and quality-of-experience (QoE) considerations. The term ”green”

emphasizes the environmental dimension of the proposed solutions. Hence,

it is not sufficient to present a cost-effective solution unless it is eco-friendly.

As base stations (BS) are responsible for the large amount of energy con-

sumed in cellular networks, energy efficient BS sleep mode techniques have

the potential to save a significant amount of energy. However, assuming that

BSs are able to alternate between sleeping and active states as frequently as

possible may have a negative impact on network reliability, shortening BS

lifetime.

In this thesis a multiobjective optimization framework which is aimed at

minimizing the power consumption and the number of BS sleep mode switch-

ings in typical and heterogeneous cellular networks (HetNet) is proposed, by

jointly considering Quality of Service (QoS) requirements. Both the opti-

mization procedure and the network planning complexity considerably in-



vi

creases when heterogeneous networks with a mix of cell sizes are considered.

With the introduction of small cell overlays, the macro cell network becomes

over-provisioned due to the offload of traffic by means of small cells. The

proposed sleep mode solution aims at reducing the energy consumption of

the network by jointly optimizing the amount of management operations

related to the addition of low-power base stations. The trade-off between

power consumption, sleep mode switchings and performance of the network

is shown for different energy saving solutions and traffic load cases.

Moreover, the concern about energy efficiency has been growing rapidly also

for manufacturers and researchers of Professional Mobile Radio (PMR) sys-

tems, like Terrestrial Trunked Radio (TETRA), which have been designed to

provide voice and data services to professional users. The future convergence

of PMR to the LTE system introduces a new topic in the research discussion

about the energy efficiency of wireless systems.

In this thesis the feasibility of energy efficient solutions for current and po-

tentially future PMR networks is discussed, by providing a mathematical

formulation of power consumption in TETRA base stations and assessing

possible business models and energy saving solutions for enhanced mission-

critical operations.

The final part of the thesis addresses green approaches for weather mon-

itoring. Nowadays, the air quality is getting worse in highly anthropized

environments: this phenomenon stimulates a high level of interest within

the scientific community and public opinion because of the known strong

relationship between exposure to many air pollutants and increased adverse

effects on the human health. Developments in communication technologies

allow more remote, real-time weather monitoring and access. The use of

plants as biosensors represents a new reliable approach for ozone monitoring.

In comparison with the traditional monitoring systems, the use of biosensors

has the advantage to show us the real impact of pollutants on living organ-

isms, thus providing additional data to the electronic instruments.

In this thesis an automatic method of analysis of plant electrical signals

for ozone critical levels detection is introduced, based on the fundamentals

of correlation theory. The proposed detection algorithm represents a novel

monitoring method for detecting critical levels of ozone concentrations.
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Chapter 1

Introduction

1.1 Energy efficiency: world energy perspec-

tive

Energy efficiency stands at a crossroads today. Strong efficiency gains con-

tinued to be made in 2016 [18], even as energy prices fell. But at the same

time, governments are not coming up with new policies fast enough, relying

on existing regulations instead, precisely at the time when a pipeline of new

efficiency policies should be coming into force. There is a risk that efficiency

gains could take a step back. This issue is all the more important when you

consider the impact that efficiency is already having on the global energy

system. Notably, improved energy intensity has been the biggest factor be-

hind the recent flattening of global greenhouse gas (GHG) emissions. The

arguments for stronger action on energy efficiency have never been clearer.

The world continued to generate more value from its energy use in 2016.

Global energy intensity, measured as the amount of primary energy demand

needed to produce one unit of gross domestic product (GDP), fell by 1.8%

in 2016. Since 2010, intensity has declined at an average rate of 2.1% per

year, which is a significant increase from the average rate of 1.3% between

1970 and 2010 (Figure 1.1). The improvement in intensity varies widely

across countries and regions, with China once again having the most signif-

icant impact on global trends (Figure 1.2). This is avoiding huge amounts

of energy use, generating financial savings for consumers and holding back

the growth in GHG emissions. Despite these positive impacts, there is no

1



2 Introduction

Figure 1.1: Annual changes in global primary energy intensity, 1981-2016 [18]

room for complacency. Policy performance is mixed and new policy imple-

mentation slowed significantly in 2016. The current level of efficiency gains

will erode quickly if the pace of policy delivery does not accelerate. The

decline in global energy intensity means that the world is able to produce

more GDP for each unit of energy consumed, an energy productivity bonus.

In 2016, the world would have used 12% more energy had it not been for

energy efficiency improvements since 2000, equivalent to adding another Eu-

ropean Union to the global energy market (Figures 1.3-1.4). In emerging

economies, energy efficiency gains have limited the increase in energy use as-

sociated with economic growth. Without efficiency, total energy use among

the member countries of the International Energy Agency (IEA) would still

be increasing. Instead, efficiency has led to a peak in total energy use in

2007, and a subsequent fall to levels not seen since the 1990s. Falling energy

intensity is the main factor behind the flattening of global energy-related

GHG emissions since 2014. Lower energy intensity, driven largely by effi-

ciency improvements, is combining with the ongoing shift to renewables and

other low-emission fuels to offset the impact of GDP growth on emissions.

Technological innovation is creating new opportunities for progress on effi-

ciency. Digitalization is beginning to have a significant impact on the energy

sector and energy efficiency is emerging as a key arena for innovation. It is

creating exciting new opportunities for integrated solutions where efficiency

and renewable energy work together to deliver clean energy outcomes at the
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Figure 1.2: Change in primary energy intensity in selected countries and

regions [18]

lowest cost. As business models adapt to the digital energy world, so too

must policy.

1.2 Environmental, social and economic ben-

efits of ICT

Information and Communications Technology (ICT) can play a fundamental

role in helping to meet one of the global economy’s most pressing challenges:

sustaining economic growth while protecting the planet. In order to achieve

that, it is essential that we cut the historical link between every unit of

additional global GDP and the greenhouse gas emissions (CO2e) we emit

in the process, economy wide. So far, this has proved elusive. The core

argument of SMARTer2030 report [17], looking to 2030, is that ICT can

allow us to continue to grow economically while holding emissions at 2015

levels and generating numerous social benefits. In particular it shows that

ICT’s footprint could fall to 1.97% of global emissions by 2030, due to a

range of investments companies in the sector have been making to reduce

their footprint and to the expected increase in the efficiency of end-user-

devices. Propelled by much greater access to broadband internet across the

world and by the falling costs of smart phones and end-user devices gener-
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Figure 1.3: Energy use with and without energy savings from efficiency

improvements globally (left) and by country grouping (right) [18]

Figure 1.4: Percentage improvement in the efficiency effect for select coun-

tries, 2000-16 [18]



1.2 Environmental, social and economic benefits of ICT 5

ally, we are witnessing nothing short of a revolution in the growth of new,

disruptive business models. A decade ago, few would have guessed that a

technology firm would be able to become the largest hotelier in the world

within seven years without building a single hotel or guesthouse. Or that a

technology start-up could use a single smartphone application to build a 40

billion dollars taxi business in six years without owning one car. And these

trends are now extending out to the traditional public sector: healthcare,

education and transport, bringing huge opportunities in the way we interact

with service providers and with each other. This is set to accelerate. At the

same time, as an increasingly affluent generation of consumers and citizens

around the world becomes fluent with digital technology, even able to co-

create their own solutions, it is becoming evident that ICT can improve lives

and empower citizens, from megacities to some of the most remote locations

on earth. ICT-solutions can help businesses around the world to continue to

grow without putting our environment at risk. Of course, there are policy

mechanisms needed, along with the actions businesses and consumers them-

selves need to take. But the good news is that ICT can do much more than

generate revenue, cut costs and reduce emissions. ICT-enabled solutions can

also vastly improve the lives of people all over the world, from people living

in some of the most remote rural villages in East Africa, to telecommuters

living in an affluent metropolis. By connecting the unconnected to the new

economy, ICT can also contribute to addressing human development chal-

lenges like extreme poverty and a lack of access to essential services like

healthcare, education and banking. With smartphones and broadband con-

nections becoming ubiquitous, more and more people will gain access to such

services, effectively raising their health outcomes and their income potential.

A rapid increase in the adoption of devices like tablets and smartphones, as

well as services like cloud computing, broadband networks and data centers,

will result in additional emissions from ICT. Holding down the ICT-sector’s

own emissions as the number of devices increases is extremely important

(Figure 1.5).

Greening is not merely a trendy concept, but is becoming a necessity to

bolster social, environmental, and economic sustainability. Naturally, green

communications have received much attention recently. As mobile network

infrastructures and mobile devices proliferate, an increasing number of users

rely on cellular networks for their daily lives. As a result, mobile networks are

among the major energy hogs of communication networks and their contri-
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Figure 1.5: Environment - ICT emissions footprint (2030) [17]

bution to global energy consumption is increasing fast. Therefore, greening

of cellular networks is crucial to reducing the carbon footprint of ICT. As a

result, the field is attracting tremendous research efforts from both academia

and industry.

1.3 Need for green networks

In response to the increasing demand for wireless communication services

during the past decade, there has been wide deployment of wireless access

networks [89]. By definition, a wireless access network is a wireless system

that uses base stations (BSs) and access points (APs) to interface mobile

terminals (MTs) with the core network or the Internet [34]. Hence, the

main components of a wireless access network are BSs/APs and MTs [32].

BSs/APs are mainly in charge of radio resource control and user mobility

management, and provide access to the Internet. MTs are equipped with

processing and display capabilities, and provide voice services, video stream-

ing, and data applications to mobile users. Currently, MTs are provided with

multiple radio interfaces, and mobile users can connect to different networks,

such as cellular networks, wireless local area networks (WLANs), and wire-

less metropolitan area networks (WMANs), and enjoy single-network and/or
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Figure 1.6: Breakdown of power consumption of a wireless cellular network

[77]

multi-homing services [83,85,88]. From the network operator side, BS is the

main source of energy consumption in the wireless access network [34]. The

breakdown of a cellular network’s typical power consumption is depicted

in Figure 1.6, which shows that almost 57% of the operator’s total power

consumption is in the BS [34, 35, 69]. Worldwide, there are about 3 million

BSs, which consume in total 4.5 GW of power [29]. From the user side,

it has been estimated that there exist roughly 3 billion MTs in the world

with a total power consumption of 0.2-0.4 GW [111]. Such high energy con-

sumption of wireless access networks has triggered environmental, financial,

and quality of experience (QoE) concerns for both network operators and

mobile users. From an environmental standpoint, the telecommunications

industry is responsible for 2% of the total CO2 emissions worldwide, and

this percentage is expected to double by 2020 [87]. As shown in Figure

1.7, the mobile communications sector has contributed 43% of the telecom-

munication carbon footprint in 2002, and this contribution is expected to

grow to 51% by 2020 [149]. Furthermore, the MT rechargeable batteries’

expected lifetime is about 2-3 years and manifests in 25,000 t of disposed

batteries annually, a factor that raises environmental concerns (and finan-

cial considerations for the mobile users as well) [132]. In addition, the high

energy consumption of BSs and MTs is a source of high heat dissipation and

electronic pollution [113]. From a financial standpoint, a significant por-

tion of a service provider’s annual operating expenses is attributed to energy
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Figure 1.7: Carbon footprint contribution by the telecommunications indus-

try: (a) 2002 and (b) 2020 [5]

costs [126, 146]. Technical reports have indicated that the cost of energy

bills of service providers ranges from 18% (in mature markets in Europe) to

32% (in India) of the operational expenditure (OPEX) [57, 82]. The energy

expenses reach up to 50% of the OPEX for cellular networks outside the

power grid [38,151]. The aforementioned concerns have triggered increasing

demand for energy-efficient solutions in wireless access networks. Research

efforts carried out in this direction are referred to as green network solutions.

The term ’green’ confirms the environmental dimension of the proposed ap-

proaches. Therefore, a cost-effective solution that is not eco-friendly is not

attractive. For instance, having a cost-effective electricity demand schedule

for a network operator that relies on different electricity retailers, in a liber-

ated electricity market, is not considered a green solution if it does not ensure

that the proposed solution is also eco-friendly in terms of the associated car-

bon footprint [30]. The objectives of the green wireless communications and

networking paradigm are, therefore, (i) reducing energy consumption of com-

munication devices and (ii) taking into account the environmental impacts of

the proposed solutions. In order to develop and analyse a green networking

solution, an appropriate definition of energy efficiency and consumption for

network operators and mobile users should be formulated. This definition

should account for the power consumption, throughput, traffic load models,

and conflicting performance metrics for network operators and mobile users.
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The rest of this thesis is organized as follows. Chapter 2 is dedicated

to building the necessary background, providing a technical description of

state-of-the-art developments in greening of mobile networks from a net-

working perspective. It discusses fundamental networking technologies that

lead to energy-efficient mobile networks. Chapter 3 presents a multiobjec-

tive optimization framework aimed at minimizing the power consumption

and the number of BS sleep-mode switchings in cellular networks, by jointly

considering QoS requirements. These requirements are expressed in terms

of a required bit rate for each mobile terminal. The framework deals with

network management, such as the number of BSs that should be switched

on, considering common diurnal patterns of the traffic demand. Chapter 4

introduces some energy saving solutions for HetNet scenarios in which macro

and micro cells coexist. The MIQP optimization technique is used to min-

imize the power consumption together with the number of BS sleep mode

operations of both macro and micro cells. The trade-off between power con-

sumption, sleep mode switchings and performance of the network is shown

for different energy saving strategies. Chapter 5 focuses on the feasibility

of energy efficient solutions for current and potentially future Professional

Mobile Radio (PMR) networks, by providing a mathematical formulation of

power consumption in Terrestrial Trunked Radio (TETRA) base stations and

assessing possible business models and energy saving solutions for enhanced

mission-critical operations. Chapter 6 presents an innovative monitoring

technology that is used to detect ground-level ozone pollution and is based

on the deployment of a network of wireless devices which are connected to

a collection of plants and are used as biosensors. The proposed detection

algorithm represents a novel monitoring method for detecting critical levels

of ozone concentrations. Finally, Chapter 7 summarizes the contribution of

the thesis and discusses avenues for future research.



10 Introduction



Chapter 2

Green mobile networks

This chapter is intended to provide a technical description of

state-of-the-art developments in greening of mobile networks from

a networking perspective. It discusses fundamental networking

technologies that lead to energy-efficient mobile networks. These

technologies include heterogeneous networking, multi-cell cooper-

ation, mobile traffic offloading, traffic load balancing and energy

consumption models.

2.1 Energy efficient multi-cell cooperation

As cellular network infrastructures and mobile devices proliferate, an increas-

ing number of users rely on cellular networks for their daily lives. Mobile

networks are among the major energy guzzlers of ICT infrastructure, and

their contributions to global energy consumption are accelerating rapidly

because of the dramatic surge in mobile data traffic [23, 38, 68, 77]. This

growing energy consumption not only escalates the operators’ operational

expenditure (OPEX) but also leads to a significant rise of their carbon foot-

prints. Therefore, greening of mobile networks is becoming a necessity to

bolster social, environmental, and economic sustainability [55,70,104,134].

The energy consumption of a cellular network is mainly drawn from BSs,

which account for more than 50% of the energy consumption of the network.

Thus, improving energy efficiency of BSs is crucial to green cellular networks.

Taking advantage of multi-cell cooperation, energy efficiency of cellular net-

works can be improved from three perspectives. The first is to reduce the

11
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Figure 2.1: Scenario 1: One SCBS per macro site

number of active BSs required to serve users in an area [122]. The solutions

involve adapting the network layout according to traffic demands. The idea

is to switch off BSs when their traffic loads are below a certain threshold for

a certain period of time. When some BSs are switched off, radio coverage

and service provisioning are taken care of by their neighboring cells. The

second aspect is to connect users with green energy efficient BSs. Through

multi-cell cooperation, off-grid BSs enlarge their service areas while on-grid

BSs shrink their service areas [75, 76, 174]. The third aspect is to exploit

coordinated multi-point (CoMP) transmissions to improve energy efficiency

of cellular networks [79]. On the one hand, with the aid of multi-cell cooper-

ation, energy efficiency of BSs on serving cell edge users is increased. On the

other hand, the coverage area of BSs can be expanded by adopting multi-

cell cooperation, thus further reducing the number of active BSs required to

cover a certain area.

2.2 Heterogeneous networking

The energy consumption of mobile networks scales with the provisioned traf-

fic capacity. On deploying a mobile network, two types of BSs may be

deployed. They are macro BSs (MBSs) and small cell BSs (SCBSs). As

compared with SCBSs, MBSs provide a larger convergence area and con-

sume more energy. SCBSs are deployed close to users, and thus consume

less energy by leveraging such proximity. Owing to a small coverage area, in

order to guarantee traffic capacity in an area, a very large number of SCBSs

must be deployed. The total energy consumption of the large number of

SCBSs may exceed that of the MBSs. Hence, in order to improve the energy

efficiency of the network, a mixed deployment of both MBSs and SCBSs is
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Figure 2.2: Scenario 2: Two SCBSs per macro site

Figure 2.3: Scenario 3: Three SCBSs per macro site

desirable. In general, there are two SCBS deployment strategies: deployed

at cell edges and at traffic hot spots. The users located at the edge of a

macro cell usually experience bad radio channels due to excessive channel

fading. In order to provide service to these users, MBSs could increase their

transmit power, but this will result in a low energy efficiency. In a hetero-

geneous network deployment, SCBSs can be deployed at the edge of macro

cells as shown in Figures 2.1-2.4. Depending on the traffic capacity demand,

different SCBS deployment strategies can be adopted. For example, when

the traffic capacity demand is relatively low, one SCBS may be deployed at

the edge of a macro cell to serve the cell edge users as shown in Figure 2.1.

As the traffic increases, additional SCBSs can be deployed at the cell edge as

shown in Figures 2.2 and 2.3. When the traffic capacity demand is very high,

additional SCBSs should be deployed. For example, five SCBSs are deployed

for enhancing the energy efficiency of serving cell edge users in Figure 2.4.

The number of SCBSs that are deployed to enhance the energy efficiency of

serving users located at the edges of macro cells should be optimized based

on traffic capacity demand at the cell edge. When the traffic capacity de-

mand in mobile networks is inhomogeneous, deploying SCBSs at the edges
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Figure 2.4: Scenario 4: Five SCBSs per macro site

of macro cells may not be optimal. Instead, SCBSs can be deployed in areas

where there is high traffic capacity demand such as shopping areas, stadiums,

and public parks. We define such areas as hotspots. Owing to proximity to

the users, SCBSs can provide very high capacity at hotspots and serve the

traffic demand with low energy consumption. In order to deploy SCBSs at

traffic hotspots to enhance energy efficiency, the distribution of traffic capac-

ity demand should be understood from network measurements. In addition,

the traffic capacity demand should be localized so that a large portion of the

traffic demand can be offloaded to SCBSs. In the ideal case, MBSs are only

serving users with high moving speed while all the other users are served by

SCBSs. If the high traffic demand occurs indoors, the indoor deployment of

SCBSs can significantly enhance the energy efficiency of mobile networks.

2.3 Mobile traffic offloading

Mobile traffic offloading, which is referred to as utilizing complementary

network communications techniques to deliver mobile traffic, is a promising

technique to alleviate congestion and reduce the energy consumption of mo-

bile networks. Based on the network access mode, mobile traffic offloading

schemes can be divided into two categories. The first category is infrastruc-

ture based mobile traffic offloading, which refers to deploying SCBSs, for

example, pico BSs, femto BSs and WiFi hot spots, to offload mobile traffic

from MBS [71, 72]. SCBSs usually consume much less power than MBSs.

Therefore, offloading mobile traffic to SCBSs can significantly enhance the

energy efficiency of mobile networks [47, 55]. However, the lack of cost-

effective backhaul connections for SCBSs often impairs their performance in

terms of offloading mobile traffic and enhancing the energy efficiency of mo-
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bile networks. The second category is ad-hoc based mobile traffic offloading,

which refers to applying device-to-device (D2D) communications as an un-

derlay to offload mobile traffic from MBSs. By leveraging Internet of Things

(IoT) technologies, smart devices within proximity are able to connect with

each other and form a communication network. Data traffic among the de-

vices can be offloaded to the communication networks rather than delivering

through MBSs. Moreover, in order to reduce CO2 footprints, mobile traffic

can be offloaded to BSs powered by green energy such as sustainable biofuels,

solar, and wind energy [73, 74, 76, 174]. In this way, green energy utilization

is maximized, and thus the consumption of on-grid energy is minimized.

In this section, we briefly overview the related research on mobile traffic of-

floading and the solutions for user-BS associations in heterogeneous mobile

networks.

