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Nonrational Symplectic Toric Reduction

Fiammetta Battaglia and Elisa Prato

Abstract

In this article, we introduce symplectic reduction in the framework of nonra-
tional toric geometry. When we specialize to the rational case, we get symplectic
reduction for the action of a general, not necessarily closed, Lie subgroup of the
torus.

Introduction

If we have a symplectic manifold that is invariant under the Hamiltonian action of
a Lie group, symplectic or Marsden–Weinstein reduction [11] allows to construct a
lower dimensional symplectic manifold by reducing its symmetries. This fundamental
operation has inspired a wide number of applications throughout geometry and physics.

In this article, we extend symplectic reduction to the context of nonrational toric
geometry. We recall that the Delzant theorem [6] establishes a correspondence be-
tween smooth polytopes ∆ ⊂ (Rn)∗ and compact symplectic toric manifolds, meaning
compact symplectic 2n–manifolds with the effective Hamiltonian action of the torus
Tn = Rn/Zn. One of the remarkable features of this theorem is that it provides an
explicit construction of the symplectic manifold from the polytope, following the same
principle that allows to construct a complex toric variety from a fan. When general-
izing this construction to simple convex polytopes that are not rational, the resulting
spaces turn out to be quasifolds [12, 13]. Quasifolds generalize manifolds and orbifolds,
and they are typically not Hausdorff. Locally, they are quotients of smooth manifolds
by the action of countable groups. Similarly to what happens in the smooth case, the
quasifolds M that one gets from the generalized Delzant construction are compact,
symplectic, 2n–dimensional, and are endowed with an effective Hamiltonian action of a
quasitorus of dimension n. A quasitorus of dimension n is the abelian group and quasi-
fold given by the quotient Dn = Rn/Q, where Q is a quasilattice, namely the Z–span
of a set of real spanning vectors in Rn. We refer to these spaces M as symplectic toric
quasifolds.

The idea here is to reduce symplectic toric quasifolds of dimension 2n with respect
to the action of any subgroup K = k/(k∩Q) ⊂ Dn, k being a subspace of Rn. We prove
that the resulting space is itself a symplectic toric quasifold, of dimension 2(n−dim(k)),
with the Hamiltonian quasitorus action of Dn/K (see Theorem 2.4). As a consequence,
we are able to reduce any symplectic toric manifold with respect to the action of a
general Lie subgroup K ⊂ Tn (see Corollary 3.1); if K is not closed, the resulting space
is a symplectic toric quasifold. Notice thus that the class of symplectic toric quasifolds
is closed under symplectic reduction. On the other hand, we know that the class of
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symplectic toric manifolds is not even closed under reduction with respect to the action
of a subtorus, since the resulting space may be an orbifold. Moreover, neither the class
of symplectic toric manifolds nor the class of symplectic toric orbifolds is closed under
reduction with respect to the action of a general Lie subgroup.

We state and prove our results for general pointed polyhedra instead of convex
polytopes. We recall that a pointed polyhedron is a finite intersection of closed half–
spaces that has at least a vertex: it is a convex polytope if, and only if, it does not
contain a ray. In this setting, the resulting symplectic toric quasifolds (and manifolds)
may be noncompact.

The article is structured as follows: in the first section, we recall the generalized
Delzant construction; in the second section, we prove the symplectic reduction theorem,
and in the third section, we discuss some applications.

1 The generalized Delzant procedure

In this section, we briefly recall the extension of the Delzant procedure to the non-
rational case [13, Theorem 1.1], stated in the case of pointed polyhedra, following [3,
Theorem 1.1].

We begin by recalling a few relevant facts on pointed polyhedra; for a more detailed
account, we refer the reader to Ziegler [14]. A subset ∆ ⊂ (Rn)∗ is said to be a
polyhedron if it is given by a finite intersection of closed half–spaces. If ∆ ⊂ (Rn)∗ is
an n–dimensional polyhedron with d facets, then one can choose X1, . . . , Xd ∈ Rn and
λ1, . . . , λd ∈ R such that

∆ =
d⋂
j=1

{ µ ∈ (Rn)∗ | 〈µ,Xj〉 ≥ λj }. (1)

Each of the vectors X1, . . . , Xd is orthogonal to one of the different d facets of ∆ and
points towards its interior. We will conveniently refer to these vectors as normal vectors
for ∆. A polyhedron can have at most a finite number of vertices; whenever one such
vertex exists, we will say that the polyhedron is pointed. A polyhedron is pointed if,
and only if, it does not contain a line. Moreover, a pointed polyhedron is a convex
polytope if, and only if, it does not contain a ray. A dimension n pointed polyhedron is
simple if each of its vertices is contained in exactly n facets. Finally, a simple pointed
polyhedron is smooth if one can choose normal vectors so that, for each vertex, the
vectors that are orthogonal to the corresponding n facets form a basis of Zn.

