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Abstract Seismic anisotropy has increasingly been proposed as a tool in the monitoring of magmatic
systems and potential forecasting of volcanic eruptions. We present a detailed study of how seismic
anisotropy evolves in an active magmatic rift segment before, during, and after a dyke intrusion in the Afar
depression, Ethiopia. Results show that seismic anisotropy prior to the dyke intrusion is controlled by a
complex and deforming magma plumbing system beneath the adjacent Dabbahu and Manda-Hararo
magmatic segments. Approximately eight days prior to the dyke intrusion in the Dabbahu segment, the
pattern of anisotropy, coupled with lower crustal seismicity, is best explained by the inflation of a lower
crustal magma reservoir in the Manda-Hararo segment. This is the only clearly observed precursory change in
seismic anisotropy. During the dyke intrusion, the magnitude of seismic anisotropy increases twofold,
before rapidly returning to predyke values once the intrusion has ended. Combining our observations with
models of magmatically induced crustal stress, we propose that when the deep magma reservoir beneath
the Dabbahu segment becomes overpressured, inflation is triggered in the magma reservoir of the
neighboring Manda-Hararo segment. This provides strong evidence for a hydraulic link between the deep
magma systems of the neighboring rift segments and that magma reservoirs beneath the Dabbahu segment
can be fed by the lateral flow of magma from an adjacent segment. Our results demonstrate that seismic
anisotropy has the potential to be a powerful tool for monitoring deformation in the magma plumbing
systems of active volcanoes.

1. Introduction
1.1. Seismic Anisotropy in the Crust

Seismic anisotropy is an intrinsic property of the Earth’s crust and is observed in almost all geological and tec-
tonic settings (e.g., Illsley-Kemp, Savage, et al., 2017; Johnson et al., 2011; Li & Peng, 2017; Menke et al., 1994).
Numerous studies have suggested that seismic anisotropy is caused by structural features such as faults (e.g.,
Boness & Zoback, 2006; Li et al., 2014; Menke et al., 1994; Zinke & Zoback, 2000), and aligned melt pockets
(e.g., Bastow et al., 2010; Dunn et al., 2005; Keir et al., 2005, 2011), where the polarization direction is parallel
to the trend of structural features. It has also been increasingly observed that seismic anisotropy in the crust
can be controlled by aligned, fluid-filled microcracks (Crampin & Peacock, 2008, and references therein.).
Microcracks exist between grains and can be assumed to have a simple, penny-shaped geometry
(Crampin, 1994, 1999). It is thought that these microcracks are randomly oriented in the crust and do not
intrinsically induce seismic anisotropy. However, when a horizontal stress is applied to the crust, microcracks
will selectively open to align with the direction of maximum horizontal compressive stress. These aligned,
fluid-filled microcracks will induce seismic anisotropy through a mechanism described as extensive dilatancy
anisotropy (EDA; Crampin, 1984, 1987). The variation in orientations of individual, open microcracks can vary
by ∼30–40° (Crampin & Zatsepin, 1997). However, the wavelength of seismic waves is much larger than the
dimensions of the microcracks; hence, the average crack orientation is sampled by seismological techniques.
The magnitude of seismic anisotropy (i.e., the delay time between shear waves) has been shown to be con-
trolled by the aspect ratio (ratio between width and length) of the microcracks (Crampin, 1999). The micro-
crack’s aspect ratio correlates with the horizontal stress; thus, the magnitude of seismic anisotropy is
directly related to the magnitude of maximum horizontal stress. Therefore, through the theory of EDA, seis-
mic anisotropy can be used to directly measure the orientation andmagnitude of the horizontal stress field in
the crust.
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1.2. Temporally Varying Anisotropy

Many studies have observed that crustal seismic anisotropy can vary temporally in response to geological
phenomena in which changes to the orientation and magnitude of the stress field are expected. Shear-wave
delay time has been observed to increase prior to earthquakes (Peacock et al., 1988; Volti & Crampin, 2003),
with the suggestion that as stress builds, the microcrack aspect ratios in a rock volume increase, causing an
increase in shear-wave delay time. Once the stress is released by the earthquake, the microcracks and shear-
wave delay time instantaneously return to their previous state. This observation has led authors to suggest
that seismic anisotropy may act as a tool for earthquake forecasting. However, the ability of seismic aniso-
tropy to forecast large earthquakes is not universally accepted (Aster et al., 1990; Crampin et al., 1991).