2.3.1 Infrastructure based mobile traffic offloading

In infrastructure based mobile traffic offloading, the mobile traffic is offloaded

to either pico/femto BSs or WiFi hot spots. Deploying pico/femto BSs im-

proves the spectral and energy efficiency per unit area of cellular networks,

and thus reduces the network congestion and energy consumption of cellular

networks. Traffic offloading between pico/femto BSs and the MBS is achieved

by adapting user-BS associations. Kim et al. [95] proposed a user-BS asso-

ciation to achieve flow level load balancing under spatially heterogeneous

traffic distribution. Jo et al. [92] proposed cell biasing algorithms to balance

traffic loads among pico/femto BSs and the MBS. The cell biasing algorithms

perform user-BS association according to the biased measured pilot signal

strength, and enable traffic to be offloaded from the MBS to pico/femto BSs.

WiFi hot spots are also effective in terms of offloading mobile traffic. Lee

et al. [99] pointed out that a user is in WiFi coverage for 70% of the time

on average, and if users can tolerate a two hour delay in data transfer, the

network can offload about 70% of cellular traffic to WiFi networks. Bala-

subramanian et al. [25] proposed to offload the delay tolerant traffic such

as email and file transfer to WiFi networks. When WiFi networks are not

available or experiencing blackouts, data traffic is quickly switched back to

3G networks to avoid violating the applications’ tolerance threshold.
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2.3.2 User-BS associations in heterogeneous mobile net-

works

Heterogeneous networking is a promising network architecture which may

significantly enhance the spectral and energy efficiency of mobile networks.

One of the most important issues in heterogeneous cellular networks is to

properly associate mobile users with the serving BSs, referred to as the ”user-

BS association problem”. In heterogeneous cellular networks, the transmit

power of SCBSs is significantly lower than that of MBSs. Thus, mobile users

are more likely to be associated with the MBS based on the strength of their

received pilot signals. As a result, SCBSs may be lightly loaded, and do not

contribute much to traffic offloading. To address this issue, many user-BS

association algorithms have been proposed [39, 92, 95]. Kim et al. [95] pro-

posed a framework for user-BS association in cellular networks to achieve

flow level load balancing under spatially heterogeneous traffic distribution.

Jo et al. [92] proposed cell biasing algorithms to balance traffic loads among

MBSs and SCBSs. The cell biasing algorithms perform user-BS association

according to biased measured pilot signal strength, and enable traffic to be of-

floaded from MBSs to SCBSs. Corroy et al. [39] proposed a dynamic user-BS

association algorithm to maximize the sum rate of the network and adopted

cell biasing to balance the traffic load among BSs. Fooladivanda et al. [61]

studied joint resource allocation and user-BS association in heterogeneous

mobile networks. They investigated the problem under different channel al-

location strategies, and the proposed solution achieved global proportional

fairness among users. Madan et al. [103] studied user-BS association and

interference coordination in heterogeneous mobile networks, and proposed

heuristic algorithms to maximize the sum utility of average rates.

2.4 Multi-cell cooperation communications

It has been shown that, with the aid of multi-cell cooperation, the perfor-

mance of a cellular network in terms of throughput and coverage can be

enhanced significantly. However, the potential of multi-cell cooperation to

improve the energy efficiency of cellular networks remains to be unlocked.

This section gives an overview of multi-cell cooperation solutions for im-

proving the energy efficiency of cellular networks. In particular it introduces

traffic intensity aware multi-cell cooperation, which adapts the network lay-
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Figure 2.5: Original Network Layout [70]

out of cellular networks according to user traffic demands in order to reduce

the number of active BSs.

2.4.1 Traffic intensity aware multi-cell cooperation

The traffic demand of cellular networks experiences fluctuations for two rea-

sons. The first is the typical day-night behavior of users. Mobile users are

usually more active in terms of cell phone usage during the day than dur-

ing the night, and therefore traffic demand during the day is higher than at

night. The second reason is the mobility of users. Users tend to move to

their office districts during working hours and come back to their residential

areas after work. This results in the need for a large capacity in both ar-

eas at peak usage hours but in reduced requirements during off-peak hours.

However, cellular networks are usually dimensioned for peak hour traffic, and

thus most BSs are working at low workload during off-peak hours. Owing to

their high static power consumption (the static power consumption of a BS

refers to the power consumption of the BS when there are no active users

in the coverage of the BS), BSs usually experience poor energy efficiency

when they are operating at a low workload. In addition, cellular networks

are typically optimized for the purpose of providing coverage rather than for

operating at full load. Therefore, even during peak hours, the utilization of
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Figure 2.6: BS partially switched off [70]

BSs may be inefficient in terms of energy usage. Adapting the network lay-

out of cellular networks according to traffic demands has been proposed to

improve their energy efficiency. The network layout adaptation is achieved

by switching BSs on/off dynamically. Figures 2.5, 2.6 and 2.7 show several

scenarios of network layout adaptations. Figure 2.5 shows the original net-

work layout, in which each BS has three sectors. For cell A, if most of the

traffic demands on it are coming from sector three, and the traffic demands

in sectors one and two are lower than a predefined threshold, cell A could

switch off sectors one and two to save energy, and the users in the sectors

that are switched off will be served by the neighboring cells. In this case,

the network layout after the adaptation is shown in Figure 2.6. If traffic

demands from sector three of cell A also decrease below the threshold, the

entire green cell will be switched off, and the network layout is adapted to

the one shown in Figure 2.7. Under this scenario, the radio coverage and

service provisioning in cell A are taken care of by its active neighboring cells.

When a BS is switched off, the energy consumed by its radio transceivers,

processing circuits, and air conditioners can be saved. Therefore, adapting

the network layout of cellular networks according to traffic demands can

reduce energy consumption significantly. While network layout adaptation

can potentially reduce the energy consumption of cellular networks, it must
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Figure 2.7: BS entirely switched off [70]

meet two service requirements: (1) the minimum coverage requirement, and

(2) the minimum quality of service (QoS) requirements for all mobile users.

Therefore, in carrying out network layout adaptation, multi-cell cooperation

is needed to guarantee service requirements. Otherwise, it will result in a

high call blocking probability and a severe QoS degradation. For example,

two adjacent BSs may both experience low traffic demands. However, only

one BS can be switched off to save energy, and the other BS should be active

to sustain the service provisioning in both coverage areas. In this case, if

both BSs are switched off according to their own traffic demands, their sub-

scribers will lose connections. Therefore, cooperation among BSs is essential

to enable traffic intensity aware network layout adaptation.

Cooperation to estimate traffic demands

Network layout adaptation is based on the estimated traffic demands at in-

dividual cells. Traffic demand estimation at individual cells requires the

cooperation of neighboring cells. To avoid frequently switching BSs on/off,

BSs are switched off only when their traffic demands are less than a prede-

fined threshold for a minimum period, T . Therefore, the estimated traffic

demands should represent the traffic demands at individual cells for at least

a time period of length T . Hence, traffic demands at a BS consist of three
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parts: traffic demands from users who are currently attached to the BS,

traffic demands from users who will be handed over to other BSs, and traffic

demands from users who will be handed over to the BS from its neighboring

BSs. While the first two components can be measured and estimated by

individual BSs, the estimation of the third component requires cooperation

from neighboring cells. Two reasons contribute to the handover traffic from

neighboring cells. The first is user mobility. A user’s motion including the

direction and velocity can be measured by various signal processing methods.

Therefore, individual BSs can predict (1) how many users will hand over to

other cells in the near future, and (2) to which cells these users are highly

likely to hand over. Such information is important for their neighboring BSs

to estimate their traffic demands. The second reason for handover traffic

is the switching off of neighboring BSs. If one of the neighboring cells is

switched off, the users under its coverage will hand over to its neighboring

cells, thus increasing the traffic demands of the neighboring cells. Therefore,

cooperation among radio cells is important for traffic demand estimation at

individual cells.

Cooperation to optimize switching off strategy

With traffic demand estimation, cellular networks optimize the switching

on/off strategies to maximize the energy saving while guaranteeing users’

minimal service requirements. Currently, most of the existing switching

on/off strategies are centralized algorithms, which assume that there is a

central controller that collects the operation information of all BSs and op-

timizes network layout adaptations. Three methods have been proposed to

determine which BSs to switch off. The first is randomly switching off BSs

with low traffic loads. This method mainly applies to BSs in the night zone

where few users are active. The method randomly switches off some BSs

to save energy, and the remaining BSs provide coverage for the area. The

second method is a greedy algorithm that enforces BSs with higher traffic

loads to serve more users, and switches off BSs with no traffic load. The

third method is based on the user-BS distance. The required transmission

power of BSs for serving users depends on the distance between users and

BSs. The longer the distance, the greater the transmission power required in

order to meet users’ minimal service requirements. Therefore, the user-BS

distance can be an indicator for the energy efficiency of cellular networks:

the shorter the average user-BS distance, the higher the energy efficiency.
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Figure 2.8: Future cellular networks with holistic cooperations [70]

Hence, the algorithm tends to switch off BSs with the longest user-BS dis-

tance in order to improve energy efficiency. Centralized algorithms, however,

require the channel state information and traffic load information of every

cell. Collecting this information centrally may impose tremendous communi-

cations overheads, and thus reduce the effectiveness of centralized algorithms

in improving energy efficiency. Therefore, distributed algorithms are favored

especially for heterogeneous networks, which consist of various types of cells

such as macro cells, micro cells, pico cells, and femto cells. To enable dis-

tributed algorithms, individual cells may cooperatively form coalitions and

share channel state information and traffic load information. Based on the

shared information, individual BSs optimize their operation strategies to

minimize the total energy consumption of the BS coalition.

This section has discussed how to reduce the energy consumption of cel-

lular networks via multi-cell cooperation. It focuses on traffic intensity aware

multi-cell cooperation, in which multiple cells cooperatively estimate traffic

demands, and the network layout is adapted based on the estimated traffic

demands. Through network layout adaptation, the number of active BSs

can be reduced, thus reducing the energy consumption of the network. With

advances in cellular network and communications techniques, future cellular

networks will be heterogeneous in terms of both network deployments and

communications techniques as shown in Figure 2.8. Regarding network de-

ployments, a heterogeneous network refers to deploying a mix of high power
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BSs and low power BSs in order to satisfy traffic demands of service areas.

High power BSs, for example, macro and micro BSs, are deployed to pro-

vide coverage to a large area while low power BSs are deployed to provide

high capacity within a small coverage area. In terms of technology diversity,

heterogeneous networks consist of a variety of technologies such as MIMO,

cooperative networking, and cognitive networking. By increasing network

diversity, BSs have more cooperation opportunities, and thus can achieve

additional energy savings. However, realizing optimal multi-cell cooperation

is nontrivial.

2.5 Traffic load balancing in mobile networks

Proliferation of wireless devices and bandwidth-greedy applications are driv-

ing the exponential growth of mobile data traffic that is resulting in a con-

tinuous surge in capacity demand across mobile networks. The heteroge-

neous network (HetNet) is one of the key technologies for enhancing mo-

bile network capacity to satisfy capacity demands [20]. In HetNet, low

power SCBSs are densely deployed to enhance the spectrum efficiency of

the network and thus increase the network capacity. Owing to disparate

transmit power and BS capabilities, traditional user association metrics such

as the signal-to-interference-plus-noise-ratio (SINR) and the received-signal-

strength-indication (RSSI) may lead to a severe traffic load imbalance [20].

Hence, user association algorithms should be well designed to balance traffic

loads and thus to fully exploit the capacity potential of HetNet. Balancing

traffic loads in HetNet has been extensively studied in recent years [159]. In

mobile networks, traffic loads among BSs are balanced by executing handover

procedures. In the LTE system there are three types of handover procedures:

Intra-LTE handover, Inter-LTE handover, and Inter-RAT (radio access tech-

nology) handover [16]. There are two ways to trigger handover procedures.

The first is ”Network Evaluated” in which the network triggers handover

procedures and makes handover decisions. The other is ”Mobile Evaluated”

in which a user triggers the handover procedure and informs the network

about the handover decision. The network decides whether to approve the

user’s handover request based on the status of radio resources. In 4G and

LTE networks, a hybrid approach is usually implemented, where a user mea-

sures parameters of the neighboring cells and reports the results to the net-

work. The network makes the handover decision based on the measurements.
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Here, the network can decide which parameters should be measured by users.

Aligning with the above procedures, various traffic load balancing algorithms

have been proposed to optimize the network utilities [20,21,92,95,168]. The

most practical traffic load balancing approach is the cell range expansion

(CRE) technique, which biases users’ receiving SINRs or data rates from

some BSs to prioritize these BSs in associating with users [41]. Owing to the

transmit power difference between MBSs and SCBSs, a large bias is usually

given to SCBSs to offload users to small cells [20]. By applying CRE, a

user is associated with the BS from which they receive the maximum biased

SINR or data rate. Although CRE is simple, it is challenging to derive the

optimal bias for BSs. Singh et al. [145] provided a comprehensive analysis

on traffic load balancing using CRE in HetNet. The authors investigated

the choice of the bias value and its impact on SINR coverage and downlink

rate distribution in HetNet. Jo et al. [92] proposed cell biasing algorithms

to balance traffic loads among MBSs and SCBSs. These cell biasing algo-

rithms perform user-BS association according to biased measured pilot signal

strength, and enable traffic to be offloaded from MBSs to SCBSs. The traffic

load balancing problem can also be modeled as an optimization problem and

solved by convex optimization approaches. Ye et al. [168] modeled the traf-

fic load balancing problem as a utility maximization problem and developed

distributed user association algorithms based on primal-dual decomposition.

Kim et al. [95] proposed an α-optimal user association algorithm to achieve

flow level load balancing under spatially heterogeneous traffic distribution.

The proposed algorithm may maximize different network utilities, for exam-

ple, traffic latency and network throughput, by properly setting the value

of α. Corroy et al. [39] proposed a dynamic user-BS association algorithm

to maximize the total rate of network and adopted cell biasing to balance

traffic loads among BSs. In addition, game theory has been exploited to

model and solve the traffic load balancing problem. Aryafar et al. [21] mod-

eled the traffic load balancing problem as a congestion game in which users

are the players and user association decisions are the actions. Pantisano

et al. [130] formulated the traffic load balancing problem in backhaul con-

strained SCNs as a one-to-manymatching game between SCBSs and users,

and proposed a distributed algorithm based on a deferred acceptance scheme

to obtain a stable match for mobile users. The above solutions, though they

effectively balance traffic loads to maximize network utilities, do not con-

sider energy efficiency as a performance metric in balancing traffic loads.
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The dense deployment of SCBSs may incur excessive energy consumption.

Enhancing energy efficiency is also a critical task for next generation mo-

bile networks [70,77]. Although SCBSs consume less power than MBSs, the

number of SCBSs will be orders of magnitude larger than those of MBSs for

a large scale network deployment. Hence, the overall power consumption of

SCNs will be phenomenal.

In addition, most existing solutions optimize traffic load balancing in a mo-

bile network with the assumption that the air interface between BSs and

mobile users is the bottleneck of the network. This assumption is gen-

erally correct for BSs whose deployments are well planned. However, in

the case of the potentially dense deployment of SCBSs, various suboptimal

backhaul solutions may be adopted, for example, xDSL, non-line-of-sight

(NLOS) microwave, and wireless mesh networks, rather than the ideal back-

haul approach provided by optical fiber and LOS microwave [121]. As a

result, backhaul, rather than BSs, may become the bottleneck of SCNs.

To alleviate backhaul constraints, content caching techniques have been ex-

ploited to enable caching popular content in BSs to reduce backhaul traffic

loads [116, 137, 144, 161]. Therefore, it is desirable to optimize user associ-

ation in consideration of backhaul constraints and the performance of BSs’

content cache systems in SCNs.

2.5.1 Traffic models

Some energy-efficiency and consumption models are defined on the basis of

the temporal fluctuations in the traffic load. In addition, different green

approaches can be adopted at different traffic load conditions. Further-

more, some green approaches rely on the temporal and spatial fluctuations

in the traffic load to save energy. For instance, in order to determine the

sleep duration of a BS or MT, traffic models are used to probabilistically

predict the idle period duration. Moreover, the performance evaluation

of the green approaches should be carried out using an appropriate traf-

fic model. Consequently, it is necessary to gain a better understanding of

the different traffic load models proposed in the literature before introduc-

ing energy efficiency and consumption models as well as green solutions.

Overall, the traffic modelling can be categorized into two classes, as shown

in Figure 2.9. The first class is referred to as the static model and as-

sumes a fixed set of MTs, M , that communicate with a fixed set of BSs,

S [31, 65, 101, 102, 114, 115, 123, 129, 170]. The static model suffers from sev-
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Figure 2.9: Summary of different traffic models [83]

eral limitations. First, it does not consider the mobility of MTs in terms

of their arrivals and departures. Second, it does not capture the call-level

or packet-level dynamics in terms of call duration, packet arrival, and so

on. On the other side, the second class, which is referred to as the dynamic

model, captures the spatial and temporal fluctuations of the traffic load, and

is discussed next in detail.
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Figure 2.10: Spatial and temporal traffic fluctuations [122]

2.5.2 Traffic fluctuation modelling

Studies have indicated that traffic is quite diverse even among closely located

BSs, as shown in Figure 2.10 [74, 122]. As a result, different models have

been proposed in the literature to reflect the spatial fluctuations in call traffic

load [146, 148, 173]. Location-based traffic load density is one approach to

capture traffic spatial fluctuations [148]. In this context, a geographical

region is covered by a set S of BSs and the region is partitioned into a set of

locations. An alternative approach, which is more suitable for a design stage,

defines the locations of BSs based on the stochastic geometry theory [146].

Two different time scales can capture the temporal fluctuations in the traffic

load [23, 87]. The first time scale is a long-term one that reflects the traffic

variations over the days of the week. Such a model can help in evaluating

different energy-efficient approaches for network operators, as it captures

both high and low call traffic load conditions. The second time scale is a

short-term one that reflects the call (packet) arrivals and departures of the

MTs. Such a model plays a vital role in evaluating energy-efficient resource

allocation schemes for MTs and BSs.

Long-term traffic fluctuations

Real call traffic traces demonstrate a sinusoidal traffic profile in each cell,

as shown in Figure 2.10 [122, 126]. During daytime (11 am-9 pm), traffic is

much higher than that during nighttime (10 pm-9 am) [74,126]. Furthermore,
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Figure 2.11: Average daily data traffic profile in a European country [23]

during weekends and holidays, the traffic profile, even during the peak hours,

is much lower than that of a normal week day [126]. The traffic profile

during a weekday is 10% less than its peak value 30% of the time, and this

increases to 43% of the time during weekends [126]. This behaviour can be

captured using an activity parameter ψ(t), which specifies the percentage of

active subscribers over time t, as shown in Figure 2.11 [23]. Denote p as the

population density of users per km2, N as the number of operators (each

being able to carry 1/N of the total traffic volume), and Mk as the fraction

of subscribers with an average data rate rk for terminal type k (e.g. smart

phone and tablet). Hence, the traffic demand, in bits per second per km2,

is given by

A(t) =
p

N
ψ(t)

∑
k

Mkrk. (2.1)

Studies have indicated that the traffic load difference between two consecu-

tive days for 70% of the BSs is less than 20% [74]. As a result, the long-term

fluctuations in call traffic load can be estimated from the historical mobile

traffic records; that is, the activity parameter ψ(t) and the average data rate

rk can be inferred in practice from historical data.

Short-term traffic fluctuations

Two categories can be distinguished for short-term traffic fluctuation mod-

els, namely call (flow)-level and packet-level models. Call (flow)-level models

are useful in designing and evaluating green resource scheduling mechanisms
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at both BSs and MTs under high call traffic load. For myopic resource allo-

cation solutions, the call arrivals are modelled using a Poisson process with

rate λ, and the call durations are represented by an exponential distribu-

tion [40, 87, 100]. Dynamic resource allocation solutions rely on finite-state

Markov chain (FSMC) to model traffic dynamics in terms of call arrivals

and departures [173]. In a low call traffic load condition, packet-level traffic

models are useful in designing and evaluating green resource solutions (on-

off switching) at the BSs and MTs, through modelling the BS/MT buffer

dynamics in terms of packet arrival and transmission [96,109]. Such models

are used to investigate the optimal on-off switching mechanisms for the ra-

dio interfaces of MTs to achieve energy-efficient (green) communications at

a low call traffic load condition.

2.6 Network energy consumption modelling

Understanding the dynamics of energy consumption of mobile networks is

essential for designing and optimizing green mobile networks. Base stations,

which consist of multiple components such as antennas, power amplifiers,

radio frequency transceivers, baseband processing units, power supply units,

and cooling units, account for the major energy consumption of a mobile

network. In general, a BS’s power consumption can be modeled as the

sum of its static power consumption and its dynamic power consumption.

