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ABSTRACT
Drug combination represents one of the most accredited strategies of cancer therapy able to improve
drug efficacy and possibly overcome drug resistance. Among the agents used to complement conven-
tional chemotherapy, carbonic anhydrase IX (CAIX) inhibitors appear as one of the most suitable, as
markers of hypoxic and acidic cancer cells which do not respond to chemo- and radiotherapy. We per-
formed preclinical in vitro assays to evaluate whether the SLC-0111 CAIX inhibitor co-operates and poten-
tiates the cytotoxic effects of conventional chemotherapeutic drugs in A375-M6 melanoma cells, MCF7
breast cancer cells, and HCT116 colorectal cancer cells. Here, we demonstrate that the SLC-0111 CAIX
inhibitor potentiates cytotoxicity of Dacarbazine and Temozolomide currently used for advanced melan-
oma treatment. SLC-0111 also increases breast cancer cell response to Doxorubicin and enhances 5-
Fluorouracil cytostatic activity on colon cancer cells. These findings disclose the possibility to extend the
use of CAIX inhibitors in the combination therapy of various cancer histotypes.
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Introduction

Therapy resistance represents the main issue for cancer treatment
and obstacles the good outcome of cancer patients. Cancer cells
develop resistance to almost all chemotherapeutic agents via dif-
ferent mechanisms, for instance reducing drug accumulation and
increasing drug export, altering drug targets and signalling trans-
duction molecules, increasing repair of drug-induced DNA dam-
age, and promoting apoptosis evasion programs1. Drug resistance
consists of a lack of response to a specific drug, and it may
depend on special resistant subpopulation of cancer cells that
cause a poor initial treatment response without prior exposure to
anticancer agents—“intrinsic resistance”—or is acquired as a cellu-
lar adaptation, with an initial good treatment response followed
by poor results and a devastating outcome—“acquired
resistance”2. The issue of drug resistance also regards the so-called
personalised medicine, developed from the genetic information
collected from tumour tissues, based on targeted anticancer drugs
that often involves kinase inhibitors2. Thus, despite the significant
progresses in the development of anticancer therapeutic strat-
egies, involving either conventional or targeted therapies, drug
resistance still represents a common phenomenon in tumour-
bearing patients.

The development of drug resistance leads to consider the need
for drug combination strategy. Complementary therapy may
reduce the incidence of resistance as increasing drug efficacy and
the overall survival rate of treated patients. This is why a large

part of the effort dedicated to cancer therapy is directed towards
the study for drug combinations.

Tumour microenvironment has emerged as a key player in the
development of chemoresistance and in malignant progression3,4.
For most tumours, it is characterised by hypoxia and acidosis,
both conditions that profoundly influence cancer cell biology and
inhibit therapy response5–7. Identifying the agents of microenvir-
onment-mediated progression and drug resistance might yield
information to avoid them. Among them, carbonic anhydrase (CA,
EC 4.2.2.1) IX has increasingly drawn the attention of cancer
researchers. CAIX, a tumour-associated metalloenzyme that cata-
lyzes the reversible formation of HCO3

� and Hþ ions from H2O
and CO2, basically maintains a favourable intracellular pH for
tumour cell survival and growth and is correlated with cancer cell
migration, invasion, and maintenance of stemness properties8.
CAIX expression is promoted by hypoxia-inducible factors 1a (HIF-
1a) in the hypoxic regions within the tumour mass9 and also by
extracellular acidic microenvironment via HIF-1a-independent
mechanisms10,11. We have previously demonstrated the increased
CAIX expression in melanoma, breast, and colorectal cancer cells
transiently and chronically exposed to an extracellular acidic
microenvironment (pH 6.7 ± 0.1). Extracellular acidosis represents a
“diabolic” characteristic of most solid tumours that correlates with
aggressive phenotypes and therapy resistance. Moreover, we also
demonstrated that the CAIX inhibitor SLC-0111 is able not only to
prevent such CAIX increased expression but also to selectively
induce the apoptotic program in A375-M6 melanoma cells, MCF7
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breast cancer cells, and HCT116 colorectal cancer cells transiently
and chronically exposed to extracellular acidosis, without showing
any cytotoxic effect in the population maintained under standard
pH condition (pH 7.4 ± 0.1)10. Thus, CAIX expression represents a
common cancer cell adaptation to changes in tumour microenvir-
onment, such as hypoxia and acidosis, both involved in cancer
progression and resistance. CAIX expression in human tumour
samples is always associated with tumour progression and poor
prognosis12–16 and its block through chemical inhibitors, either as
a single treatment or in combination with radiotherapy, signifi-
cantly reduces tumour growth in vivo17,18. Moreover, CAIX target-
ing by Acetazolamide treatment enhances the anti-angiogenic
effect of Bevacizumab19.

