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Narcolepsy is a common phenotype in
HSAN IE and ADCA-DN
Keivan Kaveh Moghadam,1 Fabio Pizza,1,2 Chiara La Morgia,1,2 Christian Franceschini,3

Caterina Tonon,4 Raffaele Lodi,4 Piero Barboni,5,6 Marco Seri,7 Simona Ferrari,7 Rocco Liguori,1,2

Vincenzo Donadio,2 Piero Parchi,1,2 Ferdinando Cornelio,8 Domenico Inzitari,9 Andrea Mignarri,10

Giuseppe Capocchi,11 Maria Teresa Dotti,10 Juliane Winkelmann,12,13 Ling Lin,13

Emmanuel Mignot,13 Valerio Carelli1,2 and Giuseppe Plazzi1,2

1 Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy

2 IRCCS Istituto delle Scienze Neurologiche di Bologna, AUSL di Bologna, Bologna, Italy

3 Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy

4 MR Functional Unit, DIBINEM, Alma Mater Studiorum, University of Bologna, Bologna, Italy

5 Studio Oculistico d’Azeglio, Bologna, Italy

6 Istituto Scientifico San Raffaele, Milano, Italy

7 Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy

8 Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta, Milan, Italy

9 NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy

10 Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy

11 Department of Neuroscience, Santa Maria Hospital, Terni, Italy

12 Institute of Human Genetics and Department of Neurology, Technische Universitat Munchen, Munich, Germany

13 Centre for Sleep Sciences and Medicine, Department of Psychiatry and Department of Genetics, Stanford University School of Medicine, Palo Alto,

CA, USA

Correspondence to: Dr Giuseppe Plazzi,

Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM),

Alma Mater Studiorum,
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We report on the extensive phenotypic characterization of five Italian patients from four unrelated families carrying dominant

heterozygous DNMT1 mutations linked to two distinct autosomal dominant diseases: hereditary sensory and autonomic neur-

opathy with dementia and hearing loss type IE (HSAN IE) and autosomal dominant cerebellar ataxia, deafness and narcolepsy

(ADCA-DN). Patients underwent genetic analysis of DNMT1 gene, neurophysiological tests investigating sleep, auditory func-

tions and peripheral nervous system, ophthalmological studies including optical coherence tomography, lymphoscintigraphy,

brain magnetic resonance and nuclear imaging, cerebrospinal fluid hypocretin-1, total tau, phosphorylated tau, amyloid-b1–42

and 14-3-3 proteins measurement, skin, muscular and sural nerve biopsies. Exome and direct sequencing studies disclosed two

different point mutations affecting exon 21 of DNMT1 gene in patients with ADCA-DN, a novel heterozygous point mutation in

exon 20 in two affected HSAN IE siblings, and a trinucleotide deletion in exon 20 in the latter patient with HSAN IE. Phenotypic

characterization pinpoints that ADCA-DN and HSAN IE represent two discrete clinical entities belonging to the same disease

spectrum, with variable degree of overlap. Remarkably, narcolepsy with or without cataplexy with low/intermediate or normal
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cerebrospinal fluid hypocretin-1 is present in both diseases. The human leukocyte antigen DQB1*06:02 was absent in all

patients. Other common symptoms and features observed in our cases, involving the central and peripheral nervous system,

include deafness, optic neuropathy-previously not reported in HSAN IE-large and small fibres polyneuropathy and lower limbs

oedema. Overall, the two syndromes share more characteristics than previously recognized and narcolepsy is common to both.

HSAN IE and ADCA-DN are two extreme phenotypic manifestations of a DNMT1 methylopathy.

Keywords: ADCA-DN; HSAN IE; DNMT1; narcolepsy; cataplexy; neurodegeneration

Abbreviations: ADCA-DN autosomal dominant cerebellar ataxia, deafness and narcolepsy; HSAN IE = hereditary sensory and
autonomic neuropathy with dementia and hearing loss type IE

Introduction
Mutations affecting the DNA methyl-transferase type 1 (DNMT1)

gene, which encodes a DNA methyltranferase involved in main-

tenance of DNA methylation patterns, have been associated with

two distinct autosomal dominant diseases: hereditary sensory and

autonomic neuropathy with dementia and hearing loss type IE

(HSAN IE, OMIM 614116) and autosomal dominant cerebellar

ataxia, deafness and narcolepsy (ADCA-DN, OMIM 604121)

(Klein et al., 2011; Winkelmann et al., 2012).

HSAN IE is characterized by hearing loss, severe sensory and

autonomic polyneuropathy, and early-onset dementia. Motor

polyneuropathy and psychiatric manifestations were also reported

in some patients (Wright and Dyck, 1995; Hojo et al., 1999; Klein

et al., 2011, 2013; Yuan et al., 2013).

ADCA-DN is peculiar for the prevalent occurrence of narcolepsy

with and without cataplexy, often appearing years before the

onset of hearing loss and cerebellar ataxia. Other clinical manifest-

ations of ADCA-DN include sensorimotor polyneuropathy, optic

atrophy, extrapyramidal, pyramidal and dysautonomic signs, psy-

chiatric disturbances, dementia and diabetes mellitus (Melberg

et al., 1995, 1999, 2001; Pedroso et al., 2013).

Although overlapping in their symptomatology, the two methy-

lopathies have been considered to date as distinct clinical entities

(Klein et al., 2013). Indeed, major symptoms of narcolepsy with

cataplexy, namely excessive daytime sleepiness with sleep onset

REM periods, cataplexy, nocturnal sleep disruption, dissociated

REM sleep features such as hypnagogic hallucinations, sleep par-

alysis, and REM sleep behaviour disorder (American Academy of

Sleep Medicine, 2005), have been reported only in the ADCA-DN

phenotype. However, studies with sleep recordings in HSAN IE

have not been reported to date, thus narcolepsy could have

been overlooked (Klein et al., 2013; Yuan et al., 2013).

