ON THE AUTOMORPHISM GROUP OF A CLOSED G2-STRUCTURE

FABIO PODESTÀ AND ALBERTO RAFFERO

ABSTRACT. We study the automorphism group of a compact 7-manifold M endowed with a closed non-parallel G₂-structure, showing that its identity component is abelian with dimension bounded by min{6, $b_2(M)$ }. This implies the non-existence of compact homogeneous manifolds endowed with an invariant closed non-parallel G₂-structure. We also discuss some relevant examples.

1. INTRODUCTION

A seven-dimensional smooth manifold M admits a G₂-structure if the structure group of its frame bundle can be reduced to the exceptional Lie group G₂ \subset SO(7). Such a reduction is characterized by the existence of a global 3-form $\varphi \in \Omega^3(M)$ satisfying a suitable nondegeneracy condition and giving rise to a Riemannian metric g_{φ} and to a volume form dV_{φ} on M via the identity

$$g_{\varphi}(X,Y) \, dV_{\varphi} = \frac{1}{6} \, \iota_X \varphi \wedge \iota_Y \varphi \wedge \varphi,$$

for all $X, Y \in \mathfrak{X}(M)$ (see e.g. [1, 11]).

By [9], the intrinsic torsion of a G₂-structure φ can be identified with the covariant derivative $\nabla^{g_{\varphi}}\varphi$, and it vanishes identically if and only if both $d\varphi = 0$ and $d *_{\varphi} \varphi = 0$, $*_{\varphi}$ being the Hodge operator defined by g_{φ} and dV_{φ} . On a compact manifold, this last fact is equivalent to $\Delta_{\varphi}\varphi = 0$, where $\Delta_{\varphi} = d^*d + dd^*$ is the Hodge Laplacian of g_{φ} . A G₂-structure φ satisfying any of these conditions is said to be *parallel* and its associated Riemannian metric g_{φ} has holonomy contained in G₂. Consequently, g_{φ} is Ricci-flat and the automorphism group Aut $(M, \varphi) := \{f \in \text{Diff}(M) \mid f^*\varphi = f\}$ of (M, φ) is finite when M is compact and $\text{Hol}(g_{\varphi}) = \text{G}_2$.

Parallel G₂-structures play a central role in the construction of compact manifolds with holonomy G₂, and known methods to achieve this result involve *closed* G₂-structures, i.e., those whose defining 3-form φ satisfies $d\varphi = 0$ (see [1, 2, 5, 12, 14, 17]).

Most of the known examples of 7-manifolds admitting closed G₂-structures consist of simply connected Lie groups endowed with a left-invariant closed G₂-form φ [4, 7, 8, 10, 15]. Compact locally homogeneous examples can be obtained considering the quotient of such groups by a co-compact discrete subgroup, whenever this exists. Further non-homogeneous closed G₂-structures on the 7-torus can be constructed starting from the symplectic half-flat SU(3)-structure on T⁶ described in [6, Ex. 5.1] (see Example 2.4 for details).

²⁰¹⁰ Mathematics Subject Classification. 53C10.

Key words and phrases. closed G₂-structure, automorphism.

The authors were supported by GNSAGA of INdAM.

Up to now, the existence of compact homogeneous 7-manifolds admitting an invariant closed non-parallel G₂-structure is still not known (cf. [15, Question 3.1] and [16, 21]). Moreover, among the G₂-manifolds acted on by a cohomogeneity one simple group of automorphisms studied in [3] no compact examples admitting a closed G₂-structure occur.

In this short note, we investigate the properties of the automorphism group $\operatorname{Aut}(M, \varphi)$ of a compact 7-manifold M endowed with a closed non-parallel G₂-structure φ . Our main results are contained in Theorem 2.1, where we show that the identity component $\operatorname{Aut}(M, \varphi)^{0}$ is necessarily abelian with dimension bounded by min{ $6, b_2(M)$ }. In particular, this answers negatively [15, Question 3.1] and explains why compact examples cannot occur in [3]. Moreover, we also prove some interesting properties of the automorphism group action. Finally, we describe some relevant examples.

Similar results hold for compact symplectic half-flat 6-manifolds, and they will appear in a forthcoming paper.

2. The Automorphism group

Let M be a seven-dimensional manifold endowed with a closed G₂-structure φ , and consider its automorphism group

$$\operatorname{Aut}(M,\varphi) \coloneqq \{f \in \operatorname{Diff}(M) \mid f^*\varphi = f\}.$$

Notice that $\operatorname{Aut}(M, \varphi)$ is a closed Lie subgroup of $\operatorname{Iso}(M, g_{\varphi})$, and that the Lie algebra of its identity component $G := \operatorname{Aut}(M, \varphi)^0$ is

$$\mathfrak{g} = \{ X \in \mathfrak{X}(M) \mid \mathcal{L}_X \varphi = 0 \}$$

In particular, every $X \in \mathfrak{g}$ is a Killing vector field for the metric g_{φ} (cf. [17, Lemma 9.3]).