The static power consumption is the power consumption of a BS without

any traffic load. The dynamic power consumption refers to the additional

power consumption incurred by the traffic load in the BS, which can be well

approximated by a linear function of the traffic load or the output radio

frequency power [23].The BS power consumption model can be adjusted to

model the power consumption of either MBSs or SCBSs by incorporating

and tweaking the BS’s static power consumption and the linear coefficient

that reflects the relationship between the BS’s dynamic power consumption

and its traffic load. Following the fluctuations in traffic load, this section

summarizes different definitions that have been proposed in the literature

to assess energy consumption of wireless networks. Towards this end, it

presents different throughput and power consumption models for BSs.
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2.6.1 Throughput models

The utility obtained from the wireless network in exchange for its consumed

power is expressed most of the time in terms of the achieved throughput. In

this context, we first introduce the concepts of aggregate BS capacity Cs, area

spectral efficiency Ts, and user-achieved data rate Rm. The BS aggregate

capacity Cs for BS s is measured using Shannon’s formula as follows [39]:

Cs = Bs log2 det(I + PH). (2.2)

where Bs denotes the total bandwidth of BS s, I represents the unit matrix,

P is the transmission power vector of BS s to every MT m in service, and

H stands for the channel gain matrix between BS s and each MT m, which

accounts for the channel’s fast fading, noise, and interference affecting the

radio transmission. The BS capacity Cs in (2.2) is measured in bits per

second (bps). At a low call traffic load condition, the area spectral efficiency

Ts provides a better representation of the BS’s attained utility than the

BS’s aggregate capacity since it accounts for the coverage probability, which

matters the most at such a condition [74]. Specifically, Ts measures the BS

throughput while considering the coverage probability. Denote Pr{γx→u >
ζ} as the success probability of the signal-to-noise ratio (SNR) γ received by

an MT at location u from a given BS at some location x satisfying a certain

QoS threshold ζ. Averaging the success probability Pr{γx→u > ζ} over the

propagation range to location u yields the coverage probability Ps(ζ). For

BS s, the area spectral efficiency Ts measured over a unit area is expressed

as

Ts = Ps(ζ) log2(1 + ζ). (2.3)

2.6.2 Power consumption models

In the literature, different models are proposed to capture the power con-

sumption of a network, as summarized in Figure 2.12. The total power

consumption Pn of a wireless access network n, from the network operator

perspective, can be captured using the aggregate power consumption of the

network BSs. Recently, in addition to the BS power consumption, more

emphasis is put on the backhaul power consumption, due to the informa-

tion exchange among BSs for cooperative transmission/networking. Next,

we will outline the different power consumption models proposed for BSs

and backhauls. For a large-cell BS (MBS), Figure 2.13 illustrates the power
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Figure 2.12: Summary of different power models proposed in the literature

[86]
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Figure 2.13: Percentage of power consumption at different components of a

large-cell BS [86]

Figure 2.14: Power consumption profile for a femto-cell BS [86]

consumption percentage of different components of the BS. Furthermore,

the power consumption profile of a femto-cell BS is shown in Figure 2.14.

According to Figure 2.13 and 2.14, the following facts turn out:

• The signal processing part is responsible for most of the power consump-

tion in a femto-cell BS as opposed to a large-cell BS (namely, 65.6% and

10% for femto and large-cell BSs, respectively).

• The radio frequency (RF) transmission/reception power consumption

in a femto-cell BS is almost half of that of a large-cell BS, with only

19.6% of the power consumed in the femto-cell BS power amplifier as

opposed to 65% in a large-cell BS.

In the literature, different models are adopted to represent the BS power

consumption Ps. For a large-cell BS, the simplest model is an ideal load-

dependent representation, which assumes that the BS consumes no power in

its idle state, that is, the BS consists of energy-proportional devices [148].
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Hence, the BS power consumption can be expressed as

Ps = ρPts. (2.4)

where ρ stands for the system traffic load density, and Pts denotes the BS’s

transmitted power. The major limitation with such a model is that it is

unrealistic, as the power consumption of some BS components in reality is

not load-dependent, as shown in Figure 2.13 (e.g. power supply and air

conditioning). To capture the power consumption of both load-dependent

and load-independent components in the BS, a more sophisticated model

assumes the following expression [23]:

Ps =

Pts
ξ(1− σfeed)

+ PRF + PBB

(1− σDC)(1− σMS)(1− σcool)
. (2.5)

where PRF represents the RF power consumption, PBB denotes the baseband

unit power consumption, ξ is the power amplifier efficiency, and σfeed, σDC,

σMS, and σcool stand for the losses incurred by the antenna feeder, DC-DC

power supply, main supply, and active cooling, respectively. The model (2.5)

is further approximated using a linear (affine) function for simplicity [30,87,

146,148,151]. The affine function consists of two components to represent Ps.

The first term is denoted by Pf and represents a fixed (load-independent)

power component that captures the power consumption at the power supply,

cooling, and other circuits. The second term is a load-dependent component.

The affine model is expressed as:

Ps = ∆sPts + Pf , (2.6)

where ∆s is the slope of the load-dependent power consumption. For a femto-

cell BS, the power consumption model is described by Deruyck et al. [46]:

Ps = Pmp + PFPGA + Ptx + Pamp, (2.7)

where Pmp, PFPGA, Ptx and Pamp denote the power consumption of the

microprocessor, field-programmable gate array (FPGA), transmitter, and

power amplifier, respectively. While the power consumption model in (2.7)

captures most of the components in Figure 2.14, it does not exhibit any de-

pendence on the call traffic load. Experimental results in [141] have pointed

out the dependence of the femto-cell BS power consumption on the offered
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load and the data packet size. Consequently, the power consumption model

for a femto-cell BS is expressed by Riggio and Leith [141]:

Ps = Pd(q, l) + Pf , (2.8)

where Pd(q, l) represents the BS power consumption, which depends on the

traffic load q [Mbps] and packet size l [bytes], and Pf stands for the idle power

consumption component. In order to capture the temporal fluctuations in

the call traffic load, a weighted sum of power consumptions at different traffic

load conditions (full load, half load, and idle conditions) is considered [77]:

Ps,total = 0.35Pmax + 0.4P50 + 0.25Psleep, (2.9)

where Pmax, P50, and Psleep denote the full rate, half rate, and sleep mode

power consumption, respectively. The weights in (2.9) are determined statis-

tically based on the historical traffic records. Recently, cooperative network-

ing among different BSs and APs in the heterogeneous wireless medium is

regarded as an effective approach to enhance the network’s overall capacity

and reduce the associated energy consumption [83–85,88,89]. However, this

approach relies on information exchange among different BSs and APs, such

as channel state information (CSI), call traffic load, and resource availabil-

ity, which are carried mainly over the backhaul connecting these BSs and

APs together. Hence, more emphasis is given to the backhaul design and

its power consumption. Three types of backhaul solutions can be distin-

guished, namely copper, microwave, and optical fibre. The most common

choice for backhaul is the copper lines [44]. Microwave backhauls are de-

ployed in locations where it is difficult to deploy wired (copper) lines. Also,

optical fibre backhauls are mainly used in locations with high traffic due

to their high deployment cost. Current research is focusing mainly on the

power consumption of microwave and optical fibre links, as they can support

the current high data rates. In its simplest form, the microwave (wireless)

backhaul power consumption is expressed as [44]:

PBH =
Creq,sPmw

Cmw
, (2.10)

where Creq,s and Cmw represent the BS’s required backhaul capacity and

the microwave backhaul total capacity (100 Mbps), respectively, and Pmw

denotes the associated power consumption (50 W). However, the model in

(2.10) does not account for many features of the backhaul. To gain a better
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Figure 2.15: Different backhaul topologies [117]: (a) ring topology

Figure 2.16: Different backhaul topologies [117]: (b) star topology

understanding of the power consumption of backhauls, we first provide a

brief description of the backhaul structure and associated topologies.

As shown in Figures 2.15, 2.16 and 2.17, each BS is connected to one or

more BSs via a backhaul link. All traffic from BSs is backhauled through a

hub node (traffic aggregation point) [117]. Any BS in the network can serve

as such a hub node. In general, more than one aggregation level (hub node)

can be present. Each hub node is connected to a sink node, which, in turn,

is connected to the core network. A BS is equipped with a switch if more

than one backhaul link originates or terminates at this BS. Following this

description, the microwave backhaul power consumption is expressed as [44]:
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Figure 2.17: Different backhaul topologies [117]: (c) tree topology

PBH = Psink +

S∑
s=1

PBH,s, (2.11)

where Psink is the power consumption at the sink node, PBH,s denotes the

power consumption associated with the backhaul operations at BS s, and S

stands for the total number of BSs. The following relationships hold:

PBH,s = Ps(Creq,s) + Pswitch,s(As, Creq,s), (2.12)

Psink = Psink(Creq,sink) + Pswitch,sink(Asink, Creq,sink), (2.13)

where Creq,s and Creq,sink represent the required backhaul capacity for BS

s and the sink node, respectively. The variable A denotes the number of

microwave antennas, Ps and Psink represent the power consumed for trans-

mitting and receiving backhaul traffic for BS s and the sink node, respec-

tively, and Pswitch models the BS/sink switch power consumption. On the

other hand, for an optical fibre backhaul, the power consumption is expressed

as [44]:

PBH =

⌈
S

maxNDL

⌉
Pswitch + SPDL +NULPUL +

S∑
s=1

cs, (2.14)

where maxNDL stands for the maximum number of downlink interfaces avail-

able at one aggregation switch, PDL denotes the power consumption due to
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one interface of a switch, NUL and PUL represent the total number of uplink

interfaces and power consumption of one uplink interface, and cs denotes

the power consumption of a pluggable optical interface, which is used to

connect a BS to the switch at the hub node. A limitation with the mod-

els (2.4)-(2.11) is that they focus mainly on the BS’s operation power. In

a more general model, the BS’s total consumption is described in terms of

the BS’s operating energy and embodied energy, Eo and Ee, respectively.

The BS’s embodied energy represents 30-40% of the BS’s total energy con-

sumption [82] and accounts for the energy consumed by all the processes

associated with the manufacturing and maintenance of the BS. Over the

BS’s lifetime, the embodied energy is calculated as 75 GJ [82]. It consists

of two components. The first component refers to the initial embodied en-

ergy Eei, while the second one stands for the maintenance embodied energy

Eem. The initial embodied energy comprises the energy used to acquire and

process raw materials, manufacture components, and assemble and install

all BS components. The initial embodied energy is accounted for only once

in the initial BS manufacturing process. The maintenance embodied energy

includes the energy associated with maintaining, repairing, and replacing

the materials and components of the BS throughout its lifetime. Thus, the

BS’s total energy consumption (in joules) throughout its lifetime is given by

Humar et al. [82]:

Eb = Ee + Eo = (Eei + Eem) + Eo, (2.15)

where Eem = PemTlifetime, with Pem and Tlifetime representing the BS’s main-

tenance power and lifetime, respectively. Eo = PoTlifetime, where Po is de-

fined in terms of the BS’s operating power described by (2.4)-(2.9). The

model in (2.15) is useful in quantifying the BS’s total power consumption

during the network design stage, for example, while designing a multi-tier

wireless network. Also, a similar expression can be derived for the backhaul

energy consumption in (2.10)-(2.14), which when added to (2.15) can be used

to calculate the overall network energy consumption.

In order to develop and analyse a green network solution, an appropriate

definition of energy efficiency and consumption for network operators and

mobile users should be adopted.

In addition, the green network solution should satisfy some target (and pos-

sibly conflicting) performance metrics. Therefore, this chapter was dedicated

to energy efficiency and consumption definitions, as well as power consump-

tion, throughput, and traffic load models for network operators and mobile
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users, along with conflicting performance metrics. After having introduced

the necessary background concepts in this chapter, the next chapter investi-

gates a framework for optimizing energy utilization in mobile networks.



38 Green mobile networks



Chapter 3

On the trade-off between energy

saving and number of switchings

in green cellular networks

In this chapter, we propose a multiobjective optimization frame-

work aimed at minimizing the power consumption and the number

of BS sleep-mode switchings in cellular networks, by jointly con-

sidering QoS requirements. These requirements are expressed in

terms of a required bit rate for each mobile terminal. The frame-

work deals with network management, such as the number of BSs

that should be switched on, considering common diurnal patterns

of the traffic demand. The optimization technique proposed in

this paper is mixed-integer quadratic programming, which solves

the joint power allocation and user association problem while also

considering optimized bandwidth allocation schemes. The trade-

off between the conflicting objectives, as well as the performance

analysis in terms of the throughput and energy consumption of

the network, is shown for different traffic load cases. 1

1This chapter has been published as “On the trade-off between energy saving and

number of switchings in green cellular networks” in Wiley Transactions on Emerging

Telecommunications Technologies, in press, 2017 [50].
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3.1 Introduction and state of the art

The electricity consumption of the telecommunication networks is forecasted

to increase exorbitantly by 150% from 20 TWh in 2011 to 50 TWh in 2020.

The biggest growth is expected for the mobile networks due to the immense

growth of mobile data traffic by a factor 30 caused by the more intensive use

of mobile internet services [138]. These are enabled by more capable mobile

networks (LTE and LTE-A technologies) as well as an increasing number of

mobile devices with significant computing power (smartphones, tablets).

In order to gain extra commercial benefits and reduce operating expense,

mobile operators are more and more motivated to seek ”green” approaches

that reduce the energy consumption of mobile cellular networks. Therefore,

it is essential to consider how to decrease the energy consumption, especially

the energy consumption of BSs, in order to fulfil the technical goals of future

networks, such as higher user data rates, improved coverage with uniform

user experience and reduced end-to-end latency. The goal of improving en-

ergy efficiency (EE) and reducing the operational costs of a cellular network

puts forward a large variety of critical objectives, often coupled in a conflict-

ing manner. Since the proper design of future networks is characterized by

an increasing diversity of requirements and use cases, we need to focus on the

communication infrastructure and improve versatility, scalability and adapt-

ability of current networks. These challenges can be addressed by developing

a precise and specific problem formulation, in order to design new optimiza-

tion tools that can flexibly handle multiple objectives, trade-off analysis and

adaptive designs.

Recent studies have explored adaptive radio resource management (RRM)

solutions to save energy and improve network utilization efficiency. When

the spatial traffic distribution is non-uniform and time-varying, dynamic cov-

erage management may be introduced to exploit traffic variations. Dynamic

switch on/off of coverage overlaid cells in low traffic is an example. By this

solution the BS activity could be adapted to the traffic demand avoiding the

waste of energy due to the peak dimensioning [105,119,142,143]. In particu-

lar ultra-dense BS deployment makes sleep mode operations more desirable,

by exploiting small coverage areas and more random traffic patterns. For

traffic fluctuations between day and night, macro sleep or deeper sleep can

be enabled. However, for medium to high traffic hours deep sleep is not

possible. Therefore, in the time domain a finer granularity of sleep mode has

been introduced, identified as cell discontinuous transmission (DTX) [62].
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This solution is enabled by the particular structure of the LTE frame and

allows the transceiver deactivation (sleep mode) during the idle time slots.

Thus, the cell coverage is not affected by the sleep mode, since the signalling

symbols are always transmitted at the same power level. Cell DTX feature

does not require specific decisions to be taken regarding when to sleep and

traffic offloading [62, 78, 160]. However, the savings that can be achieved

are limited with respect to deep long term sleep. For the long term sleep,

in order to maximize the energy savings, the association between users and

BSs can be considered as an optimization variable together with bandwidth

allocated to each user [34]. As a matter of fact, an energy saving can be

introduced by increasing the bandwidth per user and, consequently, reduc-

ing the BS transmission power if the target data rate per user is fixed [156].

Such a solution is known as bandwidth expansion mode (BEM) and can be

applied when resource usage is light, i.e. in low load conditions.

In [106, 107] analytical models are developed to identify optimal fixed BS

switch-off times as a function of the daily traffic pattern. According to the

authors, the extra energy saving gained by multiple switch-offs over single

switch-off is only marginal. Dynamic sleep mode schemes generally require

more switching operations as compared to fixed schemes, especially with

highly variable traffic patterns. Therefore, a fundamental trade-off to be

considered is between more energy saving in sleep mode and the cost of

switching operations, which includes extra power for monitoring and switch-

ing, overhead, delay constraints, and impact on the operational lifetime of

BSs [36]. One common problem with current research in this area is that

most work implicitly assume that BSs are able to alternate between sleeping

and active mode as frequently as possible. Although the most recent BSs

have already been designed for frequently entering sleep modes, still most of

the current BSs in use today were designed foreseeing only occasional change

of state, otherwise the negative impact in terms of failure rate of BS compo-

nents would be dramatic [37].

It is worth mentioning that BS sleeping might negatively impact QoS require-

ments of the system because of decreasing capacity, unless specific remedial

actions are adopted concurrently [150]. Nonetheless, because sleep mode

techniques are based on current architecture, they have the advantage of be-

ing easier to test and implement as no replacement of hardware is required

and the performance can be evaluated by computer simulation. A potential

deficiency of existing studies using this approach is over-simplified models
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and assumptions [164]. Power control is a RRM solution for energy sav-

ing which aims at minimizing the BS transmission power with a given QoS

target for the served users. The benefit of power control is not only in the en-

ergy reduction but also in neighbour cell interference management [155,163].

In [155] the authors propose an optimization framework to maximize the

quantity of transmitted bits per energy unit. Such a solution looks at the

energy efficiency maximization, but does not consider a QoS target for each

user. Moreover, in [163] transmission power for an OFDM communication

is minimized without considering any constraint on power model.

By combining some of these approaches, different optimization strategies

have been proposed. A pricing algorithm is evaluated in [169] to solve user

association problem and minimize area power consumption, also consider-

ing interference: therein, mobile terminal rates are fixed and bandwidth is

equally allocated to users regardless of their received signal strength. The

user association is a fundamental aspect of sleep mode strategies: it im-

plies associating mobile end users with BSs in an energy efficient way. Users

originally connected to BSs that went asleep need to be associated with

new active BSs, ensuring the QoS requirements during BS sleeping opera-

tions. It’s worth noticing that simply associating a user to the closest BS

may be sub-optimal with random traffic distribution [135, 148]. In [80] the

power supply per LTE frame is minimized by assigning a suitable transmis-

sion power and rate for each link, without considering the mapping problem

and a minimum rate value to ensure QoS. QoS constraints are considered

in [81,139,167]. In [81] the power allocation per user is optimized aiming at

energy per bit minimization with a bit error rate constraint to guarantee the

QoS. A lower bound on user data rate is set in [167] where BS transmission

power and user rate are optimized in order to maximize the energy efficiency

in terms of ”bit per Joule”. The system model considers a single cell sce-

nario where the effect of neighbouring interference and users mapping are

not considered. In [139] a two-step algorithm aiming at minimizing energy

consumption by properly assigning subcarriers and power to users is pro-

posed. Such a solution considers a very simple bandwidth division among

served users and does not take advantage of BEM in order to reduce the

unfairness in the perceived data rate.

In general, there is no available closed form expression to show the direct

relationship between transmit power and QoS and user experience measures,

such as service latency or user perceived throughput. Therefore, the investi-
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gation of simplified but approximate models is accomplished in order to pro-

vide insights for practical system design. On the other hand, user scheduling

and resource allocation solutions are needed to control the operation point

that maximizes network power efficiency while balancing the heterogeneous

QoS requirements. Furthermore, heterogeneity is also a key aspect of future

networks as outlined in the project Mobile and Wireless Communication En-

ablers for the Twenty-twenty Information Society (METIS), whose goal is to

lay the foundation for the beyond 2020 5G mobile and wireless system. For

instance, the combination of different access points, traffic loads and radio

access technologies, makes the network highly heterogeneous. Hence, the

same deployment strategy cannot be used everywhere and the same RRM

solution cannot be used throughout the day with very different network con-

ditions. At the same time network designers need to consider heterogeneous

user conditions, because the mobility scenario and specific path loss of a

user determines its quality of service. The different requirements or objec-

tives cannot be treated separately, since they are coupled, often in conflicting

ways, so that improvements in one objective end up impairing the others.

These aspects call for design and optimization frameworks that handle mul-

tiple objectives and support the selection of the best attainable operating

point [19,27,35,64,125,136].

