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Abstract: This paper focuses on the development of a new logistic approach based on reliability
and maintenance assessment, with the final aim of establishing a more efficient interval for the
maintenance activities for Unmanned Aerial Vehicles (UAV). In the first part, we develop an
architectural philosophy to obtain a more detailed reliability evaluation; then, we study the
intrinsic reliability at the design stage in order to avoid severe critical issues in the UAV. In the
second part, we compare different maintenance philosophies for UAVs and develop the concepts
of preventive and corrective maintenance that consider the system subjected (until real “hard
failure”) to partial performance degradation (“soft failure”). Finally, by evaluation of the uncertainty
through the confidence interval, we determine the new soft failure limits, taking into account the
general knowledge of the systems and subsystems in order to guarantee the proper preventive
maintenance interval.
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1. Introduction

The problem of reliability of UAVs, like problems of maintenance and safety, have become
extremely important in recent years: engines became more robust, avionics was improved, etc. Despite
this, the approach regarding the reliability of drones is still too fatalistic.

Obviously, by means of reliability analyses which are available nowadays, we consider that the
absence of a driver or person on board does not allow us to design and realize the UAV with less
stringent standards with respect to those used for airplanes. The commercial aviation failure rate
is about 1/105 flight hours, while for drones, it has been verified at about 1/103 flight hours, so a
higher magnitude of two orders. From a different point of view, sophisticated UAV systems have an
overall failure rate of 25%. The aim of the paper, which is an extended version of [1], is to provide new
ideas to increase the reliability of a drone optimizing maintenance activities. For this, we start from
the philosophy of apportioning the percentages of reliability assigned (on average) to each system
(and subsystem), trying to optimize them according to safety requirements. On the other hand, it is
necessary to optimize the time intervals (and consequently the costs) of maintenance, taking into
account that all critical systems must absolutely support preventive maintenance criteria: in these
cases, we are helped by the concepts of soft and hard failure [2,3].
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1.1. Definitions

Here, we will introduce a series of definitions which will be used throughout the paper.

1.1.1. Reliability

Reliability is a dynamic concept which is applicable to many fields, i.e., is not only strictly
technical. For it, a possible definition could be expressed in terms of probability, and in particular,
as “the probability that a system, subsystem or part is able to perform its specific function in a
pre-established time and under pre-established conditions”. One of the most important reliability
metrics is represented by the Mean Time Between Failures (MTBF), expressed in hours of activity;
the higher the value, the more reliable the equipment. For a part or a single subsystem, the MTBF is
often expressed as the reciprocal of reliability. For instance, the MTBF gives information about the
level of unreliability, and it typically shows the number of failures of a piece of equipment over an
established time, i.e., 10,000 h [4].

The Failure In Time (FIT) rate of a device represents the number of expected failures in one billion
(109) device-hours of operation. This parameter is widely diffused in the semiconductor industry [5–7]
and international standards.

1.1.2. Availability

This parameter is extremely important for ‘ready to operate’ system. It measures the number of
times for which the system under study is available or ready with respect to the number of times in
which the system is required. Typically, this parameter is presented in form of a percentage, where 100%
is the theoretical goal [8–11].

1.1.3. The Environment

According to “MIL-HDBK-217F2”, [12] (see Table 1), the following operative environment is
considered for the reliability prediction:

Table 1. Environment definition.

Class 1 Definition 1

AUF
Airborne, Uninhabited, Fighter

Environmentally uncontrolled areas, which cannot be
inhabited by an aircrew during flight. Environmental

extremes of pressure, temperature and shock may be severe.
1 Source: MIL-HDBK-217F2.