Furthermore, although pyramidal and extrapyramidal signs have

only been described in ADCA-DN, cerebellar signs have been re-

cently observed also in HSAN IE (Klein et al., 2011), suggesting

overlap of clinical features between the two diseases. In addition,

genotype–phenotype correlations indicated that mutations in exon

20 of DNMT1 have been associated with HSAN IE, whereas mu-

tations in exon 21 have been found in all cases of ADCA-DN, with

the exception of a single family presenting with HSAN IE but with

a novel mutation in exon 21 (Yuan et al., 2013).

Current data suggest an immune-mediated pathophysiology for

sporadic narcolepsy with cataplexy based on a strong association

with human leukocyte antigen (HLA) DQB1*06:02 haplotype and

genome-wide association studies. As the condition is due to a loss

of hypothalamic hypocretin cells, it is postulated that these are the

targets of the autoimmune process (Mahlios et al., 2013). Not

surprisingly, symptomatic narcolepsy with cataplexy —i.e. occur-

ring during the course of other neurological condition— has also

been described, mainly in the context of CNS lesions affecting the

posterior hypothalamus (Nishino and Kanbayashi, 2005;

Kanbayashi et al., 2011). A few inherited disorders, such as

Prader-Willi syndrome, Niemann-Pick type C disease and myotonic

dystrophy, can also show typical symptoms of narcolepsy with and

without cataplexy (Nishino and Kanbayashi, 2005; Kanbayashi

et al., 2011). Only a few multiplex families, in which narcolepsy

with cataplexy appears to be an inherited disease, have been re-

ported in the literature (Mignot, 1998; Dauvilliers et al., 2004),

and two pathogenic mutations potentially found, one in the hypo-

cretin gene, the other in MOG (Peyron et al., 2000; Hor et al.,

2011).

We here report on the extensive phenotypic characterization of

five Italian patients from four unrelated families carrying dominant

heterozygous DNMT1 mutations, two with patients displaying the

hallmark features of ADCA-DN and two those of HSAN IE. Our

study demonstrates that a spectrum of clinical manifestations, in

particular narcolepsy that is present in all pedigrees, is common to

both disorders.

Materials and methods

Families and case reports
Phenotypic characterization was carried out in two probands from two

ADCA-DN Italian kindred in comparison with three patients with

HSAN IE from two Italian kindred (Winkelmann et al., 2012).

Clinical features of affected members from each kindred are summar-

ized in Table 1, and the pedigrees are shown in Fig. 1. The clinical

history of all probands is reported below.

Patient K1 II-1 ADCA-DN

The proband is a 57-year-old male, without any remarkable family

history, who presented at age 42 years with excessive daytime sleepi-

ness, partial and generalized cataplectic attacks and deafness. He sub-

sequently developed cerebellar ataxia, lower limb oedema, pyramidal,

extrapyramidal (rest and postural tremor, rigidity) and autonomic

(erectile dysfunction and urinary urge/incontinence) signs and
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Table 1 Patient demographics

Phenotype ADCA-DN HSAN IE

Patient K1 II-1 K2 II-2† K2 III-1 K3 II-1† K3 III-1 K3 III-2 K4 I-1

DNMT1 mutation p.Ala570Val NA p.Gly605Ala NA p.Pro507Asn p.Pro507Asn p.Lys521del

Age at time of study 57 45 47 38 36 33 59

Life span 52 41

Sex M M M M F M M

Excessive daytime sleepiness 42 Y 43 N Y Y 43

Cataplexy 42 Y 43 NA N N 58

Hypnagogic hallucinations N NA Y NA N N N

Sleep paralysis N NA N NA N N N

REM sleep behaviour disorder 49 NA 46 NA N N 58

Hearing loss 43 Y 43 30 26 31 33

Cerebellar ataxia 46 Y 47 NA Y N Y

Optic atrophy (age of detection) 55 NA 47 NA 36 33 59

Altered glucose metabolism 57 N N N N N 45

Lower limbs oedema 45 NA 47 NA N N Y

Sensory neuropathy 47 NA 47 36 30 32 34

Ulcers N N N 36 N N 35

Depression 48 Y N NA N N N

Dementia N NA N 38 N N 44

Pyramidal signs 53 Y N N N N N

Extrapyramidal signs 56 N N N N N N

Autonomic dysfunctions 52 NA N NA N N 50

Epilepsy N N N Y N N N

†: deceased.
Age at onset (where available) of symptoms and signs is reported.
NA = not available; N = not present; Y = present.

Figure 1 Pedigrees. Age at the time of the study is reported next to each symbol. Black symbol indicates affected individuals, grey symbol

indicates the state of presumed affected, split symbols indicate asymptomatic carriers. P = proband.
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symptoms. He also complained of slight subjective memory and atten-

tive deficits, and depressed mood. At age 48, narcolepsy with cataplexy

was diagnosed and the patient was treated with methylphenidate,

modafinil, venlafaxine, clomipramine, and sodium oxybate in various

combinations without significant improvement of excessive daytime

sleepiness and cataplexy. At age 57, clinical and neurological examin-

ation showed severe hearing loss, pyramidal, extrapyramidal and cere-

bellar signs, sporadic postural myoclonus, reduced distal algaesthesia

and pallaesthesia with abolished deep tendon reflexes at lower limbs,

globally altered thermoesthesia, remarkable lower limbs oedema

(Fig. 2), ataxic gait, and primitive reflexes (Supplementary Video 1).