In this chapter an energy efficient and adaptive cellular network config-

uration strategy with QoS requirements is proposed: a given service rate is

guaranteed to mobile terminals; if sufficient bandwidth resources are avail-

able, mobile users can obtain higher rates than the target value since their

received power must be greater than the terminal sensitivity threshold. The

cost of rearranging the network when traffic demand changes is taken into

account by considering the number of BS switchings, defined as the num-

ber of active/inactive state transitions in a twenty-four hour period. In

order to design an effective BS switching mechanism, two issues must be

addressed, namely the user association problem and BS operation. The BS

on/off switching is coupled with the user association problem. In develop-

ing the energy-efficient user association mechanism, the adopted approach

aims to balance the trade-off between network energy consumption and the

number of switching operations, while accounting for the user target QoS

constraints. This case assumes a multiobjective optimization problem with

a weighting factor. When the weighting factor equals zero, the user is associ-

ated to the BS that maximizes the network energy efficiency performance. As
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the weighting factor increases, the user association decision pays more atten-

tion to the network operation and maintenance costs, in terms of switching

operations. In the simulation scenario the traffic demand varies during the

hours of a day: the problem of network dimensioning with multi-hour traffic

is addressed by determining how much capacity is needed to handle demands

at all times. Furthermore, the bandwidth blocks are not uniformly assigned

but according to the spectral efficiency of the overall user associations, saving

more resources for the users experiencing lower signal quality and including

the benefits provided by BEM. The derived optimization framework is based

on Mixed Integer Quadratic Programming (MIQP): within this framework

the user association problem is iteratively solved, together with the decision

variables for the BSs activity. Moreover, the user bandwidth, the rate as-

signments as well as the transmit power of each active BS are determined.

Adapting the network configuration during the day with a minimum num-

ber of switching operations allows to reduce signalling traffic and handover

operations. Since the implementation of a power saving strategy should con-

sider multiple conflicting objectives, this work extends the results presented

in [135] by introducing a multiobjective optimization framework, designed

to manage the network configuration over a daily pattern of traffic demands.

In order to present the trade-off and performance study a per ”traffic load”

class analysis is introduced, considering three traffic conditions: low, medium

and high traffic load.

3.2 System model and problem formulation

A typical LTE system deployment is considered with a given bandwidth and

a set of resource blocks as represented in Figure 3.1. A set of omnidirec-

tional BSs provides the radio access to a certain number of user equipments

(UEs), as determined by a daily profile of traffic demands [22]. Each base

station must allocate the available bandwidth resources among the associ-

ated transmitting users by assigning the proper amount of physical resource

blocks (PRBs) and guaranteeing their QoS in terms of bitrate on an hourly

basis. The UEs request a constant bitrate and are served at the same time.

Let B = {BS1, ..., BSN} and U = {UE1, ..., UEM} be respectively the set of

N deployed base stations and the set of M users which have to be served

respectively. The binary variable x models the association between BSs and
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Figure 3.1: The considered BS deployment

UEs, as in the following:

xij =

{
1 if UE j is served by BS i

0 otherwise
i ∈ B, j ∈ U . (3.1)

Assuming πij as the power assigned for transmission between BS i and

UE j and wij is the bandwidth assigned by BS i to UE j, the data rate

achieved by UE j is:

ρj =
∑
i∈B

xijwij log2(1 + γij) (3.2)

where γij is the SINR experienced by UE j served by BS i. The transmission

power of each BS i is calculated as Pi =
∑
j∈U πijxij . Therefore, the SINR

γij is

γij =
πijσijxij

wij

W

(∑N
k=1 Pkσkjζk(1− xkj) +WN0

) (3.3)

where σij is the channel loss between BS i and UE j, W is the total available

bandwidth at BS and N0 is the Additive White Gaussian noise spectral

density. The activity status of each BS is modelled by the binary variable ζ,

so that:

ζi =

{
1 if BS i is active

0 if BS i is in SLEEP mode
i ∈ B. (3.4)
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Table 3.1: Given data for the considered problem

Parameter Value

N number of deployed base stations

M number of users

B = {BS1, ..., BSN} set of N deployed base stations

U = {UE1, ..., UEM} set of M users which have to be served

Rt Data rate target for each UE

PMINj sensitivity of UE j

PMAX maximum allowed BS transmission power

Np number of available PRBs at BS

Wp bandwidth of a single PRB

W total available bandwidth at BS

σij channel loss between BS i and UE j

Note that in (3.3) the received interference is weighted by the effective frac-

tion of bandwidth assigned to UE. Such a choice is justified by the need to

consider the effect of allocating different portions of bandwidth to each UE.

Given the system model and the data reported in Table 3.1, the goal of

the problem is to minimize the global power consumption Pc by limiting at

the same time the number of BS switchings S during daily traffic variations,

reflected in the change of state of the deployed BSs and monitored by ζ.

Let T = {t1, ..., tL} be the set of L traffic demands during the day in

terms of UEs to be served. At every time t ∈ T the two objective functions

are then calculated as:

P (t)
c =

N∑
i=1

[(a

M∑
j=1

πijxij + P0)ζ
(t)
i + (1− ζ(t)

i )Psleep], (3.5a)

S(t) =

N∑
i=1

[ζ
(t)
i (1− ζ(t−1)

i ) + ζ
(t−1)
i (1− ζ(t)

i )] (3.5b)

where parameters a, P0 and Psleep are the slope of the dynamic consumption,

the fixed consumption and the sleep mode consumption, respectively [23].

Considering the activity status transitions of each BS in response to the

changing traffic demand, (3.5b) keeps track of the number of sleep mode

switchings triggered by energy efficiency policies.

Assuming λ as the weighting factor between the two conflicting objectives,
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the optimization problem is formulated in (3.6a)-(3.6h).

min
π,x,ζ

(Pc + λS) (3.6a)

s.t.

M∑
j=1

xij ≤ NPRB , ∀i ∈ B, (3.6b)

N∑
i=1

M∑
j=1

xij = M, ∀j ∈ U , (3.6c)

N∑
i=1

xij = 1, ∀j ∈ U , (3.6d)

cij ≤
πij · σij
PMINj

, ∀i ∈ B ∀j ∈ U , (3.6e)

cij − xij ≥ 0, ∀i ∈ B ∀j ∈ U , (3.6f)

ζi ≤ xij , ∀j ∈ U ∀i ∈ B, (3.6g)

M∑
j=1

πij ≤ PMAX , ∀i ∈ B. (3.6h)

Constraint (3.6b) is for the BS capacity limitation, since a BS cannot as-

sign more than available bandwidth elements NPRB . Constraints (3.6c) and

(3.6d) ensure that each UE must be covered by at least one BS and can be

connected to only one BS at a time. Constraint (3.6e) is the key for assuring

the QoS: the binary variable cij equals to 0 if πijσij ≤ PMINj ; hence, for

a given UE, constraint (3.6e) will define the set of potential BSs that can

provide the minimum received power, PMINj . Then, introducing constraint

(3.6f), only one of the BSs in this set is selected. The activity status of a

base station is linked to the user associations by constraint (3.6g). Finally,

constraint (3.6h) sets the limit on the maximum BS transmission power.

The product of bounded variables in the objective function defines a general

MIQP problem. It is well-known that MIQP is NP-hard, trivially because

it contains Mixed-Integer Linear Programming (MILP) as a special case. In

order to solve the optimization problem the MIQP model has been built in

IBM ILOG CPLEX®solver [28], in which the optimal solution is obtained

with an iterative method.

Since the optimization problem defines the linear combination of global

power consumption and number of BS switchings, the two entities have been

normalized in order to be compared and weighted by λ.
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Algorithm 1 Power Control (Closest BS Mapping)

Given: xij , wij , PMINj ∀i ∈ B, ∀j ∈ U , PMAX , Rt;

Return: Pi ∀i ∈ B; Pij ∀i ∈ B, ∀j ∈ U ;

1: for all i ∈ B do P
(0)
i ← PMAX

2: repeat

3: for all i ∈ B do

4: Calculate πij as in (3.7) and (3.8) ∀j ∈ U
5: Pi ←

∑
j∈U πijxij ∀j ∈ U

6: end for

7: until convergence

8: Update πij as in (3.8) ∀i ∈ B ∀j ∈ U
9: Update Pi to the maximum allowed value ∀i ∈ B

A complete list of the considered parameters and their symbols is reported

in Table 3.1.

3.3 Network optimization solutions

3.3.1 Power control and bandwidth adaptation

Power control is a well known solution to decrease the global energy con-

sumption by acting on the reduction of inter cell interference [81, 155]. In

this work a power control algorithm that is similar to the one presented

in [171, 172] is considered, in order to extend that solution to a multichan-

nel scenario with minimum and maximum power constraints2. As shown in

Algorithm 1, this power control algorithm takes as input a UE-BS associa-

tion and a bandwidth assignment for each UE and provides iteratively the

optimum BS transmission power which can guarantee the target data rate

for each UE. The proof of optimality can be found in [171].

The core of the optimum power control algorithm is to calculate at each

iteration n the power transmitted by a BS to a certain UE as

π
(n)
ij =

wij2
Rt
wij

Wσij

(∑
k∈B

P
(n−1)
k (1− xkj)σkj +WN0

)
(3.7)

2For the proof of convergence in iterative power control algorithm, please see [172], pp.

163-171.
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Algorithm 2 Bandwidth allocation

Given: σij , Pi, πij ∀i ∈ B, ∀j ∈ U Return: wij ∀i ∈ B, ∀j ∈ U ;

1: Set nPRB = 0 ∀j ∈ U
2: for all i ∈ B do

3: repeat

4: for all j ∈ U do

5: Calculate ρj as in (3.2)

6: if xij = 1 AND ρj < Rt then

7: increment nPRB
8: wij = nPRBWPRB

9: end if

10: end for

11: until all PRBs are assigned or Rt is reached by all served UEs

12: end for

13: if any residual PRB and all UEs are satisfied then

14: share equally residual PRBs

15: end if

where Rt is the target data rate, i.e. the QoS constraint for each UE. The

initial condition is such that
∑
j π

(0)
ij = PMAX for all i ∈ B. Note that the

power assigned to a BS Pi cannot be greater than the maximum allowed

power PMAX : in that case the power PMAX is divided equally among each

UE to indicate the UEs under outage. Moreover the received power for each

UE j cannot be smaller than the sensitivity PMINj : in that case the power

which is transmitted by a BS to a certain UE is adjusted by the following

equation:

πij = max

(
PMINj

σij
; πij

)
. (3.8)

Bandwidth assignment to each served UE is a task that can be solved in dif-

ferent ways by radio network operators (RNOs) depending on their policies.

A RNO could give more priority to the UEs experiencing the best channel

conditions in order to maximize the throughput. The assignment of band-

width resources is crucial especially when the resources are limited. When

an energy saving strategy is applied and the network capacity is reduced by

putting a subset of BSs into sleep mode, a certain QoS level should be guar-

anteed to each served UE. Fairness between served UEs is also a key issue
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that can be introduced by giving more resources to the UEs experiencing

the worst channel conditions. Such a solution enables the use of bandwidth

expansion mode in order to reduce the BS transmission power. Algorithm 2

presents a possible solution to assign bandwidth in order to achieve fairness

among UEs in terms of QoS, i.e. user data rates.

3.3.2 Network configuration management optimization

The fundamental approach of the optimization problem is to recognize the

existence of multiple objectives, such as guaranteed rate for all the users,

network power consumption, number of BS switchings, and number of si-

multaneously active BSs. A key assumption is that these objectives are not

ordered, so they are studied considering that in multicriteria optimization

problems there are only subjectively optimal solutions. In order to minimize

the power consumption in a cellular network, a first optimization strategy is

proposed. The problem is iteratively solved for three variables: association

between BS and UE, bandwidth assignment and power allocation. In par-

ticular, a suitable BS-UE association allows saving power by decreasing the

number of BSs that are not serving traffic and that can be deactivated or put

in sleep mode. In order to limit the cost of switching operations, the number

of power state transitions of BSs is also taken into account in the optimiza-

tion process. By adopting the joint bandwidth and power allocation scheme

a further gain is introduced, reducing the transmission power and decreasing

the inter cell interference. The deactivation and power reduction of the BSs

are allowed only if no outage is introduced, i.e. the target QoS is satisfied for

each served UE. The optimization framework is composed of (i) MIQP solver

of the user association problem obtaining the optimized active subset of BSs,

(ii) bandwidth allocation scheme, (iii) power control algorithm, used to con-

trol the feasibility of the UE to BS mapping derived in (i) by identifying the

eventual outages. The MIQP optimization refers to the problem formulated

in (3.6a)-(3.6h). The output of this step is the mapping xij between BSs

and UEs, the power transmitted by each BS to each connected UE πij and

the set of active BSs ζi. Then in the second step the bandwidth is allocated

to each UE by the respective serving BSs. The bandwidth allocation is per-

formed following Algorithm 2. The MIQP model is solved by IBM ILOG

CPLEX®solver [28]. Since the model cannot manage directly the QoS for

each UE because of its non-linearity, two approaches are proposed in order

to avoid any outage. Such approaches are (i) Power consumption minimiza-
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Algorithm 3 MinPower

Given: σij , PMINj ∀i ∈ B, ∀j ∈ U , PMAX , λ;

Return: xij , wij ∀i ∈ B, ∀j ∈ U ; ζi, Pi ∀i ∈ B; Pij ∀i ∈ B, ∀j ∈ U

1: Solve MIQP

2: Solve bandwidth allocation as in Algorithm 2

Algorithm 4 MinPower-QoS

Given: σij ∀i ∈ B, ∀j ∈ U ; , PMAX , PMINj , λ;

Return: xij , wij ∀i ∈ B, ∀j ∈ U ; ζi, Pi ∀i ∈ B; πij ∀i ∈ B, ∀j ∈ U

1: repeat

2: Execute MinPower algorithm (Algorithm 3)

3: Execute Power Control algorithm (Algorithm 1)

4: Data rate (ρj) calculation as in (3.2) ∀j ∈ U
5: for all j ∈ U\satisfied UEs do

6: PMINj ← PMINj + δ

7: end for

8: until no outages

tion assuming an interference controlled scenario (MinPower); (ii) Iterative

power consumption and BS sleep mode switching minimization to guarantee

QoS (MinPower-QoS ). The MinPower scenario assumes a good planning or

a perfect inter cell interference cancellation (ICIC) solution, but it could be

also the reference condition for rural areas. If the rate of each user is only de-

pendent on the SNR, the only variable to be taken into account is the power

received by the serving BS. On the other hand, if the interference cannot be

neglected, the MinPower algorithm cannot guarantee the required QoS, as

shown in Algorithm 3, and some outages could arise. Therefore, this algo-

rithm represents an optimum lower bound for the network optimization in

terms of global power consumption. In order to avoid the data rate outages

and reduce the impact of switching operations MinPower-QoS is introduced

in Algorithm 4. It combines the optimum power control and the MinPower

approaches in an iterative framework. In particular MinPower is executed

in order to obtain the optimum set of active BSs, the optimum mapping and

the bandwidth assignment and to minimize the power consumption, as well
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as the number of switch on/off operations, while the feasibility of this solu-

tion is controlled by the Power Control procedure, as shown in Algorithm 4.

If some data rate outages occur, the power of the users which do not satisfy

the target QoS is iteratively increased by a δ value in order to identify new

active BS sets with a better mapping. In order to design the network which

aims at minimizing the power consumption, but also reduces the number of

necessary BS switchings throughout a daily pattern of traffic demands, we

characterize the attainable objective set of suboptimal solutions by comput-

ing a discrete set of λ sample points. As λ increases, the priority of reducing

network operation and maintenance costs also increases.

3.3.3 Algorithmic complexity

In this section, the worst case performance of each algorithm is studied as a

function of the number of users M , and the number of base stations N .

Power Control (Closest BS Mapping): The initialization step requires N

assignments. The algorithm cycles through the list of base stations, which

requires N iterations, with, at most, M assignments and M evaluations in

each iteration. The final updates require MN assignments. The algorithm

complexity is O(MN2 +MN).

Bandwidth allocation: The algorithm iterates N times, and each stage

requires M evaluations and M comparisons. The algorithm complexity is

O(MN).

MinPower : The MIQP problem is NP-hard. This means that, in worst

case, the solution time grows exponentially with the number of integer vari-

ables, but MIQP can easily be reformulated as a convex MIQP. This is true

for example when all products are between a binary variable and a bounded

variable. Unfortunately, the worst case complexity is still exponential and

the number of combinations necessary to enumerate, and solve an optimiza-

tion problem, is problem dependent. CPLEX uses branch and cut algorithm,

based on branch and bound, in order to work in polynomial time when the

number of constraints is small enough [28].

MinPower-Qos: The dominant part of the algorithm is the execution of

MinPower algorithm, so the worst case complexity is still exponential. The

second half of the algorithm, which involves Power Control and QoS target

satisfaction, can be shown to be O(MN2 + MN). Once again, the use of

pre-processing techniques in CPLEX branch and cut algorithm can provide

a solution to the optimization problem in polynomial time [28].
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Table 3.2: Simulation parameters [7]

Parameter Value

Deployment 19 BS, hexagonal grid, wrap-around

Intersite distance 500 m

Path loss 15.3 + 37.6 log(d[m]) (3GPP Typical Urban)

Shadow fading std dev 8 dB

Indoor loss 20 dB

Bandwidth 5 MHz (25 PRBs)

Carrier frequency 2GHz

Max BS PTX 20 W

UE sensitivity -90 dBm

Noise PSD -174 dBm/Hz

Target user data rate 512 Kbps

Power consumption a = 4.7 P0 = 130 W Psleep = 13 W

3.4 Simulation results

In order to evaluate the power consumption savings due to the base station

sleep mode mechanism and the transmission power adaptation, the proposed

solution, namely, MinPower-QoS, is compared to upper bound and lower

bound solutions. As an upper bound, the Closest BS Mapping is considered,

adopting Algorithm 1, based on power control with closest BS mapping and

equal bandwidth assignment to each UE. BSs which are not serving any

UE are put on sleep mode. As a lower bound, the optimum energy saving

solution MinPower is used. Moreover, in order to assess the trade-off be-

tween network energy consumption and the number of switching operations

in MinPower-QoS, different λ values have been considered. Simulation pa-

rameters and path loss model are reported in Table 3.2 [7]. If a UE cannot

achieve the data rate target, the minimum received power threshold, defined

as PMINj in constraint (3.6e), is increased by δ = 1 dB in each iteration of

MinPower-QoS, solving the MIQP model with this new setting. Increasing

PMINj by one unit at every step of the optimization process guarantees the

fulfillment of QoS requirements for each network user. The number of active

UEs that are randomly placed in the playground has been set considering

the daily traffic profile of Figure 3.2. The trend of the UE requests shows a

typical daily oscillation of the traffic, that is consistent with average profiles

available in literature [22]. The maximum number of active UEs at busy

hours in the considered area of 3 km2 is equal to 230, i.e. 75 UEs/km2. It

corresponds to the maximum number of UEs that can be managed by the

Closest BS Mapping solution without any capacity outage, representing the
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Figure 3.2: Daily traffic pattern

maximum load of the cellular network. Three traffic load classes have been

derived from the maximum traffic load, considering 20, 50 and 75 UEs/km2

as peak values for low, medium and high traffic load respectively. As shown

by the research activities of the EARTH Project [22], the daily variation of

the number of active users is analogous to the daily variation of the traffic

and small-scale short-term evaluations fail to capture the energy efficiency

of the entire network, since the load situation of a network varies radically

over the time of a day and a week. Therefore each single stage of the it-

erative process can represent a snapshot of the current network, and using

average traffic statistics, the impact of user mobility can be neglected in the

simulation scenario.

The results are obtained by statistical analysis of 50 simulation runs with

a 95% confidence interval. In Figure 3.3(a) the UE satisfaction rate is de-

picted starting from optimum MinPower solution as first iteration. From

this figure, it is possible to note also the impact of the number of active UEs

on the number of iterations before affording 0 outages. While MinPower ex-

periences outages, MinPower-QoS converges to 0 outage performance after

a number of iterations that depends on the number of UEs, i.e. the network

traffic load. Each iteration corresponds to a solution in the search space for

the MIQP model which stops when it reaches a minimum power solution with

0 outages. The cumulative transmission power vs the number of iterations is

also depicted in Figure 3.3(a). Active UEs are satisfied when mapping and

received power allow to reach the target QoS. Among the feasible solutions,
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Figure 3.3: Simulation results: (a) satisfied UEs and cumulative transmission

power of active BSs vs number of iterations in MinPower-QoS ; (b) active

BSs vs time of day; (c) global power consumption vs time of day
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the one minimizing the global power consumption is chosen. Particularly,

even if the proper mapping is obtained by increasing the BS transmission

powers, this trend can be harmful for some UEs at the cell edge because

of the interference level. Therefore, the cumulative transmission power of

the active BSs is directly proportional to the number of UEs, as shown in

medium and high load cases, but is also dependent on the current subset of

active BSs at every step of the optimization process. On the other hand a

lower number of UEs requires less iterations to reach the solution. Figure

3.3(b) presents the comparison of the number of active BSs for MinPower-

QoS, with different λ values, with respect to the other solutions, i.e., Closest

BS Mapping and MinPower. From the figure the behaviour of the proposed

solution is evident: when no optimization on the number of BS switchings is

applied (λ = 0) the number of active BSs is the same as in MinPower case in

low load hours. On the other hand, by increasing the weight of BS switchings

in the optimization process, the number of active BSs ends up being more

stable. Because of the QoS requirements, the slope of MinPower-QoS is

higher than MinPower : as expected, the MinPower-QoS converges to Clos-

est BS Mapping when the number of active UEs increases at busy hours.