Building on the premise that temporally varying seismic anisotropy can monitor changes in crustal stresses,
several studies have investigated seismic anisotropy in regions of volcanic unrest. Both the orientation
and magnitude of seismic anisotropy have been reported to respond to volcanic activity at, among
others, Mt. Ruapehu, New Zealand (Gerst & Savage, 2004; Miller & Savage, 2001); Mt. Etna, Italy (Bianco
et al., 2006); Soufriére Hills, Montserrat (Roman et al., 2011); and Piton de la Fournaise, La Rèunion (Savage
et al., 2015). These studies have typically found that the orientation of seismic anisotropy changes in

Figure 1. Topographic map of the northern Afar depression. Seismic network (blue triangles) deployed from 11 October
2009 to 18 November 2010. The orange triangles denote active volcanic centers. The red segments denote the
Quaternary magmatic segments. The location of the 2005 dyke intrusion within the Dabbahu segment is denoted in
orange (Wright et al., 2006). Figure 2 outline shown by dashed black box. Hydrothermal features taken from Keir et al.
(2009). Inset shows the location of the study region in East Africa.
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response to volcanic activity. Seismic anisotropy has also been observed to respond to changes in fluid pres-
sure in the Krafla geothermal reservoir, Iceland (Tang et al., 2005). However, due to the relative infrequency of
subaerial dyke intrusions, our understanding of how seismic anisotropy and crustal stress evolves during
these events is limited. Dyke intrusions are an important process in continental rifting (e.g., Wright et al.,
2012) and seafloor spreading (e.g., Ahmed et al., 2016; Tan et al., 2016); it is therefore vital that we understand
the dynamic evolution of crustal stress during these rifting events.

1.3. The Dabbahu Rifting Sequence

An ideal locale to study how crustal anisotropy responds to a dyke intrusion is the Dabbahu rift segment,
Ethiopia. The Dabbahu rift segment is at the southern end of the Red Sea rift system and forms part of the
subaerial Afar depression (Figure 1). The Afar depression lies at the triple junction of the Red Sea, Gulf of
Aden, and Main Ethiopian rifts (McKenzie & Davies, 1970). Rifting in Afar initiated ∼29–31 Ma with extension
initially focused on large border faults (Ayalew et al., 2006; Wolfenden et al., 2005). Between 25 and 20Ma, the
majority of extension in Afar is thought to have migrated away from the border faults (Hayward & Ebinger,
1996; Wolfenden et al., 2005) and is now focused at axial magmatic segments. These magmatic segments
are the locus for the majority of present-day seismicity and magmatism (Belachew et al., 2011; Illsley-Kemp
et al., 2018; Wright et al., 2006). The ∼60-km-long, ∼20-km-wide Dabbahu segment consists of a central valley
bound by normal faults, which trend NNW-SSE in the north and NW-SE in the south (Medynski et al., 2013).
The center of the segment is characterized by the axial Ado’Ale Volcanic Complex (AVC), with a large collapse
structure (Medynski et al., 2013). Dabbahu stratovolcano is at the northern end of the segment (Field et al.,
2012). Between 20 September 2005 and 4 October 2005, the entire segment was intruded by an 80-km-long,
10-km-deep, and 8-m-wide dyke (Ayele et al., 2007; Wright et al., 2006). This initiated an ∼5-year-long rifting
sequence, which involved the intrusion of a further 13 dykes (Barnie et al., 2015; Belachew et al., 2011;
Hamling et al., 2009). Each dyke typically propagated north or south from the AVC in a pattern that is thought
to have been controlled by preexisting crustal structures and the unclamping of stresses by preceding dyke
intrusions (Grandin et al., 2010; Hamling et al., 2009, 2010). Ground deformation between dyke intrusions has
been modeled to reveal that the dykes are sourced from a composite dyke-sill magma chamber beneath the
center of the rift segment, which inflates at a near-constant rate during the rifting sequence (Grandin et al.,
2010). The ground deformation signal also revealed deep-crustal magma reservoirs beneath the Dabbahu
segment and adjacent Manda Hararo segment. The deep magma reservoir beneath the Dabbahu segment
(W3) is modeled at 25-km depth and inflates at a near-constant rate of +0.13 km3/year between 2005 and
2009, when observations end. Similarly, the magma reservoir beneath the Manda Hararo segment (H) is
modeled at 17-km depth; however, this reservoir is observed to deflate at a constant rate of �0.13 km3/year,
complementary to the inflation at depth beneath the Dabbahu segment (Grandin, Socquet, Doin, et al., 2010).

The rifting sequence finished with an intrusive event in May 2010, a dyke propagated to the north and south
of the AVC. The sequence of events during this dyke intrusion has been well established by Barnie et al.
(2015), using a combination of seismicity, interferometric synthetic aperture radar, satellite thermal data,
ultraviolet SO2 retrievals, and light detection and ranging imagery. The intrusion initiated at 20 May, 18:09
when seismic activity revealed the ascent of magma at the AVC, seismicity then propagated both north
and south to maximum extents of 8 and 10 km, respectively. Barnie et al. (2015) suggest that this seismicity
tracked the propagating tips of the dyke and that the north and south propagation finished at 21 May, 00:00
and 08:00, respectively. Cessation of dyke propagation to the north is coincident with a fissure eruption that
began between 00:57 and 01:12 21 May, with effusion rates peaking at 02:27 and stopping entirely by 06:27.
The total erupted volume is calculated to be 0.23 × 106 m3 (Barnie et al., 2015). The dynamic sequence of
events during this dyke intrusion is well understood, and the intrusion was monitored by an excellent seismic
network; it thus provides an ideal opportunity to study how crustal seismic anisotropy responds to a
dyke intrusion.

