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Abstract: The reliability study of a production system allows to obtain important information to determine its 
performance and understand how to prevent failures and dangerous situations. Similarly, the assessment of the 
Human Reliability Assessment (HRA) is crucial in assessing production performance, but its estimation is complex, 
often more complex than the equipment reliability. Complexity lies in the very nature of the human being, who 
reacts in an articulated way to different environmental stress, to changes in company policy and to psychological 
personal situations. In this study, a new methodology to assess human reliability is developed, then a comparison 
with another one method is drawn to observe how they behave in an ever-changing situation. This is innovative, 
especially considering how input data for the method have been achieved. In the present case, the comparison was 
carried out by means of a case study, under uncertain conditions, in a company producing machines for the recovery, 
recycling and recharging of refrigerant gas in automotive air conditioning equipment. The new methodology is based 
on Bayesian Network (BN) while the compared one is SLIM Method. In both cases, the PIFs (Performance 
Influence Factors) were evaluated as starting points, identified and evaluated by means of expert opinions and theory 
of belief functions (Dempster-Shafer Theory - DST). By taking Human Error Probability (HEP) values for each task 
of the process, it was possible to have an overall picture of the impact of the human factor at the process stages and 
a demonstration of which method is best suited to changing information. 
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1. Introduction: 

Direct impact of human role on system reliability gained 
an increasing attention. Human error is considered as a 
part of everyday functioning and it is expected that people 
will make errors, they are some of the most undesirable 
aspects of daily life (A. Noorozi, 2013). Based on literature 
human reliability can be defined as the probability that a 
person correctly performs his task (Kirwan 1998, Kirwan 
1998). There are a lot of factors that can influence a 
person and, for this reason, affect human reliability. 
Despite human being complexity the possible causes for 
human error are needed to be evaluated. Human 
Reliability Assessment (HRA) defines the impact of 
human error and error recovery on a system.  

A wide range of researches devoted to optimum the 
techniques of human reliability assessment (Kirwan 1992, 
Hollnagel 2005, Islam, Khan et al. 2018, Liu, Li et al. 
2018). As a result, several novel methods has been 
proposed. A good literature review is provided in (Kirwan 
1998, Kirwan 1998) in which Five broad classifications 
have been used to show the techniques’ general 
orientation or form as presented in Table 1. Not only 
SLIM but also dozens of applied HRA techniques are 
suffer from two limitations; first, inconsistency and 
uncertainty of expert judgment, second, independence 
between human factors. This paper focused on reducing 
the uncertainty and also accounting dependency between 
human factors.  

Based on these literature (Kirwan 1992, Kirwan 1992, 
Hollnagel 2005) there are three major components to an 
error: 

- External Error Mode (EEM): the external 
manifestation of the error (e.g. closed wrong 
valve).  

- Performance Shaping Factors (PSF) which 
influence the likelihood of the error occurring 
(e.g. quality of the operator interface, time 
pressure, training, etc.)  

- Psychological Error Mechanism (PEM) the 
“internal” manifestation of error (how the 
operator failed, in psychologically meaningful 
terms, e.g. memory failure, pattern recognition 
failure, etc.). 

EEM is easy to identify, while the other two components 
(that can be put together as Performance Influence 
Factors - PIF) need more effort to be recognized. Here, 
three categories are made to divide all the possible PIFs: 
environmental stress, psychological personal situation and 
company policy. 

Table 1: Some of HRA techniques to determine HEP, 
divided in their five categories. SLIM method has a strong 
link with PIFs 