In the nonrational case, lattices are replaced by quasilattices and tori by quasitori.
A quasilattice Q in Rn is the Z–span of a set of real spanning vectors, Y1, . . . , Yd ∈ Rn;
Q is a lattice if, and only if, d = n. We call quasitorus the quotient Dn = Rn/Q. It is a
dimension n quasifold; it is a regular torus if, and only if, Q is a regular lattice. We will
say that a polyhedron ∆ ⊂ (Rn)∗ is quasirational with respect to a given quasilattice
Q, if the normal vectors for ∆ can be chosen in Q. If ∆ is quasirational with respect
to a lattice, then it is rational in the usual sense. It is important to notice that any
polyhedron is quasirational with respect to the quasilattice that is generated by any
choice of normal vectors.
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We are now ready to recall the generalized Delzant procedure. We will outline its
proof; for additional details, we refer the reader to [3, Theorem 1.1]. For the basic
definitions and properties of quasifolds we refer the reader to [13, 2].

Theorem 1.1 Let Q be a quasilattice in Rn and let ∆ ⊂ (Rn)∗ be an n–dimensional
simple pointed polyhedron that is quasirational with respect to Q. Assume that d is the
number of facets of ∆ and consider normal vectors X1, . . . , Xd for ∆ that lie in Q. For
each (∆, {X1, . . . , Xd}, Q), there exists a 2n–dimensional symplectic quasifold (M,ω)
endowed with the effective Hamiltonian action of the quasitorus Dn = Rn/Q such that,
if Φ :M → (Rn)∗ is the corresponding moment mapping, then Φ(M) = ∆. If ∆ is a
convex polytope, then M is compact.

We say that the quasifold (M,ω) above is the symplectic toric quasifold corresponding
to (∆, {X1, . . . , Xd}, Q).
Sketch of Proof. Consider the standard linear Hamiltonian action of T d = Rd/Zd
on Cd, with its moment mapping J(z) =

∑d
j=1 |zj |2e∗j+λ, λ ∈ (Rd)∗ constant. Consider

the surjective linear mapping

π : Rd −→ Rn,
ej 7−→ Xj

and let N be the kernel of the corresponding quasitorus epimorphism Π : T d −→ Dn.
The induced action of N on Cd is also Hamiltonian, with moment mapping given by
Ψ = i∗ ◦ J , where i is the Lie algebra inclusion Lie(N) = ker(π) → Rd. Choose the
constant λ above to be equal to

∑d
j=1 λje

∗
j , with λ1, . . . , λd as in (1). Notice that, since

∆ is simple, the group N acts on the level set Ψ−1(0) with 0–dimensional isotropy
groups. The quotient Ψ−1(0)/N is our symplectic quasifold M . The induced action on
M of the quasitorus Dn = Rn/Q ' T d/N is Hamiltonian and its moment mapping is
given by

Φ([z]) = ((π∗)−1 ◦ J)(z), (2)

where z ∈ Ψ−1(0). It is straightforward to check that Φ(M) = ∆. ut
We conclude this introductory section by recalling from [1, Theorem 3.2] the con-

struction of an explicit atlas for M ; this will be an essential ingredient in the proof of
our main result. Similarly to what happens in the smooth case, we cover M with an
atlas that is indexed by the set of vertices of ∆. Take one such vertex ν; we define a
quasifold chart (Uν , ρν , Ũν/Γν), as follows. Suppose, up to renumbering, that the ver-
tex ν is the intersection of the facets that are orthogonal to the first n normal vectors,
X1, . . . , Xn. We can write the remaining normal vectors uniquely as follows

Xj =
n∑
h=1

ajhXh, j = n+ 1, . . . , d.

