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Summary 

 

Population growth driving the human pressure in riverine areas, mostly in developing countries, 

together with the sea level rise due to climate change is causing an intensification of flood-

related damages and fatalities. As a result, territorial planning for managing flood risk and 

flood-prone areas and non-structural measures (e.g. early warning systems) for flood 

forecasting are usually developed, principally adopting hydrologic and hydraulic modelling. 

Numerical models require a large amount of data for model calibration, validation towards flood 

dynamics understanding and inundation map updating. Data Assimilation (DA) methods are 

useful tools for improving flood forecasting models and reducing their uncertainties.   

This work investigates the integration of hydro-geomorphic models, traditional data (static 

stage gages) and novel data sources, such as remotely sensed images and Crowdsourced data 

(Volunteering Geographic Information or VGI), for observation-driven improvements of 

hydro-modelling tools. The Tiber river basin, the second largest basin in Italy, was selected as 

case study with a focus domain on the approximately 120 km channel upstream of Rome for its 

strategic importance in the protection of the historical city centre and the coastal urbanized 

zone.  

Hydro-geomorphic models are used both as forcing inputs and for delineating the computational 

domain of a quasi-2D hydraulic model that represents the core of the water level forecasting 

model within the Data Assimilation framework. Specifically, a parsimonious hydrological 

modelling algorithm was implemented, calibrated and validated for calculating the flow 

hydrographs of the ungauged small basins contributing to the study area. Furthermore, to 

delineate the boundaries computational domain of the hydraulic model for the Data 

Assimilation application, a DEM-based hydro-geomorphic floodplain delineation algorithm 

adapted from literature was tested with different DEMs and considering also its parametrization 

varying the stream orders. Results obtained by the geomorphic algorithm also provided 

reasonable ranges of the scaling law parameters, originally calibrated from in situ surveys, and 

here adapted for a DEM-based approach, paving the way for larger scale expeditious flood 

prone area mapping, that can be consider as a secondary aim of the proposed research. The 

delineation of the computational domain with this methodology is aimed to avoid the inclusion 

of hillslope areas, improving the computational efficiency of the Data Assimilation method.  



Summary 

 

The adopted DA methodology is the Ensemble Kalman Filter (EnKF) that requires multiple 

simulations for representing the uncertainties related to the model and the observations errors.  

New approaches were proposed for integrating, as observations in the DA method, traditional 

static sensors, and simultaneously remotely sensed images and VGI data. Despite the static 

sensor have already been adopted in literature as observations in a DA framework, some new 

technical measures were necessary for integrating them in Quasi-2D hydraulic model. As 

auxiliary analysis for the application of the DA methodology, water extension mapping from 

multispectral images was investigated for selected flood events and a methodology taking into 

account the ensemble of the hydraulic simulations for deriving the water surface elevation from 

the satellite image was developed. The assimilation of satellite images resulted to be effective, 

since the whole computational domain is interested by the water levels correction, although the 

improvement of the model performance persisted for only some hours of simulation. Despite 

the scarce availability of VGI data for real flood events in the study area, their usefulness have 

been investigated considering the uncertainties related to their reliability mostly in terms of 

accuracy and time allocation. Results show the potential of new data for improving the 

performance of the flood model, partially overcoming the limitations and the potential scarce 

availability of the traditional sensors. Finally, the simultaneous integration of all the three types 

of observations gave promising results, improving the performance of the model compared to 

the ones obtained assimilating only Satellite images or VGI observations. 

Future work is needed to test satellite images but mostly the VGI data component because of 

the limited availability of these data and the not well known error related to their reliability. 

Furthermore, computational time for an ensemble of 2D hydraulic model simulations is still 

quite onerous. However, these limitations can be overcome soon by the increasing availability 

of Satellite remote sensed and VGI data and the considerable growth of the computational 

power of processors.  
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1.Introduction 

The human activity in the last two centuries heavily influenced the natural processes on Earth 

so that the scientific community recognized a new geological Era, named Anthropocene 

(Crutzen, 2002). During this Anthropogenic era, hydrological processes are undergoing 

noticeable changes.  The intensification of the water cycle due to a warming climate is projected 

to change the magnitude, frequency, and timing of river floods (Min et al, 2011; Pachauri et al., 

2014), even if existing studies have been unable to identify a consistent climate change signal 

in flood magnitudes (Blöschl & Montanari, 2010; Blöschl et al., 2017). Demographic expansion 

enhanced the human pressure in riverine areas (Tockner & Stanford. 2002) and this 

phenomenon is still exacerbating mostly in developing countries, since societies tend to settle 

near deltas and floodplain areas (Di Baldassarre et al., 2015).   

 

Figure 1. Annual numbers of global loss relevant natural events in the time 1980–2014. Adapted from Hoeppe (2016) 
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These factors caused a dramatic increasing of flood-related damages and fatalities (Emergency 

Events Database, 2013, Aerts et al., 2014, Dankers et al., 2014), with an estimated global annual 

average loss of US $104 billion (UNISDR, 2015) and this trend, together also with the sea level 

rise, seems to worsen year by year (Hinkel at al., 2014; Jongman et al., 2014), as illustrated in 

Figure 1. 

Different approaches have been adopted for both avoiding the worsening of the flood risk in 

the future and mitigating the current flood risk: regional plans, structural and non-structural 

measures, e.g. Early Warning Systems (EWS).  

Regional plans for flood risk mitigation aim to constrain flood prone areas and optimize the 

spatial distribution of human activities minimizing the flood related risk. The structural 

measures for flood risk mitigation, like levees, dams and weirs are designed to modify the flood 

extension and the flow regimes, sometimes causing imbalances in the floodplain ecology 

(Tockner & Stanford, 2002) and in the sediment transport that influence the river and the 

shorelines morphology (Poff et al., 1997). These structural measures sometimes are not enough 

to prevent flooding in many countries (Wilby et al., 2008). This caused an increasing need of 

EWS (Krzhizhanovskaya et al., 2011) in order to predict the flood levels and to allow decision 

makers to take the most effective decision to reduce the fatalities and economic losses in 

urbanized areas. 

Flood modelling and mapping typically involve the use of hydrologic and hydraulic models 

with various degrees of complexity. Such models require large amounts of data for being 

calibrated, validated or, in case of EWS, updated in real time (Data Assimilation). This large 

amount of data is due to the complex physical phenomena that have to be simulated from the 

temporal and spatial rain distribution and intensity to infiltration, flow routing and flood 

propagation, that are influenced by several factors related to meteorology, geomorphology, soil 

characteristics, and topography. 

However, traditional in situ measurements used for gather these data are often scarce and 

inadequate. For example, the classical static sensors, like the stage gages, require installation 

and maintenance costs so that sometimes they are completely missing in developing countries  

or, even in richer countries, their positioning  never cover the whole stream network but only 

the most important rivers. For this reason, the scientific community in hydrological and 

hydraulic science set the goal of employing new observational technologies in improved 

predictive methods (Sivapalan et al., 2003). 
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On the other hand, new data sources are becoming more and more freely and largely available 

and their use paved, and it is still paving, the way for re-thinking new methods of calibrating, 

validating and updating the physical models (Bates, 2012). Satellite remote sensed data and, 

more recently, citizen data (Bonney et al., 2014) are proving to be of great support for flood 

mitigation.  

In the following sections, an introduction of the state of the art of main topics related to this 

work is illustrated.  

Specifically, Section 1.1 gives an overview on hydrologic and hydraulic modelling in terms of 

represented physical phenomena and related uncertainties.  

Section 1.2 describes how remote sensing influenced not only the way of validating and 

updating hydraulic models but also their evolution considering the new information related to 

topography, vegetation, observed water levels and water extension.  

Section 1.3 concerns how citizen science , mostly in the last five years, started to be considered  

in the field of flood mapping for reconstructing the flood extent of past events, for validating 

hydraulic models and even for updating simplified hydrologic and hydraulic models. 

Section 1.4 briefly mentions the principal Data Assimilation techniques adopted in hydrologic 

and hydraulic models also referring to the different type of observations used for updating these 

models. 

After the introductions on the state of the art of these topics, the main motivations and objectives 

of this work are illustrated in Section 1.5.
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1.1. Hydrological and hydraulic models 

Hydrological models schematize the hydrologic cycle with the aim of predicting water 

dynamics in quantitative terms, and sometimes the water quality, in space and time. Considering 

their structure, these models can be divided in three classes (Wheater at al., 1993; Devia et al., 

2015): physically-based models (or mechanistic), conceptual models (or parametric) and 

empirical models (or black box models, data-drive models). These models can be also classified 

according to the spatial discretization as distributed, semi-distributed and lumped (Xu, 2002).  

In the physically-based models, the physic phenomena involved in the water cycle (i.e. 

infiltration, evapotranspiration, surface flow, groundwater flow) are mathematically idealized. 

Usually they requires a large amount of input data, because of the complexity of the described 

physic phenomena. For their nature, these models are usually distributed because they need to 

take in to account the spatial distribution of the input and output variables (e.g. rain, soil 

moisture, soil properties heterogeneity, morphology variability, etc.). However, the lack of 

measurements in the whole domain and the spatial scale effects introduce uncertainties in the 

parameter values so that the output predictions can compromise their reliability (Beven, 2001). 

For this reason, these kind of models are quite difficult to be applied in data scarce regions 

where some of the many input parameters are missing.  Examples of the physically-based 

models are MIKE SHE (Abbott et al., 1986), SWAT (Neitsch et al., 2011) and the 

Representative Elementary Watershed framework (REW, Reggiani et al., 1998). 

Conceptual models describe the components of the hydrological processes using the continuity 

equation. The physical elements in a catchment are represented as reservoirs charged by 

rainfall, runoff, infiltration, percolation and emptied by evaporation, runoff and drainage. 

Usually, semi-empirical equation are used in these models and parameters can be estimated 

from field data and from calibration if enough measurements are available. There are many 

conceptual models in literature, among which there are the Stanford Watershed Model IV 

(SWM, Crawford & Linsley, 1966), Probability Distributed model (Moore, 1985), NAM-

MIKE11 (Havnø et al., 1995), Sacramento model (Burnash, 1995), Hydrologiska Byras 

Vattenbalansavdelning (HBV, Lindström et al., 1997), GR4J model (Perrin et al., 2003),  HEC-

HMS (USACE-HEC, 2006), PCR-GLOBWB model (Van Beek et al., 2011). 

Empirical models are so called “observation oriented” because they take only the information 

from the existing data without considering the features and processes of hydrological system 

and hence these models are also called data driven models or black box models. The 
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Instantaneous Unit Hydrograph (IUH) is an example of this kind of models and it has been, and 

still is, widely used. This methodology has the strong assumption of the linear theory for 

hydrologic system (Dooge, 1973). Among the empirical models, there are also statistically 

based methods that use regression and correlation models to find functional relationships 

between inputs and outputs starting from past observations of physical variables. Artificial 

neural networks (ANN, Tokar & Johnson, 1999; Dawson and Wilby, 2001; Dibike and 

Solomatine, 2001; Govindaraju and Rao, 2013), fuzzy regression (Bardossy et al., 1990; Kim 

et al., 1996; Özelkan & Duckstein, 2000) and Genetic Programming (GP, Savic et al., 1999; 

Whigham & Crapper, 2001; Babovic & Keijze, 2002; Rabuñal et al., 2007) are some empirical 

models used in hydrology supported by informatics.  

There are also models based on the linear IUH function that is derived from the geomorphology 

of the basin, thus including a physically based concept on the empirical model. These models 

are widely used thanks to their easy integration with Digital Elevation Models and land use data 

available at global scale, such as GIUH (Rodriguez-Iturbe & Valdes, 1979; Gupta et al., 1980; 

Rodriguez-Iturbe et al., 1982) and WFIUH (Mesa and Mifflin 1986; Rinaldo et al. 1991; Naden, 

1992; Rodríguez-Iturbe and Rinaldo 1997; Giannoni et al. 2005; Noto and La Loggia 2007; 

Grimaldi et al., 2012). 

Hydraulic models simulate the flow propagation applying the Saint Venant continuity and 

momentum equations or the Lattice-Boltzman approach, providing the flow depths (FD), flow 

velocities and the flood extent. Most of the models in literature apply numerical solutions to the 

Saint Venant equations, such as the finite difference, finite elements or finite volume methods. 

Hydraulic models can be classified, considering the dimensional aspect, in one dimensional 

(1D), two dimensional (2D) and three dimensional (3D) models. Most common 1D models are 

HEC-RAS 1-4. (Brunner, 1995), MIKE11, ISIS, ONDA, FLUCOMP. The availability of 

DEMs, together with the increasing computational speed of the computers, allowed to develop 

and distribute 2D hydraulic models, such MIKE 21 (Warren & Bach, 1992), RMA-2 (Feldhaus 

et al., 1992), TELEMAC-2D (Bates et al., 1992), TUFLOW (Syme, 1992), RiverFlow-2D 

(Garcia et al., 2006), TRENT (Villanueva & Wright, 2006) and Quasi-2D models such as  FLO-

2D (O’brien et al., 1993), LISFLOOD-FP (Bates & De Roo, 2000), InfoWorks2D (Woolhouse, 

2008).  

For detailed case studies in smalls scale simulations, also 3D models are available, like CFX, 

FLUENT and PHEONIX.  
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1D models are still often used in domains where the 2D effects can be considered  negligible 

(Bates et al., 1995), but in some cases they cannot simulate in a proper way the flow propagation 

along the floodplain (Hunter et al., 2005b; Pappenberger et al., 2006), especially in cases of low 

water levels in the floodplain area. Usually the dynamics inside the channel domain can be 

simulated with a 1D simulation, so the already mentioned Quasi-2D models, to optimize the 

computational time of the simulation, have a hybrid behaviour, adopting the 1D simulation in 

the channel and the 2D simulation in the floodplain (Figure 2).  

 

Figure 2.  Depiction of a general 1D model of the river channel coupled with a 2D model of the floodplain. Source: Gilles et 

al. (2012) 

Hydrologic and hydraulic models are affected by uncertainties that need to be taken into account 

for better managing the risk-based decision making processes for disaster risk reduction 

(Pappenberger and Beven, 2006), because it’s important to assign the proper reliability to their 

results (Krzysztofowicz, 2001). The uncertainty of the hydrologic and hydraulic models is 

caused partially by the so called “aleatory uncertainty” of the hydrological and hydraulic 

processes because of their inherent stochastic behaviour (Koutsoyiannis, 2010; Beven, K., 

2016) and partially by the so called “epistemic uncertainty”, namely the limited knowledge of 

the studied physic systems of the scientific community and the approximated modelling of these 

systems (Merz & Thieken, 2005). Inside these two macro-categories, we can classify four 

different sources of uncertainties related to hydrologic and hydraulic models (Liu & Gupta, 

2007) listed below: 
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 Structural uncertainty given by the simplification of the modelled physical processes, 

based on assumption and approximation made to reduce the computational resources in 

terms of cost and time. 

 Input uncertainty related to the observed variables, like rainfall, temperature, river 

discharge, soil moisture, water stage, or other variables obtained by forcing models (i.e. 

hydrologic input in hydraulic models). 

 Output uncertainty related to transforming the outputs to other linked variables of 

interest, e.g. the rating curve errors for deriving the runoff estimation from the simulated 

water level in a hydraulic model. 

 Parametric uncertainty due to the inaccuracy of the model calibration, that need 

calibration data affected by the other abovementioned uncertainties; additionally some 

model parameters that have a spatial variability are uniformly assigned because of the 

lack of distributed measurements. 

In order to quantify the uncertainties related to the hydrologic and hydraulic models, different 

approaches have been proposed in literature. One of the most used technique is the Monte Carlo 

approach, consisting in the random sampling of the model’s inputs and/or outputs, starting from 

the probability distribution of the errors associated to each perturbed variable. This technique 

has the advantage of being simple to be applied, but usually requires considerable 

computational efforts because of the large number of elements in the sample that it requires to 

reach the appropriate statistical accuracy. Generalized Likelihood Uncertainty Estimation 

(GLUE, Beven & Binley, 1992) is one example of the Monte Carlo application for determining 

the uncertainty in hydrologic (Beven & Freer, 2001) and hydraulic (Aronica et al., 2002, 

Pappenberger et al., 2006) modelling. However, some critical issues emerged from this 

methodology (Mantovan & Todini, 2006). As alternatives of applying the Monte Carlo 

approach, several Bayesian approaches have been proposed in literature: the standard Bayesian 

approach (e.g. Krzysztofowicz, 1999 for hydrology, Romanowicz et al., 1996 for flood 

inundation), Bayesian Recursive Estimation (Thiemann et al., 2001 for hydrology; Kapelan et 

al., 2007 for hydraulics), Bayesian hierarchical models (Kuczera et al, 2006 for hydrology), 

Bayesian model averaging (Duan et al., 2007). 



1.2. Remote sensing for flood mapping 

Until the late 1990s, hydraulic models were built, validated and calibrated using ground 

measuring, from the topographic survey, to the flow/stage gauging stations, with high costs and 

poor spatially distribution of validation measurements. Even with the infrequent air photos 

gathered from the past floods, a testing of the model performance could not be done in a proper 

way because of the lack of sufficiently detailed and spatially distributed terrain data. The limited 

information about the flood extensions on a spatially distribute way also compromised the 

possibility to discriminate between different parametrizations and physics of the models, 

because different models could equally fit the scarce available punctual measurements but 

predicted differently the following flood events. The equifinality related to this issue, didn’t 

allow the development, testing, thus the springing up, of the 2D hydraulic models; in fact the 

topography of the domain were typically provided as a series of cross sections perpendicular to 

the channel and to the main floodplain direction, so the 1D models were more easy to be 

implemented. Furthermore, the ability of a model to route a 1D wave along the river network 

was the only aspect to be tested and the 2D models could add only additional complexity 

without giving any tangible benefit (Bates, 2012).  

At the beginning of the new millennium, the first remote sensing techniques for mapping the 

topography of wide areas using the airborne altimetry (i.e. Light Detection And Ranging - 

LiDAR) allowed to test the hydraulic models in a new way (Pereira & Wicherson, 1999; Marks 

& Bates, 2000; Bates and De Roo, 2000; French, 2003), providing continuous distributed data 

with a spatial resolution of 2-5 meters with a vertical accuracy around 10-15 cm. Moreover, 

LiDAR data provided also information on vegetation height that started to be used as 

information for parametrizing the floodplain friction, being very influenced by the vegetation 

drag (Cobby et al., 2003; Mason et al., 2003; Straatsma & Baptist, 2008). On the other hand, 

also  Synthetic Aperture Radar (SAR) images started to be used for validating hydraulic models 

(Horrit, 2000), being able to capture both terrain topography and water extension (Horrit et al., 

2001) at any light or weather condition. In fact, flood extent mapping using SAR images is a 

common issue, because very low backscatters are typical of water surfaces compared to other 

objects (Smith, 1997). Simultaneously, the Shuttle Radar Topography Mission (SRTM) was 

launched in 2000 and, after the processing of the raw data, it provided freely available 

topography for 80% of the Earth surface at 3 arc resolution (≈ 90 m) and, more recently (in 

2017 globally), also at 1 arc resolution (≈ 30 m), with an absolute height error in all continents 

between 5.6 and 9.0 meters, and a relative height error between 4.7 and 9.8 meters at 90% 

confidence interval (Rodríguez et al., 2006; Yan et al., 2015a). These errors tend to be lower 
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(around 3.2 m in Falorni et al., 2005; around 2.3 m in Patro et al., 2009) in lowland like 

floodplains, rivers and deltas because of the absence of reliefs. SRTM DEM includes also 

vegetation canopy heights, which could lead to underestimate inundations if not pre-processed 

for being used as base topography for hydraulic modelling (Yan et al., 2015a). Despite their 

considerable vertical errors and their inability to penetrate the vegetation canopy, in some cases 

they have been proven to be used successfully in flood models (LeFavour & Alsdorf, 2005; 

Sanders, 2007; Schumann et al., 2008; Patro et al., 2009; Wang et al., 2012; Alfieri et al., 2014; 

Yan et al 2013, 2015b). There are also other globally available DEMs, such the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 

Model (GDEM), with a 30 m resolution and a vertical accuracy of 17 m (Tachikawa et al, 2011), 

the Altimeter Corrected Elevations 2 (ACE2 GDEM) with 1 km resolution and vertical 

accuracy > 10 m, the Global 30 arc-second Elevation (GTOPO30) with 1 km resolution and 

vertical accuracy varying from 9 to 30 m, TanDEM-X from TerraSAR-X mission, with a 

resolution < 12 m and a vertical accuracy < 2 m.  

This new availability of having spatially distributed remote sensed data allowed to test also the 

2D hydraulic models using distributed field data. The availability of remote sensed data takes 

on even more importance if we consider that most of the basins in the world are still ungauged 

or poorly gauged (Stokstad, 1999).  

The results on 2D models using topography data with different spatial resolutions leaded to an 

important outcome that has irreversibly influenced the research on the 2D codes development: 

the improvement of terrain data resolution and quality is much more important than the 

improvement in the representation of physical processes (Bates and De Roo, 2000); the pressure 

gradient, friction and local acceleration are the most important physical process that need to be 

included. This “reductionist paradigm” (Bates, 2012) lead to develop simpler and faster models, 

e.g. based on diffusion waves (Hunter et al., 2005a), or on mass spreading without conserving 

momentum (Lhomme et al., 2009), simplified version of shallow water equations (Bates at al., 

2010), allowing to run simulations in larger areas at finer grid resolution, to better represent the 

terrain. 

The increasing of the resolution and the spatial scale in the physical models has been assisted 

also by new computing techniques such parallelization (Neal et al., 2010) and Graphics 

Processing Unit (GPU) hardware (Lamb et al., 2009; Kalyanapu et al., 2011; Lacasta et al., 

2014). Simultaneously the computer power, according to the Moore’s law has rapidly increased, 



1. Introduction 

 

 

10 

 

thus also the frequency of typical airborne LiDAR systems, bringing to spatial resolution lower 

than 10 cm and the vertical precision to ~ 5 cm RMSE (Fewtrell et al, 2011).  

The importance of the spatial resolution of the model has been proven to be crucial mostly in 

floodplain wetting and drying phenomena along preferential flow pathways in both rural and 

urban settings (Nicholas & Mitchell, 2003; Neal et al., 2011). On the other hand, larger floods 

tend to be valley filling and the maximum extent can be easily predicted even by models with 

coarse resolution (Bates, 2012). Another limitation in data availability is the bathymetry of the 

rivers, because DEMs return the water surface elevation at the time of the acquisition, and 

additionally, in coarse resolution DEMs, the elevation at the river can be influenced by its 

surrounding regions. Many researches proposed different approaches to overcome this issue, 

for example: correcting the bed elevation DEM with the average difference between ground 

surveys data and DEM data (Patro et al., 2009); using a power law relationship between channel 

width and depth (Neal et al., 2012) according to Leopold and Maddock (1953); assuming that 

the river bed elevation given by the DEM corresponds to average runoff conditions and 

reducing the inflow hydrographs by subtracting the mean discharge (Alfieri et al., 2014); 

calibrating the DEM based hydraulic model using the bed elevation as additional parameter to 

calibrate (Yan et al., 2015b). Moreover, the global river bank-full width and depth databases 

were developed and are freely available at Andreadis et al., 2013 and Yamazaki et al., 2014. 

These databases have been used to build the first large-scale flood inundation forecasting 

models (Schumann et al., 2013; Alfieri et al., 2014; Sampson et al., 2015; Dottori et al., 2016; 

Wing et al., 2017). However, the channel geometry approximation is the source of major 

inaccuracy in water level simulation, particularly at low flow conditions, and more reliable 

approaches to estimate the channel geometry in absence of ground surveys is one of the future 

research frontiers (Yan et al., 2015a). 

Boat-mounted side-scan sonar systems can provide the channel bathymetry that can be 

integrated in the terrain models for high-resolution hydraulic simulations (Horrit et al., 2006), 

but there are still no bathymetry data available at large scale.  

Remote sensed data have also been used not only for calibrating and validating the hydraulic 

models at different spatial scale (Horrit & Bates, 2001; Lane, 2005) but also for evaluating the 

model uncertainties (Aronica et al., 1998; Pappenberger et al., 2006, 2007) and even reducing 

them (Bates et al., 2004; Hunter et al., 2005b; Di Baldassarre et al., 2009a; Mason et al., 2009; 

Stephens et al., 2012). The evaluation of the model uncertainties is, in fact, a crucial aspect 



1.2. Remote sensing for flood mapping 

 

11 

 

 

since deterministic predictions of flood extent for territorial planning could provide a 

misleading impression of accuracy (Di Baldassarre et al., 2010). For this reason, techniques for 

uncertainty visualizations (Leedal at al., 2010) and protocols for flood risk decision-making 

under uncertainty (Hall & Solomatine, 2008) have been developed. Where detailed topography 

is not available, topographic data are considered one of the most significant source of 

uncertainty in hydraulic modelling (Jung & Merwade, 2012). 

Together with topographic data, the measurement error in gauging station seems to be another 

important limiting uncertainty in hydraulic modelling, so that errors in discharge measurements, 

during peak flows can reach ±40% (Di Baldassarre & Montanari, 2009; Di Baldassarre et al., 

2012). However, also unknown parameters such as roughness and bathymetry are still issues 

that can be resolved through calibration, validation or data assimilation (Bates, 2012).  

Airborne aerial photography and thermal (optical) imagery can give probably the best 

information in terms of accuracy for the flood extent (Yu & Lane, 2006) but their high costs 

and their limitations on cloud conditions make their use not very appealing. SAR-derived flood 

images have also been used to extract the water extension and also the water elevation along 

the shoreline intersecting them with DEMs (Mason at al., 2009) even at coarse resolution, such 

the ones from the Shuttle Radar Topography Mission SRTM (Schumann et al., 2010). The main 

issues related to these data are image resolution and the satellite revisit time (Yan et al., 2015a). 

Different satellite missions provide imagery with various resolution (from 1 to 1000 meters) 

and repeat cycles ranging from 11 to 46 days. A comprehensive view of the available satellite 

imagery products is given by Schumann et al. (2009), Di Baldassarre et al. (2011) and Yan et 

al. (2015a). The ability of the new satellite missions of leaning on more satellite constellations 

allowed to reduce the global revisit time (6 days for Sentinel-1, 2 hours for COSMO-SkyMed). 