In this study, we have investigated if CAIX targeting may com-
plement conventional chemotherapy in the treatment of melan-
oma, breast, and colon cancer. We demonstrated that SLC-0111, a
novel CAIX inhibitor, is able to synergise with Dacarbazine and its
derivative Temozolomide, Doxorubicin and 5-Fluorouralcil in the
treatment of melanoma, breast, and colorectal cancer, respect-
ively, which, as reported in our previous paper10, express a signifi-
cant level of mRNA and protein of CAIX also in normoxia.

Materials and methods

Cell cultures

Human melanoma cell line A375-M6, breast carcinoma MCF7 cell
line, and colorectal carcinoma HCT116 cell line were maintained in
DMEM 4,5 g/L glucose and 2mM L-glutamine supplemented with
10% fetal bovine serum (Euroclone, Milan, Italy) as previously
described10. CAIX inhibitor SLC-0111, developed in the laboratory
of Professor Claudiu T. Supuran (NEUROFARBA Department,
University of Florence, Italy) and previously described10, was used
at 100 mM dose alone or in combination with Dacarbazine (Sigma
Aldrich, Saint Louis, Missouri, USA) and Temozolomide
(MedChemExpress, Sollentuna, Sweden) for melanoma cells,
Doxorbicin (MedChemExpress) for breast cancer cells, or 5-
Fluorouracil (MedChemExpress) for colorectal cancer cells, to
evaluate a potential enhanced response of tumor cells to conven-
tional chemotherapeutics. Dacarbazine, Temozolomide,
Doxorubicin, and 5-Fluorouralcil were used at a lower dose than
the half maximal inhibitory concentration (IC50) (data not shown).

Cell death evaluation

Cell death was determined by flow cytometer analysis using
Annexin V FITC/APC or FITC-conjugated (Immunotools GmbH,
Germany) and PI (Sigma-Aldrich) according to the manufacturer’s
protocol. Briefly, cells were harvested with Accutase (Eurolone), col-
lected in flow cytometer tubes (1� 105 cells/tube), washed in PBS
and incubated 15min at 4 �C in the dark with 100ml Annexin
Binding buffer (100mM HEPES, 140mM NaCl, 25mM CaCl2, pH 7.4),
1ml of 100mg/ml PI working solution, and 5ml Annexin V FITC/PI-
conjugated. Each sample was added with Annexin Binding Buffer
to reach 500ml volume/tube. Samples were then analyzed at BD
FACSCanto (BD Biosciences, Franklin Lakes, New Jersey, USA).
Cellular distribution depending on Annexin V and/or PI positivity
allowed the measure of the percentage of viable cells (Annexin V
and PI negative cells), early apoptosis (Annexin V positive and PI
negative cells), late apoptosis (Annexin V and PI positive cells), and
necrosis (Annexin V negative and PI positive cells). Alternatively, cell
death was evaluated using Trypan blue exclusion test counting cells
with Burker’s chamber at an optical microscope.

Western blot analysis

Cells were lysed in RIPA buffer (Merck Millipore, Vimodrone, MI,
Italy) containing PMSF (Sigma-Aldrich, Saint Louis, Missouri, USA),
sodium orthovanadate (Sigma-Aldrich), and protease inhibitor
cocktail (Calbiochem, San Diego, CA, USA), sonicated and centri-
fuged 15min at 14,000 rpm at 4 �C. Equal amounts of protein
were separated on BoltVR Bis-Tris Plus gels, 4–12% precast poly-
acrylamide gels (Life Technologies, Monza, Italy). Fractionated pro-
teins were transferred to a PVDF membrane using the iBlot 2
System (Life Technologies). Following 1-h blocking with Odyssey
blocking buffer (Dasit Science, Cornaredo, MI, Italy), membrane
was probed overnight at 4 �C with anti-cleaved caspase 3 anti-
body (Origene, Rockville, MD, USA), and 1 h at room temperature
with goat anti-rabbit IgG Alexa Flour 750 antibody (Invitrogen,
Monza, Italy). Membrane was visualised using the Odyssey Infrared
Imaging System (LI-CORVR Bioscience, Lincoln, Nebraska USA). Anti-
tubulin antibody (Sigma-Aldrich) was used to assess equal amount
of protein loaded in each lane.