This result is enforced by Figure 3.3(c) where the total power consumption

versus time is depicted. It is interesting to see that in the interference lim-

ited scenario under high load, MinPower-QoS can still have power savings

over the Closest BS Mapping algorithm due to its flexibility in user asso-

ciation and bandwidth allocation. On the other hand, for the minimum

load demand the performance of MinPower-QoS is close to the energy con-

sumption optimum lower bound represented by MinPower. More in detail,

the impact of the weighting factor λ in MinPower-QoS optimization process

can be highlighted. The solution with an intermediate value of λ = 0.06

has a remarkable performance from the power consumption perspective, by

maintaining a good compromise in terms of power saving during peak and

off-peak hours. Such a behaviour can be explained by a more flexible man-

agement of the radio resources that allows a lower number of active BSs and

a lower transmission power. On the other hand, when the weight of λ in-

creases, the adaptability of the network configuration is reduced in terms of

switching operations and the total power consumption inevitably gets higher,

especially in low load hours. More details about this trend are provided in

Figure 3.4. The results achieved by MinPower-QoS, in terms of daily energy

consumption and daily number of BS sleep mode switchings, are shown for
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Figure 3.4: Daily energy consumption vs number of BS switchings in

MinPower-QoS

the set of discrete values λ ∈ {0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1}. When λ = 0

the optimization framework obtains the best energy saving solution at the

expense of a greater number of BS sleep mode switchings. The introduction

of the multiobjective optimization approach with weighting factor λ on the

other side drastically reduces the number of sleep mode transitions, consum-

ing more energy with higher values of λ. In particular the optimal trade-off

is guaranteed by the λ = 0.06 case, which consumes 3% more energy to the

benefit of 70% less daily number of BS switchings with respect to the λ = 0

case. Since the optimization model is based on reaching the best solution

with 0 outages, it is important to remind that the introduction of λ does

not alter the satisfied UEs target, while searching for the best attainable BS

subset, as shown in Figure 3.3(a). Moreover in Figure 3.5 the running time

for MinPower-QoS algorithm is plotted as a function of the number of users

with 3 different values of λ. Measurements were performed on a system fea-

turing an Intel Centrino Core 2 Duo E6600 CPU running at 2.20 GHz and

4 GB RAM. The proposed method requires tens of seconds in medium to

high traffic load cases. Although the running time increases as the growth of

user population, the impact of the optimization process in terms of reduced

number of BS switchings moderately affects the performances with higher

values of λ.

In order to evaluate the overall throughput performance of the proposed

solution, Figure 3.6 shows the results obtained in terms of daily power con-

sumption and aggregate daily throughput. While MinPower is able to heav-
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ily reduce the amount of consumed power, the lack of QoS requirements

causes a huge loss in terms of overall throughput achieved by users. On the

other hand, MinPower-QoS can obtain an acceptable throughput perfor-

mance, holding up to the Closest BS Mapping reference case and delivering

major energy savings at the same time.

In Figure 3.7 the optimization solutions obtained by MinPower-QoS are di-

vided in three subsets, corresponding to low, medium and high traffic load

periods, as highlighted in Figure 3.2. The introduction of the weighting

factor λ in the optimization process allows to heavily reduce the number of

switching operations during the day, particularly at off-peak hours, when

the network degree of adaptability is higher. Note that with lower values of

λ, the power consumption sligthly changes until no optimization is applied

in terms of switching operations (λ = 0); on the other hand, employing the

highlighted optimal λ values the hourly number of BS switchings drops below

one-half of the peak value in low load case and below one-third of the peak

value in medium and high load cases. Consequently, the optimal network

configuration can be obtained, affording the coverage and QoS requirements

with minimum number of BS switchings.

Such a solution is able to reduce the signalling and handover traffic overhead

related to the joint BS on/off switching and user association strategy, as well

as the impact on operations and maintenance activities, which involve oper-

ational performance, monitoring and control of site operations. Moreover it

can be seen that the impact of λ factor is more evident when the network

is in low load conditions: by adopting the minimum weight value λ = 0.01

in the optimization process the power saving obtained by MinPower-QoS

can be preserved, without increasing the number of active BSs. Conversely,

in order to obtain an optimal performance for all the network configuration

requirements, in medium and high load cases an higher value of λ is neces-

sary: for λ = 0.06 not only the number of BS switchings is highly reduced,

but also the number of active BSs and the network power consumption are

optimized at busy hours with respect to the λ = 0 reference case.

Considering the trade-off between energy consumption and network perfor-

mance, the optimization process of MinPower-QoS is shown to be particu-

larly effective when the network is not heavily loaded, as depicted in Figure

3.8(a): the proposed solution in fact guarantees a comparable energy use

as in MinPower strategy, without compromising the network throughput

performance. Moreover, the flexible management of user association and
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Figure 3.7: Optimal trade-off between power consumption and number of

BS switchings: (a) low load hours; (b) medium load hours; (c) high load

hours
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Figure 3.8: Throughput and energy consumption analysis: (a) low load

hours; (b) medium load hours; (c) high load hours
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bandwidth distribution of MinPower-QoS allows to greatly exceed the QoS

target throughput, even in heavily loaded network scenarios, as shown in

Figure 3.8(b) and Figure 3.8(c).

3.5 Conclusion

This chapter has presented a novel multiobjective optimization framework,

which allows to study and solve the network power consumption minimiza-

tion problem, guaranteeing QoS target requirements and minimum number

of BS switchings. The results for interference limited scenarios and average

daily traffic loads are shown. By putting the cells into sleep mode, up to

60% power savings can be achieved at off-peak hours with respect to the ba-

sic scheme. Furthermore, the proposed MinPower-QoS methodology affords

performance very close to the optimum solution, particularly for low traffic

load scenarios. By optimizing the network configuration a 70% reduction of

BS switch on/off operations can be reached in a day with 3% more energy ex-

pense. More in detail, considering daily traffic variations, significant savings

can be obtained when the traffic is below 35% of the maximum load. Above

that level, in medium to high traffic load, 25% and 10% power savings are

still obtainable, but other energy efficiency features can be preferred instead

of deep sleep.



Chapter 4

Energy efficient optimization of

a sleep mode strategy in

heterogeneous cellular networks

In this chapter we propose some energy saving solutions for Het-

Net, by jointly considering QoS requirements. We focus on the

HetNet scenario in which macro and micro cells coexist. The

MIQP optimization technique is used to minimize the power con-

sumption together with the number of BS sleep mode operations

of both macro and micro cells. The trade-off between power con-

sumption, sleep mode switchings and performance of the network

is shown for different energy saving strategies. 1

4.1 Introduction

The search fo green network solutions should be taylored to the proposed

architectures for the future mobile systems such as the heterogeneous net-

works, where cells of different sizes effectively coexist. The combination of

different access points, traffic loads and radio access technologies, makes the

network highly heterogeneous. Hence, the same deployment strategy cannot

be used everywhere and the same RRM solution cannot be used throughout

1This chapter has been published as “Energy efficient optimization of a sleep mode

strategy in heterogeneous cellular networks” in Proc. of IEEE European Conference on

Networks and Communications (EuCNC), 2017 [49].
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the day with very different network conditions.

In this chapter an energy efficient and adaptive cellular network configura-

tion strategy with QoS requirements is investigated. The solution is based

on the use of traffic forecast in order to allow the base stations to know the

traffic behavior in their coverage area. A given service rate is guaranteed

to mobile terminals and the cost of rearranging the network when traffic

demand changes is taken into account by optimizing the actual number of

BS switchings, defined as the number of active/inactive state transitions in

a twenty-four hour period. As highlighted in [120], the forecast approach

requires a lower number of switch on/off operations with respect to the pro-

cedure which is based on instantaneous traffic measurements; as a result, the

control traffic and handover operations are also reduced. This work extends

the results presented in [135] by considering a multiobjective optimization

framework, designed to inspect the network sleep mode operation cost over

a daily pattern of traffic demands. Introducing a mix of cell sizes and gen-

erating a heterogeneous network adds to the complexity of the optimization

procedure and network planning. With the introduction of small cell over-

lays, the macro cell network becomes over-provisioned due to the offload of

traffic by means of small cells. One strategy for the network operator is to

keep the existing macro cell BSs as they are, until the natural growth in user

demand catches up with the spare capacity. This approach does not offer the

most efficient energy saving solution since it may take a long time for growth

in user demand to increase sufficiently. Alternatively, the network operator

can re-optimize the existing macro cell network in response to small cell de-

ployment. Performing this optimization will make the overall network more

energy efficient and reduce network OPEX over the long term. The proposed

sleep mode solution aims at reducing the energy consumption of the network

by jointly optimizing the amount of management operations related to the

addition of low-power base stations. The small cells can improve network

performance and service quality by offloading from the large macro cells, but

a negative effect is the increased interference on the downlink experienced

by the user. These questions call for handling the network deployment in a

more efficient way, by closely reexamining its requirements. The optimiza-

tion problem formulation assumes weighting factors between the conflicting

objectives of reducing the power consumption while narrowing down sleep

mode operations. Both macro and micro cells subsets are jointly consid-

ered in the sleep mode scheme of the optimization process, allowing to avoid
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Figure 4.1: Considered het-net scenario

overlapping coverage.

4.2 System model and problem formulation

A LTE-based network of two different layers of hexagonal cells is considered,

as shown in Figure 4.1. The first layer is composed of a set of 19 macro

cells, while the second layer is formed by 54 micro cells surrounding the first

macro cell layer. Both macro and micro base stations are equipped with

omnidirectional antennas. According to [6], for each cell the following power

model is considered:

Pc =

{
a · Ptx + P0, if BS is ON

Psleep, if BS is OFF
(4.1)

In particular the value of a, P0 and Psleep are related respectively to the

variable power consumption, the fixed power consumption of the active base

station and the fixed power consumption of the base station on sleep mode.

These parameters are set as described in Table 4.1 for a typical LTE system.

Regarding the traffic generation, each user in the interested area requests a

constant bitrate data stream: if the target data rate value is reached, the
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Table 4.1: Power consumption model parameters

BS type a P0 Psleep

Macro BS 4.7 130 W 75 W

Micro BS 2.6 56 W 39 W

Table 4.2: Given data for the considered problem

Parameter Value

N number of deployed base stations

M number of users

B = {BS1, ..., BSN} set of N deployed base stations

U = {UE1, ..., UEM} set of M users which have to be served

PMINj sensitivity of UE j

PMAX maximum allowed BS transmission power

Rt datarate target for each UE

Np number of available PRBs at BS

W total available bandwidth at BS

Wp bandwidth of a single PRB

σij channel gain between BS i and UE j

quality of the link is assumed to be acceptable. Each user can be served by

macro and micro base stations, but can be connected to only one base station

at a time. In [6] the variations of traffic data during the day are modeled

with a daily pattern related to the percentage of active users during the

day and the global number of subscribers in a certain area. In this work

the average number of simultaneous users at busy hour has been fixed and

then calculated following this pattern for the rest of the day. The number

of simultaneous users is assumed to follow a Poisson distribution with a

different mean at each hour. The users are uniformly distributed in the

considered area. In order to exploit the het-net scenario in terms of effective

macro/micro cell sleep mode transitions, a suitable traffic forecast technique

is considered [119].

Given the system model and the data reported in Table 4.2, the goal of the

problem is to minimize the global power consumption Pc while controlling

the number of BS sleep mode switchings S during daily traffic variations.

Let B = {BS1, ..., BSN} and U = {UE1, ..., UEM} be respectively the

set of N deployed base stations and the set of M users which have to be

served. The binary variable x represents the association between BSs and
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UEs, as in the following:

xij =

{
1 if UE j is served by BS i

0 otherwise
i ∈ B, j ∈ U (4.2)

Assuming πij as the power assigned for transmission between BS i and UE j

and wij as the bandwidth assigned by BS i to UE j, the data rate achieved

by UE j is:

ρj =
∑
i∈B

xijwij log2(1 + γij) (4.3)

where γij is the SINR between BS i and UE j. The transmission power of

each BS i can be calculated as Pi =
∑
j∈U πijxij . Therefore, the SINR γij

is

γij =
πijσijxij

wij

W

(∑N
k=1 Pkσkjζk(1− xkj) +WN0

) (4.4)

where σij is the channel gain between BS i and UE j, W is the total available

bandwidth at BS and N0 is the noise spectral density. The activity status

of each BS is modeled by the binary variable ζ:

ζi =

{
1 if BS i is active

0 if BS i is in SLEEP mode
i ∈ B (4.5)

Let T = {t1, ..., tL} be the set of L traffic demand forecasts during the day in

terms of UEs to be served. At every time t ∈ T the two objective functions

are then calculated as:

P (t)
c =

N∑
i=1

[(a

M∑
j=1

πijxij + P0)ζ
(t)
i + (1− ζ(t)

i )Psleep] (4.6a)

S(t) =
∑
i∈B

[ζ
(t)
i (1− ζ(t−1)

i ) + ζ
(t−1)
i (1− ζ(t)

i )] (4.6b)

where parameters a, P0 and Psleep are the slope of the dynamic consumption,

the fixed consumption and the sleep mode consumption, respectively [23].

Considering the activity status transitions of each macro and micro BS in

response to the changing traffic demand, eq. (4.6b) keeps track of the num-

ber of sleep mode operations triggered by the energy efficiency policies. We

assume two weighting factors, λM and λm, in the energy efficiency optimiza-

tion process, in order to control the number of macro and micro BS subsets’
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sleep mode operations, SM and Sm, respectively. The optimization problem

is formulated in (4.7a)-(4.7h).

min
π,x,ζ

(Pc + λMSM + λmSm) (4.7a)

s.t.

N∑
i=1

xij = 1, ∀j ∈ U , (4.7b)

N∑
i=1

M∑
j=1

xij = M, ∀j ∈ U , (4.7c)

M∑
j=1

xij ≤ NPRB , ∀i ∈ B, (4.7d)

cij ≤
πij · σij
PMINj

, ∀i ∈ B ∀j ∈ U , (4.7e)

cij − xij ≥ 0, ∀i ∈ B ∀j ∈ U , (4.7f)

ζi ≤ xij , ∀j ∈ U ∀i ∈ B, (4.7g)

M∑
j=1

πij ≤ PMAX , ∀i ∈ B. (4.7h)

Constraints (4.7b) and (4.7c) determine the coverage and the singular

association for each UE. Constraint (4.7d) sets the BS capacity limit, in terms

of bandwidth elements NPRB . Constraint (4.7e) is fundamental for assuring

the QoS: the binary variable cij equals to 0 if πijσij ≤ PMINj ; hence, for

a given UE, constraint (4.7e) will define the set of potential BSs that can

provide the minimum received power, PMINj . Then, introducing constraint

(4.7f), only one of the BSs in this set is selected. The activity status of a

base station is linked to the user associations by constraint (4.7g). Finally,

constraint (4.7h) sets the limit on the maximum BS transmission power.

4.3 Network optimization solutions

4.3.1 Power control

Power control is a well known solution that is able to decrease the global

energy consumption by reducing the inter cell interference. As shown in Al-

gorithm 5, in this work the considered power control algorithm is based on
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Algorithm 5 Power Control

Given: xij ; PMINj ∀i ∈ B, ∀j ∈ U ; wij ; Rt; PMAX ;

Return: Pi ∀i ∈ B; Pij ∀i ∈ B, ∀j ∈ U ;

1: for all i ∈ B do P
(0)
i ← PMAX

2: repeat

3: for all i ∈ B do

4: Calculate πij as in Eqns. (4.8) and (4.9) ∀j ∈ U
5: Pi ←

∑
j∈U πijxij ∀j ∈ U

6: end for

7: until convergence

8: Update πij as in Eqn. (4.9) ∀i ∈ B ∀j ∈ U
9: Update Pi to the maximum allowed value ∀i ∈ B

the UE-BS association and the bandwidth assignment for each UE. The tar-

get QoS data rate for each UE is guaranteed by the iterative process, which

provides the optimum BS transmission power. The proof of convergence can

be found in [171]. At each iteration n the power transmitted by a BS to a

certain UE is calculated as

π
(n)
ij =

wij2
Rt
wij

Wσij

(∑
k∈B

P
(n−1)
k (1− xkj)σkj +WN0

)
(4.8)

where Rt is the target data rate, i.e. the QoS requirement for each UE. The

initial condition is
∑
j π

(0)
ij = PMAX for all i ∈ B. The received power for

each UE j must be greater than the sensitivity PMINj : if this is not the case

the power which is transmitted by a BS to a certain UE is adjusted by the

following equation:

πij = max

(
PMINj

σij
; πij

)
(4.9)

4.3.2 Het-net EE optimization

The fundamental approach of the optimization problem is to recognize the

existence of multiple objectives, such as guaranteed rate for all the users,

network power consumption, number of BS sleep mode operations and num-

ber of simultaneously active BSs, both of macro and micro cell subsets. In

order to minimize the power consumption in the cellular network, a first
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Algorithm 6 Energy Efficiency

Given: σij , PMAX , PMINj ∀i ∈ B, ∀j ∈ U , λM , λm;

Return: xij , wij ∀i ∈ B, ∀j ∈ U ; ζi, Pi ∀i ∈ B; Pij ∀i ∈ B, ∀j ∈ U

1: Solve MIQP

optimization strategy is proposed. The iterative process solves the problem

for three variables: association between BS and UE, bandwidth assignment

and power allocation. In order to limit the cost of sleep mode operations,

the number of power state transitions of BSs is taken into account in the

optimization process. The deactivation and power reduction of the BSs are

allowed only if the target QoS requirement is satisfied for each served UE.

A MIQP solver has been adopted to perform the optimization procedure

that refers to the problem formulated in (4.7a)-(4.7h). The MIQP model is

solved by IBM ILOG CPLEX®solver [28]. Since the model cannot manage

directly the QoS for each UE because of its non-linearity, two approaches are

proposed in order to avoid any outage: (i) Power consumption minimization

assuming an interference controlled scenario (EE ); (ii) Iterative power con-

sumption and BS sleep mode operation minimization to guarantee QoS (EE

Qos). The EE scenario assumes a perfect inter cell interference cancellation

(ICIC) solution. If the interference cannot be neglected, the EE algorithm

cannot guarantee the required QoS and some outages could arise. Therefore,

this energy saving solution represents an optimum lower bound in terms of

global power consumption. In order to avoid the datarate outages and reduce

the impact of sleep mode operations the EE Qos strategy is introduced in

Algorithm 7. It combines the optimum power control and the EE solutions

in an iterative method. In particular the EE algorithm obtains the optimum

set of active BSs and the optimum BS-UE association, while the feasibility

of the solution is controlled by the Power Control procedure as shown in

Algorithm 7. If some data rate outages occur, the power of the outage

users is increased by a δ value in order to look for new active BS subsets

and a better association. It is important to emphasize that although the EE

method provides more energy efficient sleep mode solutions, it incurs control

signaling over the network to wake up cells. As an example, a single wake-up

control packet could be used to trigger the activation/deactivation of a cell

BS. The number of BS sleep mode operations related to the adoption of the

energy saving strategies throughout the daily pattern of traffic demand fore-
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Algorithm 7 Energy Efficiency with QoS Requirements

Given: σij ∀i ∈ B, ∀j ∈ U , PMINj , PMAX , λM , λm;

Return: xij , wij ∀i ∈ B, ∀j ∈ U ; ζi, Pi ∀i ∈ B; πij ∀i ∈ B, ∀j ∈ U

1: repeat

2: Execute EE algorithm (Algorithm 6)

3: Execute Power Control algorithm (Algorithm 5)

4: Data rate (ρj) calculation as in Eqn. (4.3) ∀j ∈ U
5: for all j ∈ U\satisfied UEs do

6: PMINj ← PMINj + δ

7: end for

8: until no outages

casts is considered in the optimization process by computing a discrete set

of λM and λm sample points. λM and λm introduce a weighting condition

between the objective functions calculated in (4.6a), (4.6b) and (4.7a). As

λM and λm increase, also the priority of reducing network operation and

maintenance costs increases, for macro and micro BS subsets respectively.