He also presented seldom ‘cataplectic status’ episodes with waxing

and waning deep tendon reflexes lasting up to 2 days in association

with infections (i.e. pneumonia) (Supplementary Video 2). Lower limbs

Doppler ultrasound, echocardiography and neuropsychological evalu-

ation were normal. Blood exams showed impaired glucose tolerance;

serum lactate was normal at age 55, but abnormally elevated after

exercise and after recovery at age 57.

Patient K2 III-1 ADCA-DN

The proband is a 47-year-old male who presented with excessive day-

time sleepiness, cataplexy and hearing loss since age 43 years. Clinical

and neurological examination disclosed emotionally triggered and

spontaneous cataplectic attacks, mainly involving the cranial district

(Supplementary Video 3), severe hearing loss, mild cerebellar syn-

drome, absent ankle reflexes, lower limbs hypopallesthesia and

oedema (Fig. 2). Lower limbs Doppler ultrasound, cardiac ultrasound

evaluations, and cognitive functions were normal. The patient reported

a significant improvement of excessive daytime sleepiness and cata-

plexy after modafinil administration. Lactate values were abnormally

elevated after exercise and after recovery. Clinical data of the pro-

band’s father, who was similarly affected and died at the age of 52

years, are provided in Table 1.

Patients K3 III-1 and K3 III-2 HSAN IE

A 36-year-old female (Patient K3 III-1) and her 33-year-old brother

(Patient K3 III-2) complained of hearing loss since age 26 and 31

years, respectively, and subsequently developed a sensory polyneur-

opathy. Both patients reported post-prandial drowsiness and sleep

episodes, and sleepiness in the early evening, although this was not

a primary complaint. At neurological examination, both patients

showed deafness, lower limbs distal hypoesthesia and hypopalles-

thesia, weak deep tendon reflexes and ataxic gait. Isolated

deficits in verbal, attention or logical tasks were detectable.

Behavioural therapy (planned naps) improved daytime sleepiness.

Serum lactate values at rest and after standardized exercise revealed

abnormal values after exercise and after recovery in Patient K3 III-2,

whereas they were normal in Patient K3 III-1. Their father was simi-

larly affected and died at the age of 41, his data are provided in

Table 1.

Patient K4 I-1 HSAN IE

A 59-year-old male presented since age 33 with sensorineural deaf-

ness and severe sensory polyneuropathy with spontaneous bones

fractures, foot ulcers, diffuse arthropathy and sensory ataxia. Ten

years later, he developed a slowly progressive global cognitive im-

pairment, erectile dysfunction and excessive daytime sleepiness, with

irresistible sleep attacks, dream enactment during sleep and occa-

sional sudden knees weakness with falls triggered by the ‘fear of

falling’. Neurological examination showed severe hearing loss, limb

ataxia, sporadic postural and action myoclonus, reduced distal ther-

moesthesia and algaesthesia, apallesthesia with abolished deep

tendon reflexes at lower limbs, Romberg sign, ataxic gait, primitive

reflexes, lower limbs oedema and distal limb joints deformities (Fig. 2

and Supplementary Video 4). Neuropsychological testing showed

global cognitive impairment with predominant involvement of

verbal and visuospatial functions. Excessive daytime sleepiness im-

proved with modafinil administration. Blood exams showed impaired

glucose tolerance.

Procedures
All patients underwent exome and direct sequencing of exons 20 and

21 of the DNMT1 gene, neurophysiological tests investigating sleep

Figure 2 Pictures of patients’ limbs. (A) Patient K1 II-1; (B) Patient K2 III-1; (C) Patient K4 I-1.
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(i.e. 48-h continuous video-polysomnography followed by a multiple

sleep latency test) auditory functions, PNS and CNS (i.e. electroneur-

ography and motor evoked potentials), ophthalmological studies

including fundus eye examination, pattern and flash visual evoked

potentials and retinal optical coherence tomography scan, brain MRI,

CSF hypocretin 1, total tau, phosphorylated tau, amyloid-b1–42 and

14-3-3 proteins measurement, and skin biopsy. Muscular and sural

nerve biopsies, microneurography, lymphoscintigraphy, cerebral
123I-FP CIT SPECT and 99mTc-ECD SPECT were performed only in

some of the patients, depending on clinical opportunity and availabil-

ity. The study was approved by local Institutional Review Board, and

all patients signed a written informed consent.

Further details can be found in the online Supplementary material.

Results

Genetic studies

ADCA-DN

The results of exome sequencing studies performed in Patient K1

II-1 and his healthy parents were previously reported (Winkelman

et al., 2012). In brief, we found a de novo point mutation in

Patient K1 II-1 leading to the amino acid change p.Ala570Val

(RefSeq NM_001130823.1: c.1709G.A) affecting exon 21 of the

DNMT1 gene located on 19p13.3-p13.2. Direct Sanger sequen-

cing allowed to identify a different point mutation in the same

region of the gene in Patient K2 III-1 leading to the amino acid

change p.Gly605Ala (RefSeq NM_001130823.1: c.1814C.G). HLA

DQB1*06:02 and DQA1*01:02 haplotypes were excluded in both

subjects.

Previous genetic investigation in Patient K1 II-1 excluded spino-

cerebellar ataxia type 1, 2, 3 and 6 and no mutations were found

in the OPA1 gene.

HSAN IE

Direct Sanger sequencing of exons 20 and 21 of the DNMT1 gene

was performed in Patients K3 III-1, K3 III-2 and K4 I-1. Sibling

Patients K3 III-1 and K3 III-2 carried a novel heterozygous point

mutation in exon 20, leading to the amino acid change

p.Pro507Arg (RefSeq NM_001130823.1; c.C1520G), located

within a domain previously involved by a triple nucleotide

change in a HSAN IE kindred (Pro491 in Klein et al., 2011).

