
03 May 2024

Stack sorting with increasing and decreasing stacks / Giulio Cerbai, Luca Ferrari. - STAMPA. - (2018), pp.
82-87. (Intervento presentato al convegno Permutation Patterns 2018 tenutosi a Darthmouth College,
Hanover, NH, USA nel 9-13 July 2018).

Original Citation:

Stack sorting with increasing and decreasing stacks

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1136557 since: 2018-10-03T16:50:27Z

Jay Pantone

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

Stack sorting with increasing and decreasing stacks

Giulio Cerbai, Luca Ferrari (Dipartimento di Matematica e Informatica, University of
Firenze, Italy)

The problem of sorting a permutation using a stack was first introduced by Knuth [4] in the
1960s; in its classical formulation, the aim is to sort a permutation using a first-in/last-out
device. As it is well known, in this case the set of sortable permutations is a class, whose basis
consists of the single element 231, and whose enumeration is given by Catalan numbers.

More generally (see [8]), one can consider a network of sorting devices, each of which is repre-
sented as a node in a directed graph; when there is an arc from node S to node T the machine
is allowed to pop an element from S and push it into T ; if we mark two distinct vertices as the
input and the output machine, then the sorting problem consists of looking for a sequence of
operations that allows us to move a permutation from the input to the output machine, thus
obtaining the identity permutation.

In this framework, some of the typical problems are the following:

• characterize the permutations that can be sorted by a given network;

• enumerate sortable permutations with respect to their length;

• if the network is too complex, find a specific algorithm that sorts “many” input permuta-
tions and characterize such permutations.

Concerning the last stated problem, note that, for a given network of devices, although the
set of sortable permutations forms a class in general, this is not anymore true if one choose a
specific sorting strategy; this approach leads in general to more complicated characterizations
which involve other kinds of patterns (as it happens, for instance, for the 2-West stack-sortable
permutations [9]).

Although it’s very hard to obtain interesting results for large networks, a lot of work has been
done for some particular, small networks (see [2] for a dated survey, or [3] for a more recent one);
in this work we restrict our attention to the case of stacks in series, with the restriction that
the elements are maintained inside each stack either in increasing or in decreasing order. Our
starting point is [6], where Rebecca Smith proves that the permutations sorted by a decreasing
stack followed by an increasing one form the class Av(3241, 3142).

Many decreasing stacks followed by an increasing one. Generalizing the approach of
[6], we will consider here a sorting device made by k decreasing stacks in series, denoted by
D1, . . . , Dk, followed by an increasing stack I. Recall that “decreasing” (resp., “increasing”)
stack means that the elements inside the stack have to be in decreasing (resp., increasing) order
from top to bottom. When k = 0, we just have a single increasing stack, so we obtain the usual
Stacksort procedure. When k = 1, we obtain exactly the DI machine described in [6]. In the
sequel we denote our machine with DkI.

The possible operations the DkI machine can perform are the following:

1

• d0: push the next element of the input permutation into the first decreasing stack D1;

• di, for i = 1, . . . , k− 1: pop an element from Di and push it into the next decreasing stack
Di+1;

• dk: pop an element from Dk and push it into the increasing stack I;

• dk+1: pop an element from the increasing stack I and output it (by placing it on the right
of the list of elements that have already been output).

Notice that each operation can be performed only if it does not violate the restrictions of the
stacks; in this case, we call it a legal operation. For the special case of the operation dk+1, we
will assume that dk+1 is legal either if we are pushing into the output the smallest among the
elements not already in the output or if all the other operations are not legal.

For any given k, we are now interested in characterizing the set

B(k) = {π ∈ S | there is a sequence of legal operations di1 , . . . , dis that sorts π}.

If π ∈ B(k), we say that π is k-sortable. Using a standard argument it is easy to show that
B(k) is a class, for every k.

The natural way to describe the class B(k) is to understand its basis. Here we show that, when
k = 2, the basis of B(k) is infinite, by explicitly finding an infinite antichain of permutations
which are not 2-sortable and are minimal with respect to the pattern ordering. The construction
of the infinite antichain described in the next theorem can be easily adapted to every k ≥ 2. An
extremely useful tool to find such an antichain has been the software PermLab [1], developed
by Michael Albert.

