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Geometrically protected triple-point crossings in an optical lattice
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We show how to realize topologically protected crossings of three energy bands, integer-spin analogs of Weyl
fermions, in three-dimensional optical lattices. Our proposal only involves ultracold atom techniques that have
already been experimentally demonstrated and leads to isolated triple-point crossings (TPCs) which are required
to exist by a novel combination of lattice symmetries. The symmetries also allow for a new type of topological
object, the type-II, or tilted, TPC. Our Rapid Communication shows that spin-1 Weyl points, which have not yet
been observed in the band structure of crystals, are within reach of ultracold atom experiments.
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Introduction. In the past decades the theory of condensed
matter witnessed a topological revolution, sparked by the study
of quantum Hall systems [1] and consolidated by the discov-
ery of topological insulators. Noninteracting gapped systems
have been classified based on the topological properties of
their energy bands and on the symmetries of the underlying
Hamiltonians [2–4], first considering nonspatial symmetries
only [5] and then including also crystal symmetries [6]. This
classification of symmetry-protected topological phases of
matter has been recently extended to gapless systems [6], which
provide the possibility of simulating many of the particles
appearing in high-energy quantum field theories, such as Dirac,
Majorana, and Weyl fermions. The latter appear in a condensed
matter setting as band-touching points with a linear dispersion
[7–10] characterized by a low-energy Hamiltonian of the form
HWeyl = �k · �σ , where �k is the crystal momentum and �σ ’s
are three Pauli matrices parametrizing the degree of freedom
associated with the two touching bands. These degeneracy
points are topological defects of nonzero chirality, which gives
rise to many interesting phenomena, such as gapless surface
Fermi arcs [11] and the chiral anomaly [12].

The realization of similar quasiparticles in condensed-
matter systems, however, is not bound by the Poincaré symme-
try of quantum field theories but by the symmetries of the space
group describing the lattice. This enables the possibility for
designing even more exotic objects, which transcend the usual
constraints of the elementary particles [13–20]. Some of them,
for example, carry a multiple chirality and are characterized by
nonlinear dispersion relations [21–23]. In most cases, however,
the stability of these novel band crossings requires the presence
of one or more protecting lattice symmetries. Without them the
topological defect would either be destroyed or decomposed
into multiple simpler constituents.

Recently it has been shown that a new type of chiral fermion
can be realized in lattice models with specific symmetries. It
is formed by three energy bands touching at a single point in
the Brillouin zone (BZ), a triple-point crossing (TPC), which

can be interpreted as a spin-1 fermion [24]. Two of the energy
bands disperse linearly in all momentum directions, whereas
the third is locally flat, leading to an effective low-energy
Hamiltonian of the form HTPC = �k · �S. Now, in place of the
spin- 1

2 Pauli matrices describing Weyl cones, the three 3 × 3
matrices (Sj )kl = −iεjkl represent an effective pseudospin-1
degree of freedom associated with the three bands. The TPC
forms a double monopole of the Berry curvature that results in
the appearance of chiral surface states or Fermi arcs. The latter
emerge in pairs from the surface projections of the bulk band
touching points.

So far, several works have investigated the appearance and
properties of TPCs. They have been proposed to exist in the
BZ of Pd3Bi2S2 slightly above the Fermi level as well as in
Ag3Se2Au [24,25]. Spin-1 Weyl points have also been pre-
dicted in the phonon spectra of transition-metal monosilicides,
such as FeSi [26]. Very recently, microwave-assisted level
transitions in a superconducting transmon were experimentally
employed to simulate TPCs [27].

In a cold atom setting, it was suggested that TPCs may be
obtained from the Hamiltonian describing a Weyl semimetal
by directly replacing the Pauli �σ matrices with spin-1 �S
matrices [28,29]. This approach is both elegant and straight-
forward but does not clarify which, if any, lattice symmetries
are responsible for the stability of TPCs. For instance, it
could lead to TPCs which are fine-tuned in the sense that
symmetry-allowed perturbations may split the spin-1 fermion
into multiple spin- 1

2 Weyl cones. Here, we take a different
perspective and discuss TPCs which are constrained to appear
due to the real-space geometry of the lattice. Hence we refer
to them as geometrically protected TPCs.