Colony formation assay

2� 102 cells were seeded in six-well plate and treated 14 days
with 100 mM SLC-0111 alone or in combination with 170 mM
Temozolomide for A375-M6 melanoma cells, 10 nM Doxorubicin
for MCF7 breast cancer cells, or 1 mM 5-Fluorouracil for HCT116
colorectal cancer cells. Developed colonies were counted upon
20min-fixation in 4% paraformaldehyde at 4 �C and 30min-stain-
ing with Crystal violet solution at room temperature. Colony diam-
eter mean was calculated using ImageJ software.

Statistical analysis

The experiments were performed at least three times for a reliable
application of statistics. Statistical analysis was performed with
GraphPad Prism software. Values are presented as mean ± SD. N
value represents the number of biological replicates. One- and
Two-way ANOVA were used to evaluate the statistical significance.

Results

SLC-0111 CAIX inhibitor sensitises melanoma cells to
Dacarbazine and Temozolomide treatment

As previously described, the CAIX inhibitor SLC-0111 does not
affect cancer cell viability under standard pH condition10. To
evaluate a possible effect of this compound in sensitizing cancer
cells to conventional chemotherapy, we combined SLC-0111 with
chemotherapeutics agents currently used in the clinic. In particu-
lar, we treated A375-M6 melanoma cells with sub-lethal dose of
Dacarbazine alone or in combination with SLC-0111 to evaluate
cell viability with different in vitro assays. As shown by Annexin V/
PI assay (Figure 1(a)), A375-M6 treated for 96 h with 50mM
Dacarbazine or 100 mM SLC-0111 alone are not significantly
affected in terms of viability, whereas the combined therapy indu-
ces significant increase of late apoptosis phase and necrosis. The
72 h-treatment with 170 mM (<IC50 dose) of the Dacarbazine
derivative Temozolomide gives similar results because the combin-
ation of this alkylating agent with the SLC-0111 CAIX inhibitor sig-
nificantly augmented cell death percentage, in particular, late
apoptosis phase and necrosis (Figure 1(b)). These data are con-
firmed with Trypan Blue exclusion test (Figure 1(c)) and cleaved
caspase 3 levels detected by western blot analysis (Figure 1(d)),
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both showing that the percentage of dead cells upon
Temozolomide treatment is almost doubled when combined with
SLC-0111. To further prove such data, we extended Temozolomide
and SLC-0111 treatment to 14 days by performing a colony forma-
tion assay (Figure 1(e)) and observed similar results: in particular,
while the number of developed colonies upon SLC-0111 treat-
ment is comparable to control, the decrease obtained with
Temozolomide treatment alone is further enhanced when used in
combination with the CAIX inhibitor.

SLC-0111 increases cytotoxic effect of Doxorubicin in breast
cancer cells

To verify if the chemotherapy-sensitizing effect shown by the
CAIX inhibitor in melanoma cells is extendable even in other
tumour histotypes, we treated MCF7 breast cancer cells with
90 nM (<IC50 dose) of Doxorubicin alone or in combination with
100 mM SLC-0111 for 48 h and observed that the combined ther-
apy significantly increases cell death percentage. We observed

Figure 1. SLC-0111 sensitises melanoma cells to Dacarbazine and Temozolomide treatment. (a) Representative plots of Annexin V/PI assay of A375-M6 treated for 96 h
with either 50mM Dacarbazine, or 100mM SLC-0111, or the combination of the two (lower) and relative quantification chart of early apoptosis, late apoptosis and
necrosis ratio (upper). ���p< 0.001 Two-way ANOVA, N¼ 3. (b) Representative plots of Annexin V/PI assay of A375-M6 treated for 72 h with either 170mM
Temozolomide, or 100mM SLC-0111, or the combination of the two (lower), and relative quantification chart of early apoptosis, late apoptosis, and necrosis ratio
(upper). ���p< 0.001 Two-way ANOVA, N¼ 3. (c) Quantification chart of Trypan Blue exclusion assay of A375-M6 treated for 72 h with either 170mM Temozolomide,
or 100mM SLC-0111, or the combination of the two. ���p< 0.001 One-way ANOVA, N¼ 3. (d) Quantification chart (upper) and representative image (lower) of western
blot analysis of cleaved caspase 3 of A375-M6 treated 72 h with 170mM Temozolomide and 100mM SLC-0111 alone or combined. Tubulin used as loading control.���p< 0.001, Two-way ANOVA, N¼ 3. (e) Quantification chart (upper) and representative pictures (lower) of colony formation assay of A375-M6 treated for 14 days
with 170mM Temozolomide and 100mM SLC-0111 alone or in combination. �p< 0.05, One-way ANOVA, N¼ 3. (f) Chemical structure of SLC-0111.
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using Annexin V/PI assay that the addition of SLC-0111 to
Doxorubicin treatment induces a slight but significant increase of
late apoptosis phase (Figure 2(a)), result confirmed using Trypan
Blue exclusion test (Figure 2(b)). Extending the treatment to
14 days in colony assay, we obtained similar data since while the
SLC-0111 treatment alone does not significantly vary the colony
number, the decrease obtained with Doxorubicin is further
enhanced when used in combination with the CAIX inhibitor
(Figure 2(c)).