When M is compact, the Lie group $\operatorname{Aut}(M, \varphi) \subset \operatorname{Iso}(M, g_{\varphi})$ is also compact, and we can show the following.

Theorem 2.1. Let M be a compact seven-dimensional manifold endowed with a closed non-parallel G₂-structure φ . Then, there exists an injective map

$$F: \mathfrak{g} \to \mathscr{H}^2(M), \quad X \mapsto \iota_X \varphi,$$

where $\mathscr{H}^2(M)$ is the space of Δ_{φ} -harmonic 2-forms. As a consequence, the following properties hold:

1) dim(\mathfrak{g}) $\leq b_2(M)$;

- 2) \mathfrak{g} is abelian with dim(\mathfrak{g}) ≤ 6 ;
- 3) for every $p \in M$, the isotropy subalgebra \mathfrak{g}_p has dimension $\dim(\mathfrak{g}_p) \leq 2$, with equality only when $\dim(\mathfrak{g}) = 2, 3$;
- 4) the G-action is free when $\dim(\mathfrak{g}) \geq 5$.

Proof. Let $X \in \mathfrak{g}$. Then, $0 = \mathcal{L}_X \varphi = d(\iota_X \varphi)$, as φ is closed. We claim that $\iota_X \varphi$ is co-closed (see also [17, Lemma 9.3]). Indeed, by [13, Prop. A.3] we have

$$\iota_X \varphi \wedge \varphi = -2 *_{\varphi} (\iota_X \varphi),$$

from which it follows that

$$0 = d(\iota_X \varphi \wedge \varphi) = -2d *_{\varphi} (\iota_X \varphi).$$

Consequently, the 2-form $\iota_X \varphi$ is Δ_{φ} -harmonic and F is the restriction of the injective map $Z \mapsto \iota_Z \varphi$ to \mathfrak{g} . From this 1) follows.

As for 2), we begin observing that $\mathcal{L}_Y(\iota_X \varphi) = 0$ for all $X, Y \in \mathfrak{g}$, since every Killing field on a compact manifold preserves every harmonic form. Hence, we have

$$0 = \mathcal{L}_Y(\iota_X \varphi) = \iota_{[Y,X]} \varphi + \iota_X(\mathcal{L}_Y \varphi) = \iota_{[Y,X]} \varphi.$$

This proves that \mathfrak{g} is abelian, the map $Z \mapsto \iota_Z \varphi$ being injective. Now, G is compact abelian and it acts effectively on the compact manifold M. Therefore, the principal isotropy is trivial and dim(\mathfrak{g}) ≤ 7 . When dim(\mathfrak{g}) = 7, M can be identified with the 7-torus \mathbb{T}^7 endowed with a left-invariant metric, which is automatically flat. Hence, if φ is closed non-parallel, then dim(\mathfrak{g}) ≤ 6 .

In order to prove 3), we fix a point p of M and we observe that the image of the isotropy representation $\rho : \mathbf{G}_p \to \mathbf{O}(7)$ is conjugated into \mathbf{G}_2 . Since \mathbf{G}_2 has rank two and \mathbf{G}_p is abelian, the dimension of \mathfrak{g}_p is at most two. If $\dim(\mathfrak{g}_p) = 2$, then the image of ρ is conjugate to a maximal torus of \mathbf{G}_2 and its fixed point set in T_pM is one-dimensional. As $T_p(\mathbf{G} \cdot p) \subseteq (T_pM)^{\mathbf{G}_p}$, the dimension of the orbit $\mathbf{G} \cdot p$ is at most one, which implies that $\dim(\mathfrak{g})$ is either two or three.

The last assertion 4) is equivalent to proving that G_p is trivial for every $p \in M$ whenever $\dim(\mathfrak{g}) \geq 5$. In this case, $\dim(\mathfrak{g}_p) \leq 1$ by 3). Assuming that the dimension is precisely one, then the dimension of the orbit $G \cdot p$ is at least four. This means that the G_p -fixed point set in T_pM is at least four-dimensional. On the other hand, the fixed point set of a closed one-parameter subgroup of G_2 is at most three-dimensional. This gives a contradiction. \Box

The following corollary answers negatively a question posed by Lauret in [15].

Corollary 2.2. There are no compact homogeneous 7-manifolds endowed with an invariant closed non-parallel G_2 -structure.