Previous genetic investigations excluded pathogenic mutations in

the GJB2, GJB6, HSN2 and MPZ genes, as well as mitochondrial

DNA A3243G, A1555G and A7445G mutations associated with

deafness (MITOMAP, 2013).

Patient K4 I-1 carried a trinucleotide deletion leading to the loss

of the single amino acid p.Lys521del (RefSeq NM_001130823.1;

c.1562-1564delAGA) in exon 20, leaving the remaining protein

sequence in frame. Previous genetic testing excluded mutations

in the GDAP1, MPZ, HSP22/27, NF-L, MFN2, LMNA, POLG1

and SPTLC1 genes.

Testing for the HLA DQB1*06:02 haplotype was negative in all

three patients.

Neurophysiological studies

ADCA-DN

Both ADCA-DN probands displayed narcolepsy features clinically

and at sleep recordings: spontaneous multiple sleep onset REM

sleep periods during daytime and nocturnal sleep at 48-h continu-

ous polysomnography, REM sleep behaviour disorder (also with

violent behaviours), and multiple sleep onset REM periods during

the five nap opportunity multiple sleep latency test. Patients also

presented periodic limb movements during sleep (periodic limb

movement index ranging from 41 to 144).

Severe sensorineural deafness was confirmed by audiograms

and by absent responses at brainstem auditory evoked potentials

in both ADCA-DN probands.

Electroneurography showed a moderate axonal sensory poly-

neuropathy in both probands. In Patient K1 II-1 motor evoked

potentials were normal at 55 years of age (Table 2).

HSAN IE

Ad libitum 48-h continuous polysomnography disclosed diurnal

sleep onset REM periods in all three patients with HSAN IE, and

periodic limb movements during sleep in two of them. Patient K4

I-1 also presented with REM sleep behaviour disorder, and all

subjects had multiple sleep onset REM periods with reduced

sleep latency at the multiple sleep latency test. Audiogram

showed bilateral sensorineural deafness in all patients with

HSAN IE.

Electroneurography documented a severe axonal sensory poly-

neuropathy in all three patients. Motor evoked potentials were

normal in all patients (Table 2).

Microneurography revealed normal skin sympathetic nerve ac-

tivity and the absence of muscle sympathetic nerve activity in

Patient K3 III-1 at 30 years of age, whereas skin and muscle ac-

tivity where within normal values in Patient K4 I-1.

Ophthalmological studies

ADCA-DN

Visual acuity was 10/10 in both probands, but fundus examin-

ation disclosed temporal pallor and excavated optic disc in

Patient K1 II-1 and diffuse pallor with optic disc excavation in

Patient K2 III-1. Retinal nerve fibre layer thickness evaluation at

optical coherence tomography showed reduction of retinal nerve

fibre layer thickness more evident in temporal than in superior

and inferior quadrants with nasal sparing in Patient K1 II-1,

whereas Patient K2 III-1 had a diffuse and severe reduction of

retinal nerve fibre layer thickness with nasal sparing. Macular gan-

glion cell layer (GCL) analysis disclosed diffuse atrophy in both

probands, more severe in Patient K2 III-1 (Fig. 3). Pattern visual

evoked potentials were abnormal in both probands, showing

increased latency and decreased amplitude of cortical responses

(Table 2).

HSAN IE

Visual acuity was 10/10 in all subjects investigated (Patients K3

III-1, K3 III-2 and K4 I-1). Fundus examination showed a

Narcolepsy and DNMT1 mutations Brain 2014: 137; 1643–1655 | 1647

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/137/6/1643/2847784 by U

N
IVER

SITA D
I FIR

EN
ZE D

IPAR
TIM

EN
TO

 D
I PED

IATR
IA user on 05 O

ctober 2018

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu069/-/DC1


T
ab

le
2

In
st

ru
m

en
ta

l
fi

n
d
in

g
s

P
h
en

o
ty

p
e

A
D

C
A

-D
N

H
SA

N
IE

P
at

ie
n
t

K
1

II
-1

K
2

II
I-

1
K

3
II

I-
1

K
3

II
I-

2
K

4
I-

1

D
N

M
T
1

m
u
ta

ti
o
n

p
.A

la
5
7
0
V

al
p
.G

ly
6
0
5
A

la
p
.P

ro
5
0
7
A

sn
p
.P

ro
5
0
7
A

sn
p
.L

ys
5
2
1
d
el

H
LA

-D
Q

B
1
*
0
6
0
2

h
ap

lo
ty

p
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e

vP
SG

-
T
ST

(m
in

)
3
6
6

3
0
8

4
4
4

4
0
8

4
0
1

vP
SG

-
SE

(%
)

6
8

7
1

9
6

9
3

7
9

vP
SG

-
R

EM
la

te
n
cy

(m
in

)
3

1
7
4

4
2

vP
SG

-
P
LM

I
1
4
4

4
1

1
1
9

1
7

vP
SG

-
R

B
D

Y
es

Y
es

N
o

N
o

Y
es

M
SL

T
-

SL
(m

in
)