Several techniques have been proposed to retrieve the water extent from satellite imagery. The 

most common are the visual interpretation (MacIntosh & Profeti, 1995), automatic 

classification algorithms (Hess et al., 1995), statistical active contour models (Horrit, 1999), 

image histogram thresholding (Brivio et al., 2002), image texture algorithms (Schumann et al., 

2005), automatic thresholding procedures on high resolution SAR data (Martinis et al., 2009; 

Schumann et al., 2010; Matgen et al., 2011; Mason et al.,2012b; Pulvirenti et al., 2011), tailored 

specifically for urban areas (Giustarini et al., 2013; Mason et al., 2014). Some of these 

techniques have been inserted in web-based fully automated processing chain for near real time 

flood detection using high-resolution SAR data (e.g. Martinis et al., 2014). These images have 

been used for calibrating and validating hydraulic models using different spatial performance 
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measurements and varying mainly channel and floodplain roughness (Horrit, 2000; Horrit et 

al., 2007; Di Baldassarre et al., 2009b; Mason et al., 2009; Tarpanelli et al., 2013) and for 

producing probabilistic flood maps, considering the uncertainties related to the model and the 

observation data (Hunter et al., 2005b; Di Baldassarre et al., 2010). Multispectral images, such 

as the ones provided by the Landsat 5, 7 and 8 missions, have not been widely integrated with 

hydraulic models for calibration or data assimilation purposes, because of their limitation in 

detecting the water extension in cloud conditions (typically occurring during floods) and during 

night time. However, multispectral images have been used for monitoring water extension, 

taking advantage of the different sensitivity of the water surface to some bands compared to the 

ones of the bare soil, the vegetation and the built-up surfaces. Many water extracting indexes 

have been proposed and tested in literature, such as Normalized Difference Water Index 

(NDWI, McFeeters, 1996), the Modified Normalized Difference Water Index (MNDWI, Xu, 

2006), the Water Ratio Index (WRI, Shen & Li, 2010), the Automated Water Extraction Index 

shadow (AWEISH) and non-shadow (AWEINSH) indexes (Feyisa et al., 2014), the water index 

(WI, Fisher et al., 2016). These indexes have been tested mainly in steady conditions of the 

water bodies and, for flood detection purposes, should be tested considering the usual increase 

of turbidity of the rivers during extreme events. 

Large scale hydraulic models have been also calibrated and validated using interferometric 

water elevation changes (dh/dt) derived from Interferometric Synthetic Aperture Radar (IfSAR) 

(Alsdorf et al., 2007a; Jung et al., 2012), satellite gravimetry (GRACE, Alsdorf et al., 2010) 

and satellite radar altimeters (Wilson et al., 2007). The accuracy of the vertical elevation ranges 

around 50 and 10 cm, reaching also 3-4 cm for large areas (Frappart et al., 2006) but can be 

also lower, until 2 meters (Birkinshaw et al., 2010). Some studies have been done also to use 

the radar altimetry as input for hydraulic models (Biancamaria et al., 2009; Hall et al., 2011; 

Domeneghetti et al., 2014; Yan et al., 2015b). 

In the last years, the Unmanned Aerial Vehicles (UAV) started to be used as remote sensing 

systems for not only generating very high resolution DTM with high vertical accuracy, but also 

for flood monitoring (Abdelkader et al., 2013) and mapping (Feng et al., 2015). UAVs have 

low dependences on launching and landing conditions, making them safer than piloted aircrafts 

in urban flood monitoring; they also fly at low altitude, making them immune to the cloud 

covering and at the same time providing in real-time many details of ground objects in 

heterogeneous urban landscapes (Feng et al., 2015). However, they still have strong limitations 

related to the small areas they can monitor, due to their relatively limited autonomy (few hours). 
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Water levels directly gathered from space have also been used as observations to be assimilated 

by hydraulic models and have been proven to improve the forecast reliability and also to 

estimate the discharge from space (Andreadis et al., 2007; Matgen et al., 2007; Neal et al., 2009; 

Matgen et  al., 2010; Giustarini et al., 2011; Mason et al., 2012). Andreadis & Schumann (2014) 

demonstrated that the assimilation of satellite observation, with a local ensemble transform 

Kalman Filter, can have a positive effect on flood forecasting even for long leading time (up to 

11 days in their work, that is similar to the satellite revisit time). A more effective way of 

updating would thus consist in adjusting both model states and inputs (Matgen et al., 2010). 

García-Pintado et al. (2013) investigated the forecasting performance assimilating water levels 

from satellite, and the influence of the satellite revisit parameter. For this aspect, future satellite 

missions will be crucial in improving the current DA frameworks integrated in hydraulic 

models. 

Bates et al. (2014) reviewed the surface water data sets available to hydrologists on a global 

scale. A breakthrough in this aspect at larger scale will be the NASA/CNES Surface Water 

Ocean Topography (SWOT) satellite mission (Alsdorf et al., 2007b), scheduled for launch in 

2019. This mission will provide both 100 m resolution images h (with 50 cm of accuracy), 

dh/dx and dh/dt globally approximately every 10 days and also global floodplain DEM with 

decametric vertical accuracy. This mission is also expected to penetrate vegetation through 

canopy. This information will be useful not only for the data assimilation framework at global 

scale, but also for estimates of bathymetry, friction and discharge in ungauged basins (Bates, 

2012).  

This tremendous development of the new data sources shifted flood modelling from a data-poor 

to a data-rich environment (Schumann et al., 2009). The integration of remote sensed data, 

ground-based observations and models as well as estimating associated uncertainties related to 

hydraulic modelling still remains an important scientific challenge (Yan et al., 2015)
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1.3. Crowdsourced data and floods 

Both traditional physical static sensors and remote sensed data sometimes can be considered 

not sufficient as input of flood models or for validating them, mostly in the secondary river 

network, where often static gages are missing and the flood dynamics, occurring in few hours, 

are too fast to be captured by satellite remote sensors, whose revisit times still require days. 

This led to consider new sources of information looking at the crowdsourced observations, 

giving more attention to a relatively new scientific branch, called Citizen Science (Irwin, 1995). 

Crowdsourced observation can be adopted for deriving hydrological or hydraulic variables and 

using them in decision-making (Bonney et al., 2014). The exploring of these new kinds of data 

is having support from the incredible increasing of smartphone users worldwide (Figure 3) and, 

at the same time, of social media accounts, that allow people to share geotagged messages, 

photos and videos in real time. For example, Figure 3 shows how the number of twitter accounts 

grown in the last 8 years (Statista, 2017b). 

 

Figure 3. Number of smartphone users worldwide from 2014 to 2020 (left) and Number of monthly active Twitter users (in 

millions) worldwide from 1st quarter 2010 to 2nd quarter 2017 (right). (Adapted from Statista 2017a, 2017b) 

Field information gathered from citizen trough social media (Facebook, Instagram, Twitter, 

Flickr, Foursquare, Youtube) and news media are principally defined in three different ways: 

Crowdsourced data (CS), User Generated Contents (UGC) and Volunteering Geographic 

Information (VGI). Goodchild (2007) defines VGI as spatial information collected voluntarily 
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by private citizen. CS and UGC terms are used more generally referring to information created 

involuntarily or voluntarily for a specific purpose, i.e. for monitoring natural disasters. In this 

work, the VGI acronym has been used for generally referring to every crowdsourced 

information. Until a couple of years ago, crowdsourced data were not universally accepted as a 

valid source of scientific investigation (Bonney et al., 2014), because of their low reliability 

having sources of information given by not trained and not expert people. Buytaert et al. (2014) 

stated that motivations of citizen engagement vary according to geographical location; in fact, 

wealthy countries are more aware of the importance of scientific progress, while in poor 

countries, the main concerns are related to poverty alleviation (Gura, 2013). However, citizen 

engagement can be also involuntary, because people tend to use social media just for sharing 

their experiences and could catch information of phenomena whose utility could not be get 

immediately from them. Buytaert et al. (2014) give some examples of citizen engagement in 

hydrology and water science.  

In hydrology, there are several project aimed to test the usefulness of VGI observation using 

low cost sensors given by citizens. CoCoRaHS (Cifelli et al., 2005) is a community-based 

network of volunteers trained for collecting precipitation, hail and snow measurements. 

CrowdHydrology (Lowry & Fienen, 2013) is a project for monitoring water stages using 

crowdsourced text messages from untrained people. iSPUW Project (Seo et al., 2015) integrates 

data from weather radar systems, wireless sensors and crowdsourced data via mobile 

applications to improve the prediction of flood events in a urban area. ABC is a crowdmap 

platform for collecting and sharing information about the flood in Australia in 2011 

(http://www.abc.net.au/technology/articles/2011/01/13/3112261.htm). QLD FLOOD CRISIS 

MAP launched by the Australian Broadcasting Corporation allowed people to end information 

on flood via email, text message, twitter or website (McDougall, 2011). PetaJakarta.org is a 

research project led by the SMART Infrastructure Facility, in collaboration with the Jakarta 

Emergency Management Agency (BPBD DKI Jakarta) and Twitter Inc. that enabled Jakarta’s 

citizens to report the locations of flood events using the social media network Twitter. This 

project has been proven to be useful for mitigating flood-related disasters like the monsoon 

effect in Indonesia in 2016. WeSenseIt (Ciravegna et al., 2013), funded by the Seventh 

Framework Programme for Research and Technological Development (FP7) of the European 

Union, proposed to develop a citizen observatory of water through environmental non-

structured data collection from citizens, to develop descriptive and predictive models and 

decision making tools starting from social and traditional data, to develop communication 

http://www.abc.net.au/technology/articles/2011/01/13/3112261.htm
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strategies for exchanging environmental knowledge/experience between citizens and 

authorities. Collaborative international projects, like some ongoing European Commission 

funded projects, are also being developed investigating Citizen Observatories for water 

management (Ground Truth 2.0, SCENT, LANDSENSE, GROW observatory, WeObserve). 

Several platforms can be considered as VGI tools. Wikimapia allows anyone to select an area 

of the Earth’s surface, and provide it with a description (http://wikimapia.org/). OpenStreetMap 

is an “editable map of the whole world, which is being built largely from scratch, and released 

with an open content license” (https://www.openstreetmap.org/). Ushahidi is a non-profit 

technology company that specialises in developing free and open source software for 

information collection, visualisation and interactive mapping (https://www.ushahidi.com/). 

Crowdmap is an on online interactive mapping service, based on the Ushahidi platform 

(https://crowdmap.com). It offers the ability to collect information from cell phones, email and 

the web, aggregate that information into a single platform, and visualise it on a map and 

timeline.  

It is worth to mention also other web platforms allowing to map geotagged information gathered 

from the social media. The ArcGIS social media web app allows to map the geotagged 

information from Instagram, Flickr, Twitter and Youtube in near real time. There are also new 

platforms providing similar services like Echosec (https://www.echosec.net), BirdIQ 

(https://birdiq.net/). These information can be very useful if integrated with other spatial data 

as the potential or real extension of a flood (Figure 4). 

 

Figure 4. Example of integrating the geotagged social media information with the potential (green) and flooded (red) areas 

using the ArcGIS social media web app. Piura, flood 2017. 

http://wikimapia.org/
https://www.openstreetmap.org/
https://www.ushahidi.com/
https://crowdmap.com/
https://www.echosec.net/
https://birdiq.net/
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Some platforms are born specifically for gathering information regarding floods. FloodTags 

(https://www.floodtags.com/) analyses online media (news articles, blogs, forums) and UGC 

(Twitter, Facebook) for water management and food security. The analysis is performed using 

a mix of artificial intelligence, natural language processing and combinations with external data 

sources, including satellite imagery. 

Currently Flickr and Twitter are the most used social media for getting crowdsourced 

information related to disasters, allowing all public data to be found and extracted using their 

Application Programming Interfaces (API). In this context, the interpretation of the contents 

(e.g. hashtags, images, text, tags, geolocations) is one of the most important research frontier 

in social media analytics (Tkachenko et al., 2017). 

In the field of flood mapping, social media data have been already used as auxiliary data for 

improving and testing the performance of hydrologic and hydraulic models or remote sensed 

data. Sun et al. (2015) evaluated the accuracy of flood maps derived by remote sensing using 

Flickr data. Smith et al. (2015) used Twitter information to select the most realistic result of a 

series of hydraulic model ensemble. Mazzoleni (2017) demonstrated the benefits of 

assimilating both traditional and VGI observations with simplified hydrological and hydraulic 

modelling for improving the flood prediction. Tkachenko et al, 2017 used polysemous tags of 

images posted during several flood events and demonstrate how volunteered geographic data 

can be used as hazard predictor choosing proper words as filters for getting information. 

VGI data have been also used for directly creating flood maps. Schnebele & Waters (2014) 

used crowdsourced photos and volunteered geographic data to create an estimation of flood 

damage in New York City following Hurricane Sandy using a geostatistical interpolation. 

Holderness and Turpin (2015) used the tweet spatial density to detect the most affected flooded 

areas in Jakarta, Indonesia (see PetaJakarta.org project). Other examples of using social media 

for mapping flood extents are provided by Poser & Dransch (2010), McDougall (2011), 

Triglav-Čekada & Radovan (2013), Cervone et al. (2016), Rosser et al. (2017). Water levels 

manually (Fohringer et al. 2015) or automatically (Eilander et al. 2016) derived from 

photographs on Flickr and/or Twitter have been used to create flood maps. Brouwer at al. (2017) 

create deterministic and probabilistic flood maps from Twitter messages performing 

uncertainty analysis on location and water depth derivation errors. 

The principal drawback of the crowdsourced information is their relatively low reliability 

compared to the traditional measurements, therefore the uncertainty related to these data have 

https://www.floodtags.com/
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to be assigned in a proper way, considering the expertise level of the users, their credibility (e.g. 

volunteer group) and the accuracy, completeness and precision level (Tulloch & Szabo, 2012; 

Bordogna et al., 2014). To handle this reliability assessment some ad hoc statistical tools have 

been developed to determine the random error and bias to be assigned to these observations 

(Bird et al., 2014). Data reliability can be assigned considering not only the expertise of the 

source, but also the time and the position in which that information is received. To  address this 

issue, semantic rules governing what can occur at given location can be used as filter for 

observations (Vandecasteele & Devillers, 2013), or taking the mean and the standard deviation 

of compared measurements at predefined time windows (Mazzoleni, 2017). Further steps in the 

definition of VGI data errors need to be done, especially if the location and timing uncertainties 

need to be integrated in data assimilation frameworks. Additionally, the use of VGI within DA 

and flood forecasting is still not well deepened, since few case studies have been developed 

with simplified hydrologic and hydraulic models using synthetic crowdsourced data 

(Mazzoleni, 2017). 
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1.4. Data assimilation in hydrologic and hydraulic modelling 

 The Data Assimilation approach (DA), allows to update states, inputs, parameters of a physical 

model with real time observations for reducing the predictive uncertainty. These models have 

been widely used in water modelling starting from the beginning of the 90’s (World 

Meteorological Organization, 1992). Figure 5 shows how the DA framework works for a 

generic state variable X, that is filtered and corrected considering the uncertainties of the model 

and of the observations each time step.  

 

Figure 5. Example of a Data Assimilation application in a forecast model for a generic variable X. Source: Lahoz & 

Schneider, 2014 

There are several techniques of DA adopted in literature in water modelling. One of the most 

popular is the Kalman Filter (Kalman, 1960) and its variants. The simple Kalman filter method 

has the strong limitation of being valid only for linear systems; for this reason, many variants 

of this method have been developed and proposed for non-linear processes, such the Extented 

Kalman Filter (EKF, Ljung, 1979), unscented Kalman filter (UKF, Wan &Van Der Merwe, 

2000), ensemble Kalman Filter (EnKF, Evensen, 2003), the recursive ensemble Kalman filter 

(REnKF, McMillan et al., 2013). Among these, the EnKF is maybe the most used in water 

modelling despite being time consuming, because of its flexibility even in strong non-linear 

dynamics (Madsen & Cañizares, 1999). 

Another DA method adopted in Water modelling is the Particle Filter (PF, Arulampalam et al., 

2002) in which the posterior density function is represented by a set of random samples with 

associated weights according to the full prior density and resampling approach used. This 

methodology is usually more computational onerous than the family of the Kalman filters. 
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Besides the aforementioned DA methods, variational assimilation methods (Le Dimet & 

Talagrand, 1986) have been widely used in weather forecasting, coastal hydrodynamics but also 

in hydrologic modelling (Seo et al., 2003; Lee et al., 2011; Liu et al., 2012; Ercolani & Castelli, 

2017). In these methods, the cost function that measures the difference between the error in the 

initial conditions and the error between model predictions and observations over time is 

minimised to identify the best estimate of the initial state condition 

Specifically in hydrological modelling, the DA approach have been adopted using as updating 

observations traditional physical sensors (McLaughlin, 2002; Moradkhani et al., 2005a; Walker 

& Houser, 2005; Liu and Gupta, 2007). 

More recently, the significant amount of real time data requested by the data assimilation 

methodology (e.g. water levels, streamflow, soil moisture, snow cover) applied to complex 

physical models even in poorly gauged areas, pushed the scientific community to find new 

types of observation to be assimilated. For this reason, from 2007 many applications of the DA 

framework starting from satellite remote sensed water stages started to be adopted. Section 1.2 

of this work already mentioned some of these studies. The real time assimilation of remote 

sensed data is still an issue because of the temporal availability of the remote information, but 

some important progresses have been done gathering SAR-derived real time water stages and 

water extensions (Garcìa-Pintado et al., 2013; Matgen et al., 2010). 

The performance of the DA assimilation applied to hydrologic and hydraulic models have been 

assessed not only in terms of the quality of the observation measurements, but also in terms of 

the distribution of the sensors. For example, Mendoza et al., 2012 demonstrated that the 

hydrologic modelling of the upstream part of the basin can be the mayor source of uncertainty 

in a flood forecasting model. Many authors demonstrated that assimilation of observations from 

inner points of the basin helps to further improve the hydrograph estimation and the position of 

the sensors is often more important than the updating frequency (Xie & Zhang, 2010; Rakovec 

et al., 2012a; Chen et al., 2012; Mazzoleni et al., 2015). 

Data assimilation methodologies have been developed also for updating not only the state 

variables, but simultaneously correcting some physical parameters (Reichle, 2008; Brocca et 

al., 2010) or model parameters (Moradkhani et al., 2005b; Lü et al., 2011). 

Mazzoleni et al. (2015) investigated the potential integration of Crowdsourced data inside 

hydrologic and hydraulic models, obtaining substantially improvements on the model 
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performance; besides their promising results, some testing using unbiased models and real VGI 

observations instead of synthetic ones have to be done to avoid potential issues on the 

equifinality related to simplified hydrologic models (Viero, 2017).  
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1.5. Motivation and objectives 

The main purpose of this work is to investigate the integration of traditional (i.e. stage gages 

measurements) and more recent data (i.e. remote sensed and crowdsourced data) for improving 

the flood mapping using hydro-geomorphic and Quasi-2D hydraulic models. Moreover, even 

the assimilation of every type of the mentioned data is still not well investigated in case of 

advanced 2D hydraulic modelling. For this reason, a methodology for filling the gap related to 

the integration of observations coming from multiple type sources in complex physical models 

is proposed, including Quasi-2D models instead of simplified 1D models, mostly common in 

literature for DA purposes because of their easy implementation and their limited computational 

burden. Together with the observation data, the development of hydro-geomorphic models is 

performed in order to test their usefulness as input forcing and boundary of the computational 

domain of the hydraulic model.  

 

Figure 6. Scheme of the DA framework adopted for the current work 

Figure 6 schematize the main objective of the work of integrating the abovementioned models 

and data. The main forecasting model is the 2D hydraulic model, that is forced by an 

hydrological model developed in GIS environment taking advantages of the geomorphologic 

characteristic of the basins deducible from terrain, land use and soil type analysis. 
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The computational domain of the hydraulic model is chosen starting from the delimited area 

provided by a DEM-based geomorphic model, that in this work is investigated and readapted 

starting from the model developed by Nardi et al. (2006). This floodplain delineation 

methodology is proposed not only as an expeditious tool for defining a computational hydraulic 

domain, but also for delineating flood prone areas at larger scale to overcome the limitation of 

all the portion of basins that are still ungauged and without previous advanced hydrologic and 

hydraulic analysis. This further purpose has to be considered as independent from the DA 

framework, thus as a secondary aim of the proposed research. 

The physical model is integrated in a Data Assimilation framework, updating the simulated 

water levels every time any type of observation, among traditional static sensors, satellite 

images or VGI data, is available. 

Moreover, a new methodology for gathering the distribution of the water levels taking 

information from a satellite image and an ensemble of the hydraulic profiles, generated during 

the Data Assimilation application, is proposed. The indirect derivation of water levels using 

images instead of the direct use of water levels from satellite has been considered an interesting 

starting point to deepen, because of the increasing free availability of Multispectral (e.g. 

Landsat 5, 7, 8 and also 9 soon) and SAR (e.g. Sentinel-1, Alos-1) images that can provide 

spatially distributed information and whose revisit time will decrease soon with the launching 

of new missions, as mentioned in Section 1.2. In this context, a secondary objective of the work 

is an investigation on the current water detection indexes from multispectral images to test their 

performance during flood events.  

The application of proposed DA approach has the limitation of still having a scarce availability 

of new data (Satellite images and VGI data) for the case study that will be introduced in the 

next section. However, it can be considered as a first attempt of findings merits and defects 

related to more complex time consuming hydraulic models in a Data Assimilation framework 

where observations are scarce and intermittent.
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2.Case study 

 

 

The Tiber river basin in central Italy, the selected case study, is described in this chapter. 

Specifically, Section 2.1 illustrates the whole Tiber river, giving some information on its 

location, land uses and river network topology and then describing the geomorphic 

characteristics of the sub-basins that are part of the Middle Valley, namely the part of the river 

basin between the inflow of the Nera river and the northern part of the city of Rome, which 

include the computational domain of the models described in Chapter 3. 

In Section 2.2, an overview of all available data for the case study is given, focusing mainly on 

topographic, data, rain and flow time series, land use, satellite images and VGI data.
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2.1. The Tiber River basin - General framework 

The Tiber river basin is the second largest river in Italy, after the Po river basin. Its extension 

is approximately 17300 km2 including mainly Umbria e Lazio regions, but also Abruzzo, 

Emilia-Romagna, Marche, and Toscana regions (Figure 7). 

 

Figure 7. Tiber River basin geographic setting in central Italy as respect to the regional boundaries. 

Land use is predominantly agriculture (≈55%) with the remaining area occupied by forests (≈ 

40%) and urbanized areas (≈5%). The main channel of the Tiber river has an overall length of 

415.8 km and flows into the Tyrrhenian Sea. The drainage network is controlled by some 

reservoirs, mainly developed for producing hydropower. The main ones along the Tiber channel 

are the Corbara and the Montedoglio dams (in the upstream part), but there are also other 

significant dams on the tributaries, specifically in the main left tributary (the Nera river basin) 

characterized by mountain ranges. 

The analysed case study for the hydrologic and the hydraulic modelling is the Middle Valley, 

where the Tiber river is between the village of Orte Scalo and the northern part of the city of 
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Rome (Stage Gage: Castelgiubileo). The whole area of the Middle Valley has an extension of 

5881 km2, and the main tributary is the Nera River (Area=4180 km2). The Nera river basin is 

characterized by several weirs and dams that regulate the flow so that no more than 250 m3/s 

can reach the Tiber River in its confluence. The other basins of the Middle Valley (Figure 8 and 

Table 1) have been considered for the hydrologic modelling and their morphometry is showed 

in Table 1. 

 

Figure 8. Map of the Tiber river Middle Valley basins  

There are several urbanized areas in the floodplain of the Midde Valley (Figure 9), with four 

main cities: Orte Scalo, Fiano Romano, Monterotondo and the northern part of Rome. These 

urban centres have been affected by floods in January 2014, November 2012, November 2010, 

and November 2005, causing damages to buildings, roads and bridges. This area has been 

chosen because of its strategic importance for the flood risk mitigation of the city of Rome and 

its being in a partially urbanized areas makes it suitable for getting crowdsourced information 

for improving the flood dynamics. There are also stage gages (Figure 8) that have been adopted 

as hydrologic input for the hydraulic modelling and also as static sensor observations for the 

Data Assimilation framework. 
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Name Code 
Area 

[km2] 

Altitude [m.a.s.l.] 
DH 

[m] 

Basin 

slope 

[%] 

Channel 

length 

[km] 

Channel 

slope 

[%] min max mean 

Aja AJA 35.3 30.0 1038.0 354.3 1008.0 19.305 15.153 4.085 

Aja Di Galantina ADG 68.5 18.0 1262.0 455.5 1244.0 23.191 17.772 5.873 

Aja Di Otricoli ADO 49.5 28.0 971.0 327.3 943.0 15.573 16.137 3.216 

Aja Di Poggio ADP 152.2 18.0 1230.0 418.9 1212.0 20.073 34.013 2.587 

Borghetto BOR 51.0 25.0 810.0 272.6 785.0 5.865 25.040 2.260 

Campana CAM 61.0 21.0 638.0 195.1 617.0 18.675 17.820 2.075 

Corese COR 180.4 13.0 1342.0 413.6 1329.0 19.443 30.287 2.622 

Farfa FAR 245.0 12.0 1205.0 484.7 1193.0 20.881 40.143 2.063 

Fiora FIO 73.9 4.0 976.0 139.2 972.0 9.993 16.253 1.692 

Fratta FRA 57.5 22.0 661.0 278.0 639.0 6.805 21.635 1.870 

Graminaccia GRA 86.0 9.0 415.0 163.2 406.0 11.104 19.213 1.093 

La Calva LAC 28.4 20.0 624.0 174.0 604.0 15.403 8.782 1.890 

Moscio MOS 55.9 8.0 1330.0 449.1 1322.0 18.125 23.665 4.306 

Rustica RUS 76.9 23.0 957.0 347.5 934.0 9.473 25.176 2.689 

Treia TRE 476.5 17.0 711.0 259.8 694.0 7.903 38.098 1.302 
Table 1. Morphometry of the Middle Valley basins 

 

Figure 9.  Urban areas, railways and roads in the Middle Valley of the Tiber River
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2.2. Available data 

2.2.1. Topography 

The hydrologic and hydraulic modelling is performed starting from the following topographic 

data: 

 Surveyed cross sections of the main channel of the Tiber River. These surveys have 

been used for the channel geometry of the river in the hydraulic modelling. 

 LiDAR (1 meter resolution ) covering most of the floodplain area of the Tiber River. 

This DTM has been used for integrating the surveyed cross sections in the domain of 

the hydraulic modelling. 