The Dabbahu rifting episode consisted of 13 dyke intrusions over a 5-year period (Barnie et al., 2015;
Belachew et al., 2011; Hamling et al., 2009). The stress field surrounding the Dabbahu segment will have been
influenced by each of these intrusions and thus can be expected to be complex in nature. Illsley-Kemp,
Savage, et al. (2017) conducted a study of seismic anisotropy across Northern Afar between 2011 and 2013
and found that anisotropy orientations in the Dabbahu region did not agree with a previous study of Keir
et al. (2011). It was suggested that the data of Keir et al. (2011) were influenced by the Dabbahu rifting
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sequence and that this caused the disagreement in anisotropy orientations. In this study we aim to develop
on the work of Illsley-Kemp, Savage, et al. (2017) and study the temporal evolution of crustal seismic
anisotropy in the Dabbahu rift segment.

2. Data and Methods
2.1. Seismic Data

We used continuous seismic data from a network of 13 Güralp broadband seismometers deployed between
October 2009 and November 2010 (Figure 2). Earthquakes were detected and located automatically using
coalescence microseismic mapping (Drew et al., 2013). This generates a characteristic function for each
recorded channel by calculating a ratio between the average amplitude in a short window (0.3 s) and the
amplitude in a longer window (5 s). Peaks in the characteristic function are fitted with Gaussian envelopes
and then migrated through a 1-D velocity model (from Belachew et al., 2011). Maxima in the coalescence
function record the temporal and spatial coordinates of detected earthquakes. To avoid artifacts, we only
output those earthquakes with signal-to-noise ratios greater than 2. We searched over a defined region in
Afar and the final catalog contains 1,190 individual earthquakes. Local magnitudes are then calculated using
a region-specific magnitude scale (Illsley-Kemp, Keir, et al., 2017; Figure 2).

2.2. Seismic Anisotropy

Automatic S-picks from coalescence microseismic mapping are generally slightly later than the actual
onset (Greenfield et al., 2016); we therefore manually picked 4,650 S wave arrivals for the entire catalog at
all 13 seismic stations. We then applied the Multiple Filter Automatic Splitting Technique Version 2.2

Figure 2. Seismic network (blue triangles) deployed in Afar from 11 October 2009 to 18 November 2010. Earthquakes
shown by grey circles; dyke-induced earthquakes are red circles. The black line denotes profile for Figure 3. The
Dabbahu and Manda-Hararo magmatic segments are labeled. The orange triangles denote the Dabbahu and Manda-
Hararo volcanoes. The Ado’Ale volcanic segment (AVC) is shown with a dashed black line.
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(MFAST; Savage et al., 2010). MFAST is based on the method of Silver and Chan (1991) and minimizes the
covariance matrix eigenvalue of the horizontal particle motion by searching over a range of fast direction
(φ) and delay times (δt). MFAST then develops the method of Teanby et al. (2004) by trialing a set of 14
filters over the S wave pick and determines the three most effective filters by analyzing the signal-to-noise
ratio. These filters are then used with the Silver and Chan (1991) method to measure shear-wave splitting
over multiple windows. The reliability of these measurements is then assessed by cluster analysis, with
unreliable results being discarded. Further, MFAST rejects measurements, which have an unclear linearity
by assessing the smallest and largest eigenvalues. This rigorous quality analysis allows us to interpret
shear-wave splitting results with a high degree of confidence. Errors for individual measurements are
directly calculated from the contours of the shear-wave splitting grid search (Silver & Chan, 1991). Average
values for both fast direction (φ) and delay times (δt) are calculated over the three time periods of interest
with errors given by the standard deviation of values within the specified time period (Table 1). In order to
consider errors in fast direction, we calculate the von Mises distribution (Mardia & Jupp, 2000) of fast
directions in each time period. This is characterized by a mean fast direction (Φ) and a concentration
parameter (κ). The concentration parameter gives an indication of the distribution of fast directions, with a
value of 0 indicating a random distribution, and is used to calculate standard errors in fast direction. We
calculate high concentration parameters for distinct time periods at stations of interest (Table S1),
suggesting a statistically robust, preferred fast-orientation.

We use the TauP toolkit (Crotwell et al., 1999) to determine earthquake raypath incidence angles at the sur-
face in order to limit raypaths to the shear-wave window. The shear-wave window is the vertical cone
beneath the seismic station bound by sin�1(VS/VP). This removes any potential contamination from phase
conversions at the surface (Booth & Crampin, 1985).