Consider now the open subsets

Uν = { [z] ∈M | zj 6= 0, j = n+ 1, . . . , d } .



Nonrational Symplectic Toric Reduction 4

Formula (2) implies that |zj |2 + λj =
∑n

h=1(ajh|zh|2 − λh) for every z ∈ Ψ−1(0). Then
the set

Ũν =

{
(z1, . . . , zn) ∈ Cn |

n∑
h=1

(ajh|zh|2 − λh)− λj > 0, j = n+ 1, . . . , d

}

is non–empty. If we take

wj =

√√√√ n∑
h=1

ajh(|zh|2 + λh)− λj , j = n+ 1, . . . , d,

then the mapping

ρ̃ν : Ũν −→ Uν
(z1, . . . , zn) 7−→ [z1 : · · · : zn : wn+1 : · · · : wd]

induces a homeomorphism
ρν : Ũν/Γν → Uν , (3)

where Γν is the countable group N ∩ [(S1)n × (1)d−n].

2 Symplectic reduction

Let us consider a dimension n simple pointed polyhedron ∆ ⊂ (Rn)∗ that is quasira-
tional with respect to a quasilattice Q. Take normal vectors, X1, . . . , Xd, for ∆ in Q
and apply the generalized Delzant procedure to (∆, {X1, . . . , Xd}, Q). As we have seen,
this yields a symplectic 2n–quasifold M with the effective Hamiltonian action of the
quasitorus Dn = Rn/Q.

Let now k be a nontrivial k–dimensional vector subspace of Rn. The quotient
K = k/k∩Q is a quasifold and a subgroup of the quasitorus Dn. It is a quasitorus itself
when spanR(k ∩Q) = k. We have the following exact sequences:

0 −→ k
j−→ Rn p−→ Rn/k −→ 0

0 −→ (Rn/k)∗ p∗−→ (Rn)∗
j∗−→ k∗ −→ 0

Notice, in particular, that p∗((Rn/k)∗) = ker j∗. Consider now the induced action of K
on M ; this action is Hamiltonian and the corresponding moment mapping is given by
Φk = j∗◦Φ. Consider now a value ξ of this mapping; we can assume, up to a translation
of ∆, that ξ = 0. In accordance with the smooth case, we will define the orbit space

Mk = Φ−1
k (0)/K

to be the symplectic reduced space for the action of K at the value 0. We will devote
the rest of the section to showing that Mk is a symplectic toric quasifold.
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We begin by noticing that the mapping Φ sends all points of the level set Φ−1
k (0)

onto the set ∆k = ∆ ∩ (ker(j∗)), which is therefore non–empty. Notice that, by using
(1), we get

∆k =
⋂d
j=1{ µ ∈ ker j∗ | 〈µ,Xj〉 ≥ λj }

=
⋂d
j=1{ ν ∈ (Rn/k)∗ | 〈p∗(ν), Xj〉 ≥ λj }

=
⋂d
j=1{ ν ∈ (Rn/k)∗ | 〈ν, p(Xj)〉 ≥ λj }.

Thus ∆k itself is a polyhedron. Since ∆ is pointed, so is ∆k. Now, if dk is the number
of its facets, it is always possible to choose dk among the d half–spaces above so that,
up to renumbering,

∆k =

dk⋂
j=1

{ ν ∈ (Rn/k)∗ | 〈ν, p(Xj)〉 ≥ λj }. (4)

From now on we will make the following fundamental assumption.

Assumption 2.1 The induced action of K on Φ−1
k (0) has 0–dimensional isotropy

groups.

Remark 2.2 Notice that this assumption is standard in classical symplectic reduction.
It has a number of crucial implications on the geometry of the pointed polyhedron ∆k,
as explained in the following proposition.

Proposition 2.3 Consider the induced action of K on M . The group K acts on
Φ−1
k (0) with 0–dimensional isotropy groups if, and only if, the pointed polyhedron ∆k

has dimension n − k, is simple and the dk half–spaces in (4) are unique, in the sense
that ∆k is contained in the interior of the remaining d− dk.

Proof. Assume first that K acts on Φ−1
k (0) with 0–dimensional isotropy groups.