 DEM 5 meters resolution from Regione Lazio, used for the hydraulic model domain 

where LiDAR Data were not available. 

 Tinitaly DEM 10 meter resolution from Istituto Nazionale di Geofisica e Vulcanologia 

(INGV), used for hydro-geomorphological analysis described in Section 3.3. 

 SRTM 1 arc (≈30 meters), 3 arc (≈90 meters) and 8.33 arc (≈250 meters) adopted for 

hydrologic modelling and the hydro-geomorphological analysis described in Section 

3.3. 

2.2.2. Rain and stage time series 

Three main flood events have been considered for this work and are listed in Table 2. The 

November 2012 Event is the most important one, because it affected the Middle Valley with 

grater severity, causing serious damages in Orte Scalo urban area (Figure 10).  

Event Period 
Hmax in Orte 

Scalo [m] 

November 2005 11-19th November 2005 6.0 

November 2010 18th November - 7th Dicember 2010 4.7 

November 2012 8-19th November 2012 9.5 
Table 2. List of flood events considered for the case study 

For each of these events the following time series data were available: 

  Rain time series from 94 rain gages with a temporal frequency ranging from 1 to 15 

minutes. 

  Stage time series from seven stage gages whose name and position are showed in Figure 

8. Orte Scalo and Nera Montoro have been used as input for the hydraulic model using 

the flow rating curves provided by Regione Umbria e Lazio. The other ones are used as 
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measurements for the hydraulic model calibration and as observation for the Data 

Assimilation framework. 

 

Figure 10. November 2012 flooding around Orte Scalo area. (Source: http://www.meteoweb.eu) 

2.2.3. Other data 

Beside the topographic and the time series data, the following data have also been used: 

 Flow/stage rating tables related to the principal bridges and weirs in the study area, 

provided by the Centro Funzionale regionale del Lazio. 

 Land use: Corine Land Cover at the 4th level for the whole national territory provided 

by Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) has been 

adopted as auxiliary layer for applying the infiltration method in the hydrologic model. 

 Soil type: the lithology and permeability maps of the Tiber River basin provided by 

Autorità di Bacino distrettuale dell’Appennino Centrale have been adopted for the same 

purpose of the Land use map. 

 Multispectral images: Some multispectral images from Lansat 5, 7 and 8 missions have 

been used for flood detection not only in the case study area for the DA application, but 

also in other countries for testing the water detection indexes gathered from literature 

(see Section 3.7). 

 Crowdsourced images: these images have been taken from the web for investigating 

their usefulness in a DA application (Figure 11). 
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Figure 11. Some VGI images related to the November 2012 events that caused damages to some urban area. Source of 

images: Youtube.
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3.Models and methods 

In this chapter, the models and methods adopted and developed for this work are illustrated. 

In Section 3.1, the main performance indexes adopted for assessing the performance of the 

hydrologic and hydraulic models and the spatial comparison of modelled and reference maps 

are introduced. Section 3.2 describes the GIS-based hydrologic model (WFIUH) that is 

developed and validated in order to be used as forcing input for the ungauged basins to the 

Quasi-2D hydraulic model. Section 3.3 illustrates the hydro-geomorphic floodplain delineation 

algorithm that has been developed to optimize the computational domain, excluding the 

hillslope areas, to improve the computational efficiency of the Data Assimilation method. 

Besides the main focus on the Data Assimilation framework, a deepening on the hydro-

geomorphic floodplain delineation algorithm for large scale flood prone area mapping has been 

carried out as a secondary independent aim of the proposed research. The forecasting model of 

the DA methodology is the hydraulic model, described in Section 3.4. This is a Quasi-2D model 

(FLO-2D), namely working as 1D model inside the channel and as 2D model along the 

floodplain, where the 2D effects of the flood expansion become more relevant compared to the 

ones in the channel. The DA model is the Ensemble Kalman Filter (EnKF), described in Section 

3.5, that implements a Bayesian update of the model state reproducing the uncertainties of the 

model and observation errors with series of Monte Carlo simulations. Finally, Section 3.7 is 

dedicated to the flood detection techniques, focusing the attention on the ones used for 

multispectral images that will be used as part of the procedure for gathering the water levels as 

observation for the Data Assimilation methodology. Moreover, some testing of the main water 

detection indexes have been done for few case studies were Landsat images and correspondent 

reference flood maps where available.
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3.1. Performance indexes 

3.1.1. Indexes for time series comparison 

In order to numerically assess the hydrological and hydraulic models’ performance each time 

step observations are available, the following measurement indexes have been taken in to 

account: 

 The Nash-Sutcliffe Efficiency (NSE) index (Nash and Sutcliffe, 1970): 

 𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑡

𝑠 − 𝑥𝑡
𝑜)2𝑇

𝑡=1

∑ (𝑥𝑡
𝑜 − 𝑥𝑜̅̅ ̅)2𝑇

𝑡=1

 [1] 

Where xt
s and xt

o are respectively the simulated and observed variable x at time 𝑡, xo̅̅ ̅ is the time 

averaged observed variable x, and 𝑇 is the number of pairs of simulated and observed variables. 

NSE = 1 corresponds to a perfect matching between simulated and observed variables, NSE =

0 indicates that the simulated streamflow is as accurate as the mean of observed water depth, 

while NSE < 0 occurs when the model simulation provides worse results than the observed 

mean because the residual variance (namely the numerator in equation [1] ), is larger than the 

data variance (i.e. the denominator of the same equation). 

 The Root Mean Square Error (RMSE): 

 
𝑅𝑀𝑆𝐸 = √

∑ (𝑥𝑡
𝑠 − 𝑥𝑡

𝑜)2𝑇
𝑡=1

𝑇
 [2] 

It calculates the sample standard deviation of the differences between predicted values and 

observed values.  

 The Pearson correlation ( R ) coefficient (Pearson, 1895): 

 𝑅 =
𝑐𝑜𝑣(𝑥𝑡

𝑠 , 𝑥𝑡
𝑜)

𝜎(𝑥𝑡
𝑠) ∙ 𝜎(𝑥𝑡

𝑜)
 [3] 

Where 𝑐ov(xt
s, xt

o) = ∑ (xt
s − xs̅)𝑇

𝑡=1 ∙ (xt
o − xo̅̅ ̅) is the covariance between the simulated and 

observed variable, and σ(xt
s) = √∑ (xt

s − xs̅)2/(𝑇 − 1)𝑇
𝑡=1  and σ(xt

o) =

√∑ (xt
o − xo̅̅ ̅)2/(𝑇 − 1)𝑇

𝑡=1  are the variances of the simulated and observed variable.  R =1 

indicates a perfect correlation between the compared variables, R =0 means no linear 

correlation and R =-1 indicates a perfect negative linear correlation. 
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 The bias index (Bias): 

 𝐵𝑖𝑎𝑠 =
∑ 𝑥𝑡

𝑠𝑇
𝑡=1

∑ 𝑥𝑡
𝑜𝑇

𝑡=1

 [4] 

It measures the tendency of the simulated variable to averagely underestimate (Bias <1) or 

overestimate (Bias >1) the correspondent observed variable. 

 The standard deviation of a simulation ensemble for a specific time step (STDens): 

 
𝑆𝑇𝐷𝑒𝑛𝑠 =

√∑ (𝑥𝑡
𝑠,𝑖 − 𝑥𝑡𝑠̅̅ ̅̅ )

2
𝑛
𝑖=1

𝑛
 

[5] 

It gives the measure of how much the ensemble is spread at time 𝑡.  

3.1.2. Spatial measures of fit 

The spatial comparison between modelled and reference maps will be numerically assessed 

using the following performance indexes: 

 The F-index (Horrit & Bates, 2001; Aronica et al., 2002; Hunter 2005; Shumann et al. 

2005; Pappenberger et al. 2007): 

 𝐹 =
𝐴𝑟𝑒𝑓 ∩ 𝐴𝑚𝑜𝑑

𝐴𝑟𝑒𝑓 ∪ 𝐴𝑚𝑜𝑑
 [6] 

Where 𝐴𝑟𝑒𝑓 ∩ 𝐴𝑚𝑜𝑑is the intersection between the reference map and the model area (true 

positive area) and 𝐴𝑟𝑒𝑓 ∪ 𝐴𝑚𝑜𝑑 is the union of the abovementioned areas (true positive, false 

positive and false negative area). The formula can be expressed as: 

 𝐹 =
𝐴

𝐴 + 𝐵 + 𝐶
 [7] 

where A, B, C represent respectively the overlapping, underpredicted or overpredicted 

areas. Values of F can range between 0 (poor fit between model results and reference map) 

and +1 (perfect fit between model results and reference map). 

 The True Positive rate: 

 𝑇𝑃 =
𝐴

𝐴 + 𝐶
 [8] 

 

It ranges between 0 and 1 and gives the rate of matching between the modelled map and the 

reference map, without considering the overprediction of the model.  
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 The sum of False Positive and False negative rate: 

 𝐹𝑃𝑁 =
𝐶

𝐴 + 𝐶
+

𝐵

𝐵 + 𝐷
 [9] 

It considers both overprediction and underprediction (range between 0 and 2) and has to be the 

lowest possible for optimizing the performance of the model.  

The spatial Bias: 

 𝐵𝑖𝑎𝑠 =
𝐴 + 𝐵

𝐴 + 𝐶
 [10] 

It has to be close to one to balance the underprediction and overprediction of the models. 
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3.2. Hydrologic model 

3.2.1. Methodology 

In this work, a parsimonious hydrological modelling is developed following Grimaldi et al. 

(2012) and implemented in python environment. This model is based on the automated DEM-

based geomorphic characterization of runoff dynamics in scarcely monitored river basins 

implementing the WFIUH method, namely the instantaneous unit hydrograph (IUH) concept, 

estimated using the width function (WF), for characterizing the travel time distribution from 

the river network flow velocity.  

The method is characterized by the following steps: 

 DEM pre-processing: 

This procedure is performed using the following standard terrain analysis procedure (Figure 

12): 

- Pit filling: removal of artificial or natural depressions in order to hydrologically condition 

the DEM for generating a connected stream network;  

- Generation of the flow direction grid that provides the direction of the overflow and runoff 

for each cell of the domain; 

- Generation of the flow accumulation grid, namely the number of cells draining each cell of 

the domain 

- Watershed delineation based on the flow direction grid; 

- Stream network extraction, based on the definition of the threshold contributing area 

beyond which a cell is considered a streamline rather than hillslope. In this case, the 

threshold area is chosen equal to 1 km2 iteratively comparing the streamline given by the 

terrain analysis with the one observable from satellite images. 

 

 Estimation of the IUH based on the WF (WFIUH)  

The WIUH is expressed through the following equation: 

 𝑊𝐹𝐼𝑈𝐻(𝑡) = 𝐹𝑇 =
𝐿𝑐(𝑥)

𝑣𝑐(𝑥)
+
𝐿ℎ(𝑥)

𝑣ℎ(𝑥)
 [11] 

where 𝐹𝑇 is the flow time, 𝐿𝑐 and 𝐿ℎ are respectively, the channel and hillslope flow paths for 

the generic cell x, and 𝑣𝑐 and 𝑣ℎ are channel and hillslope flow velocities. The flow paths (also 

known as flow length FL, 𝐿𝑐 and 𝐿ℎ) are measured for each location of the basin along the pre-
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defined topography-controlled flow direction grid. The hillslope runoff velocity component is 

defined as suggested by Grimaldi et al. (2010), applying NRCS (NRCS 1997) method. 

The NRCS method defines the hillslope flow velocity using the formula: 

 
𝑣ℎ = 𝑎√𝑆 [12] 

Where vh is the velocity in a single hillslope cell, S is the local slope cell and a is a coefficient 

related to the soil use. Literature values of the a coefficient for each land use are chosen 

according to McCuen (1989) and Haan et al (1994) and are reported in Table 3. The value of 

the slope S in Equation [12] is modified to reduce potential overestimation where S > 0.04 [-] 

implementing the follow formula (UDFCD 1992): 

 𝑆′ = 0.05247 + 0.06363 ∙ 𝑆 − 0.182 ∙ 𝑒−62.38∙𝑆 [13] 

 

Figure 12. Scheme of the DEM pre-processing, from pit filling to flow direction, flow accumulation and stream network grids 

The results of the cell-by-cell velocities have been furthermore restricted within the range 0.02–

2 m/s in order to avoid unrealistic values that could be due to particular combination of slope 

and soil use, as suggested by Grimaldi et al. (2010). 

The channel velocities are imposed constant and derived from the calibration of some small 

gaged basin in the Tiber River basin (see Section 3.2.3). 
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CLC 

Code 
Description 

a 

parameter 

(NRCS) 

CLC 

Code 
Description 

a 

parameter 

(NRCS) 

111 Continuous urban fabric 2.96 242 Complex cultivation patterns 2.59 

112 Discontinuous urban fabric 2.96 243 

Land principally occupied by 

agriculture, with significant 

areas of natural vegetation 

2.59 

121 Industrial or commercial units 2.96 311 Broad-leaved forest 0.73 

122 
Road and rail networks and 

associated land 
2.96 312 Coniferous forest 0.73 

123 Port areas 2.96 313 Mixed forest 0.73 

124 Airports 2.96 321 Natural grasslands 2.59 

131 Mineral extraction sites 2.96 322 Moors and heathland 2.59 

133 Construction sites 2.96 323 Sclerophyllous vegetation 2.59 

141 Green urban areas 2.96 324 Transitional woodland-shrub 2.59 

143 
Artificial, non-agricultural 

vegetated areas 
2.06 331 Beaches, dunes, sands 2.59 

211 Non-irrigated arable land 2.06 332 Bare rocks 2.96 

213 Paddies 2.06 333 Sparsely vegetated areas 2.59 

221 Vineyards 2.06 334 Burnt areas 2.96 

222 
Fruit trees and berry 

plantations 
2.06 411 Inland marshes 2.96 

223 Olive groves 2.06 511 Water courses 2.96 

231 Pastures 2.59 512 Water bodies 2.96 

241 
Annual crops associated with 

permanent crops 
2.59 

      

Table 3 Values of the "a" parameter varying with the land use (according to the Corine Land Cover calssification) 

for the evaluation of te hillsolpe velocities (NRCS method) 

An example of the Width Function derivation for a small sub-basin of the Tiber river is 

illustrated in Figure 13. The flow time grid, reclassified by time intervals, defines, each time 

step, the portion of contributing area to the outlet section. 

 Derivation of the distribution of the cell-by-cell rainfall heights 

For this purpose, the Thiessen (Thiessen, 1911) methodology has been applied. The area of the 

basin is divided in many parts as the number of rain gages related to the basin. As assumption, 

the influence of every station reaches halfway to the next stations in every direction the analysed 

gage is connected to the other gages. Perpendicular bisectors of the lines that link each section 

define the boundaries of the Thiessen polygon. Inside the area belonging to each station, the 

rain value is assumed the same registered by the mentioned gage (Figure 14). To each gage, a 

weight is assigned considering the extension of its belonging area compared to the other ones 

(Chesworth et al., 1998).  
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Figure 13. Scheme of the Width Function derivation for a small basin 

 

Figure 14. Example of Thiessen polygons. Source: http://resources.esri.com 

http://resources.esri.com/
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This simplified method for distributing the total rain in the basin has been preferred to more 

sophisticated methods such as Inverse Distance Weighting (IDW) or Kriging because of its 

calculation speed, given the fact that the hydrologic model is supposed to be applied in real 

time in the Data Assimilation framework.  

 

 Calculation of the net rainfall: 

The SCS-CN method developed by the USDA Natural Resources Conservation Service 

(Cronshey, 1986) have been adopted. The infiltration rate of each cell is proportional to the 

runoff curve number, based on the hydrologic soil group, land use, soil type and antecedent soil 

moisture conditions.  

Specifically, the runoff equation is given by the following expression: 

 𝑄 = {

0 𝑓𝑜𝑟  𝑃 ≤ 𝐼𝑎
(𝑃 − 𝐼𝑎)

2

𝑃 − 𝐼𝑎 + 𝑆
𝑓𝑜𝑟  𝑃 > 𝐼𝑎

 [14] 

 

where Q is the net rain [mm], P is the total rain [mm]; S is the potential maximum soil moisture 

retention after runoff begins [mm]; Ia is the initial abstraction [mm], namely the amount of 

water before runoff, such as infiltration, or rainfall interception by vegetation. Its value is 

commonly imposed equal to 0.2∙S, but for urbanized areas, it can be reduced also at 0.05∙S. The 

S value in mm is calculated as:

 𝑆 = 254 (
100

𝐶𝑁
− 1) [15] 

 

The curve number CN has a range from 0 to 100; lower numbers indicate low runoff potential 

while larger numbers are for increasing runoff potential. Its values are dependent on the land 

use, the soil type and the Antecedent soil Moisture Condition (AMC). The method considers 

three AMC (AMC I, AMC II. AMC III) conditions, from dry soil to saturated soil. Figure 15 

shows the relation between the CN values and the ratio between total and net rain for Ia=0.2∙S. 

The land use distribution in the computational domain has been derived from the Corine Land 

Cover project (2012) and the soil type distribution, from which deriving the hydrologic soil 

type has been provided by the Tiber River Basin Authority (Figure 16). 
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Figure 15. Example of CN curves using Ia=0.2 S. Source: Cronshey, 1986. 

 

Figure 16. Map of the land uses (Codes of the Corine Land Cover 2012 at 2nd level) (left) and the Hydrologic Soil Groups 

(right) in the Tiber River Basin 
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 Design hydrograph: 

In the hypothesis of a linear system (Chow et al., 1988), the flow hydrograph is calculated using 

the convolution integral, given by: 

 𝑄(𝑡) = ∫ 𝐼(𝑡) ∙ 𝑊𝐹𝐼𝑈𝐻(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 [16] 

Where 𝑄(𝑡) is the outflow function, namely the response function of the input, 𝐼(𝑡) the 

precipitation intensity, 𝑊𝐹𝐼𝑈𝐻(𝑡 − 𝜏) is the unit response function, (𝑡 − 𝜏) is the time lag 

since the input 𝐼(𝑡) was applied, 𝑑𝜏 is the infinitesimal time interval.  

 

Figure 17.Scheme of the of the convolution method for a continuous (left) and discrete (right) function in case of a generic 

unit response𝑢(𝑡 − 𝜏). Source: Chow et al., 1988 

Equation [16] is the fundamental equation for solution of linear systems (Chow et al., 1988) 

and can be discretised for being adapted to practical applications (Figure 17) with discrete 

hyetographs as follows: 
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 𝑄𝑛 = ∑ 𝑃𝑚 ∙ 𝑊𝐹𝐼𝑈𝐻𝑛−𝑚+1

𝑛

𝑚=1

 [17] 

Where 𝑄𝑛 is flow at the n-time step, 𝑃𝑚 is the input rain at the m-time step and 𝑊𝐹𝐼𝑈𝐻𝑛−𝑚+1 

is the unit response of the basin (in this case calculated with the Width Function) at the time 

step m-n+1. 

3.2.2. Implementation 

The hydrologic model described in the previous section has been implemented in Python 

environment. The model can be launched each time step together with the whole Data 

Assimilation Framework or separately before the DA application. For its implementation, the 

following measures have been taken: 

 Each time step, the number of rain gages without no data are checked for each basin 

and, if necessary, the Thiessen polygons are re-drawn to avoid that a portion of the basin 

with no-data could underestimate the value of the total rain; 

 The SCS-Method is implemented in GIS environment not as a result of raster calculation 

between different grid layers (S, Ia, P), but using the “Tabulate Area” function between 

the attribute table of the Thiessen polygon (that includes the column of the total rain) 

and the attribute table of the CN shapefile (that includes the column of S and Ia values). 

The “Tabulate Area” function provides the number of cells of each Thiessen polygon 

that belongs to a specific CN value. These numbers of cells, normalized by the total 

number of cells of the basin, are the weights for the application of the SCS-Method that 

is performed for each value of CN in the analysed basin. The weights calculated with 

the Tabulate Area are the same for each time step, with the exception of the cases when 

there are no data and Thiessen polygons have to be re-drawn. This methodology allowed 

to reduce the computational time of about 90% respect to the raster calculation 

methodology. 

 The output is given for all the input basins simultaneously in order to simulate a real 

time scenario. 

3.2.3. Calibration and validation 

As anticipated in Section 3.2.1, a calibration of the hydrologic model has been performed in 

order to define an average value of the channel velocity, finding the minimum value of NSE 

between the observed and the modelled hydrograph. This approach differs from the one 
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proposed by Grimaldi et al. (2012), where the channel velocities were imposed considering the 

value of the concentration time calculated with other simplified formulas. 

None of the small basins that are part of the computational domain of the case study are gauged. 

For this reason, four small gaged basins (Figure 18) in the northern part of the Tiber river basin 

have been considered for calibrating and validating the hydrologic model, considering their 

close geographic position and their similar morphology and land use compared to the case study 

area. Specifically, the Naja river, namely the closest basin to the computational domain, has 

been chosen for the calibration. The other three basins have been considered for the validation. 

A range of 0.5-2.5 m/s for the channel velocities has been considered for calibrating the 

hydrologic model. Figure 19 shows a comparison between the simulated flows with different 

channel velocities and the observed ones for the November 2012 event. Figure 20 shows that 

best performance parameters values are obtained with a channel velocity equal to 2 m/s. Figure 

21 and Figure 22 show the results obtained from the validation. The values of NSE stay between 

0.843 and 0.973, and the R values between 0.954 and 0.979. 

 

Figure 18. Map of the basins considered for calibrating and validating the hydrologic model 
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Figure 19. Comparison among the observed flow and the simulated flows for the Naja river basin (calibration). Event: 

November 2012 

 

Figure 20. Performance indexes for the Naja river basin varying the channel velocities. Event: November 2012 
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Figure 21. Comparison between the observed and the simulated flows using the calibrated channel velocities for Niccone, 

Puglia and Sovara basins (validation). Event: November 2012 

 

Figure 22. Values of the performance indexes for Niccone, Puglia and Naja river basins using the calibrated channel 

velocities. Event: November 2012 
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3.2.4. Application 

The hydrologic model has been applied to the ungauged basins of the case study for different 

extreme events. In the following figures the resulting net hyetographs and hydrographs are 

showed for each basin. These hydrographs are used as a stochastic input for the hydraulic model 

creating an ensemble of inputs through a perturbation of the input hydrograph as explained in 

Section 4.2.  

 

Figure 23. Results of the hydrologic model for the ungauged basins of the case study. Event: November 2005. 
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Figure 24. Results of the hydrologic model for the ungauged basins of the case study. Event: November 2010 
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Figure 25. Results of the hydrologic model for the ungauged basins of the case study. Event: November 2012.  
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3.3. Geomorphic model for delineating the computational domain 

The Quasi-2D hydraulic model requires a considerable computational effort, compared to the 

traditional 1-D hydraulic models. For this reason, a careful selection of computational domain 

is crucial for the application of a Data Assimilation method, in order to consider all the flood 

prone areas of the domain excluding the ones that could burden the calculation without 

contributing to the flood propagation. 

Usually, the delineation of the computational domain is carried out considering the experience 

of the analyst, observing the extension of historical floods or synthetic flooded areas produced 

for territorial plans studies. However, the aforementioned flooded areas can be limited by 

levees, beyond them some areas can be potentially flooded in case of levee breaches, 

overtopping or culvert malfunctioning.  

Considering also the hypothesis that a domain might be not subject of previous studies, or if 

existing, could not be available to the modeller, an a-priori methodology for delineating the 

computational domain has been proposed starting from a DEM based flood prone area 

algorithm. The analysis has been deepened also for investigating the application of this 

modelling for large scale flood-prone area mapping as further aim of this work, besides the DA 

application. 

3.3.1. Introduction on the geomorphic floodplain delineation models 

The identification of flood-prone areas has become a very topical issue in the last decades, since 

population in developing counties is dramatically growing (Di Baldassarre et al., 2010), 

enhancing the human pressure in riverine areas, thus increasing the flood risk and the 

consequent flood-related damages and fatalities (Emergency Events Database EM-DAT, 2013).  

 

Figure 26. Sketch of a floodplain behaviour in normal and flood condition. Source: Public Works Department 

(https://www.villageofglencoe.org/government/departments/public_works/flood_plains.php) 

https://www.villageofglencoe.org/government/departments/public_works/flood_plains.php
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Global flood hazard and mapping models are now technically feasible, also in remote ungauged 

areas, thanks to the availability of earth observation dataset and computationally efficient 

computer models (Alfieri et al. 2014; Sampson et al., 2015; Alfieri et al. 2016; Dottori et al. 

2016). Although the efficiency and performance of global flood hazard models are increasing 

with the continuous development and availability of always more detailed and accurate 

topographic, hydrologic and hydraulic data and models, there are still major challenges and 

issues to solve, such as uncertainty of boundary conditions for inundation models, limitations 

in knowledge of river profile and roughness, proper consideration of the presence of 

anthropogenic features in hydraulic systems, such as dykes and levees (Ward et al., 2015). 

Alongside global flood hazard models, there is another category of models for floodplain 

mapping that aim to identify fluvial buffers using the topography as main input information. 

Those geomorphic approaches enforce the theoretical principle that riparian areas are well 

distinguished flat areas along river corridors. A brief look at any aerial image of a river corridor 

shows the evident break line that separates hillslopes from the floodplain, a boundary condition 

that evidences the diverse morphology and colouring of fluvial ecotones as respect to 

surrounding slopes. Floodplain unique morphology, biogeochemical and ecologic features and 

processes represent, in fact, the effect of the water-driven erosion and deposition processes and 

of the different frequency of saturation that govern the riparian life as respect to surrounding 

non-aquatic habitats (Figure 26). The floodplain geomorphic footprint is evident, even in 

significantly dense urban ecosystems, where anthropic features (e.g. buildings, streets, levees, 

weirs and dams) have greatly altered the floodplain morphology and connectivity (Tockner and 

Stanford, 2002). 

Geomorphic approaches are also increasingly developed and applied at large scale and their use 

and performance is consistently increasing with the growing availability and accuracy of Digital 

Terrain Models (DTMs). Several methods have been presented and tested proving DTM-based 

geomorphic delineation algorithms to be effective tools for floodplain mapping (Williams et 

al., 2000; Noman et al., 2001; Gallant and Dowling, 2003; McGlynn & Seibert, 2003; Mehlhorn 

et al., 2005; Dodov and Foufoula- Georgiou, 2006; Nardi et al., 2006; Manfreda et al., 2011; 

Nobre et al., 2011; Degiorgis et al., 2012; Jalayer et al., 2014; Manfreda et al., 2015; 

Jafarzadegan & Merwade, 2017). 