As we are interested in the evolution of seismic anisotropy in response to the May 2010 dyke intrusion, we
limit our study to consider only anisotropy results from earthquakes that occur within the Dabbahu segment
region (Figure 4). This allows us to consider temporal changes in seismic anisotropy by minimizing the influ-
ence of variable path effects.

3. Results
3.1. Seismicity

Out of our total catalog we use 599 individual earthquakes in the Dabbahu region with magnitudes ranging
from 2.4 to 4.9 ML and the catalog is complete above 3.2 ML (Woessner & Wiemer, 2005; Figure 2). The seis-
micity of the May 2010 dyke intrusion is well described by Barnie et al. (2015). Our longer seismic catalog
reveals that the rupture area of the dyke is seismically quiet for all periods before and after the dyke intrusion
and the vast majority of seismicity in the Dabbahu segment is focused north of the segment center in the
region ruptured by previous dyke intrusions (Figure 3). We use the study of Barnie et al. (2015) to define
the beginning and end of dyke propagation.

3.2. Seismic Anisotropy

At stations near the dyke intrusion, we record a total of 674 measurements of seismic anisotropy that are
classed as A or B by MFAST (Table 1). We see no response of the seismic anisotropy to the May 2010 dyke

Table 1
Seismic Anisotropy Results for Individual Stations (Figure 4)

Station Num. Meas. Predyke Φ (°) Codyke Φ (°) Postdyke Φ (°) Predyke δt (10�4 s/km) Codyke δt (10�4 s/km) Postdyke δt (10�4 s/km)

FINE 176 50 ± 8 46 ± 17 36 ± 17 36 ± 2 46 ± 2 36 ± 1
IGRE 280 88 ± 1 74 ± 3 85 ± 2 28 ± 1 39 ± 1 30 ± 1
KOZE 24 79 ± 24 54 ± 27 52 ± 21 16 ± 1 76 ± 3 30 ± 1
LULE 49 �45 ± 11 �23 ± 4 �32 ± 2 44 ± 1 58 ± 1 37 ± 1
SAHE 100 77 ± 4 �49 ± 9 70 ± 5 24 ± 1 114 ± 15 50 ± 8
TRUE 39 23 ± 6 �40 ± 5 11 ± 10 25 ± 1 117 ± 2 27 ± 1

Note. Axial mean anisotropy orientation (Φ) given in degrees clockwise from north. Average delay time at each station (δt) given in seconds per kilometer. Errors
are given by one standard deviation from the mean.
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intrusion at any station that is further than 50 km from the dyke. We will therefore exclusively consider the
seismic anisotropy results at those stations nearby the dyke intrusion (Figure 2). Seismic anisotropy is
accrued along the raypath; therefore, a significant change in earthquake location can result in a change in
seismic anisotropy measurements due to the different volumes that are being sampled. This could be
mistakenly interpreted as a temporal change in seismic anisotropy within the volume. In order to ensure
that any temporal variations we observe are not originating from a change in the volume being sampled,
we examine temporal variations in the raypath properties; back azimuth (°), source depth (km), and
incidence angle at the seismometer (°; Figures S4–S6). We find that there is very little variation in raypath
properties through time; thus, any observed variations in seismic anisotropy can be attributed to changes
within the same sampled volume.

By averaging the observed delay time along the length of the raypath we find that prior to the dyke intrusion
the average anisotropy recorded at the proximal stations is 38 × 10�4 s/km (Table 1). Anisotropy orientations
(Figure 4a) are generally consistent with previous studies of the region (Illsley-Kemp, Savage, et al., 2017; Keir
et al., 2011) and show no clear coherent orientation between stations. Individual stations show little internal
variation, with the exception of KOZE, which has two distinct populations of anisotropy orientations.

At every station, we observe an increase in average delay time (δt) during the dyke intrusion by an average
ratio of 2.03 (Table 1). We also observe a change in the orientation of seismic anisotropy during the dyke
intrusion at most stations (Figure 4b and Table 1); this is most pronounced at stations SAHE, FINE, TRUE,
and IGRE (Figures 4 and 5). FINE shows more scatter in anisotropy orientation than the other stations
(Figure 5); however, there is a distinct population of orientation measurements at ∼50° before and after
the dyke intrusion. During the dyke intrusion there is a range of orientation measurements, yet there appears
to be two populations of orientations at approximately 30 and �80° (Figure 6). The increase in delay time at
FINE appears to occur ∼24 hr before the dyke intrusion. IGRE changes from a predyke orientation of 88° to a
codyke orientation of 74°. This change appears to occur simultaneously with the initiation of the dyke intru-
sion and is coincident with an increase in delay time (Figure 6). The orientation of anisotropy at TRUE changes
from 19° predyke to �39° during the dyke intrusion. The delay time also increases markedly during the dyke
intrusion (Figure 6). Due to a lack of high-quality measurements at TRUE between 14 May 2010 and the

Figure 3. (a) Along segment seismicity through time (Figure 2). The May 2010 dyke rupture area is seismically quiet for all
nonintrusive time periods. During these times, seismicity is focused in the north of the Dabbahu segment. (b) The two
separate dyke intrusions (red) to the north and south are clearly visible. Seismicity immediately after the southern dyke
intrusion is interpreted as a response to the dyke intrusion and not the direct result of dyke propagation (Barnie et al., 2015)
effusion rate (blue) derived from extracted SEVIRI band 3 (1.6 μm) radiance marks the timing and volume of the fissure
eruption (Barnie et al., 2015). Cumulative seismic moment release is shown in red.

