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Abstract

In the last decades, there has been a huge expansion of intensive agriculture crops to attend the enormous demand of food needs with 
increasing population. Intensive agriculture is highly dependent on chemicals, which has caused numerous environmental problems such as 
contamination of aquifers, soils and air, with serious consequences on human health. A challenge in the next decades will be the development 
of economically viable methods to enhance productivity, at the same time that conservation of natural resources, protection of environment 
and production of healthy agricultural products are ensured. Sustainable agriculture requires management of a healthy living soil. Use of 
microorganisms such as cyanobacteria appears as a real alternative to achieve more sustainable managements. In this review, we briefly discuss 
the roles of cyanobacteria in the improvement of soil stability, soil nutrient and moisture status, organic matter content, microbial activities, 
and the growth and productivity of crops. Application of cyanobacteria is especially promising in croplands from dryland regions where high 
tolerance of these organisms to harsh environmental conditions converts them into viable alternatives or complements to more widespread 
conservation practices based on vegetation covers. 
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Introduction
The increase of world’s population and subsequent 

increase in food demand has led to a significant expansion of 
the cultivated land. Global cropland cover represents around 
1370 million hectares or 12% of ice-free land [1]. Traditional 
agriculture including intensive tillage, removal of herbaceous 
cover, use of chemical fertilizers and pesticides have led to several 
environmental problems such as contamination of water bodies, 
damage to soil structure, accelerated oxidation of organic matter, 
loss of nutrients, high erosion rates, and loss of diversity [2]. 
Ultimately, these problems reduce the ability of the agro-system 
to provide vital ecosystem services and reduce the soil capacity 
for C sequestration [3]. It has been estimated an average SOC 
loss of 22% in 50 years due to agricultural erosion [4] and some 
scenarios predict that agriculture could become the main source 
of CO2 released in the atmosphere by 2050 (IIASA’s Integrated 
Assessment Modeling Framework project). Effects could be even 
more dramatic in the Mediterranean basin, where the predicted 
increase in aridity [5] due to climatic change impacts are expected 
to have important consequences on crop productivity and will 
have direct social, economic and ecological consequences, such 
as increase in poverty and food insecurity, land degradation and  

 
depletion of natural resources [6]. As an example, an estimated 
12 million hectares of agricultural land, which could potentially 
produce 20 million tons of grain, are lost every year due to land 
degradation. This urgently demands for interventions to transform 
current food production systems into sustainable and climate-
resilient systems that ensure food supply and at the same time that 
mitigate our impact on the Earth system. To sustain agricultural 
productivity and environmental quality, the presence of a healthy 
living soil with improved quality, able to support vegetation and 
microbial communities and to provide basic regulation services 
is required [7].

Why cyanobacteria? Their role in the environment
Cyanobacteria are prokaryotic oxygenic phototrophs, which 

have the ability to colonize very diverse environments thanks to 
their extraordinary resilience to stressful environmental conditions 
such as extremes of temperature, UV irradiance, drought, salinity 
and rapid hydration/dehydration cycles [8,9]. Cyanobacteria play 
a number of important roles in the environment [10] (Figure 
1). Cyanobacteria increase soil stability and reduce erosion by 
water and wind [11], increase surface moisture by holding large 
amounts of water [12], and fix carbon (C) and nitrogen (N), thus 
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increasing soil fertility (Figure 1) [13]. In arid and semiarid 
environments, cyanobacteria are one of the most important 
microorganisms forming biological soil crust communities [14], 
which are recognized to have major roles in hydrological, erosion, 
biogeochemical and ecological processes [15] and to provide 
critical services to society [16]. Due to these recognized roles, soil 
inoculation with cyanobacteria or cyanobacterisation is proposed 
as a sustainable technique to improve soil quality and combat 
degradation processes in drylands [17].

Figure 1: Scheme showing interactions among biocrusts, soil 
properties and soil and plant communities.