The hydro-geomorphic floodplain approach proposed by Nardi et al. 2006 based on the 

application of a geomorphic law and other approaches based on the same principle, as the 
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Geomorphic Flood Index GFI (Samela et al., 2017), has proved to be very effective for 

delineating the floodplain areas comparing their extension and the ones obtained with other 

simplified approaches with the Standard hazard flood maps (FEMA maps) in USA (Samela et 

al., 2017). 

However, several issues and limitations affect geomorphic models that must be properly 

accounted. The accuracy and resolution of input DTMs, the impact of terrain analysis 

hydrologic algorithms (Jenson & Domingue, 1988; Tarboton & Ames, 2001) with specific 

regard to the pit filling and flat areas issues (e.g. Jenson & Domingue, 1988; Garbrecht & Martz, 

1997a; Garbrecht & Martz, 1997b; Jana et al., 2007, Nardi et al., 2008) and the geomorphic 

floodplain model parameter calibration and validation characterize the main challenges for 

large scale geomorphic floodplain mapping. The impacts of the DEM resolution and stream 

hortonian orders (thus the ranges of contributing areas) on the performance of these floodplain 

delineation methods is still not exhaustively investigated, and need to be deepened to provide 

reasonable parametrizations of the scaling laws related to contributing areas for a large scale 

application of these algorithms, especially in ungauged basins lacking of information on flood 

maps. 

3.3.2. The Hydro-geomorphic Floodplain Delineation Method 

In this work, the hydro-geomorphic floodplain model by Nardi et al., (2006) has been revised 

and applied to delineate the computational domain of the hydraulic model for the DA 

application. Further testing, that can be considered as an independent branch of this research 

not related to the DA framework, have been performed to evaluate the optimal set of parameters 

using different DEMs and considering the role of the stream orders that affect the optimal 

parametrization of the model. As reference traces for evaluating the performance of the 

floodplain delineation method, the standard flood hazard maps obtained applying hydrologic 

and hydraulic modelling starting from synthetic rain events, have been considered numerically 

comparing their extension with the ones provided by the adopted model. However, the hydro-

geomorphic floodplain method has a different purpose from that of the standard flood hazard 

maps, because it is aimed to delineate all the areas that can be considered as floodplain because 

of their morphology that has been influenced by floods even before the Anthropogenic era.  

Geomorphic scaling laws are applied considering the existence of hydraulic scaling relations 

describing the behaviour of the floodplain morphologic parameters across different hydrologic 

scales (Bhowmik, 1984; Nardi et al., 2006). Power laws of valley bottom width w and mean 
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depth d with varying maximum peak flow (i.e. 𝑤 = 𝑎1𝑄
𝑏1, 𝑑 = 𝑎2𝑄

𝑏2 where 𝑎1, 𝑏1, 𝑎2 and 𝑏2 

are numerical constant of the power laws), as observed by Leopold and Maddock (1953), are 

implemented with the contributing area as a scaling parameter (Dodov and Foufoula‐Georgiou, 

2004). Floodplain flow depths are estimating as follows:  

 𝐹𝐻 = 𝑎𝐴𝑏 [18] 

where FH is the floodplain water depth [m], A is the contributing area in a cross section of a 

river [m2], and a [m1-2b] and b [dimensionless] are the power law coefficients. The power law 

parameters a and b depend on the hydrology, geomorphology and climatic of the river basin. 

Calibration of the power law parameters was explored for river channels (Leopold and 

Maddock, 1953; Dodov and Foufoula‐Georgiou, 2004). Equation [18] can be applied in GIS 

environment using a DEM-based approach, giving the distribution of the contributing areas for 

each cell of the domain through the terrain analysis algorithms: pit filling, flow direction, flow 

accumulation (Jenson and Domingue, 1988). The selected algorithm by Nardi et al. (2006) was 

originally based on a procedure for estimating the power law parameters a and b that involved: 

the definition of a maximum discharge at the outlet associated to a predefined frequency (i.e. 

return time); the scaling of the peak discharge along the river network for associating a peak 

discharge to every channel node; the estimation of the maximum floodplain flow depth d per 

every channel node by solving the uniform flow Chezy’s equation (floodplain cross section 

geometry extracted from DTM). The presented approach overrides the cross sections analysis 

and the need of an input maximum outlet peak discharge, investigating the implementation of 

Equation [18] and a methodology for evaluating the performance of the floodplain model as 

respect to standard flood hazard maps while calibrating a and b parameters with varying DTM 

resolution and scaling conditions. 

The river network is identified by filtering cells with a contributing area greater than a 

predefined threshold (see also Tarboton et al., 1991; Tarboton and Ames, 2001). The threshold 

area for stream network extraction is dependent on DEM resolution, but also on geomorphic, 

geologic and climatic factors (Tarboton et al., 1991); however, in this work, the choice of the 

threshold area is done considering a minimum number of cells for delineating the floodplain 

width extension. 

The hydraulic scaling relation of Equation [18] has to be customized for the DEM-based 

approach, because the power law coefficients a and b are also dependent on the resolution of 

the adopted DEM. 
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3.3.3. Inspection on the threshold area and the DEM resolution 

The threshold area of the stream network is considered strongly dependent on the DEM 

resolution (McMaster, 2002). Higher DTM resolution determine a lower contributing area for 

which the topographic information is consistent with floodplain width (Leopold & Maddock, 

1953, Nardi et al., 2006). This means that the stream network adopted for the floodplain model 

can represent the portion of the river network in which the floodplain width can be delineated 

with a minimum number of cells.  

The constraint is linked to a minimum threshold of number of DTM grid cells that are able to 

depict the floodplain morphology. Analysing the different available DTMs, a minimum 

percentage (70%) of occurrences with floodplain width larger than the size of 2 cells was 

considered. The floodplain extension is also dependent on the a and b parametrization that has 

been performed before the above mentioned procedure using different threshold areas. 

The floodplain model is able to delineate a floodplain extension for natural landscapes that is 

generally different from the one of the flood maps generated by hydraulic models that are 

influenced by anthropic features, i.e. levees, bridges, weirs, dams, and channel reshaping in 

urban areas. Nevertheless, standard flood hazard maps have been used as reference to get a 

range of the power law values. Different combinations of a and b parameters have been chosen 

(see Table 4) starting from literature values (Nardi et al. 2006; Nardi et al., 2013) considering 

a wide interval. 

 

Power law parameter Range of values  

a [m1-2b] 0.0002-1 

b [-] 0.20-0.60 
Table 4. Values range of the power law parameters a and b for the consistency analysis 

To numerically evaluate the differences between the delineated hydro-geomorphic floodplain 

and the Italian standard flood boundaries PAI (Piano di Assetto Idrogeologico) derived using 

hydraulic modelling (200-year flood hazard maps), the objective measure-to-fit function (F) 

illustrated by Equation [6] was selected and implemented (F=A/ (A+B+C)). The terms of this 

equation follow the contingency scheme represented in Table 5 

The D term in Table 5, representing all the hillslopes of the basin according to both the PAI 

maps and the floodplain polygon is not included in the F-index, but it has been taken in to 
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account adopting the sum of False Positive and False negative rate (Equation [9]) in the 

benchmarking analysis with other geomorphic methods (see Section 3.3.4.). 

  Within the PAI map Outside the PAI map 

Within the Floodplain Polygon A B 

Outside the Floodplain Polygon C  D 

Table 5. Contingency table showing F index variables. 

It is worth to specify that the optimum values of the F-index, don’t provide necessarily the best 

parameters for the power law, since that the anthropic features could lead to an underestimation 

or overestimation of the parameters. The comparative analysis has been performed varying the 

DEM resolution and considering separately the hortonian stream orders. 

3.3.4. Benchmarking analysis with other geomorphic methods 

The hydro-geomorphic floodplain algorithm has been compared with other floodplain 

delineation methodologies using a similar approach of Samela et al., 2017. Some geomorphic 

classifiers have been taken in to account optimizing their threshold indexes maximizing Eq. [6]. 

Different performance ratios (Equations [7]-[10]) have been considered as supplement of the 

information provided by Eq. [6]. 

The following simplified methods have been considered for a benchmarking analysis with the 

floodplain method: 

 Constant water depth assignment to the stream network H[m]: this method, considering 

a similar approach of Nobre et al. (2011), calculates the floodplain extension 

considering a constant value of the water depth to each cell of the stream network and 

thus flagging as floodplain all the cells hydrologically connected to it with an elevation 

lower than the sum of the stream cell elevation and the assigned water depth; 

 Constant flow hydrologic distance to the stream network D[m]. This method considers 

constant value of the hydrologic distance of the basin’s cells to the stream network; 

 Local Slope S[%]: A threshold value of the local slope of the basin is considered to 

distinguish the floodplain part to the rest of the basin. 

 Topographic wetness index = ln (𝐴𝑐 tan(𝑆)⁄ ) , where Ac is the local contributing area  

per unit contour length and S is the local slope. 
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3.3.5. Results 

Figure 27 represents the percentages of occurrences where the floodplain width is larger than 2 

cells with the contributing area for each DEM. 

 

Figure 27. Plots of the percentages of occurrences where the floodplain width is larger than 2 cells for each DEM varying 

the threshold area 

For 10 m and 30 m resolution (red and blue curves), the 100% of occurrences where the 

floodplain width is larger than 2 cells is reached with a relatively steep curve, so the 70% of 

occurrences is reached with a threshold area respectively of 6 and 20 km2. For SRTM 3 arc and 

8.3 arc resolution DEMs, the relative curves are less steep and the 70% of occurrences are 

obtained with a threshold area respectively of 200 and 3000 km2. A threshold area larger than 

10000 km2 has not been considered because of the limited dimension of the study area (17500 

km2), even if this methodology can be generalized to basins of different size and climate. 

A numerical measure to fit analysis of the floodplain polygon compared to the PAI floodmaps 

have been evaluated using Eq. [6] for different DEMs, as illustrated with the contour plots in 

Figure 28. In the semi-log plots, the optimal combination of the power law values a and b have 

a strong linear correlation regardless of the DTM resolution (greater than 0.97, see Table 6). 

Results demonstrate that the calibration of the model can be restricted to one parameter taking 

advantage of their linear interdependency. It is also shown that lower values of the a parameter 
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follow higher values of b value for reaching optimal performance and increasing the DTM 

resolution the optimal b value increases. 

DEM slope s 
intercept 

i 

correlation 

coefficient 

standard 

error 

TINITALY 10m -0.0413 0.1457 -0.9781 0.0023 

SRTM 1arc -0.0375 0.1467 -0.9717 0.0024 

SRTM 3arc -0.0365 0.1489 -0.9728 0.0023 

SRTM 8.3 arc -0.0343 0.1519 -0.9731 0.0022 

Table 6. Results of linear correlation between the optimal log(a) and b values for each DEM [b(a)=i+s*log(a)]  

DEMs Optimum b F-index 

TINITALY 10m 0.32 0.376 

SRTM 1arc 0.30 0.413 

SRTM 3arc 0.30 0.436 

SRTM 8.3 arc 0.30 0.288 
Table 7. Optimal values of the b parameter and the F-index for the selected DEMs in correspondence of an a parameter 

value equal to 0.01  

This is expected considering the increasing water depths associated to same floodplain flow 

levels, an effect due to the higher accuracy of high resolution DTMs in catching the channel 

morphology (Figure 29). The differences among optimal combinations of the power law 

parameters varying the DEMs becomes less relevant for higher a values, that become more 

important than the b parameter, reducing their optimal values from 0.6 to 0.2 in the adopted 

range.  

It is also evident that equivalent optimal values of the F-index can be obtained for a wide range 

of the a parameter, choosing the appropriate value of the b parameter. This behaviour confirmed 

that the exponent b of the power law can be considered as the only parameter governing the 

law, fixing the a parameter as constant. In Table 7 the maximum F-index values for each DEM 

are presented considering an a value equal to 0.01 [m1-2b]. To be noted that the F-index analysis 

is affected by the heterogeneous spatial availability of PAI flood maps that don’t cover the 

entire catchment, especially for upstream areas. This doesn’t affect the validity of this 

comparative analysis that aims to provide a comparative impact of different DTMs and not the 

general validity of the hydrogeomorphic algorithm as surrogate of standard flood hazard 

models. 
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Figure 28. Contour plots of the F index for different DEMs and comparison among the optimal combinations  

 

A further performance analysis is developed for evaluating the behaviour of the floodplain 

algorithm for different geomorphic conditions of the watershed associated to the hortonian 

orders of the drainage network. Figure 30 presents the floodplain performance using the SRTM 

1arc DTM and a contributing area threshold of 10 km2 (consistently with the floodplain 

initiation analysis of Figure 27).  
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Figure 29. Example of representing a floodplain cross section using DEMs with different resolutions 

It is clear that in order to have the optimal combination of the power law parameters, the higher 

is the stream order, the lower are the optimal values of a and b parameters. This is due 

principally to the fact that lower stream orders are the ones closer to the hillslopes were terrain 

are steeper, altitudes are higher, and the maximum extreme rainfall are higher. These factors 

generate higher unit peak flows than the ones in the downstream part of the basin, and this 

affects the optimal power law parameters of the floodplain polygon. 

These results suggested that the power law relation with constant parameters’ values can be 

improved considering different parameters for different ranges of contributing areas. For this 

reason, the floodplain algorithm has been improved imposing a changing of the power law 

values for each stream order. With this modification of the algorithm, the F index improved its 

values averagely of 6%. 

Figure 31 shows the map of the floodplain polygon for the whole Tiber river basin generated 

from the SRTM 1 arc adopting an optimal combination of the Leopold power law. An 
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interesting aspect of the floodplain mapping is that for low contributing areas, the floodplain 

covers more areas than the standard flood hazard maps.  

 

Figure 30. Contour plots of the F index for SRTM 1arc DEM for different stream orders and comparison among the optimal 

combinations  

To perform the benchmarking analysis mentioned in section 3.3.4, the SRTM 1arc DEM has 

been taken in to account, considering that currently it is the higher resolution DEM available 

for 80% of the planet. Table 8 and Figure 32 show the better performance of the hydro-

geomorphic floodplain method compared to the other ones mentioned in section 3.3.4. 
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Figure 31. Map of the floodplain with the optimum values of the scaling law parameters for the SRTM 1arc DEM 

 

Method Threshold parameter 
Threshold 

value 
F-index TP FPN Bias 

FH Exponent of the Leopold law b 0.30 0.408 0.76 0.283 1.621 

H Stream water depth [m] 0.50 0.065 0.998 0.715 15.471 

D Stream distance [m] 424.00 0.159 0.399 0.676 1.914 

S Slope value [%] 1.20 0.267 0.639 0.429 2.03 

TWI Index value [-] 8.00 0.076 0.322 0.839 3.586 
Table 8. Summary of the performance indexes for the optimum threshold values of each floodplain delineation method 

Specifically, the F-Index values are 60-80% higher than the other geomorphic indexes except 

for the slope index, whose F value is closer to the one obtained with the Floodplain method 

(30% lower). However, Samela et al. 2017 demonstrates that the slope index can have a much 

larger variability, in order to reach an optimum value and can be considered less reliable for 

delineating floodplains in areas without reference standard maps. The other performance 

indexes show as well a good behaviour of the floodplain algorithm compared to the other 

delineation methods. 
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Figure 32 - Behaviour of some performance indexes (True positives rate TP, True negatives rate TN, sum of False Positives 

and False Negatives FN+FP, F-index) with the positioning of the optimum thresholds for each floodplain delineation method  

The results obtained by the application of the optimal parametrization of the SRTM 1 arc DEM 

to the Tiber river have been used for delimiting the computational domain of the hydraulic 

model, thus excluding all the hillslope areas that cannot be interested by fluvial floods. 

3.3.6. Conclusions and future insights 

In this section, a testing of a DEM-based floodplain delineation algorithm has been performed 

considering the impact of the DEM resolution and the stream orders. Reference natural 

floodplain maps were not available, but only flood maps, whose extension is strongly 

influenced by anthropic features, i.e. levees, bridges, weirs and dams that change the natural 

flood profiles and thus their extension. 

Nevertheless, the standard flood hazard maps have been used as reference for finding a range 

of power law parameters that can be considered as reliable for a zone, characterized by a specific 
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climate and geomorphic peculiarities. Four different DEMs with a cell resolution ranging 

between 10 and 250 meters have been adopted for this analysis. The choice of the threshold 

area for the stream network extraction on which delineating the floodplain algorithm, has been 

analysed evaluating the percentages of occurrence the floodplain width was larger than two 

cells, finding a relation between DEM resolution and reference values of threshold areas for 

stream network extraction. The optimal ranges of the power law parameters a and b for each 

DEM have been numerically evaluated with a measure-to-fit function, Eq.[6], using as 

reference maps the PAI standard flood hazard maps. The results showed, mostly for lower 

values of the a parameter, a dependency between the optimal power law parameters and the 

DEM resolution, denoting that the higher is the resolution, the higher are the values of the 

parameters needed to reach an optimal consistency of the floodplain polygon, compared to the 

PAI maps. 

A dependence of the floodplain delineation performance on the stream order numbers has also 

been demonstrated, showing that the higher is the stream order, the lower are the values of the 

power law parameters in order to reach the optimal numerical fit with the PAI maps. This 

explains that the use of constant power law parameters is valid only for certain ranges of 

contributing areas (thus stream orders).  

This analysis is proposed as potential guide for identify reasonable ranges of the parameter 

values at basin scale for the power law that is the core of the DEM-based floodplain delineation 

algorithm taking in to account the DEM resolution and the stream order influence. The 

methodology can be exploited for a floodplain zoning at larger scale.  

For example, Figure 33 shows the parametrization of the b exponent adopted for the entire 

Italian territory using the SRTM 3arc DEM and imposing an “a” value equal to 0.01[m1-2b]. 

The comparison has been performed for 1352 sub-basins where PAI maps were available 

(Figure 34). For the adopted value of the a parameter, the parametrization of the b exponent 

can be considered acceptable also for different DEM resolutions, as illustrated by Figure 28.  

The variability of the optimal value of the b exponent has a relative low range, mostly for the 

highest stream orders. This low range of variability suggests that an application of a larger scale 

domain even in different climatic zones could provide a reasonable zoning of the flood prone 

areas. 
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Figure 33. Boxplot of the optimal “b” parameter of  the power law equation for the entire Italian territory. The b values have 

been varied between 0.25 and 0.45, while the a value has been fixed to 0.01[m1-2b]. The SRTM 3arc DEM has been adopted, 

imposing a threshold area of 100 km2 

 

Figure 34. Map of the basins for which a standard flood hazard map were available. 

Figure 35 shows a global floodplain delineation map applied to the SRTM 8.3 arc DEM, with 

a threshold area of 3000 km2 and constant power law parameters (a=0.01 [m1-2b], b=0.3). The 

value of the b parameter has been chosen considering the average optimal values obtained from 

the 3rd order of the Italian stream network, where contributing areas started to be greater than 

the threshold area imposed for the analysis (3000 km2). 
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This first application needs to be validated for different climatic zones using local standard 

flood hazard maps or even lithological maps that provides the distribution of alluvial deposits. 

 

Figure 35. Flood prone areas mapping (green) applying the floodplain delineation algorithm to the SRTM 8.3 arc DEM for 

the whole available domain (80% of the Earth surface) using constant power law parameters (a=0.01 [m1-2b], b=0.3) and a 

threshold area equal to 3000 km2. Details are showed for the European continent, with the urbanized areas (red). 
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3.4. Bidimensional hydraulic model 

3.4.1. Model theory and implementation 

An existing hydraulic model, FLO-2D Pro (O'brien et al., 1993), has been adopted. This model 

has been considered very suitable for the research purposes for several reasons. Besides the 

ones related to its efficiency in representing the physical processes that will be illustrated below, 

another strong advantage of this model is the easy manipulation of the inputs files, the outputs 

files and the launching of the hydraulic engine, that makes it very suitable for being integrated 

in a superstructure such as a Data Assimilation framework that needs an automation in 

modifying the inputs and launching simultaneous simulations. 

FLO-2D Pro is a physical process model that is able to route rainfall-runoff and flood 

hydrographs over unconfined flow surfaces (2D equations) or channels (1D equation) using the 

dynamic wave approximation to the momentum equation.  

 

Figure 36. Physical Processes Simulated by FLO-2D. Source: FLO-2D Reference Manual 

It has many components that simulate for example street flow, buildings, obstructions, sediment 

transport, mudflow, spatially variable rainfall and infiltration, floodways, storm drains, levees. 
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Simulated flow depths and velocities between the grid elements represent average hydraulic 

flow conditions computed for time steps that usually are on the order of seconds. 

FLO-2D is a volume conservation model, whose floodwave progression over the flow domain 

is controlled by topography and resistance to flow. Specifically, flood routing in one (in the 

case of the channel element) and two (for overland flow) dimensions is accomplished through 

a numerical integration of the equation of motion and conservation of fluid volume for either a 

water flood or a hyperconcentrated sediment flow. FLO-2D numerically distributes the volume 

in finite fluid blocks to mimic the floodwave progression and timing over the discretized 

surface. Conceptually FLO-2D is a finite volume model that moves discrete parcels of fluid 

around on the grid system in eight directions with realistic flow velocities. 

The governing equations of the model are the continuity equation: 

 
𝜕ℎ

𝜕𝑡
+
𝜕ℎ𝑉

𝜕𝑥
= 𝑖 [19] 

 

and the momentum equation: 

 𝑆𝑓 = 𝑆𝑜 −
𝜕ℎ

𝜕𝑥
−
𝑉

𝑔
∙
𝜕𝑉

𝜕𝑥
−
1

𝑔
∙
𝜕𝑉

𝜕𝑡
 [20] 

 

where ℎ is the flow depth, 𝑉 is the depth-averaged velocity in one of the eight flow directions, 

spatially represented by the x variable, 𝑡 is the time variable, 𝑖 is the excess rainfall intensity (if 

the rainfall component is considered), 𝑆𝑓 is the friction slope, based on Manning equation, 𝑆𝑜 

is the bed slope, 𝑔 is the gravity acceleration. The second term to the right of Equation [20] is 

the pressure gradient (spatial variation of the flow depth). The third one is the convective term 

and the fourth is the local acceleration term. These equations represent the one dimensional 

depth averaged channel flow. For the floodplain, where a multi-directional flow approach is 

adopted, the equations of motion are applied computing the average flow velocity across a grid 

element boundary one direction at time. There are eight potential flow directions, the four 

compass directions (north, east, south and west) and the four diagonal directions (northeast, 

southeast, southwest and northwest). Each velocity computation is one-dimensional and is 

solved independently of the other seven directions. Since the flow is being shared with all of a 

given grid element neighbours, resolution of the velocity vectors is not required. The stability 
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of this explicit numerical scheme is based on strict criteria to control the magnitude of the 

variable computational time step. 

The differential form of the continuity and momentum equations in the FLO-2D model is solved 

with a central, finite difference numerical scheme. This explicit algorithm solves the momentum 

equation for the flow velocity across the grid element boundary one element at a time. The 

solution to the differential form of the continuity and momentum equations results from a 

discrete representation of the equation when applied at a single point. Explicit schemes are 

simple to formulate but usually are limited to small timesteps by strict numerical stability 

criteria. Finite difference schemes can require lengthy computer runs to simulate steep rising or 

very slow rising floodwaves, channels with highly variable cross sections, abrupt changes in 

slope, split flow and ponded flow areas.  

The FLO-2D computational domain is discretized into uniform, square grid elements. The 

computational procedure for overland flow involves calculating the discharge across each of 

the boundaries in the eight potential flow directions and begins with a linear estimate of the 

flow depth at the grid element boundary. The estimated boundary flow depth is an average of 

the flow depths in the two grid elements that will be sharing discharge in one of the eight 

directions. Other hydraulic parameters are also averaged between the two grid elements to 

compute the flow velocity including flow resistance (Manning’s n-value), flow area, slope, 

water surface elevation and wetted perimeter. The flow velocity (dependent variable) across the 

boundary is computed from the solution of the momentum equation. Using the average flow 

area between two elements, the discharge for each time step is determined by multiplying the 

velocity times flow area.  

The full dynamic wave equation is a second order, non-linear, partial differential equation. To 

solve the equation for the flow velocity at a grid element boundary, initially the flow velocity 

is calculated with the diffusive wave equation using the average water surface slope (bed slope 

plus pressure head gradient). This velocity is then used as a first estimate (or a seed) in the 

second order Newton-Raphson tangent method to determine the roots of the full dynamic wave 

equation. Manning’s equation is applied to compute the friction slope. If the Newton-Raphson 

solution fails to converge after 3 iterations, the algorithm defaults to the diffusive wave solution.  

In the full dynamic wave momentum equation, the local acceleration term is the difference in 

the velocity for the given flow direction over the previous timestep. The convective acceleration 

term is evaluated as the difference in the flow velocity across the grid element from the previous 
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timestep. For example, the local acceleration term (1/𝑔 ∙ 𝜕𝑉/𝜕𝑡) for grid element n in the east 

direction converts to:  

 ∆(𝑉𝑡
𝑒 − 𝑉𝑡−1

𝑒 )𝑛/(𝑔 ∙ ∆𝑡) [21] 

 

where 𝑉𝑡
𝑒 is the velocity in the east direction (e) for grid element n at time t, 𝑉𝑡−1

𝑒  is the velocity 

at the previous timestep (t-1) in the east direction, Δt is the timestep in seconds, and 𝑔 is the 

acceleration due to gravity. A similar construct for the convective acceleration term (𝑉𝑥/𝑔 ∙

𝜕𝑉/𝜕𝑥 ) is performed as follows: 

 𝑉𝑡
𝑒 ∙ ∆(𝑉𝑡

𝑒 − 𝑉𝑡
𝑤)𝑛/(𝑔 ∙ ∆𝑥) [22] 

 

 where 𝑉𝑡
𝑤 is the velocity in the west direction for grid element n. 

The discharge across the grid element boundary is computed by multiplying the velocity times 

the cross sectional flow area. After the discharge is computed for all eight directions, the net 

change in discharge (sum of the discharge in the eight flow directions) in or out of the grid 

element is multiplied by the timestep to determine the net change in the grid element water 

volume. This net change in volume is then divided by the available surface area (Asurf = storage 

area) on the grid element to obtain the increase or decrease in flow depth Δh for the timestep: 

 ∑𝑄𝑛
𝑖 = 𝐴𝑠𝑢𝑟𝑓 ∙ ∆ℎ/∆𝑡

8

𝑖=1

 [23] 

Where 𝑄𝑛
𝑖  is the flow discharge for the element n across a boundary in the i direction, 𝐴𝑠𝑢𝑟𝑓 is 

the surface area of one grid element and ∆ℎ/∆𝑡 change in flow depth in a grid element during 

one timestep. 