Our proposal is based on the experimental successes in the
quantum simulation of gauge potentials in cold atom systems
[30]. Ultracold gases trapped in optical lattices offer two
ingredients which can be controlled with high accuracy and
constitute the basis of our construction: (i) the possibility for
introducing nontrivial lattice potentials based on the control

2469-9950/2018/97(12)/121402(5) 121402-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.121402&domain=pdf&date_stamp=2018-03-08
https://doi.org/10.1103/PhysRevB.97.121402


I. C. FULGA, L. FALLANI, AND M. BURRELLO PHYSICAL REVIEW B 97, 121402(R) (2018)

FIG. 1. Left: A tight-binding model consisting of 2D Lieb lattices
stacked in the third dimension. The unit cell (green) consists of three
sites labeled 1–3 with Bravais vectors �a1, �a2, and �a3 (blue). Adjacent
2D layers are shifted with respect to each other diagonally. The dashed
lines indicate negative hopping amplitudes. Right: Brillouin zone
of the model, indicating the momentum vectors as well as the four
chiral planes (light orange) located at kx = π/2, ky = π/2, kz = 0,
and kz = ±π . Two TPCs (the red and blue crosses) are formed at
the triple intersections between the chiral planes kx = ky = π/2 and
kz = 0,π .

over the laser polarizations and interference and (ii) the
introduction of magnetic fluxes generated by Raman lasers,
which have proved a viable tool for the simulation of the
two-dimensional (2D) Hofstadter model [31–33].

We combine the two above-mentioned elements to engineer
a spin-1 Weyl phase of ultracold atoms in a three-dimensional
(3D) lattice that is a higher-dimensional generalization of

the well-known 2D Lieb lattice. Symmetry-enforced TPCs
appear in the BZ of the system, inheriting their topological
protection from the geometrically induced chiral (sublattice)
symmetry of the original Lieb lattice. The TPCs form robust
double monopoles of the Berry curvature and lead to gapless
topological Fermi arcs. We present an optical lattice scheme
able to induce this phase of matter in ultracold atomic gases by
exploiting only techniques already available in experiments.
In addition, we explain how by modifying this setup one
can obtain a new kind of topological object, a tilted spin-1
Weyl, which we dub a type-II TPC by analogy with the
existing Weyl cone terminology. The type-II crossing does not
appear in current condensed-matter proposals because of the
multitude of lattice symmetries constraining the shape of the
energy bands. Finally, we comment on ways of experimentally
accessing the TPCs in our lattice model as well as on directions
for future research.

Three-dimensional Lieb lattice. We consider noninteracting
spinless particles hopping on a 3D lattice with a three-site
unit cell as shown in Fig. 1. The system can be seen as a
cubic lattice where the (even, even, even) and (odd, odd, odd)
sublattices have been suppressed. The Bravais vectors are �a1 =
(2,0,0), �a2 = (0,2,0), and �a3 = (1,1,1) in units of the intersite
spacing a, leading to reciprocal vectors �k1 = ( 1

2 ,0,− 1
2 ), �k2 =

(0, 1
2 ,− 1

2 ), and �k3 = (0,0,1). The main property of this lattice is
that each section parallel to the orthogonal planes xy, yz, and
xz is a 2D Lieb lattice, which intuitively justifies the existence
of a 3D flat band in its single-particle spectrum. We couple the
dynamics of the fermions in the lattice with an artificial vector
potential �A = π/a2(0,0,x − z + 1/2) which corresponds to a
synthetic magnetic field along the ŷ direction By = −π/a2.
Setting a = 1, the resulting Hamiltonian is as follows:

H = −J

⎛
⎜⎝

0 1 + e−2ikx ei(kz−kx+ky ) − e−i(kz+kx−ky )

1 + e2ikx 0 1 + e2iky

e−i(kz−kx+ky ) − ei(kz+kx−ky ) 1 + e−2iky 0

⎞
⎟⎠, (1)

where J is the hopping strength and kx,y,z are momenta along
the three principal directions. In this gauge, the hoppings in
the ẑ direction alternate in sign due to the synthetic magnetic
field as shown in Fig. 1, whereas they remain constant in the x̂

and ŷ directions.
Diagonalizing Eq. (1) yields two TPCs positioned at

zero energy and momenta kx = ky = π/2, kz = 0,π , which
have opposite monopole charges. At kz = 0,π , the effec-
tive low-energy Hamiltonian close to the TPC is H0,π =
2(−kxS3 + kyS1 ± kzS2) such that two of the energy bands
disperse linearly and the third remains flat (see Fig. 2, left
panel).