Proof. The assertion follows immediately from point 2) of Theorem 2.1. \Box

In contrast to the last result, it is possible to exhibit non-compact homogeneous examples. Consider for instance a six-dimensional non-compact homogeneous space H/K endowed with an invariant symplectic half-flat SU(3)-structure, namely an SU(3)-structure (ω, ψ) such that $d\omega = 0$ and $d\psi = 0$ (see [20] for the classification of such spaces when H is semisimple and for more information on symplectic half-flat structures). If (ω, ψ) is not torsion-free, i.e., if $d(J\psi) \neq 0$, then the non-compact homogeneous space $(H \times S^1)/K$ admits an invariant closed non-parallel G₂-structure defined by the 3-form

$$\varphi \coloneqq \omega \wedge ds + \psi,$$

where ds denotes the global 1-form on \mathbb{S}^1 .

Remark 2.3. In [3], the authors investigated G_2 -manifolds acted on by a cohomogeneity one simple group of automorphisms. Theorem 2.1 explains why compact examples in the case of closed non-parallel G_2 -structures do not occur.

The next example shows that G can be non-trivial, that the upper bound on its dimension given in 2) can be attained, and that 4) is only a sufficient condition.

Example 2.4. In [6], the authors constructed a symplectic half-flat SU(3)-structure (ω, ψ) on the 6-torus \mathbb{T}^6 as follows. Let (x^1, \ldots, x^6) be the standard coordinates on \mathbb{R}^6 , and let $a(x^1), b(x^2)$ and $c(x^3)$ be three smooth functions on \mathbb{R}^6 such that

$$\lambda_1 \coloneqq b(x^2) - c(x^3), \quad \lambda_2 \coloneqq c(x^3) - a(x^1), \quad \lambda_3 \coloneqq a(x^1) - b(x^2),$$

are \mathbb{Z}^6 -periodic and non-constant. Then, the following pair of \mathbb{Z}^6 -invariant differential forms on \mathbb{R}^6 induces an SU(3)-structure on $\mathbb{T}^6 = \mathbb{R}^6/\mathbb{Z}^6$:

$$\begin{split} \omega &= dx^{14} + dx^{25} + dx^{36}, \\ \psi &= -e^{\lambda_3} dx^{126} + e^{\lambda_2} dx^{135} - e^{\lambda_1} dx^{234} + dx^{456}, \end{split}$$

where $dx^{ijk\cdots}$ is a shorthand for the wedge product $dx^i \wedge dx^j \wedge dx^k \wedge \cdots$. It is immediate to check that both ω and ψ are closed and that $d(J\psi) \neq 0$ whenever at least one of the functions $a(x^1)$, $b(x^2)$, $c(x^3)$ is not identically zero. Thus, the pair (ω, ψ) defines a symplectic half-flat SU(3)-structure on the 6-torus. The automorphism group of $(\mathbb{T}^6, \omega, \psi)$ is \mathbb{T}^3 when $a(x^1) b(x^2) c(x^3) \neq 0$, while it becomes \mathbb{T}^4 (\mathbb{T}^5) when one (two) of them vanishes identically.

Now, we can consider the closed G₂-structure on $\mathbb{T}^7 = \mathbb{T}^6 \times \mathbb{S}^1$ defined by the 3-form $\varphi = \omega \wedge ds + \psi$. Depending on the vanishing of none, one or two of the functions $a(x^1)$, $b(x^2), c(x^3), \varphi$ is a closed non-parallel G₂-structure and the automorphism group of (\mathbb{T}^7, φ) is \mathbb{T}^4 , \mathbb{T}^5 or \mathbb{T}^6 , respectively.

Finally, we observe that there exist examples where the upper bound on the dimension of \mathfrak{g} given in 1) is more restrictive than the upper bound given in 2).

Example 2.5. In [4], the authors obtained the classification of seven-dimensional nilpotent Lie algebras admitting closed G_2 -structures. An inspection of all possible cases shows that the Lie algebras whose second Betti number is lower than seven are those appearing in Table 1.

nilpotent Lie algebra \mathfrak{n}	$b_2(\mathfrak{n})$
$(0, 0, e^{12}, e^{13}, e^{23}, e^{15} + e^{24}, e^{16} + e^{34})$	3
$(0, 0, e^{12}, e^{13}, e^{23}, e^{15} + e^{24}, e^{16} + e^{34} + e^{25})$	3
$(0, 0, e^{12}, 0, e^{13} + e^{24}, e^{14}, e^{46} + e^{34} + e^{15} + e^{23})$	5
$(0, 0, e^{12}, 0, e^{13}, e^{24} + e^{23}, e^{25} + e^{34} + e^{15} + e^{16} - 3e^{26})$	6
TABLE 1.	