6
.6

1
1
.3

5
.6

4
.4

3
.5

M
SL

T
-

SO
R

EM
P
s

4
4

3
5

5

A
u
d
io

m
et

ry
B
ila

te
ra

l
se

n
so

ri
n
eu

ra
l

d
ea

fn
es

s
B
ila

te
ra

l
se

n
so

ri
n
eu

ra
l

d
ea

fn
es

s
B
ila

te
ra

l
se

n
so

ri
n
eu

ra
l

d
ea

fn
es

s
B
ila

te
ra

l
se

n
so

ri
n
eu

ra
l

d
ea

fn
es

s
B
ila

te
ra

l
se

n
so

ri
n
eu

ra
l

d
ea

fn
es

s
A

u
d
it
o
ry

ev
o
ke

d
p
o
te

n
ti
al

s
A

b
se

n
t

A
b
se

n
t

N
A

N
A

N
A

P
at

te
rn

vi
su

al
ev

o
ke

d
p
o
te

n
ti
al

s
A

lt
er

ed
A

lt
er

ed
N

o
rm

al
N

o
rm

al
N

o
rm

al

El
ec

tr
o
n
eu

ro
g
ra

p
h
y

M
o
d
er

at
e

ax
o
n
al

se
n
so

ry
p
o
ly

n
eu

ro
p
at

h
y

M
o
d
er

at
e

ax
o
n
al

se
n
so

ry
p
o
ly

n
eu

ro
p
at

h
y

Se
ve

re
ax

o
n
al

se
n
so

ry
n
eu

ro
p
at

h
y

Se
ve

re
ax

o
n
al

se
n
so

ry
n
eu

ro
p
at

h
y

Se
ve

re
ax

o
n
al

se
n
so

ry
n
eu

ro
p
at

h
y

M
o
to

r
ev

o
ke

d
p
o
te

n
ti
al

s
N

o
rm

al
N

A
N

o
rm

al
N

o
rm

al
N

o
rm

al

Sk
in

b
io

p
sy

So
m

at
ic

an
d

au
to

n
o
m

ic
n
eu

ro
p
at

h
y

So
m

at
ic

an
d

au
to

n
o
m

ic
n
eu

ro
p
at

h
y

Se
ve

re
so

m
at

ic
an

d
au

to
n
o
m

ic
n
eu

ro
p
at

h
y

Se
ve

re
so

m
at

ic
an

d
au

to
n
o
m

ic
n
eu

ro
p
at

h
y

Se
ve

re
so

m
at

ic
an

d
au

to
n
o
m

ic
n
eu

ro
p
at

h
y

C
SF

h
yp

o
cr

et
in

1
(p

g
/m

l)
1
2
3

9
3

3
3
9

2
5
1

2
9
6

C
SF

to
ta

l-
ta

u
(p

g
/m

l)
[N

V
1
4
1
�

1
2
7
]

5
3
9

3
0
1

4
6
8

3
9
1

5
1
7

C
SF

p
h
o
sp

h
o
ry

la
te

d
ta

u
(p

g
/m

l)
[N

V
2
5
–6

5
]

1
1
3

4
6

5
4

5
4

7
7

C
SF

am
yl

o
id

-b
4
2

(p
g
/m

l)
[N

V
5
6
0
–1

1
5
0
]

1
1
2
0

9
4
7

8
3
3

8
0
0

1
1
3
1

N
eu

ro
p
sy

ch
o
lo

g
ic

al
te

st
in

g
N

o
rm

al
N

o
rm

al
Su

b
tl
e

al
te

ra
ti
o
n
s

Su
b
tl
e

al
te

ra
ti
o
n
s

G
lo

b
al

co
g
n
it
iv

e
d
ec

lin
e

B
ra

in
1
2
3
I-

FP
C

IT
SP

EC
T

A
lt
er

ed
N

o
rm

al
N

A
N

A
N

A

B
ra

in
9
9
m

T
c-

EC
D

SP
EC

T
A

lt
er

ed
N

A
N

o
rm

al
N

A
A

lt
er

ed

vP
SG

=
vi

d
eo

-p
o
ly

so
m

n
o
g
ra

p
h
y;

T
ST

=
to

ta
l
sl

ee
p

ti
m

e;
SE

=
sl

ee
p

ef
fi
ci

en
cy

;
R

EM
=

ra
p
id

ey
e

m
o
ve

m
en

ts
sl

ee
p
;

P
LM

I
=

p
er

io
d
ic

lim
b

m
o
ve

m
en

ts
in

d
ex

;
R

B
D

=
R

EM
sl

ee
p

b
eh

av
io

u
r

d
is

o
rd

er
;

M
SL

T
=

m
u
lt
ip

le
sl

ee
p

la
te

n
cy

te
st

;
SL

=
sl

ee
p

la
te

n
cy

;
SO

R
EM

P
s

=
sl

ee
p

o
n
se

t
R

EM
p
er

io
d
s;

N
A

=
n
o
t

av
ai

la
b
le

;
N

V
=

n
o
rm

al
va

lu
es

.

1648 | Brain 2014: 137; 1643–1655 K. K. Moghadam et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/137/6/1643/2847784 by U

N
IVER

SITA D
I FIR

EN
ZE D

IPAR
TIM

EN
TO

 D
I PED

IATR
IA user on 05 O

ctober 2018



mild temporal pallor of the optic disc in all three subjects.

Retinal nerve fibre layer evaluation at optical coherence tomog-

raphy showed a diffuse reduction of retinal nerve fibre layer

thickness in Patient K3 III-1, a diffuse reduction with nasal

sparing in Patient K3 III-2, and temporal and less evident

superior/inferior quadrants thinning in Patient K4 I-1. Macular

ganglion cell layer analysis disclosed diffuse thinning in all three

subjects, less evident in Patient K4 I-1 (Fig. 3). Pattern visual

evoked potential testing gave normal results in Patients K3 and

K4 I-1 (Table 2).

Figure 3 Optical coherence tomography retinal nerve fibre layer thickness (RNFL; left) and macular ganglion cell layer analysis (right) in

Patients K1 II-1, K2 III-1, K3 III-1, K3 III-2 and K4 I-1. GCL = ganglion cell layer; IPL = inner plexiform layer.
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Neuroimaging

ADCA-DN

MRI (Fig. 4, Table 3 and Supplementary material) showed in both

ADCA-DN probands a similar distribution of brain atrophy, more

severe in the older patient (Patient K1 II-1). In particular, both

patients showed a global cerebral cortical atrophy, more marked

in the parietal region, enlargement of the third ventricle, thinning

of the corpus callosum, atrophy of the basal ganglia, cerebellum

and mesencephalic tegmentum. Only Patient K1 II-1 presented

mild atrophy of the hypothalamus and hippocampi. Long repeti-

tion time sequences showed reduced signal intensity of the lenti-

form nuclei in both patients, consistent with iron deposition

secondary to neurodegeneration. All the reported brain MRI alter-

ations showed a progressive worsening in the follow-up exams on

Patient K1 II-1.