2. RAMS Assessment

The Reliability, Availability, Maintainability, and Safety (RAMS) assessment is an important study in
the development of UAVs. This kind of analysis is mandatory if you want to increase the reliability of
a drone, its availability, and to reduce repair and maintenance costs [13]. Once an architecture has been
chosen, the RAMS assessment is very useful to identify all the critical elements that could increase
the failure rate [14]. It also allows us to characterize all the most stressed (or undersized) areas of
the project. Furthermore, the reliability prediction, for example, makes it possible to decide whether
to duplicate a safety critical system or to put it in derated conditions, with great savings in terms of
weight and power consumption [15–19]. A comparison between the well-known but always efficient
technique of redundancy and the improvement of reliability must consider important remarks such as
norms, costs, limitations of spaces, and so on. The reliability analysis helps us to assess the value of
failures [20]. For instance, if some failures of a specific component happen in a wider system, the failure
rate, preventively predicted, is useful to establish if the number of failures which is adequate to the
overall number of components present in the system. Alternatively, it can individuate a particularly
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problematic section [21–24]. Finally, this kind of evaluation can be used to assess the probabilities of
findable damage events in a FMECA (Failure Modes, Effects and Criticality Analysis).

3. How Reliable Does a Drone Have to Be?

During a typical mission, some failures are more critical than others: the loss of longitudinal
stability, the loss of payload data, or the turning off of the position lights are not of the same criticality
level. Therefore, it is necessary first to establish various levels of increasing gravity associated with
the fault [25]. Moreover, according to the specific kind of mission and the specific kind of UAV,
it is necessary to subdivide failures into subcategories [26]. Then, for each scenario, suitability and
preventively forecasted, it is necessary to define a minimum acceptable level of reliability. Finally,
even for the aircraft, it is necessary to define the criteria for the level of reliability, in terms of a level
which is strictly linked to the type of failure [27–31].

• Catastrophic failures: for these kind of failures, a crash of the drone is certain while injuries or even
the death of persons on the ground is possible.

• Severe failures: heavy damages are expected and the probability of repairing the drone is low.
• Moderate failures: cause a moderate degradation of the drone’s functions, which could lead to

aborting the mission; however, they are not cause of severe damage.
• Soft failures: cause light degradation of the drone’s functions, but do not lead to the cancellation of

the mission.

The intrinsic reliability of an apparatus (in our case, a drone) is the reliability studied a priori [32];
however, unfortunately, a reliability study is often realized after the design phase. This approach can
lead to many problems during the management of the project, because a reliability study highlights a
series of sensible points, and produces a series of recommendations that are usually forwarded to the
designers. These should allow them to carry all the necessary modifications to the project in order to
improve it [33–38]. The perspective is completely different in the case of intrinsic reliability: in fact,
the knowledge of the failure distribution of a system gives rise to the possibility, directly during the
design stage, of taking specific action to reduce criticality and upgrade the critical parts or subsystems
in advance, thereby increasing the overall level of reliability [39]. This, surely, increases the level of
responsibility of the designers, but at the same time, decreases the risk of criticalities (also called Single
Point Failures or briefly SPF) that might happen in future studies [40–43].

This way of seeing the design phase, i.e., in which a reliability study is effectively used to help
the project, means that the figure of the Quality Assurance Responsible is frequently present from the
beginning. Reliability analyses primarily aim to find the minimum limits for the requirements that
allow UAVs to have at least a magnitude of better reliable [44].

Another benefit of these analyses is that they help us to understand which components or parts
of a specific subsystem are the most unreliable, and which are the most critical to the system [45–50].
In Figure 1 a failure rate comparison between five different aircrafts is shown: Northrop Grumman
RQ-4 Global Hawk in gray, PR-3 in orange, General Atomics RQ-1 Predator in blue, AAI RQ-2 Pioneer
(for the drone category) in light blue and General Dynamics F-16 jet fighter in yellow.
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Figure 1. Failure Rate vs. Flight hours for the F-16 and some common drones (figure extrapolated on
the data of: Barnard Microsystems Inc. et al. [5]).

4. Reliability Assessment Hierarchy

Considering all the possible main systems and subsystems that form an UAV, Figure 2 depicts the
UAV hierarchy of the reliability assessment, showing their failure distribution every 103 faults [51,52].