Taxonomies Psychological 
based tools 

Cognitive 
modelling 
tools 

Cognitive 
simulations 

Realiability-
oriented 
tools 

SLIM SHERPA HEART CES HAZOP 

SPAR-H  CREAM  FMEA 

Human error influence has been primarily inspected for 
off-shore application, nuclear plant, maintenance 
application etc. (Abaei, Arzaghi et al. , Lin, Wang et al. 
2014, Toroody, Abaiee et al. 2016, Bell and Williams 2017, 
Islam, Khan et al. 2018, Islam and Yu 2018). Recently, 
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advanced statistical approaches are also applied to reduce 
the inherent uncertainty comes in HRA (Lin, Wang et al. 
2014, Aju Kumar, Gandhi et al. 2015, Mkrtchyan, 
Podofillini et al. 2015, Su, Mahadevan et al. 2015). In this 
regard, BN as a parametric and non-parametric 
probabilistic method has been widely used (Smith, Veitch 
et al. 2017, Zwirglmaier, Straub et al. 2017, Deng and 
Jiang 2018, Leva and Hansen 2018, Ung 2018). 
(Zwirglmaier, Straub et al. 2017) adopted a framework for 
building traceable BNs for HRA, based on cognitive 
causal paths in which Node reduction algorithms are used 
for making the BN structure quantifiable. BN quantified 
through expert estimates and observed data (Bayesian 
updating) however, an approach accounted for modelling 
the related uncertainty with expert judgments is not 
applied. In another work, (Islam, Khan et al. 2017) 
calculated the human error probability in a maintenance 
activity of a marine operation using probability theory 
applied to Bayesian network. The model is tested using 
the data received through the developed questionnaire 
survey of >200 experienced seafarers with >5 years of 
experience. 

The objective of the paper is to develop a comprehensive 
methodology to estimate the HEPs and modelling its 
uncertainty. To this end, an integration of BN and 
classical HRA techniques are made in order to estimate 
the final HEP of a considered engineering process. The 
DST application is used to control the uncertainty 
associated with expert judgements. A case study of an 
automotive equipment manufacturing company is 
determined to examine the methodology. The final result 
of proposed methodology on case study then will be 
compared with a SLIM result to observe how the new 
method fit better to uncertainty and achieve information 
about effective of human factor for each task inside the 
process. 

The structure of remaining part of the paper are as follow: 
section 2 is devoted to materials and methods. In section 
3 proposed methodology is verified by an application of 
case study while in section 4 and 5, discussion and 
conclusion are made.  

2. materials and methods 

The framework of developed methodology is illustrated in 
Figure. 1 . It can be split in two main parts; qualitative 
(grey part) and quantitative analysis (red part).  First part is 
started by process selection and followed by PIFs 
assignment. DST, BN and SLIM are three steps which 
contributing HEP calculation. DST and SLIM Method 
theories improve the BN creating a brand-new 
methodology to determine HEP. Based on dynamic 
feature of BN, the final HEP value can be updated in the 
light of new evidence. Next, each step of proposed 
method is sketched out. 

Selection of	the	process and	
individuation of	his tasks

Dempster-Shafer
Theory

Bayesian Network

Assignment first	level and	
second level PIFs

HEP

IS	THERE	NEW	
EVIDENCE	OR	
INFORMATION?YES

STOP

NO

SLIM	method

 

Figure. 1:  Framework of developed methodology on 
HRA in engineering process 

2.1 qualitative analysis 
Processes can be divided up in different “major” tasks, 
e.g., Design and Development, Purchasing, Production, 
etc. PIFs is defined as basic human error tendencies and 
the possible creator of error-likely situations. PIFs help to 
describe the likelihood of error or ineffective due to 
human performance, so there is a direct correlation 
between the PIFs and performance, meaning that if PIFs 
are optimal, performance will be optimal and 
consequently the likelihood of error will be minimized. As 
(Noroozi, Khakzad et al. 2013) stated that, the list of PIFs 
can be identified according to the problem areas by which 
the error potential increased. In the process of incident 
investigations, PIFs are also studied to establish the 
underlying causes of error for each activity. Literatures 
established up to 12 PIFs in calculation of HEP, however 
in present method, in order to reduce the uncertainty 
associated with qualitative modelling, 18 PIFs are taken 
into account. Some factors have a primary influence on 
the considered task, while other PIFs can influence the 
task and a direct correlation with the previous factors. So 
in this study, PIFs are divided into two level.   