Cyanobacteria for improvement of soil water status 
Cyanobacterial biocrusts are able to affect all components of 

the soil water balance (infiltration and runoff, evaporation, soil 
moisture, dewfall deposition) by modifying soil properties such as 
roughness, albedo, hydrophobicity, porosity and water retention 
[18-20]. In general, cyanobacteria increase water availability by 
increasing infiltration and maintaining surface moisture longer 
compared to bare soils [21]. Their role in soil moisture is largely 
due to the ability of polysaccharide sheaths to absorb up large 
amounts of water. Besides, exopolysaccharides can trap airborne 
particles, leading to the accretion of new sand and clay layers that 
increase the sorptivity of the soil helping water infiltration [22]. 
A stable soil moisture potential down to 20% water content has 
been found in natural crusts, while a decrease of soil moisture 
potential at 80% water content has been found after removal of 
cyanobacterial-EPS from the soil [12].

Cyanobacteria as soil stabilization agents
The importance of cyanobacteria in enhancing the stability of 

soil aggregates has been widely described [23]. This is especially 
significant within the first millimeters of the soil surface and 
strongly improving soil’s resistance to both wind and water erosion 
[11,18,24,25]. Two are the main mechanisms of cyanobacteria for 
soil particle binding: 

i. Mechanically, by entangled filaments thus forming 
a network in the upper soil layers that greatly enhances 
aggregate stability; 

ii. Chemically, by the sticky polysaccharides binding soil 
particles, and favouring soil aggregation [26]. 

Several studies have demonstrated enhanced aggregation 
when soils are inoculated with cyanobacteria [25,27,28]. This 
effect in soil stability has important implications on the reduction 
of water, sediment and nutrient losses by erosion and consequent 
effects in the reduction of water eutrophization, maintaining of 
fresh water pools, reduction of soil C losses and release of CO2 and 
other greenhouse gases to the atmosphere, thus improving soil C 
levels.

Cyanobacteria as regulators of biogeochemical cycles
Cyanobacteria also play important direct roles in CO2 fixation 

and C cycling in soils. Cyanobacteria produce extracellular polymers 
of diverse chemical composition, especially exopolysaccharides 
that can represent 75% of the carbohydrates synthesized by 
biocrusts [13]. Organic matter is incorporated into the soil from 
the decay of cyanobacteria biomass and exopolysaccharides, thus 
also increasing the humus content. It has been shown the increase 
in soil organic C content after soil inoculation with cyanobacteria 
[29]. However, less studied has been the effect of cyanobacteria 
inoculation on soil CO2 fluxes. In a recent experiment in China, 
soils inoculated with cyanobacteria showed 3.3 times higher C 
fixation rates than non-inoculated soils [30]. 

Cyanobacteria, especially the N-fixers cyanobacteria, increase 
the N content in natural desert soils. This fixed N is either released 
to the surrounding environment and make it available to plants 
[31], or either released to the atmosphere in the form of N2O, or 
NO and HONO, which influence ozone and OH reactivity at the 
atmosphere [32]. Phosphorus is the second important nutrient 
after N for plants and microorganisms. Cyanobacteria influence 
the availability of P to plants as they have the ability to transform 
non-usable forms of inorganic-P to a usable form through 
biological processes [33]. Inoculation of the soil surface with 
different heterocystous and non-heterocystous cyanobacteria has 
been reported to enhance total N, available N, and available P [34]. 

Cyanobacteria as promoters of diversity and facilitators 
for other organism colonization 

Due to the improved effects on soil structure and stability, 
nutrient content and soil moisture availability, cyanobacteria 
improve the microhabitat for the soil heterotrophic community 
[31,35,36] and facilitate the colonization of other organisms 
such as lichens and mosses, and the establishment and survival 
of annual and vascular plants in dry environments [37,38]. The 
enriched organic C substrate provided by cyanobacteria also 
becomes the support of a more abundant and diverse population 
of soil microfauna [39]. Hence, biocrusts, and especially well-
developed ones as those dominated by cyanobacteria, are used as 
indicators of biodiversity and soil health [40]. 
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Direct effects of cyanobacteria on plant growth from crops 
have been also reported due to the production of a great number of 
substances such as growth-promoting regulators, vitamins, amino 
acids, polypeptides, biotin, metabolites that act as allelochemical 
agents, proteins, total soluble sugars, antibacterial and antifungal 
substances that exert phytopathogen biocontrol, and polymers, 
especially exopolysaccharides that improve soil structure and 
exoenzyme activity [41].

