
Università degli Studi di Firenze
Dipartimento di Ingegneria dell’Informazione (DINFO)

Corso di Dottorato in Ingegneria dell’Informazione

Curriculum: Informatica

Detecting Quality Defects:

Methods to Improve Product

Lifecycle Cost-effectiveness

in the Railway Domain

Candidate

Gloria Gori

Supervisor

Prof. Alessandro Fantechi

PhD Coordinator

Prof. Luigi Chisci

Ciclo XXX, 2014-2017

Università degli Studi di Firenze, Dipartimento di Ingegneria

dell’Informazione (DINFO).

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Engineering. Copyright © 2018 by

Gloria Gori.

To my family

you make my days brighter

Acknowledgments

Alessandro Fantechi · Alessio Ferrari · Stefania Gnesi

Benedetta Rosadini, Jacopo Trotta and Stefano Bacherini

Daniel M. Berry · Fabiano Dalpiaz and Paola Spoletini · Laura Carnevali

Dario D’Amico and his wife Carolin · Tiberio Uricchio

Francesco Orsini and his wife Yasamin

Alba Pennisi, the (ex) ENS Team and all my ex-Delta Team colleagues

Mom and Dad · Martina

My husband Marco and my three little ones

Carlo and Gabriella · Stefano and Daria

This thesis would not be possible without the help and the support of

many people. First of all I would like to acknowledge the efforts and inputs

of my supervisor, Prof. Alessandro Fantechi, and of Alessio Ferrari of the

ISTI-CNR who were of great help during my research.

I thank Alstom Ferroviaria S.p.A. especially Benedetta Rosadini (a friend

beyond work experience), Jacopo Trotta, Stefano Bacherini for their support.

I thank Stefania Gnesi of ISTI-CNR who collaborated on the main parts of

my research work.

I would like to thank Daniel M. Berry for kindly providing the dictionaries

used by SREE.

Tnanks to Fabiano Dalpiaz and Paola Spoletini for their revision work

on this thesis.

v

vi Acknowledgments

Thanks to Laura Carnevali for her support.

A big thank for his friendship and support to my long-standing friend

Dario and his wife Carolin.

A big thank for their support to my old friends found again Tiberio

Uricchio (my ”PhD Counselor”... thank you so much for your support and

numerous hints) and Francesco Orsini (I am so happy that you’re back to

Italy).

Many many thanks to my ex-colleagues and friends from GETS especially

Alba Pennisi who strongly encouraged me to begin, continue and finish this

PhD course, Laura Padovani, Francesca Vezzosi, Gianluca Magnani, Simone

Lunardo, Alessandro Felleca and all my ex-Delta Team colleagues. I miss

you, guys!

Thanks from the deep of my heart to my family; without you no PhD

would be possible to me. Thanks to my mom, my dad (you read this from

Heaven), my sister Martina; thanks to my husband Marco and to my three

wonderful-enjoyable-neverendingenergy children Gabriele, Massimiliano and

Matteo Giacomo. We didn’t get bored in the last three years; thanks to my

father-in-law Carlo, Gabriella, Stefano and Daria for their support.

Every morning in the Academia savannah one PhD candidate

wakes up and knows that she needs time to study, research, write

down papers, review papers, scan papers, answer to useful and less

useful emails; every morning in the Home savannah one mom-

of-three wakes up and knows that she has to run faster than a

PhD candidate, but the most she knows that time won’t be enough

for anything else.... you can be a PhD candidate or a mom,

but you know that time is all you need. Things are much more

complicated when you are both mom and PhD candidate.

Abstract

The increased complexity and ubiquity of cyber-physical systems in recent

times demands for more efficient and cost effective techniques to analyze

software and hardware correctness, as well as to assess their performance

at a given time in the future. Two disciplines that deal with these aspects

of system development are verification and performance evaluation. During

this thesis work we focused in methods for improving quality in both of these

areas in the context of railway safety-critical domain.

Verifying a system means to prove or disprove that the system is the

correct implementation of a specification, often expressed as a collection of

properties – the Requirements – written in a given language. In the railway

safety-critical domain the requirements play a key role in the product lifecy-

cle as the system is developed and verified according to them; they are often

expressed in natural language – which is flexible, but inherently ambiguous

– albeit the strong needs of clearness and precision of the context. The re-

quirements have to abide to strict quality criteria and the requirement review

is therefore a very important activity to indentify quality defects and it is

traditionally performed manually. Rule-based natural language processing

(NLP) techniques have been developed to automatically perform this task.

However, the literature is lacking empirical studies on the application of

these techniques in industrial settings. This thesis mainly focuses on inves-

tigating to which extent NLP can be practically applied to detect defects in

the requirements documents of a railway signalling manufacturer. The con-

tribution is in carrying out one of the first works in which NLP techniques

for defect detection are applied on a large set of industrial requirements

annotated by domain experts. We contribute with a comparison between

traditional manual techniques used in industry for requirements analysis,

and analysis performed with NLP. Our experience shows that several dis-

crepancies can be observed between the two approaches. The analysis of the

vii

viii Abstract

discrepancies offers hints to improve the capabilities of NLP techniques with

company specific solutions, and suggests that also company practices need

to be modified to effectively exploit NLP tools.

For what concerns the performance evaluation area we had the opportu-

nity to focus on the system availability in the context of a different project of

the laboratory. With the increased city population, the integration of public

and private transport flows introduces new challenges, especially in urban

transport. As it is often the case in scientific and engineering problems, the

object of study is a model of the system, rather than the system itself. We

provide one modeling and analysis method using stochastic Time Petri Nets

for those city intersections where public and private transport flows integra-

tion is often cause of traffic congestion leading to train delays and even run

deletion. The use of the STPN instead of simulation techniques provides

a more effective way to set timing for traffic lights and train timetables in

order to improve system availability.

Contents

Contents ix

Introduction 1

1 Safety-Critical Systems and their Development Process 5

1.1 Introduction . 5

1.2 Dependability attributes . 6

1.3 The software development life cycle 9

2 Requirements expressed in Natural Language and Ambigu-

ity 17

2.1 Introduction . 17

2.2 Literature review . 19

2.2.1 Preventing and limiting defects 19

2.2.2 Detecting defects . 20

2.3 Ambiguity taxonomy . 22

2.3.1 Lexical ambiguity . 23

2.3.2 Syntactic ambiguity 24

2.3.3 Semantic ambiguity 25

2.3.4 Pragmatic ambiguity 26

2.4 NLP techniques evaluation 26

3 Detecting defects: a rule-based approach 31

3.1 Introduction . 31

3.2 NLP technologies . 31

3.3 Patterns for defect detection 32

3.4 Discard patterns . 36

3.5 SREE patterns . 38

ix

x CONTENTS

3.5.1 SREE-reduced . 39

3.6 NLP technologies applied to our case study 39

4 Research methodology and Case study design 41

4.1 Introduction . 41

4.2 Research objective and Research questions 42

4.3 Data collection and Analysis procedures 44

4.3.1 Preparation . 44

4.3.2 Data collection procedure 45

4.3.3 Data analysis procedure 47

4.4 Validity procedure . 48

5 Experimentation 51

5.1 Introduction . 51

5.2 Case and Subjects description 51

5.2.1 The company and its process 51

5.2.2 Subjects . 52

5.2.3 Datasets . 52

5.3 Iterations . 53

5.3.1 Pilot Study . 57

5.3.2 Large-scale Study - 1st Iteration 59

5.3.3 Large-scale Study - 2nd Iteration 60

5.3.4 Large-scale Study - 3rd Iteration 62

5.3.5 Large-scale Study – 4th Iteration 63

5.3.6 Large-scale Study – 5th Iteration 64

6 Results 67

6.1 Introduction . 67

6.2 RQ1, RQ2: Pilot Study . 67

6.2.1 RQ1: What is the accuracy of the NLP patterns for

defect detection? . 67

6.2.2 RQ2: Which are the cases of inaccuracy of the NLP

patterns for defect detection? 68

6.3 RQ1, RQ2: Large-scale Study – 1st Iteration 70

6.3.1 RQ1: What is the accuracy of the NLP patterns for

defect detection? . 70

6.3.2 RQ2: Which are the cases of inaccuracy of the NLP

patterns for defect detection? 71

CONTENTS xi

6.4 RQ1, RQ2: Large-scale Study – 2nd Iteration 72

6.4.1 RQ1: What is the accuracy of the NLP patterns for

defect detection? . 72

6.4.2 RQ2: Which are the cases of inaccuracy of the NLP

patterns for defect detection? 72

6.5 RQ3: Large-scale Study – 3rd Iteration 77

6.5.1 RQ3: What is the precision of NLP patterns for defect

detection when complemented with discard patterns? 77

6.6 RQ4.1: Large-scale Study – 4th Iteration 79

6.6.1 RQ4.1: What is the accuracy of SREE with respect to

the NLP patterns for defect detection complemented

with discard patterns? 79

6.7 RQ4.2, RQ4.3, RQ4.4: Large-scale Study – 5th Iteration . . . 81

6.7.1 RQ4.2: What is the precision of SREE for the defects

in its scope? . 81

6.7.2 RQ4.3, RQ4.4: Which additional defects can be iden-

tified with SREE, and which are the false positive cases? 81

6.8 General Observations . 84

6.9 Threats to Validity . 85

6.9.1 Construct Validity . 85

6.9.2 Internal Validity . 86

6.9.3 External Validity . 87

6.9.4 Reliability . 89

7 Lessons learned and future research issues 91

7.1 Introduction . 91

7.2 Domain-customisable NLP Tools 91

7.2.1 Requirements language counts 92

7.2.2 Requirements level counts 92

7.2.3 Validation criteria count 93

7.3 NLP is only a part of the answer 93

7.4 Statistical NLP vs Lexical techniques 94

7.5 Implication for practice and future research 94

7.5.1 Implication for practice 95

7.5.2 Ongoing and future research 95

xii CONTENTS

8 Public and private transport integration model with STPN 99

8.1 Introduction . 99

8.2 Analysis of a conflict between public and private transport . . 100

8.3 Related Works . 102

8.4 Background . 103

8.4.1 Stochastic Time Petri Nets 104

8.4.2 The method of stochastic state classes 105

8.4.3 ORIS overview . 106

8.5 Diacceto-Alamanni: an STPN model 107

8.5.1 Tramway submodel . 108

8.5.2 Private transport submodel 110

8.5.3 Interaction between the tramway submodel and the

private transport submodel 110

8.6 Analysis and Results . 111

8.7 Implication for practice and future research 113

8.7.1 Implication for practice 113

8.7.2 Ongoing and future research 114

9 Conclusion 115

A Appendix A: Stochastic Discrete Time Petri Nets 117

A.1 Petri Nets . 117

A.1.1 Syntax . 117

A.1.2 Semantics . 119

A.1.3 State-Space generation 119

A.2 Discrete-Time Stochastic Petri Nets 120

A.2.1 Syntax . 120

A.2.2 Semantics . 121

A.2.3 Maximal step semantics 123

A.2.4 Stochastic states . 124

A.2.5 Stochastic State-Space generation 124

A.3 Stochastic Preemptive Time Petri Nets 127

Bibliography 131

Introduction

The objective

The increased complexity and ubiquity of cyber-physical systems in recent

times demand more efficient and cost effective techniques to analyze software

and hardware correctness, as well as to assess their performance at a given

time in the future. Two disciplines that deal with these aspects of system

development are verification and performance evaluation. During this thesis

work we focused in methods for improving quality in both of these areas in

the context of railway safety-critical domain.

Verification

For what concerns the verification, the author cooperated with Alstom Fer-

roviaria S.p.A., a major manufacturer in the railway domain, and with the

Formal Methods and Tools Lab of the ISTI institute of CNR.

Context and motivation

Verifying a system means to prove or disprove that the system is the correct

implementation of a specification, often expressed as a collection of proper-

ties – the Requirements – written in a given language. In the railway safety-

critical domain the requirements play a key role in the product lifecycle as the

system is developed and verified according to them. Albeit the strong needs

of clearness and precision of the context, they are often expressed in natural

language [37, 87] – which is flexible, yet inherently ambiguous – and they

are progressively refined along the development process. All the requirement

documents have to abide to strict quality criteria and the requirement review

is therefore a crucial activity to identify quality defects and it is traditionally

1

2 Introduction

performed manually, thus it is time consuming and error prone. Rule-based

Natural Language Processing (NLP) techniques [117, 12, 62, 61, 111, 6, 46]

have been developed to automatically perform this task. However, the lit-

erature is lacking empirical studies on the application of these techniques in

industrial settings.

Goal and contribution

Our goal consisted in investigating to which extent NLP can be practically

applied to detect defects in the requirements documents of a railway sig-

nalling system.

To address it we first identified a set of typical defects classes and, for each

class, an engineer of the company implemented a set of defect-detection

patterns by means of the GATE tool for text processing [35]. After a pre-

liminary analysis, we applied the patterns to a large set of 1866 requirements

previously annotated for defects. The output of the patterns was further in-

spected by two domain experts to check the false positive cases. Additional

discard-patterns were defined to automatically remove these cases. Finally,

SREE [111], a tool that searches for typically ambiguous terms, was applied

to the requirements. The experiments show that SREE and our patterns

may play complementary roles in the detection of requirements defects. We

applied NLP techniques for defect detection on a large set of industrial re-

quirements annotated by domain experts. The contribution consists in a

comparison between traditional manual techniques used in industry for re-

quirements analysis, and analysis performed with NLP. Our experience tells

that several discrepancies can be observed between the two approaches. The

analysis of the discrepancies offers hints to improve the capabilities of NLP

techniques with company specific solutions, and suggests that also company

practices need to be modified to actively exploit NLP tools.

Performance evaluation

For what concerns the performance evaluation, the author had the oppor-

tunity to focus on a research application of the system availability attribute

in the context of a different project (funded by the Fondazione Cassa di

Risparmio di Firenze) of the laboratory.

3

Context and motivation

With the increased city population, the integration of public and private

transport flows introduces new challenges; Intelligent Transportation Sys-

tems (ITS) for urban mobility aim at the grand objective of reducing envi-

ronmental impact and minimize urban congestion, also integrating different

mobility modes and solutions [41, 1]. However, the different transportation

modalities may end in a conflict due to physical constraints concerned with

the urban structure itself: an example is the case of intersection between a

public road and a tramway right-of-way, where traffic lights priority given to

trams may trigger road congestion, while an intense car traffic can impact

on trams’ performance. These situations can be anticipated and avoided by

accurately modeling and analyzing the possible congestion events. Typically,

modeling tools provide simulation facilities, by which various scenarios can

be played to understand the response of the intersection to different traf-

fic loads. While supporting early verification of design choices, simulation

encounters difficulties in the evaluation of rare events. Only modeling tech-

niques and tools that support the analysis of the complete space of possible

scenarios are able to find out such rare events [20, 14].

Goal and contribution

Our goal consisted in the implementation and evaluation of an analytical ap-

proach to model and evaluate a critical intersection for the Florence tramway,

where frequent traffic blocks used to happen. Specifically, we exploited the

ORIS tool to evaluate the probability of a traffic block, leveraging regen-

erative transient analysis based on the method of stochastic state classes

to analyze a model of the intersection specified through Stochastic Time

Petri Nets (STPNs). This experience shows that the frequency of tram rides

impacts on the road congestion, and hence compensating measures (such as

sychronizing the passage of trams in opposite directions on the road crossing)

should be considered.

Thesis organization

The present thesis is organized as follows:

• Chapter 1 describes the context in which this thesis sits with an in-

troduction on safety-critical systems and the description of norms and

4 Introduction

product life cycle in the railway domain;

• Chapter 2 introduces the problem of ambiguity in natural language

providing the evaluation measures used in the following chapters;

• Chapter 3 is dedicated to the defect detection approaches and after

the literature review describes the rule-based approach used in our

reported case-study to detect ambiguity in requirements expressed in

natural language;

• Chapter 4 explains the research methodology and the case-study de-

sign, presenting the Research Questions and the adopted procedures;

• Chapter 5 describes the execution of the case study, focusing on the

involved subjects, the used dataset, and the iterations performed in

order to answer the Research Questions;

• Chapter 6 presents the results obtained through the case study execu-

tion and provides the answers to the Research Questions;

• Chapter 7 highlights the lessons learned and the return of experience,

and presents the implication for practice and future work directions;

• Chapter 8 describes the problem of performance evaluation of public

urban transport. The model of an intersection between public trans-

port and private traffic is provided and analyzed by using Stochastic

Time Petri Nets (STPNs);

• Chapter 9 concludes the thesis.

Chapter 1

Safety-Critical Systems and

their Development Process

1.1 Introduction

Part of this thesis work has been carried out with the collaboration of Alstom,

a leading railway signalling systems manufacturer. The author was involved

in the development product life cycle of hardware and software products

for real railway systems. This experience oriented the research work for

the thesis creating a basis for the author’s interest in the area of quality and

cost-effectiveness improvement in the development life cycle of such systems.

The exercise of Safety-Critical systems involves a critical level of risk of

exposure for people, environment and material assets to dangerous situations

with the possibility of accidents due to malfunctions caused by errors or

failures [25, 26, 24]. No system can be defined “absolutely safe”, thus safety

is the absence of unacceptable levels of risk [25], or even the property of a

system to not cause harm to human life or to the environment. [104]. The

choice of an appropriate risk management approach defines a reasonable

probability for risks considered acceptable (THR, Tolerable Hazard Rate)

in the operational conditions in which the system works. It is therefore

important to ensure before commissioning that the probability of risky events

caused by the system is lower than THR. The assessment that the system

meets all the required conditions is carried out according to standards that, in

the European railway domain, are provided by CENELEC (Comité Européen

de Normalization en Électronique et en Électrotechnique). These standards

5

6 Safety-Critical Systems and their Development Process

have been also prescribed since 2002 by RFI (Rete Ferroviaria Italiana) as

a reference for the safety certification of products and electronic systems in

railway signalling. Some of these standards are listed below:

• EN-50126 [25]: Railway applications - The specification and demon-

stration of dependability, reliability, availability, maintainability and

safety (RAMS);

• EN-50129 [24]: Railway applications - Safety related electronic sys-

tems;

• EN-50128 [26]: Railway applications - Software for railway control

and protection systems;

• EN-50159 [27]: Railway applications - Communication, signalling

and processing systems - Part 1: Safety related communication in

closed transmission systems.

Figure 1.1: Scope of CENELEC norms.

Figure 1.1 shows the relations among the listed standards. The horizontal

axis represents the progression from the most general to the most specific

one, while the vertical axis represents the scope each standard has.

1.2 Dependability attributes

Dependability is defined as the property of a system to be usable by an

human being, or a community, without the danger of unacceptable risks [80].

The development of safety-critical systems and their verification is oriented

to fulfill the dependability requirements.

1.2 Dependability attributes 7

Dependability includes the following attributes:

• Reliability: the ability of a system to perform a required function

under certain conditions and for a specified period of time;

• Availability: the ability of a system to perform a required function

at a certain time or in a specified time interval, given the necessary

resources;

• Maintainability: probability that for a given system unit during a

certain time interval is carried out a given active maintenance activity,

implemented through procedures and required means;

• Safety: absence of unacceptable levels of risk of harm.

These attributes are often referred with the acronym of RAMS (Relia-

bility, Availability, Maintainability and Safety); they guide the design and

implementation of the system and are used as a reference when evaluating

the model itself.

The development process that aims at fulfilling each attribute at the

requested level is composed by several phases shown in Figure 1.2 [91, 25].

Figure 1.3 shows the involved actors and their role in the process.

Reliability, Availability and Maintainability can be quantifiable by direct

measurements while Safety is a subjective assessment that requires judg-

mental informations to be applied to give a level of confidence. In order to

discuss the Safety attribute, we first need to specify what we mean for risk.

A risk is strictly related to an hazard (i.e., an event that can lead to an

accident). It is defined as the combination of the frequency of occurrence

of the hazard and its severity. The frequency of occurrence, based on the

event probability, is classified by levels, ranging from Incredible to Frequent.

The hazard severity, based on the consequences for people and environment,

is classified by levels, ranging from Insignificant to Catastrophic. The com-

bination of frequency and severity levels generates a set of risk classes. To

each risk class is associated an index, the Risk Class Index (RCI), ranging

from Negligible to Intolerable. Table 1.1 shows an example of risk acceptance

evaluation.

On the basis of the previous analysis, each part of the system is then

classified on the basis of its criticality level. The parameter used is called

Safety Integrity Level (SIL) which varies from 0 (for systems or subsystems

8 Safety-Critical Systems and their Development Process

CONCEPTCONCEPT

RISK ANALYSISRISK ANALYSIS

SYSTEM REQUIREMENTSSYSTEM REQUIREMENTS

APPORTIONMENT OF
SYSTEM REQUIREMENTS

APPORTIONMENT OF
SYSTEM REQUIREMENTS

DESIGN &
IMPLEMENTATION

DESIGN &
IMPLEMENTATION

SYSTEM DEFINITION &
APPLICATION CONDITIONS

SYSTEM DEFINITION &
APPLICATION CONDITIONS

MANUFACTURINGMANUFACTURING

INSTALLATIONINSTALLATION

VERIFICATION &
VALIDATION

VERIFICATION &
VALIDATION

SYSTEM ACCEPTANCESYSTEM ACCEPTANCE

COMMISSIONINGCOMMISSIONING

DECOMMISSIONINGDECOMMISSIONING

PERFORMANCE
MONITOR

PERFORMANCE
MONITOR

CHANGE
REQUEST

CHANGE
REQUEST

Figure 1.2: Development phases.

1.3 The software development life cycle 9

Safety-critical
 System

Commissioner Designers Users

Installer

Maintainer

Figure 1.3: Safety actors.

with no critical features) to 4 (for systems or subsystems with high risk

level). Each SIL class is associated with two factors:

• a range of values for the THR (see Table 1.2);

• a set of actions to be performed during the life cycle process.

1.3 The software development life cycle

Among the norms that are part of the CENELEC standards, EN-50128 is the

one that specifies the procedures and technical requirements for the develop-

ment of programmable electronic systems for the usage in railway control and

protection applications. This norm applies within the scope of the software

(e.g., firmware, operating systems, applications) and its interaction with the

system. EN-50128 describes the software lifecycle from the specification, to

the development and finally the verification and validation phases.

It also specifies some basic principles in the development of safe software

as the ones listed below:

10 Safety-Critical Systems and their Development Process

Risk Levels

F
r
e
q
u
e
n
c
y

o
f

o
c
-

c
u
r
r
e
n
c
e

o
f

a

h
a
z
a
r
d
o
u
s

e
v
e
n
t Frequent Undesiderable Intolerable Intolerable Intolerable

Probable Tolerable Undesiderable Intolerable Intolerable

Occasional Tolerable Undesiderable Undesiderable Intolerable

Remote Negligible Tolerable Undesiderable Undesiderable

Improbable Negligible Negligible Tolerable Tolerable

Incredible Negligible Negligible Negligible Negligible

Insignificant Marginal Critical Catastrophic

Severity Levels of Hazard Consequence

Table 1.1: Example of risk acceptance evaluation.

THR SIL

10−9 ≤ THR < 10−8 4

10−8 ≤ THR < 10−7 3

10−7 ≤ THR < 10−6 2

10−6 ≤ THR < 10−5 1

10−5 ≤ THR 0

Table 1.2: Relation between THR and SIL defined in EN50129 [24].

• software must be developed using modular programming technique1;

• verification activities performed at each stage of the development life

cycle;

• all of the used libraries and modules must be verified;

• drawing up of clear documentation.

The phase of system verification is a key step and it is driven by re-

quirements and it aims at demonstrating that the system is their correct

implementation.

The norm recommends for the development process the use of the V

Model (shown in Figure 1.4) [26].

The V Model is a graphical representation of the development lifecycle

of a system. It is used to produce rigorous development lifecycle models and

project management models.

1Modular programming is a software design technique that emphasizes separating the

functionality of a programme into independent, interchangeable modules, such that each

contains everything necessary to execute only one aspect of the desired functionality.

1.3 The software development life cycle 11

Figure 1.4: Development process using the V Model cycle.

12 Safety-Critical Systems and their Development Process

The norm describes the activities to be performed at each step and the

deliverables that have to be produced in output. The activities performed in

all phases in the left side are verified in the corresponding phases placed at the

same level in the opposite branch of the V. The left side of the V represents

the decomposition of requirements, and creation of system specifications.

The right side of the V represents integration of parts and their validation.

However, Requirements need to be validated first against the higher level

requirements or user needs. Below is a list and brief explanation of the

represented phases in terms of the action taken by different roles played in

the development cycle, namely the Requirement Engineer, the Developer, the

Verification Engineer, the Validation Engineer and the External Assessor.

According to EN-50128 [26], the roles have to be played by different actors

for software rated at the highest SIL.

Software Requirements Specification Phase: inputs of this phase are the

System Requirements Specification, System Safety Requirements Specifica-

tion, System Architecture Description and System Safety Plan. During this

phase the following activities are performed:

• The Requirement Engineer provides Software Requirements Specifica-

tion that shall describe the system as a single entity, formalizing the

macro-level actions and features that it shall provide and the con-

straints that it shall guarantee;

• The Verification Engineer takes as input Software Requirements Spec-

ification and provides the Test Cases, in the form of Software Require-

ments Test Specification, needed to verify the software at the corre-

sponding level of detail;

• The Validation Engineer takes as input all artifacts mentioned in the

current step, validates that the Software Requirements Specification

has taken into account all requirements defined at higher level, and

validates that Software Requirements Test Specification correctly cov-

ers the Software Requirements Specification by producing the Software

Requirements Verification Report.

Software Architecture and Design Phase: inputs of this phase are arti-

facts produced during the previous phase. During this phase the following

activities are performed:

1.3 The software development life cycle 13

• The Requirement Engineer provides Software Architecture Specification

that shall describe architectural blocks composing the system. Specific

actions and features are specified for each block;

• The Requirement Engineer provides Software Design Specification as

specification of each block that shall be designed in order to provide

the requested functionalities and all those interfaces required for infor-

mation propagation between different blocks. Different Requirement

Engineers can be responsible for different phases;

• The Verification Engineer takes as input Software Design Specification

and provides the Test Cases, in the form of Software Design Test Spec-

ification, needed to verify the software at the corresponding level of

detail;

• The Validation Engineer takes as input all of the mentioned artifacts in

the current step, validates that the Software Architecture Specification

has taken into account all requirements defined in Software Require-

ments Specification, validates that the Software Design Specification

has taken into account all requirements defined in Software Architec-

ture Specification and validates that Software Design Test Specifica-

tion correctly covers the Software Design Specification by producing

the Software Architecture and Design Verification Report.

Software Component Design Phase: inputs of this phase are artifacts pro-

duced during the previous phase. During this phase the following activities

are performed:

• The Requirement Engineer provides Software Component Design Spec-

ification as specification of each component that is derived from Ar-

chitecture and Design Phase; a component is defined as a stand-alone

compilation unit and thus corresponds to a single source code file;

• The Verification Engineer takes as input Software Component Design

Specification and provides the Test Cases, in the form of Software Com-

ponent Test Specification, needed to verify the software at the corre-

sponding level of detail;

• The Validation Engineer takes as input all artifacts mentioned in the

current step, validates that the Software Component Design Specifica-

tion has taken into account all requirements defined in Software Design

14 Safety-Critical Systems and their Development Process

Specification and validates that Software Component Test Specification

correctly covers the Software Component Design Specification by pro-

ducing the Software Component Verification Report.

Code Phase: inputs of this phase are artifacts produced during the pre-

vious phase. During this phase the following activities are performed:

• The Developer provides the implementation of the requested software

system, or of a portion of it, according to the provided requirements,

thus producing Software Source Code and Supporting Documentation;

• The Verification Engineer takes as input Software Source Code and

Supporting Documentation and verifies the Software Source Code com-

pliance against the planned Source Code verification activities and pro-

vides the Software Source Code Verification Report.

Software Component Testing Phase: inputs of this phase are artifacts pro-

duced during the previous phase and in Software Component Design Phase.

During this phase the following activity is performed:

• The Verification Engineer executes all Test Cases contained in Software

Component Test Specification and produces the Software Component

Test Report.

Software Integration Phase: inputs of this phase are artifacts produced

during the previous phase and in Software Architecture and Design Phase.

During this phase the following activity is performed:

• The Verification Engineer verifies the capability of the Software Source

Code to execute on the System Hardware and produces the Software

Integration Test Report.

Software/Hardware Integration Phase: inputs of this phase are artifacts

produced during the previous phase. During this phase the following activity

is performed:

• The Verification Engineer executes all Test Cases contained in Software

Design Test Specification and produces Software/Hardware Integration

Test Report.

Software Validation Phase: inputs of this phase are artifacts produced

during the previous phase and in Software Requirement Specification Phase.