Figure 2. The Hierarchy of the Reliability Assessment (every 103 system failures) for UAVs.
The structure is subdivided into main systems (yellow), subsystems (blue), all together representing
the UAV system (orange); (figure extrapolated on the data of: Barnard Microsystems Inc. et al. [5]).

The following subparagraphs show how the failures are categorized, taking into account the
function of each subsystem.

4.1. Ground Control System (GCS)

The Ground Control System, also called GCS, is the part with the highest maintainability of the
whole UAV system; this is because it is easily accessible at any time during the mission. It is mainly
composed of COTS (Commercial Off-The-Shelf) components with large inventories. This does not
mean that it is less safe; the fact that it is ground-based allows the introduction of a good percentage
of redundant systems with hot and cold stand-by configurations, reducing the off-line time nearly to
zero [53].
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4.2. Mainframe

The UAV mainframe is by far the strongest part of the whole system; this is designed with great
attention by means of CAD systems, which allow the developers to study and evaluate the loads of
the structure a priori. In general, the mainframe is appropriately oversized; in fact, even if this leads to
extra weight, it is undoubtedly a small price to pay for a safer structural system. Generally, the most
common failures occur due to fatigue cycles, soldering brazing, or untreated rivets [54].

4.3. Power Plant

The power plant itself is a rather reliable mechanical system, even if the subsystems could show
some breakdowns. Especially in long-term missions, insufficient fuel vaporization or poor cooling can
lead to overheating of the engine, or fatigue that could eventually lead to failure [55,56].

4.4. Navigation System

This system is the most important part of the vehicle; it is characterized by a high failure
rate compared to other systems. Nevertheless, it has the highest number of hot redundant
subparts/subsystems. Therefore, due to the high level of electronic miniaturization, it is possible
to replicate a large number of its subsystems [57] making it intrinsically reliable. The Hot (standby)
redundancy is a method in which one system runs simultaneously with an identical primary system.
Upon failure of the primary system, the hot standby system immediately takes over, replacing the
primary system.

Moreover, due to the strong integration derived from the experience of the development
of automotive applications, the aerospace world enjoys highly-reliable electronic components for
navigation (as Inertial Navigation System—INS and Global Positioning System—GPS receivers).
A second benefit comes from their high computing capacity that allows a parallel computing
architecture, greatly increasing the overall reliability [58].

4.5. Electronic System

In the previous discussion, we have deliberately separated the electronic system from the
navigation system. Even from a purely mechanical point of view, it may not be so evident how
they are separated from a functional and philosophical point of view. In fact, in order to prevent
possible interference, the electronic system separates all the electronic circuits which are not closely
related to navigation, such as the power supply and conditioning, to manage the telecommunication
system to the outside (satellite communications, ground-vehicle data links, etc.). Even in this case,
the hypothesis of redundancy has to be avoided because, for example, the weight of the harness would
be excessively high for such a small vehicle [59].

4.6. Payload

The payload is not contained in its own conditioned bay inside the fuselage, but is placed
outside in a mobile turret inserted directly in the aerodynamic flow. The turret itself contains several
electro-optical sensors like a thermal imaging camera, a Low Light Level Television, a laser tracer
etc. From a mechanical point of view, the turret is gimballed, allows ± 90◦ elevation, and 360◦ of
continuous azimuth rotation; the system also contains the ancillary electronics of the sensors and the
movement actuators.

The turret is thermostatically controlled to ensure optimal operation of the electronics and to
prevent freezing of the kinematic devices in high-altitude flight conditions. For these applications,
the electronics will be chosen with consideration of their intrinsic reliability and highest temperature
operative range. The geometry of the cases of the components must be chosen carefully, as the aircraft
is subjected to frequent and abrupt changes in altitude, and therefore, pressure, that could stress
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some components. It’s important to note that to put all the equipment into a sealed and pressurized
container would be too burdensome from the point of view of weight.