2.2 HEP quantification process 

2.2.1 Dempster-Shafer Theory to determine root 
nodes value 

The theory of belief functions, also referred to as evidence 
theory or Dempster–Shafer theory (DST), is a general 
framework for reasoning with uncertainty, with 
understood connections to other frameworks such as 
probability, possibility and imprecise probability theories 
(Shafer 1976, Beynon, Curry et al. 2000). The theory 
allows to combine evidence from different sources and 
arrive at a degree of belief (represented by a mathematical 
object called belief function) that considers all the 
available evidence. Using expert judgment, the Basic 
Probability Assignment (BPA) (or belief mass) for each 
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second level PIFs from the two experts (one operator and 
one process engineer) are collected. 

BPA is characterized by the following equations 
(Musharraf, Hassan et al. 2013): 

 

 

(1) 

A DST combination rule is then employed to aggregate 
the different knowledge sourced according to their 
individual degree of belief. If there are n different 
knowledge sources that are integrated, the orthogonal sum 
combination rule is (Musharraf, Hassan et al. 2013): 

  (2) 

The DST combination rule applies a normalizing factor 
(1-k) to achieve an agreement among the different 
knowledge sources and denies all conflicting evidence 
through normalization. Given that knowledge sources are 
independent; this integration rule applies AND-type 

operators (product). As an illustration, if the  and 

 are two sets of information for the same event 
collected from two independent sources, the DST 
combination rule establishes equation.3 to combine the 
evidence (Musharraf, Hassan et al. 2013): 

 

 

(3) 

That is the combined knowledge of two experts for an 
event, and k measures the degree of conflict between the 
two experts, which is determined by the factor 
(Musharraf, Hassan et al. 2013): 

 

 

(4) 

 

2.2.2 Bayesian Network: a different approach for 
human reliability. 

An comprehensive review including a verity of 
engineering application is provided by (Kjaerulff and 
Madsen 2008), (Neapolitan 2004) and (Barber 2012). 
Bayesian Network, also called Bayesian Belief Network 
(BBN), is a graphical method, known as a directed acyclic 
graph (DAG). The random variables are denoted by 
nodes and the directed arcs represent the conditional 
dependencies among the nodes. Each node has a 
probability value for each state associated with it.  The arc 
arises from a parent node to a child node. An example of 
BN is shown in Figure. 2 The entire BN can be 
represented using joint probability as given by:  

 

 

(5) 

While nodes and links together define the qualitative part 
of the network, the conditional probabilities associated 

with the variables define the quantitative part. As 
(Musharraf, Hassan et al. 2013) said, the probabilities of 
root nodes are usually given or previously calculated, 
however, in this study, it is made using DST. In case new 
evidence becomes available for chance nodes, BN is able 
to update the joint probability based on Bayes’ theorem: 

 

 

(6) 

 

Figure. 2: Example of Bayesian Network which shows 
the likelihood of every states that nodes can assume 

2.2.3 SLIM 
SLIM Method represent one of the HRA technique to 
calculate Human Error Probability. It is a method for 
probabilistic reliability analysis in which the preference for 
a set of options is quantified based on an expert judgment. 
In this study, SLIM theory is applied to connect the 
information provided by top event and the Human Error 
Probability (see equation (7)). 

  (7) 

Table 2: task analysis for production process and the 
application of expert judgment to assign first and second 
level PIFs to each task 

Task PIFs involved   

1st level 2nd level 

1) Component 
collection 

Deal with 
circumstances  

Work overload 

Clarity of written  

Behavior  Routine 

Work memory 

2) Mechanical 
interior 
assembly 

Physical 
capability and 
condition 

Work overload  

Time pressure 

Task difficult Experience  

Clarity of instruction 

Training  

3) Electronic/ Physical Work overload  
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panel 
assembly 