During this phase the following activity is performed:

1.3 The software development life cycle 15

• The Validation Engineer validates that all test cases have been exe-

cuted by Verification Engineer and that they all had positive result,

thus providing the Software Validation Report.

Software Assessment Phase: inputs of this phase are artifacts produced

during all the phases. During this phase the following activity is performed:

• The External Assessor, upon revision of all produced artifacts, certifies

that the Software has been developed according to what is required by

the applicable CENELEC norms and provides the Software Assessment

Report.

Software Maintenance Phase: during this phase the following activities

are performed:

• The Software Maintenance Records are persistenly recorded each time

a maintenance operation is performed;

• The Software Change Records are persistenly recorded each time a

Change Request (CR) is issued, both to implement a new functionality

(enhancement CR) and to correct an issue (defect CR).

One crucial activity is the verification that one requirement document has

taken into account all requirements defined in the previous phase. In order to

provide a standard method to perform this activity the norm requires trace-

ability matrices between adjacent and corresponding phases. There is one

traceability matrix for each couple of phases (adjacent and corresponding).

Each matrix contains all the requirements of the specification traced to their

refinements in the lower specification phase and viceversa. This activity is

extremely useful in order to check that all the features described in the high

level requirements have been detailed in the following development phases

and that all requirements have been tested in the corresponding phase of the

V right branch.

16 Safety-Critical Systems and their Development Process

Chapter 2

Requirements expressed in

Natural Language and

Ambiguity

2.1 Introduction

Requirements Engineering (RE) refers to the process of defining, document-

ing and maintaining requirements in the software development process (de-

scribed in Section 1.3). Requirements define constraints on the system that

need to be expressed in a form that is suitable for analysis, communication

and subsequent implementation of the system. Furthermore, the number

of requirements grows phase after phase in the descendent branch of the V

cycle, thus a defective requirement has a higher impact when it refers to a

high level phase. The traceability matrices are a useful tool to evaluate the

impact of every requirement on the lifecycle. The first step to deliver the

desired quality product is the full understanding of the customer needs and

their documentation in a clear, complete and concise way.

As stated by Mich in her survey [87] and by Méndez et al. in the initia-

tive NaPIRE [37], requirements are usually expressed in Natural Language,

which is inherently ambiguous. An ambiguous specification can lead to two

or more implementors writing interfacing code to operate under different as-

sumptions, despite each programmer’s confidence that he has programmed

the correct behavior.

We may think that, being rational, human beings can usually overcome

17

18 Requirements expressed in Natural Language and Ambiguity

miscommunication caused by ambiguity by using analysis, but this is not

always true in an absolute way. Ambiguity is the characteristic of having

more than one possible interpretation.

Figure 2.1: Example of ambiguity: what is it?

To better explain this concept we refer to Figure 2.1, which is not clear

at first sight: it may have multiple interpretations and even if you argue the

correct one, you may still have some doubts. With a proper explanation,

Figure 2.1 becomes immediately clear, and it seems impossible that a few

seconds before it wasn’t.1

The norms listed in Section 1.1 help to create a process that ensures sys-

tem safety even in presence of defective requirements. In particular, CEN-

ELEC EN-50128 asks requirements documents for railway systems to be

complete, clear, precise, unequivocal, verifiable, testable, maintainable, and

feasible – clause 7.2.4.4 of the norm [26]. To ensure that these quality at-

tributes are met, companies developing railway products have a Verification

Engineer (VE) who reviews for defects any requirements document produced

during the development process. This review activity is time consuming and

error prone, and an automated review assistant might help VEs in their task.

1Figure 2.2

2.2 Literature review 19

NLP (Natural Language Processing) refers to all applications aiming at

processing the natural language by means of a computer. While it is quite

challenging to make a tool able to understand the human creativity, it is true

that machines are faster and more precise than humans: NLP techniques use

these strengths to achieve the best result.

Section 2.2 contains a brief summary of the literature on this topic, Sec-

tion 2.3 contains the description of different ambiguity types, Section 2.4

describes some criteria to evaluate NLP techniques performances.

2.2 Literature review

NLP techniques have been largely applied to automate several requirements

engineering tasks, including model synthesis [99], classification of require-

ments into functional/non-functional categories [23], classification of online

product reviews [82], traceability [107, 33], detection of equivalent require-

ments [44], completeness evaluation [49], information extraction [56, 97, 81],

ambiguity detection [111, 12], and its generalization, defect detection. Since

in this paper we focus on defect detection, we will discuss related works in

this field. Techniques developed to address the problem of defects in writ-

ten requirements can be broadly partitioned into two sets. The first set of

techniques suggests to use constrained NL or formal/semi-formal languages

to prevent or limit defects. The second set of techniques starts from un-

constrained NL and generally aims at detecting defects, either by means of

manual verification, or by means of automated tools.

2.2.1 Preventing and limiting defects

In the literature, several strategies were defined to prevent defects by means

of constrained natural languages [85, 94] or (semi-)formal approaches [87, 4,

76, 59].

Concerning the use of constrained natural languages, the EARS [85] and

the Ruppâ template [94] are well known constrained formats for editing

requirements. Arora et al. [6] defined an approach to check the conformance

of requirements to these templates. Although the adoption of constrained

natural languages is not widespread in industry, recent studies have shown

that templates can be proficiently used by domain experts [86]. On the other

hand, templates can limit the amount of requirements defects at the syntactic

20 Requirements expressed in Natural Language and Ambiguity

level, but linguistic defects may still be present at the lexical, semantic and

pragmatic levels. Addressing these defects requires other techniques [6].

Among the works on (semi-)formal approaches, one of the earlier con-

tributions with a focus on defect prevention is the tool LOLITA [87], which

implements an approach for translating NL requirements into object-oriented

models. Similarly, Circe-Cico [4], starts from NL requirements to generate

models to support requirements analysis. Logic as a tool to identify and an-

alyze inconsistency in requirements from multiple stakeholders is suggested

in [126, 59]. More specifically, these papers propose a tool, named CARL,

that automatically translates NL into logic and then uses theorem proving

and model checking to detect inconsistency in the requirements. The works

of Kof aim to semi-automatically formalise NL requirements into message

sequence charts [74] and automata [75]. More recently, Yue et al. [122] pro-

posed a method and a tool, called aToucan, to automatically generate a UML

software analysis model from textual, functional requirements specifications

expressed in the form of use cases. A systematic study of defects in use case

specifications expressed in restricted NL is presented in [124].

The idea behind the works on (semi-)formal approaches is that the for-

malisation process may help in identifying requirements defects, since errors

in requirements would lead to inconsistencies or omissions in models, and,

due to the more formal nature of models, defects are easier to detect in

models than in textual requirements. However, through an analysis of two

empirical studies, Kamsties [69] concludes that formalization does not help

to eliminate defects from informal requirements documents. Indeed, during

the formalization process the analyst makes implicit assumptions, transform-

ing defects into errors. Therefore, even when formal modelling is applied,

other techniques for defect defection shall be used as a complement.

2.2.2 Detecting defects

Approaches for defect detection can be categorised into manual approaches

and automated ones, mostly based on NLP. Early and successful techniques

for manual requirements inspection were provided in [43, 106]. Inspection

checklists were developed, among others, in [5, 70], while a survey on the

topic of requirements inspection was published in [7].

Automated NLP approaches for defect detection can be be categorised

into those that use rule-based techniques [117, 12, 62, 61, 111, 6, 46] and those

that leverage artificial intelligence techniques [28, 118, 50]. Our contribution

2.2 Literature review 21

falls into the first category, which collects all the works in which defects are

identified based on linguistic patterns.

The Ambiguity Handbook of Berry et al. [12] includes one of the most

influential classification of ambiguity-related defects in requirements, and

provides a large set of examples of typically dangerous words and construc-

tions (see Section 2.3). Wilson et al. [117] define a quality model composed

of quality attributes and quality indicators, and develop an automatic tool

(called ARM: Automated Requirement Measurement) to perform the analy-

sis against the quality model aiming to detect defects and to collect metrics.

The tool was applied to industrial requirements from NASA [101]. Gnesi

et al. [62, 42] present QuARS, a tool for defect detection based on a qual-

ity model developed by the authors. Similarly, [61] implemented a grep-

like, pattern-based technique to detect defects, supported by statistical NLP

techniques such as POS tagging. Kiyavitskaya et al. [73] propose a two-step

approach to identify ambiguities in NL requirements. In the first step, a tool

applies a set of ambiguity measures to the requirements, in order to identify

potentially ambiguous sentences. In the second step, a (manually simulated)

tool shows the specific parts that are potentially ambiguous in the set of sen-

tences identified. Tjong et al. [111] developed SREE, a tool that identifies

defects based on a pre-defined list of dangerous terms. Arora et al. [6] use

patterns of linguistic defects as the other works, and, in addition, checks the

conformance of the requirements to a given template.

Among the works that use artificial intelligence techniques, Chantree et

al. [28] present a technique that helps requirements analysts to identify so-

called innocuous ambiguities (i.e., linguistic ambiguities that have a single

reading in practice). The focus of this work is on coordination ambiguities

(i.e., due to the usage of coordinating conjunctions), and a set of heuristics,

developed according to a data-set built by human assessors, is presented to

discriminate between innocuous and nocuous ambiguities. This approach

was extended for anaphoric ambiguities (i.e., due to the usage of pronouns)

in [118]. Finally, Ferrari et al. [50] propose a graph-based technique to detect

pragmatic ambiguities (i.e., ambiguities that depend on the context) in NL

requirements defined for a specific application domain.

All these works, and in particular the ones employing rule-based tech-

niques, were used as fundamental references to define the defect detection

patterns of our study. On the other hand, all the listed works provide limited

validation in real industrial contexts, as noted also in [46]. Large data-sets

22 Requirements expressed in Natural Language and Ambiguity

annotated by experts were considered in [44]. However, their focus is solely

on redundancy defects (i.e., equivalent requirements), detected by means of

information retrieval techniques. The task of finding couples of equivalent

requirements is radically different from the one we are dealing with in our

study, in which multiple linguistic defects occurring in single requirements

are considered. To our knowledge, the more general industrial work on defect

detection is the one presented in [46], who experimented their tool named

Smella on several datasets provided by three companies. Although domain

experts were interviewed to assess the effectiveness of the tool, analysis of the

results was performed by two researchers. Another industrial case study on

defect detection was presented in [116]. Two datasets of 293 requirements in

total were used as a benchmark, and term-based defect detection techniques

were employed to detect ambiguities. The results were reviewed by domain

experts.

The research results reported in the following chapters of this thesis (pub-

lished in [100, 51]) contributes to the recent literature on the industrial appli-

cation of defect detection NLP techniques [46, 116]. Compared to the other

studies, in our work the techniques are implemented, tailored, and validated

by domain experts. Furthermore, this is the first work that shows how rule-

based NLP patterns for defect detection can be incrementally tuned to the

needs of a company, to address the systematic – and domain-dependent –

false positive cases typically raised by these techniques.

2.3 Ambiguity taxonomy

When we read a text written in natural language as rational and intelligent

human beings we use our analysis capabilities to understand it. Usually it

is easy as we do that in our everyday life, but it may happen that some

words or phrases arise doubts which we need to solve using our background

or knowledge of the context. This kind of doubts or questions are known as

ambiguity. It exists in all disciplines where communication is based on nat-

ural language: writing, linguistic, philosophy, law, requirement engineering.

Berry notices that the word ambiguity is ambiguous itself as it suggests to

refer to something with only two possible interpretations while it would have

even more; a better word it would be multiguity [12]. We can distinguish

four broad classes of linguistic ambiguity [61, 12]:

• Lexical ambiguity (Subsection 2.3.1);

2.3 Ambiguity taxonomy 23

• Syntactic ambiguity (Subsection 2.3.2);

• Semantic ambiguity (Subsection 2.3.3);

• Pragmatic ambiguity (Subsection 2.3.4).

2.3.1 Lexical ambiguity

A lexical ambiguity occurs when a term has multiple meanings. It can hap-

pen in the following cases:

• Homonymy: Occurs when two different words are spelled the same

way, but they have unrelated meanings and sometimes also different

etymologies. Examples of homonyms are the pair stalk (part of a plant)

and stalk (follow/harass a person) and the pair left (past tense of

leave) and left (opposite of right), bank (estabilishment for custody,

loan, exchange, or issue of money) and bank (in the sense of rising

ground bordering a lake, river, or sea). A distinction is sometimes

made between “true” homonyms, which are unrelated in origin, such

as skate (glide on ice) and skate (the fish), and polysemous homonyms,

or polysemes, which have a shared origin, such as mouth (of a river)

and mouth (of an animal);

• Polysemy: Occurs when a word has several related meanings but one

single etymology. For example:

– Man:

1. The human species (i.e., man vs. other organisms);

2. Males of the human species (i.e., man vs. woman);

3. Adult males of the human species (i.e., man vs. boy).

This example shows the specific polysemy where the same word is used

at different levels of a taxonomy. Example 1 contains 2, and 2 contains

3:

– Mole:

1. a small burrowing mammal;

2. consequently, there are several different entities called moles.

Although these refer to different things, their names derive

from 1 (e.g., “A Mole burrows for information hoping to go

undetected”).

24 Requirements expressed in Natural Language and Ambiguity

However, other senses of the word (i.e., the skin blemish, the breakwa-

ter, the unit of measure, and the Mexican sauce) are homonyms, not

polysems, as they are each etymologically distinct.

– Book:

1. a bound collection of pages;

2. a text reproduced and distributed (thus, someone who has

read the same text on a computer has read the same book as

someone who had the actual paper volume);

3. to make an action or event a matter of record (e.g., “Unable

to book a hotel room, a man sneaked into a nearby private

residence where police arrested him and later booked him for

unlawful entry.”).

2.3.2 Syntactic ambiguity

Syntactic ambiguity, also called structural ambiguity, occurs when a given

sequence of words can be given more than one grammatical structure, and

each has a different meaning. It can be distinguished as an analytical, at-

tachment, coordination, or elliptical ambiguity:

• Analytical ambiguity: occurs when the role of the constituents within

a phrase or sentence is ambiguous. Among the various patterns of

analytical ambiguity that can occur is the structure of a complex noun

group including modifier scope. For instance “The Tibetan history

teacher” can be read as “The (Tibetan history) teacher”, “The Tibetan

(history teacher)”;

• Attachment ambiguity: occurs when a particular syntactic constituent

of a sentence, such as a prepositional phrase or a relative clause, can be

legally attached to two parts of a sentence. The most popular pattern

of attachment ambiguity is a prepositional phrase that may modify

either a verb or a noun. For example in the phrase “The police shot

the rioters with guns” we can intend with guns either as a modifier

of the noun rioters or as a modifier of the verb shot leading to two

different interpretations;

• Coordination ambiguity: occurs in two conditions:

2.3 Ambiguity taxonomy 25

1. when more than one conjunction, and or or is used in a sentence

(e.g., “I saw Peter and Paul and Mary saw me”);

2. when one conjunction is used with a modifier (e.g., “Young man

and woman”).

• Elliptical ambiguity: occurs when it is not certain whether or not a

sentence contains an ellipsis. An example is: “Perot knows a richer

man than Trump”. It has two meanings, that Perot knows a man who

is richer than Trump is and that Perot knows a man who is richer than

any man Trump knows (ellipsis present).

2.3.3 Semantic ambiguity

Semantic ambiguity occurs when a sentence has more than one way of reading

it within its context although it contains no lexical or structural ambiguity.

Semantic ambiguity can be viewed as ambiguity with respect to the logical

form, usually expressed in predicate logic, of a sentence. Semantic ambi-

guity can be caused by: coordination ambiguity, referential ambiguity, and

scope ambiguity. Coordination ambiguity is already discussed. Referential

ambiguity is on the borderline between semantic and pragmatic ambiguity,

because referential ambiguity can happen within a sentence or between a

sentence and its discourse context. Thus it is discussed in Subsection 2.3.4

The quantifier operators include such words as every, each, all, some, several,

a, etc., and the negation operators include not.

Scope ambiguity occurs when these operators can enter into different

scoping relations with other sentence constituents. For example, in the sen-

tence “All linguists prefer a theory”, the quantifiers all and a interact in two

ways. When the scope of a includes the scope of all, this sentence means

all linguists love the same one theory. When the scope of all includes the

scope of a, this sentence means that each linguist loves a, perhaps different,

theory. The same thing can happen with negations and quantifiers which

can interact ambiguously. For example, the sentence “No one has seen a pig

with wings”. It can be read as saying either that there exists no pig with

wings or that there exists a mythical pig with wings that no one has ever

seen.

26 Requirements expressed in Natural Language and Ambiguity

2.3.4 Pragmatic ambiguity

Pragmatics, like semantics, investigates the meaning of language; pragmatics

focuses on context-dependent meaning, while semantics on context-invariant

meaning.

Pragmatic ambiguity occurs when a sentence has several meanings in

the context in which it is located. The context comprises for example the

sentences before and after, and the domain beyond the language (i.e., the

situation, the background knowledge, the domain specific language). We

distinguish referential ambiguity and deictic ambiguity. In traditional se-

mantics, the relation between a word or phrase and the object of the real

world that the word or phrase describes is called a reference. An anaphor

is an element of a sentence that depends for its reference on the reference

of another element, possibly of a different sentence. This other element is

called the antecedent and must appear earlier in the same sentence or in a

previous sentence. A referential ambiguity occurs when an anaphor can take

its reference from more than one element, each playing the role of the an-

tecedent. Anaphora include pronouns (e.g., it, they), definite noun phrases,

and some forms of ellipsis. An example of a referential ambiguity is: “The

trucks shall treat the roads before they freeze”. Ellipses can have the same

effect as pronouns and definite nouns, as the following sentence shows. “...

If the ATM accepts the card, the user enters the PIN. If not, the card is

rejected”. The word not is here an elliptical expression that refers either to

the condition specified in the previous sentence or to something written be-

fore that. Deictic ambiguity occurs when pronouns, time and place adverbs,

such as now and here, and other grammatical features, such as tense, have

more than one reference point in the context. The context includes a person

in a conversation, a particular location, a particular instance of time, or an

expression in a previous or following sentence.

2.4 NLP techniques evaluation

In order to quantitatively evaluate the performance of NLP techniques for

defect detection an evaluation criterion has to be defined. These NLP tech-

niques, when used to detect one precise defect typology, share some similar-

ities with binary classifiers, in fact:

• these techniques highlight a part of a sentence that has been detected

2.4 NLP techniques evaluation 27

as defective, which is very similar to the predicted condition positive of

a binary classifier;

• sentences – or fractions of them – not highlighted by these techniques

are considered as non-defective, which is very similar to the predicted

condition negative.

Due to these similarities, evaluation criteria applicable to binary classi-

fiers can be applied to the NLP technologies too. In order to measure the

effectiveness, we define the following quantities:

• tp: number of true positive cases. The number of requirements that

contain at least a defect – condition positive – and correctly got pre-

dicted condition positive;

• fp: number of false positive cases. The number of requirements frag-

ments not containing any defect – condition negative – but got predicted

condition positive;

• fn: the number of false negative cases. The number of requirements

that contain at least a defect – condition positive – but got predicted

condition negative;

• tn: number of true negative cases. The number of requirements that

don’t contain any defect – condition negative – and correctly got pre-

dicted condition negative.

Based on these definitions, the measures of accuracy (a), precision (p)

and recall (r) are defined as [96]:

a =
tp+ fp

tp+ fp+ tn+ fn
p =

tp

tp+ fp
r =

tp

tp+ fn

We chose to use as evaluation criteria precision p and recall r. The

precision is negatively influenced by the amount of defects wrongly identified

(fp). The recall is negatively influenced by the amount of undetected defects

(fn). The same evaluation criteria can be used, with the proper extensions

described by Powers [96], also in the general case of multi-class classifiers.

The above described quantitative evaluation of the performance requires

an additional and non-trivial effort: in order to correctly compute the quan-

tities tp, fp, fn and tn the condition positive and negative shall be known

a priori. This knowledge in classification and machine learning problems is

28 Requirements expressed in Natural Language and Ambiguity

known as labeling or ground truth, and it consists in the association of a label

to each example composing the dataset used for training and test purposes.

In general the labeling (or annotation) process is conducted manually,

thus it is time consuming and error-prone. In the specific case of Requirement

Engineering, the annotation process is subjective – due to the ambiguities

in NL described in Section 2.3. In order to mitigate as much as possible the

subjectivity of this operation we agreed that the labeling operation has to

be performed by an actor with a proven knowledge of the industrial domain

under consideration. We also agreed that, in order to further decrease the

subjectivity impact, in some conditions the labeling operation has to be

replicated by more than one actor. When using this technique we need to

define a criterion to evaluate the inter-rater agreement and a criterion to

resolve disagreements.

A proper criterion for inter-rater agreement evaluation is the Cohen’s

kappa coefficient (k) [79]. It measures the agreement between two raters

who individually classify N items into C mutually exclusive categories and

it is defined as:

k = 1− 1− po
1− pe

where po is the relative observed agreement among the raters (i.e., the ac-

curacy) and pe is the hypothetical probability of chance agreement. The

hypothetical probability of chance agreement is defined as:

pe =
1

N2

C∑
c=1

nc1nc2

where nci is the number of times rater i predicted category c. According to

Landis and Koch [79], the qualitative inter-rater agreement can be defined

using Cohen’s kappa coefficient as in Table 2.1.

2.4 NLP techniques evaluation 29

Inter-rater agreement Cohen’s kappa coefficient

No k < 0

Slight 0 ≤ k ≤ 0.20

Fair 0.20 < k ≤ 0.40

Moderate 0.40 < k ≤ 0.60

Substantial 0.60 < k ≤ 0.80

Almost perfect 0.80 < k ≤ 1

Table 2.1: Interpretation of inter-rater agreement using the Cohen’s kappa

coefficient [79].

Figure 2.2: In case you’re still wondering...

30 Requirements expressed in Natural Language and Ambiguity

Chapter 3

Detecting defects: a rule-based

approach

3.1 Introduction

In this chapter, we first give a background on the NLP technologies used

in the study (Section 3.2). Then, we describe the defined NLP patterns

(Section 3.3), and the identified discard patterns developed in order to ad-

dress systematic false positive cases (Section 3.4). We also describe the tool

SREE [111], and we outline how the tool was used in our study (Section 3.5).

Finally, we summarize the different usage of the presented technologies in

the study.

3.2 NLP technologies

In this section, we list the natural language processing (NLP) technologies

included in the tool GATE [35] that was adopted to define the patterns:

• Tokenization: this technology partitions a document into separate

tokens (e.g., words, numbers, spaces and punctuation);

• Part-of-Speech (POS) Tagging: this technology associates to each

token a Part-of-Speech (e.g., noun (NN), verb (VB), adjective (JJ),

etc.). Common POS taggers are statistical in nature, i.e., they are

trained to predict the POS of a token based on a manually annotated

31

32 Detecting defects: a rule-based approach

corpus. Available POS taggers normally have an accuracy around

97% [83], errors might occur in the POS associated to a token. For

example, in a sentence such as “An incident management team shall

be organised”, the token organised might be incorrectly tagged as an

adjective (JJ), and not as a verb in past participle (VBN);

• Shallow Parsing: this technology identifies noun phrases (NP) – in

this case we speak about Noun Chunking – and verb phrases (VP) – in

this case we speak about Verb Chunking – in sentences. For example,

given the sentence “Messages are received by the system”, a shallow

parser identifies {Messages, the system} as NPs, and {are received} as

VP;

• Gazetteer: this technology searches for occurrences of terms defined

in a list of terms. In our case, we used it to check the presence of vague

terms;

• JAPE Rules: this technology allows defining rules (i.e., high-level

regular expressions) over tokens and other elements in a text [35]. A

rule identifies sequences of elements that match the pattern. Rules are

expressed in the intuitive JAPE grammar, which is similar to regular

expressions. JAPE rules can be rather long to report. In this chapter,

for more clarity to describe JAPE rules, we will use a more concise and

intuitive pseudo-code inspired to the JAPE grammar. In JAPE, and

in our rules, the symbols reported in Table 3.1 are used. Furthermore,

when we use a term in capital letters, this indicates a form of macro

that identifies terms of the specific type (e.g., NUMBER identifies num-

bers, while ELSE identifies the term else in its various orthographic

forms). Although these macros differ in terms of semantics, we expect

that the reader can infer their meaning.

3.3 Patterns for defect detection

This section lists the classes of language defects considered, together with

the patterns (i.e., JAPE rules) defined to identify them. Patterns are de-

fined in terms of sequences of tokens to be matched within a requirement.

Hence, the output produced by one pattern when applied to a requirement is

zero or n requirement fragments (i.e., contiguous sequences of tokens in the

3.3 Patterns for defect detection 33

Expression Meaning

< expr1 > | < expr2 > < expr1 > OR < expr2 >

< expr1 >,< expr2 > < expr1 > AND < expr2 >

! < expr > NOT < expr >

< expr > + One or more elements matching < expr >

< expr > ∗ Zero or more elements matching < expr >

< expr >? Zero or one element matching < expr >

Table 3.1: Symbols used in the JAPE grammar.

requirement) that match the pattern. The patterns were defined with the

idea of identifying the most relevant defects for the Verification Engineers,

and also taking into account the defect classes provided by [12]. In Table 3.2

we report the patterns in a compact version. The JAPE implementation of

the patterns, together with the discard-patterns that will be introduced in

Section 3.4, is available in the public repository1. Below, we describe the

defect classes addressed by each pattern:

Defect Class Pattern

Anaphoric

ambiguity

PANA = (NP)(NP)+

(Split)[0,1]

(Token.POS == PP | Token.POS =∼ PR*)

Coordination

ambiguity

PCO1
= ((Token)+ (Token.string == AND | OR)) [2]

PCO2
= (Token.POS == JJ) (Token.POS == NN | NNS)

(Token.string == AND | OR) (Token.POS == NN | NNS)

Vague terms PV AG = (Token.string ∈ Vague)

Modal adverbs
PADV = (Token.POS == RB | RBR),

(Token.string =∼ “[.]*ly$”)

Passive voice
PPV = (AUXVERB)(NOT)?(Token.POS == RB | RBR)?

(Token.POS ==VBN)

Excessive length PLEN = Sentence.len > 60

Missing condition
PMC = (IF)(Token, !Token.kind == punctuation)*

(Token.kind == punctuation)(!(ELSE | OTHERWISE))

Missing unit

of measurement

PMU1
= (NUMBER)((Token)[0, 1](NUMBER))?(!MEASUREMENT)

PMU2
= (NUMBER)((Token)[0, 1](NUMBER))?(!PERCENT)

Missing reference
PMR = (Token.string == “Ref”)(Token.string == “.”)

(SpaceToken)?(NUMBER)

Undefined term PUT = (Token.kind == word, Token.orth == mixedCaps)

Table 3.2: Pattern adopted for each defect class.

• Anaphoric ambiguity Anaphora occurs in a text whenever a pro-

1https://github.com/ISTI-FMT/QUARS_plus_plus

https://github.com/ISTI-FMT/QUARS_plus_plus

34 Detecting defects: a rule-based approach

noun (e.g., he, it, that, this, which, etc.) refers to a previous part of the

text. The referred part of the text is normally called antecedent. An

anaphoric ambiguity occurs if the text offers more than one antecedent

option [118], either in the same sentence (e.g., “The system shall send

a message to the receiver, and it provides an acknowledge message”

- it = system or receiver?) or in previous sentences. The potential

antecedents for the pronouns are noun phrases (NP), which can be de-

tected by means of a shallow parser. The pattern PANA matches any

sequence of two or more noun phrases (NP), followed by zero or one

sentence separators (Split), followed by a personal pronoun (PP), or

other types of pronouns (PR*);

• Coordination ambiguity Coordination ambiguity occurs when the

use of coordinating conjunctions (e.g., and and or) leads to multiple

potential interpretations of a sentence [28]. Two types of coordination

ambiguity are considered here. The first type includes sentences in

which more than one coordinating conjunction is used in the same

sentence (e.g., “There is a 90° phase shift between sensor 1 and sensor

2 and sensor 3 shall have a 45° phase shift”). The second type includes

sentences in which a coordinating conjunction is used with a modifier

(e.g., “Structured approaches and platforms” – Structured can refer to

approaches only, or also to platforms). Two patterns were defined, one

for each type. PCO1
matches exactly two occurrences (notation “[2]”)

of one or more Tokens followed by a coordinating conjunction. PCO2

matches cases in which an adjective (JJ) precedes a couple of singular

(NN) or plural nouns (NNS), joined by and or or ;

• Vague terms Vagueness occurs whenever a sentence admits borderline

cases, i.e., cases in which the truth value of the sentence cannot be

decided [12]. Vagueness is associated with the usage of terms without

a precise semantics, such as minimal, as much as possible, later, taking

into account, based on, appropriate, etc. In our context, we use the

list of 446 vague terms provided by the QuARS tool [62]. The list

includes single-word and multi-word terms that were collected as source

of vagueness in requirements. PV AG matches any term included in the

set Vague of vague terms;

• Modal adverbs Modal adverbs (e.g., positively, permanently, clearly)

are modifiers that express a quality associated to a predicate. Adverbs

3.3 Patterns for defect detection 35

are discouraged in requirements as potential source of ambiguity [61].