10.1029/2018JB016420Journal of Geophysical Research: Solid Earth

ILLSLEY-KEMP ET AL. 6



initiation of the dyke intrusion, it is not possible to identify at which point
the change in anisotropy occurred. SAHE changes from a predyke
orientation of 79° to an orientation of �54° during the dyke intrusion.
The orientation change at SAHE occurs on 11 May 2010 and is coincident
with an increase in delay time (Figure 6). This change in seismic anisotropy
happens ∼8 days prior to the dyke intrusion.

Once the dyke has ceased propagating, both the anisotropy orientation
and delay times return almost immediately to values that are very similar
to the predyke measurements (Table 1 and Figure 4c). This change does
not occur at the exact time at which the dyke stops propagating
(08:00:00, 21 May 2010), at SAHE and FINE the anisotropy changes ∼8 hr
after dyke propagation (Figure 6). At approximately 1 July 2010, the aniso-
tropy at SAHE shows a change that is similar to that observed during the
May 2010 dyke intrusion. This change in anisotropy is not clearly linked
to any increase in seismicity in the Dabbahu segment.

4. Discussion
4.1. Predyke Anisotropy

Previous studies of crustal seismic anisotropy in the East African rift have
generally found that the anisotropy aligns with the regional stress field
and/or with rift-aligned structures (Illsley-Kemp, Savage, et al., 2017; Keir
et al., 2005, 2011). If a similar mechanism was controlling the anisotropy
in the Dabbahu rift segment, one would expect the anisotropy to align
NNW-SSE, parallel to the Red Sea rift. Our study has shown that anisotropy
in this region (before and after the dyke intrusion) is not aligned with the
rift and shows a large amount of local variation (Figures 4a and 4c). Surface
faulting in the Dabbahu region shows a predominance of NNW-SSE
aligned structures (Manighetti et al., 2001; Medynski et al., 2016); this
may explain the predyke anisotropy orientation at LULE and TRUE, but
the other stations display orientations that are highly oblique to these
faults. Therefore, we can rule out structure-controlled anisotropy as the
dominant mechanism for inducing seismic anisotropy. Similarly, if the
anisotropy was controlled by the large-scale tectonic forces of the Red
Sea rift, it would also align NNW-SSE, perpendicular to the extension direc-
tion. This can therefore also be discounted on a similar basis.

In regions of magmatic activity, it has been observed that local seismic
anisotropy can be controlled by volume changes in the magmatic
plumbing system (Gerst & Savage, 2004; Roman et al., 2011; Savage
et al., 2015). Ground deformation measurements between the
Dabbahu dyke intrusions can be modeled by several inflating and
deflating magmatic sources (Grandin, Socquet, Doin, et al., 2010;
Temtime et al., 2018). Two magma bodies beneath Dabbahu volcano,
at the northern end of the rift segment (Figure 2), show a large initial
response to the initial 2005 dyke intrusion but then stop deforming
by mid-2006 and 2008, respectively. Additionally, five other magmatic
bodies are modeled to deform at a near-constant rate from mid-2006
to mid-2009 when the interferometric synthetic aperture radar data
ends. Included in this model are two deep magma reservoirs, Wal’lis
(W1) and Hararo (H), which are beneath the Dabbahu and Manda-
Hararo segments, respectively (Figure 7). If we assume that these bodies
continued to deform at a constant rate through to 2010, we are able to
model the effect that they have on the horizontal stress field in the

Figure 4. Rose diagrams showing seismic anisotropy orientations (φ).
(a) Seismic anisotropy before the dyke intrusion (00:00:00, 11 October 2009,
to 18:09:00, 20 May 2010). (b) Seismic anisotropy during the dyke intrusion
(18:09:00, 20 May 2010, to 16:00:00, 21 May 2010). (c) Seismic anisotropy after
the dyke intrusion (16:00:00, 21 May 2010, to 23:59:59, 18 November 2010).
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Dabbahu region. We use the Coulomb 3.3 package (Lin & Stein, 2004; Toda et al., 2005) to model the
deforming magma bodies and to extract the orientation of the modeled maximum horizontal stress at
the surface. By using the EDA principal that seismic anisotropy will align with the direction of
maximum horizontal stress we can directly compare our measurements of seismic anisotropy with the
modeled stress field (Figure 7). The modeled SHmax orientation is shown to vary over relatively short