The channel routing integration is performed in essentially the same manner except that the 

flow depth is a function of the channel cross section geometry and there are usually only one 

upstream and one downstream channel grid element for sharing discharge. The computational 

index is the flow direction (1 of 8 directions) not the grid element. This simplifies and reduces 

the number of steps in the solution algorithm. Each direction is visited only once during a sweep 

of the grid system domain and involves two grid elements whereas a grid element index requires 

each grid element to be visited. 
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The solution algorithm can be summarized in the following steps:  

1. For a given flow direction in the grid system, the average flow geometry, roughness and 

slope between two grid elements are computed.  

2. The flow depth ℎ𝑥 for computing the velocity across a grid boundary for the next 

timestep (t+1) is estimated from the previous timestep t using a linear estimate (the 

average depth between two elements).  

 ℎ𝑥
𝑡+1 = (ℎ𝑥

𝑡 + ℎ𝑥+1
𝑡 )/2 [24] 

 

3. The flow direction first velocity overland, 1-D channel or street estimate is computed 

using the diffusive wave equation. The only unknown diffusive wave equation variable 

is the velocity.  

4. The predicted diffusive wave velocity for the current timestep is used as a seed in the 

Newton- Raphson method to solve the full dynamic wave equation for the velocity.  

5. The discharge Q across the boundary is computed by multiplying the velocity by the 

cross sectional flow area. For overland flow, the flow width can be adjusted by the width 

reduction factors (WRFs), that can be inserted by the users in order to simulate a generic 

obstacle in the cells, like buildings. The incremental discharge for the timestep across 

the eight boundaries (or upstream and downstream channel elements) are summed as 

illustrated in Equation [23] and the change in volume (net discharge at the time step) is 

distributed over the available storage area within the grid or channel element to 

determine an incremental increase in the flow depth (Equation [23]). 

6. The numerical stability criteria are then checked for the new flow depth. If the Courant 

Friedrich-Lewy (CFL) condition is exceeded (Jin & Frid, 1997), the timestep is reduced 

to the Courant number computed timestep, all the previous timestep computations are 

discarded and the velocity computations begin again with the first computational flow 

direction. The physical interpretation of the CFL condition is that a particle of fluid 

should not travel more than one spatial increment Δx (grid element side) in one timestep 

Δt (Fletcher, 1988). The time step is limited as follows: 

 ∆𝑡 = 𝐶 ∙ ∆𝑥/(𝛽𝑉 + 𝑐) [25] 

where C is the Courant number (0.2 ≤ C ≤ 1.0), ∆𝑥 is the square grid element width or 

channel length, 𝑉 is the computed average cross section velocity, 𝛽 is a coefficient (5/3 

for a wide channel), 𝑐 is the computed wave celerity. When 𝐶 is set to 1.0, artificial or 
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numerical diffusivity is theoretically zero for a linear convective equation (Fletcher, 

1988) 

7. The simulation progresses with increasing timesteps using a timestep algorithm until 

the stability criteria are exceeded again.  

3.4.2. Application  

The FLO-2D model has been applied in the case study area using the GDS Pro Interface, starting 

from a five meters resolution Digital Elevation Model provided by Regione Lazio. The 

extension of the computational domain has been determined applying the geomorphic 

methodology inspected and explained in Section 3.3. Given the fact that the DA application 

requires many simultaneous simulations of the hydraulic model characterized by an ensemble 

of perturbed inputs, to reduce the computational time, the DEM has been resampled at 200 

meters resolution interpolating the DEM original topography on the grid domain. The channel 

is inserted hooking it to the grid elements using the geometry of the surveyed cross sections, 

integrated by Lidar and the 5 meter DEM, as reported in Section 2.2, and interpolating their 

geometry to the channel cells included between two contiguous surveyed cross sections. Flow 

input hydrographs have been inserted both in the upstream part of the Tiber river and also as 

the tributaries along the computational domain.  

The distribution of the Manning values along the floodplain surface of the domain has been 

assigned considering literature values starting from the land use layer of the Corine Land Cover 

project at the fourth level provided by ISPRA for the whole Italian country. The values of 

Manning varies between 0.02 and 0.2 [m-1/3s] and are showed in Table 9. 

For the channel roughness, a testing of the model behaviour has been performed varying the 

channel Manning values between 0.03 and 0.05 [m-1/3s]. In this case, the hydrologic input has 

been considered as deterministic. Then the uncertainties of both the hydrologic and the 

hydraulic models are taken in to account in the Data Assimilation framework. 

The results show a general good behaviour of the model compared to the observed 

measurements, mostly for higher values of the water levels. For lower levels, the model tend to 

overstimate the water levels. This behaviour is typical for coarse resolution models, because 

the wetting and drying phenomena along preferential flow pathways are usually influenced by 

the micro-topography of the domain, that can be represented only in higher resolution models 

(Nicholas & Mitchell, 2003; Neal et al., 2011). On the other hand, larger floods tend to be valley 
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filling and the maximum extent can be easily predicted even by models with coarse resolution 

(Bates, 2012).  

 

Figure 37. Illustration of some parts of the hydraulic model from the GDS interface. Model boundaries are represented with 

red cells, channel right and left bank are respectively blue and violet polylines, levees are red polylines, outflow elements are 

white cells with blue crosses, inflow element are white cells with green crosses. 

Castel Giubileo gage station is located in correspondence of an important weir that controls the 

water level in the immediately upstream part (Figure 43). In fact, in the case of the 2005 and 

2010 events, the peak flow does not cause a significant water level raise at that station (see 

Figure 40 and Figure 41). Furthermore, an accurate behaviour of this weir should require an 

higher resolution simulation, which is in contrast to the objective of having a large scale 

hydraulic model with reasonable calculation times. For this reason, this stage gage station has 

not been considered for calculating the performance of the forecasting model. 
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Figure 38. Distribution of the Manning values in the floodplain domain 

CLC 

code 
Description 

Manning 

[m-1/3s] 

CLC 

code 
Description 

Manning 

[m-1/3s] 

131 Mineral extraction sites 0.04 1111 Continuous urban fabric 0.02 

141 Green urban areas 0.035 1112 Discontinuous urban fabric 0.03 

143 Green urban areas 0.035 1121 
Discontinuous urban (50%-

80%)  
0.03 

211 Non-irrigated arable land 0.06 1122 
Residential Discontinuous urban   

(30%-50%) 
0.035 

221 Vineyards 0.06 1123 Port areas 0.02 

222 
Fruit trees and berry 

plantations 
0.06 1211 Industrial or commercial units 0.03 

223 Olive groves 0.06 1212 Areas for  commercial activities 0.04 

231 Pastures 0.1 1213 Industrial or commercial units 0.02 

242 Complex cultivation 0.08 1221 
Road and rail networks and 

associated land 
0.02 

243 

Land principally occupied by 

agriculture, with significant 

areas of natural vegetation 

0.06 1222 
Secondary road and rail 

networks and associated land 
0.02 

311 Broad-leaved forest 0.2 1224 
Road and rail networks and 

associated land 
0.02 

321 Natural grassland 0.04 1322 Dump sites 0.05 

322 Moors and heathland 0.06 1331 

Construction sites and in 

construction and excavation 

areas 

0.03 

324 Transitional woodland shrub 0.06 1332  Construction sites 0.03 

333 Sparsely vegetated areas 0.04 1421  Sport and leisure facilities 0.04 

334 Burnt areas 0.04 1422 Sport and leisure facilities 0.04 

411 Inland marshes 0.05 2111 Non-irrigated arable land 0.04 

421 Inland marshes 0.05 2113 Non-irrigated arable land 0.04 

511 Water courses 0.03 2121 Permanently irrigated land 0.04 

512 Water bodies 0.03 3241 Transitional woodland shrub 0.05 

Table 9. Values of Manning assigned for each land use type in the hydraulic computational domain 
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Figure 39. Comparison between the observed flow depths for each control station and the simulated ones for different 

channel Manning values. Event: November 2012 
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Figure 40. Comparison between the observed flow depths for each control station and the simulated ones.. Event: November 

2005 
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Figure 41. Comparison between the observed flow depths for each control station and the simulated ones. Event: November 

2010 
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Figure 42. Performance indexes (NSE, R, Bias) for the hydraulic model for the three analysed flood events in each gage 

station 

 

 

Figure 43. View of Castel Giubileo weir in a 3D reconstruction from satellite. Source: Google Earth 
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3.5.  

3.6. The Data Assimilation method 

3.6.1. Model theory 

Hydrological and hydraulic models need input variables that can be estimated from other 

models, requiring variables and parameters, or directly measured.  Typically, parameters are 

considered constant with time, while state variables may vary in time. The model outputs, i.e. 

discharge, water levels an flow velocities for hydrologic and hydraulic models, are measurable 

and these measurements can be used for updating the models when are available, applying Data 

Assimilation (DA, Refsgaard, 1997). As anticipated in Section 1.4, DA methods can be used 

for: 

 Updating the input variables of the model, thus reducing the uncertainties related to their 

values, e.g. the rainfall for hydrologic models or the flow for hydraulic models. 

 Updating a state variable forecasted by the model, e.g.  the soil moisture for an hydraulic 

model. 

 Updating the model parameters. This case is less common than the other ones because, 

especially in extreme events that have relatively short duration, model parameters 

remain reasonably constant and recalibrating the model at every time step has no real 

advantages (Kachroo, 1992). 

 Updating the output variables, namely the flow or the water levels for hydrologic and 

hydraulic models. 

In this work, the Ensemble Kalman Filter method (Evensen, 2003) is applied to a forecasting 

Quasi-2D hydraulic model. This methodology revealed to be very effective for strong non-

linear dynamics and for this reason has been widely used in literature. 

According to Jazwinski (2007), a generic non-linear stochastic-dynamic system can be 

expressed as: 

 𝑥𝑡+1 = 𝑀(𝑥𝑡, 𝐼𝑡, 𝜃) + 𝑤𝑡 𝑤𝑡~𝑁(0, 𝑆𝑡
𝑚) [26] 

where 𝑥𝑡+1 and 𝑥𝑡 are n-dimensional vectors representing the system state variables 

respectively at time 𝑡 + 1 and 𝑡. The non linear function 𝑀(…) is the forecasting model that 

contains the state variable at the previous time step 𝑥𝑡, the deterministic forcing data 𝐼𝑡 and the 

time-invariant model parameters 𝜃. 𝑤𝑡 is the model error, that usually is state dependent and it 
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has a random distribution with 0 mean and variance 𝑆𝑡
𝑚 representing all the model uncertainties. 

If a set of observations 𝑦𝑡+1 is taken at time 𝑡 + 1, these can be assimilated into the model. The 

observations can be expressed as: 

 𝑦𝑡+1 = 𝐻(𝑥𝑡+1, 𝜃) + 𝑣𝑡+1 𝑣𝑡+1~𝑁(0, 𝑅𝑡
𝑦
) [27] 

where  𝐻(…) is a propagator that related the state variables to the measured variables and 

provides the expected value of  the output given the model state and parameters. 𝑣𝑡+1 is the 

sample of the observation errors, assumed having a random normal distribution with zero mean 

and variance 𝑅𝑡
𝑦

, usually considered time dependent. 

 

Figure 44. Scheme of the Ensemble Kalman Filter. Source: Moradkhani et al., 2005a 

The EnKF model is a sequential DA method that estimates the model state based on the 

observations at each time step they are available. The method is based on ensemble generations: 

the forecast (a priori) state error covariance matrix is approximated propagating the ensemble 

of the model states, characterized by the aforementioned errors, from the previous time step; at 

the same time, an ensemble of observations at each update time is generated according to their 

error distribution introducing the noise term 𝑣𝑡+1. The DA process is characterized by two 

steps: the forecast step and the updated step, whose variables will be represented respectively 
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with the apex − for forecasting and + for updating (See Figure 44). The updated probability 

density function (pdf) of the model states is given by a combination between data likelihood 

and forecasted pdf of the model states by means of Bayesian update. 

According to Equation [26], the state variable 𝑥𝑡+1
𝑖− of forecast model in the EnKF, for the i-

element of the ensemble at time 𝑡 + 1 can be expressed as: 

 𝑥𝑡+1
𝑖− = 𝑀(𝑥𝑡

𝑖+, 𝐼𝑡
𝑖 , 𝜃𝑖 , 𝑡) + 𝑤𝑡

𝑖 𝑖 = 1,… , 𝑛 [28] 

where 𝑥𝑡
𝑖+ is the ith updated ensemble member at time 𝑡, 𝑤𝑡

𝑖 is the model error of the ith ensemble 

member, generated randomly as showed in Equation [26]; The forcing input 𝐼𝑡
𝑖 and the 

parameters 𝜃𝑖 of the ith ensemble member are generated starting from the deterministic value 

and adding a random normal error with zero mean and a certain variance, namely 𝐼𝑡
𝑖 = 𝐼𝑡 +

𝑁(0, 𝑆𝑡
𝐼) and 𝜃𝑖 = 𝜃 +𝑁(0, 𝑆

𝜃). 

Assuming that the true state variables are known, the error covariance matrix associated to the 

forecasted estimation would be: 

 𝑃𝑡+1
− = 𝐸[(𝑥𝑡+1

− − 𝑥𝑡+1
𝑡𝑟𝑢𝑒) (𝑥𝑡+1

− − 𝑥𝑡+1
𝑡𝑟𝑢𝑒)𝑇] [29] 

However, the true state is generally unknown, otherwise the DA method would not be needed. 

Therefore, the ensemble covariance matrix can be calculated (Evensen, 2003): 

 𝑃𝑡+1
− =

1

𝑛 − 1
𝑋𝑡+1𝑋𝑡+1

𝑇  [30] 

Where: 

 𝑋𝑡+1 = [𝑥𝑡+1
1− − �̅�𝑡+1

− , 𝑥𝑡+1
2− − �̅�𝑡+1

− , … , 𝑥𝑡+1
𝑛− − �̅�𝑡+1

− ] [31] 

is the ensemble anomaly (Clark et al., 2008) for each ensemble member at time 𝑡 + 1 and 

 �̅�𝑡+1
− =

1

𝑛
∑ 𝑥𝑡+1

𝑖−
𝑛

𝑖=1
 [32] 

is the ensemble mean of the forecasted matrix at time 𝑡 + 1.  

From the a priori estimate of the state variable �̅�𝑡+1
− , the posterior estimate �̅�𝑡+1

+  is calculated 

using the observation 𝑦𝑡+1 performing a linear correction with the Kalman filter to the 

forecasted state ensemble members: 
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 𝑥𝑡+1
𝑖+ = 𝑥𝑡+1

𝑖− + 𝐾𝑡+1(𝑦𝑡+1
𝑖 − �̂�𝑡+1

𝑖 ) [33] 

where 𝑦𝑡+1
𝑖 is the perturbed observation for the ith ensemble member adding to the observation 

𝑦𝑡+1 a noise 𝜂𝑡+1
𝑖 as follows: 

 𝑦𝑡+1
𝑖 = 𝑦𝑡+1 + 𝜂𝑡+1

𝑖 𝜂𝑡+1
𝑖 ~𝑁(0, 𝑅𝑡+1

𝑦
)  [34] 

The observation for the ith ensemble member is generated as a random variable with a mean 

equal to the actual observation at time 𝑡 + 1 and a variance with a predefined value dependent 

on the degree of accuracy assigned to the actual observation at the same time step. 

The term 𝐾𝑡+1 is the  Kalman gain matrix, expressed as : 

 𝐾𝑡+1  =
𝑃𝑡+1
− 𝐻𝑇

𝐻𝑃𝑡+1
− 𝐻𝑇 + 𝑅𝑡+1

𝑦  [35] 

Where 𝑃𝑡+1
−   is the ensemble covariance matrix expressed in Equation [30], 𝐻 is the observation 

transition operation introduced in Equation [27] and 𝑅𝑡+1
𝑦

 is the variance of the observation 

error.  

The updated covariance matrix can be expressed as: 

 𝑃𝑡+1
+ = 𝑃𝑡+1

− − 𝐾𝑡+1𝐻𝑃𝑡+1
−  [36] 

 

3.6.2. Choice of the ensemble size 

The performance of the ensemble forecast is influenced by the spread of the ensemble (Murphy, 

1988; Anderson, 2001) but also by the ensemble size, that has to be enough big to represent a 

statistically significant sample, but at the same time it has to impact the computational 

efficiency of the model in an acceptable way considering the purpose of the application (e.g. 

real time or near-real time forecasting).  

In this work, the approach proposed by Anderson (2001) for determining the ensemble size has 

been chosen. This approach has been adopted by several researchers, such as Moradkhani et al. 

(2005a) and Brocca et al. (2012) among others. The author indicated that, in order to have an 

ideal spread of the ensemble, the ensemble size has to be so as to bring closer to 1 the 

Normalized RMSE Ratio (NRR): 
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 𝑁𝑅𝑅 =
𝑅𝑎
𝐸[𝑅𝑎]

 [37] 

where 𝑅𝑎 is given by: 

 𝑅𝑎  =
𝑅1
𝑅2

 [38] 

namely the ratio between the time-averaged root mean square error (RMSE) of the ensemble 

mean  𝑅1 and the time-averaged mean RMSE of the ensemble members 𝑅2: 

 𝑅1  =
1

𝑇
∑√[(

1

𝑛
∑�̂�𝑡

𝑖

𝑛

𝑖=1

) − 𝑦𝑡
𝑖]

2𝑇

𝑡=1

 [39] 

 𝑅2  =
1

𝑛
∑√

1

𝑇
∑(�̂�𝑡

𝑖 − 𝑦𝑡
𝑖)
2

𝑇

𝑡=1

𝑛

𝑖=1

 [40] 

Where 𝑛 and 𝑇 are the ensemble size and the period of the analysis respectively. If the actual 

observation is statistically indistinguishable from 𝑛 ensemble members, the expected value of 

the RMSE ratio, as illustrated by Murphy (1988) and Anderson (2001) can be expressed as: 

 𝐸[𝑅𝑎]  = √
(𝑛 + 1)

2𝑛
 [41] 

If 𝑁𝑅𝑅 > 1, the ensemble has too little spread, while if 𝑁𝑅𝑅 < 1 the ensemble has too much 

spread. 

3.6.3. Application 

In the present work, the EnKF model is applied to a Quasi-2D hydraulic model, forced by flow 

hydrographs given by both stage gages measurements and simulations of an hydrological model 

for small ungauged basins. In this case, the state variable 𝑥𝑡 is considered as the water depth in 

a specific point of the computational domain. In case the observation is a stage gage 

measurement, the spatial position of the state variable is located in the closest channel cell of 

the domain to the position of the stage gage. In case of an observation coming from a flood 

extension gathered from a satellite image, the EnKF method have to be applied to both the 

channel and the floodplain cells interested by the observation. In case of a crowdsourced 
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information, namely a photo from which gathering the water depth or a description of the depth 

from a user, the state variable can be located in the channel, but more likely in the floodplain, 

where people usually could come across a flood event. The non-linear function 𝑀(…) 

introduced in Equation [26] is the hydraulic model engine, whose forcing term 𝐼𝑡 is the 

ensemble of the flow hydrographs and the parameters 𝜃 are mainly the channel and floodplain 

roughness. The model error 𝑤𝑡 is estimated considering the uncertainties related by the input 

forcing 𝐼𝑡 and the model parameters. The uncertainties related to the input forcing are different 

if the input is given using a rating table for converting the stage gage measurement to flow or 

from the output of an hydrologic model. Specifically, an analysis of the model errors is 

performed in Section 4.2. The observation 𝑦𝑡 is a water depth value gathered directly (i.e. the 

stage gage) or indirectly (i.e. the satellite image and VGI) by the sensor. For this reason, the 

observation transition operation 𝐻 introduced in Equation [27] is an identity matrix, being a 

direct relation between state variable and observation. The perturbation 𝑣𝑡 to be assigned to the 

observation ensemble is strongly dependent on the nature of the observation, and will be 

extensively described in Sections 4.3.2, 4.4.3, 4.5.3, dedicated to each type of observation. 

 

Figure 45. Results of the Normalized RMSE Ratio (NRR) for the three events and different gage stations to calculate the 

optimal value of the ensemble size (Nens) 
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As illustrated in Section 3.6.2, the ensemble size for the EnKF application has been chosen 

applying the Anderson (2001) approach for evaluating the similarity of truth versus randomly 

selected members of the ensemble (See Eq.[37]-[41]). The results illustrated in Figure 45, show 

the optimal ensemble sizes for the different stage gages, reached where the Normalized RMSE 

Ratio is equal to one, stay between 35 and 40. In this work, an ensemble size of 40 has been 

chosen for each simulation.  
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3.7. Flood detection from satellite imagery 

As introduced in Section 1.2, the water detection procedure from satellite imagery can be 

performed starting from SAR or multispectral data. Usually SAR imagery are more suitable for 

flood model validation, because of their ability to penetrate the clouds and their no sensitivity 

to light. Furthermore, their potential resolution, can be much higher (e.g. 1-5 m) than the one 

of the Multispectral images (30 m). Several methodologies for flood detection from SAR and 

multispectral images have been proposed in literature and have been already listed in Section 

1.2. In this section, a standard procedure for detecting flood from SAR images is illustrated. 

Moreover, some different techniques for detecting water from multispectral images, are tested 

considering three floods already detected in different parts of the world. One the illustrated 

techniques is adopted for detecting the water extension in the case study of this work. 

3.7.1. SAR images 

For SAR images, besides the commercial platforms for manipulating the products (e.g. the 

ENVI software), many scripts and GIS tools are available online. One of the most 

comprehensive and reliable free platform is the ESA's Sentinel Application Platform (SNAP). 

Starting from the raw satellite image, the platform allow to detect the water extension through 

the following steps: 

 Radiometric calibration; 

 Speckle filtering; 

 Binarization, in which a threshold value for backscatter coefficient is required for 

discriminating water from non-water pixels; 

 Geometric correction to re-project the image from the geometry of the sensor to the 

geographic correction 

3.7.2. Multispectral images 

3.7.2.1. Preliminary testing of the water indexes 

All the water detection techniques from multispectral images are usually validated for water 

bodies not during flood periods, where clouds does not compromise the bands of the image. In 

this work, a further inspection of the most common and also recent water detection algorithms 

where tested in few flood case studies where image were not totally compromised by clouds 

and at the same time the correspondent delineated water extent were available. A consistent 

analysis for testing these indexes would require a statistically significant sample of different 



3.6. Flood detection from satellite imagery 

85 

 

 

images, but the simultaneous occurrence of having both a multispectral image not compromised 

by clouds during a flood event and the availability of a delineated water extension from another 

source is still quite rare. For this reason, this analysis can be considered a preliminary test 

without pretending to determine the best indexes with adequate statistical confidence. Table 10 

shows the indexes considered for detecting the water extension. 

Index Name Source Equation  

AWEISH 

Automated 

Water 

Extraction Index 

shadow 

Feyisa et al., 

2014 
𝜌𝑏1 + 2.5 ∙ 𝜌𝑏2 − 1.5(𝜌𝑏4 + 𝜌𝑏5) − 0.25 𝜌𝑏7 [42] 

AWEINSH 

Automated 

Water 

Extraction Index 

non shadow 

Feyisa et al., 

2014 
4 ∙ (𝜌𝑏2 − 𝜌𝑏5) − 0.25(𝜌𝑏4 + 2.75 ∙ 𝜌𝑏7) [43] 

MDWI 

Modified 

Normalized 

Difference 

Water Index 

Xu, 2006 (𝜌𝑏2 − 𝜌𝑏5)/(𝜌𝑏2 + 𝜌𝑏5) [44] 

NDMI 

Normalized 

Difference 

Moisture Index 

Wilson & 

Sader, 2002 
(𝜌𝑏4 − 𝜌𝑏5)/(𝜌𝑏4 + 𝜌𝑏5) [45] 

NDVI 

Normalized 

Difference 

Vegetation 

Index 

Rouse et al. 

1973 
(𝜌𝑏4 − 𝜌𝑏3)/(𝜌𝑏4 + 𝜌𝑏3) [46] 

NDWI 

Normalized 

Difference 

Water Index 

McFeeters, 

1996 
(𝜌𝑏2 − 𝜌𝑏4)/(𝜌𝑏2 + 𝜌𝑏4) [47] 

TCW 
Tasselled Cap 

Wetness 
Crist, 1985 

0.0315 ∙ 𝜌𝑏1 + 0.2021 ∙ 𝜌𝑏2 + 0.3102 ∙ 𝜌𝑏3
+ 0.1594 ∙ 𝜌𝑏4 − 0.6806
∙ 𝜌𝑏5 − 0.6109 𝜌𝑏7 

[48] 

WI1 Water Index  
Fisher et al., 

2016 

1.7204 + 171 ∙ 𝜌𝑏2 + 3 ∙ 𝜌𝑏3 − 70 ∙ 𝜌𝑏4 − 45
∙ 𝜌𝑏5 − 71 𝜌𝑏7 

[49] 

WRI 
Water Ratio 

Index 

Shen & Li, 

2010 
(𝜌𝑏2 + 𝜌𝑏3)/(𝜌𝑏4 + 𝜌𝑏5) [50] 

Table 10. List of indexes adopted for the water detection testing from multispectral images. Inputs are surface reflectance (ρ) 

for each band (b1–b7) 

All the indexes are designed for water extraction, with the exception of NDVI and NDMI whose 

purpose is respectively vegetation and soil moisture classification, but are taken in to account 

because they are also commonly used for water classification.  

Landsat 

Mission 
Country Time Reference map 

Delay between SAR 

image and Landsat 

Image 

L5 Angola 26/03/2008 DMC (25/03/2008) 1 day 

L5 Namibia 19/03/2009 ASAR (17/03/2009) 2 days 

L8 Pakistan 17/09/2014 TerraSar-X (15/09/2014) 2 days 
Table 11. Landast images analysed for testing the water indexes 
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As reference map for the indexes comparison, a database of flood maps from the UNOSAT 

Website has been considered (http://floods.unosat.org/). 