We noticed that, in the requirements of the company, most of the ad-

verbs causing ambiguity were modal adverbs ending with the suffix -ly.

For this reason, PADV matches adverbs in normal form (RB) or in com-

parative form (RBR) that terminate ($ indicates string termination)

with -ly;

• Passive voice The use of passive voice is a defect of clarity in require-

ments, and can lead to ambiguous interpretations in those cases in

which the passive verb is not followed by the subject that performs the

action expressed by the verb (e.g., “The system shall be shut down” –

by which actor?). Passive voice detection is also considered in [61, 47].

To identify passive voice expressions, PPV matches auxiliary verbs fol-

lowed by a verb in past participle (VBN), possibly with negations and

adverbs;

• Excessive length Longer sentences are typically harder to process

than short sentences, and can be source of unclarity. It was chosen

to identify all the sentences that are longer than 60 tokens. Although

this is a rather weak threshold – for generic English texts, sentences are

recommended not to exceed 40 tokens [36] –, we considered this value

appropriate for the length of the sentences in the railway domain;

• Missing condition To be considered complete, each requirement ex-

pressing a condition through the if clause shall have a corresponding

else or otherwise clause. PMC checks whether an if clause is followed

by an else/otherwise clause in the same sentence;

• Missing unit of measurement Each number is required to have

an associated unit of measurement, unless the number represents a

reference (see below). Hence, the patterns check whether a number

has an associated unit, or a percentage value associated to it;

• Missing reference This defect occurs when a reference that appears

in the text in the form Ref. <X> does not appear in the list of refer-

ences of the requirements document. To detect this defect we leverage

the pattern PMR to extract references in the text, and then – through

Java code not reported here – we check whether each number found

appears in the list of references;

36 Detecting defects: a rule-based approach

• Undefined term This pattern searches all the terms that follow the

textual form used in the company for defining glossary terms (e.g., re-

strictiveAspect), which are expressed in camelCase format (i.e., mixed-

cap orthography). As for the missing reference case, we leverage the

PUT pattern to search for terms expressed in camelCase, and then we

automatically search the glossary to check whether the term is present

or not.

The defect classes associated to the patterns can be related to part of

the broad quality criteria specified by the CENELEC norms, and reported

in Section 2.1. Furthermore, they can be related to the different levels of

language to which the defect belong, namely lexical, syntactic, semantic and

pragmatic – see 2.3 for a discussion in the context of NL requirements. They

can also be related to the level of detection, which, in our case, is either

lexical or syntactic. Table 3.3 reports these relationships, using a structure

similar to the one adopted by Gleich et al. [61].

Defect Class Criterion Lev. of Language Detection

Anaphoric ambiguity Unequivocal
Syntactic, Semantic,

Pragmatic
Syntactic

Coordination ambiguity Unequivocal Syntactic, Semantic Syntactic

Vague terms Precise Pragmatic Lexical

Modal adverbs Precise Pragmatic Syntactic

Passive voice Clear Semantic, Pragmatic Syntactic

Excessive length Clear Semantic, Pragmatic Lexical

Missing condition Complete Semantic, Pragmatic Syntactic

Missing unit of

measurement
Complete Semantic, Pragmatic Lexical

Missing reference Complete Semantic, Pragmatic Lexical

Undefined term Complete Semantic, Pragmatic Lexical

Table 3.3: Patterns associated to the different CENELEC criteria, and to

the different levels of language.

3.4 Discard patterns

A set of context-aware patterns was defined along the case study based on an

analysis of the false positive cases produced by the defect detection patterns

3.4 Discard patterns 37

(see Section 6.4.2). For the sake of clarity, we refer to these additional

patterns as discard patterns. Each discard pattern is associated to one defect

class. The defect class is the one whose patterns generate the systematic false

positive cases. The discard patterns, adapted from the JAPE rules reported

in our repository, are shown in Table 3.4, and briefly described below:

Defect Class Discard Pattern

Anaphoric

ambiguity

DANA = ((Token.POS == PP | Token.POS = PR*)

within IT SHALL BE POSSIBLE)

Vague terms

DV AG1
= (PV AG, Token.string ==∼ “(?i)sound” | “(?i)light”,

Token.POS == NN | NNS)

DV AG2
= (PV AG within IT SHALL BE POSSIBLE)

DV AG3
= (PV AG within StophPhrasesV ague)

Modal adverbs
DADV1

= (Token.string ==∼ “(?i)manually” | “(?i)automatically”)

DADV2
= (PADV within INFORMATION PURPOSES ONLY)

Undefined term DUT = (PUT contains KnownAcronym)

Table 3.4: Discard patterns.

• Anaphoric ambiguity: the patternDANA detects the pronoun within

sentences matching the pattern IT SHALL BE POSSIBLE. This pat-

tern matches the expressions it shall be possible, it may be possible

and it should be possible, in their orthographic variants, and possibly

including other terms within the pattern (e.g., it should also be possi-

ble). The JAPE notation “within” indicates that the first argument is

completely included in the second argument. Each ambiguity detected

through the pattern PANA is discarded when it includes DANA;

• Vague terms: the pattern DV AG1
matches all the tokens in which

the terms sound and light are used as nouns, according to the anno-

tations of the POS Tagger. The JAPE notation “(?i)” indicates that

all orthographic variants of the string shall be matched. The pat-

tern DV AG2
matches the term possible when used within the pattern

IT SHALL BE POSSIBLE. The pattern DV AG3
matches any vague

term included in the list of stop phrases StopPhrasesV ague, which

collects the set of domain specific terms that include vague terms (e.g.,

distant signalling distance, near miss), according to our analysis of

the false positive cases. Each vague term detected through PV AG is

discarded when it includes DV AG1
, DV AG2

or DV AG3
;

• Modal Adverbs: the pattern DADV1
matches the terms manually

and automatically. The pattern DADV2
matches the term only within

38 Detecting defects: a rule-based approach

the expression information purposes only. Each modal adverb detected

through PADV is discarded when it includes DADV1
or DADV2

;

• Undefined term: the pattern DUT matches any unknown term an-

notation (PUT) that contains a known acronym (i.e., a term included

in the list KnownAcronym). Any PUT annotation is discarded when

it includes DUT .

3.5 SREE patterns

The tool SREE [111] is a defect detection tool for NL requirements that is

oriented to achieve 100% recall for the defects in its scope, even at the cost

of lower precision. SREE leverages a set of dictionaries of typically defec-

tive terms (single and multi-word). A requirement that includes a term that

matches one of the terms of the dictionaries is returned by SREE as a poten-

tially defective requirement. Furthermore, the matched term is also returned.

The key feature of SREE resides in searching only for lexical matches, with-

out leveraging POS Taggers or other statistical tools that may, in principle,

decrease the recall. The approach is analogous to the one adopted in our

work for the pattern for Vague terms (see Section 3.3).

SREE employs ten dictionaries, and each dictionary is associated to a

defect class. The defect classes, together with representative examples of

the terms included – called SREE indicators [111] – are:

• Continuance: as follows, below, following, in addition, in particular,

etc.;

• Coordinator: and, and/or, or;

• Directive: e.g., etc., figure, for example, i.e., note, table;

• Incomplete: TBA, TBD, as a minimum, as defined, as specified, etc.;

• Optional: as desired, at last, either, eventually, if appropriate, in case

of, if necessary, etc.;

• Plural: contains a list of 11, 287 plural nouns, each ending in “s”;

• Pronoun: anyone, he, her, this, they, which, whom, yourself, etc.;

• Quantifier: all, any, few, little, many, much, several, some;

3.6 NLP technologies applied to our case study 39

• Vague: (), [], as far as, as required, eventually, mutually-agreed, etc.;

• Weak: can, could, may, might, ought to, preferred, should, will, would.

The complete list of terms for each dictionary, with the exception of

the plural class, can be found in [111]. For the plural class, we contacted

Daniel M. Berry, who kindly provided the list. In our study we adopted the

dictionaries of SREE. Specifically, each SREE dictionary was imported in

GATE as a separate Gazetteer. In our evaluation we apply all the SREE

dictionaries, with the exception of the dictionary of the weak class, since this

class was initially excluded from the analysis.

3.5.1 SREE-reduced

A subset of SREE was also adopted in our case study. The selection, which

we call SREE-reduced, is composed of the terms that are specific to SREE,

and are not considered in our patterns. In particular, pronouns are sources

of anaphoric ambiguities, and are considered in our PANA pattern. Further-

more, the coordinators and and or are sources of coordination ambiguities

and are considered in our PCO1
and PCO2

, while the expression and/or was

considered in our list Vague of vague terms. Finally, also part of the terms

included in the different SREE dictionaries are included in our Vague list.

Therefore, SREE-reduced is composed of the dictionaries of SREE but ex-

cluding:

1. the dictionaries of the coordinator, pronoun and weak class;

2. all the terms in the other dictionaries that were already part of the

Vague list.

3.6 NLP technologies applied to our case study

In this section we summarize the different experimental usage of the NLP

technologies presented above to address the study goal. As already said, the

grand objective of our case study, described in detail in the following chap-

ters, was to investigate to which extent NLP can be practically applied to

detect defects in the requirements documents. In order to improve the cost-

effectiveness of the verification activity it was important to maximize both

40 Detecting defects: a rule-based approach

precision and recall: for a proficient use of the provided tool by the Verifi-

cation Engineers it has to show all possible defects without missing nothing

and hopefully without showing too many false positive cases. Therefore we

applied an iterative process (Chapter 4, Figure 4.1) in order to maximize the

identified defects minimizing the false positive cases. From here descends the

decision to use first our identified patterns, then the discard ones and at the

end we tried to improve the obtained recall choosing within SREE dictionar-

ies (Section 3.5) the potential words missing in our patterns (Section 3.5.1).

Chapter 4

Research methodology and Case

study design

4.1 Introduction

The experience presented in this chapter and in chapters 5, 6 and 71 has been

conducted in collaboration with Alstom, one of the major railway companies.

The case study selection has been triggered by the involved company and by

its need to support Verification Engineers in their task of requirements review

with automated tools. Specifically, the company contacted two research

institutions, namely ISTI-CNR and University of Florence, and during the

case study the following roles were identified and requested:

• NLP-E: this role identifies an NLP Expert, that is, a researcher with

proven knowledge of NLP techniques;

• VE: this role identifies an actor with a proven knowledge of CENELEC

standards and a strong background as a Verification Engineer.

The subjects taking these roles are presented in Section 5.2.2.

This research experience shares the typical characteristics of case study

research, in that the phenomenon under study is analyzed within its natural

context (in particular a railway company) and the boundary between the

context and the phenomenon are not clearly evident, and cannot be fully

controlled [120]. It also includes iterative and improving aspects that are

1This experience has been published in [100, 51]

41

42 Research methodology and Case study design

closer to action research [8], and technology transfer [63]. Overall, our em-

pirical design can be regarded as an exploratory and iterative case study. Its

design largely follows the guidelines provided in [103], adapted to the itera-

tive context of our experience. Specifically, each iteration follows a template

reference structure, which includes research question (RQ) definition, data

collection procedures, and data analysis procedures. Each iteration is based

on specific RQs, and its results are used as triggers to define additional RQs

to be answered in the next iteration. In the following, we first outline the

RQs produced, and then we describe the template structure adopted in each

iteration.

4.2 Research objective and Research questions

The research objective can be decomposed into the following RQs. It should

be noticed that the RQs have been generated along with the case study

iterations, and were not already defined at the beginning of the study. We

will keep that same order in the following enumeration.

Each RQ will be associated to one or more iterations of the case study.

Given the iterative nature of research question generation, we consider it

appropriate to present the research questions together with the outline of

the iterations that addressed them.

• RQ1: What is the accuracy of the NLP patterns for defect

detection?

We want to provide a quantitative measure of the effectiveness of the

patterns in identifying requirements defects. The assumption is that

the higher the measures of accuracy, the more effective are the pat-

terns. To this end, we want to compare the results of the applica-

tion of the patterns with the defects identified by domain experts (i.e.,

VEs). The accuracy is measured in terms of precision and recall. The

former indicates how many of the defects identified by a tool are con-

sidered as defects by VEs. The latter indicates how many of the defects

identified by VEs are actually identified by a tool. Precise definitions

are given in Section 2.4, and will both consider single defects and de-

fective requirements as described in Section 4.3.3. Single defects are

requirements fragments considered defective according to a specific de-

fect class, while defective requirements are requirements that include

at least one single defect.

4.2 Research objective and Research questions 43

• RQ2: Which are the cases of inaccuracy of the NLP patterns

for defect detection?

We want to provide a qualitative analysis of the effectiveness of the

patterns. More specifically, we want to understand which are the spe-

cific cases in which the patterns fail in identifying defects. This is done

in terms of (a) defects identified by VEs that are not detected by the

patterns (i.e., false negative cases, which impact on recall); and (b) in

terms of defects that are detected by the patterns, but are not consid-

ered as defects by the VEs (i.e., false positive cases, which impact on

precision), as stated in Section 2.4.

• RQ3: What is the precision of NLP patterns for defect de-

tection when complemented with discard patterns?

This question was generated after answering RQ2. Indeed, it was ob-

served that the defect detection patterns generate systematic false pos-

itive cases, which could be addressed with discard patterns. The appli-

cation of discard patterns is expected to increase the precision of the

overall approach, and this question aims at quantitatively evaluating

to which extent the precision can be increased.

• RQ4: Can a third-party tool identify additional defects?

We want to understand whether the usage of an additional tool can al-

low us to address false negative cases, and to identify additional defects

not considered in the patterns. To this end, we apply the dictionaries

of SREE, a tool specifically designed to achieve 100% recall on the de-

fects considered. To answer this broad question, we decompose it into

the following sub-questions.

– RQ4.1: What is the accuracy of SREE with respect to the

NLP patterns for defect detection complemented with

discard patterns?

We first want to understand whether SREE identifies defective

requirements identified by the VEs, and not identified by the

patterns (i.e., false negatives). By answering this question, we

provide a quantitative evaluation of the accuracy of SREE in

identifying defective requirements, in terms of recall and preci-

sion. The comparison with the patterns is useful to understand

whether SREE and the patterns can be considered as complemen-

tary tools.

44 Research methodology and Case study design

– RQ4.2: What is the precision of SREE?

This question was generated after answering RQ4.1, and noticing

that SREE generates a large number of false positive require-

ments. This suggested that SREE may be less precise than the

patterns also at the level of single defects. Thus we wanted to

further assess the precision obtained by using uniquely the tool

SREE.

– RQ4.3: Which additional defects can be identified with

SREE?

This question was generated after answering RQ4.1. Indeed, we

considered that some of the false positive requirements issued by

SREE could include specific defects not considered by the pat-

terns. Therefore the goal was to understand whether novel cate-

gories of defects can be identified using SREE.

– RQ4.4: Which are the false positive cases for SREE?

This question was generated after answering RQ4.1, and as a

qualitative complement to RQ4.2, to check which are the typi-

cal sources of false positives at the level of defects.

4.3 Data collection and Analysis procedures

To collect and analyze the data necessary to answer the RQs, each itera-

tion followed a template structure. The template structure of the iterations

is depicted in Figure 4.1. The template is composed of eight tasks, which

are further grouped into three main phases, namely Preparation, Data Col-

lection, and Data Analysis. The phases are designed to ensure a minimal

intervention of NLP-E in the execution of the case study. Specifically, the

contribution of NLP-E was limited to the Preparation and Data Analysis

phases. The Data Collection phase was carried out by the VEs involved in

the specific iterations.

4.3.1 Preparation

The preparation phase consists of two tasks, described below:

• Research Questions: definition of RQs which are going to be an-

swered by the iteration. If in the previous iteration, the RQs are

4.3 Data collection and Analysis procedures 45

Research
Questions
(NLP-E, VE)

Patterns
Definition
(NLP-E, VE)

Dataset
Selection
(VE)

Dataset
Annotation
(VEs)

Patterns
Application
(VE)

Quantitative
Evaluation
(VE)

Qualitative
Evaluation
(NLP-E, VE)

Output
Annotation
(VEs)

Preparation

Data CollectionData Analysis

Figure 4.1: Template structure adopted in the iterations of the case-study.

considered to require another iteration to be answered, the previous

RQs are kept. Furthermore, in this phase, a specific instance of the

template is chosen so that this is appropriate to answer the questions.

In particular, the phases of the template that will be performed are

selected – not all the phases are required for each iteration;

• Patterns Definition: patterns are defined and implemented to sup-

port defect detection. The patterns will be employed in the iteration.

In this phase, we consider the definition of defect detection patterns,

the definition of discard patterns, and also the implementation of the

patterns that support the dictionaries of SREE. If the patterns are

defined in previous iterations, this phase is not performed.

4.3.2 Data collection procedure

Data are collected according to the following tasks:

46 Research methodology and Case study design

• Dataset Selection: a requirements dataset is selected, to which we

apply the patterns;

• Dataset Annotation: the dataset is manually annotated for defects.

Annotations may have been performed also before the current study,

as for Large-scale Study - 1st Iteration, see Section 5.3.2. In this case,

for the sake of structure and clarity of the presentation, we consider

the annotation as it would be performed during this task. If both the

dataset and the annotations come from a previous iteration, this phase

is not performed. The output of this phase is a set of requirements

which are annotated as accepted, if they do not contain defects, or

rejected, if they contain at least one defect. Furthermore, depending

on the iteration considered, annotations associated to specific defects

are also provided. More specifically, the annotation was performed

as follows: given a requirement, this was labelled as accepted if it

appeared to fulfill the criteria normally adopted by the company. These

criteria are derived from the more general guidelines provided by the

CENELEC EN-50128:2011 norm [26], and considering also the IEEE

Std 1233-1998 as a reference [67]2. In particular, a requirement was

labeled as accepted if it was: (a) feasible: what is required is physically

and technologically possible, can be done with available resources and

is not against laws and regulations; (b) testable: can be demonstrated

through repeatable tests or is at least verifiable through inspection; (c)

complete: stand-alone, no missing references, undefined terms, to-be-

defined parts, or missing conditions; (d) clear and unambiguous; (e)

uniquely identifiable; (f) consistent : no internal contradiction and no

contradiction with other requirements. The requirement was labeled

as rejected in case it did not fulfill one of the criteria. In case the

requirement was marked as rejected for criterion (c) or criterion (d),

the VE involved stated whether the rejection was due to one or more

linguistic defect classes associated to the patterns listed in Section 3.3.

In this case, the VE involved labelled as defective(i) each requirement

fragment that included the i -th defect. Different defective requirement

fragments can thus overlap;

• Patterns Application: the patterns are applied on the annotated

dataset, and potentially defective requirements are produced as output;

2The standard is currently replaced by ISO/IEC/IEEE 29148:2011 [68].

4.3 Data collection and Analysis procedures 47

• Output Annotation: in each iteration, this task is considered as mu-

tually exclusive with the Dataset Annotation task. Indeed this task is

mainly oriented to assess the precision of the output of the patterns,

and has been introduced when doubts were raised about the quality of

the original annotations, or whenever further assessment was required.

This task is performed as follows. For each requirement fragment la-

belled as defective according to pattern i, each VE annotated the frag-

ment as defective(i), if the VE considered the defect as a true defect3.

Overall, if a fragment was annotated as defective(i) by at least one

VE, the fragment was marked as defective(i) in the annotated set

used for the evaluation. This choice (instead of the unanimity one)

enlarges the number of defective fragments, but prevents us to miss

some possible ambiguous fragment.

4.3.3 Data analysis procedure

Data analysis is performed according to the following tasks:

• Quantitative Evaluation: the accuracy of the patterns in detecting

defects is evaluated. In particular, we evaluate the values of precision

and recall (see Section 2.4) of the patterns with respect to the golden

standard (i.e., the performed annotations). Evaluation measures for

single defects and for entire requirements are provided, and defined as

follows:

– Evaluation Measures by Defect: To measure the effectiveness of

the patterns, we first provide a set of measures that focus on

single defective fragments identified by the patterns. Given the

pattern associated to the i -th defect, we consider the amount of

true positive tpD as the number of requirements fragments labeled

as defective(i) and correctly identified by the pattern; the amount

of false positive fpD as the number of requirements fragments

wrongly identified as defective by the pattern; the amount of false

negative fnD as the number of requirements fragments labeled as

defective(i) that are not discovered by the pattern. Based on

these definitions, we define the measure of precision (pD) and

recall (rD) using the same equations provided in Section 2.4;

3In this context, we consider as a pattern i also a dictionary from SREE-reduced, as

defined in Section 3.5

48 Research methodology and Case study design

– Evaluation Measures by Requirement: to have a view of the ef-

fectiveness of the patterns applied together, we provide a set of

measures that focus on the number of requirements, instead of on

the number of defective fragments. Here, we consider the amount

of true positive tpR as the number of requirements labeled as re-

jected for which at least one of the patterns correctly identified a

defective requirement fragment; the amount of false positive fpR

as the number of requirements wrongly identified as defective (i.e.,

at least one of the patterns triggered a defect while the require-

ment was marked as accepted); the amount of false negative fnR

as the number of requirements marked as rejected for which none

of the patterns triggered a defect. The measures of precision pR

and recall rR are defined using the same equations provided in

Section 2.4.

Depending on the iteration, different evaluation measures are used,

among those listed above;

• Qualitative Evaluation: cases of inaccuracy of the patterns are eval-

uated and classified. In particular, the results produced by the pat-

terns are inspected, and classes of inaccuracy cases are provided; for

each class a representative example has been extracted. The interac-

tion between the involved subjects was performed by means of on-line

calls, and shared documents.

4.4 Validity procedure

The validity procedure adopted aims to ensure the validity of the data used

in the study.

To ensure the validity of the annotations performed on the datasets dur-

ing the Output Annotation task, the annotation process is independently

performed by two VEs. The inter-rater agreement is computed by means

of the Cohen’s kappa coefficient (see Section 2.4 and Table 2.1). In case

of disagreement, if at least one of the annotators considered a requirement

as defective, the requirement was considered defective in the final set used

during the analysis. This validity procedure was not followed in the Pilot

Study, due to its preliminary nature (Section 5.3.1). Furthermore, it was not

4.4 Validity procedure 49

followed during the Dataset Annotation task. Specific threats associated to

this aspect are discussed in Section 6.9.

Second, we ensure the validity of the quantitative results reported, by

replicating part of the study.

Third, to limit the researcher bias, the intervention of NLP-E was limited

to the Preparation and Data Analysis phases, while Data Collection was

entirely performed by the VEs involved in each iteration.

NLP-E never had access to the datasets used, but solely to the quantita-

tive results produced.

50 Research methodology and Case study design

Chapter 5

Experimentation

5.1 Introduction

This chapter describes the execution of the case study. We first describe the

characteristics of the case and the subjects involved, and then we describe the

different iterations performed in relation to the RQs presented in Section 4.2.

5.2 Case and Subjects description

5.2.1 The company and its process

The company produces signalling equipment for both railway and urban

transport applications. In order to efficiently produce such systems, the

company develops a set of different products aimed to provide generic func-

tionalities; specific projects based on their product lines are then developed

in order to satisfy customer’s specific needs. These needs are usually ex-

pressed in requirements released by the customer to the companies tender-

ing for contract. The requirements are then elaborated and refined by the

company, without relying on standard editing guidelines. The company, for

both products and projects, applies the V-model for life-cycle management

according to the CENELEC standard [26] as described in Chapter 1. As

dictated by the standard, a requirements’ review activity is performed by

the Validation Team, according to the criteria reported in Section 4.3.2.

51

52 Experimentation

5.2.2 Subjects

The case study has been conducted by a team composed as follows:

• NLP-E: a researcher of ISTI-CNR who covered the NLP-E role de-

scribed in Section 4.1;

• VE-A: the author of this thesis and a former Verification Engineer

who covered the VE role described in Section 4.1. This actor, during

the development of the case study, acquired strong knowledge on NLP

techniques;

• VE1: a Verification Engineer covering the VE role described in Sec-

tion 4.1. This actor, during the development of the case study, acquired

strong knowledge on NLP techniques;

• VE2: a Verification Engineer with strong experience in tender require-

ments review covering the VE role described in Section 4.1.

VE-A, VE1 and VE2 belonged to different groups within the company,

but they were subject to the same company practices. VE1 and VE-A vol-

untarily participated to the study. VE2 participated to the study since the

requirements reviewed by him before this work was conceived (D-Large, see

below) were used in the case study.

5.2.3 Datasets

The datasets made available for this research activity consist of:

• Pilot Dataset (D-Pilot): this dataset consists of 241 system require-

ments. This dataset was randomly selected from the requirements doc-

uments of a wayside Automatic Train Protection (ATP) system and

an interlocking (IXL) system belonging to the same product. ATP

systems are embedded platforms that enforce the rules of signaling

systems, by adding an on-board automatic control over the speed limit

allowed to trains along the track. Instead, IXL systems controls the

movement of trains in the railway yard, by setting signal statuses, and

moving railway switches. This dataset is composed by the following re-

quirements types: functional, architectural, interface and performance;

5.3 Iterations 53

ID Iteration Name Nature RQs Patterns Dataset

0 Pilot Exploratory
RQ1

RQ2
Def. Det. Patterns D-Pilot

1 Large-scale - 1st Exploratory
RQ1

RQ2
Def. Det. Patterns D-Large

2 Large-scale - 2nd Explanatory
RQ1

RQ2
Def. Det. Patterns D-Large

3 Large-scale - 3rd Improving RQ3

Def. Det. Patterns

+

Discard Patterns

D-Large

4 Large-scale - 4th Improving RQ4.1 SREE D-Large

5 Large-scale - 5th Explanatory

RQ4.2

RQ4.3

RQ4.4

SREE-reduced D-Large

Table 5.1: Outline of the different iterations performed.

• Large-scale Dataset (D-Large): this dataset consists of 1866 re-

quirements. The requirements belong to a requirements document con-

cerning a system-of-systems that includes an interlocking system, an

ATP, a CTC (Centralised Traffic Control) and an Axle Counter. In-

terlocking and ATP systems have been briefly described above. CTC

systems monitor and dispatch trains. Axle Counters are embedded

systems located along the railway line, which detect the passing of a

train between two points on a track. The requirements were originally

written by the customer in international English language and refined

by the company. No particular glossary restrictions are applied and no

guideline was provided. This dataset is composed by the following re-

quirements types: functional, architectural, interface and ergonomical.

In all these datasets safety requirements are not included, since they

are handled by an independent safety assessment process, which produces

separately the safety requirements documents.

5.3 Iterations

The execution of the case study consists in a set of iterations: each iteration

is aimed at answering one or more RQs, and, although the overall case study

is exploratory, each iteration has a different flavor, which range from ex-

ploratory, to explanatory and to improving. Furthermore, in each iteration,

54 Experimentation

ID
Res.

Quest.

Pat.

Def.

Data.

Sel.

Data.

Ann.

Pat.

App.

Out.

Ann.

Quant.

Eval.

Qual.

Eval.

0
VE1

NLP-E

VE1

NLP-E
VE1 VE1 VE1 - VE1

VE1

NLP-E

1
VE1

NLP-E
- VE1 VE2

VE1/

VE-A
-

VE1/

VE-A

VE1

NLP-E

2
VE1

NLP-E
- - - -

VE1

VE-A

VE1/

VE-A

VE1/VE-A

NLP-E

3
VE-A

NLP-E

VE-A

NLP-E
- - VE-A - VE-A -

4
VE-A

NLP-E

VE-A

NLP-E
- - VE-A - VE-A

VE-A

NLP-E

5
VE-A

NLP-E

VE-A

NLP-E
- - VE-A

VE1

VE-A
VE-A

VE-A

NLP-E

Table 5.2: Tasks performed and subjects involved in each iteration.

different tasks of the template are performed. Tables 5.1 and 5.2 give an

outline of the different iterations. Overall, the case study consists of six it-

erations. The first one is a Pilot Study, based on a preliminary requirements

dataset (D-Pilot), while the others belong to the Large-scale Study, based

on a larger requirements dataset (D-Large). Table 5.1 shows the nature of

the iteration, the associated RQs, the patterns and dataset used. Iterations

from 0 to 2 were dedicated to investigate the accuracy of NLP patterns (RQ1,

RQ2), with different levels of insight. Iteration 3 was dedicated to improve

the precision of the patterns (RQ3). Iteration 4 and 5 were focused on the

application of the SREE dictionaries (RQ4.1-4). Table 5.2 shows the tasks

performed together with the subjects who participated to the task.