capability and 
condition 

Experience 

Routine 

Task difficult Time pressure 

Training 

4) Internal 
wiring 
/electronic 
connection 

Training  - 

Work memory Distraction  

Stress 

Task difficult Clarity of instruction 

System interface 

5) Software 
download/ 
transducer 
calibration 

Task difficult Training 

Experience 

Inappropriate 
procedure 

Work memory 

Distraction 

6) In 
production 
preliminary 
tests/product 
completing 

Task difficult Training 

Experience 

Behavior 

Work memory Distraction 

Inappropriate 
procedure 

7) Final test Task difficult Training  

Experience 

Deal with 
circumstances 

Distraction 

Time available  

8) Final 
inspection 

Work memory Time pressure 

Experience 

Competence 
to Deal with 
circumstances 

Communication 

Clarity of signals 

9) Packaging 
/warehousing  

Work memory Time pressure 

Distraction 

Fatigue  

Deal with 
circumstances 

Stress  

Communication 

The methodology can be repeated if any new evidences or 
new information is being available. BN in fact has the 
flexibility to update the probability of the nodes when the 
state of some variable in a network are known due to new 
evidence or information emerging (Musharraf, Hassan et 
al. 2013).  

3. Results  

3.1 Case study 
The developed methodology has been applied to the 
production process of a manufacturing company for 
workshop equipment machines (Oksys s.r.l.). The 
company produce machines for the recovery, recycling, 
recharging refrigerant into A/C system of passengers’ cars 
and trucks. The main sections of a Oksys machine are 
internal compressor, vacuum pump, internal tank, 
solenoid valve and electronic board. The internal 
compressor and a distiller recovers and recycles the 
refrigerant. The vacuum pump dehydrates A/C system 
and internal tank are provided for refrigerant storage. 
Meanwhile, the solenoid valve and electronic board 
operates all devices and opens pneumatic circuit. The 
production average is about 1.500 machines per year. 

3.2 Application of the methodology 
Inside production process 9 tasks is determined as the 
whole process reported in Table 2. Using experts’ 
judgment, the first and second level PIFs for each task is 
assigned, then for each second level PIFs the experts 
assign a probability of occurrence. Two different experts 
inside the company are considered as sources of data, (in 
our case study the experts judgements is made based on 
the information given by the chief of production process 
and the CEO of the company). 

Each PIF has three values related to its likelihood to take 
part of the human error (YES, NO, DK): YES – the PIFs 
has a negative influence on the operator doing the 
considered task; NO – the PIFs doesn’t occur in a 
negative way for that task; DK – we don’t have any 
information about his influence on the operator. The final 
value of probability for each PIF are computed by DST. 

Table 3: Expert judgment using two experts for second 
level PIFs of task N°1 (Component Collection) 

TASK 1.Component collection 

PIF 1st 

level 

Behavior Deal with circumstances 

PIF 2nd 

level 

work memory routine work 

overload 

clarity of 

signs 

  Y

E

S 

N

O 

D

K 

Y

E

S 

N

O 

D

K 

Y

E

S 

N

O 

D

K 

Y

E

S 

N

O 

D

K 

Expert 

N.1 (%) 

12 7

2 

1

6 

21 7

3 

6 11 6

6 

2

3 

15 7

8 

7 

Expert 

N.2 (%) 

19 6

4 

1

7 

15 8

0 

5 7 8

3 

1

0 

17 7

8 

5 

 

Table 4: Calculation of probability of each state for each 
PIFs using DST combination rule 

1) Component collection 

Work 
memory 

routine Work 
overload 

Clarity of 
signs 

Y
E
S 

N
O 

D
K 

Y
E
S 

N
O 

D
K 

Y
E
S 

N
O 

D
K 

Y
E
S 

N
O 

D
K 
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Figure. 3: Drawn Bayesian Network built for task N°1 

Meanwhile Bayesian Network for each task is built, 
initializing the root nodes with the probabilities calculated 
by DST and filling the Conditional Probabilities Table for 
the first level PIF and the entire task. 
HEP is calculated given the correlation with SLI by 
equation (7). Given: 

 
The values of the 2 variables are given as:  

, so the HEP is calculated as: 

  (8) 

4. Discussion: comparison with SLIM Method 

The new methodology can be compared with a direct 
application of SLIM method from the provided set of 
data. The basic principle of SLIM is that the likelihood of 
a particular error occurring in a specific situation is 
associated with the combined effect of a relatively number 
of PIFs (Noroozi, Khakzad et al. 2013). 