Suppose that the subspace ker j∗ has empty intersection with the interior of ∆. Then
∆ ∩ ker j∗ 6= ∅ implies that ker j∗ intersect ∆ in one of its faces. Therefore ker j∗

contains a vertex of ∆. This contradicts the hypothesis, since points in M that are
sent to vertices of ∆ are fixed by the Dn–action. Thus ker j∗ has non–empty intersection
with the interior of ∆, which implies that ∆k has dimension n−k. Now, if we take any
vertex νk ∈ ∆k, we can assume, again up to renumbering, that

νk = ∩n−kj=1 { ν ∈ (Rn/k)∗ | 〈ν, p(Xj)〉 = λj }.

Suppose now that there exists a vertex νk, written as above, and an index h /∈ {1, . . . , n−
k}, with the property that

νk ∈ { ν ∈ (Rn/k)∗ | 〈ν, p(Xh)〉 = λh }.

If h ∈ {n − k + 1, . . . , dk}, this would contradict simplicity; if h ∈ {dk + 1, . . . , d}, this
would contradict the second part of the thesis. Let us show that this is indeed not
possible. Let ẑ ∈ Ψ−1(0) be such that Φ([ẑ]) = p∗(νk). Then it is easy to verify that
ẑi = 0 if, and only if, i = 1, . . . , n−k, h. Since {p(X1), . . . , p(Xn−k)} is a basis of Rn/k,
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we can write p(Xh) =
∑n−k

j=1 ajp(Xj). Therefore the element Y = Xh −
∑n−k

j=1 ajXj

belongs to k. For each t ∈ R and [z] ∈M , we have

exp(tY )[z1 : · · · : zn−k : zn−k+1 : · · · : zh : · · · : zd] =
[e−2πita1z1 : · · · : e−2πitan−kzn−k : zn−k+1 : · · · : e2πitzh : · · · : zd].

Hence the isotropy of K at the point [ẑ] above has dimension at least 1. By assumption,
this is not possible.

Conversely, suppose that the pointed polyhedron ∆k has dimension n− k, is simple
and that the dk half–spaces in (4) are unique. If we consider [ẑ] ∈ Φ−1

k (0), then Φ([ẑ])
lies in an (open) face of ∆k. Let νk be a vertex in the closure of this face and write
νk as above. Then, by hypothesis, ẑj 6= 0 for all j = n − k + 1, . . . , d. On the other
hand, each of the vectors {p(Xn−k+1), . . . , p(Xd)} can be uniquely expressed as a linear
combination of {p(X1), . . . , p(Xn−k)}:

p(Xj) =
n−k∑
h=1

ajhp(Xh), j = n− k + 1, . . . , d.

It is easy to check that the d−n+k vectors Yj = Xj−
∑n−k

h=1 ajhXh, j = n−k+1, . . . , d,
define a set of generators of k. Thus, if we take any non–zero Y ∈ k, we can write it
as Y =

∑d
j=n−k+1 bjYj , with at least one bj 6= 0; we assume, for simplicity, that

bn−k+1 6= 0. Observe that Y = π
(∑d

j=n−k+1 bj(ej −
∑n−k

h=1 ajheh)
)

. Now suppose

expDn(tY ) · [ẑ] = [ẑ] for some t ∈ R. Then, there exists R =
∑d

j=1 rjej ∈ Rd, with
π(R) ∈ Q, such that

e2πitbn−k+1e2πirn−k+1 ẑn−k+1 = ẑn−k+1 (5)

Since ẑn−k+1 6= 0 we have that (5) is satisfied only for a countable set of t ∈ R.
Therefore K acts on the level set with 0–dimensional isotropy groups. ut

Apply now the generalized Delzant construction to (∆k, {p(X1), . . . , p(Xdk)}, p(Q))
and let Xk denote the corresponding symplectic toric quasifold. We recall the con-
struction of Xk from the proof of Theorem 1.1. Let Jk(z) =

∑dk
j=1(|zj |2 + λj)e

∗
j be

the moment mapping with respect to the standard action of T dk on Cdk . Consider the
linear projection

πk : Rdk −→ Rn/k,
ej 7−→ p(Xj)

and notice that πk = p◦π
|Rdk . The kernel of the corresponding epimorphism Πk : T dk −→

(Rn/k)/p(Q) is given by the (dk − n+ k)–dimensional group

Nk = exp{X ∈ Rdk | πk(X) ∈ p(Q)}
= exp{X ∈ Rdk | π

|Rdk (X) ∈ Q+ k}.