As already stated in Section 4.4, the role of NLP-E has been involved

during Research Questions, Patterns Definitions and Qualitative Evaluation

in order to limit as much as possible the researcher influence in the case

study execution. Here, we briefly summarize the rationale, execution and

results of each iteration, with reference – explicit or implicit – to Table 5.1

and 5.2. We do not provide all the justifications for the content of the tables,

since extensive details are given in the subsequent subsections.

• Pilot Study: this iteration was oriented to have a first understanding

of the applicability of NLP patterns for defect detection in the context

of the company. To this end, the defect detection patterns (Def. Det.

Patterns in Table 5.1, reported in Section 3.3) were defined by VE1

5.3 Iterations 55

under the guidance of NLP-E, with the objective of maximizing recall

[11]. Then, they were applied by VE1 on a limited dataset of the

company, i.e., D-Pilot, which was previously annotated for defects by

VE1. A recall of 88.33% (rR) and a precision of 64.24% (pR) were

obtained, and the recall rD for single defects reached 100% for the

majority of the patterns.

• Large Scale Study - 1st Iteration: given the encouraging result of

the previous iteration, the defect detection patterns were applied by

VE1 on D-Large, annotated for defects by VE2. The goal was now

to understand whether the approach was applicable on a larger set

of requirements of the company, annotated by a subject who did not

participate to the definition of the patterns. Furthermore, the tasks

named Patterns Application and Quantitative Evaluation, originally

performed by VE1, were replicated by VE-A (VE1/VE-A in Table 5.2),

to confirm the validity of the produced data. In this iteration, the re-

sults were acceptable in terms of recall (rR = 85.39%), but particularly

poor in terms of precision, with pR = 5.81%. A non-systematic Qual-

itative Evaluation performed by VE1 suggested that many potential

linguistic defects were ignored by VE2 in his annotation, thus leading

to the low value of precision observed.

• Large Scale Study - 2nd Iteration: this iteration aimed at system-

atically explaining the poor results of the previous one. In particular,

we were interested in understanding whether the false positive cases

produced according to the annotations of VE2 could be considered as

true positives (i.e., defects), if an additional annotation was performed

with a focus on linguistic defects. Therefore, the output of the Pattern

Application task from the previous iteration was considered – as shown

in Table 5.2, the tasks from Patterns Definition to Patterns Application

were not performed again. The Output Annotation task was carried

out by VE1 and VE-A, and their agreement was assessed. Quantita-

tive Evaluation was performed by VE1, and then replicated by VE-A.

The precision obtained was pR = 77.37%, and the average precision at

defect level – average of pD for the different defects – was 72.81%. This

confirmed the effectiveness of the patterns for linguistic defects. The

Qualitative Evaluation, also replicated, was supported by NLP-E, and

allowed the identification of classes of systematic false positive cases,

which could be potentially discarded with additional patterns.

56 Experimentation

• Large Scale Study - 3rd Iteration: based on the Qualitative Evalua-

tion of the previous iteration, we wanted to understand to which extent

the precision could be further increased through additional patterns,

designed to discard false positive cases (Discard Patterns in Table 5.1,

reported in Section 3.4). VE-A took the lead in this activity due to

other company-related commitments of VE1, and defined a set of dis-

card patterns under the guidance of NLP-E. With these patterns, the

precision pR further increased to 83.16%, and the average pD reached

81.36%.

• Large Scale Study - 4th Iteration: this iteration aimed at un-

derstanding whether the defect-detection capabilities of the approach

could be complemented with the usage of an additional tool, namely

SREE (see Section 3.5). To have a general, initial indication, we con-

sidered the annotations performed by VE2 on D-Large (annotations

already used in Large Scale Study - 1st Iteration), and we checked

whether SREE was able to identify requirements that were annotated

as defective by VE2, but were not identified by our patterns. To this

end, the performance of SREE, in terms of pR and rR, were compared

with those of the defect detection patterns complemented with discard

patterns. VE-A performed all the tasks included in this iteration. The

Quantitative Evaluation task showed that SREE achieved higher recall

with respect to our patterns (rR = 96.63% vs 85.39%), but at the cost

of lower precision (pR = 5.45% vs 6.24% – i.e., 351 additional false pos-

itive requirements). SREE was therefore recognised as an appropriate

complement to our patterns, i.e., undetected defective requirements

could be identified, but further investigation was required to explain

its poor performance in terms of precision.

• Large Scale Study - 5th Iteration: this iteration was driven by the

low value of precision obtained with SREE at the level of requirements,

and was oriented to have a fine-grained assessment of the performance

of SREE. Specifically, we wanted to assess the precision of SREE at the

level of the single defects in its scope. VE-A used a subset of the SREE

dictionaries, i.e., SREE-reduced (see Section 3.5), including solely those

terms that were specific to SREE and were not already considered in

our patterns. The Output Annotation task was performed in parallel

by VE1 and VE-A on the single defects produced by SREE-reduced,

and their agreement was assessed. Although the average pD for the

5.3 Iterations 57

different defects resulted to be only 11.29%, the Qualitative Evaluation,

performed by VE-A and NLP-E, showed that several novel classes of

defects discovered were not considered by our patterns. This confirmed

the complementary role of SREE with respect to our patterns.

In the following subsections, we report how each specific iteration was

executed. The reader should refer to Table 5.1 and Table 5.2 to have a

structured summary of the information provided in each subsection.

5.3.1 Pilot Study

Fig. 5.1 gives an outline of the iteration. The iteration involved NLP-E and

VE1, and aimed to address RQ1 and RQ2. In this iteration, all the tasks of

the template are performed, with the exception of Output Annotation. This

iteration was exploratory, in that it aimed to assess the accuracy of NLP

patterns on a limited dataset of the company. The tasks performed are as

follows:

Patterns
Definition
(VE1, NLP-E)

Dataset
Selection
(VE1)

Dataset
Annotation
(VE1)

Patterns
Application
(VE1)

Research
Questions
(VE1, NLP-E)

Qualitative
Evaluation
(VE1, NLP-E)

Quantitative
Evaluation
(VE1)

Output
Annotation

Figure 5.1: Structure of the Pilot Study.

• Research Questions: RQ1 and RQ2 were defined in collaboration

between NLP-E and VE1. In this iteration, the underlying goal was to

establish whether the patterns were able to achieve a recall value close

to 100%. Defect detection techniques shall favor recall over precision

since the cost of undetected true defects is much higher than the cost

of manually discarding false positive cases [11].

58 Experimentation

• Patterns Definition: NLP-E considered that assessing the effective-

ness of a domain-generic tool for defect detection (e.g., QuARS [62])

would have required a strong expertise in the domain of the require-

ments documents. In addition, he considered that, if the tool had pro-

vided too many false positive cases, e.g., innocuous ambiguities [28],

the company would not have considered the tool as appropriate for its

needs. Hence, it was decided to let VE1 develop the tool in-house,

with the support of NLP-E.

VE1 was initially required to study some papers [12], [62], [61], [111]

and [6]. Then, she was required to perform the tutorials provided by

GATE (General Architecture for Text Engineering, see [35]), which

was the generic NLP tool selected to be tailored to support defect

detection. The tool was chosen since it was considered sufficiently easy

to use for an engineer, and sufficiently powerful for the task. After this

training, VE1 and NLP-E met to define the defect classes on which to

focus. Priority was given to those defect classes that were considered

more relevant from the point of view of VE1 – taking into account

the defect classes provided in [12], and in the other papers she had

studied – and whose identification was considered feasible by NLP-E.

VE1 autonomously implemented the patterns, under the supervision

of NLP-E.

The patterns developed are reported in Section 3.3.

• Dataset Selection: D-Pilot was selected by VE1 under the guidance

of representatives of the company.

• Dataset Annotation: the dataset was manually annotated by VE1.

After this task, 120 requirements were marked as rejected, while 121

were marked as accepted1.

• Patterns Application: the task was then carried out using the sup-

port of GATE.

• Quantitative Evaluation: VE1 provided NLP-E with a table with

the results of the evaluation. The measures used are for defects, tpD,

fpD, fnD, pD, rD, and for requirements, tpR, fpR, fnR, pR, rR.

1The dataset appears balanced since VE1 continued to randomly select new require-

ments from the original requirements considered, until a balanced number of accepted and

rejected requirements was obtained.

5.3 Iterations 59

• Qualitative Evaluation: VE1 evaluated false positive and false neg-

ative cases, and provided representative examples. VE1 and NLP-E

interacted so that NLP-E could tailor the cases and examples for re-

porting.

5.3.2 Large-scale Study - 1st Iteration

Fig. 5.2 gives an outline of the iteration. The iteration involved NLP-E, VE-

A, VE1 and VE2. This iteration is still based on RQ1 and RQ2, in that it

aims to further answer the RQs with a case modification – in terms of dataset

used and annotator –, and the nature of the iteration is still exploratory. All

the tasks, with the exception of Patterns Definition and Output Annotation

are performed. The patterns were the one used in the previous iteration. To

confirm the validity of the produced data, VE-A replicated part of the tasks.

The parts replicated by VE-A are represented in dashed line in Fig. 5.2. The

tasks performed are as follows.

Dataset
Selection
(VE1)

Patterns
Definition

Dataset
Annotation
(VE2)

Patterns
Application
(VE1/VE-A)

Output
Annotation

Quantitative
Evaluation
(VE1/VE-A)

Qualitative
Evaluation
(VE1, NLP-E)

Research
Questions
(VE1, NLP-E)

Figure 5.2: Structure of the Large-scale Study – 1st Iteration.

• Research Questions: the research questions RQ1 and RQ2 were kept

from the previous task. The objective of this iteration was to perform

an assessment of the patterns on a larger requirements dataset of the

company, previously validated by VE2, to understand to which extent

the approach could be applicable more widely within the company.

• Dataset Selection: D-Large was selected by VE1, under the guidance

of representatives of the company.

60 Experimentation

• Dataset Annotation: the defects of the document were previously

annotated by VE2, following the criteria of the company already out-

lined in Sect. 4.3.2. Since this task was performed before this work

was conceived, the annotation of the defective fragments was not per-

formed by VE2, who just marked requirements as accepted or rejected,

and described the reasons for rejection in a specific requirements vali-

dation document. From the 1866 requirements, 1733 were marked as

accepted, while 93 were marked as rejected.

• Patterns Application: the task was initially carried out using the

support of a tool developed by VE1 on top of GATE to facilitate the

analysis of the results. In the replication, the task was performed by

VE-A, but using solely the support of GATE.

• Quantitative Evaluation: the measures adopted to evaluate the ef-

fectiveness of the patterns in identifying defective requirements are tpR,

fpR, fnR, pR and rR. Intuitively, these measures indicate whether the

application of the different patterns simultaneously allows the identi-

fication of requirements that were marked as rejected by VE2. Since

VE2 did not annotate fragments, for this analysis we do not consider

evaluation measures for the single defects as in the Pilot Study.

• Qualitative Evaluation: given the poor results obtained from the

Quantitative Evaluation (see Sect. 6.3), especially in terms of precision,

this task was performed by VE1 as a non-systematic inspection of the

false negative and false positive cases. The inspection of the false

positive cases was oriented to understand whether these cases included

defective requirements not initially annotated by VE2. This evaluation

triggered the Large-scale Study – 2nd Iteration, which aimed to more

rigorously explain the poor results.

5.3.3 Large-scale Study - 2nd Iteration

Fig. 5.3 gives an outline of the iteration. The iteration involved NLP-E, VE-

A and VE1 and was performed to provide a more informed answer to RQ1

and RQ2. The iteration has an explanatory nature, in that its underlying

goal was to explain whether the false positive cases identified in the previous

iteration could be considered as true positive cases, from the point of view of

more strict annotators. To confirm the validity of the produced data, VE-A

5.3 Iterations 61

replicated part of the tasks. The parts replicated by VE-A are represented

in dashed line in Fig. 5.3. The tasks performed are as follows.

Patterns
Definition

Dataset
Selection

Dataset
Annotation

Patterns
Application

Output
Annotation
(VE1, VE-A)

Quantitative
Evaluation
(VE1/VE-A)

Qualitative
Evaluation
(VE-A/VE1,
NLP-E)

Research
Questions
(VE1, NLP-E)

Figure 5.3: Structure of the Large-scale Study – 2nd Iteration.

• Research Questions: RQ1 and RQ2 were considered not sufficiently

answered by the previous iteration, and the iteration was designed to

understand to which extent the low value of precision observed was

due to inaccuracies in the annotation process performed by VE2.

• Output Annotation: a second annotation process was performed on

the requirements marked as defective by at least one of the patterns.

In this annotation process, two VEs (VE1 and VE-A) independently

annotated the output of the patterns. The agreement between anno-

tators was estimated with the Cohen’s Kappa, resulting in k = 0.82,

indicating an almost perfect agreement2.

• Quantitative Evaluation: since in this analysis we focus solely on

the output produced by the patterns, we consider neither the amount

of false negative cases, nor the measure of recall. Hence, we consider

tpD, fpD, pD, for each defect class i, and tpR, fpR, pR, as measures

of the precision over requirements.

2According to [79], the following qualitative measures are associated to the different

ranges of the Cohen’s Kappa: k < 0, no agreement; 0 ≤ k ≤ 0.20, slight; 0.21 ≤ k ≤ 0.40,

fair; 0.41 ≤ k ≤ 0.60, moderate; 0.61 ≤ k ≤ 0.80 substantial; and 0.81 ≤ k ≤ 1 almost

perfect agreement.

62 Experimentation

• Qualitative Evaluation: the task was performed by VE1 first, and

was later reviewed VE-A, to give a first categorisation of the false

positive cases. The categorisation was refined by NLP-E based on

the examples given by the VEs, with a particular focus on systematic

categories of false positives, which could be potentially discarded with

additional patterns.

5.3.4 Large-scale Study - 3rd Iteration

Fig. 5.4 gives an outline of the iteration. This iteration involved NLP-E and

VE-A, was aimed at answering RQ3, and had an improving nature. Indeed,

the goal of this iteration was to understand whether the performance of

the patterns in terms of precision could be improved with discard patterns.

To implement the foreseen improvement of the patterns, VE-A was actively

involved in the activity. Indeed, at this stage, VE1 was committed to a

mentoring program within the company, to disseminate the best practices for

requirements quality learned throughout the experience. The task performed

in this iteration are as follows.

Dataset
Selection

Dataset
Annotation

Output
Annotation

Qualitative
Evaluation

Patterns
Definition
(VE-A, NLP-E)

Patterns
Application
(VE-A)

Quantitative
Evaluation
(VE-A)

Research
Questions
(VE-A, NLP-E)

Figure 5.4: Structure of the Large-scale Study – 3rd Iteration.

• Research Questions: the Qualitative Analysis performed in the pre-

vious iteration allowed NLP-E, VE1 and VE-A to observe that a set of

systematic false positive cases could be addressed with specific patterns

designed to discard these cases (see Sect. 6.4.2). Therefore RQ3 was

5.3 Iterations 63

defined, and the iteration was designed to define, apply and evaluate

the discard patterns in conjunction with the defect detection patterns.

• Patterns Definition: VE-A performed a self-training, analogous to

the one performed by VE1 (i.e., a study of the selected literature,

and a tutorial on GATE) during the Pilot Study. Afterwards, VE-A

implemented the discard patterns, under the supervision of NLP-E.

The discard patterns are reported in SectION 3.4.

• Patterns Application: the patterns were applied by means of GATE.

• Quantitative Evaluation: the evaluation was performed by VE-A

considering the annotations produced in the previous Output Annota-

tion task. As in the previous iteration, the evaluation measures used

are tpD, fpD, pD, for each defect class i, and tpR, fpR, pR.

The Qualitative Evaluation was not performed, since the goal was only

to assess whether the discard patterns could improve the performance of the

overall approach in terms of precision.

5.3.5 Large-scale Study – 4th Iteration

Fig. 5.5 gives an outline of the iteration. The iteration involved NLP-E and

VE-A, and aimed to give an answer to RQ4.1. In the context of the case

study, this analysis was performed to understand whether the dictionaries of

SREE could be used to identify additional requirements defects that could

not be identified with our patterns. The nature of the iteration was again

improving, and consisted of the following tasks.

• Research Questions: the iteration was designed to compare the de-

fect detection capabilities of SREE with respect to our patterns, and

in particular, whether SREE actually allows to achieve higher values

of recall. Therefore, RQ4, and its first refinement, RQ4.1, were defined

by NLP-E and VE-A.

• Patterns Definition: under the guidance of NLP-E, each SREE dic-

tionary, as reported in Section 3.5, was imported in GATE by VE-A

as a separate Gazetteer. As mentioned, in our evaluation we apply all

the SREE dictionaries, with the exception of the dictionary of the weak

class (see Section 3.5).

64 Experimentation

Dataset
Selection

Dataset
Annotation

Output
Annotation

Patterns
Definition
(VE-A, NLP-E)

Patterns
Application
(VE-A)

Quantitative
Evaluation
(VE-A)

Qualitative
Evaluation
(VE-A, NLP-E)

Research
Questions
(VE-A, NLP-E)

Figure 5.5: Structure of the Large-scale Study – 4th Iteration.

• Patterns Application: the patterns implementing the SREE dictio-

naries were applied by VE-A by means of GATE.

• Quantitative Evaluation: the annotations considered for these re-

quirements are those of VE2 only, from Large-scale Study – 1st Itera-

tion. Indeed, in this phase, we are interested in understanding whether

the dictionaries of SREE applied altogether are able to detect defects,

identified by VE2, that our patterns were not able to detect. To this

end, SREE is compared with our patterns according to the values of

tpR, fpR, fnR, pR, rR. The patterns considered include the defect-

detection patterns, plus the discard patterns.

• Qualitative Evaluation: this task was performed by VE-A with

the support of NLP-E in a non systematic way, to observe defective

requirements that could be detected by SREE.

5.3.6 Large-scale Study – 5th Iteration

Fig. 5.6 gives an outline of the iteration. The iteration involved NLP-E, VE-

A and VE1, and aimed to answer RQ4.2, RQ4.3 and RQ4.4. The iteration

had an explanatory nature. Indeed, from the previous iteration, a high

amount of false positive requirements was returned by SREE with respect

to our patterns. This suggests that SREE may be less precise also at the

level of defects. On the other hand, these false positive requirements may

5.3 Iterations 65

conceal defects that were not considered by VE2. Therefore, it was decided

to evaluate the potential degree of precision for the single defects identified

by SREE. The tasks performed in this iteration are as follows.

Patterns
Definition
(VE-A, NLP-E)

Research
Questions
(VE-A, NLP-E)

Dataset
Selection

Dataset
Annotation

Patterns
Application
(VE-A)

Output
Annotation
(VE-A, VE1)

Quantitative
Evaluation
(VE-A)

Qualitative
Evaluation
(VE-A, NLP-E)

Figure 5.6: Structure of the Large-scale Study – 5th Iteration.

• Research Questions: NLP-E and VE-A considered that further in-

vestigation was required to answer RQ4, and its refinement RQ4.2, 4.3

and 4.4 were defined. Specifically, with RQ4.2 we wanted to assess

which was the precision of SREE at the level of single defects, since

low precision was observed at the level of requirements, after answering

RQ4.1. Furthermore, we wanted to systematically study the specific

defects that could be detected with SREE, and that could not be de-

tected with our patterns (RQ4.3). With RQ4.4, we wanted to provide

a qualitative evaluation of the false positive cases at the level of single

defects.

• Patterns Definition: to evaluate the false positive cases issued by

SREE at the level of defects, a selection of the SREE dictionaries was

adopted for the analysis, which we call SREE-reduced (see Sect. 3.5).

Indeed, we recall that, to address RQ4, this analysis was oriented to

understand to which extent the SREE dictionaries could complement

our patterns.

• Patterns Application: the patterns were applied by means of GATE.

66 Experimentation

• Output Annotation: a second annotation process was performed on

the requirements marked as defective by at least one of the patterns

derived from the dictionaries of SREE. VE-A and VE1 independently

vetted the output derived from the application of SREE-reduced, and

decided whether the defects issued were true positive or false positive

cases. For each SREE defect class associated to one SREE-reduced

dictionary, all the requirements labelled as defective according to the

dictionary were considered. An exception is the plural class, for which

a sample of 50 requirements labelled as defective was randomly cho-

sen. The annotator agreement was estimated with the Cohen’s Kappa,

resulting in k = 0.79, indicating substantial agreement.

• Quantitative Evaluation the values of tpD, fpD and pD were used

for each single defect class of SREE considered.

• Qualitative Evaluation: true positive and false positive cases were

analyzed and classified by VE-A, under the supervision of NLP-E, for

each dictionary of SREE-reduced. True positives were analyzed to an-

swer RQ4.3, while false positives were analyzed to answer RQ4.4.

Chapter 6

Results

6.1 Introduction

This chapter focuses on the results presentation and evaluation. The orga-

nization is made according to the RQs and the analyzed datasets.

6.2 RQ1, RQ2: Pilot Study

6.2.1 RQ1: What is the accuracy of the NLP patterns

for defect detection?

In Table 6.1 we report the results of the different evaluation measures to es-

tablish the accuracy of the patterns. We see that, although the patterns for

anaphoric ambiguity and coordination ambiguity are both based on shallow

parsing, which normally has a typical accuracy of 90-95% [71], we achieve the

objective of 100% recall. Similarly, for modal adverbs and passive voice, we

achieve 100% recall, although these patterns employ POS tagging, which has

an accuracy around 97% [83]. Two of the patterns that employ only lexical-

based pattern matching, namely missing reference and undefined term, also

achieve 100% recall. Lower values of recall are instead achieved for the pat-

terns associated to vague terms (67.74%), excessive length (60.06%), missing

unit of measurement (50%) and missing condition (97.05%).

67

68 Results

Defect Class tpD fpD fnD pD rD

Anaphoric ambiguity 22 8 0 73.33% 100%

Coordination ambiguity 16 8 0 66.66% 100%

Vague terms 21 16 10 56.75% 67.74%

Modal adverbs 28 14 0 66.66% 100%

Passive voice 343 60 0 85.11% 100%

Excessive length 200 30 133 86.95% 60.06%

Missing condition 66 14 2 82.5% 97.05%

Missing unit of measurement 2 2 2 50% 50%

Missing reference 10 0 0 100% 100%

Undefined term 208 76 0 73.23% 100%

Requirements tpR fpR fnR pR rR

106 59 14 64.24% 88.33%

Table 6.1: Results for single defects and requirements for the Pilot Study.

6.2.2 RQ2: Which are the cases of inaccuracy of the

NLP patterns for defect detection?

Vague terms

By inspecting the ten false negative defects for vague terms, VE1 found that

they were all due to the absence of the quantifier some in the list of vague

terms provided by QuARS. Hence, requirements such as the following were

not marked as defective by the pattern: In case the boolean logic evaluates the

permissive state, the system shall activate some redundant output – which

output shall be activated? The problem was resolved by simply adding the

term some to the list of vague terms. Since also pD was particularly low

(56.75%), VE1 inspected the false positives and saw that they were due to

domain-specific terms, namely raw data, hard disk, short-circuit, logical

or, logical and, green LED. These terms were used to discard false positives

in future analysis.

Excessive length

By inspecting the false negative cases for excessive length, VE1 saw that

they were due to a limitation of the GATE Tokenizer. For nested bullet

point lists, the Tokenizer considers each item as a separate sentence. Hence,

6.2 RQ1, RQ2: Pilot Study 69

very long and deeply nested bullet point lists were not considered as sentences

of excessive length. However, VE1 also argued that the length of a sentence,

and the hard readability due to complex nested lists are different kinds of

defects. Hence, she decided not to change the pattern for excessive length,

and to consider the problem of nested lists as a defect that, at the moment,

was left uncovered.

Missing unit of measurement

Concerning the two false negative cases for missing unit of measurement,

VE1 observed that these were due to the presence of ranges of numerical

values (e.g., [4,20]) without the specification of the unit of measurement.

To address these cases, the pattern was adjusted.

Missing condition

The two false negative cases for missing condition appeared to be due to

the presence of multiple if statements in the same sentence, with one else

statement only, as in the following case: “If the initialization starts, if the

board is plugged in and if the operator has sent the running command the

system shall start, else it shall go in failure mode”. For requirements as the

one presented, it is difficult to understand which specific if is covered by the

else statement. Since the large majority of missing condition defects were

identified (66 out of 68), and considering that the norm EN-50128 requires

anyway a manual review [26], VE1 decided not to add additional rules for

this defect class. It could be noticed that the specific defect could be detected

also with techniques that check the readability of the text [34], an emerging

topic in requirements [48], which is however outside of the scope of this

paper.

False negative requirements

It is also useful to look at the values of false negative cases fnR and recall rR

for the requirements. These 14 false negative cases not only include those

already discussed, but also cases of defective requirements that could not

be identified with our patterns – but which were annotated following the

guidelines of the company. In particular, interesting cases are those in which

we have inconsistent requirements (e.g., 1: “The system shall accept only

read access to file X”; 2: “The system shall accept read and write access to

70 Results

file X”.) that violate guideline (f), which asks requirements to be consistent.

Other cases are those for which we have problems of testability (guideline

(b)), as in the case of under-specified statements (e.g., “The system shall

go in error mode when an internal asynchronism has been detected”; asyn-

chronism among which components?), or incomplete statements (e.g., “The

system shall make available its internal status”; through which interface?).

Finally, other cases are those associated to other defects of completeness of

the requirements document, as in the case of requirements for which it is

expressed only the best-case scenario, and not the worst-case (e.g., “The

system shall go at runtime state from power off state in 3 minutes in the

best case.”; which is the requirement for the worst case?). Although some

false negative cases were found, the evaluation of the patterns was considered

successful in terms of recall by VE1. Hence, we decided to experiment the

use of the patterns on a larger requirements dataset.

6.3 RQ1, RQ2: Large-scale Study – 1st Itera-

tion

6.3.1 RQ1: What is the accuracy of the NLP patterns

for defect detection?

In Table 6.3 we report the output of the patterns on the dataset in terms

of defects identified (D), and in terms of defective requirements (R) – the

other columns of the table will be discussed in Section 6.4.

We see that the majority of the defects are due to passive voice. This is in

line with the results of [47]. The use of passive voice appears to be a sort of

writing style of these requirements, since 824 out of 1866 (44%) include this

defect. However, the most interesting – and disappointing – aspect comes

from the evaluation presented in Table 6.2. The number of false positive

requirements is extremely high, and the precision is only 5.81%. This value

is comparable with the precision obtained through a random predictor (for

which pR = rR = 93/1866% = 5%, see [3]). Hence, it appears not acceptable

if the tool needs to be used in a real-world setting. Furthermore, also the

value of rR (85.39%) is slightly lower if compared with the one obtained in

our preliminary study, for which rR = 88.33%.

6.3 RQ1, RQ2: Large-scale Study – 1st Iteration 71

tpR fpR fnR pR rR

76 1232 13 5.81% 85.39%

Table 6.2: Results for the Large-scale Study – 1st Iteration.

6.3.2 RQ2: Which are the cases of inaccuracy of the

NLP patterns for defect detection?

In this iteration, we give general observations of false negative cases, which

impact the value of rR, and false positive cases, which impact on pR. Given

the low value of pR observed, the evaluation of false positives, and their

classification was systematically performed during Large-scale Study – 2nd

Iteration (Section 6.4).

False negative cases

As for the preliminary analysis, the false negative cases are due to require-

ments that include defects that were not considered by any of the patterns,

but that violate one or more criteria adopted by the company. Interest-

ing examples are requirements that do not fulfill the criterion of testability

(guideline (b)) (e.g., “The system shall be in continuous operation for 24

hours a day and 7 days a week”); requirements that are not feasible (guide-

line (a)) (e.g., “The core of the system shall use TCP/IP protocol in order to

communicate with peripheral boards” – in this case, this requirement was con-

sidered not feasible since the only communication protocol that was consid-

ered applicable was UDP); requirements that include inconsistent statements

(guideline (f)) (e.g., “The brake symbol shall be able to show the following

colors: Green when the brake is not active, Grey when the brake is not ac-

tive”). Overall, these cases show that there is a variety of defects of semantic

nature that are hardly identifiable with the applied NLP techniques – which

focus on lexical and syntactic aspects –, and hence require a human expert

to accurately assess them.

False positive cases

VE1 inspected the output of the tool, and saw that part of the false pos-

itive requirements were actually defective. For example, the following re-

quirement marked as accepted, was evidently defective due to several vague

terms (highlighted in bold): “Depending on the technical or functional

72 Results

solution selected, there shall be time parameters in the control system, that

the Purchaser shall be able to adjust during operation in order for the reg-

istration/deregistration to be made as effectively as possible”.1 In other

terms, the intuition was that the initial annotation (by VE2) actually tol-

erated several linguistic defects, and marked as rejected only those require-

ments that appeared to include severe conceptual defects. When consulted,

the VE2 observed that he also had an in-depth knowledge of the design of

the requirements, which allowed him to disambiguate, or tolerate, certain

defects. To assess how many of the false positive cases could be considered

as linguistic defects from the point of view of a more strict annotator that

did not have prior knowledge of the project, a second annotation process

was performed to evaluate the false positive cases (Large-scale Study – 2nd

Iteration, Section 5.3.3).