4.4 Simulation results

The proposed energy saving solution, namely, the EE Qos strategy, is com-

pared to upper and lower bound solutions. As for the upper bound, the

Closest BS Association is considered, adopting Algorithm 5, based on power

control with closest BS association to each UE. The BSs which are not serv-

ing any UE are put on sleep mode. As a lower bound, the optimum energy

saving solution EE is adopted. Simulation parameters are reported in Table

4.3 [7]. If a UE cannot achieve the data rate target, the minimum received

power threshold, defined as PMINj in constraint (4.7e), is increased by δ = 1

dB in each iteration of EE Qos, solving the MIQP model with this new

setting. The maximum number of active UEs at peak hours is equal to

570. It corresponds to the maximum number of UEs that can be managed

by the Closest BS Association strategy without any capacity outage, hence

representing the maximum load of the cellular network. The results are ob-

tained by statistical analysis of 50 simulation runs with a 95% confidence

interval. In Figure 4.2(a) and 4.2(b) the results obtained by EE QoS with
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Table 4.3: Simulation parameters [7]

Parameter Value

Macro BS intersite distance 1000 m

Micro BS intersite distance 500 m

Path loss 15.3 + 37.6 log(d) (3GPP Typical Urban)

Shadow fading std dev 8 dB

Indoor loss 20 dB

Carrier frequency 2GHz

Bandwidth 10 MHz (50 PRBs)

Max macro BS PTX 20 W

Max micro BS PTX 5 W

Noise PSD -174 dBm/Hz

UE sensitivity -90 dBm

Target user datarate 1 Mbps

a set of increasing λM and λm values respectively are shown. As expected,

the introduction of the weighting factors in the optimization process allows

to heavily reduce the number of BS sleep mode operations during the day.

With λM = 20, the daily energy consumption sligthly rises (0.5 kWh), while

the number of macro BS switchings is reduced by half. Note that as λM
increases, also the number of switchings of micro BS subset decreases. This

trend could be explained by the greater efficiency of a more stable network

configuration and deployment: switching off some macro cells might bring

more energy savings, but on the other hand the increasing number of ac-

tive micro cells covering macro cells area might have a negative impact in

terms of operational costs, especially in high traffic periods. This trend is

no longer true if we consider the optimization process of reducing micro BS

switching operations: particularly, Figure 4.2(b) shows that when λm values

are greater than 10, the reduced number of micro cell sleep mode operations

causes the negative effect of increasing the number of macro cell sleep mode

activations. Given the high number of deployed micro cells, the optimization

procedure is able to greatly reduce the number of micro BS switchings: with

λm = 10 micro BS sleep mode operations are reduced by three quarters at

the cost of a daily energy consumption increase of 0.8 kWh. Based on these

results, the values of λ∗M = 20 and λ∗m = 10 have been considered as optimal

weighting factors for EE QoS solution. In Figure 4.3(a) the UE satisfac-

tion rate is depicted for the maximum network load, starting from the EE

solution as first iteration value. It can be noted the impact of the number

of active UEs on the number of iterations before the 0 outage objective is

achieved. While the EE strategy experiences outages, the EE QoS solution
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Figure 4.2: Energy consumption vs BS switchings in the optimization pro-

cess: (a) Macro BS subset sleep mode operations weighting factor λM ; (b)

Micro BS subset sleep mode operations weighting factor λm
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Figure 4.3: Simulation results: (a) satisfied UEs and average transmission

power per active BS vs number of iterations in EE Qos; (b) power consump-

tion vs time of day for the implemented solutions
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converges to 0 outage performance after a number of iterations that is re-

lated to the current network traffic load in terms of users. Each iteration

corresponds to a solution in the search space for the MIQP model. The good

behaviour of the iterative optimization procedure allows to obtain the target

solution in less than 10 iterations even in high traffic load case. The average

transmission power vs the number of iterations is also depicted in Figure

4.3(a). Active UEs are satisfied when the mapping and received power allow

to reach the QoS target. Among the feasible solutions, the one minimizing

the global power consumption is chosen. In particular, even if the proper

association is obtained by increasing the BS transmission powers, this trend

becomes harmful for cell edge users because of the increasing interference

level. In this case it is better to switch on other BSs, reducing the average

transmission power together with the total power consumption and the in-

terference. Figure 4.3(b) presents the results in terms of power consumption

for EE QoS optimization strategy, with respect to the other solutions, i.e.,

Closest BS Association and EE. From the figure the behaviour of the pro-

posed solution is evident: by introducing the optimal weights for macro and

micro BS sleep mode operations in the optimization process, the number of

active BSs ends up being heavily reduced, bringing high energy savings with

respect to the Closest BS Association. Because of the QoS requirements, the

slope of the EE QoS solution is slightly higher in high traffic load periods

with respect to the EE performance: however it is interesting to see that the

EE QoS results are very close to the optimum lower bound represented by

the EE strategy. In order to evaluate the overall throughput performance of

the proposed solution, Figure 4.4 shows the obtained results in terms of daily

power consumption and aggregate daily throughput. While the EE strategy

is able to allow a bigger reduction of the amount of consumed energy, the

lack of QoS requirements causes a huge loss in terms of overall throughput

achieved by users. On the other hand, the EE QoS solution can obtain an ac-

ceptable throughput performance, holding up to the Closest BS Association

reference case, while guaranteeing fair energy savings. Moreover, the flexible

management of user association and radio resources adopted by the EE QoS

strategy allows to greatly exceed the QoS requirements in terms of target

throughput. With an additional 1.5% energy expense, EE QoS solution is

able to bring up to a 44.3% improvement for the throughput with respect

to the EE strategy, still guaranteeing up to 8% less energy consumption

compared to the Closest BS Association.
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Figure 4.4: Daily energy consumption and aggregate throughput

4.5 Conclusion

In this chapter an energy saving solution for LTE heterogeneous networks is

presented and implemented in a multiobjective optimization framework. The

energy saving is obtained by adapting the number of active macro and micro

base stations to traffic variations. Since each cell needs the knowledge of

traffic variations in its coverage area, a traffic forecast technique is used. The

network is able to adapt itself to the capacity requested by users at different

times of the day, solving the power consumption minimization problem with

QoS target requirements and guaranteeing a minimum number of BS sleep

mode operations for macro and micro cell subsets. The proposed EE QoS

strategy affords performance very close to the optimum solution, particularly

in terms of active base stations. By optimizing the network configuration

in terms of BS sleep mode switchings, this study shows the positive impact

of long term sleep solutions in a heterogeneous cellular network scenario,

holding down the related signaling and handover traffic overhead as well as

the negative impact on operations and maintenance activities, which involve

operational performance, monitoring and control of site operations.



Chapter 5

Energy efficiency perspectives

of Professional Mobile Radio

networks

This chapter focuses on the feasibility of energy efficient solu-

tions for current and potentially future Professional Mobile Ra-

dio (PMR) networks, by providing a mathematical formulation of

power consumption in Terrestrial Trunked Radio (TETRA) base

stations and assessing possible business models and energy saving

solutions for enhanced mission-critical operations. The energy ef-

ficiency evaluation has been performed by taking into account the

traffic load of a deployed TETRA regional network. 1

5.1 Introduction

Professional Mobile Radio (PMR) systems represent a subset of mobile com-

munications networks which are designed for mission critical communica-

tions. Since they provide a mobile wireless service to their users, as in the

public radio network case, such systems are mainly addressed to public safety

and security organisations to guarantee fail-safe and secure voice and data

1This chapter has been presented as “Energy Efficiency Perspectives of PMR Networks”

in Third ETSI Workshop on ICT Energy Efficiency and Environmental Sustainability,

2015 [51] and published in MDPI Information, vol. 8, n. 1, 2017 [52].
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communications. On the other hand, the target requirements of the pro-

vided service are quite different than the public case, particularly in terms

of system availability, security, resilience and reliability that are typical of

mission critical communications [10].

Recently, PMR and public radio systems share common needs and interests.

As a matter of fact, the possibility of providing broadband services is taken

into account also by the PMR operators and manufacturers who are cur-

rently working on extending their systems capabilities. In order to increase

the throughput and be able to support broadband services like video com-

munications, LTE is now under investigation as the platform for future PMR

systems [67].

Moreover, a greater sensibility toward environmental and energetic issues has

been raised in research and the industrial world, and a lot of inherent inter-

national research activities have been funded [97,112,127,128]. The energetic

costs are one of the major drivers of operational expenditures [26]. At the

same time, controlling the cost of energetic waste allows for cutting green-

house gas emissions, thus reducing air pollution with positive consequences

on environment. An energy efficient cellular network can be achieved in mul-

tiple ways. First of all, an opportune deployment, taking into account the op-

timal site location, is needed to minimize the transmission power budget and

the number of needed base stations. Moreover, considering that new tech-

nologies will be progressively introduced in an already deployed network, the

hardware optimization is expected to significantly reduce the current energy

waste, especially due to power amplifiers, the most power-consuming devices

in a base station’s equipment [42]. In this regard, replacing the old network

devices with new and less power consuming ones will introduce a substantial

energy efficiency gain. However, such energy gain should be further im-

proved through radio resource management solutions aiming at optimizing

the network usage with respect to the actual needs. As a matter of fact, the

daily power consumption of a base station has a rather constant profile over

time with respect to the transmitted traffic, as depicted in Figure 5.1. This

behavior justifies the goal of using energy efficiency strategies to shape the

power consumption to the actual energy demand. To this aim, many promis-

ing radio resource management strategies, mainly focused on power control

and power amplifiers’ sleep mode, have been proposed [34,58,119,165].

This chapter discusses the feasibility of energy efficient solutions for cur-

rent and future PMR networks. First of all, a review of the state-of-the-art
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Figure 5.1: Power consumption and traffic of a generic public cellular base

station during a day.

of such systems is provided, mainly referring to the most popular system in

Europe, which is TETRA. The main TETRA features are described high-

lighting the evolution to a broadband system through TETRA Enhanced

Data Service (TEDS). Moreover, since the availability of IP broadband ser-

vices will be a PMR target requirement, the feasibility of the transition to

a TETRA over LTE system is discussed. In order to evaluate the energy

impact of such a system, a TETRA/TEDS power consumption model is

introduced, as well as some energy saving radio resource management tech-

niques developed for commercial wireless systems. Then, an evaluation of

the energy performance of an optimized TETRA/TEDS system has been

done, also taking into account the potential energy efficiency gain, due to

hardware improvements and radio resource management flexibility that will

be allowed by the transition to an LTE infrastructure. Since the evaluation

of power saving solutions should be based on actual network configuration

and traffic load scenarios, this work extends the results presented in [45] by

introducing a detailed energy consumption analysis focused on the traffic

data of a deployed TETRA regional network. Finally, the performance of

the considered systems is evaluated both from an economic and an environ-

mental point of view, showing the positive impact of the energy management

improvements in current TETRA/TEDS systems and the significant energy
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saving gain allowed by the LTE platform.

5.2 Present and future PMR systems

PMR systems have been introduced to provide a speech and data two-way

radio communication service in non-public networks tailored to the specific

professional operational needs. Typically, the main users of such kind of

services are military, police and public safety forces, but also private institu-

tions like transportation and logistic companies. The target PMR scenario

is represented by the mission critical communications. It is characterized

by four key requirements: resilience and highly availability of the infrastruc-

ture, reliability of the communications, security and possibility of point-to-

multipoint communications to support group calls and messages. A resilient

and highly available infrastructure can be obtained by redundant network ar-

chitecture and fail-safe network elements, allowing a minimum service even if

the connection to the infrastructure is not possible or limited. Moreover, the

communication is considered reliable if the provided service is accessible and

stable. Therefore, the target quality of service must be reached within the

entire coverage area and the communication setup must be extremely fast.

Security is needed to protect users from malevolent actions like jamming,

interception and spoofing, providing features like mutual authentication of

terminals, jamming compensations, end-to-end encryption and temporarily

terminal disabling. Low power consumption is also needed to reduce the

operational costs. Such requirements have been largely implemented in the

mobile radio terminals by introducing, for instance, transmission power con-

trol in order to increase the battery lifetime [94]. Currently, TETRA [1, 2]

is the most widely used PMR standard, providing a reliable infrastructure

to support mission critical communications. As depicted in Figure 5.2, the

PMR evolution, particularly referring to TETRA, is linked to the commer-

cial radio system evolution since PMR manufacturers cannot afford in-depth

research and development budgets to develop next generation PMR mobile

radio technologies in parallel to or even ahead of commercial mobile radio

manufacturers. Therefore, since its beginning, PMR systems have been ex-

ploiting commercial radio systems technologies and standards. The remain-

der of this section describes the TETRA evolution, starting by the original

TETRA system and TEDS, representing the state-of-the-art, and a possible

evolution related to the broadband services provided by the 4G commercial
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Figure 5.2: Terrestrial Trunked Radio (TETRA) evolution.

standard, identified as TETRA over LTE.

5.2.1 TETRA and TEDS for speech and data commu-

nications

TETRA is a multiple access digital system for secure private radio communi-

cations. It allows the transmission of high quality voice and low-speed data,

and it has been proposed mainly for emergency services, public safety, and,

in general, for all the scenarios where a bounded secure area for communi-

cations is needed.

The TETRA system has some unique functionalities that cannot be obtained

by commercial cellular systems: these features are motivated by the specific

purposes of the secure private radio systems with respect to those pursued

by widespread cellular technologies. In particular, TETRA offers:

• group calls;

• reduced call set-up time (below 300 ms) with respect to 2G technologies;

• direct mode of operation using other mobile devices as repeaters;

• secure data transmission by end-to-end encryption;

• push-to-talk mode.

As depicted in Figure 5.3, the TETRA architecture is similar to a generic

cellular network and includes the following standard interfaces:
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Figure 5.3: TETRA architecture.

• Air Interface (AIR I/F), which ensures the interoperability of terminal

equipment of different manufacturers;

• Terminal Equipment Interface (TEI) facilitating the independent de-

velopment of mobile data applications;

• Inter Systems Interface (ISI) which allows the interconnection between

TETRA networks of different manufacturers;

• Direct Mode Operation (DMO) guaranteeing the communication be-

tween terminals also beyond network coverage.

A Time Division Multiple Access (TDMA) is used to allocate four time slots,

each of which has a duration of 14.167 ms, into a 25 kHz bandwidth carrier.

Each time slot represents a full rate channel or, optionally, two half rate

channels in order to increase the random access. Frequency division duplex-

ing is used to associate to a time slot the uplink and downlink channels. Data

and control information is mapped within each channel and the transmission

is done through π/4-PSK modulation. The physical content of a time slot is

organized as a burst, as described in Figure 5.4. At each base station, the

first slot of each TDMA frame of one carrier is occupied by the Broadcast

Common Channel (BCCH). The remaining time slots of such carriers and,

eventually, all the time slots of other available carriers can be assigned to a

Traffic Channel (TCH). When a channel is idle because it is not assigned to
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Figure 5.4: TETRA radio frame.

any TCH, a dummy burst is transmitted in order to maintain a continuous

bit flow.

The first release of TETRA allows a maximum uncoded data rate of 28.8

kbps. In order to improve this standard to support IP-based multimedia

services, TEDS has been introduced taking care of the maximum backward

compatibility [124]. TEDS can be considered as an evolution of TETRA sys-

tem, with improvements focusing on transmission and bandwidth extension,

in order to meet the need for higher speed data services. In particular, as

reported in Figure 5.5, channels with different bandwidths are available. Al-

lowed bandwidths are 25 kHz, as in the previous release, 50 kHz, 100 kHz and

150 kHz. Moreover the adoption of spectral-efficient multilevel modulation

schemes enables the possibility of link adaptation: 4-QAM, 16-QAM and

64-QAM are added to π/4-PSK scheme, used in the first release of TETRA.

In order to detect errors and protect the information, different channel cod-

ing schemes have been introduced. By adaptively selecting the opportune

modulation, taking into account the needs and the link quality, a throughput

beyond 500 kbps can be obtained, as shown in Table 5.1. The TEDS im-

provements are not only related to physical layer. Classifying data flows into

classes allows for negotiation of the opportune quality of service for each flow

in terms of throughput, delay, precedence and reliability. Allowed classes are
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Figure 5.5: TETRA Enhanced Data Service (TEDS) bandwidth and perfor-

mance.

Table 5.1: Channel coding and TETRA Enhanced Data Service (TEDS)

throughput.

25 kHz 50 kHz 100 kHz 150 kHz

π/4-DQPSK, r = 2/3 15.6 kbps

π/8-D8PSK, r = 2/3 24.3 kbps

4-QAM, r = 1/2 11 kbps 27 kbps 58 kbps 90 kbps

16-QAM, r = 1/2 22 kbps 54 kbps 116 kbps 179 kbps

64-QAM, r = 1/2 33 kbps 80 kbps 175 kbps 269 kbps

64-QAM, r = 2/3 44 kbps 107 kbps 233 kbps 359 kbps

64-QAM, r = 1 66 kbps 160 kbps 349 kbps 538 kbps

real-time class for live audio and video transmission, and telemetry class for

bursted low capacity transmissions, and background class for file transfer

and web applications.

5.2.2 The PMR evolution through the LTE system

Currently, most TETRA manufacturers are looking to the future by imple-

menting a TETRA over LTE system [53,153] in order to provide higher data

rate and lower latency services.
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LTE is the state-of-the-art standard for commercial mobile communications,

providing an all-IP connectivity through an infrastructure designed for very

high speed services.

Even if LTE has been developed for commercial use, some work groups in

3GPP have been working on the adaptation of the standard to mission crit-

ical communications [59]. In particular, the following items are currently

under investigation:

• Group communication and push-to-talk (PTT),

• Proximity based services,

• Network resilience,

• High power user equipments,

• Enhanced Radio Access Network (RAN) sharing,

• Priority and QoS control.

More specifically, group communications, PTT and proximity based services,

that enable device-to-device (D2D) communications, are the key require-

ments for public safety mission critical voice services. The work on such

subjects has been carrying on within the LTE Release 12 and LTE Release

13 groups [11, 12, 14]. In the framework of these releases, some issues about

resilience and RAN sharing are also being discussed. For example, in order

to face a disaster causing the failure of some devices, any base station should

be able to act alone in connecting the served users with the rest of the net-

work [13]. Moreover, an enhanced flexibility in sharing network resources

could allow the adoption of smart radio resource management strategies be-

tween critical and non-critical users [15]. As for high power user equipment

and priority and QoS control, such features are already provided by the LTE

technology and the work that is being carried on is related to future en-

hancements [3, 8].

Whilst these outcomes will clearly directly affect infrastructure vendors, the

market for user equipment, applications and other end-user equipment, and

services can be expected to be less impacted. In other words, whether or

not the bearer network is owned and operated by the user organization, or

services are provided by mobile network operators, users will still require

terminal devices and applications. In a standardized market, competition

and innovation, as well as economies of scale resulting from the wider global
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LTE user equipment ecosystem, can be expected to influence prices. A strong

standards-based approach will ensure interoperability between different ven-

dors leading to a competitive equipment market.

Besides the opportunities offered by exploiting the LTE technology for PMR

services, the main issue resides in the way such services should be provided.

Since there is no commercial interest to develop and integrate all the PMR

functionalities over the LTE infrastructure, especially the ones related to se-

curity end encryption operations, only private networks should be preferred.

Private networks could be self-deployed by the interested organizations for

its own activities or provided by a third-party. In both cases, once the LTE

system will be compliant with mission critical communications requirements,

the main open issue will be the actual channelization, since LTE is designed

to operate with bandwidths starting from 1.4 MHz. However, the PMR

evolution over the LTE system, i.e., TETRA over LTE, represents a big

opportunity for current PMR users to increase the efficiency of their own

spectrum usage.

5.3 Power consumption modelling in PMR sys-

tems

A TETRA base station is composed of several functional blocks that are

depicted in the diagram of Figure 5.6. In particular, the main blocks are

baseband unit (BB), radio frequency unit (RF) and power amplifier (PA),

which together form the transmission chain. Moreover, the site control unit

(SCU) is responsible for the management operations of the considered site.

In order to maintain the opportune temperature for the whole site, a cool-

ing system is considered. This system is responsible for cooling down the

site environment coping with the temperature increase due to electronic op-

erations, or, conversely, provides a heating function when the devices tem-

perature gets below the operational target. Transformers and rectifiers are

needed to adapt the network power in order to feed the base station devices,

and their operation is considered in the main supply system.