Figure 4 Brain MRI. Axial, sagittal and coronal reconstructions of volumetric high resolution FSPGR T1 images of one patient with ADCA-

DN and one with HSAN-IE showing sovra- and infra-tentorial atrophy, that was quantified semi-quantitatively, as reported in Table 3.

Table 3 Brain MRI

Cortical
atrophy

Pattern of
cortical
atrophy

Corpus
callosum
thinning

Basal ganglia
and thalami
atrophy

Hippocampi
atrophy

Hypothalamus
atrophy

Cerebellar/
vermian
atrophy

Brainstem
atrophy

ADCA-DN

K1 II-1 + + + + P4 F O T + + + + + + + + + + mesencephalon

K2 III-1 + + + P4 F O T + + + + thalamus – – + + + + mesencephalon

HSAN IE

K3 III-1 + – – – – – + –

K3 III-2 + – – – – – + –

K4 I-1 + + F P4O T – + – – + –

Semi-quantitative evaluation of brain atrophy on volumetric fast spoiled gradient echo T1 high resolution images in patients with ADCA-DN and HSAN IE. In none of the

patients specific signal intensity changes were detected in both T1- and T2-weighted images.
– = absent, + = mild, + + = moderate, + + + = severe, + + + + = very severe.
F = frontal; P = parietal; O = occipital; T = temporal.
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Brain 123I-FP CIT SPECT was normal in Patient K2 III-1, whereas

it showed a diffused and symmetrical reduction of tracer uptake,

homogeneous on both caudate and putamen nuclei, in Patient K1

II-1.

Cerebral 99mTc-ECD SPECT performed at 49 years showed a

mild left temporal and parietal hypoperfusion in Patient K1 II-1.

HSAN IE

Brain MRI (Fig. 4, Table 3 and Supplementary material) of patients

with HSAN IE showed milder atrophy than patients with ADCA-

DN, but with a similar distribution. In all HSAN IE patients, cortical

atrophy (which was moderate in Patient K4 I-1 and mild in

Patients K3 III-1 and K3 III-2) and a mild cerebellar atrophy

were found. Only Patient K4 I-1 showed a mild atrophy of the

basal ganglia and long repetition time sequences showed reduced

signal intensity of the lentiform nuclei in all patients.

Cerebral 99mTc-ECD SPECT was normal in Patient K3 III-1,

whereas showed in Patient K4 I-1 multiple areas of reduced cere-

bral perfusion on temporal, fronto-parietal and parieto-occipital

lobes, bilaterally.

Cerebrospinal fluid evaluation

ADCA-DN

CSF examination showed a normal profile of routine parameters

(e.g. cell count, protein and glucose concentration). Total tau con-

centrations were increased and 14-3-3 absent in both patients,

with one also showing increased phosporylated tau levels, whereas

the levels of amyloid-b1�42 were normal and 14-3-3 absent in

both subjects; hypocretin 1 was in the low (Patient K2 III-1) and

intermediate (Patient K1 II-1) range (Table 2) (Mignot et al.,

2002).

HSAN IE

All affected subjects showed normal routine CSF parameters. All

three patients had increased total tau concentrations, and one also

showed increased levels of phosphorylated-tau (Table 2). None of

the patients had abnormal levels of amyloid-b1�42 nor of 14-3-3

in the CSF. Hypocretin 1 was within normal values in all three

patients (Table 2).

Other findings

ADCA-DN

Muscular biopsy performed at 55 years in Patient K1 II-1 was

essentially normal. Skin biopsy displayed a somatic and autonomic

peripheral small fibres neuropathy in both patients. Patient K2 III-1

underwent lower limb lymphoscintigraphy, which showed a

normal pattern on the right limb, whereas a definite delay in

tracer progression was found on the left limb.

HSAN IE

Muscular biopsy, performed in Patient K3 III-1 showed moderate

neurogenic changes, whereas in Patient K4 I-1 it displayed non-

specific abnormalities. Sural nerve biopsy was remarkable for

severe chronic axonal neuropathy in both Patients K3 III-1 and

K4 I-1. Skin biopsy showed a severe somatic and autonomic

small fibres neuropathy in all three patients.

Discussion
This study reveals that ADCA-DN and HSAN IE, both caused by

DNMT1 mutations, represent two discrete phenotypes belonging

to the same disease spectrum, involving the CNS and PNS, with

variable degree of overlap in symptoms and signs. Most remark-

ably, we found that narcolepsy with or without cataplexy is a key

feature of both phenotypes. Excessive daytime sleepiness, sleep

onset REM periods and cataplexy are heralding features in

ADCA-DN, and sleep onset REM periods have also been reported

in young presymptomatic ADCA-DN mutation carriers

(Moghadam et al., 2014) but, although sleepiness was reported

in some patients (Hojo et al., 1999), narcoleptic features were

never clearly documented previously in HSAN IE (Klein et al.,

2013). Other common aspects observed in our cases include sub-

clinical optic neuropathy, previously not documented in HSAN IE,

deafness, cerebellar ataxia and large and small fibres neuropathy,

all of them displaying different levels of clinical severities. Overall,

the two syndromes share more characteristics than previously

recognized.