6.4 RQ1, RQ2: Large-scale Study – 2nd Itera-

tion

6.4.1 RQ1: What is the accuracy of the NLP patterns

for defect detection?

Table 6.3 reports the results of this phase. For each defect class, the precision

reaches an average value of 72.81% for what concerns the number of defects

(average of different pD). Overall pR resulting from the application of all the

patterns together, raises from the 5.81% of Table 6.2, to 77.37%.

6.4.2 RQ2: Which are the cases of inaccuracy of the

NLP patterns for defect detection?

From the results presented in the previous section, there is still a significant

amount of false positive cases that should be noticed. Part of these cases

are systematic, and they can be discarded with additional patterns. Here we

will discuss relevant examples of false positive cases for each class, specifically

focusing on the systematic cases, and mentioning non-systematic ones when

this is considered relevant.

1The requirement was not rejected since it was clarified by other subsequent require-

ments. This violates the guideline (c) that require requirements to be stand-alone, but

the defect was not considered crucial.

6.4 RQ1, RQ2: Large-scale Study – 2nd Iteration 73

Defect Class D R tpD fpD pD

Anaphoric ambiguity 391 342 198 193 50.64%

Coordination ambiguity 261 215 190 71 72.80%

Vague terms 857 580 392 465 45.74%

Modal adverbs 478 379 333 145 69.67%

Passive voice 1317 824 888 429 67.43%

Excessive length 13 13 13 0 100%

Missing condition 185 147 127 58 68.65%

Missing unit of measurement 0 0 0 0 -

Missing reference 2 1 2 0 100%

Undefined term 61 57 49 12 80.33%

Average 72.81%

Requirements
tpR fpR pR

1012 296 77.37%

Table 6.3: Results for the Large-scale Study – 2nd Iteration.

Anaphoric ambiguity

The majority of the false positive cases for anaphoric ambiguities are due

to the usage of the pronoun it in its impersonal form, especially in the

expression “It shall be possible [...]”. This expression, and its variants – it

shall also be possible, it should be possible, etc. – is often used as a preamble

in the requirements of the company. These cases are systematic sources of

false positives, and appropriate patterns can be defined to discard them.

The remaining, non-systematic cases, include situations in which the ref-

erent of the pronoun is disambiguated by the context, as in the following

requirement:“Trains that arrive on the automatically controlled stretches

shall continue to be directed to their correct destinations”. The pronoun

their is clearly referred to the trains, since only trains and not stretches have

a destination attribute, but the pattern PANA recognises two nouns (i.e.,

trains and stretches), to which the pronoun may refer. To detect these non-

systematic false positive cases, machine learning approaches, such as those

applied in Yang et al. [118] should be applied.

74 Results

Coordination ambiguity

The false positive cases for coordination ambiguity, in line with those iden-

tifyied in Chantree et al. [28], are non-systematic cases, in which the poten-

tially ambiguous fragment is disambiguated by the context. For example,

consider a requirement such as: “It shall be possible to print out the whole

timetable or part of it”, in which the fragment in bold is detected by

means of pattern PCO2
. In this requirement, it is clear that the adjective

whole refers solely to the noun timetable. Similarly, consider the following

requirement: “A train can consist of one, two or three cars for ser-

vices between Station A and Station B”, in which the fragment in bold

is detected by means of pattern PCO1
. Also in this case, it is clear that

the conjunctions and and or refer to their nearby terms. However, these

cases are non-systematic, and can hardly be detected by means of rule-based

patterns. Other heuristics, such as those presented by Chantree et al. [28]

should be used.

Vague terms

A large number of false positive cases (465) is identified for this defect. These

cases can be partitioned into the following typical situations:

1. Lexical Ambiguity: the vague term is lexically ambiguous [12]. For

example, the term light, considered as adjective, is vague, but when

playing the role of noun, as in the requirement “Yellow Stop lights

do not have to be monitored”, is not vague. Cases such as the one in

this example can be systematically detected by applying POS tagging,

and considering a term as vague only if it plays the role of adjective.

A similar systematic case, which can be addressed with the same ap-

proach, is the case of the term sound, as in the requirement fragment

“Blue arrows, and their associated sound, shall not be presented to the

driver [...]”;

2. Domain-specific Term: a vague word is part of a domain-specific

multi-word term, as for the term distant of the following example: “The

operator shall use “distant signalling distance” to apply the brake”.

Another interesting case is the term near in the typical railway expres-

sion near miss – indicating an unplanned event that has the potential

to cause, but does not actually result in human injury. To discard

6.4 RQ1, RQ2: Large-scale Study – 2nd Iteration 75

these cases, techniques for multi-word term identification [15] may be

applied. Otherwise, a list of stop phrases to be ignored can be defined

based on the false positives identified. In our case, this second option

will be chosen;

3. Accepted Expressions: the term possible is used in the phrase “It

shall be possible [...]”, considered an accepted requirement preamble

within the company, as previously mentioned;

4. Internal Clarification: the vague term is later clarified with the

specification of numerical quantities, as in the following fragment: “[...]

for a short stretch (maximum 3 meters) on tramcars [...]”. In this

case, the term short is clarified by the phrase maximum 3 meters;

5. Domain Clarification: the vague term is clarified by the domain,

as in the case of the term adjacent in the following requirement: “In

the case of a train passing adjacent to a level crossing, each train

shall register its own priority”. Physical adjacency among elements in

the railway line is a well defined concept in the domain. However, we

found also cases in which the term adjacent was considered vague, as

in the fragment adjacent track, in which it is not specified whether

the referenced track is on the left-hand or on the right-hand side.

The first three cases can be systematically detected. By contrast, the

last two are hard to be detected in a systematic manner. Indeed, apart from

case 4, patterns that check numerical quantities nearby the vague term can

be defined, but it is not sure how “nearby” should be intended. In addition,

these false positive cases are rather easy to discard, and, for this reason,

patterns will not be defined to address these cases.

Modal adverbs

For modal adverbs the great majority of the false positive cases are due to

the usage of the terms manually and automatically. These terms are not

considered defective in the context of the requirements, since they are used

to distinguish between the duties of the system (automatically), and the

duties of the operator (manually). The remaining false positive cases are

due to the usage of the term only. Consider the following requirement: “In

case there are two coupled points the system shall select only the point with

identifier equal to 1”. Here, the term only is used to distinguish between

76 Results

multiple choices. Since the term only, especially when misplaced, may be

ambiguous [12], the usage of this term cannot be regarded as a systematic

source of false positives. An exception in this sense is the occurrence of only

in the fragment information purposes only, an expression frequently used in

the requirements. When only occurs in this fragment, it can be considered

as a systematic false positive case.

Passive voice

For the false positive cases of this class, we can identify four typical situa-

tions, listed below:

1. Irrelevant Actor: the actor performing the action is sometimes con-

sidered as not relevant, as in the requirement: “Air conditioning units

are installed in some of the technical equipment areas”. This sentence

provides information about a certain environment, and the reader does

not need to know who installed the air conditioning units. Similar cases

are those in which the passive voice is connected, or is disconnected are

used;

2. Implicit Actor: the actor – often, the system or the operator – can

be inferred from the context, as in “Error signals shall be displayed

in the MMI above the speedometer” (the actor is the system), or “The

emergency brake restore shall be performed with the green signal” (the

actor is the operator);

3. Explicit Actor: the actor is actually expressed, as the passive voice

is used in conjunction with prepositions (e.g., by, from), after which

the actor is clarified, as in the following example: “All views shall be

developed by the Supplier in consultation with the Purchaser”;

4. Intransitive Verb: the passive voice is used with intransitive verbs,

such as the verb log-in (e.g., “If a workstation fails and the operator

is still logged in [...]”).

The first two cases cannot be identified systematically. However, the

latter two can be, in principle, identified with appropriate patterns, which

detect the prepositions by and from in conjunction with passive voice (case

3), or which identify intransitive verbs (case 4). However, since the number

of these cases was considered negligible, these two discard patterns were not

implemented.

6.5 RQ3: Large-scale Study – 3rd Iteration 77

Missing condition

False positives for this defect class occur when the term if is not used to

express a condition over the system behaviour. For example, the requirement

“The system shall check if there is a train in the route” does not require an

else statement. In other cases, the else condition is expressed in another

requirement (e.g., 1: “If the precondition satisfies all initialization check the

system shall set its internal state to running”; 2: “In case an initilization

check fails, the system shall set its internal state to failure”). These cases can

hardly be detected with patterns, and require the knowledge of the context

to be disambiguated.

Undefined term

The entirety of the false positive cases for undefined terms are due to the

identification of units of measures, or known acronyms in their plural forms

(e.g., kVA, dB, LEDs). A list of known unit of measurement and known

acronyms can easily be defined to discard these cases.

6.5 RQ3: Large-scale Study – 3rd Iteration

6.5.1 RQ3: What is the precision of NLP patterns for

defect detection when complemented with discard

patterns?

Table 6.4 reports the results obtained when applying the discard patterns.

To ease the comparison with Table 6.3 we report, for the improved rows,

the previous results in italics. We notice a substantial increase, in terms of

pD. In particular, compared with the results of Table 6.3, pD increases by

22.69% for anaphoric ambiguity, by 24.89% for vague terms, by 11.75% for

modal adverbs, and by 17.67% for undefined term. Overall, the average pD

raises to 81.36% (an increase of 8.55% with respect to Table 6.3), and also

pR increases by a non negligible 5.79%. This increase of precision saves, in

principle, a considerable amount of checks to the Verification Engineer, who

has to vet a lower number of requirements. More specifically, if we look at

the values of fpR in Table 6.4 (296) and in Table 6.3 (205), we see that 91

requirements do not have to be vetted after the introduction of the discard

patterns.

78 Results

Defect Class D R tpD fpD pD

270 251 198 72 73.33%
Anaphoric ambiguity

391 342 198 193 50.64%

Coordination ambiguity 261 215 190 71 72.80%

555 384 392 163 70.63%
Vague terms

857 580 392 465 45.74%

409 330 333 76 81.42%
Modal adverbs

478 379 333 145 69.67%

Passive voice 1317 824 888 429 67.43%

Excessive length 13 13 13 0 100%

Missing condition 185 147 127 58 68.65%

Missing unit of measurement 0 0 0 0 -

Missing reference 2 1 2 0 100%

50 47 49 1 98%
Undefined term

61 57 49 12 80.33%

Average
81.36%

72.81%

Requirements

tpR fpR pR

1012 205 83.16%

1012 296 77.37%

Table 6.4: Results for the Large-scale Study – 3rd Iteration.

6.6 RQ4.1: Large-scale Study – 4th Iteration 79

As noticed in Section 6.4, the majority of the remaining false positive

cases cannot be systematically detected, and require the judgment of a hu-

man assessor. These types of situations can be potentially addressed through

statistical techniques (e.g., [28] and [118]). Typical examples have already

been reported in Section 6.4.

6.6 RQ4.1: Large-scale Study – 4th Iteration

6.6.1 RQ4.1: What is the accuracy of SREE with re-

spect to the NLP patterns for defect detection

complemented with discard patterns?

Table 6.5 compares the performance of the SREE dictionaries and our pat-

terns against the initial annotations of VE2. From the table, we see that

SREE outperforms our patterns by 11.24% in terms of recall on the require-

ments, while its precision is 0.79% lower. Hence, SREE dictionaries may

contain terms that help to identify defective requirements that were not de-

tected through our patterns, and were therefore part of the false negative

cases issued. On the other hand, a 0.79% gap in terms of precision, implies

that 351 additional false positive requirements (fpR) are generated by SREE

with respect to our patterns. The obtained results confirm that SREE meets

its aim to reach 100% recall, even at the cost of a lower precision.

Let us first analyze the false negative cases of our patterns that are de-

tected through the SREE dictionaries, and then we will investigate the issue

of precision.

Tool tpR fpR fnR pR rR

SREE 86 1492 3 5.45% 96.63%

Patterns 76 1141 13 6.24% 85.39%

Table 6.5: Results for the Large-scale Study – 4th Iteration, SREE vs Pat-

terns.

A representative example of the requirements detected through SREE,

and not with our patterns, is the following one: “Normal and abnormal

changes in the status of the Facility shall warrant special treatment [...]”.

VE2 in his initial annotation rejected the requirement, and stated that “Nor-

mal and abnormal changes” are not defined and shall be agreed. SREE iden-

80 Results

tifies this requirement as defective, since its dictionary for the vague class

includes the term normal. On the other hand, it is worth noticing that SREE

dictionaries do not include the term abnormal, which is also a defective term,

according to the statements of VE2. A similar case is the following require-

ment: “When the driver follows indications as to the maximum speed limit

the Facility shall not cause braking that produces jolty and uneven driving”.

The requirement was marked as rejected, because it does not fulfill the crite-

rion of testability (guideline (b)). This is due to the presence of the adjectives

maximum, jolty and uneven. Here, the SREE dictionaries correctly detects

the vague term maximum, but do not detect the defective terms jolty and

uneven. Hence, although including the SREE dictionaries in our patterns

can help to increase the recall, novel terms may be needed in the future to

address other, previously unseen, defects.

Another interesting aspect concerns other requirements that:

1. are marked as defective by SREE;

2. are marked as rejected by VE2 in the initial annotation;

3. the cause of the rejection is not the defect indicated by SREE.

Exemplary cases are mostly related to the usage of plurals, which have 3377

occurrences in 1250 requirements (see Table 6.6, discussed in Section 6.7). An

example is the following requirement: “It shall be possible to turn trains at

the intended turning points without restriction”. SREE identifies the source

of the defect in the plural term trains. However, VE2 marked the requirement

as rejected because it violates the criterion of testability (guideline (b)).

This is due to the expression without restriction, which does not allow the

definition of a finite number of tests to verify the requirement.

Of course, there are entire defect classes considered by our patterns, which

are not detected by the dictionaries of SREE, such as passive voice, missing

condition, missing reference, missing unit of measurement, etc. Given these

observations, SREE dictionaries can be considered as complementary to our

patterns. Still, SREE and our patterns altogether are insufficient to detect

all the potential defects, and should be complemented with additional terms

(e.g., jolty and uneven).

As mentioned, a high amount of false positive requirements was returned

by SREE with respect to our patterns. This suggests that SREE may be less

precise also at the level of defects. On the other hand, these false positive

6.7 RQ4.2, RQ4.3, RQ4.4: Large-scale Study – 5th Iteration 81

cases may conceal defects that were not considered by VE2 during the initial

annotation.

Therefore, it was decided to evaluate the potential degree of precision for

the single defects identified by SREE. An analysis of the false positive cases

was performed at the level of the single defects, similar to the one applied

on the output of our patterns during Large-scale Study – 2nd Iteration.

6.7 RQ4.2, RQ4.3, RQ4.4: Large-scale Study

– 5th Iteration

6.7.1 RQ4.2: What is the precision of SREE for the

defects in its scope?

Table 6.6 reports the results of the analysis of the false positive defects. The

average value of pD is 11.29%, which indicates that a large amount of false

positive cases are issued, which is much lower, compared with the 81.36%

obtained through our patterns (Section 6.6)2.

6.7.2 RQ4.3, RQ4.4: Which additional defects can be

identified with SREE, and which are the false pos-

itive cases?

Below, we provide an analysis of the true positive and false positive cases.

Continuance

The continuance class includes terms that, when present, indicate a reference

between a statement and a previous one (e.g., in addition, in particular), or

a subsequent one (e.g., following, below). True positive cases occur when the

referred statement is absent, and, therefore, the requirement is incomplete.

The number of these cases is not negligible, and are all associated to the

terms as follows and below. False negative cases occur anytime the referred

statement appear in the requirement. These cases occur especially when the

2The value of pR that considers the analysis of the false positive cases for the SREE

dictionaries cannot be provided, since we analyzed only a subset of the defects for the

plurals class. However, the average value of pD gives a clear indication of the precision of

SREE at the level of defects.

82 Results

Defect Class D R tpD fpD pD

Continuance 181 155 41 140 22.65%

Directive 123 102 0 123 0%

Optional 102 92 26 76 25.49%

Incomplete 32 31 2 30 6.25%

Plural 3377 1250 6 125 4.58%

Quantifier 308 264 25 283 8.11%

Vague 931 665 111 820 11.92%

Average 11.29%

Table 6.6: Results for the Large-scale Study – 5th Iteration.

referent is a previous statement, and the terms in addition and in particular

are used.

Directive

The directive class includes terms that indicate the presence of a reference

to an element in the requirement (e.g., e.g., i.e.) or in the document (e.g.,

figure, table). As for the continuance class, true positives may occur when

the referred element is absent, while false positive occur when the referred

element is present. In the considered requirements, no true positive case was

identified.

Incomplete

The incomplete class includes terms that may indicate a form of internal

incompleteness of the requirement (e.g., TBD, to be defined). The dictionary

of this class raises a limited number of defects (32). Indeed, expressions as

TBA and TBD do not occur in the requirements, and the great majority of

the false positive cases occur when the term in addition is used – a term that

is included also in the continuance class. Another typical case of false positive

is the following requirement fragment: “[...] functions shall be performed in

a secure way, as defined in the CTC security requirements”. Here, the

requirement is not incomplete, since it refers to another document in which

the required information is available. Instead, the cases evaluated as true

positives are similar to the following one: “All alarms [...] shall be shown in

track plan views as specified above”. Here, the problem is with the term

6.7 RQ4.2, RQ4.3, RQ4.4: Large-scale Study – 5th Iteration 83

above, rather than with the term as specified, since the involved subjects

could not find the referred information in the document. However, the defect

was considered a true positive by the involved subjects, since the tagging of

the term as specified allowed the identification of the defect.

Optional

The optional class includes terms that indicate subjective optionality. Any-

time an expression such as if needed, if necessary, if appropriate occurred,

this was marked as a true positive case. Similarly, many true positive cases

occur with the term either, as in the requirement: “A cable run shall be laid

on either side of the track”.

False positive cases occur when terms such as either, or neither, are used

in the expressions either [...] or , or neither [...] nor. Another typical,

systematic false positive case occurs with the usage of the term in case of,

when this expresses a condition that depends on actions that are external to

the system, as in: “In case of a restart of the system [...]”.

Plurals

Plurals are ambiguous when they are used to describe a property of a set,

and it is not clear if the property is that of each element or of the whole set

[13], as in the requirement fragment “[...] printers shall have a sound [...]”.

In the considered sample of 50 defective requirements for the plurals class,

cases such as this one were extremely rare. A large amount of false positive

cases was instead observed.

Typical false positive cases belong to two classes. The first class includes

lexically ambiguous verbs used in third person singular form (e.g., means,

passes, leaves). The second class includes cases in which the plural term

indicates a set of objects or subjects, such as trains, boards, tracks, operators,

etc., and it is clear from the context that the requirement refer to all the

elements in the set, as in the following fragment: “Control orders that are

executed by operators shall be registered [...]”. Since the requirements are

high-level system requirements, the use of plurals in the form exemplified is

rather common, and accepted by the involved subjects.

84 Results

Quantifier

Quantifiers that express quantities in a vague form such as few, little, many,

are included in the quantifier class. The occurrence in the requirements of

these vague terms was always considered by the involved subjects as a true

positive defect. False positive cases are due to universal quantifiers, such as

all or any. Indeed, although, as noted by [13], these terms may be source of

ambiguity (e.g., “All lights have a switch” – one switch for each light, or a

common switch?), in the considered requirements these terms are not used

in ambiguous forms. Instead, non ambiguous requirements fragments such

as the following are common: “[...] all equipped tramcars [...] shall be able

to operate on all track networks [...]”.

Vague

The vague class includes additional terms with respect to the Vague dictio-

nary of our patterns. Part of these terms appear to be useful to identify

extremely vague requirements that were not identified through our patterns.

A representative example is the following requirement, which includes two

vague expressions: “Communication shall as far as possible be redundant,

with separate cable runs, for the various communication links.” False posi-

tive cases are mainly due to the usage of terms such as also, and but, which

are rather frequent in the requirements, but are not considered sources of

vagueness by the involved subjects. Indeed, the presence of these terms

sometimes indicates that a requirement includes more than one statement,

as in the fragment: “The [...] system shall not be reused but shall be disman-

tled [...]”. However, since the considered requirements are high-level system

requirements, the VEs accepted these situations.

6.8 General Observations

From this analysis, we see that additional defects, which were not previously

considered by the involved subjects, are actually detected thanks to SREE.

This confirms that SREE may play a complementary role with respect to

our patterns. On the other hand, the value of precision of SREE, at the level

of defects, is poorer than the precision of our patterns (i.e., a larger number

of false positive cases is issued). However, this numerical difference should

be considered with care. Indeed, there are two main reasons that explain

6.9 Threats to Validity 85

and justify this result:

1. SREE Philosophy: the philosophy of SREE, as we interpret it through

its usage, is to identify terms that, when present, may also indicate that

a defect may be present. If the defect is not present, it is easy for the

analyst to vet the requirement. Representative examples in this sense

are the terms in the continuance class: terms such as as follows and be-

low were judged as particularly useful by the VEs to detect incomplete

requirements, although their occurrence was not always associated to a

defect. The VEs said that vetting the false positive cases was straight-

forward for this class. Hence, the low value of precision was sufficiently

counter-balanced by the usefulness of the terms included in the defect

class;

2. Subset of SREE: a subset of SREE dictionaries was used, instead

of the whole SREE. Hence, the comparison cannot be considered com-

plete. However, our goal in this case study was not to identify the

best tool for defect detection, but rather to investigate whether ad-

ditional defects could be found by means of the SREE dictionaries.

This goal also mitigates a potential annotators’ bias that may have

occurred in the evaluation of the false positives of SREE dictionaries.

Although this bias cannot be totally eliminated in the context of our

case study, our patterns, as well as the SREE dictionaries, are avail-

able for the research community, who can independently compare the

different strategies.

6.9 Threats to Validity

In this section, we discuss threats to validity according to the structure

recommended in [103].

6.9.1 Construct Validity

Objective and widely used metrics (i.e., precision and recall) were used in

this work to assess the accuracy of the adopted NLP technologies. To derive

measures of precision and recall, subjective evaluations were performed by

VE-A, VE1, and VE2 during the Dataset Annotation and Output Anno-

tation tasks. In the Pilot Study, only VE1 annotated the dataset, and no

86 Results

countermeasure was taken to assess the validity of the annotation, given the

preliminary nature of the study. Similarly, in the Large-scale Study – 1st

Iteration, only VE2 annotated D-Large, and the same annotation was used

for the Large-scale Study – 4th Iteration. On the one hand, also in the real-

world context of the company, requirements review is performed by a single

subject, and the subjectivity threat can be considered as partially mitigated

by the realism of this annotation. On the other hand, the Output Annota-

tion on D-Large, was independently performed by VE1 and VE-A, and the

inter-rater agreement was computed by means of the Cohen’s Kappa. The

agreement resulted in k = 0.82 (almost perfect) for Large-scale Study – 2nd

Iteration, and k = 0.79 for Large-scale Study – 5th Iteration (substantial).

Therefore, we believe that the threat is further mitigated by these measures

of agreement, at least for those requirements that were produced as output

by the NLP patterns. Therefore, construct validity threats are mitigated for

Large-scale Study – 2nd, 3rd and 5th Iteration, while they are only partially

mitigated for Pilot Study, and Large-scale Study – 1st and 4th Iteration, in

which only one subject was involved in the annotation process.

6.9.2 Internal Validity

The main threats to the internal validity of the study are due to the per-

sonal objectives of the involved subjects, which may have had an impact

on the results. Indeed, the annotations performed by VE1 and VE-A in

the tasks in which they were involved may be biased by their need to show

that the implemented patterns were successful, hence annotating as defective

also requirements that were not. In the case of the Pilot Study, this threat

is mitigated by the fact that the annotation was performed before applying

the patterns, and hence without exactly knowing their output. In the Large-

scale Study iterations, the threat is mitigated by (a) by the pragmatics of the

case study, and (b) the independent Output Annotation process performed.

Indeed, since VE1 works as VE in the company, she is also interested on

improving her job, besides showing that the implemented technology is ef-

fective. VE-A may be less keen to this type of integrity, since she is not part

of the company anymore. However, since the Output Annotation task was

always performed independently by the two VEs, we argue that this threat

is sufficiently controlled. Furthermore, as noticed in Section 6.8, since this

threat cannot be totally mitigated, we share our patterns so that other re-

searchers can apply them to their contexts, and check their effectiveness. It

6.9 Threats to Validity 87

should be noted that the annotations of VE2 are not subject to this threat,

since they were performed before this work was conceived. Validity issues

related to the discrepancies between the annotations performed by VE2 com-

pared to the ones of VE-A and V1, are discussed in Section 6.9.3, since we

argue that the annotations represent different contexts, from which different

generalization criteria may apply.

Another internal validity threat is associated to the tool-suite initially

used by VE1 in the Large-scale Study – 1st and 2nd Iterations, to compute

the data for the case. Indeed, she used an internally developed tool on top of

GATE to produce the results. To mitigate potentially unsound manipulation

of the data by this prototype tool, part of Large-scale Study – 1st and 2nd

Iterations, were replicated by VE-A, with the support of GATE only. Dis-

crepancies in the results were observed, and root causes were analyzed. The

rest of the analysis were performed by means of GATE only. Since GATE

is a widely used tool – see the list of companies using GATE3 and, e.g., [6]

and [38], for relevant scientific works in which GATE was employed –, we

believe that the results produced with its support are correct.

6.9.3 External Validity

Our discussion on the external validity of the study is loosely based on the

principles of case-based generalization [115], and of similarity-based gener-

alization [60]. Specifically, we describe the main architectural aspects of

our study, i.e., domain, requirements, subjects, that can be considered as

a term of comparison for other studies. In this way, other researchers and

practitioners can reason by analogy, and possibly profit from our results [60].

• Domain: our study covers a company of a specific domain, i.e., the

railway domain. In Europe, railway companies have to follow the gen-

eral guidelines of the CENELEC norms [26], and their work practices

at process level can be considered comparable. Furthermore, the rail-

way domain is characterized by a limited number of suppliers, who

often deal with the same customers – i.e., the national or private rail-

way companies, who provide infrastructure, and services to passengers.

This increases the homogenisation of processes and, in part, require-

ments documents. While we cannot generalise our results for any type

3https://gate.ac.uk/commercial.html

https://gate.ac.uk/commercial.html

88 Results

of domain, we argue that similar results may be obtained in other rail-

way companies. On the other hand, the following limitations to the

external validity of our results shall be considered.

• Requirements: the requirements considered in the study have been se-

lected by VE1, with the support of the company, as benchmarks to

represent typically defective requirements of the firm. VE1 and VE-

A admits that, depending on the subjects involved in the production

of requirements, the documents may have different degrees of qual-

ity, and the documents belonging to the study are requirements of

lower quality than average. Furthermore, along the process, system

requirements such as those analyzed are normally refined into lower

level requirements. Hence, the results produced shall be considered

representative for (a) system requirements, (b) requirements with a

poor degree of quality. Since the requirements concerns several types

of railway signalling systems, they are sufficiently representative of the

types of product developed in railways.

• Subjects: Overall, three VEs were involved in this study. The sample

is limited, but it shall be considered that all the VEs are normally

subject to the same company practices and process, and can therefore

be considered representative VEs for the company. Considering the

characteristics of the railway domain mentioned above, they can be

considered, to a certain extent, also representative of VEs in railways.

The task of annotating is all but simple; the high number of require-

ments to be tagged and the repetitiveness of the task may cause a

loss of focus after a while. Discrepancies were observed between the

annotations performed by VE2 on D-Large during Large-scale Study –

1st Iteration, and the annotations on the output of the patterns per-

formed by VE1 and VE-A, during Large-scale Study – 2nd Iteration.

In principle, the discrepancies may be associated to the different de-

gree of experience of the subjects. VE1 and VE-A had 3 and 2 years

experience, respectively, while VE2 had 10 years of experience. We

believe that the discrepancies observed are only partially associated

to the experience. Instead, we believe that the discrepancies are due

to the differences in terms of contextual knowledge, and goals. VE2

had in in-depth knowledge of the project that allowed him to disam-

biguate, or tolerate, certain defects, and focused on severe conceptual

problems. Instead, VE1 and VE-A did not have any prior knowledge

6.9 Threats to Validity 89

on the project, and focused on linguistic aspects, given the research-

based, exploratory nature of their work.