Use of cyanobacteria in agriculture: current and future 
perspectives

Recent studies demonstrate the viability of inoculating 
soils with cyanobacteria (or cyanobacterisation) as a strategy 
to artificially induce the formation of a biocrust and combat 
desertification processes in drylands [17,30]. However, their use to 
reduce soil erosion and increase soil fertility and C sequestration 
in agricultural lands from drylands has been scarcely explored. 

In the field of agriculture, cyanobacteria have been mainly 
used as biofertilizers due to their role as nutrient supplements 
[42]. Investigations have mainly focused on the use of aquatic 
species as for example Anabaena azollae in the fertilization of rice 
paddies throughout Asia [43]. To a much lesser extent, inoculation 
of diverse N-fixing cyanobacteria species as Nostoc, Calothrix, 
Tolypothrix, and Scytonema in non-waterlogged soils has also 
shown beneficial effects in terms of improvement of quality of soil 
properties and enhancement in plant growth in a number of crops 
such as tomato, wheat, maize, and lettuce [44,45]. Together with 
their recognized functions as natural fertilizers, cyanobacteria 
provide a number of ecological roles that open the range for 
their application in agriculture. The use of cyanobacteria in 
agricultural systems from drylands is especially promising given 
the extreme resistance that these organisms present to the abiotic 
stresses that characterize these regions such as low rainfall, 
high radiation levels and long periods of drought. Application 
of cyanobacteria in arid croplands is expected to have a major 
effect in the maintenance of adequate levels of soil organic matter, 
improvement of soil fertility and reduction of sediment and 
nutrient losses by water erosion, which is one of the most common 
processes accelerating soil degradation in agricultural lands from 
drylands. Besides, inoculation of soils with cyanobacteria can 
provide valuable solutions for sequestration of CO2 and other 
gases involved in global warming. So far, the use of vegetation 
covers has been the main conservation practice in rainfed and 
irrigated crops from drylands in order to combat soil degradation 
processes and prevent the mineralization of organic matter and 
the loss of soil structure and soil fertility in crops [46]. While these 
techniques are known to have an important effect on the increase 
of soil organic C levels, improvement of soil enzymatic activity 
and CO2 sequestering, they have the disadvantage of higher water 
requirements and, in some cases, competition for resources with 
crops. Application of cyanobacteria, isolated or in combination 
with cover crops, could provide very interesting results in terms of 
reduction of soil erosion and increase of soil fertility, at the same 
time that reduce water demands.

Up to now, there has been a low development of these 
techniques due to lack of knowledge regarding the factors 
involved in the success and failure of establishment of inoculated 
cyanobacteria under field conditions. Development of these 
sustainable biotechnological techniques requires efforts of both 
basic and applied research to move from laboratory or indoor 
conditions to their application in the field. Research involves the 
selection of suitable cyanobacteria species that ensures successful 
survival, establishment and performance in the field, as well as 
optimization of the conditions for cyanobacteria culture in order 
to maximize biomass productivity, while minimizing production 
costs. To this regard, it has been shown the possibility of culturing 
cyanobacteria using eutrophicated water sources as culture 
media to sequester the nitrates and phosphorus excess from 
polluted water and their subsequent recycling as biofertilizer for 
plant growth [47]. This would represent an extremely green low-
cost technology, contributing on one hand to bioremediation of 
wastewaters and, on other hand, to supply one of the most limiting 
nutrients for crop productivity, i.e. P, as a biofertilizer. Efforts 
made in the last years have contributed to important advances 
in the application of cyanobacteria as inoculants for dryland soil 
restoration. Further research will allow broadening the range 
of applications, including their use to advance towards a more 
sustainable agriculture in the 21st century, especially challenging 
in dryland regions under current climate change context.
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