Its induced action on Cdk is Hamiltonian, with moment mapping Ψk = i∗k ◦ Jk, where ik
is Lie algebra inclusion Lie(Nk) = ker(πk)→ Rdk . Then we have

Xk = Ψ−1
k (0)/Nk . (6)
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Notice that (Rn/k)/p(Q) can be identified with Dn/K. We are now ready to state our
main result.

Theorem 2.4 Consider the induced action of K on M with moment mapping Φk =
j∗ ◦ Φ. Assume that K acts on Φ−1

k (0) with 0–dimensional isotropy groups. Then the
orbit space Mk = Φ−1

k (0)/K is a symplectic quasifold of dimension 2(n − k), acted
on by the quasitorus Dn/K. Moreover, Mk is equivariantly symplectomorphic to the
symplectic toric quasifold Xk corresponding to (∆k, {p(X1), . . . , p(Xdk)}, p(Q)).

To prove the above theorem we first need the following

Lemma 2.5 Consider [w] ∈ Φ−1
k (0), then there exists [w̃] ∈ Φ−1

k (0) such that wj ∈
[0,+∞) for j = dk + 1, . . . , d and [[w]] = [[w̃]] in Mk. Moreover [w̃1 : · · · : w̃dk ] belongs
to Xk and, if [ŵ] is another element in Φ−1

k (0) having the same properties as w̃, then
[w̃1 : · · · : w̃dk ] = [ŵ1 : · · · : ŵdk ] in Xk.

Proof. We begin by writing the moment mapping Φk and the action of K explicitly.
In order to do so, we choose a vertex νk of ∆k and we order the normal vectors for ∆ so
that {p(X1), . . . , p(Xn−k)} are the normal vectors corresponding to the facets meeting
at νk. Argue as in the proof of Proposition 2.3, and write

p(Xj) =

n−k∑
h=1

ajhp(Xh), j = n− k + 1, . . . , d.

Recall that the d− n+ k vectors Yj = Xj −
∑n−k

h=1 ajhXh, j = n− k + 1, . . . , d, define
a set of generators of k. Notice that, for each j = n− k + 1, . . . , d, (2) implies

〈Φk([w1 : · · · : wd]), Yj〉 = 〈Φ([w1 : · · · : wd]), j(Yj)〉
= 〈Φ([w1 : · · · : wd]), Xj −

∑n−k
h=1 ajhXh〉

= |wj |2 + λj −
∑n−k

h=1 ajh(|wh|2 + λh).

Therefore [w1 : · · · : wd] ∈ Φ−1
k (0) if and only if

|wj |2 =

n−k∑
h=1

ajh(|wh|2 + λh)− λj , j = n− k + 1, . . . , d. (7)

ConsiderRj = ej−
∑n−k

h=1 ajheh ∈ Rdk , with j = n−k+1, . . . , d; notice that π(Rj) = Yj ∈
k and therefore Rj ∈ ker(πk). Choose rdk+1, . . . , rd so that the vector R =

∑d
j=dk+1 rjRj ,

satisfying π(R) ∈ k, verifies

exp(R)[w1 : · · · : wd] = [w̃1 : · · · : w̃d],

where w̃dk+1
, . . . , w̃d are nonnegative real numbers. Notice that we have acted with

an element that projects to K, thus [[w1 : · · · : wd]] = [[w̃1 : · · · : w̃d]] in Mk.
Since w̃1, . . . , w̃dk satisfy (7), we have that 〈Jk(w̃1, . . . , w̃dk), Rj〉 = 0, for j = n −
k + 1, . . . , dk. The vectors Rj , for j = n− k + 1, . . . , dk, form a basis of ker(πk). Hence
Ψk(w̃1, . . . , w̃dk) = (i∗k ◦ Jk)(w̃1, . . . , w̃dk) = 0 and, therefore, [w̃1 : · · · : w̃dk ] ∈ Xk.
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Let us finally show that, if [[w̃]] = [[ŵ]] ∈ Mk are such that w̃j , ŵj ∈ [0,∞), for
j = dk + 1, . . . , d, then [w̃1 : · · · : w̃dk ] = [ŵ1 : · · · : ŵdk ] in Xk. Since [[w̃]] = [[ŵ]] there
exist X,Y ∈ Rd, with exp(X) ∈ N and Π(exp(Y )) ∈ K, such that

exp(X) exp(Y )(w̃1, . . . , w̃dk , w̃dk+1, . . . , w̃d) = (ŵ1, . . . , ŵdkŵdk+1, . . . , ŵd).