To date, only six ADCA-DN and seven HSAN IE kindreds with

DNMT1 mutations have been reported (Melberg et al., 1995;

Wright and Dyck, 1995; Hojo et al., 1999; Klein et al., 2011,

2013; Winkelmann et al., 2012; Pedroso et al., 2013; Yuan

et al., 2013). Clinical data of all reported cases are summarized

in Table 4. We performed an extensive clinical assessment on

available members of two previously reported ADCA-DN kindred

and two further HSAN IE kindred carrying new DNMT1 mutations

in exon 20, comparing our findings to previously described pa-

tients (Table 4 and Supplementary Table 1).

Our findings in patients with ADCA-DN are in line with previous

descriptions. In both patients with ADCA-DN excessive daytime

sleepiness and cataplexy were the first clinically relevant problems

leading to medical (i.e. a sleep specialist) consultation and to a

diagnosis of narcolepsy with cataplexy (Melberg et al., 1995;

Pedroso et al., 2013). Cataplexy can also present with ‘cataplectic

status’ episodes. Together with narcolepsy, severe hearing loss

was another early and consistent symptom (Melberg et al.,

1995). The full-blown clinical picture subsequently develops in

the fourth decade, leading to death in the fifth decade (Melberg

et al., 1995). Cerebellar ataxia slowly progresses over years lead-

ing to a severe motor impairment. Optic atrophy was present in

both of our patients, even if without subjective complaints. Axonal

sensory or sensorimotor polyneuropathy and a small fibre neur-

opathy were also present, although patients did not report any

symptom until very late in the disease evolution. Over time, the

clinical picture worsened and extrapyramidal, pyramidal and dys-

autonomic abnormalities appeared in different combinations.

Dementia, that was reported in all patients in the seminal descrip-

tion of the syndrome (Melberg et al., 1995), was not present in

either of our patients, neither at baseline evaluation nor during a

9-year follow-up (Patient K1 II-1). One of our patients with

ADCA-DN presented with impaired glucose tolerance, confirming
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a higher risk for diabetes (Melberg et al., 1995; Winkelmann

et al., 2012). Although a chance association cannot be excluded,

diabetes may be part of the clinical picture of ADCA-DN, or of the

frequent metabolic alterations often reported in narcolepsy (Honda

et al., 1986; Poli et al., 2009). Interestingly, both our ADCA-DN

probands, and HSAN IE Patient K4 I-1 developed a lower limb

oedema. This finding, apparently not due to venous or cardiac

alterations, was previously reported in a patient with ADCA-DN

(Melberg et al., 1995) and suggested to be secondary to a con-

current cardiomyopathy, an abnormality clearly absent in our

cases. Rather, altered lymphoscintigraphy in our patient (Patient

K2 III-1) suggests that the lower limb oedema was due to a de-

fective lymphatic circulation, possibly caused by a primitive lymph-

atic tissue alteration or by a degeneration of autonomic fibres

regulating lymphatic vessels functions (Howarth et al., 1999;

Davis et al., 2008). An autonomic involvement was indeed

demonstrated by skin biopsy.

Similar to other previously reported patients with HSAN IE

(Wright and Dyck, 1995; Hojo et al., 1999; Klein et al., 2011,

2013; Yuan et al., 2013), our patients developed hearing loss

and a severe polyneuropathy in adulthood, the latter leading to

trophic skin and joint lesions in Patient K4 I-1. This patient also

developed cognitive decline and complained of excessive daytime

sleepiness with sudden sleep attacks, REM sleep behaviour disorder

and cataplexy evoked exclusively by a negative emotion, an un-

common finding in sporadic narcolepsy with cataplexy (Poli et al.,

2013). Sleepiness was also reported in both affected siblings of

pedigree K3 (Patients III-1 and III-2), although partially masked

by lifestyle changes (daytime scheduled naps). However, multiple

sleep latency test data showed both short sleep latencies and mul-

tiple sleep onset REM periods, confirming the diagnosis of narco-

lepsy without cataplexy with normal CSF hypocretin 1 level.

Although occasional or situational somnolence was described as

an accessory symptom in three patients from a Japanese kindred

(Hojo et al., 1999), narcolepsy was previously ruled out in HSAN IE

(Klein et al., 2013; Yuan et al., 2013). In these prior studies, how-

ever, sleep studies had not been performed to formally exclude

narcolepsy, thus we believe that the condition was overlooked,

perhaps because it is less severe than in the ADCA-DN phenotype.

A similar situation was found for optic atrophy, which was never

described in HSAN IE, but revealed by optic nerve and macular

retinal ganglion cell investigations disclosing a subclinical optic

nerve involvement in all of our cases. We suggest that narcolepsy

should be systematically explored in both ADCA-DN and HSAN IE,

as its treatment may improve the quality of life of these patients.

DNMT1, a methyltranferase involved in the maintenance of

DNA methylation, influences gene transcription, genomic imprint-

ing and genome stability and is fundamental for the function and

survival of various tissues, including CNS neurons (Fan et al.,

2001). The fact that symptoms are overlapping in these conditions

is not surprising, considering that both exon 20 and 21 mutations

affect the same regulatory domain, the Replication Foci Targeting

Sequence (RFTS), in DNMT1 (22894906). The RFTS domain is

known to target DNMT1 to replication foci and also mediates

dimerization of DNMT1. It effectively blocks the catalytic core

and prevents the enzyme from needlessly methylating the

genome de novo. In a previous study, Klein et al. (2011) found

that DNMT1 mutations alter the DNA methylation pattern produ-

cing global hypomethylation and local hypermethylation. Subtypes

of DNMT1 mutations might lead to slightly different tissue-specific

disruptions in methylation patterns, over- or under-expressing pro-

teins involved in survival of different neuronal or glial cell popu-

lations, and this could account for the different clinical expressivity

of diseases related to DNMT1 mutations.