SLC-0111 increases 5-Fluorouracil response in colorectal cancer
by reducing cell proliferation

HCT116 colorectal cancer cells were treated with 100 mM 5-
Fluorouracil (<IC50 dose) alone or in combination with 100mM
SLC-0111 for 24 h to evaluate if the CAIX inhibitor increases cancer
cell sensitivity to this chemotherapeutic agent. In contrast with
what observed in melanoma and breast cancer cells, the com-
bined treatment in colorectal cancer seems to have less efficacy in
sensitizing HCT116 cells to conventional chemotherapy, at least in
terms of cell viability. Indeed, by Annexin V/PI assay (Figure 3(a)),
we observed a slight but significant increase in necrotic cell frac-
tion when 5-Fluorouracil is combined with SLC-0111, compared to
the single treatment, but by assessing cell death with Trypan blue
exclusion test, we were not able to obtain comparable results
since no significant variation in terms of cell viability occurs
between combined and single treatment (Figure 3(b)). Finally, by

using colony assay, we observed that, in accordance with Annexin
V/PI and Trypan Blue results, the colony number does not signifi-
cantly decrease in combined treatment compared to 5-
Fluorouracil alone (Figure 3(c)) while the co-treatment with SLC-
0111 significantly affects cancer cell proliferation as shown by the
decreased diameter of the colonies upon CAIX inhibitor treatment
(Figure 3(d)). Thus, SLC-0111 increases 5-Fluorouracil response in
HCT116 by slowing down cancer cell proliferation without altering
its cytotoxic potential.

Discussion

We have previously demonstrated the increased CAIX expression
in melanoma, breast, and colorectal cancer cells transiently and
chronically exposed to an extracellular acidic microenvironment
(pH 6.7 ± 0.1). Extracellular acidosis represents a “diabolic” charac-
teristic of most solid tumours that correlates with aggressive phe-
notypes and therapy resistance20–22. Moreover, we also
demonstrated that SLC-0111 is able not only to prevent such CAIX
increased expression but also to selectively induce the apoptotic
program in A375-M6 melanoma cells, MCF7 breast cancer cells,
and HCT116 colorectal cancer cells transiently and chronically
exposed to extracellular acidosis, without showing any cytotoxic
effect in the population maintained under standard pH condition
(pH 7.4 ± 0.1)10.

Herein, we have verified whether the CAIX inhibitor SLC-0111
we used may also affect the viability of cancer cells grown in

Figure 2. SLC-0111 increases cytotoxic effect of Doxorubicin in breast cancer cells. (a) Representative plots (lower) and relative quantification chart (upper) of Annexin
V/PI assay of MCF7 treated for 48 h with either 90 nM Doxorubicin, or 100mM SLC-0111, or the combination of the two. �p< 0.05, Two-way ANOVA, N¼ 3. (b)
Quantification chart of Trypan Blue exclusion assay of MCF7 treated for 48 h with either 90 nM Doxorubicin, or 100mM SLC-0111, or the combination of the two.���p< 0.001 One-way ANOVA, N¼ 3. (c) Representative pictures (lower) and relative quantification chart (upper) of colony formation assay of MCF7 breast cancer cells
treated for 14 days with either 10 nM Doxorubicin, or 100mM SLC-0111, or the combination of the two. ��p< 0.01, One-way ANOVA, N¼ 3.
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normoxia and standard pH, acting as anticancer potentiating
agent of standard chemotherapy. Metastatic melanoma, including
the BRAF-mutated subgroup, is very resistant to both traditional
chemotherapy and targeted therapy, leaving most of the patients
undergoing resistance without any other therapeutic strategies. To
date, Dacarbazine, a guanine methylating agent at the O-6 and N-
7 positions, remains the reference standard treatment for stage IV
melanoma. Still, it has been reported that Dacarbazine-treated
patients often undergo resistance23–25. Here, we demonstrate that
SLC-0111 CAIX inhibitor sensitises A375-M6 melanoma cells to
Dacarbazine treatment, revealing a synergistic effect compared to
the single treatments (Figure 1(a)).