Notice that π(X) ∈ Q and π(Y ) ∈ k. Moreover, since w̃j and ŵj , j = dk + 1, . . . , d, are
nonnegative real numbers by hypothesis, we have necessarily that w̃j = ŵj and that
there exists n ∈ Zd such that X + Y + n ∈ Rdk × Zd−dk . Notice that π(X + n) ∈ Q
and π(Y ) ∈ k. Therefore exp(X + n + Y ) ∈ Nk and exp(X + n + Y )(w1, . . . , wdk) =
(w̃1, . . . , w̃dk). Thus [w̃1 : · · · : w̃dk ] = [ŵ1 : · · · : ŵdk ]. ut
Proof of Theorem 2.4. We define a collection of quasifold charts for the orbit space
Mk = Φ−1

k (0)/K as follows. Let νk be a vertex of ∆k and let ν be a vertex of ∆ lying in
the closure of the smallest face F of ∆ containing νk. By Proposition 2.3, we can order
the normal vectors X1, . . . , Xd for ∆ so that:

• {p(X1), . . . , p(Xdk)} are normal vectors for ∆k;

• {p(X1), . . . , p(Xn−k)} are the normal vectors for ∆k corresponding to the facets
that meet at νk;

• X1, . . . , Xn−k, Xdk+1, . . . , Xdk+k are the normal vectors for ∆ corresponding to
the facets that meet at ν.

Remark that the face F is given by the intersection of the hyperplanes corresponding
to {X1, . . . , Xn−k} and has dimension k. Moreover, notice that Proposition 2.3 implies
that ν /∈ ∆k.

Consider the non–empty open subset of Cn−k given by

Ũνk =

{
z ∈ Cn−k |

n−k∑
h=1

ajh(|zh|2 + λh)− λj > 0, j = n− k + 1, . . . , dk

}
.

We send it to the chart (Uν , ρν , Ũν/Γν) of M corresponding to the vertex ν by the
continuous, equivariant map:

Ψ̃ν
k : Ũνk −→ Ũν

(z1, . . . , zn−k) 7−→ (z1, . . . , zn−k, wdk+1, . . . , wdk+k) ,

where the wj ’s are given by

wj =

√√√√n−k∑
h=1

ajh(|zh|2 + λh)− λj , j = dk + 1, . . . , d.

It is straightforward to check that the induced mapping

Ψν
k : Ũνk/Γ

k
ν −→

(
Ũν/Γν

)
∩ ρ−1

ν (Φ−1
k (0))

[z1 : · · · : zn−k] 7−→ [z1 : · · · : zn−k : wdk+1 : · · · : wdk+k]
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is a homeomorphism; the group Γν here is given by

N ∩ [(S1)n−k × {1}dk−n+k × (S1)k × {1}d−dk−k],

while Γk
ν is the subgroup of Γν acting on Ũνk that is given by

N ∩ [(S1)n−k × {1}d−n+k)].

Consider now the countable group Γνk = Nk ∩ [(S1)n−k × {1}dk−n+k]. By the same
argument used at the end of the proof of Lemma 2.5, we have that Γk

ν is a subgroup of
Γνk and the mapping

ρν ◦ Ψ̃ν
k : Ũνk/Γνk −→ Uν∩Φ−1

k (0)

K
[z1 : · · · : zn−k] 7−→ [z1 : · · · : zn−k : wn−k+1 : · · · : wd]

is itself a homeomorphism. The explicit expression of the mapping ρν◦Ψ̃ν
k is determined

by the mapping ρν given in (3). Repeating this procedure for each vertex νk of ∆k yields
an atlas of Mk = Φ−1

k (0)/K.
Now, using Lemma 2.5, we can define the following mapping

g : Mk → Xk

[[w]] 7−→ [w̃1 : · · · : w̃dk ]

g is injective: let g([[w]]) = g([[w′]]), then there exist w̃ and w̃′ as in the statement
of Lemma 2.5 such that [w̃1 : · · · : w̃dk ] = [w̃′1 : · · · : w̃′dk ]. Then there exists W ∈
Rdk × {0}d−dk such that π(W ) ∈ Q + k and exp(W )(w̃1, . . . , w̃dk) = (w̃′1, . . . , w̃