Unlike Weyl cones, which are single monopoles of the Berry
curvature and are therefore robust to any sufficiently weak
perturbation preserving translational invariance, the TPCs
require additional lattice symmetries to remain stable. Here the
protecting symmetries are inherited from those of the 2D Lieb
lattice. The latter has a chiral (sublattice), E → −E symmetry,
and an odd number of bands, leading to a flat band in the 2D
BZ, positioned at E = 0. Since the 3D model can be seen as a

stack of 2D Lieb lattices along any of the principal directions,
the TPCs are protected by three coexisting chiral symmetries
appearing on three mutually orthogonal planes. The chiral

FIG. 2. Band structure of the 3D Lieb lattice close to the TPC
positions k1 = π + δk1, k2 = π + δk2, and k3 = 0. Left: In the type-I
TPC of Eq. (1), two bands disperse linearly whereas the third remains
flat. Right: for the type-II TPC obtained from the Hamiltonian (6)
with φ = 1, the central band is tilted, having a nonzero velocity along
some momentum directions.
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symmetries can be written as

�iH (�ki) = −H (�ki)�i, (2)

with i = x,y,z. For the kx = π/2 plane �x = diag(−1,−1,1),
on the ky = π/2 plane we have �y = diag(1,−1,−1), whereas
�z = diag(−1,1,−1) at both kz = 0 and kz = π . On each of
these planes, the middle band of Eq. (1) must be dispersionless
and located at E = 0. The two TPCs are found at points
in which three orthogonal chiral planes meet (see Fig. 1,
right panel) such that the product of three chiral symmetries
�x�y�z = 1 must also anticommute with the Hamiltonian.
Hence, H = 0 both for �k = ( π

2 , π
2 ,0) and �k = ( π

2 , π
2 ,π ) and

the three chiral symmetries lead to triply degenerate bands at
E = 0 [34]. We note that, in previous models hosting TPCs,
the latter are protected by lattice symmetries in the sense that,
if TPCs exist, they are stable against any symmetry-preserving
perturbation. In the model Eq. (1) instead, the � symmetries
imply that the BZ necessarily hosts TPCs. Finally, we observe
that the double monopole charge of the TPCs leads to the
existence of pairs of surface localized Fermi arcs ẑ [34].

The physical setup. The potential leading to the lattice in
Fig. 1 and the artificial magnetic field can be obtained through
a 3D generalization of the optical schemes applied for the
simulation of the Hofstadter model [31,32]. The first element
we consider is the optical lattice which defines the 3D Lieb
lattice. It can be generated by three standing waves with the
same frequency ω, which are characterized by different linear
polarizations êi and must be red-detuned with respect to an
atomic resonance to result in an attractive 3D lattice potential.
The corresponding electric field reads

�E(�r,t) = E0 cos(ωt)
∑

j=x,y,z

êj cos(πrj/a), (3)

where a = πc/ω is the lattice spacing, which we set to 1 for
convenience. In the case of orthogonal polarizations, the three
lasers do not interfere with each other, producing a simple
cubic lattice. We impose instead nonorthogonal polariza-
tions given by êx = (0,1,−1)/

√
2, êy = (−1,0,1)/

√
2, êz =

(1,−1,0)/
√

2 such that êi êj = −1/2 for i �= j . The optical
lattice potential is affected by the interference of the three lasers
and, after time averaging, reads

Vol(x,y,z) = −E2
0

2
[cos2(πx) + cos2(πy) + cos2(πz)

− cos(πx) cos(πy) − cos(πx) cos(πz)