5. Multiplexed Systems

Redundancy of the most critical systems does not always lead to an increase in the reliability of
the whole system. In fact, the redundancy of a quite unreliable system means increases in the total
failure rate. In other words, the overall safety of the system will be increased, but certainly not the
reliability. A higher failure rate brings an increase in expenses for spare parts and in person-hours,
increasing operating costs [11].

On the other hand, the duplication of the most critical or vital systems is not the ideal solution,
as it increases the cost and the complications of the system, so it is necessary to find another way to
improve reliability [60].

A classic case is that related to propulsion systems: many UAVs have only one engine, but this is a
highly reliable system, even if its loss compromises the entire mission. The installation of two engines
would seem to be an ideal solution because the loss of one of these would not compromise the final
mission. However, the duplication of a motor means the duplication of all ancillary systems. This in
turn leads to a decline in the system’s overall reliability [61].

The ideal solution is based on two keywords: oversize and derating. We will therefore choose an
engine with characteristics that exceed the UAV requirements, and will work under ordinary operating
conditions, i.e., derated, or in a very “relaxed” way. In this case, we will see that, while remaining a
single point failure according to FMECA analysis, the engine has a considerably higher reliability, as it
will work at less than 50% of its capability; this condition reduces the rate of failure occurrence.

6. The UAV as a Complex Maintenance System

Now we consider an UAV as a complex aerial system composed by m subsystems (or subparts)
defined as J = {1, 2, . . . , m}, and consisting of lj components. At the component level, we can
continuously control and check the degradation of a defined collection of physical parameters.
The physical conditions degrade monotonically during use, and are restored by maintenance actions.
For each component or subpart i ∈ I, Xi(t) indicates the degradation trajectory in a fixed time interval
t ∈ [0, ∞). Soft failure can be defined as the ability of a component, part, subsystem or system
to continue its work even if with degraded performance, i.e., up to the point when its reduced
performance exceeds a specific fixed threshold Hi (with Xi(t) > Hi), called soft failure one. Typically,
components subjected to thermal stress or mechanical degradation are hit by soft failures.

When Xi(t) exceeds Hi, a soft failure happens between two maintenance points (n − 1)τ and nτ.
This implies an action of corrective maintenance (CM), which has a specific cost (ci

CM) on the critical
component. This action is executed in a fixed time called maintenance point nτ, as shown in Figure 3.

Figure 3. Degradation threshold of a system with a cycle of corrective maintenance only.
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The period between the occurrence of the soft failure point and the maintenance point nτ is defined
as “soft failure period”. This period defines loss of quality in production or poorer performance with a
cost rate indicated with ci

P [61].

6.1. Degradation Model for an UAV

In this section, starting from the UAV degradation model, we will arrive at defining limits and
probabilistic criteria to determine the optimal maintenance interval that does not exceed the corrective
maintenance threshold: maintenance that yields effect when the gradual damage is intolerable by the
agreed-upon operational standards.

The random coefficient model is used to evaluate the level of degradation for the ith component
for a time t̂∈[0, ∞) in a cycle of single maintenance Φi = {φi,1, . . . , φi,Q}, Q ∈ N, then a set of random
parameters Θi = {θi,1, . . . , θi,V }, V ∈ N following a normal (Laplace–Gauss) distribution [62].

The probability that the degradation at time Tχ reaches the threshold χ before time t̂ is:

Pr
{

Tχ < t̂
}
= Pr

{
X
(
t̂ ; Φi, Θi

)
> χ

}
, ∀i ∈ I (1)

The calculation of this probability is necessary because, in the next discussion, we will introduce a
certain degradation profile and calculate the probability that this has to overcome the various critical
failure thresholds.