′
dk

). We

can write W = X + Y with X,Y ∈ Rd such that π(X) ∈ Q, π(Y ) ∈ k. Moreover, by
(7), w̃j = w̃′j , j = dk + 1, . . . , d. Thus exp(X) exp(Y )(w̃1, . . . , w̃d) = (w̃′1, . . . , w̃

′
d) with

exp(X) ∈ N and exp(Y ) ∈ K; therefore [[w]] = [[w̃]] = [[w̃′]] = [[w′]].
g is surjective: let [z1 : · · · : zdk ] ∈ Xk. Consider first, as before, Rj = ej−

∑n−k
h=1 ajheh ∈

Rdk , with j = n − k + 1, . . . , d; notice that π(Rj) = Yj ∈ k and therefore Rj ∈ nk. By
(6) we have that i∗k ◦ Jk([z1 : · · · : zdk ]) = 0. This implies

〈Jk([z1 : . . . : zdk ], Rj〉 = 0, ∀j = d− n+ k, . . . , dk,

which, in turn, implies (7) for j = d− n+ 1, . . . , dk. Take

wj =

√√√√n−k∑
h=1

ajh(|zh|2 + λh)− λj , j = dk + 1, . . . , d.

Then [z1 : · · · , zdk : wdk+1 : · · · : wd] ∈Mk and its image under the mapping g is exactly
[z1 : · · · : zdk ]. Therefore

g−1([z1 : · · · : zdk ]) = [z1 : · · · , zdk : wdk+1 : · · · : wd].

Since the mapping g restricted to each chart is the identity, we can conclude that it is
an equivariant diffeomorphism. Consider the following diagram

Φ−1
k (0)

ρ

��

ι // (M,ω)

(Mk, ωk)

.
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One can verify, by the explicit local identifications above, that the reduced symplectic
form ωk satisfies, as in the smooth case, ρ∗ωk = ι∗ω, and that g is a symplectomorphism.
Moreover, the mapping induced by j∗ ◦Φ on Mk is the moment mapping for the action
of Dn/K. ut

3 Some applications

If ∆ ⊂ (Rn)∗ is a smooth pointed polyhedron, one can choose normal vectors, X1, . . . , Xd,
for ∆ that are primitive in Zn. Then Theorem 1.1 applied to (∆, {X1, . . . , Xd},Zn)
yields a symplectic toric manifold (when ∆ is a polytope, this is the classical compact
Delzant space corresponding to ∆). Moreover, in this case, K = k/k∩Zn is a general Lie
subgroup of the torus Tn = Rn/Zn; it is a torus itself if, and only if, spanR(k∩Zn) = k.
Thus Theorem 2.4 yields the following

Corollary 3.1 Let ∆ ⊂ (Rn)∗ be a smooth pointed polyhedron and let M be the cor-
responding symplectic toric manifold. Consider the induced action on M of any Lie
subgroup K of Tn, with moment mapping Φk = j∗ ◦Φ. Assume that K acts on Φ−1

k (0)
with 0–dimensional isotropy groups. Then the orbit space Mk = Φ−1

k (0)/K is a sym-
plectic quasifold of dimension 2(n−k), acted on by the quasitorus Tn/K. Moreover, Mk

is equivariantly symplectomorphic to the symplectic toric quasifold Xk corresponding to
(∆k, {p(X1), . . . , p(Xdk)}, p(Z

n)).

Notice that, whenever K is a torus, Mk is the usual symplectic reduced space: it as an
orbifold in general, a manifold if the K–isotropy groups are all trivial.