Figure 5. Seismic anisotropy through time at IGRE, FINE, TRUE, and SAHE. The colored background boxes indicate the
mean value ± error, before and after the dyke intrusion. The dashed box indicates the time window for Figure 6. The
orange box indicates time at which the dyke was propagating. Note the different Y axis for anisotropy (s/km) at SAHE.
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distances (Figure 7); thus, individual raypaths will traverse mediums with different anisotropic properties.
Studies of shear-wave splitting in vertically heterogenous anisotropic medium show that the observed
anisotropy orientation is weighted toward the anisotropy in the upper layer (Rümpker & Silver, 1998;
Saltzer et al. (2000)). In our study, the upper layer corresponds to the anisotropy near the station; thus,
we compare observed seismic anisotropy to the modeled SHmax orientation near the station. This

Figure 6. Seismic anisotropy through time at IGRE, FINE, TRUE and SAHE for may 2010. Colored background boxes indicate
the mean value ± error, before, during and after the dyke intrusion. Orange box indicates time at which the dyke was
intruding. Note the different Y axis for anisotropy (s/km) at SAHE.
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comparison shows that the predyke anisotropy orientations can be well explained by the stresses that are
induced by the deforming magma bodies. The magmatic feature, which is found to have the greatest
impact on the stress field, is the inflating, dyke-like body (W1), which forms part of the AVC magmatic
segment. This induces an anisotropy pattern that is roughly radial to the rift center (Figure 7). Stations
SAHE and TRUE appear to be affected by magma bodies H and D2, respectively. Body H is a deep,
deflating magma chamber, which induces a circular anisotropy in the surrounding region. This best
explains the ENE-WSW anisotropy at SAHE (Figure 7). Body D2 is an inflating magma chamber beneath
Dabbahu volcano and induces radial anisotropy in the surrounding region. All the earthquakes, which
yield anisotropy measurements at TRUE, originate in the north of the rift segment, to the east of TRUE
(Figure 4a). Consequently, this means that the associated raypaths will travel through the region (∼12.5,
40.5) characterized by ∼N-S anisotropy, and high strain, induced by D2 (Figure 7). This region of N-S
oriented anisotropy will dominate (Figure S3), thus causing the anisotropy orientation at TRUE to be ∼N-S.

4.2. Precursory Changes

Previous studies of seismic anisotropy have suggested that it can be used as a precursor to forecast future
eruptions (e.g., Bianco et al., 2006; Gerst & Savage, 2004; Volti & Crampin, 2003). The data from the

Figure 7. Stress modeling of the deforming magmatic bodies identified by Grandin, Socquet, Doin, et al. (2010). The small
black bars show the modeled orientation of the maximum horizontal stress. The rose plots show the predyke anisotropy
orientations (Figure 4a). The black line denotes the profile for the cross section.
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Dabbahu segment do not conclusively display a precursory change in seismic anisotropy before the May
2010 dyke intrusion and associated fissure eruption (Figures 5 and 6). Stations TRUE and IGRE show no
obvious change in either delay time or anisotropy orientation until the initiation of the dyke intrusion. At
TRUE this may be due to a lack of data points between 23:25:16, 13 May 2010 and the start of dyke intrusion
(18:09:00, 20 May 2010); however, at IGRE there is frequent data in the days preceding the dyke intrusion
(Figure 6). FINE does not show an obvious precursory change in anisotropy, with the exception of a measure-
ment at 23:31:44, 19 May 2010, approximately 18 hr before the start of the dyke intrusion. This measurement
records a delay time of 0.017 s/km, which is the highest recorded during the entire recording period at FINE.

In contrast, SAHE shows a clear precursory change in seismic anisotropy leading up to the dyke intrusion. At
00:12:55, 12 May 2010 seismic anisotropy changes from an average orientation of ∼79° and average delay
time of 0.0056 s/km, to record a measurement of �45° and 0.013 s/km (Figure 6). The delay time continues
to increase, and the anisotropy orientation remains ∼ �45° until 17:15:56, 19 May 2010, approximately 23 hr
before the dyke intrusion, when the delay time drops dramatically (Figure 6). There are relatively few mea-
surements prior to the dyke intrusion; thus, we must make interpretations with care. If we consider the pre-
cursory measurements as a whole, allowing for scatter of individual measurements, then the change in
anisotropy orientation to �45° ± 9° is significant. It is interesting to note that this precursory change in seis-
mic anisotropy is only clearly observed at SAHE. If the change in anisotropy was induced by deformation at
the center of the Dabbahu segment, one would expect this to occur at all of the proximal stations, as all are a
similar distance from the Dabbahu segment center (Figure 2). As the precursory change is only observed at
SAHE, we suggest that the cause is more local to this station. The orientation of anisotropy at SAHE prior to
the dyke intrusion is controlled by the deflating source at Hararo (H; Figure 7). This deflation induces a circular
horizontal stress pattern, causing the NE-SW oriented anisotropy at SAHE. If the Hararo magma chamber
were to begin inflating, it would induce a radial stress pattern, which would manifest as NW-SE oriented
anisotropy at SAHE.