We consider a complex system with the following degradation path (this type of degradation has
been chosen because it is typical of this kind of complex systems):

Xi (t, Φi, Θi) = φi,1 + θi,1·t̂φi,2 (2)

where Φi = {φi,1, φi,2} and Θi = {θi,1} then:

Pr
{

Tχ < t̂
}
= Pr

{
φi,1 + θi,1·t̂φi,2 > χ

}
(3)

Pr
{

Tχ < t̂
}
= Pr

{
θi,1 >

χ − φi,1

t̂φi,2

}
(4)

For a random variable, θi,1 ≥ 0, we evaluate the cumulative density function Fθi,1 :

Pr
{

Tχ < t̂
}
= 1− Fθi,1

(
χ − φi,1

t̂φi,2

)
(5)

Now we evaluate the probability in which, between the two time points (n − 1)τ and nτ,
the control limit Ci is reached:

Pr{Xi((n− 1)τ; Φi, Θi)} ≤ Ci < Xi(nτ; Φi, Θi ), ∀n ∈ N (6)

that is equal to:
Pr{(n− 1)τ} ≤ TCi < nτ, ∀n ∈ N (7)

The soft failure threshold Hi is reached before time point nτ only if it has satisfied the
following condition:

Pr{Xi(nτ; Φi, Θi ) > Hi} = Pr
{

THi < nτ
}

, i ∈ I (8)

Moreover, assuming the degradation path as monotonic (typical of this kind complex systems),
we have: Ci < Hi with and TCi ≤ TH .
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6.2. Uncertainty of Degradation in Corrective Maintenance

If (n− 1)·τ ≤ Ci < nτ we have two occurrences for the maintenance decision at time
nτ: preventive maintenance (PM) (see Figure 4a) and corrective maintenance (CM) (see Figure 4b)
according to: {

Preventive i f : Ci ≤ Xi(nτ) < Hi
Corrective i f : Xi(nτ) ≥ Hi

(9)

Figure 4. (a) Maintenance limit of preventive maintenance; (b) maintenance limit corrective
maintenance.

The probability that a preventive maintenance happens at the specific time nτ after the degradation
level of the ith component has reached the control limit (n− 1)·τ ≤ Ci < nτ is [63]:

Pr{PM at nτ} = Pr
{

THi > nτ, (n− 1)τ ≤ TCi < nτ
}

(10)

Now we consider the monotonic expression in the preventive maintenance: consider, for example,
what is happening around the monotone function immediately after the 3t maintenance interval (see
Figure 5a).

Figure 5. Uncertainty evaluation of corrective maintenance: the inspection point at 3t in detailed and
expanded as a confidence interval.
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After the maintenance interval, since one of the returns from the field of intervention is the
degradation state of the systems and subsystems, we know exactly what the degradation status of the
systems and subsystems is. In other words, we can quantify as Xi(3t) as the status of the probability at
the moment we are studying.

Immediately after the “3t moment”, we have a view of the drift in time of the value: a band of
uncertainty affects the probabilistic function (supposedly monotonous). The uncertainty is due to the
capability of controlling the state of degradation of systems (and subsystems) limited by our confidence
interval (see Figure 5a–c) in terms of knowledge of the complete system.

Now we consider X1, . . . , Xn as samples of the subsystems degradation status of normal density
after the revision Xi(3t) with unknown mean m and variance σ2 (known) and sample average X.
We have:

Xi(t)+Xi(t) α∫
Xi(t)−Xi(t) α

1√
2π

e
Xi(t) 2

2 dX = Xi(t) (1− α) (11)

Therefore, we have:

Xi(t)(1− α) = Pr

{∣∣∣∣√n
σ
·
(
X−m

)∣∣∣∣ ≤ Xi(t) α

}
(12)

Explaining the second member (see Figure 6):

Xi(t)(1− α) = Pr

{
X− σ√

n
·Xi(t)α ≤ m ≤ X +

σ√
n
·Xi(t) α

}
(13)

Figure 6. Confidence interval area considered for uncertainty.