− cos(πz) cos(πy)], (4)

where we have omitted an overall proportionality factor de-
pending on the atomic polarizability. This potential displays
maxima in the (even, even, even) and (odd, odd, odd) cubic
sublattices where the attractive potential vanishes, whereas all
the other sites have energy −2E2

0 with barriers of height E2
0/2

separating the nearest-neighbor sites [34].
The second element we engineer is the artificial gauge po-

tential Az. Following the standard approach for laser-assisted

tunneling we must suppress the motion along the ẑ direction
and restore it through a pair of far-detuned Raman lasers [30].
As experimentally proved in Ref. [32], the gravitational poten-
tial Vg(z) = mgz can be exploited for this purpose (possibly
corrected by magnetic-field gradients) and the site-dependent
tunneling in the ẑ direction can then be reestablished through
two Raman lasers at the same wavelength of the lattice,
propagating along directions x̂ and ẑ with frequencies ω1

and ω2, respectively. These lasers determine a running-wave
potential of the kind W (�r,t) = W0 cos(ωRt − �kR · �r), where
�kR ≡ �k1 − �k2 ≈ (x̂ + ẑ)π/a is the wave-vector difference be-
tween the Raman beams and ωR = ω1 − ω2 ≈ mga/h̄ is the
frequency difference, chosen to be resonant with the energy
shift between adjacent sites.

In a regime such that the energy offset mga is consider-
ably larger than the bare tunneling amplitude J [calculated
without Vg and W (t)] [35], the dynamics dictated by the time-
dependent potential Vol + Vg + W (t) can be approximated by
an effective tight-binding Hamiltonian obtained in a rotating
frame approximation [31,32],

Ĥ =
∑

�r such that (−1)x+y=−1

−Jz[(−1)x−zc
†
�r+ẑ

c�r + H.c.]

− J

⎡
⎣ ∑

�r such that (−1)x+z=−1

c
†
�r+ŷ

c�r

+
∑

�r such that (−1)y+z=−1

c
†
�r+x̂

c�r + H.c.

⎤
⎦, (5)

with Jz = JJ1[2W0/(mga)] and J1 is a Bessel function. The
above Hamiltonian is defined on a 3D Lieb lattice with the
three-site unit cell and the Bravais vectors shown in Fig. 1 and
corresponds to Eq. (1) for Jz = J . In realistic systems Jz < J ,
and this introduces an anisotropy, which is not detrimental for
the realization of the TPCs since it does not break any of the
chiral symmetries.

Type-II crossings. Setting the Fermi level close to E = 0,
at positive or negative energies, leads to two disconnected
electron or hole Fermi surfaces, one for each TPC. This is
not the only possibility though as was initially understood for
the simplest case of Weyl semimetals. One can distinguish
between type-I Weyl points with a discrete Fermi surface and
type-II Weyl cones, which are tilted by specific momentum-
dependent perturbations such that the Fermi surface opens
and the band-touching points lie at the boundary between
electron and hole pockets [36,37]. In the following we show
that also TPCs may appear in different types due to a tilt of
the zero-energy band. By analogy with Weyl semimetals, we
distinguish between the type-I TPCs of the Hamiltonian Eq. (1)
in which the middle band has a vanishing velocity along all
momentum directions and the novel type-II TPCs in which the
middle band has a nonzero velocity at the band-touching point.
This situation appears naturally when we generalize the Hamil-
tonian of the system by introducing an additional phase θ ,

HII = −J

⎛
⎝

0 1 + e−i2kx ei(kz−kx+ky )+iθ − e−i(kz+kx−ky )+iθ

1 + ei2kx 0 1 + ei2ky

e−i(kz−kx+ky )−iθ − ei(kz+kx−ky )−iθ 1 + e−i2ky 0

⎞
⎠. (6)
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As a function of θ the middle band acquires a nonzero velocity
as shown in Fig. 2, right panel, but the chiral symmetries
remain unbroken such that the TPCs are still protected. Close
to the band-touching points, the low-energy Hamiltonians to
first order in θ at kx = ky = π/2 and kz = 0,π are as follows:

1

2
H0,π =

⎛
⎝

0 ikx ±ikz

−ikx 0 −iky

∓ikz iky 0

⎞
⎠ ∓ θ

⎛
⎝

0 0 kz

0 0 0
kz 0 0

⎞
⎠. (7)

In Weyl cones, the type-I crossing persists over a finite range of
tilting angles before being converted into a type-II node. Here
instead, even an infinitesimal value of θ leads to type-II TPCs.
We find nonetheless that TPCs of type I remain protected as
long as time-reversal symmetry is preserved as we specify in
the Supplemental Material [34].