For these reasons, the different iterations have different degrees of ex-

ternal validity – notwithstanding the construct validity threats already

discussed. Specifically, Pilot Study, and Large-scale Study – 2nd, 3rd,

and 5th Iterations can be considered representative for those cases in

which the annotation is performed by VEs who do not have prior

knowledge of the project of the requirements, and focus on linguis-

tics defects. Instead, Large-scale Study – 2nd and 4th Iterations are

representative for those cases in which the annotation is performed by

a VE who has an in-depth knowledge of the project, and focuses on

conceptual defects.

As mentioned, our results can be generalised to other domains only to a

limited extent. Our work focusses on a single railway company, and railway

companies have a well-defined processes to follow, that is not shared by

other context. The degree of rigour of the railway process is comparable to

the one employed in the avionic sector, in which the DO-178C norm applies

for software development [102]. However, the products developed in railways

and avionics are highly different, and use domain specific terminology. Many

of our patterns are domain independent, but, given the large variability of

NL, and of domain specific NLs, the generalisation of our results to other

domains requires further research.

6.9.4 Reliability

The results provided are mainly quantitative, and we argue that a common

understanding on their meaning was achieved when the values of precision

and recall had to be computed. Concerning the qualitative data, these were

provided by the VEs and were refined with the support of NLP-E. We argue

that this interaction increased the reliability of the qualitative results.

90 Results

Chapter 7

Lessons learned and future

research issues

7.1 Introduction

In this chapter we present a set of lessons learned from our experience and

the future research directions emerged.

7.2 Domain-customisable NLP Tools

Our experience shows that NLP technologies are available for requirements

analysts with limited NLP training, and that these technologies can be pro-

ficiently used for the detection of several typical requirements defects. Rule-

based NLP patterns tend to generate large numbers of false positives [28,

118]. If the results come from a tool that the requirements analyst cannot

control, the analyst is likely to distrust the tool. Instead, if the analyst un-

derstands the inherent principles of the tool – and implementing the tool

is a proper way for understanding its principles –, they can understand its

weaknesses and use it at its best. Furthermore, it is also important that do-

main experts develop the tools since, to reduce the amount of false positive

cases, tailoring the patterns for the specific needs of the domain is required.

If the VEs implement the patterns, they can customise them according to

the language used in the domain to take into account terms such as raw

data, hard disk (Section 6.2), and phrases such as it shall be possible (Sec-

91

92 Lessons learned and future research issues

tion 6.4). The introduction of the discard patterns, to remove systematic

false positive cases, allowed an increase of the average pD from 72.81% to

81.36% (Section 6.4). It should be noticed that, if a company defines a set

of patterns to be applied for defect detection, a maintenance cost should be

taken into account since, as any software tool, patterns may need to evolve.

While for COTS tools the software house who develops them takes care of

their evolution, and maintenance costs, the company has to take the burden

of maintenance in case of internally developed tools.

7.2.1 Requirements language counts

Looking at the large number of passive voice defects in Large-scale Study

– 2nd Iteration, it appeared that the use of passive voice was a form of

writing style. As a consequence, the patterns generated a large number of

detected defects (i.e., 1317). This tells us that, to effectively use NLP, one

cannot simply implement appropriate defect detection patterns: one should

change also the language adopted in the requirements, to make it more error

free, so that the VEs can focus on a smaller amount of defects. For this

reason, we argue that NLP tools should be firstly used by the requirements

engineers, to limit the amount of poor writing style, and only afterwards

by the VEs. However, this is not always practicable, especially in those

cases in which requirements are produced by the customer, and assessed

by the company who has to develop the product. As acknowledged by the

company, the requirements considered in this study are particularly rich in

defects, also with respect to other requirements of the company. However, it

is worth noting that, after taking inspiration from the work of Terzakis and

Gregory [110], VE1 is currently involved in a mentoring program within the

company, to educate the requirements engineers towards the production of

higher quality requirements.

7.2.2 Requirements level counts

During the analysis of the false positive cases of SREE, a large number

of plurals (3377) was identified, which were tolerated in most of the cases.

Furthermore, also the presence of conjunctions such as also and but, which

indicate non-atomic requirements, was tolerated in these requirements. This

was motivated by the level of the requirements. The considered dataset was

composed of high-level system requirements for which, according to the VEs,

7.3 NLP is only a part of the answer 93

a certain degree of generality can be accepted. These requirements will be

refined into lower-level technical requirements, along the development life-

cycle, for which a greater degree of precision is expected. Also the cost of

a defective requirement is different depending on its level: high level defects

have a greater impact on the lifecycle, while low level defects have a smaller

one. Specifically, the detected defects generate change requests for the prod-

uct that have a different management cost (in terms of hours of rework and

required money) depending on the impact on the development process. As

we notice in a recent work [48], this suggests that requirements at different

degrees of abstractions may need different treatments.

More specifically, patterns to check presence of plurals, as well as also

and but conjunctions, may need to be applied for low-level requirements,

while they do not need to be used for high-level ones.

7.2.3 Validation criteria count

Considering the Large-scale Study – 1st and 2nd Iterations, we saw that a

large part of the false positive cases encountered in the Large-scale Study

– 1st Iteration could be associated with a weaker validation performed by

VE2. In fact he was not focused on linguistic defects, but more on severe

conceptual defects, also given his in-depth knowledge of the project. For this

reason, the results obtained in terms of precision were extremely poor. When

changing criteria, pR varied from 5.81% to 77.37% (Section 6.4). Hence, to

perform an appropriate validation of rule-based NLP patterns, it is advisable

to start from an annotated dataset that has been defined knowing the classes

of defects that will be checked by the patterns, and specifically stating that

the focus is on linguistic defects. Otherwise, the results might be misleading.

This observation might appear counter-intuitive, since we suggest to adapt

human operators to tools. However, when dealing with the complexity of

NL, we argue that the adaptation between humans and NLP tools should be

bi-directional.

7.3 NLP is only a part of the answer

In our large-scale study, several false negative cases occurred, which can

hardly be detected with NLP. These are examples of conceptual defects that

require a human with knowledge of the domain and of the specific project.

94 Lessons learned and future research issues

In recent years, NLP technologies have seen radical progress [64]. Linguis-

tic tasks at the semantic level such as question-answering became possible.

However, the pragmatic nature of ambiguity [53], and the contextual knowl-

edge needed to understand a requirements document, make the problem

of automatic defect detection in requirements hardly solvable with current

technologies. Therefore, NLP represents only a part of the answer to defect

detection, while the other part is represented by human analysts with do-

main expertise. It should also be considered that relying on a tool for defect

detection may also change company practices, in that a VE may rely too

faithfully on the tool’s output. This reasonable hypothesis requires further

empirical investigation, but its potential implications should be considered

when introducing an automated tool to support practices that are normally

manually conducted.

7.4 Statistical NLP vs Lexical techniques

Our patterns make use of POS tagging and shallow parsing, which are statis-

tical techniques that can hamper the objective of 100% recall [11]. However,

in Section 6.2, we showed that 100% recall was achieved for those patterns

that used these techniques, while it was not achieved for the pattern adopted

for vague terms, which uses a lexical based approach. Hence, we argue that

the argument in favour of a “dumb” lexical-based defect detection approach

instead of an approach that leverages statistics-based techniques [11] should

be partially revised. If one wants to use lexical-based detection approaches,

then one should use only defect indicators belonging to closed word classes

(e.g., pronouns, conjunctions). Instead, if one uses open word classes (e.g.,

adjective, adverbs), the problems are not different from those that might

emerge with statistical techniques. As statistical techniques may fail, also

lists of dangerous adjectives and adverbs may fail, because they might not

include words that were not considered until they appear in the requirements

(e.g., the word some, as noted in Section 6.2, or the words jolty and uneven,

as noted in Section 6.6).

7.5 Implication for practice and future research

In this section we draw conclusions presenting the implication for practice

and introducing some future research directions.

7.5 Implication for practice and future research 95

7.5.1 Implication for practice

Overall, the experience was considered extremely useful by the company. In

particular, VEs say that, after studying the literature on defect identifica-

tion, and implementing the patterns, also their way of judging requirements

defects became stricter. This is also one of the reasons why requirements

previously marked as accepted, were afterwards rejected in the former anno-

tation process. This implies that, while on the one hand tools have to be

adapted to company practices, also company practices can be modified by

tools. In our study, we also observed that an increase in the performance can

be obtained by incrementally tuning the patterns based both on the defects

encountered in practice, and through the inclusion of other defect-detection

criteria from the research literature – in particular, the SREE dictionaries.

Therefore, regardless of the NLP technologies used to detect defects, tech-

nologies need to be adapted to the specific language of the company, to be

fruitfully used.

It should also be observed that, based on the lessons learned from the

current study, one of the participating VEs is now involved in a mentoring

program within the company, oriented to teach requirements engineers how

to write linguistically clear requirements. The idea is that requirements

engineers should be aware of linguistic defects, so that the work of VEs can

focus on conceptual ones. In this sense, we argue that, by working with

NLP techniques for defect detection, one can have an effect also in terms

of organizational learning. Furthermore the company has recently begun

to use NLP techniques to detect defects also in the application condition

of their products. Another relevant implication for practice concerns the

complementary role of NLP techniques, and human analysis. We observed

that part of the conceptual defects present in the requirements could not

be detected with the patterns, but some ignored linguistic defects could be

identified by the patterns. This suggests that, although human analysts

cannot be replaced, tools can help them to perform a better job.

7.5.2 Ongoing and future research

After this experience some new research directions emerged and are presented

below.

96 Lessons learned and future research issues

Dataset extension

In order to achieve more general results there is the need of increasing the

dataset dimension and especially its variety. In particular, it is necessary to

collect a dataset composed of requirements coming from different levels and

different projects. Alstom expressed the willingness to continue the collab-

oration providing other requirements from four different levels of software

development life cycle with increasing detail level (see Section 1.3):

• Software Requirements Specification: 58 requirements;

• Software Architecture Specification: 231 requirements;

• Software Design Specification: 439 requirements;

• Software Component Specification: 574 requirements.

The defects annotation process is in progress.

The experimentations on this dataset would allow to understand to which

extent the NLP patterns have to be tuned to analyze requirements at differ-

ent levels of abstractions, and to understand which patterns are appropriate

for which level.

Furthermore we want to extend our dataset using requirements docu-

ments from different domains in order to assess to which extent the adap-

tation of NLP patterns to the language of a company can lead to improved

results in terms of defect detection accuracy. We are looking forward to use

other repositories, for example the one introduced in [52]. A major problem

in conducting a solid experimental analysis on these further data is their

annotation by independent reviewers, which is scarcely available.

Language and cost: research directions

It would be of interest to study to which extent language errors – a defect

not considered here, but mentioned in [12] – may impact on the quality

of the requirements. The VEs noticed that large part of the requirements

considered were not expressed in correct English, since they were written by

Italian editors, who tended to use Italian syntactic constructions. However,

apparently, these language errors did not have an impact on the subsequent

phases of the process, since the readers of the requirements were also Italian.

Another interesting research direction regards the evaluation of the cost

of using NLP techniques for defect detection, compared to the cost of manual

7.5 Implication for practice and future research 97

review. Cost-based evaluation approaches suitable for our context have been

recently discussed by [10].

Machine learning techniques for NLP

We agree that the usage of NLP rule-based approach for defect detection in

NL requirements has numerous advantages, in particular: (a) it is relatively

easy to define rules and to apply them; (b) this approach provides hints on

the localization of detected defects.

We also agree that this approach suffers from one major drawback: it

lacks the capability to generalize (i.e., the rules need to be tailored for each

specific company, project, requirements level, etc.).

It would be of interest to evaluate the feasibility of machine learning

techniques for NLP defect detection and, in case this approach results to be

feasibile, to compare its performance with the rule-based one. As emerged

from our early stages investigations in this area [45] it is particularly impor-

tant to have a various and balanced dataset. The required dataset dimension

depends on the selected algorithm. We performed a preliminary test in this

direction using the approach described below:

• each requirement was vectorized by extracting bag-of-word (BoW) fea-

tures, performing the following steps:

1. tokenization of text using white spaces as separators;

2. removal of the punctuation and the words of length 1;

3. removal of morphological and inflexional endings from the words

by running the Porter stemming algorithm [95];

4. removal of all the stop words1;

5. creation of the histogram of the unigrams and bigrams2.

• we randomly split the dataset into a training set containing the 90% of

the requirements and a test set containing the remaining 10%. Since

the dataset is unbalanced (i.e., the defective requirements are only the

4.8%) we stratified the splitting so that train and test sets have the

same proportion of defective requirements;

1Stop words are the most common words in a language and are usually stored in lists.
2A unigram is the occurrence of one word, while a bigram denotes the occurrence of

two words in sequence.

98 Lessons learned and future research issues

• we trained a linear SVM on the training set.

We measured a precision of 6.9% and a recall of 87.2% on the test set,

thus obtaining quantitative results close to the ones discussed in the main

matter. The major drawback of this simple early-stages sperimentation is

that a pure classifier – SVM in this case – is unable to provide hints on

the defect localization. This drawback may be overcome applying different

machine learning algorithms (e.g., multi-instance learning, meta learning,

Recurrent Neural Networks (RNNs) [54, 98, 108, 30]).

Chapter 8

Public and private transport

integration model with STPN

8.1 Introduction

By the year 2030, urban mobility will have changed due to sociodemographic

evolution, urbanization, increase of the energy costs, implementation of en-

vironmental regulations, and further diffusion of Information and Communi-

cation Technology (ICT) applications. The demand for public and collective

modes of transport will increase considerably. Part of the answer will come

from the public transport that will evolve as an integrated combination of

buses, cars, metros, tramways and trains [41, 1]. In general, right-of-way

(ROW) is the defining characteristic of public transportation modes and we

can list three ROW types:

1. Exclusive: Transit vehicles operate on fully separated and physically

protected ROW. Tunnels, elevated structures, or at-grade tracks are

such examples. This ROW type offers very high capacity, speed, reli-

ability and safety. All heavy rail transit systems, like the Metrorail of

the Washington Metropolitan Area Transit Authority, belong to this

category.

2. Semi-Exclusive: Transit ways are longitudinally separated from other

traffic, such as private vehicles and pedestrians. Light rail transit

(LRT) systems, like the Florence tramway in Italy, are mostly built

according to this ROW type.

99

100 Public and private transport integration model with STPN

3. Fully-Shared: Transit vehicles share ROW with other traffic, for ex-

amples buses, taxi and cars. This ROW type requires the least in-

frastructure investment, but operations are relatively unreliable due to

roadway congestion.

Exclusive ROW need major investment, thus often semi-exclusive or

fully-shared modes are chosen. The drawback of this choice is that the

different transportation modalities may end in a conflict due to physical

constraints concerned with the urban structure itself. For example, this is

the case of an intersection between a public road and a tramway right-of-way,

where traffic lights priority given to trams may trigger road congestion, while

an intense car traffic can impact on trams’ performance. These situations

can be anticipated and avoided by accurately modeling and analyzing the

possible congestion events. Typically, modeling tools provide simulation fa-

cilities, by which various scenarios can be played to understand the response

of the intersection to different traffic loads. Simulation techniques are used

to support early verification of design choices, but can analyze a limited, yet

high, number of different scenarios, and encounter difficulties in the evalu-

ation of rare events. Only modeling techniques and tools that support the

analysis of the complete space of possible scenarios are able to find out such

rare events [20, 14].

In this chapter, we present an analytical approach to model and evalu-

ate a critical intersection for the Florence tramway, where frequent traffic

blocks used to happen. This work has been funded by Fondazione Cassa di

Risparmio di Firenze, with the kind help of GEST1, the company running

the Florence tramway, in providing important data on which to base the

study.

8.2 Analysis of a conflict between public and

private transport in Florence

Figure 8.1 shows the route of line 1, which has been put in service in 2010 and

links Santa Maria Novella central station to Scandicci (Florence suburbs).

This line has overall good performance, with trams running regularly from

the end of the line in Scandicci to almost the other end in the city center,

but there is a consistent source of delay just a few meters short of the last

1https://www.ratpdev.com/en/references/italy-florence-tramway

https://www.ratpdev.com/en/references/italy-florence-tramway

8.2 Analysis of a conflict between public and private transport 101

Resistenza
De Andrè

Ciliegi

Costanza

Villa

Aldo Moro

Pantin

Nenni-Torregalli

Lupi di Toscana

Arcipressi
Ronco Corto

FederigaFoggini

Talenti

Batoni

Sansovino
Paolo Uccello

Arno

Alamanni-Stazione

Porta al Prato-Leopolda

Cascine

Parco della Musica
Olmi

Figure 8.1: Map of tram route from Villa Costanza (Scandicci) to Alamanni-

Stazione (Santa Maria Novella station). The route is 7720 meters long with

14 tram stops.

scheduled stop, near Santa Maria Novella train station [32]. The root cause

for these issues is the Diacceto-Alamanni intersection, where both via Iacopo

da Diacceto, a street with dedicated tracks for tramways, and via Luigi

Alamanni, a street for private transport, head to Santa Maria Novella train

station.2. An aerial view of this intersection is shown in Figure 8.2. The

darker stripe that crosses the tracks represents the (unidirectional) private

traffic flow from Alamanni street that is the source of the analyzed conflict.

Taking this intersection as a case study, we exploit the ORIS tool to

evaluate the probability of a traffic block, leveraging regenerative transient

analysis based on the method of stochastic state classes to analyze a model

of the intersection specified through Stochastic Time Petri Nets (STPNs).

Note that ORIS supports the analysis of models with multiple concurrent

temporal parameters associated with a general (i.e., non-exponential) distri-

bution. In particular, the model of the Diacceto Alamanni intersection in-

2Actually, the construction works of the new tramway lines (due to be opened soon)

have consistently changed the geometry of the Diacceto-Alamanni intersection, partially

removing the car traffic. Anyway, the analysis presented in this work refers to a relevant

scenario, typical of intersections between a public road and a tramway right-of-way, which

will occur more frequently in Florence as new tramway lines will be built.

102 Public and private transport integration model with STPN

Figure 8.2: Aerial view of the Diacceto-Alamanni intersection.

cludes temporal parameters associated with a deterministic value (e.g., tram

interleaving period), a uniform distribution (e.g., tram delay time), and an

exponential distribution (e.g., private vehicles arrival rate). The reported

experience shows that the frequency of tram rides impacts on the road con-

gestion, and hence compensating measures (such as sychronizing the passage

of trams in opposite directions on the road crossing) should be considered.

The remainder of the paper is structured as follows. Section 8.3 sum-

marises related works. Section 8.4 provides a short introduction to STPNs,

the method of stochastic state classes, and the ORIS tool. Section 8.5

presents the realized model and Section 8.6 the obtained results. Finally,

Section 8.7 concludes the chapter.

8.3 Related Works

Earliest research on integrated control for traffic management at network

level can be traced back to the 1970s. The first railway timetables were

planned based on the experience and knowledge of dispatchers in resolving

train conflicts [65]. This manual scheduling practice proved its low efficiency

with the increase of traffic congestion and exacerbated train delays.

An integrated policy for priority signals at intersections is required, given

that trams operate in a semi-exclusive ROW environment. In the literature,

we can find two different streams of studies: the first aiming at optimiz-

ing tram schedules without considering their effects on other traffic flows;

the second aiming at manipulating the tram schedule so that trams always

clear the intersection during green phases, thus reducing influences on other

traffic flows. In [105], the tradeoffs between tram travel times and roadway

8.4 Background 103

traffic delays are explored. Literature counts several works applying differ-

ent simulation techniques. Microscopic models, i.e., models in which each

vehicle is modeled by itself as a particle, can be divided according to the

representation of road structure in greater detail. In the continuous road

model group, a base structure of road space is modeled as a continuous one

dimensional (1D) link. The behavior of car agents is often implemented by

applying car-following theories [92, 109, 125]. In the cell-type road model

group, road space is discretized by homogeneous cells in which the behav-

ior of car agents is expressed using transition rules such as cellar automata

[72, 112]. In a queuing model group, road networks are modeled as queuing

networks [57, 2]. Most commercial microscopic traffic simulators employ the

continuous road model. In addition, several researchers have proposed sim-

ulation frameworks for mixed traffic of two or more models. For example,

Yang et al. [119] proposed a framework for pedestrian road crossing behavior

in Chinese cities in which they determined the criterion used by pedestrians

to decide whether to start crossing a road after considering vehicle flows.

Meanwhile, Zeng et al. [123] modeled pedestrian-vehicles interactions at

crosswalks in order to minimize pedestrian-vehicle collisions.

Dobler and Lämmel [40] integrated multi-modal simulation modules to

the existing framework of MATSim, a large scale traffic simulation framework

based on the queuing model [29]. Their integration approach was based

on locally replacing simple queue structures with continuous 2D space at

sections with higher traffic flows. The behavior rules of agents in the 2D space

are based on the social force model (SFM). Krajzewicz et al. [77] introduced

pedestrian and bicycle agent models into SUMO, which is a widely used

traffic simulator belonging to the continuous road model group [78]. Finally

Fujii et al. [55] introduced an agent-based framework for mixed-traffic of

cars, pedestrians and trams by using the simulator MATES [121].

8.4 Background

In this section, we provide some background on STPNs (Sect. 8.4.1), the

method of stochastic state classes (Sect. 8.4.2), and the ORIS tool (Sect. 8.4.3).

104 Public and private transport integration model with STPN

8.4.1 Stochastic Time Petri Nets

An STPN is a tuple 〈P, T,A−, A+, A·,m0, F,W,E,U〉 where: P is the set of

places; T is the set of transitions; A− ⊆ P ×T , A+ ⊆ T ×P and A· ⊆ P ×T
are the sets of precondition, postcondition, and inhibitor arcs, respectively:

m0 : P → N is the initial marking; F : T → [0, 1][EFTt,LFTt] associates

each transition t with a Cumulative Distribution Function (CDF) F (t) :

[EFTt, LFTt] → [0, 1], where EFTt ∈ Q≥0 and LFTt ∈ Q≥0 ∪ {∞} are

the earliest and latest firing time, respectively; W : T → R>0 associates

each transition with a weight; E and U associate each transition t with

an enabling function E(t) : NP → {true, false} and an update function

U(t) : NP → NP , which associate each marking with a boolean value and a

new marking, respectively.

A place p is an input, an output, or an inhibitor place for a transition t

if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, and 〈p, t〉 ∈ A·, respectively. A transition t is

immediate (IMM) if EFTt = LFTt = 0 and timed otherwise; a timed tran-

sition t is exponential (EXP) if Ft(x) = 1 − e−λx over [0,∞] with λ ∈ R>0,

and general (GEN) otherwise; a general transition t is deterministic (DET)

if EFTt = LFTt > 0 and distributed otherwise; for each distributed transi-

tion t, we assume that Ft is the integral function of a Probability Density

Function (PDF) ft, i.e., Ft(x) =
∫ x

0
ft(y)dy. IMM, EXP, GEN, and DET

transitions are represented by thick white, thick gray, thick black, or thin

black bars, respectively.

The state of an STPN is a pair 〈m, τ〉, where m is a marking and τ : T →
R≥0 associates each transition with a time-to-fire. A transition is enabled by

a marking if each of its input places contains at least one token, none of its

inhibitor places contains any token, and its enabling function evaluates to

true; an enabled transition t is firable in a state if its time-to-fire is equal to

zero. The next transition t to fire in a state s = 〈m, τ〉 is selected among the

set of firable transitions Tf,s with probability W (t)/
∑
ti∈Tf,s

W (ti). When t

fires, s is replaced with s′ = 〈m′, τ ′〉, where:

• m′ is derived from m by: removing a token from each input place of

t, which yields an intermediate marking mtmp; adding a token to each

output place of t, which yields a second intermediate marking m′tmp;

and, applying the update function U(t) to m′tmp;

• τ ′ is derived from τ by: i) reducing the time-to-fire of each persis-

tent transition (i.e., enabled by m, mtmp and m′) by the time elapsed

8.4 Background 105

in s; ii) sampling the time-to-fire of each newly-enabled transition tn
(i.e., enabled by m′ but not by mtmp) according to Ftn ; and, iii) re-

moving the time-to-fire of each disabled transition (i.e., enabled by m

but not by m′).

8.4.2 The method of stochastic state classes

The method of stochastic state classes [114, 66] permits the analysis of

STPNs with multiple concurrent GEN transitions. Given a sequence of fir-

ings, a stochastic state class encodes the marking and the joint PDF of the

times-to-fire of the enabled transitions and the absolute elapsed time τage.

Starting from an initial stochastic state class, the transient tree of stochastic

state classes that can be reached within a time tmax is enumerated, enabling

derivation of continuous-time transient probabilities of markings (forward

transient analysis), i.e., pm(t) := P{M(t) = m} ∀ 0 ≤ t ≤ tmax, ∀ m ∈ M,

where M(t) is the marking process describing the marking M(t) of an STPN

for each time t ≥ 0 and M is the set of reachable markings.

If the STPN always reaches within a bounded number of firings a regen-

eration, i.e., a state satisfying the Markov condition, its marking process is a

Markov Regenerative Process (MRP) [31], and its analysis can be performed

enumerating stochastic state classes between any two regenerations. This

results in a set of trees that permit to compute a local and a global kernel

characterizing the MRP behavior, enabling evaluation of transient marking

probabilities through the numerical solution of Markov renewal equations

(regenerative transient analysis). Trees also permit to compute conditional

probabilities of the Discrete Time Markov Chain (DTMC) embedded at re-

generations and the expected time spent in any marking after each occur-

rence of any regeneration [84], supporting derivation of steady-state marking

probabilities according to the Markov renewal theory (regenerative steady-

state analysis).

While stochastic state classes support quantitative evaluation of an STPN

model, the set Ω of behaviors of the STPN can be identified with simpler and

more consolidated means through non-deterministic analysis of the underly-

ing TPN model. In this case, the state space is covered through the method

of state classes [113, 39], each made of a marking and a joint support for τage

and the times-to-fire of the enabled transitions. In this approach, enumera-

tion of state classes starting from an initial marking provides a representa-

tion for the continuous set of executions of an STPN, enabling verification

106 Public and private transport integration model with STPN

of qualitative properties of the model, e.g., guarantee, with certainty, that

a marking cannot be reached within a given time bound (non-deterministic

transient analysis).

8.4.3 ORIS overview

ORIS [16]3 is a software tool for qualitative verification and quantitative eval-

uation of reactive timed systems. ORIS supports modeling and evaluation

of stochastic systems governed by timers (e.g., interleaving or service times,

arrival rate, timeouts) with general probability density functions (PDFs).

The tool adopts Stochastic Time Petri Nets (STPNs) as a graphical formal-

ism to specify stochastic systems, and it efficiently implements the method of

stochastic state classes, including regenerative transient, regenerative steady-

state and non-deterministic analysis.

The software architecture of ORIS decouples the graphical editor from

the underlying analysis engines. Given the many variants of Petri net fea-

tures, ORIS was developed with extensibility in mind: new features can be

defined by implementing specific interfaces, so that they can be introduced

in the graphical editor and made available to the analysis engines. In turn,

analysis engines implement a specific interface that allows them to cooperate

with the graphical interface, i.e., to collect analysis options from the user,

to start/stop analysis runs, to record and display analysis logs, and to show

time series and tabular results. The available analysis engines include:

Non-deterministic Analysis, to produce a compact representation of the

dense set of timed states that can be reached by the model. Non-deterministic

analysis based on the theory of Difference Bound Matrix (DBM) supports

the identification of the boundaries of the space of feasible timed behaviors

[19]. The state space is displayed as a directed graph, where edges represent

transition firings while nodes are state classes [113] comprising a marking

and a DBM zone of timer values. This analysis is useful to debug STPNs

models and ensure that their state space M is finite.

Transient and Regenerative Analysis, to compute transient probabili-

ties in Generalized Semi-Markov Processes (GSMPs) and Markov Regener-

ative Processes (MRPs), respectively. These methods evaluate trees where

edges are labeled with transitions and their firing probabilities, while nodes

are stochastic state classes [66] comprising a marking, the PDF of timers,

3ORIS is available for download at the webpage https://www.oris-tool.org/

https://www.oris-tool.org/

8.5 Diacceto-Alamanni: an STPN model 107

and their support (a DBM zone). For a given time limit T , the enumeration

proceeds until the tree covers the transition firings of the STPN by time T

with probability greater than 1 − ε, where ε > 0 is an error term. While

standard transient analysis enumerates a single, very large tree of events,

regenerative analysis avoids the enumeration of repeated subtrees rooted in

the same regeneration point (where all general timers are reset or have been

enabled for a deterministic time). A time step ∆t is used to select equis-

paced time points where transient probabilities are evaluated (directly or by

solving Markov renewal equations).

Regenerative Steady-State Analysis, to compute steady-state proba-

bilities in MRPs (and thus Semi-Markov Processes (SMPs) and Continuous

Time Markov Chains (CTMCs)) with irreducible state space. This method

uses trees of stochastic state classes between regeneration points to com-

pute steady-state probabilities of markings: expected sojourn times in each

tree are combined with the steady-state probability of regenerations at their

roots [84]. As for transient analysis, this method can be applied to STPNs

allowing multiple general timers enabled in each state.