These maps are delineated detecting the water extension from SAR imagery generated by 

different missions (e.g. TerraSAR-X, Radarsat-1, ALOS-1, Worldview, Komsat, Pleiades, 

ASAR, RISAT, DMC). Figure 46 shows the Landsat look of the three images taken into account 

for flood mapping. It is evident that the clouds partially compromise the images. These cloudy 

areas have been masked from the computational domain. 

 

Figure 46- Representation of the three reference maps and the relative Landsat Look 

The three images have been pre-processed for atmospheric and radiometric correction. Each 

index has been reclassified into different intervals. Considering the upper value of each interval 

as a threshold value for water classification, the number of true positives (TP) (cells considered 

flooded in the reference map and in the index), false positive FP (cells overpredicted by the 

index) and false negatives FN (cells underpedicted by the index) have been calculated. As 

spatial comparison index, Equation [6] (Horrit & Bates, 2001) has been adopted, and here 

shown (A=TB, B=FN, C=FN): 

 𝐹 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 [51] 
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Figure 47 shows the optimum threshold value obtained according to the measurement function 

F for the Angola case study. All the threshold values have to be considered as the minimum 

value of each index for water classification with the exception of NDVI for which all their 

values below the threshold have to be considered as water. 

Figure 48 compares the 9 indexes using the measurement function F, the True positives, the 

false positives and the false negatives rates. The results are also illustrated in Table 12. Overall, 

the best performance indexes are the most recent ones, namely AWEISH, MNDWI, WI and 

WRI. 

 

Figure 47. Automatic selection of the threshold value for water classification for each index. Plots of the frequencies of true 

positives values [%] and the measurement function F (Angola case study) 
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In Figure 49, False Positives (FP) and False Negatives (FN) of the Angola case study are 

highlighted in a detail of the domain. Some of the FP ad FN are in the borders of the flooded 

areas. These errors can partially due to the shadows of the ponds and also to a small change in 

extension of these ponds during the time between the Landsat and the reference map 

acquisitions. 

 

Figure 48. Comparison of the performance for each index for Angola, Namibia and Pakistan Landsat. 

Index 
F value 

Angola Namibia Pakistan Mean 

AWEISH 0.612 0.667 0.682 0.654 

AWEINSH 0.594 0.609 0.67 0.624 

MNDWI 0.62 0.624 0.676 0.64 

NDMI 0.545 0.429 0.173 0.382 

NDVI 0.44 0.641 0.705 0.595 

NDWI 0.509 0.693 0.681 0.628 

TCW 0.588 0.596 0.664 0.616 

WI 0.611 0.631 0.678 0.64 

WRI 0.577 0.671 0.692 0.647 

Table 12. Values of F for the three case studies 

The most recent indexes designed for water detection in literature (Feyisa et al.  2014, Fisher et 

al., 2016) consider the reflectance of NIR (𝜌𝑏4), SWIR 1 (𝜌𝑏5) and SWIR 2(𝜌𝑏7) but they do not 



3.6. Flood detection from satellite imagery 

89 

 

 

consider the thermal band that is affected by the colder temperature of the water bodies. In order 

to see the sensitivity of each band of the satellite image for different land uses, an analysis of 

the distribution of the Digital number of the bands have been performed. 

The 2012 land use layer of the whole Europe with a 100 m resolution has been downloaded 

from the Copernicus Land Monitoring Service website (http://land.copernicus.eu/pan-

european/corine-land-cover/clc-2012). 

 

Figure 49. A detail of the flooded map from MNDWI with the True Positives (Blue), False Positives (Yellow), False 

Negatives (red) (Angola case study) 

 

Figure 50. Values of mean digital number for each band in Landsat 5 and 8 

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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This land cover is divided in 45 different land uses that have been resampled in 5 different 

macro categories, specifically: Urban areas, Agricultural areas, Forests, Wetlands and Water 

bodies. As first analysis, the Bosnia Erzegovina (affected by several floods in the past) has been 

taken in to account for evaluating the digital number values of the Landsat 5 and 8 Bands for 

the macro categories.  

Both Landsat 5 and Landsat 8 (Figure 50) confirm that water surface absorbs Near Infrared 

(NIR), Short Wave Infrared 1 (SWIR1), Short Wave Infrared 2 (SWIR2) and the Thermal 

band(s) (THERM1 and THERM2 for L8) more than the other land uses. The major differences 

are given by the NIR and SWIR1 bands. 

As future insight for improving the water index, the inclusion of the thermal band can be tested. 

In this work a methodology for a testing a new index is proposed. The most recent index, the 

Water Index (Feysa et al., 2016), has been considered as starting point for a formulation of a 

new index considering also the Thermal band. Specifically the new index can be considered as: 

 
𝑁𝐸𝑊𝑊𝐼 = 𝑊𝐼 − 𝐾 ∙ 𝐷𝑁𝑡ℎ𝑒𝑟𝑚 = 1.7204 + 171 ∙ 𝜌𝑏2 + 3 ∙ 𝜌𝑏3 − 70 ∙ 𝜌𝑏4 − 45 ∙ 𝜌𝑏5 −

71 𝜌𝑏7 − 𝐾 ∙ 𝐷𝑁𝑡ℎ𝑒𝑟𝑚  
[52] 

 

Where: 

 K is a coefficient that have to be calibrated; 

 𝑫𝑵𝒕𝒉𝒆𝒓𝒎 is the normalized digital number of the Thermal band (band 6 for the Landsat 5 

or 7). In case of using the Landsat 8 imagery, both bands 10 and 11 can be considered. 

 

The new index has been compared with the original WI (Feysa et al., 2016) varying the K 

coefficient in order to see potential improvements in its performance.  

Specifically K has been varied between 10 and 80. The thermal band seems to have a slightly 

positive effect on the performance of the water detection (Figure 51): the optimum values are 

obtained for values of K between 30 and 40. Further inspections with a wider sample of images 

accompanied by their relative reference flood maps need to be performed. 

 



3.6. Flood detection from satellite imagery 

91 

 

 

 

Figure 51 - Results for the F measurement function varying the value of the constant K for the thermal band 

 

3.7.2.2. Application to the case study 

For the case study of the Tiber river, the Landsat 7 image (acquisition date: 14/11/2012 - 09.43) 

has been used for extracting the flood extension using Equation [64] . Unfortunately, Landsat 

7 products are affected by evident corruptions due to a failure of the Scan Line Corrector (SLC) 

in the satellite of that mission. For this reason, the water trace detected from the image is 

characterized by some empty stripes.  

However, these stripes do not compromise the correct transversal extension of the flood, but 

only its continuity along the longitudinal direction of the flow. This can lead to lower values of 

the F measure to fit index when it is compared to the flood extensions given by other different 

models, but the relative difference of F among the maps of the models will be not affected. 

Figure 52 shows the extension of the detected flood. The extension of the detected flood raster 

has been clipped using the floodplain polygon described in Section 3.3. The water extension 

gathered from the SI will be compared with the ensemble of the flood extensions given by the 

hydraulic simulations in order to indirectly define the observed water levels used in the DA 

methodology. This procedure is illustrated in Section 4.4.
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Figure 52. Extension of the water detected from the Landsat 7 image (acquisition date: 14/11/2012 - 09.43) in the 

computational hydraulic domain
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4. Assimilation of different type of observed 

measurements in a Quasi-2D hydraulic 

model 

This Chapter describes the application of the Data Assimilation methodology to the case study 

and illustrates the main results. Section 4.1 introduces the main issues and some literature 

related to the application of DA methodologies in case of 2D hydraulic models and also to the 

different types of observations used in the past for updating the hydrologic and hydraulic 

models. 

Section 4.2 describes the model errors, due principally to its parametrization and its forcing 

inputs, given by the stage measurements and the hydrologic modelling.  

Sections 4.3, 4.4 and 4.5 illustrate the adopted methodology for implementing the DA model 

respectively in case of Static sensors, Satellite images and VGI data, presenting the results 

obtained for each type of observations.  

These observations are then integrated together and the related results are showed in Section 

4.6. 
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4.1. Foreword 

In the last years, DA has been increasingly implemented in hydraulic models for reducing the 

uncertainty in flood forecasting using both observed levels from in-situ sensors and also from 

remote sensed sensors (Schumann et al., 2009, Yan et al., 2015b).  

There are few cases in literature of implementing the Data Assimilation methodology in a 2D 

hydraulic model (Kim et al., 2012, Kim et al., 2013). The reason is mainly due to the fact that 

2D models are usually time consuming compared to 1D models, and DA procedures for non-

linear systems require often simultaneous simulations (e.g. the Ensemble Kalman Filter) or 

operational research methods (e.g. the Variational methodology) for each time step the 

observation have to be assimilated. Furthermore, almost only the water depths from static 

sensors have been considered in the past as observation measurement to be assimilated for 2D 

hydraulic model, with the exception of Hostache et al. (2010) who adopted a satellite image in 

a DA framework for calibrating the floodplain roughness.  

Mazzoleni et al., 2015, Mazzoleni et al., 2017 and Mazzoleni, 2017 investigated the 

assimilation of synthetic crowdsourced data in simplified hydrologic and hydraulic models. 

The final aim of this chapter is investigating the use of static sensor measurements, satellite 

images and VGI data in large scale flood modelling in order to improve the results of the 

forecast model in potential data scarce regions. In fact, the limitations or the absence of 

observations coming from a specific sensor can be compensated by the contributions of the 

other types of observation. The proposed methodology deals with assimilating observations 

from punctual measurements from channel (Stage gages) and floodplain (VGI) locations and 

also from distributed measurements coming from satellite images. Therefore, the methodology 

can be also applied using other types of punctual or distributed measurements if their related 

error is known.
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4.2. Model errors 

The EnKF takes in to account the uncertainty related to the model errors through a realization 

of the model results, that in this case is generated perturbing: 

1. the forcing input given by the static sensors and the hydrologic model; 

2. the model parameters, namely the channel roughness expressed by the Manning values. 

4.2.1. Error of the static sensor input 

The uncertainty related to discharge observation is the sum of two different components (Clark 

et al., 2008): the estimation of the water level from the static sensor (EWL) and the 

transformation of the water level into discharge with the rating curve (ERC). Di Baldassarre 

and Montanari (2009) pointed that the uncertainty induced by the measurement of the river 

stage with a static physical sensor can be negligible, and for this reason, usually DA frameworks 

in hydrology consider only the uncertainty given by the errors related to the rating curve. Weerts 

and El Serafy (2006) proposed to represent the ensemble of the streamflow observations for 

representing their uncertainty as showed in the following equation: 

 𝑄𝑜𝑆𝑡𝑆,𝑡,𝑖 = 𝑄
𝑡𝑟𝑢𝑒

𝑆𝑡𝑆,𝑡 ∙ 𝛾 + 𝜂𝑆𝑡𝑆,𝑡,𝑖 [53] 

Where 𝑄𝑜𝑆𝑡𝑆,𝑡,𝑖is the streamflow measure by the static sensor (StS) for the i-element of the 

ensemble at time t, 𝛾 is a parameter that accounts for the uncertain estimation of the synthetic 

discharge, 𝑄𝑡𝑟𝑢𝑒𝑆𝑡𝑆,𝑡 is the streamflow observation from StS at time t, 𝜂𝑆𝑡𝑆,𝑡,𝑖 is a noise term 

𝑁(0, 𝑅𝑆𝑡𝑆) normally distributed with zero mean and a given variance (𝑅𝑆𝑡𝑆) at time t, 

expressed as: 

 𝑅𝑆𝑡𝑆 = (𝛼𝑆𝑡𝑆,𝑡 ∙ 𝑄
𝑡𝑟𝑢𝑒

𝑆𝑡𝑆,𝑡)
2
 [54] 

Where 𝛼𝑆𝑡𝑆,𝑡 is the coefficient of variation related to the uncertainty in the discharge 

measurement. Equation [54] expresses the intuitive concept that high values of discharge should 

be more uncertain than the small values. 

 Weerts and El Serafy (2006), Clark et al. (2008) and Rakovec et al. (2012) considering the only 

component of the error given by the rating curve, assumed the variance 𝛼𝑆𝑡𝑆,𝑡 equal to 0.1. 

However Mazzoleni et al. (2015) consider also a component due to the water level estimation 

by the static sensor adding a 0.02 value to the error given by the rating curve. If 𝑄𝑡𝑟𝑢𝑒𝑆𝑡𝑆 is 

assumed to be affected by bias, the 𝛾 parameter is considered a random uniform number 



4. Assimilation of different type of observed measurements in a Quasi-2D hydraulic model 

 

 

96 

 

between -1.3 and +1.3 (Mazzoleni et al., 2015) for generating the ensemble of the observed 

streamflow. In the present work the value of 𝛼𝑆𝑡𝑆,𝑡 as been chosen equal to 0.12 and the 𝛾 value 

equal to 1. Figure 53 shows the ensemble spread related to the Orte Scalo input in the upstream 

boundary of the hydraulic computational domain, applying the abovementioned perturbation 

for the three analysed flood events. 

 

Figure 53. Representation of the ensemble of the flow observations from the upstream Static sensor (Orte Scalo) 

4.2.2. Error of the input forcing from hydrologic model 

The hydrologic model adopted to force the hydraulic model, is characterized by strong 

assumptions, given the small amount of available physic data and thus of the input variables. 

Several uncertainties affect the model results, as the measured rain and its distribution on the 

basin, the simplified modelling of the flow routing, the neglected physical process as the 

groundwater flow, the mud and debris flow, the antecedent soil moisture conditions. In 

particular, the latter affects dramatically the flow entity (Berthet et al., 2009), and, in case of 

the SCS-method application, it influences both the coefficient of initial abstraction and the CN 

values. From the validation of the hydrologic model (Section 3.1.3) an analysis of the simulated 

flow errors, considering the observed flows as the true ones, has been performed and showed 

in Figure 54. The left plot shows that the errors tend to spread more the more is the relative 
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observed flow. This confirms that usually, for a DA application in hydrologic and hydraulic 

models, the input flow errors are considered proportional to the relative value of the flow. The 

right plot of Figure 54 shows the frequency distribution of the relative flow errors, characterized 

by an almost zero mean and a standard deviation equal to 0.28.  

 

Figure 54. Relation among flow and estimation error between observed and simulated flow (left); Frequency distribution of 

the relative flow errors (right). Both graphs are referred to the validation of the hydrologic model (See Section 3.2.3) 

The input forcing of an hydrologic or hydraulic model is sometimes perturbed adopting an 

uniform distribution (Clark et al., 2008; McMillan et al., 2013; Mazzoleni et al., 2015) as 

showed below: 

 𝑄𝑠𝐼,𝑡,𝑖 = 𝑄
𝑆
𝐼,𝑡 + 𝑈(−𝜀𝐼 ∙ 𝑄

𝑆
𝐼,𝑡, +𝜀𝐼 ∙ 𝑄

𝑆
𝐼,𝑡) 

[55] 

𝑄𝑠𝐼,𝑡,𝑖 is the perturbed simulated flow at time t for the i-element of the ensemble, 𝑄𝑆𝐼,𝑡 is the 

simulated flow at time t, 𝑈 is the uniform distribution, is 𝜀𝐼 the fractional input error. 

However, considering the distribution of the flow errors showed in Figure 54, the following 

perturbation has been adopted 

 𝑄𝑠𝐼,𝑡,𝑖 = 𝑄𝑆𝐼,𝑡 + 𝑁(0, 𝑅𝐼,𝑡)  [56] 

Where 𝑁(0, 𝑅𝐼,𝑡) is a noise term normally distributed with zero mean and the variance (𝑅𝐼,𝑡) 

at time t, expressed as: 

 𝑅𝐼,𝑡 = (𝛼𝐼 ∙ 𝑄
𝑆
𝐼,𝑡)  [57] 
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 and 𝛼𝐼 is the coefficient of variation related to the uncertainty in the simulated flow, in this 

case assumed equal to 0.3. Figure 55 shows the results of the perturbed simulated flow values 

for the November 2012 event. 

 

Figure 55. Perturbed simulated hydrograph considering the hydrologic model errors. Event: November 2012 



4.2 Model errors 

99 

 

 

4.2.3. Error of the model’s parameter 

The uncertainty related to the model parameters is considered as follows (Clark et al., 2008; 

McMillan et al., 2013):  

 𝑝𝑠
𝑖
= 𝑝𝑠 + 𝑈(−𝜀𝑃 ∙ 𝑝

𝑠 , +𝜀𝑃 ∙ 𝑝
𝑠) [58] 

Where 𝑝𝑠
𝑖
 is the perturbed model parameter for the i-element of the ensemble, 𝑝𝑠 is the model 

parameter and 𝜀𝑃 is the fractional parameter error. In this case, the channel roughness has been 

chosen as the perturbed parameter, and 𝜀𝑃 is assumed equal to 0.25. This limits the value 

Manning of the channel between 0.030 and 0.050 m-1/3s.  

 

Figure 56. Observed water levels and the ensemble of the simulated ones by the hydraulic model considering the model and 

the input errors. Event: November 2012 
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The floodplain roughness has been considered a lower source of uncertainty because for most 

of the simulation time, the flow stays inside the channel and, during the peak flow, the flooding 

along the floodplain affects not the whole computational domain. 

The 𝜀𝑃 value has been chosen considering that Manning values smaller than the correspondent 

lower limit (0.3 m-1/3s), could lead to instability in the hydraulic model. Figure 56 shows the 

result of the hydraulic simulation ensemble given by the perturbations of the model parameter 

and inputs. A detail of the variability of the flood extension among the simulations of the 

ensemble is illustrated in Figure 57. 

 

Figure 57. Detail of the flood frequency map normalized by the ensemble size
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4.3. Assimilation of Static Sensors observations 

4.3.1. Methodology 

The adopted Quasi-2D hydraulic model is characterized by a 1D simulation inside the channel 

of the domain. When the water surface elevation in the channel reaches and overcomes the 

riverbank elevation, a 2D simulation is triggered along the floodplain domain. For this reason, 

the updating of the water levels during a Data Assimilation application has to take in to account 

both the channel and the floodplain domain whose dynamics affect each other. In case of water 

level correction from static sensors (stage gages), the observation comes from a channel 

element, where usually the static measurement system is placed taking advantage of the 

presence of an hydraulic structure, like a bridge or a weir. In the DA model not only each cell 

of the channel domain placed in a static stage gage, but also all the floodplain cells whose 

position is the closest to the mentioned channel cells are considered for updating the water level 

corrections derived from the EnKF application (Figure 58). 

 

Figure 58. Scheme of the cells updating in the floodplain domain assimilating the stage gages measurements 

If the correction of the water depth in a channel cell is relatively important, e.g. order of meters, 

some surging phenomena could occur because of an excessive steepness among the contiguous 

channel cells. For this reason, adopting a similar approach of Madsen & Skotner (2005), the 

water depth update given by the DA procedure is propagated using the following gain function: 

 𝑔(𝑖) = 𝐴 ∙ exp (−
1

2
(
𝑔(𝑖)′

1/3
)

2

) [59] 
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Where 𝑔(𝑖) is the gain assigned to the i-cell, 𝐴 is the gain amplitude (assumed equal to 1), 𝑔(𝑖)′ 

is a term given by the following expression: 

 𝑔(𝑖)′ =

{
 
 

 
 
𝑥𝑜𝑏𝑠 − 𝑥𝑖
𝑥𝑜𝑏𝑠 − 𝑥𝑢𝑐

, 𝑥𝑢𝑐 ≤ 𝑥𝑖 ≤ 𝑥𝑜𝑏𝑠

𝑥𝑖 − 𝑥𝑜𝑏𝑠
𝑥𝑑𝑐−𝑥𝑜𝑏𝑠

, 𝑥𝑜𝑏𝑠 ≤ 𝑥𝑖 ≤ 𝑥𝑑𝑐

 [60] 

 𝑥𝑜𝑏𝑠, 𝑥𝑖 , 𝑥𝑢𝑐, 𝑥𝑑𝑐 are the linear coordinates along the channel of respectively the cell with the 

observation measurement, the i-cell to be updated, the upstream and downstream bounds for 

the gain function. The two latest terms depend on how far the updating due to the assimilation 

has to influence the channel profile. If there are many stage observations at the same time step, 

the bounds of the gain for a i-cell has to be limited by the position of the closest stage gage 

cells. Figure 59 shows the scheme of how the gain function is propagated upstream and 

downstream the observation point. 

 

Figure 59. Scheme of the exponential gain for propagating the observation measurement along the channel 

Furthermore, in order to simultaneously assimilate more than one stage gage observation, the 

portions of the channel (and its hydraulically connected floodplain) that is between two 

different stage observations, is updated considering both these observations using as weight the 

inverse of the distance of its connected channel cell from each stage gage cell (Figure 60). The 

water level correction for the i-cell (∆𝐻(𝑥𝑖)) is given by the following expression: 

 ∆𝐻(𝑥𝑖) =
∆𝐻(𝑥𝑜𝑏𝑠,𝑢) ∙ 𝑔(𝑥𝑖,𝑢) ∙

1
𝑥𝑖 − 𝑥𝑜𝑏𝑠,𝑢

+ ∆𝐻(𝑥𝑜𝑏𝑠,𝑑) ∙ 𝑔(𝑥𝑖,𝑑) ∙
1

𝑥𝑜𝑏𝑠,𝑑 − 𝑥𝑖
1

𝑥𝑜𝑏𝑠,𝑑 − 𝑥𝑜𝑏𝑠,𝑢

 [61] 
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Where ∆𝐻(𝑥𝑜𝑏𝑠,𝑢) and ∆𝐻(𝑥𝑜𝑏𝑠,𝑑) are the water level updates respectively in the upstream and 

downstream stage gages, 𝑔(𝑥𝑖,𝑢) and 𝑔(𝑥𝑖,𝑑) are the gains relative respectively to the upstream 

and downstream observation, 𝑥𝑜𝑏𝑠,𝑢 and 𝑥𝑜𝑏𝑠,𝑑 are the linear coordinates along the channel of 

respectively the upstream and downstream cell with observation measurements. 

 

Figure 60. Scheme of the cell and floodplain water depth updating between two stage gage cells 

When the gain function is propagated upstream and the water level correction is positive, a 

counterslope of the water levels could occur, bringing the model to numerical instability. This 

unwanted possibility is illustrated in Figure 61. The stage gage measurements (black dots) are 

assimilated, correcting the no updated levels (blue) to the updated water levels (red). However, 

the application of the gain function illustrated by Equation [61] mitigates the positive correction 

going upstream, with the consequence of having the mentioned counterslopes, undelined by the 

green circles. In order to avoid this possibility, a further condition has been imposed: the 

absolute water level in the cell of the channel 𝐻+(𝑥𝑖), cannot be lower than the following 

downstream channel 𝐻+(𝑥𝑖) cell, but, at least, should be the same: 

 𝐻+(𝑥𝑖) = {
𝐻−(𝑥𝑖) + ∆𝐻(𝑥𝑖) , 𝐻+(𝑥𝑖) ≥ 𝐻+(𝑥𝑖+1)

𝐻+(𝑥𝑖+1),                 𝐻+(𝑥𝑖) < 𝐻+(𝑥𝑖+1)
 [62] 

The eventuality of having a counterslope in water profile is accepted only if also the no-updated 

simulation is characterized by this behaviour for the presence of hydraulic structures. 
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Figure 61. An example of how the gain function can create counterslopes of water levels when positive correction are 

applied in the Data Assimilation methodology 

Each time step when observation measurements are available, the hydraulic simulation is 

stopped and the water levels and volume conservation outputs are saved in binary files. Then 

the EnKF is applied and the water depth corrections are inserted in the binary files. Flow 

velocities in each of the 8 direction are automatically corrected in order to satisfy the local 

volume balance that is changed depending on the water level variation. 

4.3.2. Observation errors 

To represent the observation errors, the stages gages measurements are perturbed using a similar 

approach adopted for perturbing the input flow from stage gages (Section 4.2.1), with the 

exception that, in this case, there is no error due to the rating curve transformation, because the 

observed water level are directly compared to the simulated ones. 

The water depth for the i-element of the ensemble at time t is given by: 

 𝑊𝐷𝑜𝑆𝑡𝑆,𝑡,𝑖 = 𝑊𝐷𝑆𝑡𝑆,𝑡
𝑡𝑟𝑢𝑒 + 𝑁(0, 𝑅𝑆𝑡𝑆,𝑖)  [63] 

Where 𝑊𝐷𝑆𝑡𝑆,𝑡
𝑡𝑟𝑢𝑒 is the observed water level by the static sensor (StS) at time t, 𝑁(0, 𝑅𝑆𝑡𝑆,𝑖,𝑡)  

is a noise term normally distributed with zero mean and a given variance (𝑅𝑆𝑡𝑆,𝑖,𝑡) at time t 

expressed as: 
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 𝑅𝑆𝑡𝑆,𝑖,𝑡 = (𝛼𝑆𝑡𝑆,𝑖 ∙ 𝑊𝐷𝑆𝑡𝑆,𝑡
𝑡𝑟𝑢𝑒)  [64] 

𝛼𝑆𝑡𝑆,𝑖 is the coefficient of variation related to the uncertainty in the water level measurement, 

assumed equal to 0.02. 

4.3.3. Results and discussion 

Figure 62-Figure 67 show the comparison among the observed and the simulated hydrographs 

for each gauge station. For every flood event, the updating of the state variable improves the 

prediction of the water levels. For the events characterized by multiple peaks, e.g. November 

2005, the updating allows to better follow the level variations, overcoming the lower variability 

of the no-updated simulation, probably due to the coarse resolution of the model. For the 

November 2012 event, the updating improves significantly the prediction of the levels at the 

peak flow. This is numerically confirmed by the performance indexes. Specifically, the NSE 

index is significantly increased for the updated hydrographs compared to the one given by the 

no-updated simulations. Bias in the updated simulation tend to remain constantly equal to 1, 

while in the no-updating, they tends to increase above 1 going downstream because of its 

overestimation of the water levels, especially after the peak flow, in the recession curve . For 

all the simulations, the more the flow is far from to the upstream inflow, the more the R 

coefficient tends to decay, but in case of updating simulation, this decay is mitigated. 

The Quasi-2D model allowed to make a comparison also in terms of potential maximum flood 

extension between the updated and the no-updated simulations, averaged among the ensembles 

(Figure 68).  

Before this comparison, the resolution of the flood maps given by the hydraulic model is refined 

at the same resolution of the LiDAR DEM through the following procedure: 

 The absolute water surface elevation of each node of the domain is interpolated applying 

the Kriging methodology and using the floodplain polygon as buffer for the 

interpolation creating a raster with the same resolution of the LiDAR; 

 The interpolated Water Surface Elevation (WSE) grid is intersected with a high 

resolution DEM and the positive values of the difference between the WSE and the 

DEM elevation are considered as flooded. 