The Success Likelihood Index (SLI) of a considered 
activity/task is calculated given by equation (9) as the 
summation of products between rate and weight of each 
PIF. Weight are assigned with expert judgments and rate 
is considered equal to the “failure probability” of each 
second level PIF (that means the probability of YES).  

 

 

(9) 

 

When the two methodologies are applied to a certain 
situation, the results are approximatively the same (see 
Table 5 and Figure 4 ) and there is no real advantage 
preferring one method to the other one. 
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Figure 4: HEP values based on BN and SLIM methods 

Table 5: SLI and HEP final results based on BN and 
SLIM methods for each task 

Task 
No 

SLI(BN) SLI(SLIM) HEP(BN) HEP(SLIM) 

1 0.0661 0.0660 0.339 0.338 

2 0.0721 0.0720 0.341 0.340 

3 0.0728 0.0727 0.341 0.341 

4 0.0566 0.0562 0.336 0.335 

5 0.0757 0.0758 0.342 0.342 

6 0.0584 0.0583 0.336 0.336 

7 0.0608 0.0608 0.337 0.336 

8 0.0727 0.0727 0.341 0.341 

9 0.1037 0.1035 0.352 0.352 

 

a “good” evidence for each task is targeted in order to 
observe the capabilities of each method in case new 
information becomes available.  (for example 
“Distraction” is not present or “Work memory” is 
perfect). The results are presented in  Figure 5 and Table 
6 .  

 

Figure 5: updated HEP values in the light of new 
evidence 

Table 6: updated HEP and SLI summary based on BN 
and SLIM applications in the light of new evidence 

Task 
No 

SLI(BN) SLI(SLIM) HEP(BN) HEP(SLIM) 

1 0.0511 0.0660 0.333 0.338 

2 0.0611 0.0720 0.337 0.340 
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3 0.0629 0.0727 0.337 0.341 

4 0.0860 0.0562 0.345 0.335 

5 0.0759 0.0758 0.342 0.342 

6 0.0639 0.0583 0.338 0.336 

7 0.0526 0.0608 0.334 0.336 

8 0.0507 0.0727 0.333 0.341 

9 0.0139 0.1035 0.320 0.352 

 

It can be seen easily that the new methodology is able to 
change accordingly with uncertainty, while SLIM method 
doesn’t have the flexibility to take new evidence into 
account and consequently to be update. This capability 
can provide more reliable results, permit to find the most 
effective PIF to control human error and detect which is 
the most critical task toward human error: in particular, 
“Packaging/Warehousing” and “Software 
download/transducer calibration”. SLIM looks as an easy 
method to calculate the impact of human error using 
PIFs, but it’s not able to model uncertainty: when rate and 
weight are given by the experts, they aren’t variable and 
can’t adapt itself with new evidence or information. Not 
only SLIM but also dozens of applied HRA techniques are 
suffer from two limitations; first, inconsistency and 
uncertainty of expert judgment, second, independence 
between human factors. Proposed method focused on 
reducing the uncertainty and accounting dependency 
between human factors.   

5. Conclusions 

This analysis can represent a methodology to study ever-
changing attitude of the human factor and its uncertainty, 
considering PIFs. Using BN, it is managed to consider 
interdependency among human factors and reinforce the 
study. The DST gives the opportunity to overcome the 
limitation about subjectivity of expert’s opinion. The 
application of the method is illustrated in a novel 
situation, an automotive equipment company, that 
represent a brand-new area of application. This 
methodology could help a company to decide which kind 
of task improve and how to do it, or what process need a 
special attention toward human factor. Human reliability 
can assume the same importance that systems or machine 
reliability have inside an entire company, and this method 
can provide a complete knowledge about human aspects. 
Results are compared with SLIM Method but this method 
can be compared with every HRA technique that use 
PIFs. This method can be further improved, considering 
not only two experts but an entire pool. 
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