We have for the confidence interval of level Xi(t)(1− α) = for m:[
X− σ√

n
·Xi(t)α, X +

σ√
n
·Xi(t) α

]
(14)

It is necessary to treat the limitation of this method: the term Xi(t) − Xi(t) α can never be
lower than Xi(3t). This is because the system, despite monotonic evolution in a more optimistic
than linearized way (Figure 5b—green line), cannot, for logical reasons of entropy, improve over
time, or have a negative degradation. This condition is only theoretically possible, and is due to the
uncertainty of the state of knowledge of the system. Therefore, to restore the physical consistency of
the uncertainty evaluation, it is necessary to add the condition:{ [

X− σ√
n ·Xi(t)α, X + σ√

n ·Xi(t) α
]

Xi(3t) ≤ Xi(t)− Xi(t) α
(15)
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Our prediction of the state of health of our system cannot disregard the knowledge of the state of
the subsystems: their number and state influence the possible uncertainty of the value Xi(t).

6.3. The Thresholds of Preventive Maintenance

Considering the above calculations, when we want to evaluate the occurrence of the preventive
maintenance intervals, we need to consider the confidence interval in terms of knowledge of
the subsystems.

Reconsidering the confidence interval and the n cycle, the second part of the expression
(9) becomes:

Xi(nt) + Xi(nt) α < Hi (16)

Obviously, the real problem happens when the threshold Hi is exceeded:

Xi(nt) + Xi(nt) α < Hi (17)

so:
Xi(nt) (1 + α) < Hi (18)

And the new sof failure limit is:

Xi(nt) <
Hi

1 + α
(19)

Therefore, it is necessary to keep the confidence interval as narrow as possible.
Knowledge of the subsystems is therefore essential for evaluation: we risk calculating the total

reliability of the system without evaluating the total accuracy that, in the worst case, would lead to a
wrong assessment of preventive maintenance or an incorrect evaluation of preventive maintenance.
Obviously, this is an undesirable situation.

The condition for the threshold Ci is:

Ci ≤ Xi(nt)− Xi(nt) α (20a)

so:
Ci ≤ Xi(nt) (1− α) (20b)

and:
Ci

1− α
≤ Xi(nt) (21)

Now, the first member of the (9) becomes:

Ci
1− α

≤ Xi(nt) <
Hi

1 + α
(22)

Now we can objectively quantify the level of accuracy needed to define the preventive
maintenance intervals.

It is still useful to specify the function from a graphical point of view. Now consider the upper
zone of Figure 4a in detail (see Figure 7):

From Figure 7a, the correlation between confidence and useful interval for preventive maintenance
is evident (in Figure 7b the detail is enlarged and the confidence intervals evidenced): the lower the
confidence, the higher the probability that corrective maintenance is necessary.
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Figure 7. Uncertainty evaluation of corrective maintenance: original interval area (red) and the
evaluation of the confidence interval (green).

6.4. The Failure Rate Paradox

Now let’s examine the real case of two completely different drones: a commercial drone and a
surveillance drone. Both have on board, as payload, a system of stabilized cameras: in our reliability
study, we will examine and compare only the systems and subsystems which they have in common.

Let us now compare the reliability of the average commercial drone: a reliability profile has been
created as a weighted average of the data present in our database, created through previous research.
This is compared to an “average” military drone created according to official sources [64]. Furthermore,
the reliability of all subsystems is compared; it is immediately evident that the distribution is different.

According to Table 2, it is absolutely evident that the military drone, due to its complexity, has a
reliability that is considerably inferior to that of a commercial drone which is certainly not built with
stringent parameters and requirements.

Table 2. Comparison between the reliability of a commercial and a military drone.