Theorem 1. For j ≥ 0, define the permutation:

αj = 2j + 4, 3, a1, b1, a2, b2, . . . , aj , bj , 1, 5, 2

where:{
Aj = (a1, . . . , aj) = (2j + 2, 2j, 2j − 2, . . . , 6, 4),

Bj = (b1, . . . , bj) = (2j + 5, 2j + 3, 2j + 1, . . . , 9, 7).

Then the set of permutations {αj}j≥0 constitutes an infinite antichain each of whose elements
is not 2-sortable. Moreover, αj is minimal with respect to such a property, i.e. if we remove
any element of αj we obtain a 2-sortable permutation. As a consequence, the basis of B(2) is
infinite, since it contains the infinite antichain {αj}j≥0.

A left-greedy algorithm. Instead of making an unrestricted use of the DkI machine, we
may define a specific algorithm, by choosing the priority of each operation. Depending on our
choices, we obtain different sorting procedures: each of them determines a different set of sortable
permutations, which is interesting to understand.

Our first proposal is a left-greedy procedure, where, at each step, we perform the legal operation
dj having maximum index j. Setting Blg(k) = {π : π is sorted by the left-greedy procedure}, it
turns out that Blg(k) is in fact a class, and we are able to completely characterize it.

Proposition 2. For every k ≥ 1, Blg(k) = Av(231).

2

Thus, using this left greedy algorithm, we obtain a procedure that sorts precisely the same
permutations as Stacksort does. Thus, in a sense, adding any number of decreasing stacks before
an increasing one does not improve the sorting power of the machine, if we always perform the
leftmost legal operation. This does not mean, however, that this “left-greedy DkI machine”
is equivalent to Stacksort. Indeed, taking for instance k = 1 and the input permutation 2341,
the left-greedy DkI machine returns 2134 as output, whereas Stacksort returns 2314. This is
of course due to the fact that the elements of the input permutation exit the (last) decreasing
stack in a different order in the two procedures. We can therefore define the map φk : Sn → Sn,
for k ≥ 1, that associates to an input permutation π of length n the output of the last stack
Dk in the left-greedy algorithm. As a consequence of the last proposition, for each π and k ≥ 1,
π ∈ Av(231) if and only if φk(π) ∈ Av(231). In order to have a better understanding of the
left-greedy DkI machine, it would be interesting to explore more deeply the properties of the
maps φk.

Example. We report the values of φk(π) when π = 36257418 and k = 1, 2, 3, 4, 5. It is easy to
observe that, for sufficiently large values of k, the succession {φk(π)}n∈N eventually becomes
constant. However, we do not know precisely when this happens.

k = 1 : 36275418,
k = 2 : 37652841,
k = 3 : 37652841,
k = 4 : 38765241,
k = 5 : 38765241.

An almost left-greedy algorithm. There is a better way to design an almost left-greedy
algorithm, which is able to sort more permutations. The idea is to give the increasing stack a
privileged role, using it only when it is strictly necessary. Formally, at each step we choose to
perform the first legal operation according to the following priority rule:

dk+1 > dk−1 > dk−2 > · · · > d1 > d0 > dk,

where d > d′ means that the priority of operation d is higher than the priority of operation d′.

In analogy with the previous case, define Balg(k) as the set of permutations sorted by the partial
left-greedy algorithm with k decreasing stacks (from now on it will be called the almost left-
greedy DkI machine). We notice immediately that the permutation 231, which is not sorted by
the left-greedy DkI machine, is instead sortable by the almost left-greedy DI machine: the se-
quence of the operations performed by the algorithm in this case is d0, d0, d1, d1, d0, d1, d2, d2, d2.
Unfortunately, in this case Balg(k) is not in general a permutation class, except for the case
k = 1, for which it is quite easy to prove that the almost left-greedy strategy is equivalent to
the (optimal) sorting strategy defined in [6], so that Balg(1) = Av(3241, 3142). As an example,
for k = 2, the permutation 631425 can be sorted, whereas its subpermutation 52314 cannot.

The fact that Balg(k) is not a downset in general makes the analysis of the almost left-greedy
machine more difficult. However, when k = 2, we are able to obtain a partial characterization
of Balg(2) in terms of barred patterns.