Distinct methylation patterns have also been observed in condi-

tions such as Parkinson’s and Alzheimer’s diseases (Di Francesco

et al., 2013; Masliah et al., 2013), suggesting the importance of

epigenetic modifications in neurodegenerative disorders in general.

In this view, the finding of neurodegeneration caused by DNMT1

mutations, such in ADCA-DN and HSAN IE, is not surprising and

requires in-depth investigations on genome expression in these

conditions.

A remarkable finding of the present study is that all patients,

whether with the ADCA-DN or the HSAN IE phenotypes, displayed

narcolepsy. DNMT1 is highly expressed in immune cells and is

required for lymphocyte differentiation (Josefowicz et al., 2009).

Altered DNMT1 activity may lead to dysregulation of the immune

system, facilitating an autoimmune attack to hypocretin neurons.

However, the HLA-DQB1*06:02 negativity in all of our patients

seems to lower a possible role of a common immune-mediated

pathophysiology for sporadic narcolepsy and narcolepsy in

DNMT1-related disorders. Another possibility is that DNMT1 muta-

tions influence hypocretin gene expression or hypocretin cell death

leading to the development of narcolepsy. Interestingly, a recent

genome-wide association study in patients with sporadic narcolepsy

with cataplexy identified narcolepsy-associated polymorphisms in a

region including the DNMT1 gene, and its expression was found to

be lower as compared to control subjects (Kornum et al., 2011).

This, together with the finding of narcolepsy in DNMT1-related

diseases, suggests that impaired DNMT1 activity could influence

hypocretin expression, which is regulated by epigenetic factors influ-

enced by metabolic intermediates in mice (Hayakawa et al., 2013).

Interestingly, however, only cases with ADCA-DN presented with

low/intermediate hypocretin 1 levels, suggesting more severe alter-

ation of hypocretin physiology in ADCA-DN, also likely explaining

why cataplexy is observed more clearly in ADCA-DN than HSAN IE.

Importantly, however, considering the pleiotropic effects of these

mutations, it is likely that DNMT1 mutations also affect other neur-

onal systems regulating sleep and REM sleep. To rule out that

DNMT1 pathogenic mutations may also lead to sporadic cases of

narcolepsy, we screened by standard Sanger sequencing of DNMT1

(all exons 1–41) a total of 95 narcoleptic patients with typical and

atypical clinical, serological and CSF features, failing to identify any

mutation (data not shown).

Another interesting aspect of these conditions is the resem-

blance of the phenotype with mitochondrial encephalomyopathies,

including the combination of sensorineural deafness, optic atro-

phy, cerebellar involvement and peripheral neuropathy. The

nasal sparing of retinal nerve fibre layer thickness in the more

severe cases with ADCA-DN and the prevalent involvement of

the temporal sector in the less severe cases with HSAN IE are

both reminiscent of mitochondrial optic neuropathies (Carelli

et al., 2004). In the seminal description of ADCA-DN mitochon-

drial dysfunction was suggested in muscle (Melberg et al., 1995),
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also evidenced here by an occasional increase of lactic acid

observed in our patients after exercise. We hypothesize that

defect in DNMT1 may lead to mitochondrial dysfunction through

two pathways. First, defective methylation of nuclear DNA is pre-

dicted to impinge on the nuclear encoded set of mitochondrial

proteins (Takasugi et al., 2010), composed of over 1000 genes

(Calvo and Mootha, 2010). Second, recent studies indicate that

DNMT1 also expresses a mitochondrial-targeted isoform that may

directly regulate mitochondrial DNA methylation (Shock et al.,

2011; Bellizzi et al., 2013).

Another hint on the mechanism of neurodegeneration in both

DNMT1-related disorders comes from our finding of increased CSF

total tau, associated with a raise in phosporylated tau in the two

subjects with the highest total tau concentrations and normal

amyloid-b42 levels. CSF tau and amyloid-b isoforms are increas-

ingly explored as biomarkers of neurodegeneration. Current evi-

dences indicate that an isolated increase in total tau (i.e. not

associated with a raise in phosporylated tau) usually reflects the

release of the protein into the CSF as a result of neuronal damage

or death. In contrast, a CSF profile characterized by a concomitant

increase in total tau and phosporylated tau is most commonly

associated with neurodegenerative conditions characterized by

tau pathology, namely Alzheimer’s disease (Blennow et al.,

2010) and some other cerebral proteinopaties (Goodall et al.,

2006; Giaccone et al., 2008). Given the normal amyloid-b42

levels that exclude an amyloid-b-related cerebral amyloidosis, the

tau abnormalities in our patients suggest that a tau pathology

involving its post-translational modifications, may also be part of

the pathophysiology of both ADCA-DN and HSAN IE.

In conclusion, until recently, ADCA-DN and HSAN IE were con-

sidered as two distinct clinical entities with different mutations in

exon 20 for HSAN IE and exon 21 for ADCA-DN, respectively.

More recently, however, a novel missense mutation in exon 21

(p.His569Arg) was found to generate a HSAN IE-like phenotype in

a Japanese patient, breaking the genotype–phenotype correlation

(Yuan et al., 2013). Our study further demonstrates that excessive

daytime sleepiness and sleep onset REM periods, the hallmarks of

narcolepsy, and optic nerve pathology may also occur in HSAN IE

phenotype and that peripheral neuropathic involvement is fre-

quent in ADCA-DN, whereas unambiguous cataplexy and low/

intermediate CSF hypocretin 1 deficiency are specific to ADCA-

DN. Overall, we suggest that screening for DNMT1 mutations is

needed in any patient with narcolepsy with cataplexy showing

additional neurologic manifestations.
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