More recently, Temozolomide, a Dacarbazine derivative, has
been introduced as an oral alternative for patients with advanced
metastatic melanoma23,26. Here, we demonstrate that even
Temozolomide cytotoxicity is potentiated by the SLC-0111, thus
melanoma cell death fraction was significantly increased com-
pared to Temozolomide treatment alone (Figure 1(b–e)). Hence,
this CAIX inhibitor significantly improves cell death of melanoma
cells exposed to Dacarbazine or Temozolomide.

To further extend our observation to breast cancer, we used
MCF7 cell line. For breast cancer patients, Doxorubicin treatment
is considered the most effective chemotherapeutic agent although
resistance development is common and represents a major obs-
tacle to successful patient outcome27–30. We demonstrate that

even in this case the addition of the SLC-0111 CAIX inhibitor to
Doxorubicin treatment enhance its cytotoxic effect by increasing
cell death fraction compared to single treatment (Figure 2(a–c)).

To investigate the potential effects of SLC-0111 on colorectal
cancer, we used HCT116 cells treated with 5-Fluorouracil (5-FU), a
pyrimidine analogue working as antimetabolites, being able to
block the thymidylate synthase activity and consequently the DNA
synthesis. 5-FU is currently used in the clinic for colorectal cancer
representing the major treatment for advanced disease, but ther-
apy resistance occurrence remains the major issue for cancer
patients31,32. Here, we used the SLC-0111 inhibitor to evaluate if
even in this tumour histotype the CAIX targeting may improve
conventional anticancer treatment response. We observed that
SLC-0111 significantly reduces tumour cell proliferation (Figure
3(c–d)), let us hypothesise it may contribute to increase 5-FU
response working not on cytotoxicity—like in melanoma and
breast cancer—but rather adding a cytostatic effect to 5-FU treat-
ment alone.

This in vitro preclinical investigations show the ability of the
CAIX inhibitor SLC-0111—at micromolar concentration and under
normoxia condition—to potentiate anticancer effects of chemo-
therapy in melanoma, breast, and colon cancer cells. We speculate
that this chemotherapy potentiation can be due to the intracellu-
lar pH increase occurring in cancer cells treated with SLC-0111, as
previously reported10. Indeed, pH variation in both extracellular

Figure 3. SLC-0111 increases 5-Fluorouracil response in colorectal cancer by reducing cell proliferation. (a) Representative plots (lower) and relative quantification chart
(upper) of Annexin V/PI assay of HCT116 treated for 24 h with either 100mM 5-Fluorouracil, or 100mM SLC-0111, or the combination of the two. �p< 0.05, Two-way
ANOVA, N¼ 3. (b) Quantification chart of Trypan Blue exclusion assay of HCT116 treated for 24 h with either 100mM 5-Fluorouracil, or 100mM SLC-0111, or the com-
bination of the two. One-way ANOVA, N¼ 3. (c) Representative pictures (lower) and relative quantification chart (upper) of colony formation assay of HCT116 colorectal
cancer cells treated for 14 days with either 1mM 5-Fluorouracil, or 100mM SLC-0111, or the combination of the two. One-way ANOVA, N¼ 3. (d) Quantification chart of
the diameter mean of HCT116 colonies grown and treated for 14 days with either 1mM 5-Fluorouracil, or 100mM SLC-0111, or the combination of the two.���p< 0.001, One-way ANOVA, N¼ 3.
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and intracellular compartments critically influences the destiny of
chemotherapeutic agents. For instance, weak base drugs such
as Doxorubicin reduce their cell permeability and efficacy in the
presence of an acidic microenvironment, whereas weak acids like
5-Fluorouracil tend to concentrate in more alkaline environments
such as intracellular compartments33. The efficacy showed by SLC-
0111 on the various tumour histotypes used in this study suggests
a possible common anticancer mechanism that might be used for
an easy translation in vivo. In fact, this compound completed
Phase I clinical trials and is presently in Phase II trials34.
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