Theorem 3. 1. Let π be an almost left-greedy D2I sortable permutation; then:

• π avoids 3214;

3

• π avoids the following barred patterns, each of which is obtained by suitably adding
barred elements to the pattern 52314:

– 631̄425;

– 72̄1̄4536, 73̄1̄4526;

– 7̄2̄81̄4536, 7̄3̄81̄4526;

– 8̄2̄71̄4536, 8̄3̄71̄4526.

2. Let π be a permutation that is not almost left-greedy D2I sortable. Then one of the fol-
lowing cases holds:

• π contains 3214;

• π contains one of the barred patterns listed above;

• π contains an occurrence of 52314 that extends to 82714536 (resp., 83714526) which
in turn is part of one of the following patterns:

– 9 3 1 8 2 5 6 4 7 (resp., 9 4 1 8 2 5 6 3 7);

– 10 2 1 4 9 3 6 7 5 8 (resp., 10 2 1 5 9 3 6 7 4 8);

– 10 3 1 4 9 2 6 7 5 8 (resp., 10 3 1 5 9 2 6 7 4 8);

– 10 2 11 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);

– 10 3 11 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

– 11 2 10 1 4 9 3 6 7 5 8 (resp., 10 2 11 1 5 9 3 6 7 4 8);

– 11 3 10 1 4 9 2 6 7 5 8 (resp., 10 3 11 1 5 9 2 6 7 4 8);

The above theorem fails to characterize Balg(2), due the long “bad” permutations listed in (2).
Unfortunately the construction used to obtain these ”bad” patterns can be repeated to generate,
starting from 52314, a sequence of permutations of increasing lengths whose sortability depends
on how many times we iterate the construction. To be more precise, define the permutations
γm ∈ S3m+2 as follows:

γm = 3m+ 2, 2 3m+ 1 1︸ ︷︷ ︸
231

, 4 3m 3︸ ︷︷ ︸
231

. . . 2m− 2 2m+ 32n− 3︸ ︷︷ ︸
231

2m 2m+ 1 2m− 1︸ ︷︷ ︸
231

2m+ 2.

In other words, starting from γ1 = 52314, γi+1 is obtained from γi by inserting a new maximum
in the first position and putting the old maximum between 2 and 1, then suitably rescaling the
remaining elements. We can prove that:

1. γi ≤ γi+1, for each i ≥ 1;

2. γi ∈ Balg(2) if and only if i is even.

For example, we have:

• γ1 = 52314 /∈ Balg(2);

• γ2 = 82714536 ∈ Balg(2);

• γ3 = 11 2 10 14936758 /∈ Balg(2);
...

The existence of an infinite sequence of permutations with this property suggests that it would
be quite difficult to obtain simple characterization of Balg(2); it is also conceivable that it
should be possible to adapt the above construction to greater values of k, thus obtaining similar
(negative) results.

4

References

[1] M. Albert, “PermLab: Software for Permutation Patterns”, at
http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php.

[2] M. Bona, “A survey of stack sorting disciplines”, Electron. J. Combin., 9(2) (2002-2003) A1.

[3] S. Kitaev, “Patterns in permutations and words”, Monographs in Theoretical Computer Science. An
EATCS Series. Springer, Heidelberg, 2011.

[4] D. E. Knuth, “The art of computer programming”, volume 1, Fundamental Algorithms, Addison-
Wesley, Reading, Massachusetts, 1973.

[5] D. Kremer, “Permutations with forbidden subsequences and a generalized Schröder number”, Discrete
Math., 218 (2000) 121–130.

[6] R. Smith, “Two stacks in series: a decreasing stack followed by an increasing stack”, Ann. Comb.,
18 (2014) 359-363.

[7] R. Smith, “Comparing algorithms for sorting with t stacks in series”, Ann. Comb., 8 (2004) 113–121.

[8] R. E. Tarjan, “Sorting using networks of queues and stacks”, Journal of the ACM, 19 (1972) 341–346.

[9] J. West, “Permutations with forbidden subsequences and Stack sortable permutations”, PhD-thesis,
Massachusetts Institute of Technology, 1990.

[10] J. West, “Sorting twice through a stack”, Theoret. Comput. Sci., 117 (1993) 303–313.

5