In addition to the change in anisotropy at SAHE, we note that there is an increased level of seismicity in the
Hararo region (Figure 2). We manually refine the arrival time picks and relocate seismicity located close to the
Hararo deformation source using NonLinLoc (Lomax et al., 2000) and a 1-D velocity model for the Dabbahu
region (Belachew et al., 2011). This reveals that seismicity near the Hararo magma chamber is anomalously
deep (>15 km) with an average error in depth of ±3.8 km. These earthquakes occur significantly deeper than
the proposed brittle-ductile transition at 8 to 10 km depth (Ebinger et al., 2008; Figure 8). The deep seismicity
occurs in a swarm like pattern (Figure 8), with the first swarm initiating on 13 May 2010, the day after seismic
anisotropy measurements at SAHE are observed to change dramatically. These combined observations pro-
vide good evidence that the Hararo deformation source begins to deform and inflate on 12 May 2010.

The change in deformation style at Hararo may be a precursor to the dyke intrusion and fissure eruption in
the Dabbahu segment. Grandin, Socquet, Doin, et al. (2010) observed that there is a volume balance
between the long-term deflation signal at the lower crustal Hararo magma chamber (H) and the lower crus-
tal Wal’lis magma chamber (W3). They used this to suggest that the two magma reservoirs may be hydrau-
lically connected. Grandin, Socquet, Doin, et al. (2010) suggest that the dyke intrusions in the Dabbahu
segment between 2005 and 2010 sourced magma from the deep Wal’lis magma reservoir, causing a
decrease in pressure and an inflow of magma. This inflow of magma may be sourced from the deflating
Hararo magma reservoir in the neighboring magmatic segment. In this sense, the deflation at Hararo is dri-
ven by low pressure in the Wal’lis magma reservoir. Therefore, if the Wal’lis magma chamber were to
become overpressured, one would expect the Hararo magma reservoir to cease deflating and begin inflat-
ing. Therefore, the inflation of the Hararo magma chamber, beginning 12 May 2010, indicates that the
Wal’lis magma chamber had become overpressured. This overpressure was then released with the migra-
tion of magma from the Wal’lis reservoir to the shallow plumbing system beneath the Dabbahu segment
and the subsequent dyke intrusion and fissure eruption. In this sense, the dramatic change in anisotropy
magnitude and orientation observed at SAHE records a precursory signal that the Wal’lis magma reservoir
is overpressured and that an eruption/dyke intrusion may be imminent.

Our results build on a growing body of evidence, which suggests that the magmatic system beneath the
Dabbahu segment is fed by significant lateral flow of magma in the lower crust from the Manda Hararo seg-
ment. This occurs over distances of approximately 35 km and appears to dynamically respond to pressure
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changes in themagma plumbing system. These findings suggest that magmatic segments in continental rifts
are not necessarily isolated systems and that rift segments can interact through the direct transfer of
magmatic material.

4.3. Codyke Anisotropy

We can further model the horizontal stress that is induced by the intrusion of the May 2010 dyke. We use
dyke parameters obtained from deformation modeling by Barnie et al. (2015) and compare the model results
to observations of seismic anisotropy during the dyke intrusion. We find that there is excellent agreement
between the modeled orientation of maximum horizontal stress and the observed orientation of seismic ani-
sotropy (Figure 9). The modeled, dyke-induced stress field is similar to that modeled for the interdyke stress
(Figure 7); this is largely due to the elongate, inflating magma source W1 beneath the AVC. It is not known
whether the magma bodies identified by Grandin, Socquet, Doin, et al. (2010) and modeled in Figure 7,
continue to deform during the dyke intrusion. However, the excellent agreement between the modeled,
dyke-induced stress and the codyke anisotropy suggests that the dyke dominates the stress field while it is
intruding. In addition, we observe that during the dyke intrusion, the magnitude of anisotropy increases
by an average ratio of 2.03 (Table 1), indicating that the intrusion affects the seismic anisotropy. As seismic
anisotropy is accrued along the entire earthquake raypath, it is difficult to distinguish whether the increase
in anisotropy occurs close to the intrusion or in the surrounding region. Two possible models could explain
the codyke anisotropy observations. In the first model, the intrusion of new magmatic material would

Figure 8. Relocated seismicity in the vicinity of the lower crustal Hararo deformation source. Deep seismicity begins on 13
May 2010, shortly after the orientation and magnitude of anisotropy is observed to change at SAHE. Average errors in
depth are ±3.8 km.
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increase the horizontal stress in the surrounding region, increasing the aspect ratio of microcracks and causing
an increase in shear-wave delay times (Crampin, 1994). Alternatively, the dyke intrusion will cause an increase in
temperature in the highly active hydrothermal system of the Dabbahu segment (Figures 1 and 2; Keir et al.,
2009). This will increase the fluid pressure on a local scale and cause an increase in the magnitude of seismic
anisotropy within the Dabbahu segment (Elkibbi et al., 2005; Johnson & Savage, 2012). Both mechanisms of
increasing the magnitude of seismic anisotropy could be acting simultaneously, and it is difficult to
distinguish between them by considering the codyke anisotropy. However, insight may be gained through
studying how the seismic anisotropy evolves once the dyke has ceased propagating.