Let \mathfrak{n} be one of the Lie algebras in Table 1, and consider a closed non-parallel G₂-structure φ on it. Then, left multiplication extends φ to a left-invariant G₂-structure of the same type on the simply connected nilpotent Lie group N corresponding to \mathfrak{n} . Moreover, as the structure constants of \mathfrak{n} are integers, there exists a co-compact discrete subgroup $\Gamma \subset N$ giving rise to a compact nilmanifold $\Gamma \setminus N$ [18]. The left-invariant 3-form φ on N passes to the quotient defining an invariant closed non-parallel G₂-structure on $\Gamma \setminus N$. By Nomizu Theorem [19], the de Rham cohomology group $H^k_{dR}(\Gamma \setminus N)$ is isomorphic to the cohomology group $H^k(\mathfrak{n}^*)$ of the Chevalley-Eilenberg complex of \mathfrak{n} . Hence, $b_2(\Gamma \setminus N) = b_2(\mathfrak{n})$.

References

- R. L. Bryant. Some remarks on G₂-structures. In Proceedings of Gökova Geometry-Topology Conference 2005, pages 75–109. Gökova Geometry/Topology Conference (GGT), Gökova, 2006.
- [2] R. L. Bryant and F. Xu. Laplacian flow for closed G₂-structures: Short time behavior. arXiv:1101.2004.
- [3] R. Cleyton and A. Swann. Cohomogeneity-one G₂-structures. J. Geom. Phys., 44(2-3), 202–220, 2002.
- [4] D. Conti and M. Fernández. Nilmanifolds with a calibrated G₂-structure. Differential Geom. Appl., 29(4), 493–506, 2011.
- [5] A. Corti, M. Haskins, J. Nordström, and T. Pacini. G₂-manifolds and associative submanifolds via semi-Fano 3-folds. *Duke Math. J.*, 164(10), 1971–2092, 2015.
- [6] P. de Bartolomeis and A. Tomassini. On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds. *Internat. J. Math.*, 17(8), 921–947, 2006.
- [7] M. Fernández. An example of a compact calibrated manifold associated with the exceptional Lie group G₂. J. Differential Geom., 26(2), 367–370, 1987.
- [8] M. Fernández. A family of compact solvable G₂-calibrated manifolds. Tohoku Math. J. (2), 39(2), 287–289, 1987.
- M. Fernández and A. Gray. Riemannian manifolds with structure group G₂. Ann. Mat. Pura Appl. (4), 132, 19–45, 1982.
- [10] A. Fino and A. Raffero. Closed G₂-structures on non-solvable Lie groups. arXiv:1712.09664.
- [11] N. Hitchin. Stable forms and special metrics. In Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), v. 288 of Contemp. Math., pp. 70–89. Amer. Math. Soc., 2001.
- [12] D. D. Joyce. Compact Riemannian 7-manifolds with holonomy G₂. I, II. J. Differential Geom., 43(2), 291–328, 329–375, 1996.
- [13] S. Karigiannis. Flows of G₂-structures. I. Q. J. Math., **60**(4), 487–522, 2009.
- [14] A. Kovalev. Twisted connected sums and special Riemannian holonomy. J. Reine Angew. Math., 565, 125–160, 2003.
- [15] J. Lauret. Laplacian solitons: questions and homogeneous examples. Differential Geom. Appl., 54(B), 345–360, 2017.
- [16] H. V. Lê and M. Munir. Classification of compact homogeneous spaces with invariant G₂-structures. Adv. Geom., 12(2), 302–328, 2012.
- [17] J. D. Lotay and Y. Wei. Laplacian flow for closed G₂ structures: Shi-type estimates, uniqueness and compactness. *Geom. Funct. Anal.*, 27(1), 165–233, 2017.
- [18] A.I. Malčev. On a class of homogeneous spaces. Amer. Math. Soc. Translation, 1951(39), 33 pp., 1951.
- [19] K. Nomizu. On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2), 59, 531–538, 1954.
- [20] F. Podestà, A. Raffero. Homogeneous symplectic half-flat 6-manifolds. arXiv:1711.10346.
- [21] F. Reidegeld. Spaces admitting homogeneous G₂-structures. Differential Geom. Appl., 28(3), 301– 312, 2010.

DIPARTIMENTO DI MATEMATICA E INFORMATICA "U. DINI", UNIVERSITÀ DEGLI STUDI DI FIRENZE, VIALE MORGAGNI 67/A, 50134 FIRENZE, ITALY

E-mail address: podesta@math.unifi.it, alberto.raffero@unifi.it