Example 3.2 (Reducing C× S2 with respect to any Lie subgroup of the 2–torus)
Consider the strip ∆ = [−1,∞)×[0, 1] ⊂ (R2)∗. It is an elementary example of a smooth
pointed polyhedron. If we apply Theorem 1.1 to the triple(

[−1,∞)× [0, 1], {(1, 0), (0, 1), (0,−1)},Z2
)
, (8)

we obtain the noncompact toric manifold C×S2, endowed with the standard symplectic
structure. The first factor of S1×S1 acts on C linearly with weight 1, while the second
factor acts on S2 by rotations around the z–axis. This action is Hamiltonian and the
image of the corresponding moment mapping is [−1,∞)× [0, 1]. Now consider, for any
positive real number a, the line k = spanR{(−1, a)} ⊂ R2 (see Figure 1). The Lie
subgroup K = k/(k ∩ Z2) is a circle if, and only if, a is rational; otherwise it is the
classical irrational wrap on S1 × S1. We want to reduce C × S2 with respect to K,
following Corollary 3.1. It is easy to check that the induced action of K on Φ−1

k (0)
has 0–dimensional isotropy groups. Notice that ker(j∗) can be identified with the line
x = ay; therefore, ∆k is given by the segment in Figure 2.

Before we go on, it will be convenient to make the following identification. Let
f : R2/k −→ R be the linear isomorphism defined by f(p(0, 1)) = 1. Then f(p(0,−1)) =
−1 and f(p(1, 0)) = a. Let p(0, 1)∗ the basis of (R2/k)∗ dual to p(0, 1). Then p∗(p(0, 1)∗) =
(a, 1) ∈ ker j∗ ⊂ (R2)∗. Therefore, from (8) we get that ∆k is sent to

{µ ∈ R∗ | 〈µ, a〉 ≥ −1} ∩ {µ ∈ R∗ | 〈µ, 1〉 ≥ 0} ∩ {µ ∈ R∗ | 〈µ,−1〉 ≥ −1}.
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Figure 1: The line k

(a,1)

(-1,0)

(-1,1)

x=ay

(0,0)

Figure 2: The segment ∆k

We discard the first half–line, since its interior contains the intersection of the remaining
two. We obtain that ∆k ' [0, 1] and that the corresponding triple is given by

([0, 1], {1,−1},Z + aZ).

If we apply Theorem 1.1, we find the quasifold

Xk =
{(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

{(e2πi(t+am), e2πit) ∈ S1 × S1 | (t,m) ∈ R× Z}
' S2

Γa
,

where Γa = (Z + aZ)/Z ' {e2πiam | m ∈ Z}. The quasifold Xk is acted on by the
1–dimensional quasitorus R/(Z + aZ), while the reduced symplectic quasifold Mk is
endowed with the residual action of the 1–dimensional quasitorus T 2/K ' R/(Z+aZ).
By Corollary 3.1, the quasifolds Xk and Mk are equivariantly symplectomorphic. For an
irrational number a, the quasifold Xk can be viewed as a nonrational counterpart of S2,
similarly to the quasisphere introduced in [13, Examples 1.13, 3.5]. In [5, Example 2.4.3]
the quotient Xk was obtained as the leaf space of a holomorphic foliation. Moreover,
Xk arises in the construction of a one–parameter family of quasifolds Fa that contains
all of the Hirzebruch surfaces [4, Section 3]. In fact, the spaces Fa turn out to be equal
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to the disjoint union of a dense open subset and of Xk. They are obtained by cutting
the symplectic manifold C × S2 in the direction (−1, a); this amounts to cutting the
above strip with the line x = ay. Since standard cutting only works when the number
a is rational, we use a generalization of this procedure for nonrational simple pointed
polyhedra (see Remark 3.4).

Remark 3.3 (Diffeologies) The 1–dimensional quasitorus R/(Z + aZ) was studied
by Donato and Iglesias within the theory of diffeological spaces [7, 9]; in this setting
Iglesias introduced the terminology irrational torus.

Remark 3.4 (Nonrational symplectic cutting) In our article [3] we have extended
symplectic cuts [10] and blow–ups to symplectic toric quasifolds. In doing so, we have
already implicitly used symplectic quotients, and proved with a direct argument that
cuts are symplectic quasifolds. One could also proceed by applying Theorem 2.4 above.
However, the direct approach in [3] is preferable, since it also allows cutting through
vertices of the original simple pointed polyhedron. In this case, the hypothesis of
Theorem 2.4 that K acts on Φ−1

k (0) with 0–dimensional isotropy groups is no longer
satisfied; however, as it turns out, the quotient is still a symplectic quasifold, mirroring
what happens in the smooth case [8].
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