A TETRA base station power consumption model can be obtained by

adapting the one proposed in [23]. The following equation is considered:

Pin = NTRX

Pout

µPA(1−σfeed) + PRF + PBB + PSCU

(1− σDC)(1− σMS)(1− σcool)
, (5.1)
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Figure 5.6: TETRA base station model.

where NTRX is the number of transceivers at the base station; Pout is the

transmission power; PBB , PRF and PSCU are, respectively, the power spent

for the base band operation, the RF stage and the site control unit. The

feeder loss is modeled by the σfeed parameter and µPA is the power amplifier

efficiency. Finally, σDC , σMS and σcool model the DC loss, i.e., the loss in

the transmission chain, the loss in the main supply system and the loss for

cooling. The power consumption parameters are summarized in Table 5.2.

Equation (5.1) shows that the power consumption in base stations can be

divided into a static component and a dynamic component. In particular,

the dynamic component is related to the output power: by varying Pout,

for instance when managing different amounts of traffic, and then the vari-

able part of the total power consumption changes. On the other hand, the

static component, represented by PBB , PRF and PSCU , does not significantly

change for different Pout values, or the variations are negligible. Therefore,

the model can be simplified as follows:

Pin = NTRX(∆pPout + P0), (5.2)

where the PA efficiency and losses effects are included in ∆p and P0 takes

into account the static BB, RF and SCU power consumption. By considering

the parameters in Table 5.2, ∆p = 7.5 and P0 = 280 W have been assumed.
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Table 5.2: TETRA base station power consumption parameters.

Parameter Value

Transmission power Pout [0, 20] W

Power Amplifier (PA) efficiency µPA 0.25

Radio Frequency (RF) power consumption PRF 114 W

Baseband (BB) power consumption PBB 75 W

Site Control Unit (SCU) power consumption PSCU 23 W

DC loss σDC 7.5%

Feeder loss σfeed 50%

Main supply loss σMS 9%

Cooling loss σcool 10%

5.4 Energy efficiency strategies for PMR sys-

tems

5.4.1 Carrier sleep mode

Because of the impact of fixed power consumption, which is the power spent

by the base station even for zero transmission power, the most common

energy saving strategy proposed for commercial cellular system is the carrier

sleep mode. As a matter of fact, in order to improve the capacity, operators

could deploy more than one carrier per cell. As explained in section 5.2, the

cell signaling is transmitted just over one carrier, while the other ones only

manage the traffic and the dedicated signaling. Therefore, carrier sleep mode

works automatically by deactivating the unused carriers; the only carrier that

cannot be ever deactivated is the one carrying the cell signaling in order to

maintain the coverage of the area. Deactivating a carrier, or putting it on

sleep mode, means putting the carrier in a low power consumption state,

such that the base station controller can make it operating when needed in

a very small time (a few seconds).

By adopting the carrier sleep mode, the power consumption model presented

in (5.2) can be modified as follows:

Pi =

{
∆pPout + P0, if the i-th carrier is ON,

Psleep, if the i-th carrier is sleeping,
(5.3)

where Psleep is the power consumption of the sleep mode state. In this study,

Psleep = 140 W has been assumed.

The performance of TETRA carrier sleep mode is depicted in Figure

5.7, which shows the energy consumption of a TETRA base station that
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Figure 5.7: Energy consumption versus traffic for TETRA.

is equipped with four carriers as a function of traffic load: the carrier sleep

mode, as expected, provides significant energy savings, especially in the case

of low traffic load, converging instead to the baseline consumption with peak

traffic load.

5.4.2 BCCH carrier power control

Power control is a software based solution that introduces an energy saving

mode on the BCCH transceiver. Such a solution reduces the overall power

consumption by transmitting dummy bursts on the idle channels, i.e., on the

time slots that are not allocated to a TCH, with a power level lower than

the maximum transmission power of the BCCH channel. The behaviour

of power control is shown in Figure 5.8: note that, in our analysis, a 2

dB power reduction has been considered. In order to keep the cell range

unaltered, the BCCH channel is always transmitted at full power. The in-

troduction of power control allows the power consumption to vary according

to the served traffic. Figure 5.7 shows the behavior of a TETRA base station

power consumption when power control is applied. The largest energy sav-

ing is achievable in the case of low traffic load, while for higher traffic load

values, the performance of power control converges to the TETRA baseline

case. We observe that the gain due to power control on the BCCH carrier

is smaller with respect to the impact of carrier sleep mode. Therefore the
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(a) Power control

(b) No power control

Figure 5.8: Transmitted signals for power control (a) and no power control

(b) cases.

combined adoption of the two solutions should be supported. In this regard,

the proposed power consumption model has been evaluated by statistical

analysis, considering a weekly traffic data set of a deployed TETRA regional

network and a 95% confidence interval.

Figure 5.9 shows how the considered strategies perform in terms of daily

average power consumption. As expected, the application of the carrier sleep

mode brings significant energy savings, resulting in a 30% lower power con-

sumption, considering the daily average traffic load of a single TETRA base

station. Even if the energy gains achieved by power control on the BCCH

carrier are smaller, employing this strategy in combination with the carrier
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Figure 5.9: Daily average energy consumption of a single TETRA base sta-

tion.

sleep mode results in an additional 10% saving, showing that the common

techniques proposed for commercial cellular standards could actually im-

prove the energy efficiency of PMR systems.

5.5 Technical and economic considerations on

energy efficiency of next generation PMR

systems

5.5.1 Business models for mobile broadband PMR

When evolving to mobile broadband communications, public safety agencies

may choose from numerous business models that will support its specific

needs, taking into account existing PMR network operations, available spec-

trum, regulatory environment and financial resources. It may contract ser-

vices provided by a mobile network operator (MNO), operate or use a service

from a dedicated virtual network over a mobile operator’s infrastructure (G-

MVNO), build a wholly owned and operated dedicated network, or use a mix

of different approaches [9]. Adding LTE mobile broadband capabilities to
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existing PMR networks in a nondisruptive, cost-effective and energy-efficient

way can be complex, with many factors to consider. These include startup

costs, operating and capital expenditures (OPEX and CAPEX), expected

revenues, available spectrum, existing network equipment, commercial wire-

less services and the political environment. The following are five possible

business models that are proposed to match the trade-off between objectives

and constraints.

Contract services through an existing Mobile Network Operator

In this model, the public safety agency simply contracts data subscriptions

with an MNO to provide mobile broadband services. Public safety users

and consumers share the same spectrum and network. The public safety

entity pays a consistent, predictable periodic fee for network access, usually

a function of some known factor, such as the number of end users, devices

or usage. This arrangement is relatively inexpensive if traffic, the number of

users and subscription fees can be low, and fast if MNO LTE service already

is available. CAPEX concerns only applications and terminals, which could

remain significant if a large number is required. OPEX consists mainly of

monthly fees for using the MNO service, and is proportional to the number

of users and usage volume. Challenges for the MNO model include no con-

trol over four critical requirements: coverage (usually very poor in sparsely

populated areas), availability, prioritization and resilience. Typically, little

or no support exists for mission-critical features, and gaps in coverage can

occur where the population density is low, such as in rural and isolated areas.

For mission-critical needs, these issues might be addressed through stringent

service level agreements (SLAs) to assure such features as priority access or

network redundancy in case of an outage, which may significantly increase

the subscription fee. In addition, most MNOs have a monthly data cap and

additional fees for excess usage, which can significantly impact OPEX.

Obtain service from a Government Mobile Virtual Network Oper-

ator

The MVNO approach has become prevalent in the commercial sector, where

branded operators resell bulk-purchased wireless services to consumers while

providing their own usage plans, billing and customer support. The MVNO

approach can be extended to the support of public safety users. In that
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case, the MVNO, called a G-MVNO (Government MVNO) provides added-

value services (such as user and device management, customer care, end-to-

end security, billing and so on) to the public safety users that, in turn, get

access to secure broadband data services when the G-MVNO leverages the

4G access network from the MNO. The G-MVNO model offers more control

over services and security than the MNO approach, providing a ready-made

network for basic public safety needs. It keeps CAPEX moderate (mainly

terminals and a few LTE core network nodes). A G-MVNO can manage

services and management over a mix of 4G, 3G and PMR platforms for

the best possible availability in routine situations and major crisis. It can

be configured to combine security, availability, ease of use and economics

tailored for public safety, while keeping the effective management of end-to-

end data service a first priority. About the cons of this approach, as with

the MNO model, a G-MVNO provides no absolute control over coverage

(especially in rural areas), availability and assured resilience. In addition,

depending on the MNO, it may offer limited support of some critical public

safety features, such as direct mode or group calling.

Deploy dedicated network services through a Public-Private Part-

nership Project

The Public-Private Partnership Project (PPP) business model features a

dedicated and standalone LTE network, which is deployed, operated and

maintained by an MNO and/or another independent operator. This type of

network is typically owned by a telecom operator, which provides the service

to the public safety agencies while usually assuming the financial, technical

and operational risk of the service offer. One of the key benefits of the PPP

model is that the public safety agency is the only entity using the network.

CAPEX and OPEX can be reduced through synergies in the reuse of antenna

sites, backhaul and technical skills contributed by the private partner. Public

safety communications requirements are assured and customized, with full

control over such critical specifications as latency, coverage and resilience.

The main challenge is that this model requires having access to a dedicated

broadband public safety spectrum and negotiating with a partner to invest

the upfront CAPEX to build the network. However, many synergies can

exist to minimize this upfront investment.
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Build, own and operate a dedicated private network

In this model, the public safety agency finances, procures, builds and man-

ages its own network, setting technical requirements for capacity, security,

reliability, redundancy and robustness. It takes full responsibility for all

network elements and software, and employs in-house personnel to build,

manage, operate and maintain the network. The extent of upfront costs de-

pends on the scale of deployment (local, regional or national), whether the

network is shared among several entities and/or whether the deployment is

scheduled gradually over years or within a shorter time period. The clear

advantage with a dedicated LTE network is that it can be designed to match

all mission-critical requirements, with the agency having full control over

the procurement process. Specifications (such as site hardening, extended

coverage and resilience to multiple faults, extreme events, and energy sav-

ing solutions) can be tailored to missions, as well as to the agency’s future

evolution strategy. As with the PPP model, a dedicated network can offset

CAPEX and OPEX by operating as a wholesaler where regulations per-

mit, or sharing with other critical users of the public sector such as defense,

utilities and transportation agencies. On the other hand, specifying, build-

ing and maintaining a dedicated network requires significant upfront invest-

ments and technically skilled professionals for network operations. Acquir-

ing dedicated LTE spectrum may require an initial investment or an annual

fee. A dedicated spectrum must be cleared of any previous service, usually

a slow process in countries where no dedicated spectrum currently exists.

Both CAPEX and OPEX typically could be higher in this model. However,

CAPEX depends significantly on the spectrum of operations (the lower the

spectrum, the lower the number of sites to deploy) and can be planned over

multiple years to deploy in critical areas first.

Combine a G-MVNO with a private network (hybrid model)

Given that the spectrum is a scarce resource in many regions, some agencies

may elect to build a custom communications network dedicated exclusively to

mission-critical services, while conducting less critical back-office operations

through commercial operators using the G-MVNO model. This approach can

be implemented relatively easily, since LTE is both a technology for com-

mercial carriers as well as the new-generation platform for PMR. This model

has the advantage of rapid deployment without having to wait for dedicated
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broadband spectrum to become available. It enables an agency to handle

very high volumes of everyday data traffic while preserving a fully controlled,

mission-critical core for emergency situations. It is flexible and positions the

agency for future evolution to a fully dedicated network. It allows agencies

to make investment efficient by combining a mix of commercial and dedi-

cated spectrum terminals. In addition, when both options are available, the

MNO network can be used to offload traffic from the private network that is

not mission-critical, preserving key resources for mission-critical traffic and

applications. Following this strategy means less than full control over the

entire network and its coverage area, and may require mobile transmitters

or antennas on some occasions. Developing a hybrid approach also intro-

duces slightly greater complexity to design, operations and financial models,

requiring critical consideration and coordination of these elements. Public

safety agencies embarking on an LTE deployment project must consider fac-

tors such as budget, regulatory issues, internal resource constraints, coverage

and reliability targets, available spectrum (frequency band and bandwidth)

and number of end users when choosing the best overall design and business

model. Agencies should also have a plan for energy management because

the wealth of robust data and growth of mobile traffic will offer new ways of

conducting operations. Regardless of the model chosen, the network must

be defined through an end-to-end service-centric approach.

5.5.2 LTE energy efficiency gain

The actual transition from the traditional TETRA infrastructure to the LTE

platform could introduce a significant energy saving gain without considering

the adoption of any particular strategy. Referring to the most power consum-

ing stage, that is the RF stage, the main difference between TETRA and LTE

is related to modulation types and techniques. In particular, TETRA, as all

the systems coming out from 2G cellular technologies, employs constant en-

velope modulations, which improve the efficiency of power amplifiers thanks

to the low peak to average power ratio (PAPR). Recently, several techniques

have been proposed in order to increase the PA efficiency. In particular,

Envelope Tracking has been found to be the most effective one and has

been included in the LTE standard. Envelope Tracking dynamically adjusts

the supply voltage to the envelope of the RF input, allowing a better effi-

ciency also for high PAPR modulations, like Orthogonal Frequency-Division

Multiplexing (OFDM) used in the LTE system. Looking at the power con-
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sumption model, a comparison could be done considering the LTE system

reference case provided by the European Seventh Framework Programme

(FP7) EARTH project [6]. The reference case has been obtained from the

power measurements of a 10 MHz 2 × 2 LTE base station, and, referring to

the linear power model in (5.2), ∆p = 4.7 and P0 = 130 W have been set.

5.5.3 Radio Resource Management strategies for en-

ergy efficiency

Looking at commercial cellular networks, the adoption of efficient radio re-

source management solutions is one of the most effective ways to reduce the

overall energy consumption. As a matter of fact, network dimensioning is

peak-load oriented. Therefore, most of the day the traffic is much lower

than in peak hours, and a lot of energy gets wasted. The main goal of an

energy efficient radio resource management scheme is to adapt the network

energy consumption to the actual daily traffic load. The main way to adapt

the radio resources to the users’ requests is the introduction of base station

sleep mode, which gives the system the possibility to put some devices of a

base station in a low power state. Referring to the LTE system, several sleep

mode techniques have been proposed [34]. In particular, frequency domain,

system domain and time domain approaches are under investigation in cur-

rent research about green wireless access networks. All the solutions focus

on putting the RF power amplifiers on low consumption state. Frequency

domain solutions are able to manage the available bandwidth at the base

station by putting on sleep mode the relative carrier blocks. In order to

maintain the same power spectral density, the reduced bandwidth requires

less radiated power. Spatial domain solutions derive from the coexistence

of multiple radio access technologies, which are allowed by the LTE stan-

dard: the global network energy efficiency can be improved by introducing

cooperation schemes between the available access technologies. Other spa-

tial domain solutions are reducing antenna number at the base station and

dynamically configuring cells in a multicell scenario. Even if such approaches

are an attractive solution for commercial LTE cellular networks, character-

ized by the densification of base stations and cell layers, they are not suitable

for PMR networks like TETRA. Therefore, in order to design an energy ef-

ficient TETRA over LTE network, just the time domain approaches should

be investigated. The most promising time domain solution is identified as

cell DTX, a hardware feature based on the deactivation of some components
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Figure 5.10: Cell DTX: power amplifiers can be put in low power state if

there is no downlink traffic.

of a base station when there is no traffic, i.e., during the zero transmission

time intervals [152]. As we observed before, if a base station with no traffic

can be put into sleep mode, then the idle power consumption will be signif-

icantly reduced; in addition, cell DTX acts only when no data or signaling

is transmitted, thereby the cell coverage is not affected. As shown in Fig-

ure 5.10, only a small fraction of each subframe must be transmitted even

if the base station is not managing any traffic flow. In particular, a high

cell DTX gain can be obtained using Multicast-broadcast single-frequency

network (MBSFN) or extended cell DTX subframes instead of the normal

unicast ones [34].

Unlike long term sleep solutions, cell DTX deactivates only some parts

of the base station equipment, in order to ensure the immediate activation

of the base station upon request. This approach hence allows the energy

consumption to adapt to the variation of traffic in a very short time scale.

Thanks to these characteristics, cell DTX is able to decrease the baseline
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power consumption of the base station to Ps = δP0, where 0 ≤ δ ≤ 1. The

power consumption model presented in (5.2) then can be written as follows:

Pin = NTRX(∆pPout + (1− δ)ηP0 + δP0). (5.4)

Here, η denotes the load of the base station, while (1 − δ)ηP0 represents

the load dependent baseline power consumption, bound to the fast traffic

adaptation property of cell DTX. Note that, in the case of δ = 1, the base

station does not have the DTX capability, and the power consumption model

is the same as the one observed in (5.2). To compare the energy efficiency

performance of the advanced TETRA systems and the 4G commercial stan-

dard LTE, we consider a volume of traffic 100 times greater than the daily

average traffic load of a current TETRA base station. Figure 5.11 displays

the performance of the described energy efficiency solutions for TEDS and

LTE systems, in terms of daily energy consumption of a single base sta-

tion. We consider TEDS systems with 50 kHz and 150 kHz bandwidths and

assume δ = 0.1 for the case of LTE with cell DTX. We observe that the

combination of carrier sleep mode and power control on the BCCH carrier

can bring striking energy savings for TETRA network, although the energy

efficiency performance of such systems is very far from the performance of

the current LTE commercial standard. Despite the high hardware efficiency

of LTE system, the introduction of cell DTX helps to further break down

the energy consumption of the network by significantly reducing the baseline

power consumption of the base stations. Looking at the PMR broadband

evolution over the LTE system, such a feature represents a very promising

energy saving approach, considering the typical low traffic density of PMR

systems, compared to cellular public radiotelephone standards.

From an economic perspective, the results presented in Figure 5.12 show

the impact of the power saving features in terms of annual OPEX, consider-

ing the scenario of a regional network with 150 base stations and an energy

cost of 0.20 Euros per kWh. Adopting advanced energy efficiency strate-

gies in the TETRA network results in significant OPEX savings of up to

70 thousand Euros per year of operation, compared to the current standard

technology; this positive trend is also considerable with the introduction of

highly efficient cell DTX solutions in LTE networks. Regarding the sustain-

able development of modern communications systems, the overall network

energy saving also guarantees a remarkable reduction in terms of carbon

emission of CO2: considering an average carbon emission of 525 kg of CO2
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Figure 5.11: Comparison of daily average energy consumption of TETRA

and LTE radio base stations.
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per 1000 kWh, the proposed energy efficiency solutions can save more than

1 ton of CO2 per year in advanced TETRA networks. In the case of LTE

systems, the adoption of cell DTX has an equally great impact, by granting

more than 80% reduction of annual carbon emission of CO2, with respect to

the standard LTE network configuration.

5.6 Conclusion

In this chapter, the energy efficiency of PMR systems has been considered.

First, the most common PMR system, namely TETRA, has been introduced.

After a discussion on the possibility of TETRA system to converge over

the LTE platform, a power consumption model for a generic TETRA base

station has been proposed. Then, the most effective energy saving solutions

have been introduced and evaluated. In particular, the combined adoption of

carrier sleep mode and BCCH power control ensures the reduction of TETRA

base station baseline power consumption. The future transition to a TETRA

over LTE system has then been considered, evaluating the impact of the

most promising energy efficiency solutions on a deployed TETRA regional

network. Results show significant improvements in terms of capacity and

energy efficiency, as well as a positive impact in terms of OPEX and carbon

footprint.