Commercial Drone (a)
System Description λP System FIT (F/106 hrs) MTBF (hours) Incidence (%)

Ground Control System 2.00 500,000.0 6.62%
Mainframe 2.77 360,984.8 9.16%
Power plant 9.94 100,603.6 32.88%

Navigation system 9.41 106,269.9 31.13%
Electronic system 5.01 199,600.8 16.57%

Payload 1.10 909,090.9 3.64%
λ TOTAL = 30.23 FIT

MTBF (RTotal) = 33,079.50 Hours
1378.31 Days

49.23 Months
Military Drone (b)

System Description λP System FIT (F/106 hrs) MTBF (hours) Incidence (%)
Ground Control System 14.00 71,403.6 27.30%

Mainframe 2.77 360,984.8 5.40%
Power plant 21.08 47,428.7 41.10%

Navigation system 7.39 135,369.3 14.40%
Electronic system 3.44 290,942.9 6.70%

Payload 2.62 382,219.2 5.10%
λ TOTAL = 51.30 FIT

MTBF (RTotal) = 19,493.18 Hours
812.22 Days
29.01 Months

As is known, the commercial drone is composed entirely of COTS parts. Although there are not,
for example, “MIL” reliability-level electronic components, the reliability of commercial electronic
components is now extremely high, even those with plastic casing. This is also a consequence of the
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continuous research in the automotive field, where the operating temperature range is quite high.
All of these aspects, combined with low construction complexity, lead to a high reliability level.

The military drone, on the other hand, enjoys a high degree of redundancy and a knowledge of
high quality components, but being an extremely sophisticated and complex product, it is heavily
penalized from the point of view of the reliability figure.

It must stated, however, that the capabilities of the latter compared to the commercial drone are
noteworthy: greater range, greater autonomy, higher payload, and resistance to soft failure. These are
all characteristics that are transparent to the calculation of reliability, and that then, eventually, lead to
the paradox.

In light of these considerations, we review, in Figure 8 (Figure 8a refers to “drone a” and Figure 8b
refers to “drone b”), the previous confidence interval area considered for uncertainty in Figure 6:

Figure 8. Confidence interval area considered for uncertainty: commercial drone (blue) and military
(yellow).

Due to the good knowledge of the systems and subsystems of the military drone (hereafter
referred to as “drone b”), we can have the basis for a much wider Gaussian, and conversely, the value
of α.

Reviewing the interval in Figure 7, for the two different drones we have the following uncertainties
(see Figure 9):

Figure 9. Uncertainty evaluation of corrective maintenance: original interval area (red) and the
evaluation of the confidence interval (green).

Considering “Drone a”, although its reliability is considerably higher, the knowledge of the
components is lower. All this is reflected, from the analytical point of view, in the “shrinking” of the
green band (see Figure 9), or the limits of preventive and corrective maintenance which are very close
to each other. From the real point of view, this means that if we do not want to overcome the new limit
Hi/(1 + α), it is necessary to slightly reduce interval t, with a consequent increase of maintenance
costs and a decrease in the general figure of availability.
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The “Drone b”, (military) has, despite a bit of “shearing” by the α factor dropping a good margin,
an increase in the frequency of the maintenance cycle, which will always remain modest.

7. Conclusions

In this paper, the uncertainty in the choice of the preventive maintenance intervals with respect
to the soft failure threshold have been investigated, taking into account the reliability and safety
requirements for Unmanned Aerial Vehicles (UAV).

First, we examined the state of the art of the philosophy of the UAVs and the roles and capabilities
of operators. However, the increase of their use is strongly accompanied by higher failure rates
compared to conventional, manned airplanes.

Then, we correlated the reliability of the drones with the maintenance intervals: a higher failure
rate leads to very expensive repairs. In order to improve safety, the duplication of the troublesome
elements is not the only solution. Therefore, it is necessary to obtain the required reliability level by
also using high-quality, derated components, combined with a very detailed selection of a redundant
subsystem during the design phase.

The innovation of our paper passes first through the review of the optimization of the probabilistic
functions (under the conditions of a real case). Then, we find the optimal point of maintenance. It will
be necessary to take into account a very large number of variables for all systems and subsystems in
order to minimize uncertainty.

Finally, by evaluating uncertainty through the confidence interval, it is possible to accurately
determine the maintenance intervals in order to not exceed the new soft failure limit, that takes into
account the general knowledge of the systems and subsystems, and to remain always within the
preventive maintenance limit time (and budget).
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