This methodology provides the extension of the potential flooded cells with an higher 

resolution representation than the one of the hydraulic model. In this case the potential 

flooded areas are actually the ones where the water levels underlie the terrain elevation.  
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Figure 62. Observed and simulated hydrographs in case of no-updating and updating applying the DA method. Event: 

November 2005 

 

Figure 63. Performance indexes of the no-update and updated hydrographs. Event: November 2005 
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Figure 64. Observed and simulated hydrographs in case of no-updating and updating applying the DA method. Event: 

November 2010 

 

Figure 65. Performance indexes of the no-update and updated hydrographs.Event: November 2010 
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Figure 66. Observed and simulated hydrographs in case of no-updating and updating applying the DA method. Event: 

November 2012 

 

Figure 67 Performance indexes of the no-update and updated hydrographs.Event: November 2012 
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Figure 68. Comparison between the flooded areas related to the mean water levels simulated with and without updating. 

Event: November 2012.  A= matching areas; B= Flooded areas of updated models and not in the no-updated model;  

 

Figure 69. Plot of the hydraulic profiles for the updated and no updated simulations for three different time steps. Event: 

November 2012 
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Figure 68 shows that the updating of the water levels can modify significantly the maximum 

extension of the flood (about 17 km2 of difference in the whole domain in case of the November 

2012 event), since the planar configuration of the floodplain, in the some areas, makes the 

flooding very susceptible to water levels changes.  

Figure 69 shows the behaviour of the hydraulic profiles for three different time steps for the 

updated and no updated simulations of the November 2012 flood event. The effect of the gain 

function is evident looking at the decay of the reduction of the ensemble spread and the 

correction of the mean water levels. 

Figure 70 shows the values of Bias, RMSE and standard deviation of the ensemble over time 

for the updated and no updated simulations at each stage gage station. For most of the plots, all 

the performance of the updated simulations tends to increase the detachment from the 

performance of the no updated simulations, that tend to decrease during and after the peak flow. 

 Despite the promising results obtained from the three analysed flood events for this case study, 

the application of this methodology has some limitations. The simultaneous launching of tens 

of Quasi-2D hydraulic simulations is quite time consuming, since the overall simulations for 

each flood event requires averagely 4 hours for 100 simulated hours, because every 15 minutes 

of simulation, observations where available to be assimilated. However, part of the 

computational burden is due to the fact that each time step an observation is available, the 

simulation needs to be stopped, saving all the binary and text files that contains information of 

all the cells of the domain and reporting the summaries of the simulation. The performance in 

terms of computational time can be considerably improved with a further modification of the 

hydraulic code that makes more agile the assimilation of new observations without producing 

the whole text files that are not necessary before the final interruption for the simulation. 

Moreover, this computational burden required to adopt an hydraulic model with a coarse 

resolution, whose performance can be considered acceptable for valley filling flood events, but 

it could have some limitations in representing the flow along the floodplain in shallow water, 

where micro topography can have an important role (Bates, 2012). A further test considering a 

smaller domain with a higher resolution 2D hydraulic model needs to be done also to verify the 

stability of the model when water levels corrections (ΔH) are applied in smaller cells 

dimensions (ΔX). 
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Figure 70. Values of Bias, RMSE and the standard deviation of the ensemble during time. Bias and RMSE are calculated 

using the StS observations as reference. STD of the ensemble is calculated from its mean. 
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4.4. Assimilation of Satellite images observations 

4.4.1. Introduction 

The availability of satellite images is not immediate after the acquisition time (Mason et al., 

2012b), since they need to be pre-processed and uploaded by the supplier agency. For this 

reason, these images have not be widely adopted yet in a flood forecasting model, but only for 

hindcasting, reproducing a past flood event. However, Matgen et al. (2010) proposed a SAR-

based flood monitoring system that can be a good starting point for a flood forecasting 

application. Furthermore, the temporal frequency of satellite image acquisition, in the same 

place and with the same inclination, is limited by the number of satellites currently active 

(Schumann et al., 2009). These aspects are strong limitations for the application of the satellite 

images for validating flood models in short time, especially in basins characterized by 

concentration times lower than the frequency of the satellite images acquisition. Nevertheless, 

both the temporal frequency and their availability is quickly improving and these products are 

expected to be more and more used in flood validation. (Bates, 2012). 

In the following section, an expeditious methodology for assimilating water levels from a 

satellite image is presented. The procedure involves a series of different steps that add errors to 

the observation measurement. However, in data scarce regions with high uncertainties on the 

hydrologic model (poor rain and soil moisture data), and the hydraulic model (channel 

geometry, Manning values), this procedure could both improve the simulation and suggest 

potential model correction. 

4.4.2. Methodology 

The assimilation of flow depths derived from a satellite image can be summarised by the 

following steps: 

 Flood detection from satellite image. The Water index (Equation [49]) mentioned in 

Section 3.7 has been adopted for detecting the water extension of the November 2012 

flood. 

 Comparison of the flood extent detected from the satellite image with the ensemble of 

flood extents given by the hydraulic model (Section 4.4.2.2). This procedure requires 

refining the resolution of the water surface elevation layer provided by the hydraulic 

model using a geostatistical technique and intersecting this surface with a DEM. 
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 Derivation of the water elevation profile along the channel from the satellite image 

starting from the ensemble of the water elevation profiles of the hydraulic model 

(Section 4.4.2.3).  

Each of the abovementioned steps brings an uncertainty that has to be taken into account by the 

DA model perturbing adequately the water depths indirectly observed from the satellite image 

(Section 4.4.3).  

All the procedure has been implemented in GIS environment in order to be automated for any 

reference image acquired in any part of the domain at any time step. 

4.4.2.1. Flood detection 

The flood detection application for the satellite image of the case study has been illustrated in 

Section 3.7.2.2 (see Figure 52). 

The extension of the Landsat 7 image covers Nazzano and Ponte del Grillo gages stations and 

its acquisition time is closer to the one the peak flow passes over the two stations (Figure 71). 

 

Figure 71. Position of the Landsat acquisition time compared to the time series of the water depths in Nazzano and Ponte del 

Grillo gage stations 

4.4.2.2. Flood maps comparison 

The satellite detected water extension is compared with the ensemble of the hydraulic model 

maps at the time step of the Landsat image’s acquisition date. Before this comparison, the 

resolution of the flood maps given by the hydraulic model is refined at the same resolution of 

the satellite image through the same procedure illustrated in Section 4.3.3 for representing the 

results of the model at the same resolution of the source DEM: 
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 The absolute water surface elevation of each node of the domain is interpolated applying 

the Kriging methodology and using the floodplain polygon as buffer for the 

interpolation creating a raster with the same resolution of the Landsat image; 

 The interpolated Water Surface Elevation (WSE) is intersected with a high resolution 

DEM and the positive values of the difference between the WSE and the DEM elevation 

are considered as potentially flooded. 

Once the ensemble of the water extensions from the hydraulic model have the same resolution 

of the water extension derived from the satellite image, the two categories of maps can be 

compared numerically using the measurement index given by Equation [6] (𝐹 = (𝐴𝑟𝑒𝑓 ∩

 𝐴𝑚𝑜𝑑)/(𝐴𝑟𝑒𝑓 ∪ 𝐴𝑚𝑜𝑑)) and also the Bias given by Equation [10] 

𝐵𝑖𝑎𝑠 = (𝐴 + 𝐵)/(𝐴 + 𝐶).  

 

Figure 72. Example of the procedure for refining the hydraulic model Flow Depths (FD): from the starting WSE with the 

resolution of the hydraulic model (left), application of the Kriging method using a finer resolution (centre) and intersection 

with a high resolution DEM (right) 

4.4.2.3. Hydraulic profile derivation 

The extension from the ensemble with the higher value of the F index is supposed to have an 

hydraulic profile closer to the real one associated with the extension of the satellite image. If 

the maximum value of F index correspond to a Bias value > 1, its relative hydraulic profile can 

be considered as overpredicting the water extension and vice versa for Bias <1. 
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Figure 73. Planimetric scheme of the comparison between the flood extension derived from satellite imagery and the 

ensemble of the hydraulic model 

For the generic i-cell belonging to the hydraulic model, the observed WSE 𝐻𝑜,𝑡∗
𝑖  at the time (t*) 

of the satellite imagery acquisition, is expressed as: 

 𝐻𝑜,𝑡∗
𝑖 =  𝐻𝑚,𝑘−1,𝑡∗

𝑖− ∙
𝐹𝑘−1
−

𝐹𝑘−1
− + 𝐹𝑘

+ + 𝐻𝑚𝑘,𝑡∗
𝑖+ ∙

𝐹𝑘
+

𝐹𝑘−1
− + 𝐹𝑘

+ [65] 

Where 𝐻𝑚𝑘−1,𝑡∗
𝑖−  𝐻𝑚𝑘,𝑡∗

𝑖+  are the WSE at time t* of the i-cell for the two ensembles of the model 

with the maximum F indexes (𝐹𝑘−1
−  and 𝐹𝑘

+) with Bias respectively <1 and >1. If both the two 

elements of the ensemble with maximum values of the F index are related to Bias < 1 or >1, all 

the ensemble tend to underpredict or overpredict the water levels. This means that the amplitude 

of the model’s perturbation (or the amplitude of the observation error) is not sufficiently 

adequate and the value of the 𝐻𝑜,𝑡∗
𝑖  takes the maximum (if all the Bias are < 1) or the minimum 

(if all the Bias are > 1) of the WSE generated by the ensemble of the hydraulic model.   

4.4.3. Observation errors 

The procedure for extracting the hydraulic profile from the satellite image is affected by a series 

of errors that have to be taken in to account when applied in a DA framework and here listed: 

Error in the water detection from satellite imagery (𝑒𝑟𝑟𝑤𝑑): this error is due to 1) the water 

detection technique 𝑒𝑟𝑟𝑤𝑑,𝑆𝐼 that could overestimate and underestimate the water extension; 2) 

the resolution 𝑒𝑟𝑟𝑟𝑒𝑠,𝑆𝐼 of the satellite image. The error due to the water detection technique 

𝑒𝑟𝑟𝑤𝑑,𝑆𝐼 is dependent on weather condition in case of multispectral images. The most recent 

indexes demonstrated to have very good performance in good weather condition, and the 
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overprediction and underprediction errors can stay below 0.4 % (Fisher et al. 2016), but during 

storm condition this error can be greater. SAR imagery are not affected by the presence of 

clouds and resolution can be much higher than the multispectral images, so the correspondent 

𝑒𝑟𝑟𝑤𝑑,𝑆𝐼 is potentially lower. In this work the error in water detection technique is taken into 

account perturbing the threshold of the Water Index for discriminating between water and non-

water cells. Specifically, considering that the optimum value of the WI is around 0, a range 

between -1 and +1 has been chosen. The resolution 𝛥𝐿𝑟𝑒𝑠 [m] is dependent on the type of 

adopted image. For a Landsat image, the resolution is currently 30 meters (but is going to 

decrease to 15 m for Landsat 9, whose mission will be launched in 2020), while, for a SAR 

image it can vary from 100 meters (e.g. SCANSAR) to 3-5 m (STRIPMAP) or even to 1 m 

(SPOTLIGHT). The planimetric error due to the water detection has to be related to the 

correspondent vertical error of the flow depth, thus to the slope of the computational domain: 

the higher is the terrain slope, the higher is the vertical variation of flow depth in correspondence 

of a unitary planimetric transversal variation. Figure 74 shows the distribution of the local 

slopes along the computational domain, namely the floodplain of the Tiber river. The 

perturbation of the observation 𝑒𝑟𝑟𝑤𝑑,𝑡∗,𝑖 of the Satellite Imagery (SI) of the i-element of the 

ensemble at the time of the image acquisition t* given by the water detection is expressed as: 

 𝑒𝑟𝑟𝑤𝑑,𝑡∗,𝑖 = 𝑁(0, 𝑅𝑆𝐼𝑤𝑑)  [66] 

 Where 𝑁(0, 𝑅𝑆𝐼𝑤𝑑) is a noise term normally distributed with zero mean and a given variance 

(𝑅𝑆𝐼𝑤𝑑) expressed as: 

 𝑅𝑆𝐼𝑤𝑑 = (𝛥𝐿𝑟𝑒𝑠) ∙  (|𝑁(0, 𝑅𝑠𝑙𝑜𝑝𝑒)|) [67] 

 

Figure 74. Distribution of the local slopes [%] in the computational domain.(Standard deviation: 8.9%) 
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Where |𝑁(0, 𝑅𝑠𝑙𝑜𝑝𝑒)| is a positive noise term normally distributed with zero mean and variance 

equal to the one resulting from the distribution of the slopes inside the water detected area (e.g. 

Figure 74) 

Figure 75 shows the relation between the planar error due to water detection and the 

correspondent vertical error. The expression of this error can be applied for a local analysis, but 

in a spatially distributed water detection, the overprediction of a specific zone can be 

compensated an underprediction of another one. This suggests that an improvement of the 

effectiveness of this methodology can be the partition of the computational domain in different 

sub-zones where performing the water detection analysis. 

 

Figure 75. Scheme of the relation between the planar error due to water detection and the correspondent vertical error 

Error of the water surface extraction from the WSE of the hydraulic model (𝑒𝑟𝑟𝐷𝐼): This is due 

to the vertical error of the DEM with which the interpolated water surface elevation is 

intersected.  

There are no information regarding the accuracy of the adopted DEM, so its error has been 

chosen considering literature values for similar DEMs. Leon et al.(2014) used a standard 

deviation of 0.18 m for simulating the uncertainties of a 1m Lidar; Hodgson & Bresnahan 

(2004), determined RMSE values between 0.2 and 0.3 m over different types of land, specifying 

that for scale mapping operations they can increase to 1.5 m. In this work, a standard deviation 

of 0.3 m has been chosen. 

The use of independent normally distributed errors in the spatial domain does not accurately 

represent errors in the elevation data (Raaflaub & Collins, 2006; Heuvelink et al., 2007; 

Brouwer at al., 2017) that usually are characterized by spatially autocorrelated errors. Since 

there are also no information regarding the Correlation Distance Error (CDE) for the adopted 
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DEM, literature values have been considered (CDE =173-253 m from Li et al. 2011; CDE =143-

178 m for a 2 m resolution DEM from Livne & Svoray, 2011; CDE= 4 m for a 0.5 m resolution 

DEM and CDE =50 m for a 10 m resolution DEM from Mudron et al., 2013; CDE = 102 m for 

a 1 m resolution DEM from Leon et al., 2014). A CDE equal to 100 m (as Brouwer et al., 2017) 

has been imposed for perturbing the original 5 m resolution DEM (Figure 76) 

 

Figure 76. Example of simulating DEM errors using a spatially normal distribution (mean=0 m, Std. deviation = 0.3 m) with 

correlation distances equal to 0 (left) and 100 meters (right). 

For each element of the ensemble, the DEM has been perturbed using a spatially distributed 

normal error with zero mean and a variance variable between 0 and 0.3 m following an uniform 

distribution 𝑈(0,0.3). The original DEM with the added errors has been then resampled to the 

satellite image resolution. For assigning a spatially normally distributed error with zero mean, 

variance 0-0.3m and CDE equal to 100 m, the following procedure has been adopted for each 

ensemble:  

 A raster (NR) of random values with a normal Gaussian distribution (µ=0, s=1) is 

created for the entire extension of the DEM; 

 A raster with the statistic (SR) of the NR values within a neighbourhood equal to CDE 

around it is created; 

 The error distribution raster (Err) is created dividing the SR raster by its spatially 

averaged standard deviation and multiplying the result for the adopted variance 

(𝑈(0,0.3)); 

 The Err raster is added to the original DEM 
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Error of the profile derivation from the ensemble of the hydraulic models (𝑒𝑟𝑟𝑃𝐷): equation 

[65] assumes a linear relation between the value of the water elevation of two hydraulic profiles 

and the weight of their relative F indexes compared to the observed water extension from SI. 

However, if there are changes in floodplain slope in the areas between the boundaries of the 

two WSE derived from the hydraulic model, the weighted mean of the simulated WSE using 

the F index as a linear weight could lead to an inaccuracy on the vertical estimation of the WSE 

(Figure 77). This error is as lower as higher in the number of the ensemble, because the WSE 

simulated by the hydraulic model tend to be closer among themselves and the linear 

approximation using equation [65] becomes more acceptable. 

The perturbation error due to the profile derivation 𝑒𝑟𝑟𝑃𝐷 for the i-element of the ensemble is 

expressed as a random uniform noise: 

 𝑒𝑟𝑟𝑃𝐷,𝑖 = 𝑈(−0.25 ∙ ∆𝐻𝑘, +0.25 ∙ ∆𝐻𝑘) [68] 

 

Figure 77. Scheme of the error due to the profile derivation starting from the ensemble of the hydraulic model 

Where ∆𝐻𝑘 is the water level difference between the two hydraulic simulations with the highest 

values of the F index and the 0.25 coefficient limits the oscillation considering the gentle 

elevation changes of the floodplain in the computational domain.  

4.4.4. Results and discussion 

The Data Assimilation methodology using the Landsat image has been applied for the 

November 2012 event. Figure 78 shows that the updated mean water levels at the SI acquisition 

time are slightly raised, and remain higher than the ones of the no-updated simulation for few 

hours. The spread of the ensemble of the updated simulation is significantly reduced in 
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correspondence of the SI observation and this reduction is gradually damped until is nullified 

in about 8 hours Positive effects of the assimilation are evident also from the Bias and RMSE 

over time (see Figure 83). The improvement of the performance of the overall simulation in 

case of SI assimilation are almost negligible (Figure 79), since the correction maintains its effect 

for only few hours, as showed in Figure 83.  

The flood extent is not considerably changed with the correction of the water levels, as showed 

in Figure 80. Specifically, for the entire domain a mean increase of 0.635 km2 of flood extension 

has been observed for the updated simulations compared to the no-updated simulations. The 

reduction of the uncertainty in the extension of the flood at the time of the satellite image 

acquisition after the updating of the model is showed in Figure 81. 

Since the derivation of the observed hydraulic profile has been performed as a combination of 

the simulated hydraulic profiles applying Equation [65], the correction of the water levels has 

been performed for the entire domain, reducing the uncertainties of the water levels for the 

whole hydraulic profile (Figure 82).  

  

Figure 78. Hydrographs of the updated and no-updated simulations assimilating the Satellite Image observation (SI) at two 

stage gages locations. Event: November 2012  
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Figure 79. Performance indexes after the SI observation for the updated and non-updated simulations. Event: November 2012 

 

Figure 80. Comparison between the extension of the areas where the mean water levels underlie the terrain elevation at the 

time of the Satellite Image acquisition for the no-updated and updated simulations. Event: November 2012.  A= matching 

areas; B= Flooded areas of updated model and not in the no-updated model. 
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Figure 81. Boxplot of the areas where water levels underlie the terrain elevation at the time of the Satellite Image acquisition 

for the no-updated and updated simulations 

 

Figure 82. Hydraulic profiles of the mean updated and no-updated simulations at the time of the satellite image observation. 

Event: November 2012 

The use of a multispectral image to assimilate water levels during a flood event is one of the 

most important limitations of the adopted methodology. Multispectral images are in fact 

affected by the presence of clouds, that most of the times cover the sky upon the rivers when 

the flow peak is propagating over them. However, SAR images can easily overcome this 

limitation, being able to penetrate clouds, and, in case of Stripmap and Spotlight products, they 

can have a considerably higher resolution (1-5 m), thus reducing the uncertainty related to the 

water extension. The adopted methodology for assimilating the detected water extension is, in 
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fact, applicable regardless the type of image, with the exception for the water detection 

technique. Another important limitation, as anticipated in Section 1.2, is the satellite revisit time 

of the current satellite missions that, in case of small basins, can be much higher than the time 

that the peak flow takes to travel from upstream to downstream. For example, for the three 

analysed flood events in the Tiber river basin, only one useful satellite image has been found in 

the November 2012 event and the correction of the water levels with the DA method improved 

the performance of the model for only few hours. Furthermore, usually multispectral SAR 

images require time for being processed, so a real time application of the methodology can be 

strongly affected by this aspect. However, as explained in Section 1.2, the progress of the 

technology will overcome these limitations. In fact, new satellite missions and also the 

combination of more constellations will considerably reduce the revisit time, allowing to have 

different images for the same area every few hours. Moreover, recent automatic satellite image 

techniques for extracting the flood extension has been inserted in real time services for flood 

mapping (Martinis et al., 2014).  
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Figure 83. Performance indexes (Bias, RMSE and variance of the ensemble spread) along the lead time after the acquisition 

time of the SI observation. Event: November 2012
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4.5. Assimilation of VGI data 

4.5.1. Introduction 

In the last 5 years, several studies, already mentioned in Section 1.3, have been done for 

validating hydrologic-hydraulic models or reproducing the flood extension starting from VGI 

data. Currently there are few examples in literature of DA application in hydrologic and 

hydraulic modelling using VGI data. Specifically, Mazzoleni et al., 2015, Mazzoleni et al., 2017 

and Mazzoleni, 2017 demonstrated the potential of crowdsourced information for improving 

the real-time flood forecasting using simplified hydrologic and hydraulic models. These 

analyses have been performed generating synthetic intermittent observations adopting a 

specific error behaviour considering the uncertainty of the Crowdsourced data, underlying the 

influence of the quantity and the position of these observations to the model performance. 

Further analysis and inspections need to be done using both more complex models, such as 

Quasi-2D hydraulic models and real VGI data, whose availability is becoming more and more 

abundant because of the tremendous spreading of smart devices and social media accounts.  

4.5.2. Methodology 

VGI observation in terms of water depths could be related to the channel, but most likely to the 

floodplain domain, where people can be directly affected by flood. In case the VGI observation 

is related to a channel cell of the domain, the technical procedure of the data assimilation is 

implemented as explained in Section 4.3.1 for assimilating the observation from static sensors, 

except for the observation errors that will be explained in Section 4.5.3.  

 

Figure 84. Scheme of the floodplain and channel cells corrected by a VGI observation in a floodplain cell 

In case of VGI observation in a floodplain cell or group of cells, the procedure identifies all 

closest channel cells related to the floodplain cells affected by observations. Than the correction 
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is done to all the floodplain cells whose closest channel cells are the ones previously identified 

(Figure 84). 

The water depth updating given by the DA procedure is propagated downstream and upstream 

using the gain function showed in Equation [57]. In case of simultaneous assimilation of 

different VGI data, the gain function can be applied with the same principle proposed in Section 

4.3.1 and illustrated by Equation [61], assigning a weight to the water level correction in a cell 

proportional to the inverse of the distance between the cell and each observation. 

4.5.3. Observation errors 

The observation errors related to VGI are given by the composition of three different factors: 

location error, timing error and the water depth estimation error.  

 Location error (𝒆𝒓𝒓𝒍𝒐𝒄
𝑽𝑮𝑰) 

Usually Data Assimilation models consider the location of an observation as certain. This is 

reasonable for typical oceanographic or hydrologic measurement methods, so the issue related 

to a potential location error is still not much deepened in literature. However, Sengupta et al. 

(2012) implement successfully an adjusted linear Kalman Filter methodology in order to take 

in to account the location error, since their case study involved the assimilation of animal-borne 

sensor data with uncertain location. For their case study, the observation  

𝑦𝑡 is not characterized by the classical random noise equal to 𝑁(0, 𝑣𝑡), but it includes also a 

location error, so that the overall error is given by 𝑁(0, 𝑉(𝑦𝑡|𝜉𝑡, 𝑦≤𝑡−1)) where 𝜉𝑡 is the estimate 

of the true location 𝑋𝑡, expressed as the random variable 𝑋𝑡~𝑁(𝜉𝑡, 𝑉(𝑋𝑡|𝜉𝑡)) and 

𝑉(𝑦𝑡|𝜉𝑡, 𝑦≤𝑡−1) is expressed with  a first-order Taylor approximation as: 

 

𝑉(𝑦𝑡|𝜉𝑡, 𝑦≤𝑡−1) ≈ 𝑉(𝑦𝑡|𝑋𝑡, 𝑦≤𝑡−1) + 

{[
𝜕

𝜕𝑋𝑡
(𝐸(𝑦𝑡|𝑋𝑡, 𝑦≤𝑡−1))]

𝑋𝑡=𝜉𝑡

𝑇

𝑉(𝑦𝑡|𝜉𝑡) [
𝜕

𝜕𝑋𝑡
(𝐸(𝑦𝑡|𝑋𝑡, 𝑦≤𝑡−1))]

𝑋𝑡=𝜉𝑡

} 
[69] 

Where 𝐸(𝑦𝑡|𝑋𝑡, 𝑦≤𝑡−1) is the expectation of the observation 𝑦𝑡 at the true position 𝑋𝑡. With this 

adjustment, the covariance and the Kalman gain are modified considering the new expression 

of the observation error. In the final discussion the authors suggest to adopt their methodology 

also for non linear filtering, such the EnKF. 
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Locational information of VGI, for example tweets, can be uncertain because geotags are 

available for only a very small number of tweets and may deviate from the actual location of 

the observation (Hahmann et al., 2014). 

If the VGI element is a picture, even if the geotagged position is in a wrong place, the image 

could provide landmarks to place the correct position of the observation, whose location error 

can be lower than the resolution of the large-scale hydraulic model, thus negligible. If the VGI 

is a text message from a social platform or it is an image without any recognizable landmark, 

the geotagged position of the VGI can vary considerably depending on its typology. 

McClanahan and Gokhale (2015), found an average error of 1720 m from derived locations 

from the text in tweets, in New York City. 

Brouwer et al. (2017) stated that if the geotagged VGI is pinpointed, the error location, for a 

case study in York (UK), has a standard deviation σ around 50 meters, with outliers even of 

200 meters. If the geotagged location is referred to streets or neighbourhoods, the location error 

has 290 m of standard deviation with outliers that go to 2000 meters. For another case study in 

Jakarta, Brouwer (2016) found that the location error for tweets can be very different if the 

geotagging mentions Point of Interest (POI) (σ=236 m, max≈2000m), streets (σ=659 m, 

max≈4000m), or neighbourhoods (σ=642 m, max≈2000m). Eilander et al. (2016) estimated the 

likelihood of flooded areas by harvesting tweets considering the number of tweets found for 

individual administrative areas rather than knowledge about the actual errors in the data used. 