Transient Analysis under Enabling Restriction, to compute transient

probabilities in MRPs that allow at most one general transition enabled in

each state [58].

ORIS engines support instantaneous (transient or steady-state) and cu-

mulative (transient) rewards. A reward is a real-valued function of markings

r : M → R that is evaluated by substituting place names with the num-

ber of contained tokens in order to compute the instantaneous expected

reward Ir(t) =
∑
i∈M r(i)pi(t) at each time t, its steady-state value Ir =

limt→∞ Ir(t) =
∑
i∈M r(i)pi or its cumulative value over time Cr(t) =∫ t

0
Ir(t)dt. In addition, the user can specify a stop condition, i.e., a Boolean

predicate on markings such as (p0 == 1)&&(p1 == 1), that is used to halt

the STPN. This feature can be used to compute first-passage probabilities

[66] or reach-avoid objectives equivalent to bounded until operators [90].

8.5 Diacceto-Alamanni: an STPN model

In this section, we describe the STPN model of the Diacceto-Alamanni in-

tersection. Figure 8.3 shows the model which is composed of the following

108 Public and private transport integration model with STPN

two submodels:

• tramway submodel (blue box);

• private traffic submodel (red box).

8.5.1 Tramway submodel

The portion of the tramway submodel in the dotted blue box represents the

direction from Santa Maria Novella train station (Alamanni-Stazione), while

the one in the dashed blue box represents the opposite direction. GEST pro-

vided the interleaving period of trams, which is equal to 220 s; transition

period, which models tram departures, fires a new token periodically and is

enabled with continuity until place KO receives a token. Places p0 and p1

represent a tramway departing from Alamanni-Stazione and Villa Costanza,

respectively. Transitions delayFromSmn and delayFromScndc represent the

delays cumulated by the two trams, respectively; note that 120 s is an up-

per bound on the maximum delay observed in the available data set and,

given that data are few and their distribution is unknown, this parameter is

modeled using a uniform distribution [9].

When the tramway is approaching the intersection, dedicated wayside

systems (i.e., two loops placed under the railway tracks) are activated (places

Loop01 .001 .1 and Loop01 .001 .2) and the corresponding traffic lights are

set to red (places setRedFromSmn and setRedFromScnd). The traffic lights

are in fact set to red 5 s before the arrival of the tram at the intersec-

tion; this parameter has been provided by GEST and is modeled by the

DET transitions crosslightAnticipationSmn and crosslightAnticipationScnd.

Places crossingFromSmn and crossingFromScnd represent the arrival of the

tram at the intersection, while transitions leavingFromSmn and leavingFrom-

Scndc account for the time needed to free the intersection. Specifically, the

minimum and the maximum time needed to free the intersection are set equal

to 6 s and 14 s, respectively, based on the fact that in the data set provided

by GEST this temporal parameter has mean value nearly equal to 10 s and a

standard deviation approximately equal to 4 s. Also in this case, given that

available data are few, this parameters is modeled by a uniform distribution

over the interval [6, 14] s [9].

8.5 Diacceto-Alamanni: an STPN model 109

t13

crosslightAnticipationSmn

Loop01.001.2

t7

220

0.067

crossingFromSmn

p1

p0

t17

crossingFromScnd

setRedFromScnd

Loop01.001.1

t10

leavingFromSmn

stopAll

setRedFromSmn

period

t19

crosslightAnticipationScnd

t16

[6,14] uni

KO

inhibitAll

[0,120] uni

[6,14] uni

carQueue2

t18

carQueue1carQueue0

0.14
t14

p4

0.067

0.14

yellow

t8
p3

5

5

t9

delayFromSmn

leavingFromScndc

t15

[0,120] uni

delayFromScndc

e

e e

e

e

Figure 8.3: Intersection model. The tramway submodel is highlighted by the

blue box, the private traffic queue submodel is highlighted by the red one.

Transitions associated with an enabling function are marked by a label “e”.

110 Public and private transport integration model with STPN

8.5.2 Private transport submodel

We model private traffic as a birth-death process with three levels of traf-

fic congestion: specifically, places carQueue0 , carQueue1 , and carQueue2

model the condition of low, moderate, and high volume of traffic, respec-

tively. Since we lack data on car traffic in Florence, we assume that the

average traffic density is approximatively 1000 cars per hour, which is a typ-

ical value for a high traffic flow on a single lane [89], and we consider the

case that the arrival/departure of two cars increases/decreases the traffic

congestion level, respectively, and that the time needed to occupy the inter-

section is nearly half the time needed to leave it. According to this, the EXP

transitions t7 and t8 have rate equal to 0.14 s−1, while the EXP transitions

t9 and t10 have rate equal to 0.067 s−1.

Intuitively, the number of cars in the queue increases when the private

traffic light is set to red and decreases otherwise. In order to model this be-

havior, transitions t7 and t8 are associated with an enabling function that

evaluates to true when at least one token is present in place setRedFromSmn

or in place setRedFromScnd (i.e., setRedFromSmn+setRedFromScnd>0). Con-

versely, transitions t9 and t10 are associated with an enabling function that

evaluates to true when no token is present in places setRedFromSmn and

setRedFromScnd (i.e., setRedFromSmn+setRedFromScnd==0).

8.5.3 Interaction between the tramway submodel and

the private transport submodel

Road congestion may cause cars to stand for a while on the tracks after the

private traffic light has turned to red, thus blocking trams. Place yellow

models the private traffic light set to yellow, while place KO actually models

the case that a tram ride is blocked by private vehicles on the lane. When

place KO receives a token, transition stopAll becomes enabled (given that it

is associated with an enabling function KO>0) and fires, depositing a token

in place inhibitAll. This finally disables transitions period, leavingFromSmn,

and leavingFromScndc, due the inhibitor arcs from KO to each of these

transitions.

Transitions t13 through t19 model the possibility that a tram ride is

blocked by private vehicles stopping on the tracks. If the traffic congestion

level is low (i.e., carQueue0 > 0), the tram runs regularly and transition

t19 is enabled, so that no token is deposited in place KO. If traffic con-

8.6 Analysis and Results 111

gestion increases to a moderate level (carQueue1 > 0) or to a high level

(carQueue2 > 0), transition t13 or transition t14 becomes enabled and

fires, respectively. In the former case (p3 > 0), transitions t15 and t17 fire

with probability 0.3 and 0.7, respectively, given that they have weight equal

to 30 and 70, respectively; in the latter case, transitions t16 and t18 fire with

probability 0.4 and 0.6, respectively, given that they have weight equal to 40

and 60, respectively. In doing so, the probability of a traffic block is 0.3 and

0.4 in the case of moderate and high traffic congestion, respectively. These

parameters have been estimated from tram delays observed in the data set

provided by GEST.

8.6 Analysis and Results

In this section, we report the results obtained from the analysis of the model

of Sect. 8.5. In all the experiments, we performed regenerative transient

analysis of the model through the ORIS tool using the following parameters:

• Time limit T = 7200 s (corresponding to 2 h);

• Time step ∆t = 20 s.

• Error ε = 0.01;

The first experiment has been performed with average traffic density equal

to 1000 cars per hour (i.e., the EXP transitions t7 and t8 have rate equal to

0.14 s−1, and the EXP transitions t9 and t10 have rate equal to 0.067 s−1, as

shown in Figure 8.3) and crosslight anticipation equal to 5 s (i.e., the value of

the DET transitions crosslightAnticipationSmn and crosslightAnticipation-

Scnd is 5 s, as also shown in Figure 8.3). Figure 8.4 shows the probability

of the private traffic queue status in a time interval of 2 h, obtained com-

puting the instantaneous rewards “carQueue0 > 0”, “carQueue1 > 0”, and

“carQueue2 > 0”. As we can see, the queue status tends to saturation quite

rapidly.

Figure 8.5 shows the KO probability for different values of the crosslight

anticipation parameter, obtained computing the instantaneous reward “KO >

0”. We observe that the probability of reaching the KO state increases ev-

ery 220 s for all the displayed curves, due to periodic tram departures. We

also note that the probability of reaching the KO state increases when the

112 Public and private transport integration model with STPN

0
36

0
72

0
10

80
14

40
18

00
21

60
25

20
28

80
32

40
36

00
39

60
43

20
46

80
50

40
54

00
57

60
61

20
64

80
68

40
72

00
0

0.2

0.4

0.6

0.8

1

1.2

carQueue0

carQueue1

carQueue2

Time (s)

Figure 8.4: Transient probability of the traffic queue status.

crosslight anticipation is higher: intuitively, when the anticipation time in-

creases, the time during which private traffic should flow away from the

intersection decreases, thus degrading the queue status and consequently

increasing the KO probability.

0
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00
44

00
48

00
52

00
56

00
60

00
64

00
68

00
72

00
0

0.2

0.4

0.6

0.8

1

1.2

KO 3s anticipation

KO 5s anticipation

KO 7s anticipation

Time (s)

Figure 8.5: Transient probability of the KO state for different values of the

crosslight anticipation parameter.

Finally, Figure 8.6 shows the KO probability (obtained computing the

instantaneous reward “KO > 0”) for different values of the private traffic

density. The probability of reaching the KO state increases when the traffic

8.7 Implication for practice and future research 113

0
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00
44

00
48

00
52

00
56

00
60

00
64

00
68

00
72

00
0

0.2

0.4

0.6

0.8

1

1.2

KO 500 cars/hour

KO 720 cars/hour

KO 1000 cars/hour

KO 1500 cars/hour

Time (s)

Figure 8.6: Transient probability of the KO state for different values of traffic

density.

density is higher and reaches 0.7 in less than half an hour with extremely

congested private traffic (i.e., 1500 cars per hour), while the same value

is reached in more than a hour with moderately congested private traffic

(i.e., 500 cars per hour).

We also argue that, for the planning of both tram timetables and traffic

light timings, it is important to consider the correlation between the time

of red signal, the time of green signal, and the tram headway, pointing out

the need of an integrated management of the different transport systems in

order to have a more robust and higher quality service. Furthermore, a more

detailed analysis is needed to accurately model the behavior of private traffic

during the day.

8.7 Implication for practice and future research

In this section we draw conclusions presenting the implication for practice

and introducing some ongoing and future research directions.

8.7.1 Implication for practice

Modeling and analysis of complex intersections for the integration of private

and public transport supports the evaluation of the perceived availability of

public transport and the identification of robust traffic light plans and tram

114 Public and private transport integration model with STPN

timetables. In this chapter, we presented an analytical approach to model

and evaluate a critical intersection for the Florence tramway. Specifically,

we used the ORIS tool to evaluate the probability of a traffic block, leverag-

ing regenerative transient analysis based on the method of stochastic state

classes to analyze a model of the intersection specified through Stochastic

Time Petri Nets (STPNs). The analysis results showed a correlation between

the frequency of tram rides, the traffic light plan, and the status of the queue

of private vehicles, pointing out that the frequency of tram rides impacts on

the road congestion. Therefore, compensating measures should be consid-

ered, such as synchronizing the passage of trams in opposite directions on

the road crossing.

8.7.2 Ongoing and future research

Within the context of modeling techniques to optimize the integration of

public and private traffic, our work will go towards the following directions:

• analyze other road/tramway intersections, also considering the new

tramway lines that will be opened in Florence, so as to to compare

differences and similarities and generalize the modeling methodology;

• improve the scalability of the approach by combining numerical solu-

tion of the tramway submodel through the ORIS tool with analytical

evaluation of the traffic congestion level, which could permit to model

private traffic more accurately (e.g., considering a larger number of

congestion levels) without incurring in the state space explosion prob-

lem;

• evaluate to which extent the behavior of passengers and pedestrians

as well as the weather conditions perturb the tramway performance,

including them in the model of the road/tramway intersection [88];

• compare the results obtained with analytical approach with the ones

obtained by microsimulation techniques.

Chapter 9

Conclusion

The work presented in this thesis is the result of a research activity aimed at

investigating on methods to improve the product lifecycle cost-effectiveness

in the context of railway domain. In particular it focused on different as-

pects: a main topic on system verification and a side project in performance

evaluation.

For what concerns system verification the focus was on the activity of

requirement review performed by the Verification Engineers in order to de-

tect defects in requirements expressed in natural language. This activity

is time consuming and error prone and we investigated to which extent an

automatic tool could help the Verification Engineers in this task.

In Chapters ranging from 3 to 7 is presented a case study experience

performed in collaboration with Alstom and ISTI-CNR. We first identified

a set of typical defects classes and, for each class, a Verification Engineer

of the company implemented a set of defect-detection patterns by means

of the GATE tool for text processing. A pilot study on 241 requirements

is presented, as well as a large-scale study on 1866 requirements. After a

refinement of the patterns, a precision of 83.16% and a recall of 85.39%

are obtained. Recall can be increased by using term-based defect detection

tools such as SREE [111], although at the cost of a lower precision. This

experience led to two publications [100, 51].

This is one of the first works in which defect detection NLP techniques are

applied on a very large set of industrial requirements annotated by domain

experts. We contribute with a comparison between traditional manual tech-

niques used in industry for requirements analysis, and analysis performed

115

116 Conclusion

with NLP. Our experience shows that several discrepancies can be observed

between the two approaches. The analysis of the discrepancies offers hints to

improve the capabilities of NLP techniques with company specific solutions,

and suggests that also company practices need to be modified to effectively

exploit NLP tools.

For what concerns system performance evaluation we focused on the

problem of interaction and integration between public and private traffic

in the actual and future cities. This activity was funded by the Fondazione

Cassa di Risparmio di Firenze and focused on the analysis of a critical in-

tersection for the Florence tramway. Specifically, we used the ORIS tool to

evaluate the probability of a traffic block, leveraging regenerative transient

analysis based on the method of stochastic state classes to analyze a model

of the intersection specified through Stochastic Time Petri Nets (STPNs).

The experience showed that an analytical analysis is possible on the sta-

tistical behaviors of undesired events often not considered in the simulation

scenarios.

The future research directions related to the two topics have been detailed

in Section 7.5.2 and Section 8.7.2 and here we observe that in both the

areas there is the need of capturing and understanding the “human factor”

influence; in one case it is related to the way human beings communicate

(the natural language), in the other it is related to what they use to behave

(when travelling by public transport or driving a vehicle). With the increase

of transport systems complexity, high quality and performance demand, thus

new challenges are introduced, but all of them need to consider the ‘human

factor” playing behind as it fills the gap between the ideal situation and the

reality.

Appendix A

Appendix A: Stochastic

Discrete Time Petri Nets

Petri Nets are a family of formalisms used in the modeling and analysis

of synchronous, asynchronous and distributed systems. There are countless

variations and extensions, that allow to deal with both qualitative and quan-

titative aspects of systems; some formalisms take into account time and are

purely nondeterministic, whereas some others enable a stochastic character-

ization of the system.

A.1 Petri Nets

One of the simplest models is the original Petri Net (PN), introduced in the

seminal work [93]. In the following Petri Nets are presented with modern

notations.

A.1.1 Syntax

A Petri Net (PN) is a tuple:

PN = 〈P ;T ;A−;A+;A•;w−;w+;w•;M〉

• P and T are disjoint sets of places and transitions.

• A− ⊆ P × T is a set of precondition arcs.

• A+ ⊆ T × P is a set of postcondition arcs.

117

118 Appendix A: Stochastic Discrete Time Petri Nets

• A• ⊆ P × T is a set of inhibitor arcs.

• w− : A− → N associates each precondition arc with a multiplicity.

• w− : A+ → N and w− : A• → N are defined analogously.

• M : P → N is a marking, and associates each place with a number of

tokens.

Petri Nets are essentially biparted graphs in which one of the two node

types, the place, is associated with a natural number. A graphical represen-

tation of a Petri Net is given in Figure A.1; places are represented as circles

and transitions as black rectangles; preconditions are arrows going from a

place to a transition; postconditions are arrows going from a transition to

a place; an inhibitor arc is a line going from a place to a transition, termi-

nated by a small black circle; the marking is represented by decorating every

place with the corresponding number of tokens; weights are natural numbers

written near the arc they refer to, and when no multiplicity is specified it is

assumed to be 1.

t

t

p

p

p

1

2

3

1

2

Figure A.1: A simple Petri Net.

A place p is called an input place for a transition t if (p, t) ∈ A−; it

is called an output place if (t, p) ∈ A+; it is called an inhibitor place if

(p, t) ∈ A•. It is a good idea, in order to simplify notations, to extend the

domain of w− and w• to the entire set P × T , and the domain of w+ to the

entire set T × P ; these extensions are denoted with the symbol δ:

δ− : P × T → N, δ−(p, t) =

{
w−((p, t)) if (p, t) ∈ A−

0 otherwise

A.1 Petri Nets 119

δ+ : T × P → N, δ+(t, p) =

{
w+((t, p)) if (t, p) ∈ A+

0 otherwise

δ• : P × T → N, δ•(p, t) =

{
w•((p, t)) if (p, t) ∈ A•

+∞ otherwise

A.1.2 Semantics

The state of a PN consists of its marking:

s = 〈M〉

The state evolves according to two rules.

Enabling

A transition t is enabled if and only if, for each of its precondition arcs

(p, t) ∈ A− it is true that M(p) ≥ w−((p, t)), and for each of its inhibitor

arcs (p, t) ∈ A• it is true that M(p) < w•((p, t)). This is equivalent to

requiring that δ•((p, t)) > M(p) ≥ δ−(p, t) for any place p.

Firing

An enabled transition t can fire, leading to a transition relation
t→ between

states such that s = 〈M〉 t→ s′ = 〈M ′〉 if and only if, for each place p:

M ′(p) = M(p)− δ−(p, t) + δ+(t, p)

In other words, when a transition fires, tokens are removed from its input

places and are added to its output places. The amount of tokens is specified

by the multiplicities δ− and δ+.

A.1.3 State-Space generation

Given an initial state So, the succession relation
t→ identifies a set of reach-

able states S and a transition system TS = 〈So,S,
t→〉. Derivation of the

TS requires algorithms for the symbolic firing of transitions; for example

methods using relational product that can be efficiently implemented.

120 Appendix A: Stochastic Discrete Time Petri Nets

A.2 Discrete-Time Stochastic Petri Nets

This section describes a simplified version of the Petri Net formalism first

introduced in [17].

A.2.1 Syntax

A Discrete-Time Stochastic Petri Net (dtSPN) is a tuple:

dtSPN = 〈P ;T ;A−;A+;A•;w−;w+;w•;M ;D; C〉

• P and T are disjoint sets of places and transitions.

• A− ⊆ P × T is a set of precondition arcs.

• A+ ⊆ T × P is a set of postcondition arcs.

• A• ⊆ P × T is a set of inhibitor arcs.

• w− : A− → N associates each precondition arc with a multiplicity.

• w− : A+ → N and w− : A• → N are defined analogously.

• M : P → N is a marking, and associates each place with a number of

tokens.

• D associates each transition t with a static probability mass function

Dt. The extrema of the support of Dt are the static earliest and latest

firing time and are denoted EFT s(t) and LFT s(t) respectively.

• C : T → N is a competitiveness function.

The graphical representation of a dtSPN is very similar to the one of

a PN; the only additional elements are annotations for probability mass

functions and competitiveness. An example of dtSPN is shown in Figure A.2.

The family of Petri Net formalisms is quite homogeneous and it is often

the case that syntactical differences can be handled by decorating the basic

PN syntax with extended elments. Decorating the semantics, however, is

way harder; but can be a very efficient way to enable code reuse and favor

the development of multi-formalism environments. An example of such a

framework which is actively maintained is [22].

A.2 Discrete-Time Stochastic Petri Nets 121

t 3

tp p

p

1

3

1 2

[1,3]

[3,3]

t 2

[0,0]

2

3

1

Figure A.2: A simple Discrete-Time Stochastic Petri Net. Note that when

enabled t2 fires deterministically in zero time, t3 fires deterministically in 3

time units and t1 has a nondeterministic firing time; when only the interval

[EFTt, LFTt] is specified for a transition t, the static distribution Dt is

assumed to be uniform, hence transition t1 could execute in 1, 2, or 3 time

units with probability 1/3.

A.2.2 Semantics

The state of a dtSPN consists of a marking M and a vector ~ttf of integer

times to fire, one for each transition t, denoted ttft:

s = 〈M, ~ttf〉

The state evolves according to four rules.

Enabling

A transition t is enabled if and only if, for each of its precondition arcs

(p, t) ∈ A− it is true that M(p) ≥ w−((p, t)), and for each of its inhibitor

arcs (p, t) ∈ A• it is true that M(p) < w•((p, t)). This is equivalent to

requiring that δ•((p, t)) > M(p) ≥ δ−(p, t) for any place p.

Firability

A transition t is fireable if it is enabled and its time to fire ttft is equal to

0. The set of fireable transitions is called the attempting set. Note that for

a disabled transition t the time to fire is irrelevant, and could be thought as

to be +∞.

122 Appendix A: Stochastic Discrete Time Petri Nets

Step selection

If the attempting set is empty, time advances by one tick. Otherwise a firing

set is derived from the attempting set through repetitive stochastic selection;

until the attempting set is not empty, any of its transitions t∗ is randomly

selected with probability Prob{t∗}, it is removed from the attempting set,

and it is added to the firing set if and only if it is not in conflict with the firing

set. A set T ′ ⊆ T of transitions is nonconflicting if
∑
t∈T ′ δ−(p, t) ≤ M(p)

for any place p, otherwise it is conflicting. This definition is adapted from

[18], but is compatible with the semantics of [17]. The probability of selecting

t∗ depends on its competitiveness and on those of the other transitions still

in the attempting set:

Prob{t∗} =
C(t∗)∑

t∈Attempting set
C(t)

Note that, since the repetitive stochastic selection stops only when the at-

tempting set is empty, the firing set that is derived is effectively maximal :

two transitions that can fire simultaneously will do so.

Progress

If time advances the marking remain unchanged and the time to fire of any

enabled transition is reduced by one time unit. Otherwise a firing set φ

fires, and the marking is updated for each place p by taking into account the

preconditions and postconditions of all the transitions in the firing set:

M ′(p) = M(p)−
∑
t∈φ

δ−(p, t) +
∑
t∈φ

δ+(t, p)

In doing so, a temporary marking Mtmp is also derived, which accounts for

decrementing token counts on input places:

Mtmp(p) = M(p)−
∑
t∈φ

δ−(p, t)

M(p) = Mtmp +
∑
t∈φ

δ+(t, p)

Transition which are enabled in M ′ are either persistent or newly enabled :

• A transition t is newly enabled if it is enabled in M ′ but not in Mtmp

or if t ∈ φ;

A.2 Discrete-Time Stochastic Petri Nets 123

• A transition t is persistent if it is enabled in both M ′ and in Mtmp.

A persistent transition t has its time to fire ttft unchanged; a newly

enabled transition t has its time to fire ttft resampled nondeterministically

according to the probability mass function Dt. Time to fire is irrelevant for

transitions not enabled in M , because they will be resampled as soon as they

are newly enabled.

This semantics describes a transition relation
ev,µ→ , where µ is a probability

measure and ev is either a time advancement event, also called a tick event,

or a firing event. For the time advancement event µ = 1, while for the firing

event µ depends on both the result of repetitive stochastic selection as well

as on the determination of the times to fire resampled for newly enabled

transitions.

As an example, consider the dtSPN of Figure A.2; in this model a firing

event could happen after one, two or three ticks; if it happens after one or

two, then it involves only t1, that is, φ = {t1}; after three ticks, t1 and t2
must fire simultaneously, that is, φ = {t1, t2}.

A.2.3 Maximal step semantics

The expression maximum firing strategy was introduced in [18] and denotes

an execution semantics for Petri Nets such that, intuitively, all transitions

that can fire compete to do so, and eventually some of them execute si-

multaneously; in [17] the terminology maximal step semantics is used to

denote a similar behavior, with an additional stochastic characterization via

stochastic repetitive selection. Throughout the rest of the dissertation, the

expression “maximal step semantics” is used.

Maximal step semantics is inherently more complex than interleaving se-

mantics, in which transitions fire one at a time. Under interleaving seman-

tics, if in state s a set E ⊆ T of transitions are enabled, then there are exactly

|E| possible firing events that can lead to other states, one for each enabled

transition. Under the maximal step semantics instead, any subset φ ⊆ E can

lead to a corresponding firing event; the only restriction is that subsets must

be maximal, so that if φ1 ⊆ φ2 is a set derived through repetitive stochastic

selection, then φ2 certainly is not. However this restriction does not prevent

the number of possible firing sets from growing exponentially in the worse

case.

124 Appendix A: Stochastic Discrete Time Petri Nets

A.2.4 Stochastic states

The evolution of a dtSPN is regarded as a discrete time stochastic process.

The states of this process are called stochastic states to distinguish them

from the states introduced in Section A.2.2. A stochastic state consists in

a marking M and a vector ~P of probability mass functions for the times to

fire of the transitions enabled by M .

s = 〈M, ~P〉

The evolution across stochastic states is described through a succession re-

lation
ev,µ⇒ where ev is an event and µ a measure of probability. ev could be

tick, defer or a firing set φ denoting a firing event. Given two stochastic

states S = 〈M, ~P〉 and S′ = 〈M ′, ~P ′〉, S ev,µ⇒ S′ if and only if the following

property holds: if the marking is M and the vector of times to fire is a ran-

dom variable distributed according to ~P, then ev is a possible next event,

which occurs with probability µ, and which leads to a new marking M ′ and

a new vector of times to fire distributed according to ~P ′.
In addition to tick and firing events, in stochastic state-space genera-

tion an additional fictious defer event is considered. defer accounts for the

instantaneous choice that no fireable transition will fire before the advance-

ment of time. With this convention, the set of outgoing events for a given

state can take one of the following two forms:

• a single tick event;

• several firing events, one for each possible firing set, plus an optional

defer event.

A.2.5 Stochastic State-Space generation

Given an initial stochastic state So, the succession relation
ev,µ⇒ identifies a

set of reachable stochastic states S and a timed stochastic transition system

STS = 〈So,S,
ev,µ⇒ 〉. Derivation of the STS requires algorithms for the

detection of the outcoming events from a stochastic state, for the calculus of

their probability, and for the derivation of successor stochastic states.

Tick event

Tick is an outcoming event for S = 〈M, ~P〉 if and only if Pt(0) = 0 for every

transition t enabled under marking M or, in other words, if EFTt > 0. In

A.2 Discrete-Time Stochastic Petri Nets 125

the transition from S to S′ = 〈M ′, ~P ′〉 through a tick event, marking is not

changed, while time to fire of enabled transitions is updated in the following

way:

P ′t(n) = Pt(n+ 1) (A.1)

The probability of the µ = tick event is:

Ptick(S) = 1 (A.2)

Defer event

Defer is an outcoming event for S if and only if Pt(0) < 1 for each enabled

transition and Pto(0) > 0 for at least one enabled transition to or, in other

words, if LFTt > 0 and EFTto = 0. In the transition from S to S′ = 〈M ′, ~P ′〉
through a defer event, marking is not changed, while time to fire of enabled

transitions is updated by conditioning the time to fire to being higher than

zero:

P ′t(n) =

{
0 it t is enabled in S and n = 0
Pt(n)

1−Pt(0) it t is enabled in S and n 6= 0
(A.3)

The probability of the µ = defer event is:

Pdefer(S) =
∏

t∈fireable(S)

(1− Pt(0)) =
∏

t∈Enabled(S)

(1− Pt(0)) (A.4)

where Enabled(S) is the set of transitions that are enabled in state S

and fireable(S) ⊆ Enabled(S) is the subset of those transitions for which

Pt(0) 6= 0.

Firing event

The firing of a set φ = {tn}Hn=1 is an outcoming event for S if and only

if: φ contains only enabled and nonconflicting transitions, every transition

t ∈ φ can fire before time advances and, and every enabled transition tnc /∈ φ
which is not conflicting with φ can be delayed, i.e.