Chapter 6

Green Wireless Sensor Network

for ozone pollution detection

This chapter describes an innovative monitoring technology that

is used to detect ground-level ozone pollution and is based on the

deployment of a network of wireless devices which are connected

to a collection of plants and are used as biosensors. Such devices

retrieve and transmit the electrical activity signals, which are gen-

erated within the plants, and use them to monitor environmental

conditions. In order to classify the morphology characteristics

of plant response to ozone exposure we used a segmentation of

time series measurements of the electrical activity of plants be-

fore, during and after the stimulation. Then, we extracted the

significant deviations from the baseline trend to detect and iden-

tify the response to a known stimulus, in terms of correlation

coefficient. As a result, the proposed detection algorithm repre-

sents a novel monitoring method for detecting critical levels of

ozone concentrations. 1

1The work presented in this chapter has been published as “Plant electrical activity

analysis for ozone pollution critical level detection” in Proc. of IEEE 23rd European Signal

Processing Conference (EUSIPCO), 2015 [48] and as “A WSN for ground-level ozone

monitoring based on plant electrical activity analysis” in Proc. of IEEE International

Wireless Communications and Mobile Computing Conference (IWCMC), 2015 [118].
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6.1 Introduction

Atmospheric pollution has become one of the most serious environmental

problems of the modern world. Its adverse effects are associated with the

degradation of the quality of life, affecting the sustainability of urban ecosys-

tems [91]. The problem of the poor air quality in highly anthropized environ-

ments exerts nowadays a high level of interest within the scientific commu-

nity and public opinion because of the known strong relationship between

exposure to many air pollutants and increased adverse effects on human

health [98, 108, 110]. Among air pollutants, ozone is one of the most impor-

tant greenhouse gas [60] with secondary origin, generated in the troposphere

through a series of complex photochemical reactions involving solar radiation

and ozone precursors, i.e. methane (CH4), carbon monoxide (CO), volatile

organic compounds (VOCs), and nitrogen oxides (NOx), which are largely

emitted from anthropogenic sources [131]. Background O3 concentrations

have risen from ∼10 ppb before the industrial revolution [158] to daytime

summer concentrations exceeding 40 ppb in many parts of the Northern

Hemisphere [157]. Due to its nature of reactive oxidant agent, ozone can

generate several negative effects on human health including lung inflamma-

tion, reduced lung function, degenerative diseases, age related disorders and

eventually cancer [93]. Ozone also acts as a corrosive agent for many mate-

rials, surface coatings and buildings [54]. Therefore, it is easy to understand

the importance of a proper air quality management and the attention to new

reliable approaches for ozone monitoring, such as the use of plants as biosen-

sors. The most common air quality measurements exploit sensors based on

the use of physicochemical properties in order to measure the concentrations

of air pollutants. In comparison with the traditional monitoring systems, the

use of biosensors has the advantage of showing the actual pollutants impact

on living organisms, thus providing additional data to the electronic instru-

ments. Moreover, this allows to take into account the concepts of bioavail-

ability, dose and exposure, resulting in a more realistic approach to assess the

pollutants impact on environment and human health [56]. An ideal monitor-

ing system should be biologically-based and at the same time practical for

wide use. Plants perfectly reflect this feature, being naturally widespread in

our environment, easy and cheap to product and to maintain thanks to their

self-sustainability. Moreover, plants are more sensitive than humans and

animals in terms of physiological reaction to fluctuations of multiple param-

eters [166]. Because of their sessile nature, plants are indeed continuously
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exposed to a wide variety of environmental changes to which they are able

to respond by adjusting their physiological characteristics to limit possible

damages. These remarkable characteristics make plants suitable tools for

environmental monitoring. More specifically, morphologicaland anatomical

parameters of plants, such as specific leaf area (SLA), stomatal density (SD),

and pore surface, have proven to be useful indicatorsof air quality [24]. The

observationof necrosis on leaves and coloured spots allow, in certain cases,

the identification of pollutant sources. The advantage of this kind of bio-

monitoring is to allow the follow-up of air quality evolution and the extent of

its impact on vast zones at low cost. On the other hand, the interpretation

of the results could be made difficult by the influence of other environmental

parameters and of the ecosystems heterogeneity, requiring the participation

of specialists [56]. Moreover, this kind of analysis can give us just long-term

exposure information. In the present study we propose a new approach to use

plants as easy and dynamic bio-sensors able to provide real-time data on air

quality changes, particularly referring to ozone concentration. Ozone effect

on plants determines changes in growth and appearance of visible symp-

toms (e.g. chlorosis, necrosis) but this response is preceded by a series of

biochemical events, the so-called ”hidden injury” [140]. All these changes

at physiological level are reflected in the generation of electrical signals. It

is known from time that plants produce electrical signals when subjected

to various environmental stimuli [33, 43, 63, 133]. These electrical signals in

essence represent changes in underlying physiological processes influenced by

the external stimuli. Since plants react to environmental changes generating

responses in the bioelectrical activity, this lead to the possibility to classify

external stimuli from the typical electrical signal response [33]. The focus of

our work was to find an association between ozone exposure and some typical

features in the resulting plant electrical signal, in order to create a classi-

fication algorithm able to identify the stimulus. In order to obtain reliable

results, automatic response detection and data classification for plant elec-

trical signals are necessary to be developed. Many chapters reported artifact

detection methods for EEG and EKG analysis [66,90,154]. Various advanced

methods have been applied to detect artifacts in EEG signals, such as inde-

pendent component analysis (ICA) and support vector machine (SVM) [66],

wavelet analysis [90] and autoregressive (AR) model [154]. These methods

were appropriate for human biological signals and offline analysis. As for the

analysis of plant bio-electrical signals related to environmental changes, the
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response detection algorithm needs to be simplified.

In this chapter a correlation based data classification system for plant elec-

trical signal analysis is proposed. A dataset of electrical signals was col-

lected from ligustrum and buxus plants exposed to ozone in controlled con-

ditions. These species have been selected for the study because of their

widespread use in urban sites. To automatically segment the signals a

derivative-based detection method was designed, similarly to those used in

spike detection [162]. Finally, the detected signals were classified based on

correlation waveform analysis of plant response to ozone air pollution. The

proposed data classification method can be extended for various research

purposes by defining weight coefficients and adjusting thresholds.

6.2 Data acquisition

The experiments were performed inside a closed growth chamber, the so-

called iTreeBox, in order to control the ozone concentration and the other

environmental parameters. A picture of the iTreeBox chamber is shown in

Figure 6.1. Inside the box plants were exposed to standard artificial light

conditions by means of LED lights responding to the plants photosynthetic

needs (PAR radiation). About 50 cm high plants of Ligustrum texanum and

Buxus macrophilla were used for the experiments and each plant was placed

in the chamber to be exposed to ozone stimuli in a controlled environment.

Electrical signals were monitored by means of three stainless steel needle elec-

trodes, one placed at the base (reference for background noise subtraction),

one in the middle and the other on top of the stem. After some preliminary

test, the sampling frequency was set at 10 samples/s for all the recordings.

All the experiments were carried out during the day time for about 8 hours

and the ozone treatment always started at least one hour after the beginning

of the electrical signal acquisition to allow the plant acclimating to the arti-

ficial light and the box conditions. Before exposing plants to the pollutant,

several acquisitions in natural environment conditions (without ozone stimu-

lus) were performed, in order to monitor the physiological electrical activity

of each plant. The main ozone treatment consisted of 1 hour exposure to a

constant concentration of 240 µg/m3, that is the ozone alert threshold value,

as set out in [4]. Moreover, further experiments consisted in exposing the

plant to incremental ozone concentrations, in order to simulate more real-

istic environmental conditions, as in days of summer heat. The ozone was
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Figure 6.1: The iTreeBox plant growth chamber
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Figure 6.2: Flow chart of the detection algorithm

injected in the chamber with four increasing concentration values (60, 120,

180 and 240 µg/m3) every 60 minutes, for a total exposure duration of four

hours.

6.3 Data analysis

The proposed detection algorithm of plant response to ozone is designed ac-

cording to two approaches. The first one is based on a preliminary extraction

of significant deviations from a certain baseline trend: in order to correctly

identify the response in an automatic way, a derivative-based algorithm has

been used. The second step is based on the classification of the ozone risk

level by the method of correlation. In all applications we used the signals

deriving from the experiments carried out in the iTreeBox chamber. The

methods were developed under Matlab software. The detailed flow chart of

the proposed system is shown in Figure 6.2.

6.3.1 Pre-processing of the plant electrical signal

The reference signals generated by a plant are generally contaminated by

different sources of noise. Since most of the energy of such biological signals

is concentrated at low frequencies, we applied a low-pass filter, followed in

cascade by a moving average filter to further clean the signal. Given the fact

that the responses to an ozone stimulus last approximately 60 minutes, the

used low-pass filter has a cutoff frequency of 5 mHz.
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6.3.2 Plant response detection

In general, in response to an environmental stimulus, the plant electrical

activity appears irregular for a certain period of time. We use the different

characteristics induced by ozone air pollution to detect the abnormal signal

waveform. In order to automatically segment the data and correctly iden-

tify the response, we implemented a derivative-based algorithm. Given the

voltage signal V (t) and the following parameters vector:

P = (AdV ,∆td, SV ) (6.1)

a response is defined to occur when the first derivative of the signal decreases

below a negative threshold AdV :

dV (t)

dt
< AdV . (6.2)

In order not to associate very quick fluctuations to actual responses, we set

another threshold, ∆td, as a minimum time duration following the onset of

the response. This condition enables the accurate detection of long-lasting

effects on the plant electrical activity caused by ozone exposure. Based

on the supplied data, it has been noticed that the central position of the

response is related to the nearest local minimum of the plant voltage signal:

if the response voltage initially decreases, after a certain time period it will

start to increase in order to restore the pre-stimulation baseline trend. This

property was used to estimate the minimum variation in the slopes of the

ozone response and set an amplitude threshold, SV , on the voltage signal.

The ozone response is then detected and extracted whenever the difference

between the central location of the response, Vc, and the basal voltage Vb,

that is the value of the voltage signal preceding the onset of response, exceeds

the threshold SV :

|Vc − Vb| > SV . (6.3)

In our approach, the period taken for the plant to stabilize its potential after

the stimulus has to be assigned to the same response. Since such a response

model has a 60 minutes average duration, the value of Vc is calculated as the

local minimum of the voltage signal, while Vb is estimated to be the voltage

signal value for the preceding 30 minutes. An example of detected ozone re-

sponse is depicted in Figure 6.3. A representative ozone response template,

constructed by coherent averaging of the respective response segments of the
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Figure 6.3: Response detection of ligustrum plant signal after ozone exposure

recordings used for the training phase, was employed for subsequent com-

parison with all the responses detected by the proposed system. A window

size of 60 minutes was used, in order to effectively include the long-lasting

repolarization phase of the plant signal.

6.4 Correlation waveform analysis for ozone

response classification

Cross correlation is a statistical technique which can show whether and how

strongly pairs of variables are related. It is an excellent tool to match images

and signals with each other. It is robust to noise, and can be normalized

for pattern matching. The correlation coefficient is a statistical measure

of similarity of two waveforms; it produces a value, ρ, which falls within

the range [-1,+1], where +1 indicates a perfect match between signal and

template. Mathematically, the correlation coefficient is defined as follows:

ρ =

∑N
i=1(ti − t̄)(si − s̄)√∑N

i=1(ti − t̄)2

√∑N
i=1(si − s̄)2

(6.4)

where ti are the template points, si are the signal points under analysis, t̄ is

the average value of the template points, s̄ is the average value of the signal
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points, N is the number of points in the template, and ρ is the performance

measure. The correlation coefficient is independent of the relative ampli-

tudes of two signals and independent of any baseline changes. Based on the

supplied data, it was observed that the plant response to ozone stimulus is

characterized by a specific waveform. The proposed detection system takes

advantage of this property to classify the risk level of ozone air pollution

by using the correlation coefficient. Several studies have offered guidelines

for the interpretation of the size of a correlation. The interpretation of the

correlation coefficient depends on the context and purposes. In our study

an empirical approach was adopted, by giving numerous plant signals to the

system in order to adjust and validate the threshold values of the proposed

algorithm. The correlation-based classifier has been implemented to distin-

guish electrical responses to critical level of ozone exposure by identifying

the detected responses with very strong correlation to the template. The

corresponding decision rule has been chosen by setting a threshold value of

0.73 on ρ.

6.5 Experimental results

To examine the efficiency of the algorithms, a database of 84 day-long record-

ings of plant electrical activity was employed. The recordings were chosen

to include a broad variety of waveform responses. The database was col-

lected from both ligustrum and buxus plants, including experiments carried

out with constant or incremental ozone concentrations exposure, mixed pol-

lutants (ozone and sulphur dioxide), as well as with natural environment

conditions. The complete recordings database is summed up in Figure 6.4.

The correctness of a classification can be evaluated by computing the num-

ber of correctly recognized class examples (true positives, tp), the number

of correctly recognized examples that do not belong to the class (true neg-

atives, tn), and examples that either were incorrectly assigned to the class

(false positives, fp) or that were not recognized as class examples (false

negatives, fn). According to [147], the following performance measures for



110 Green Wireless Sensor Network for ozone pollution detection

Table 6.1: Results from the classification algorithm

Ligustrum Buxus Total Performance

Accuracy 92% 81% 87%

Precision 96% 89% 93%

Sensitivity 89% 77% 84%

Specificity 95% 85% 91%

classification are considered:

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
(6.5)

Precision =
tp

tp+ fp
(6.6)

Sensitivity =
tp

tp+ fn
(6.7)

Specificity =
tn

fp+ tn
(6.8)

The detection results of the proposed algorithm are listed in Table 6.1. The

classification system is shown to be capable of discriminating the response

to critical levels of ozone air pollution from the depolarizations induced by

effects of natural environmental conditions with 87% accuracy. However,

individual thresholds were required for each plant species and were based on

the initial training phase. The total performance is high since the achieved

precision and specificity are high for the ligustrum plant dataset (96% and

95% respectively), compared to the results of the buxus plant dataset (89%

precision and 77% sensitivity). The main advantage of the proposed system

resides in the fact that the classification algorithm based on correlation coef-

ficient, by recognizing the degree of similarity between plant electrical signal

and template waveform provides a very efficient and innovative monitoring

technology for detecting ground-level ozone pollution.

6.6 Conclusion

This chapter has presented an automatic method of analysis of plant elec-

trical signal in order to detect critical level of ozone air pollution. The

experimental data were coming from plants exposed to various ozone concen-

trations in a closed plant growth chamber, specifically designed to recreate
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Figure 6.4: Database summary for the 84 day-long test recordings

typical environmental and daylighting conditions. The proposed classifica-

tion algorithm is based on the correlation theory; it mainly recognizes the

degree of similarity between a reference ozone response and the acquired

plant electrical signal. Then the decision is made based on the correlation

coefficient. The experimental results show that the proposed system achieves

over all accuracy of 87%. Moreover the innovative approach to the problem

of atmospheric pollution monitoring, based on plant electrical activity anal-

ysis, allows the classifier to be easily extended to other major air pollutant

classes in future studies.
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Chapter 7

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

7.1 Summary of contribution

Wireless communications are undergoing a rapid evolution, wherein the quest

for new services and applications motivates the rapid introduction of new

technologies into the marketplace. In particular, the wireless communica-

tions industry has begun to pursue energy efficient solutions. This thesis

provides an overview of energy-efficient wireless communications, with recent

contribution to the state-of-the-art, and discusses the most relevant research

challenges to be addressed in the future, by introducing some original con-

tributions. The first step presents a multiobjective optimization framework

which is aimed at minimizing the power consumption and the number of

BS sleep-mode switchings in cellular networks, by jointly considering QoS

requirements. These requirements are expressed in terms of a required bit

rate for each mobile terminal. The framework deals with network manage-

ment, such as the number of BSs that should be switched on, considering

common diurnal patterns of the traffic demand. The proposed optimization

technique is mixed-integer quadratic programming, which solves the joint

power allocation and user association problem while also considering opti-

mized bandwidth allocation schemes. The trade-off between the conflicting

objectives, as well as the performance analysis in terms of the throughput

and energy consumption of the network, is shown for different traffic load

113
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cases. The proposed optimization can obtain up to 60% energy savings dur-

ing off-peak hours, guaranteeing QoS target requirements. By optimizing

the network configuration, a 70% reduction in BS switch on/off operations

can be reached in a day with 3% more energy expense.

Moreover, the focus is moved to the HetNet scenario in which macro and

micro cells coexist. The MIQP optimization technique is used to minimize

the power consumption together with the number of BS sleep mode oper-

ations of both macro and micro cells. Results about the trade-off between

power consumption, sleep mode switchings and performance of the network

show that the proposed optimization can guarantee QoS target throughput

for users and significant reduction of 50% for macro and 73% for micro BS

respectively daily number of switchings, while still achieving 8% savings in

terms of daily energy consumption.

Then the feasibility of energy efficient solutions for current and potentially

future PMR networks is considered, by providing a mathematical formula-

tion of power consumption in TETRA base stations and assessing possible

business models and energy saving solutions for enhanced mission-critical

operations. The energy efficiency evaluation has been performed by taking

into account the traffic load of a deployed TETRA regional network: in the

considered network scenario with 150 base stations, significant OPEX sav-

ings up to 70 thousand Euros per year of operation are achieved. Moreover,

the proposed solutions allow for saving more than 1 ton of CO2 per year.

Finally the study of the relationship between environmental stimuli of atmo-

spheric pollution and electrical responses of plants has been addressed for

developing technologies that use plants as organic sensing devices. An auto-

matic method of analysis of plant electrical signals for ozone critical levels

detection is proposed, based on the fundamentals of correlation theory. In

order to classify the morphology characteristics of plant response to ozone

exposure we used a segmentation of time series measurements of the elec-

trical activity of plants before, during and after the stimulation. Then, we

extracted the significant deviations from the baseline trend to detect and

identify the response to a known stimulus, in terms of correlation coefficient.

As a result, the proposed detection algorithm represents a novel monitoring

method for detecting critical levels of ozone concentrations.
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7.2 Directions for future work

Despite the various effort proposed to analyse and design effective green

solutions, many open issues remain to be further investigated. As future

research, green solutions should capture the trade-off in energy efficiency

among network operators and mobile users, and should be designed to bal-

ance such a trade-off. The heterogeneous wireless access medium exhibits

great potential in improving energy efficiency while satisfying the QoS of

mobile users. A joint bandwidth and power allocation approach results in a

significant advantage in energy-efficient communications over the power-only

allocation scheme. In joint bandwidth and power allocation for uplink and

downlink communications in a heterogeneous networking setting, there are

many challenging technical issues that require further studies, including fair-

ness in energy efficiency among users, achieving mutual benefits among net-

work operators, decentralized implementation with reduced signaling over-

head, interference management and implementation complexity. As future

work, we plan to extend our analysis considering the lifetime degradation in-

troduced by power management strategies. Moreover, we plan to investigate

solutions applied to ultra-dense heterogeneous networks for 5G, exploiting

in particular the millimeter-wave (mmWave) spectrum, which offers the po-

tential for high-bandwidth communication channels in cellular networks.

As shown in this thesis, energy efficiency has gained in the last decade its own

role as a performance measure and design constraint for communication net-

works, but many technical, regulatory, policy, and business challenges still

remain to be addressed before the ambitious 1000-times energy efficiency

improvement goal can be reached.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. M. Dolfi, S. Morosi, P. Piunti, E. Del Re. “Energy Efficiency Perspectives

of PMR Networks”, MDPI Information, vol. 8, n. 1, 2017.

[DOI: 10.3390/info8010001]

2. M. Dolfi, C. Cavdar, S. Morosi, P. Piunti, J. Zander, E. Del Re. “On the

trade-off between energy saving and number of switchings in green cellular

networks”, Wiley Transactions on Emerging Telecommunications Technolo-

gies, vol. in press, 2017.

[DOI: 10.1002/ett.3193]

International Conferences and Workshops

1. P. Piunti, M. Dolfi, S. Morosi, S. Jayousi, E. Del Re. “Performance evalua-

tion of an energy efficient RRM strategy in heterogeneous cellular networks”,

in Proc. of IEEE 25th Annual International Symposium on Personal, In-

door, and Mobile Radio Communication (PIMRC), Washington, DC (USA),

September 2014.

[DOI: 10.1109/PIMRC.2014.7136411] 3 citations

1The author’s bibliometric indices are the following: H -index = 2, total number of

citations = 5 (source: Google Scholar on Month 10, 2017).
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2. M. Dolfi, S. Morosi, P. Piunti, E. Del Re. “Energy Efficiency Perspectives of

PMR Cellular Systems”, in Third ETSI Workshop on ICT Energy Efficiency

and Environmental Sustainability, Sophia Antipolis (France), June 2015.

3. S. Morosi, M. Dolfi, E. Del Re, E. Masi, I. Colzi, S. Mancuso, F. Francini,

R. Magliacani, A. Valgimigli, L. Masini. “A WSN for ground-level ozone

monitoring based on plant electrical activity analysis”, in Proc. of IEEE

International Wireless Communications and Mobile Computing Conference

(IWCMC), Dubrovnik (Croatia), August 2015.

[DOI: 10.1109/IWCMC.2015.7289171] 2 citations

4. M. Dolfi, I. Colzi, S. Morosi, E. Masi, S. Mancuso, E. Del Re, F. Francini,

R. Magliacani. “Plant electrical activity analysis for ozone pollution critical

level detection”, in Proc. of IEEE 23rd European Signal Processing Confer-

ence (EUSIPCO), Nice (France), August 2015.

[DOI: 10.1109/EUSIPCO.2015.7362821]

5. M. Dolfi, S. Morosi, C. Cavdar, E. Del Re. “Energy efficient optimization

of a sleep mode strategy in heterogeneous cellular networks”, in Proc. of

IEEE European Conference on Networks and Communications (EuCNC),

Oulu (Finland), June 2017.

[DOI: 10.1109/EuCNC.2017.7980740]
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