The Hamiltonian HII has a natural interpretation in terms
of the artificial magnetic fluxes in the optical lattice. θ is a
staggered phase in the vertical tunneling which depends on the
the sublattice on the xz plane. Therefore, in real space, such a
system is obtained by correcting the Jz term of the Hamiltonian
(5) with

ĤII,z = −Jz

∑
�r such that (−1)x+y=−1

[ei(π/2)−i(−1)x−z[(π/2)−θ]c
†
�r+ẑ

c�r

+ H.c.]. (8)

If we consider the xz plane and we embed the Lieb into a
square lattice, such a magnetic flux configuration defines a
checkerboard pattern with alternating π ± 2θ fluxes obtained
by the alternating π − θ and θ phases. To engineer these phases
it is sufficient to add a new pair of counterpropagating Raman
lasers oriented along the ẑ axes such that, similar to the first
pair of Raman lasers, their frequency difference is ω′

R = ω′
1 −

ω′
2 ≈ mga/h̄ and their wave-vector difference is �k′

R = ẑ2h̄π/a

(we consider |ω1 − ω′
1| 
 ωR to avoid unwanted interferences

with the first pair of Raman beams). By standard phase-lock
techniques it is possible to shift the relative phase of these
lasers by π/2 with respect to the first pair, thus defining the
potential W ′(�r,t) = W1 cos(ω′

Rt − 2πz/a − π/2). The effect
of this additional potential is to add a uniform imaginary
contribution to the tunneling amplitude along ẑ in (5). Hence,
the new amplitude reads Jze

iπ(x−z) + iJ ′
z ≡ Jze

iφ(x−z) with
φ = θ,π − θ for x − z even or odd, and θ = arctan(J ′

z/Jz)

where J ′
z can be tuned through the Raman amplitude W1 of the

second pair of Raman lasers.
Conclusion. We have shown how to realize integer-spin

analogs of Weyl cones in ultracold atomic systems. Due to the
geometric constraints of the lattice, namely, the suppressed
(even, even, even) and (odd, odd, odd) sites, the BZ shows
robust symmetry-required TPCs. The latter can come in two
types: the original spin-1 fermion described by a Hamiltonian
�k · �S, and a novel type-II crossing in which the middle band is
tilted such that the TPC forms at the intersection between an
electron and a hole pocket. Notice that this classification does
not coincide with that of Ref. [29] in which different types of
band crossings have a differing monopole charge. In our case,
both the original and the tilted topological defects are double
monopoles of the Berry curvature.

Our proposal only combines experimentally demonstrated
building blocks, such as 3D optical lattices for ultra-
cold fermions [38], polarization-dependent potentials [39,40],
laser-induced gauge potentials [30–33], and 2D Lieb optical
lattices [41,42]. In these ultracold atom setups, the energy
bands can be measured in a momentum-resolved manner
using, for example, Bragg spectroscopy [43,44] or Stückelberg
interferometry [45]. Additionally, the triple band-touching
points can be detected through Landau-Zener processes which
measure the energy gaps by observing the nonadiabatic tran-
sitions between bands. Such techniques have been already
applied for 2D systems [46,47] and theoretically studied for
3D Weyl semimetals [48]. Furthermore, the band topology of
the system could be probed by extending to three dimensions
the techniques adopted to map the Berry curvature of the bands
in planar geometries [49,50].

Finally, it is interesting to consider whether different types
of topological objects can be obtained by tilting also in the
case of higher-order band crossings, such as the spin- 3

2 or
spin-2 topological semimetals described in Ref. [24]. The
resulting anisotropy and the topologically protected crossing
between electron and hole Fermi surfaces may lead to novel
magnetoelectric and transport properties [51,52].
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