The perturbation of the VGI observation given by locational error for the i-element of the 

ensemble can be expressed as a noise error normally distributed with zero mean and variance 

𝑅𝑙𝑜𝑐
𝑉𝐺𝐼: 

 𝑒𝑟𝑟𝑙𝑜𝑐,𝑖
𝑉𝐺𝐼 = 𝑁(0, 𝑅𝑙𝑜𝑐

𝑉𝐺𝐼) [70] 

In the adopted hydraulic model, this error can be implemented moving the position of the cells 

to which a VGI observation is assigned considering how much times the location error of the i-

element of the ensemble is greater than resolution of the model both for x and y coordinates 

(Figure 85): 

 (𝑋𝑖
𝑉𝐺𝐼 , 𝑌𝑖

𝑉𝐺𝐼) = (𝑋𝑉𝐺𝐼 + 𝑁(0, 𝑅𝑙𝑜𝑐
𝑉𝐺𝐼), 𝑌𝑉𝐺𝐼 + 𝑁(0, 𝑅𝑙𝑜𝑐

𝑉𝐺𝐼))  [71] 
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Where 𝑋𝑉𝐺𝐼 and 𝑌𝑉𝐺𝐼 are the North and East coordinates of the geotagged VGI. 

 

Figure 85. Example of perturbation error due to location for VGI observation 

The variance 𝑅𝑙𝑜𝑐
𝑉𝐺𝐼 varies depending on the type of geotagging. Considering a similar approach 

to Sengupta et al. (2012), for the time step in which an observation is assimilated, if the location 

of the observation related to i-element of the ensemble (𝑋𝑖
𝑉𝐺𝐼 , 𝑌𝑖

𝑉𝐺𝐼) is different to (𝑋𝑉𝐺𝐼 , 𝑌𝑉𝐺𝐼) , 

the observation at this location is derived considering how it could be if an observation at 

(𝑋𝑖
𝑉𝐺𝐼 , 𝑌𝑖

𝑉𝐺𝐼) is assimilated. Hence, the water depth at location (𝑋𝑉𝐺𝐼 , 𝑌𝑉𝐺𝐼) is given by: 

 𝑊𝐷
(𝑋𝑉𝐺𝐼,𝑌𝑉𝐺𝐼),𝑡+1
+ = 𝑊𝐷

(𝑋𝑖
𝑉𝐺𝐼,𝑌𝑖

𝑉𝐺𝐼),𝑡+1
+ + (𝑊𝐷

(𝑋𝑉𝐺𝐼,𝑌𝑉𝐺𝐼),𝑡+1
− −𝑊𝐷

(𝑋𝑖
𝑉𝐺𝐼,𝑌𝑖

𝑉𝐺𝐼),𝑡+1
− ) [72] 

In other words, the observation at the original location (𝑋𝑉𝐺𝐼 , 𝑌𝑉𝐺𝐼) is measured starting from 

the observation at the perturbed location (𝑋𝑖
𝑉𝐺𝐼 , 𝑌𝑖

𝑉𝐺𝐼) and considering the reciprocal water level 

differences before the updating step of the Data Assimilation. 

 Timing error (𝒆𝒓𝒓𝒕𝒊𝒎𝒆
𝑽𝑮𝑰 ) 

The timing error, namely the error of assigning a specific time to a VGI information is 

composed of two components.  

The error related to the wrong time set in the device: this error is not more than few seconds or 

few minutes and can be negligible considering that for large scale analysis, the change of water 

levels in rivers drained by thousands of square kilometres is almost the same in a time lag of 

seconds compared to the model error and to the water level derivation error.  

The lag time between the information acquisition and the posting time: if the VGI data has not 

text reporting the exact time of the information to be used, or this information is imprecise, the 

time between the information acquisition and its sharing by the user can be considerably high, 

i.e. several hours. In order to take in to account of this error, the model can perturb the timing 

of the VGI information.  
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The time step related to the VGI observation of the i-element of the ensemble can be perturbed 

using the following expression: 

 𝑡𝑖
𝑉𝐺𝐼 = 𝑡𝑉𝐺𝐼 + 𝑁(0, 𝑅𝑡𝑖𝑚𝑒

𝑉𝐺𝐼 ) [73] 

Being 𝑁(0, 𝑅𝑡𝑖𝑚𝑒
𝑉𝐺𝐼 ) a noise error normally distributed with zero mean and variance 

𝑅𝑡𝑖𝑚𝑒
𝑉𝐺𝐼 [hours]. 

If at time step 𝑡𝑘 the i-element of the ensemble is affected by a VGI observation, its 

correspondent perturbed observation is directly given by Equation [34]. If the i-element of the 

ensemble is not affected by an observation at time 𝑡𝑘 but it has been already affected by the 

observation at time 𝑡𝑘−1, its water depth observation at time 𝑡𝑘 should be the value assumed in 

case of a correction given by Equation [34] at time 𝑡𝑘−1. Lastly, if the i-element of the ensemble 

is not affected by an observation at time 𝑡𝑘but it will be affected by the observation at time 

𝑡𝑘+1, its water depth observation at time 𝑡𝑘 should be the value assumed by its variable if no 

updating has been performed to that simulation at time 𝑡𝑘.  

 

Figure 86. Scheme of the perturbation of the ensemble considering the timing error. The continuous lines are the forecasting 

variables; the dashed lines are the auxiliary simulations to set each time step the value of the observation for every ensemble. 

 Water depth derivation (𝒆𝒓𝒓𝒘𝒅
𝑽𝑮𝑰) 

Water surface elevation have been derived by adding the water depth observed from VGI data 

to the local ground elevation (Fohringer et al., 2015; Brouwer at al., 2017). Water depths can 

be derived both from image interpretation or from text messages describing the flood. Brouwer 

(2016) observed that water depths mentioned by tweet messages are generally higher than the 

water depths derived from the visual interpretation of the photographs, with errors lower than 
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55 cm. However, a statistical test could not confirm the mean error in water depth was any 

different from zero, so the water depth estimation errors have been simulated using a normal 

distribution with zero mean and a standard deviation of 20 cm. Mazzoleni et al. (2017) 

reproduced the uncertain nature of water depth observations from synthetic dynamic sensors 

(i.e. citizen with smartphones) expressing their perturbation as: 𝑊𝐷𝑡 = 𝑊𝐷𝑡𝑟𝑢𝑒 + 𝑊𝐷𝑡𝑟𝑢𝑒 ∙

 𝑈(𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥) where 𝛾 is a random stochastic variable function of the time, having minimum 

and maximum values ranging from -0.3 and +0.3. The water depth are then inserted in an 

hydrologic model where, in order to take into account the uncertainty of the observed flow 

hydrograph, a further noise with zero mean and standard deviation equal to 𝑅𝑡 = (𝛼𝑡,𝑠 ∙ 𝑄𝑡
𝑡𝑟𝑢𝑒)

2
  

is assigned to the measured flow. 𝛼𝑡 is a random stochastic variable uniformly distributed in 

time t and space s as 𝑈(𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥) where 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥were set to 0.2 and 0.5, thus 

considering the unpredictable accuracy of the crowdsourced observations. 

4.5.4. Crowdsourced data sample 

For the November 2012 event, three images have been selected for being used in the Data 

Assimilation model. These images are related to three different places located along the 

computational domain in correspondence of the urbanized areas: Orte Scalo, Torrita Tiberina 

and Monterotondo (Figure 87). The selected VGI data, being images in which landmarks are 

clearly visible, are affected by a low location error that can be neglected (𝑅𝑙𝑜𝑐
𝑉𝐺𝐼=0) if compared 

with the resolution of the hydraulic model. On the other hand, the timing of the images is much 

uncertain, thus the time has been perturbed between -30 min and + 30 min for each image. The 

water surface elevation has been derived as a sum of the terrain elevation given by the LiDAR 

DTM and the depth deduced by the visual interpretation of the image. The perturbation of the 

water surface elevation for the i-element of the ensemble is assigned as follows: 

 𝑒𝑟𝑟𝑤𝑠𝑒,𝑖 = 𝑁(0, 𝑅𝐷𝐸𝑀) +  𝑁(0, 𝑅𝐷𝑒𝑝𝑡ℎ) [74] 
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Figure 87. Position of the VGI images for the November 2012 event 

Where 𝑅𝐷𝐸𝑀 is the variance related to the DEM error, assigned equal to 0.3 m (See section 

4.4.2.3) and 𝑅𝐷𝑒𝑝𝑡ℎ is the variance of the water depth derivation from visual interpretation, 

assigned equal to 0.2 m, as in Brouwer (2016). However, a lower limit of 0.05 m has been 

assigned for the water depth derivation in order to not have negative or zero values of water 

depths. The water depth has been deduced comparing the images during the flood with the same 

images get in dry conditions from Google Street View. 

 

4.5.5. Results and discussion 

Figure 88 and Figure 89 show the hydrographs respectively at the closest channel cells to the 

floodplain cells were VGI observation has been captured and at the stage gages locations. In 

the first graphs, the corrections produce an evident decreasing of the simulation spread, but a 

slight modification of the average levels. The correction begins before the time location of the 
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observed VGI data (points in magenta colour) because of the timing error applied to the DA 

model. On the other hand, at the stage gage locations, the corrections are less evident because 

of the gradually decreasing effect of the gain function and because of the damping effect of the 

correction propagation. This aspect suggests that a more significant effect of VGI data for 

improving the model performance can be obtained with a largest number of observation data, 

whose influence on the model is limited by their relatively low reliability that has been assigned. 

The possibility af having an increased availability of VGI data can be considered very likely in 

future, given the high increasing of smart phone and social media users (Figure 3). As in the 

case of assimilating the SI, the overall improving of the performance indexes in case of updated 

simulations can be considered negligible (Figure 90) because of the spatially and temporally 

local effect of the correction.  

Figure 91 shows the profile correction at the time steps when VGI are assimilated in case of 

no-updated and updated simulations. The plots illustrate the effect of the gain function 

(Equation [59]) for propagating the correction upstream and downstream in order to avoid a 

shock in the water profile at the location of the correction. 

 

Figure 88. Hydrographs of the updated and no-updated simulations assimilating the 3 VGI data at the correction locations. 

Event: November 2012 
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Figure 89. Hydrographs of the updated and no-updated simulations assimilating the 3 VGI data at the stage gages locations. 

Event: November 2012 

 

Figure 90. Performance indexes for no-updating simulations assimilating the 3 VGI data. Event: November 2012 



4. Assimilation of different type of observed measurements in a Quasi-2D hydraulic model 

 

 

134 

 

 

Figure 91. Hydraulic profiles at the time of the VGI observations for the no-updated and updated simulations assimilating 

the VGI observations. 

 

Figure 92. Map of the water level correction at the time of the Torrita Tiberina VGI acquisition (09:00 14/11/2012) 
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The correction of the water levels does not considerably affect the flood extension considering 

the mean values of the water surface elevation. For example, at 9:00 on 14/11/2012, namely at 

the time of the correction of the VGI data from Torrita Tiberina, the increasing of the flooded 

areas after the correction is only equal to 0.079 km2. Figure 92 show the spatial distribution of 

the mean water level corrections at the time of the Torrita Tiberina VGI acquisition. The 

correction stays under 8 cm and it is evident how the gain function influences the propagation 

of the correction.
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4.6. Simultaneous assimilation of all observations 

4.6.1. Methodology 

As final analysis of the DA application, the three different types of observations have been 

implemented in the same simulation (November 2012), assigning to each of them their relative 

reliability through the determination of the observation error.  

A failure of the static sensors operation has been simulated, assuming an interruption of the 

gage measurements at the time 11/11/2012, 09:30. This failure is assumed shortly before the 

peak flow, so that the other less accurate observations (SI and VGI) could cover the lack of the 

StS observations. In case of simultaneous observations from different measurement types for 

the same area, the priority is given to the most reliable measurement, thus the measurement 

with the smaller error spread. In this specific case, the Satellite observation occurs in a time 

step that overlaps the VGI observation in Orte Scalo, whose temporal location is distributed 

over time considering the timing error. At the time of the overlapping, the priority is given to 

the SI observation, that is considered more reliable and also spatially distributed. 

4.6.2. Results and discussion 

Figure 93 shows the hydrographs at the stage locations comparing the simulations in case of 

no-updating and updating the three different types of measurements. After the simulated failure 

of the StS, the spread of the ensemble related to the updated simulation gradually widens until 

it reaches the spread of the no-updated one; shortly after the peak flow, the combination of the 

SI and VGI assimilation generate another narrowing of the spread, with small increasing of the 

mean water levels. The correction using the VGI observation has a lower influence than the one 

due to the SI observation, because of the dampening of the correction given by the gain function 

(Equation [59]) proportional to the distances between the stage gages and the VGI locations. 

At the VGI correction locations (Figure 94), the effect of the correction related to the StS is 

dampened by the gain function. On the other hand, the correction of the VGI is more heightened 

at the VGI correction. In particular, in Monterotondo the different spreads due to the SI and the 

VGI correction are quite evident. 

The improvement of the correction is confirmed numerically by the NSE and Bias coefficients 

(Figure 95). The combined assimilation of the three types of observation brought to a better 

overall improvement than the ones obtained in case of assimilation of only SI (Figure 79) and 
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VGI (Figure 90) data. This demonstrates the potential benefit of assimilating simultaneously 

different observations together. 

 

Figure 93. Hydrographs of the updated and no-updated simulations assimilating all types of observation at the stage gages 

locations. Event: November 2012 

 

Figure 94.Hydrographs of the updated and no-updated simulations assimilating all types of observation at the VGI correction 

locations. Event: November 2012 



4. Assimilation of different type of observed measurements in a Quasi-2D hydraulic model 

 

 

138 

 

 

Figure 95. Performance indexes of the non-updated and updated simulations with all types of observations
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5.Conclusions 

In this section, the principal outcomes, limitations and future insights of this research are 

summarized. Specifically, in Section 5.1 the outcomes related to every insight addressed in the 

work are illustrated, from the hydrologic and the floodplain delineation models, to the Quasi-

2D hydraulic model and the application of the Data Assimilation methodology for each type of 

observation and for their simultaneous integration. Section 5.2 is focused on underlining the 

novelties and the limitation of the work, giving also some recommendations for improving the 

analysis and making future developments.
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5.1. Research outcomes 

In this work, an investigation on the integration of hydro-geomorphic models, Quasi-2D 

hydraulic models, traditional, new and non conventional observation data has been performed. 

The main case study of this work is the Tiber River basin, that is the second largest basin in 

Italy, and in particular the Middle Valley of the basin plays a strategic role for the protection of 

the city of Rome and also of small urbanized areas that sometimes are affected by flood related 

damages and fatalities. 

As forcing input for the Quasi-2D hydraulic model in case of small ungauged basins, an 

hydrologic model has been developed and implemented in python environment. This WFIUH 

model, takes the basic inspiration from the one developed by Grimaldi et al. (2012) The IUH 

of the model is calculated considering the distribution of the flow velocities cell by cell as 

function of the slope, land use and soil type. However, the way in which the parameters related 

to the flow velocities are calculated is different from Grimaldi et al. (2012), since the time 

concentration calculated with empirical formulas has not been taken in to account, but these 

parameters are chosen through a calibration and validation considering four small gaged basins 

that are part of the Tiber River basin. The errors derived by the validation in terms of NSE, R 

and Bias are taken in to account for evaluating the model error in the DA implementation. 

The computational domain of the hydraulic model has been delineated using a hydro-

geomorphic model in order to remove the sloping areas of the basin that cannot be affected by 

fluvial floods. This procedure can help the modeller to optimize the extension of the 

computational domain that usually is delineated by the analyst from its experience or using 

standard flood hazard maps. These boundaries of these maps could be limited by levees, 

excluding the some parts of the domain that can be interested by potential flood in case of 

overtopping or levee breach. Besides the delineation of the computational domain for the DA 

application, a further analysis of the floodplain delineation algorithm for large scale flood-prone 

area mapping has been performed as a secondary independent aim of the proposed research. 

The DEM-based model is an application of a geomorphic law that relates the contributing area 

to the flow height as proposed by Nardi et al. (2006). This original formulation involved the 

input of the peak discharge at the outlet, the scaling of the peak discharge along the river 

network and the derivation of the flow height by extracting floodplain cross sections and using 

the Chezy’s law. In this work, the peak discharge of the basin at the outlet has not been involved, 

but the parametrization of the scaling law have been performed through an automatic and 
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recursive numerical comparison of the floodplain polygon extension with the one of the Italian 

standard flood hazard maps. A methodology for choosing the threshold area considering a 

minimum width of the floodplain equal to two cells has been proposed. Moreover, a sensitivity 

of the floodplain model to the DEM resolution and the hortonian stream orders has been 

quantified. This sensitivity suggested to modify the floodplain delineation algorithm in order to 

take in to account the variability of the b parameter with the stream orders, thus improving the 

F index of 6%. The aim of this analysis is to provide a reasonable parametrization for a large 

scale flood-prone area mapping not only for defining the computational domain of an hydraulic 

model, but also for delineating the floodplain extension in the river network on which advanced 

hydraulic modelling studies are absent. For this reason, the optimal parametrization of the b 

parameter has been also extended for the entire Italian territory, imposing a constant a 

parameter and adopting the SRTM 3 arc DEM for all the sub-basins where the standard hazard 

flood maps are available. This parametrization confirmed the average low variability of the b 

parameter, especially for high stream orders, suggesting to perform a larger scale floodplain 

delineation mapping, as illustrated in Figure 35. 

The adopted hydraulic model is FLO-2D PRO, a Quasi-2D model that applies the continuity 

and the momentum equations in 1D in the channel and in 2D when the flow surmounts the river 

banks and goes in the floodplain. The model has been calibrated varying the channel roughness. 

As Data Assimilation method, the Ensemble Kalman Filter has been applied. The method 

requires to generate and ensemble of the state variable considering the model errors, given by 

the input flows from the stage gages and the hydrologic model, and by the model parameters. 

The ensemble size has been chosen applying the criterion proposed by Anderson (2001).  

The observation measurements from stage gages has been assimilated applying the water level 

correction to the channel cell relative to the stage gage and to all the floodplain cells closest to 

the stage gage. The correction is then propagated upstream and downstream with a gain function 

adopting a similar approach to Madsen & Skotner (2005), with the utmost cares of considering 

the contiguous effect of more gages at the same position and of avoiding counterslopes of the 

water levels from upstream to downstream. The assimilation of the stage gage measurements 

led to an improvement of the model performance in terms of bias, Person correlation and NSE. 

Moreover, the spread of the ensemble has been significantly reduced with the updating of the 

state variable. The correction of the state variable caused also an evident variation of the flood 

extent in some flat areas of the floodplain domain. 
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A procedure for extracting the water levels from a satellite image for being assimilated in the 

hydraulic model has been developed. This procedure requires a series of steps. Firstly, a 

technique for extracting the water extension from the satellite image has to be applied. This 

procedure changes depending on the type of remote sensed product adopted. As auxiliary 

analysis for the DA application, the most important water indexes for multispectral images 

gathered from literature have been tested in few case studies in which Landsat images and 

reference maps related to past floods were available. The analysis confirmed that the most 

recent water indexes seem to be the most effective even in case of flood events. The testing of 

the water indexes suggested to carry out, a preliminary analysis using of the thermal bands for 

improving the water indexes performance. That testing has been strongly limited by the small 

sample of observed floods and can be considered as a suggestion for a future study. 

The second step for extracting the water levels from satellite images is the numerical 

comparison, using Equation [6], of the water extension derived from the satellite image with 

the extension of the flood simulated by each element of the hydraulic model ensemble at the 

same time of the SI acquisition. To compare the flood maps derived by the hydraulic models at 

the same resolution of the satellite image, a GIS based geostatistical methodology based on the 

use of an high resolution DEM is adopted. The water levels derived from the SI are obtained as 

a combination of the water levels obtained by the hydraulic model. The assimilation of this 

indirect observation of the water levels took into account the errors of each of the mentioned 

steps, from the water detection technique, to the DEM related errors, to the errors related to the 

combination of the hydraulic profiles of the ensemble of the simulations. 

The results of assimilating the satellite image show a substantial improvement of the model at 

the peak flow, at the time of the SI acquisition. The applied methodology allowed to perform 

the water level correction to the whole domain, since Equation [65] is applied to all the channel 

cells (and their related floodplain cells) that are part of the domain. This improvement is 

gradually decreased with the lead time until it is nullified after about 8 hours. The performance 

indexes relative to the simulation during the whole flood event have a relatively small 

improvement in case of updated simulation, because of the limited amount of hours when the 

effect of the correction can be observed. 

The third application of the DA methodology is with the VGI data as observations. The 

observation error related to these data is due not only to the estimation of the water depth 

deduced by the data, but also to the their location and the timing. The implementation of these 
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two error components in DA application are not well documented in literature. In this work, a 

way of taking in to account these components has been proposed. The application of the VGI 

assimilation has been carried out using three images gathered from social media related to three 

different zones of the domain. These three observations belong to almost the same time window 

that is the morning after the flow peak, when people woke up and observed the ongoing effects 

of the flood expansion. Results show local improvements in the simulated water levels, mostly 

in terms of reduction of uncertainty, but not significant in term of mean average water levels. 

Moreover, as in the case of assimilating the SI, the performance indexes relative to the 

simulation during the whole flood event have a negligible improvement, partly because of the 

same reasons explained in the case of assimilating the SI image, and partially because of the 

local correction of the water levels that is not in the same position of the stage gages, where 

performance is measured. 

Finally, an integration of all the three types of observations in the Data Assimilation model has 

been simultaneously performed. Since the Static sensors observations are the most reliable but 

also the most expensive ones, their functioning has been assumed interrupted before the time 

of the peak flow in order to partially overcome the lack of StS measurements with the available 

SI and VGI observations. The performance indexes of the updated simulation combining all the 

three observations are better than the ones obtained assimilating only SI or VGI data, as 

expected. 
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5.2. Limitations and future developments 

The proposed research has different limitations that have to be mentioned for defining the 

appropriate context of its application and also for providing insights of future development.  

The implemented parsimonious hydrologic model is suited for determining the flow hydrograph 

of small basins characterized by an impulsive response. The represented physics of the 

hydrological process does not directly take in to account of the groundwater flow and the 

presence hydraulic control structures such as dams and weirs. For this reason, the application 

of this model is not recommended for basins whose groundwater component during the peak 

flow is strongly relevant or with one or more control structures that are able to greatly modify 

the flow regulation. However, the uncertainties related both to the input and to the 

schematization of physical processes are taken in to account in the formulation of the Data 

Assimilation model, perturbing the input inflow that has been determined from the hydrologic 

model. Furthermore, the SCS-CN method for determining the infiltration rate can be used only 

for a single rain event, because it does not consider the increase of the infiltration soil capacity 

after the rain event due to evapotranspiration and percolation. This enforces to re-set the soil 

parameters every time an extreme event has to be simulated. More advanced hydrologic models, 

if supported by adequate inputs data, could reduce the uncertainties related to the whole 

hydraulic model error and thus better predicting the flood dynamics. In this context, the 

simplified model is adopted assuming to work in a data poor environment with ungauged basins 

whose contribution need to be taken in to account. 

The floodplain delineation algorithm adopted for defining the hydraulic computational domain 

proved to be a quick tool for an expeditious delineation of the flood prone areas, that can be 

consider as a secondary aim of the proposed research. However, this tool can be affected by the 

terrain analysis issues related to flat areas or spurious elements in the DEMs that could 

compromise the flow direction grid, for example excluding zones that should be connected to 

the computational domain. These issues are well known and have been already addressed in 

literature (Jenson & Domingue, 1988, Garbrecht & Martz, 1997a; Garbrecht & Martz, 1997b; 

Jana et al., 2007, Nardi et al., 2008). A careful check of the obtained results has to be done by 

the modeller especially if flat areas or large size hydraulic structures are part of the 

computational domain. However, the performed parametrization can be extended to larger 

domains to have flood prone area mapping even at global scale, since the freely available DEMs 

cover most of emerged land.  
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The application of a DA methodology to a Quasi-2D hydraulic model able to acquire different 

types of measurements is one of the novelties of this research, since the very few cases of a 2D 

model application in a DA framework are related to only static stage gages (Kim et al., 2012, 

Kim et al., 2013) or to only satellite image (Hostache et al., 2010) and there are also few cases 

of using Crowdsourced data in simplified hydrologic and 1D hydraulic models (Mazzoleni et 

al., 2015, Mazzoleni et al., 2017 and Mazzoleni, 2017). 

Because of the scarcity of new data in the case study, the DA methodology integrating all the 

three types of observation data has been performed for only one historic flood event. This means 

that further testing and analysis need to be carried out for evaluating the robustness of the 

methodology.  

Moreover, the use of a multispectral image as reference map for assimilating the derived 

distribution of the water levels can be considered as a rare occurrence, since in most of the 

cases, during the flood events the Landsat images are corrupted by clouds. This is confirmed 

also by the difficulty of finding an enough number of Landsat images not corrupted by clouds 

and their relative reference maps for testing the current water indexes in literature and new 

potential indexes. In this regard, the analysis carried out in Section 3.7.2.1 can be considered as 

preliminary but not statistically solid; nevertheless the preliminary results of the water indexes 

testing confirm the better behaviour of the most recent ones compared to the previous ones even 

during food events. The limitations related to the multispectral images can be easily overcome 

adopting SAR images, that can penetrate the clouds and can be characterized also by higher 

resolution. 

The assimilation of only three VGI data brought to a slight local correction of the mean water 

levels simulated by the model. In case of updating, the spread of the ensemble is reduced at the 

time of the correction with the VGI observation, but at the stage gages the correction is 

considerably reduced and the performance are not appreciably improved. This behaviour 

suggest that a richer VGI data environment could lead to more significant improvements. The 

possibility of having a richer VGI data environment is very plausible considering the incredible 

increasing of smartphone users and social media accounts (Figure 3). A way of gathering in 

real time or near-real time VGI data is an important scientific challenge (Gao et al., 2011). 

Automatic methods for extracting social media information (e.g. Twitter API) are available, but 

additional time is needed to interpret the information and deduce water levels if users are not 
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trained. Innovative techniques for image interpretation such as distance metric learning (Yu et 

al., 2017) could prove to be of great support for this purpose. 

Finally, the promising results of integrating all the three observations together in the Data 

Assimilation framework confirm the potential of new and non-conventional data for improving 

the performance of flood dynamics even in terms of uncertainties of the model prediction. This 

contribution can be particularly crucial in data scarce environment, where distributed 

measurements of physical variables (rain gages, soil moisture, topography etc.) can affect the 

reliability of the model. 
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