4.4. Reversal of Anisotropy

We observe that the anisotropy orientation and delay time revert back to predyke values after the dyke has
ceased propagating (Figure 5). At FINE there is a delay of ∼8 hr between the end of dyke propagation and the
reversal of anisotropy values (Figure 6). Where anisotropy has been observed to change in response to
magmatic activity in other regions (e.g., Gerst & Savage, 2004; Volti & Crampin, 2003), the anisotropy takes
significantly longer to return to previous values (months to years). Volti and Crampin (2003) suggest that

Figure 9. Stress modeling of the May 2010 dyke intrusion with parameters taken from Barnie et al. (2015). The small black
bars show the modeled orientation of the maximum horizontal stress. The rose plots show the codyke anisotropy orien-
tations (Figure 4b). The black line denotes the profile for the cross section.
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this time delay is due to the time it takes for the surrounding rock mass to accommodate the strain induced
by the emplacement of magmatic material. The May 2010 dyke intrusion induced opening of 1–1.6 m (Barnie
et al., 2015). Pagli et al. (2014) have found that opening rates in the Dabbahu region are up to 110mm/year; in
response to the rifting episode, it is therefore unlikely that the stress induced by the May 2010 dyke could be
accommodated by plate spreading in such a short amount of time.

Studies of anisotropy that varies with large earthquakes have observed that the anisotropy returns to
background values immediately after the earthquake, interpreted as indicating a release of stress in the
earthquake rupture (Peacock et al., 1988; Volti & Crampin, 2003). The May 2010 eruption induced many
earthquakes, which resulted in a cumulative seismic moment release of 1.208 × 1016 Nm (Figure 3). This
induced seismicity will have released a proportion of the stress induced by the dyke intrusion, potentially
explaining the quick reversal of seismic anisotropy. However, Barnie et al. (2015) calculate the total geodetic
moment of the dyke intrusion to be 3.216 × 1018 Nm, two orders of magnitude greater than the seismic
moment release. It therefore appears unlikely that the induced seismicity can release the dyke-induced stress
and explain the quick anisotropy reversal.

As discussed previously, the increase in seismic anisotropy magnitude observed during the dyke intrusion
could be caused by either the intrusion of magmatic material increasing the regional horizontal stress or
an increase in temperature and pressure in the hydrothermal system of the Dabbahu segment. For the rea-
sons discussed above, it seems unlikely that an increase in regional horizontal stress could be dissipated on
the time-scales which we observe the seismic anisotropy to return to predyke values. We therefore suggest
that the increase in magnitude of seismic anisotropy that we observe during the dyke intrusion is caused
by the heating and pressurization of the Dabbahu hydrothermal system, while the orientation of these
fluid-filled cracks is controlled by the codyke stress field (Figure 9). Finally, we observe that the anisotropy
orientation at SAHE returns to a NE-SW orientation after the dyke intrusion (Figures 4 and 5). Building on
our previous discussions, this suggests that the Hararo magma reservoir resumed deflation after the dyke
intrusion. We can infer that this is in response to the withdrawal of magma beneath the Dabbahu segment
causing a decrease in pressure at the Wal’lis magma reservoir.

5. Conclusion

We present a detailed study of the crustal seismic anisotropy of the Dabbahu magmatic rift segment
between October 2009 and October 2010. Our data have a high temporal resolution and allow us to
document how seismic anisotropy varies through time in response a dyke intrusion in May 2010. Our key
findings are as follows:

1. Seismic anisotropy prior to the May 2010 dyke intrusion is controlled by the deforming magma plumbing
system of the Dabbahu rift segment and not by far field tectonic stresses.

2. Through modeling of magmatically induced stress we show that our seismic anisotropy results are in
broad agreement with previous models of the magma plumbing system.

3. Seismic anisotropy shows that a deep magma reservoir in the adjacent Manda-Hararo segment began to
inflate approximately eight days prior to the dyke intrusion in the Dabbahu segment.

4. During the dyke intrusion the magnitude of seismic anisotropy increases, suggesting a pressurization of
the hydrothermal system within the Dabbahu segment.

Our results provide strong evidence that the Dabbahu and Manda-Hararo magmatic segments are hydrauli-
cally connected. The seismic anisotropy results presented here were able to detect a change in deformation
in a deep magma reservoir in the Manda-Hararo segment. This observation can be used to infer an overpres-
sure within the Wal’lis magma reservoir, in the Dabbahu segment, and potentially to forecast impending
magmatic activity.
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