126 Appendix A: Stochastic Discrete Time Petri Nets

Pt(0) > 0 ∀t ∈ φ (A.5)

Ptnc(0) < 1 ∀tnc /∈ φ, enabled and not conflicting with φ. (A.6)

In the transition from S to S′ = 〈M ′, ~P ′〉 through the firing of set φ,

marking is changed according to the marking update rule described in Sec-

tion A.2.2, while the components of vector ~P are updated differently for

transitions that are persistent or newly enabled after the firing of φ: newly

enabling involves a resampling of the time to fire, while the time to fire of

persistent transitions is conditioned to be higher than zero:

P ′t(n) =

Dt(n) if t is newly enabled

0 it t is enabled in S and n = 0
Pt(n)

1−Pt(0) it t is enabled in S and n 6= 0

(A.7)

The probability of the µ = φ event is:

Pφ(S) =
∑

σ∈Att(S)

Pφ|σ · Pσ(S) (A.8)

where Att(S) is the set of attempting sets that are feasible in S, Pσ(S)

is the probability that σ is the attempting set for a ~ttf distributed like ~P,

and Pφ|σ is the probability that φ is the firing set given that the attempting

set is σ. Due to the independence of times to fire of different transition,

Pσ(S) =
∏
ti∈σ
Pti(0)

∏
tj∈fireable(S)\σ

(1− Ptij (0)) (A.9)

where fireable(S) \ σ denotes the set of fireable transitions that are not

included in the attempting set. Pφ|σ can be seen as a sum over different

possible orderings:

Pφ|σ =
∑

seq∈Perm(σ)

Pφ|seq · Pseq|σ (A.10)

where Perm(σ) is the set of permutations of the elements of σ and seq

denotes any such permutations. Pseq|σ is the probability that the transitions

A.3 Stochastic Preemptive Time Petri Nets 127

in σ are selected in the order implied by seq, and can be expressed as

Pseq|σ =

|seq|∏
i=1

C(tseqi)
|seq|∑
h=i

C(tseqh)

(A.11)

and Pφ|seq is 1 if and only if every transition t ∈ φ appears in seq before

any other transition which has conflict with t itself, and is 0 otherwise.

A.3 Stochastic Preemptive Time Petri Nets

The formalism of dtSPNs is a simplified version of the one described in [17],

which the authors called Stochastic Preemptive Time Petri Nets (spTPNs).

These are a discrete and stochastic variant of continuous time Preemptive

Time Petri Nets [21]. The main feature of preemptive Petri Nets is the

concept of preemptable resource; any transition t is associated with a marking

dependent priority, Prio(t,M), and a set Req(t) of requested resources. An

enabled transition to is progressing if and only if every resource in Req(to)

is not in the Req(t1) of any other enabled transition t1 with higher priority;

transitions that are enabled but not progressing are said to be suspended.

Only progressing transitions can be fireable and be part of the attempting

set. Intuitively, a suspended transition is similar to a disabled one, because

it cannot fire, but when it becomes progressing again its time to fire is not

resampled, in contrast to disabled transitions which become newly enabled.

Preemptive time Petri Nets are a very powerful formalism for the analysis

of real-time systems. An example of spTPNs is shown in Figure A.3. The

reader should refer to [17] and [21] for additional information.

t 3

tp p

p

1

3

1 2

[1,3]
{cpu}:low

[3,3]
{cpu}:high

t 2

[0,0]
{cpu}:low

2

3

1

Figure A.3: A simple Stochastic Preemptive Time Petri Net

.

128 Appendix A: Stochastic Discrete Time Petri Nets

Publications

This research activity has led to the following publications.

International Journals

1. Alessio Ferrari, Gloria Gori. Benedetta Rosadini, Jacopo Trotta, Stefano

Bacherini, Alessandro Fantechi, Stefania Gnesi “Detecting requirements de-

fects with NLP patterns: an industrial experience in the railway domain”,

Empirical Software Engineering, vol. in press, 2018 [DOI:10.1007/s10664-

018-9596-7]

International Conferences and Workshops

1. Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Ste-

fania Gnesi, Jacopo Trotta, Stefano Bacherini “Using NLP to Detect Re-

quirements Defects: An Industrial Experience in the Railway Domain”, in

Proceedings of the 23rd International Working Conference on Requirements

Engineering: Foundation for Software Quality (REFSQ’17) , Essen (Ger-

many), 2017

2. Laura Carnevali, Alessandro Fantechi, Gloria Gori, Enrico Vicario “Us-

ing NLP to Detect Requirements Defects: An Industrial Experience in the

Railway Domain”, submitted and accepted in Proceedings of the 12th Inter-

national Conference on Verification and Evaluation of Computer and Com-

munication Systems, Grenoble (France), 2018

129

130 Publications

Bibliography

[1] ACEA, “The 2030 Urban Mobility Challenge,” European Automobile Man-

ufacturers Association, Tech. Rep., May 2016.

[2] A. Agarwal and G. Lämmel, “Modeling seepage behavior of smaller vehicles

in mixed traffic conditions using an agent based simulation,” Transportation

in Developing Economies, vol. 2, no. 2, p. 12, 2016.

[3] S. A. Alvarez, “An exact analytical relation among recall, precision, and clas-

sification accuracy in information retrieval,” Computer Science Department,

Boston College, Tech. Rep. BCCS-02-01, 2002.

[4] V. Ambriola and V. Gervasi, “On the systematic analysis of natural language

requirements with Circe,” Automated Software Engineering, vol. 13, no. 1,

pp. 107–167, 2006.

[5] B. Anda and D. I. Sjøberg, “Towards an inspection technique for use case

models,” in Proceedings of the 14th International Conference on Software

Engineering and Knowledge Engineering (SEKE’02). ACM, 2002, pp. 127–

134.

[6] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated Checking

of Conformance to Requirements Templates Using Natural Language Pro-

cessing,” IEEE Transactions on Software Engineering, vol. 41, no. 10, pp.

944–968, 2015.

[7] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software inspec-

tions after 25 years,” Software Testing, Verification and Reliability, vol. 12,

no. 3, pp. 133–154, 2002.

[8] R. L. Baskerville and A. T. Wood-Harper, “A critical perspective on action

research as a method for information systems research,” Journal of informa-

tion Technology, vol. 11, no. 3, pp. 235–246, 1996.

[9] S. Bernardi, J. Campos, and J. Merseguer, “Timing-failure risk assessment

of uml design using time petri net bound techniques,” IEEE Transactions

on Industrial Informatics, vol. 7, no. 1, pp. 90–104, 2011.

131

132 BIBLIOGRAPHY

[10] D. M. Berry, J. Cleland-Huang, A. Ferrari, W. Maalej, J. Mylopoulos, and

D. Zowghi, “Panel: Context-Dependent Evaluation of Tools for NL RE

Tasks: Recall vs. Precision, and Beyond,” in 2017 IEEE 25th International

Requirements Engineering Conference (RE), Sept 2017, pp. 570–573.

[11] D. M. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong, “The case for dumb

requirements engineering tools,” in Proceedings of the 18th International

Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ’12), ser. LNCS, vol. 7195. Springer, 2012, pp. 211–217.

[12] D. M. Berry, E. Kamsties, and M. M. Krieger, “From Contract Drafting to

Software Specification: Linguistic Sources of Ambiguity,” 2003.

[13] D. M. Berry and E. Kamsties, “The syntactically dangerous all and plural

in specifications,” IEEE Software, vol. 22, no. 1, pp. 55–57, 2005.

[14] M. Biagi, L. Carnevali, M. Paolieri, and E. Vicario, “Performability eval-

uation of the ERTMS/ETCS - Level 3,” Transportation Research Part C:

Emerging Technologies, vol. 82, pp. 314–336, 2017.

[15] F. Bonin, F. Dell’Orletta, G. Venturi, and S. Montemagni, “A contrastive ap-

proach to multi-word term extraction from domain corpora,” in Proceedings

of the 7th International Conference on Language Resources and Evaluation

(LREC’10), 2010, pp. 19–21.

[16] G. Bucci, L. Carnevali, L. Ridi, and E. Vicario, “Oris: a tool for model-

ing, verification and evaluation of real-time systems,” International Journal

for Software Tools for Technological Transfer, vol. 12, no. 5, pp. 391–403,

September 2010.

[17] G. Bucci, L. Sassoli, and E. Vicario, “Correctness verification and perfor-

mance analysis of real time systems using stochastic preemptive Time Petri

Nets,” in IEEE Trans Software Engineering, vol. 31, no. 11, 2005, pp. 913–

927.

[18] H.-D. Burkhard, “Ordered Firing in Petri Nets,” Elektronische Informa-

tionsverarbeitung und Kybernetik, vol. 17, no. 2/3, pp. 71–86, 1981.

[19] L. Carnevali, L. Grassi, and E. Vicario, “State-density functions over dbm

domains in the analysis of non-markovian models,” IEEE Transactions on

Software Engineering, vol. 35, no. 2, pp. 178–194, 2009.

[20] L. Carnevali, F. Flammini, M. Paolieri, and E. Vicario, “Non-Markovian

Performability Evaluation of ERTMS/ETCS Level 3,” in Lecture Notes in

Computer Science 9272, EPEW 2015. Springer, 2015, pp. 47–62.

[21] L. Carnevali, L. Ridi, and E. Vicario, “Putting Preemptive Time Petri Nets

to Work in a V-Model SW Life Cycle,” IEEE Trans. Softw. Eng., vol. 37,

no. 6, pp. 826–844, Nov. 2011.

BIBLIOGRAPHY 133

[22] ——, “Sirio: A Framework for Simulation and Symbolic State Space Analysis

of non-Markovian Models,” in Proceedings of the 2011 Eighth International

Conference on Quantitative Evaluation of SysTems, ser. QEST ’11. Wash-

ington, DC, USA: IEEE Computer Society, 2011, pp. 153–154.

[23] A. Casamayor, D. Godoy, and M. Campo, “Functional grouping of natural

language requirements for assistance in architectural software design,” KBS,

vol. 30, pp. 78–86, 2012.

[24] CENELEC, “EN-50129: Railway Applications - Safety related electronic rail-

way control and protection systems,” Tech. Rep., 1994.

[25] ——, “EN-50126: Railway Applications - The specication and demonstration

of dependability, reliability, availability, maintainability and safety.” Tech.

Rep., 1996.

[26] ——, “EN-50128:2011: Railway Applications - Communication, signalling

and processing systems - Software for railway control and protection sys-

tems,” Tech. Rep., 2011.

[27] ——, “EN-50159: Railway Applications - Communication, signaling and pro-

cessing systems, Part 1: Safety-Related Communication in Closed Transmis-

sion Systems.” Tech. Rep., 2011.

[28] F. Chantree, B. Nuseibeh, A. N. De Roeck, and A. Willis, “Identifying

Nocuous Ambiguities in Natural Language Requirements,” in Proceedings of

the 14th IEEE International Requirements Engineering Conference (RE’06).

IEEE, 2006, pp. 56–65.

[29] D. Charypar, K. Axhausen, and K. Nagel, “Event-driven queue-based traf-

fic flow microsimulation,” Transportation Research Record: Journal of the

Transportation Research Board, pp. 35–40, 2007.

[30] K. Cho, B. Van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder

for Statistical Machine Translation,” CoRR, vol. abs/1406.1078, 2014.

[31] H. Choi, V. G. Kulkarni, and K. S. Trivedi, “Markov regenerative stochastic

petri nets,” Perform. Eval., vol. 20, no. 1-3, pp. 333–357, May 1994.

[32] I. Ciuti, “Jean-Luc Laugaa: “Ingorgo-trappola alla stazione, un

rischio anche per la linea 2”,” Repubblica.it, 2014. [Online]. Available:

http://goo.gl/QxrXR4.

[33] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A machine

learning approach for tracing regulatory codes to product specific require-

ments,” in ICSE (1). ACM, 2010, pp. 155–164.

[34] K. Collins-Thompson, “Computational assessment of text readability: A sur-

vey of current and future research,” ITL-International Journal of Applied

Linguistics, vol. 165, no. 2, pp. 97–135, 2014.

http://goo.gl/QxrXR4.

134 BIBLIOGRAPHY

[35] H. Cunningham, “GATE, a general architecture for text engineering,” Com-

puters and the Humanities, vol. 36, no. 2, pp. 223–254, 2002.

[36] M. Cutts, The plain English guide. Oxford University Press, 1996.

[37] D. Méndez Fernández and S. Wagner and M. Kalinowski and A. Schekelmann

and A. Tuzcu and T. Conte and R. Spinola and R. Prikladnicki, “Naming

the Pain in Requirements Engineering: Comparing Practices in Brazil and

Germany,” IEEE Software, vol. 32, no. 5, pp. 16–23, 2015.

[38] L. Derczynski, D. Maynard, G. Rizzo, M. van Erp, G. Gorrell, R. Troncy,

J. Petrak, and K. Bontcheva, “Analysis of named entity recognition and

linking for tweets,” Information Processing & Management, vol. 51, no. 2,

pp. 32–49, 2015.

[39] D. L. Dill, “Timing assumptions and verification of finite-state concur-

rent systems,” in Automatic Verification Methods for Finite State Systems,

J. Sifakis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp.

197–212.

[40] C. Dobler and G. Lämmel, “Integration of a multi-modal simulation module

into a framework for large-scale transport systems simulation,” in Pedestrian

and Evacuation Dynamics 2012. Springer International Publishing, 2013,

pp. 739–754.

[41] ERTRAC, “ERTRAC Road Transport Scenario 2030+ “Road to Implemen-

tation”,” European Road Transport Research Advisory Council, Tech. Rep.,

October 2009.

[42] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic approach

to the natural language requirements quality: benefit of the use of an au-

tomatic tool,” in Proceedings of the 26th Annual NASA Goddard Software

Engineering Workshop. IEEE, 2001, pp. 97–105.

[43] M. E. Fagan, “Design and code inspections to reduce errors in program

development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[44] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an indus-

trial case study in retrieving equivalent requirements via natural language

processing techniques,” IEEE Transactions on Software Engineering, vol. 39,

no. 1, pp. 18–44, 2013.

[45] A. Fantechi, P. Frasconi, G. Gori, F. Orsini, and M. Papini, “Defect detection

and machine learning for requirement engineering: new roadmaps,” 2018,

Poster presented at NLP4RE’18 and REFSQ’18.

[46] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality assur-

ance with requirements smells,” Journal of Systems and Software, vol. 123,

pp. 190–213, 2017.

BIBLIOGRAPHY 135

[47] H. Femmer, J. Kučera, and A. Vetrò, “On the impact of passive voice re-

quirements on domain modelling,” in Proceedings of the 8th ACM / IEEE

International Symposium on Empirical Software Engineering and Measure-

ment (ESEM’14), Art. 21. ACM, 2014.

[48] A. Ferrari, F. Dell’Orletta, A. Esuli, V. Gervasi, and S. Gnesi, “Natural Lan-

guage Requirements Processing: a 4D Vision,” IEEE Software (to appear),

2017.

[49] A. Ferrari, F. dell’Orletta, G. O. Spagnolo, and S. Gnesi, “Measuring and im-

proving the completeness of natural language requirements,” in Proceedings

of the 20th International Working Conference on Requirements Engineering:

Foundation for Software Quality (REFSQ’14). Springer, 2014, pp. 23–38.

[50] A. Ferrari and S. Gnesi, “Using collective intelligence to detect pragmatic

ambiguities,” in Proceedings of the 20th IEEE International Requirements

Engineering Conference (RE’12). IEEE, 2012, pp. 191–200.

[51] A. Ferrari, G. Gori, B. Rosadini, A. Fantechi, S. Gnesi, I. Trotta, and

S. Bacherini, “Detecting requirements defects with NLP patterns: an in-

dustrial experience in the railway domain,” Empirical Software Engineering,

2018.

[52] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “PURE: A Dataset of Public

Requirements Documents,” in Requirements engineering Conference. IEEE,

2017.

[53] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit knowledge in re-

quirements elicitation interviews,” Requirements Engineering, vol. 21, no. 3,

pp. 333–355, 2016.

[54] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks,” arXiv:1703.03400 [cs], Mar. 2017, 00052

arXiv: 1703.03400.

[55] H. Fujii, H. Uchida, and S. Yoshimura, “Agent-based simulation framework

for mixed traffic of cars, pedestrians and trams,” Transportation Research

Part C: Emerging Technologies, vol. 85, pp. 234–248, 2017.

[56] R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of abstraction

identification in requirements engineering,” in Proceedings of the 18th IEEE

International Requirements Engineering Conference (RE’10). IEEE, 2010,

pp. 5–14.

[57] C. Gawron, “An iterative algorithm to determine the dynamic user equilib-

rium in a traffic simulation model,” International Journal of Modern Physics

C, vol. 9, no. 3, pp. 393–407, 1998.

136 BIBLIOGRAPHY

[58] R. German, Performance Analysis of Communication Systems with Non-

Markovian Stochastic Petri Nets. John Wiley & Sons, Inc., 2000.

[59] V. Gervasi and D. Zowghi, “Reasoning About Inconsistencies in Natural

Language Requirements,” ACM Transactions on Software Engineering and

Methodology, vol. 14, no. 3, pp. 277–330, 2005.

[60] S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, and R. J. Wieringa, “Generalizing

by similarity: Lessons learnt from industrial case studies,” in Proceedings of

the 1st international workshop on conducting empirical studies in industry.

IEEE Press, 2013, pp. 37–42.

[61] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection: Towards a

tool explaining ambiguity sources,” in Proceedings of the 16th International

Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ’10), ser. LNCS, vol. 6182. Springer, 2010, pp. 218–232.

[62] S. Gnesi, G. Lami, and G. Trentanni, “An automatic tool for the analysis of

natural language requirements,” International Journal of Computer Systems

Science and Engineering, vol. 20, no. 1, pp. 53–62, 2005.

[63] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology

transfer in practice,” IEEE software, vol. 23, no. 6, pp. 88–95, 2006.

[64] G. Goth, “Deep or shallow, NLP is breaking out,” Communications of the

ACM, vol. 59, no. 3, pp. 13–16, 2016.

[65] A. Higgins, E. Kozan, and L. Ferreira, “Optimal scheduling of trains on a

single line track,” Transportation Research Part B: Methodological, vol. 30,

no. 2, pp. 147 – 161, 1996.

[66] A. HorváTh, M. Paolieri, L. Ridi, and E. Vicario, “Transient analysis of non-

markovian models using stochastic state classes,” Perform. Eval., vol. 69, no.

7-8, pp. 315–335, 2012.

[67] IEEE, “IEEE Guide for Developing System Requirements Specifications,”

IEEE Std 1233, 1998 Edition, pp. 1–36, Dec 1998.

[68] ISO, IEC, IEEE, “ISO/IEC/IEEE International Standard - Systems and

software engineering – Life cycle processes –Requirements engineering,”

ISO/IEC/IEEE 29148:2011(E), pp. 1–94, Dec 2011.

[69] E. Kamsties, “Understanding Ambiguity in Requirements Engineering,” in

Engineering and Managing Software Requirements. Springer Berlin Heidel-

berg, 2005, pp. 245–266.

[70] E. Kamsties, D. M. Berry, and B. Paech, “Detecting ambiguities in require-

ments documents using inspections,” in Proceedings of the 1st Workshop on

Inspection in Software Engineering (WISE’01), 2001, pp. 68–80.

BIBLIOGRAPHY 137

[71] N. Kang, E. M. van Mulligen, and J. A. Kors, “Comparing and combin-

ing chunkers of biomedical text,” Journal of biomedical informatics, vol. 44,

no. 2, pp. 354–360, 2011.

[72] B. S. Kerner, S. L. Klenov, and D. E. Wolf, “Cellular automata approach to

three-phase traffic theory,” Journal of Physics A: Mathematical and General,

vol. 35, no. 47, pp. 9971–10 013, 2002.

[73] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for tools

for ambiguity identification and measurement in natural language require-

ments specifications,” Requirements Engineering, vol. 13, no. 3, pp. 207–239,

2008.

[74] L. Kof, “From textual scenarios to message sequence charts: Inclusion of

condition generation and actor extraction,” in Proceedings of the 16th IEEE

International Requirements Engineering Conference, (RE’08). IEEE, 2008,

pp. 331–332.

[75] ——, “Translation of textual specifications to automata by means of dis-

course context modeling,” in Proceedings of the 15th International Working

Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ’09), ser. LNCS, vol. 5512. Springer, 2009, pp. 197–211.

[76] ——, “From requirements documents to system models: A tool for inter-

active semi-automatic translation,” in Proceedings of the 18th IEEE Inter-

national Requirements Engineering Conference (RE’10). IEEE, 2010, pp.

391–392.

[77] D. Krajzewicz, J. Erdmann, J. Härri, and T. Spyropoulos, “Including pedes-

trian and bicycle traffic into the traffic simulation SUMO,” in ITS 2014, 10th

ITS European Congress, 16-19 June 2014, Helsinki, Finland, 2014.

[78] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “Sumo (simulation

of urban mobility) - an open-source traffic simulation,” in 4th Middle East

Symposium on Simulation and Modelling, 2002, pp. 183–187.

[79] J. R. Landis and G. G. Koch, “The measurement of observer agreement for

categorical data,” Biometrics, pp. 159–174, 1977.

[80] J.-C. Laprie, Dependability: Basic Concepts and Terminology., ser. Depend-

able Computing and Fault-Tolerant Systems, V. Springer, Ed., 1992, vol. 5.

[81] X. Lian, M. Rahimi, J. Cleland-Huang, L. Zhang, R. Ferrari, and M. Smith,

“Mining Requirements Knowledge from Collections of Domain Documents

Dependable Computing and Fault-Tolerant Systems,” in Proceedings of the

24th IEEE International Requirements Engineering Conference (RE’16).

IEEE, 2016, pp. 156–165.

138 BIBLIOGRAPHY

[82] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?

on automatically classifying app reviews,” in Proceedings of the 23rd IEEE

International Requirements Engineering Conference, (RE’15). IEEE, 2015,

pp. 116–125.

[83] C. D. Manning, “Part-of-speech tagging from 97% to 100%: is it time for

some linguistics?” in Proceedings of the 12th International Conference on

Intelligent Text Processing and Computational Linguistics (CICLing’11), ser.

LNCS. Springer, 2011, vol. 6608, pp. 171–189.

[84] S. Martina, M. Paolieri, T. Papini, and E. Vicario, “Performance evaluation

of fischer’s protocol through steady-state analysis of markov regenerative pro-

cesses,” in 2016 IEEE 24th International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (MASCOTS),

2016, pp. 355–360.

[85] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to

requirements syntax (EARS),” in Proceedings of the 17th IEEE International

Requirements Engineering Conference (RE’09). IEEE, 2009, pp. 317–322.

[86] A. Mavin, P. Wilksinson, S. Gregory, and E. Uusitalo, “Listens learned (8

lessons learned applying EARS),” in Proceedings of the 24th IEEE Inter-

national Requirements Engineering Conference (RE’16). IEEE, 2016, pp.

276–282.

[87] L. Mich, “NL-OOPS: from natural language to object oriented requirements

using the natural language processing system LOLITA,” NLE, vol. 2, no. 2,

pp. 161–187, 1996.

[88] E. Nagy and C. Csiszár, “Analysis of Delay Causes in Railway Passenger

Transportation,” Periodica Polytechnica Transportation Engineering, vol. 43,

no. 2, pp. 73–80, 2015.

[89] J. Ondráček, J. Schwarz, V. Žd́ımal, L. Andělová, P. Vodička, V. B́ızek,

C.-J. Tsai, S.-C. Chen, and J. Smoĺık, “Contribution of the road traffic to

air pollution in the Prague city (busy speedway and suburban crossroads),”

Atmospheric Environment, vol. 45, no. 29, pp. 5090–5100, 2011.

[90] M. Paolieri, A. Horvath, and E. Vicario, “Probabilistic model checking of

regenerative concurrent systems,” IEEE Transactions on Software Engineer-

ing, vol. 42, no. 2, pp. 153–169, 2016.

[91] Y. Papadopoulos and J. McDermet, “The Potential for a Generic Approach

to Certification of Safety-Critical Systems in the Transportation Sector,”

Journal of reliability engineering and system safety, vol. 63, no. 1, pp. 47–66,

1999.

BIBLIOGRAPHY 139

[92] G. Peng, X. Cai, C. Liu, B. Cao, and M. Tuo, “Optimal velocity difference

model for a car-following theory,” Physics Letters A, vol. 375, no. 45, pp.

3973 – 3977, 2011.

[93] C. A. Petri, “Communication with automata,” Ph.D. dissertation, 1966.

[94] K. Pohl and C. Rupp, Requirements engineering fundamentals. Rocky Nook,

Inc., 2011.

[95] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,

pp. 130–137, 1980.

[96] D. M. W. Powers, “Evaluation: from Precision, Recall and F-measure

to ROC, Informedness, Markedness and Correlation,” Journal of Machine

Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[97] T. Quirchmayr, B. Paech, R. Kohl, and H. Karey, “Semi-automatic Soft-

ware Feature-Relevant Information Extraction from Natural Language User

Manuals,” in Proceedings of the 23rd International Working Conference on

Requirements Engineering: Foundation for Software Quality (REFSQ’17).

Springer, 2017, pp. 255–272.

[98] M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenenbaum,

H. Larochelle, and R. S. Zemel, “Meta-Learning for Semi-Supervised Few-

Shot Classification,” Jan. 2018, 00000.

[99] M. Robeer, G. Lucassen, J. M. E. van der Werf, F. Dalpiaz, and S. Brinkkem-

per, “Automated extraction of conceptual models from user stories via NLP,”

in Proceedings of the 24th IEEE International Requirements Engineering

Conference (RE’16). IEEE, 2016, pp. 196–205.

[100] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta, and

S. Bacherini, “Using NLP to Detect Requirements Defects: An Industrial

Experience in the Railway Domain,” in Proceedings of the 23rd International

Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ’17), ser. LNCS, vol. 10153, 2017, pp. 344–360.

[101] L. H. Rosenberg, F. Hammer, and L. L. Huffman, “Requirements, testing and

metrics,” in In 15th Annual Pacific Northwest Software Quality Conference,

1998.

[102] RTCA Inc. and EUROCAE, “DO-178C: Software Considerations in Airborne

Systems and Equipment Certification,” Tech. Rep., 2012.

[103] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in

software engineering: Guidelines and examples. John Wiley & Sons, 2012.

[104] F. Schreiber and A. Morzenti, “Problematiche di certificazione del software

safety critical. Parte I - Generalitá, elicitazione e specifica dei requisiti.”

Ingegneria Ferroviaria, vol. LIV, no. 10, pp. 709–746, 1999.

140 BIBLIOGRAPHY

[105] J. Shi, Y. Sun, P. Schonfeld, and J. Qi, “Joint optimization of tram timeta-

bles and signal timing adjustments at intersections,” Transportation Research

Part C: Emerging Technologies, vol. 83, pp. 104–119, 2017.

[106] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can improve

requirements inspections,” IEEE Computer, vol. 33, no. 7, pp. 73–79, 2000.

[107] H. Sultanov and J. H. Hayes, “Application of reinforcement learning to re-

quirements engineering: requirements tracing,” in Proceedings of the 21st

IEEE International Requirements Engineering Conference (RE’13). IEEE,

2013, pp. 52–61.

[108] F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang, “Learning to

Learn: Meta-Critic Networks for Sample Efficient Learning,” arXiv preprint

arXiv:1706.09529, 2017, 00000.

[109] T. Tang, Y. Wang, X. Yang, and Y. Wu, “A new car-following model ac-

counting for varying road condition,” Nonlinear Dynamics, vol. 70, no. 2,

pp. 1397–1405, 2012.

[110] J. Terzakis and S. Gregory, “RAMP: requirements authors mentoring pro-

gram,” in Proceedings of the 24th IEEE International Requirements Engi-

neering Conference (RE’16). IEEE, 2016, pp. 323–328.

[111] S. F. Tjong and D. M. Berry, “The Design of SREE: A Prototype Potential

Ambiguity Finder for Requirements Specifications and Lessons Learned,” in

Proceedings of the 19th International Working Conference on Requirements

Engineering: Foundation for Software Quality (REFSQ’13), ser. LNCS, vol.

7830. Springer, 2013, pp. 80–95.

[112] O. K. Tonguz, W. Viriyasitavat, and F. Bai, “Modeling urban traffic: A cel-

lular automata approach,” IEEE Communications Magazine, vol. 47, no. 5,

pp. 142–150, 2009.

[113] E. Vicario, “Static Analysis and Dynamic steering of time dependent systems

using Time Petri Nets,” IEEE Transactions on Software Engineering, vol. 27,

no. 1, pp. 728–748, 2001.

[114] E. Vicario, L. Sassoli, and L. Carnevali, “Using stochastic state classes in

quantitative evaluation of dense-time reactive systems,” in IEEE Trans Soft-

ware Engineering, vol. 35, no. 5, 2009, pp. 703–719.

[115] R. Wieringa and M. Daneva, “Six strategies for generalizing software engi-

neering theories,” Science of computer programming, vol. 101, pp. 136–152,

2015.

[116] M. Wilmink and C. Bockisch, “On the Ability of Lightweight Checks to De-

tect Ambiguity in Requirements Documentation,” in Proceedings of the 23rd

BIBLIOGRAPHY 141

International Working Conference on Requirements Engineering: Founda-

tion for Software Quality (REFSQ’17), ser. LNCS, vol. 10153. Springer

International Publishing, 2017, pp. 327–343.

[117] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated analysis of re-

quirement specifications,” in Proceedings of the 19th international conference

on Software engineering. ACM, 1997, pp. 161–171.

[118] H. Yang, A. N. D. Roeck, V. Gervasi, A. Willis, and B. Nuseibeh, “Analysing

anaphoric ambiguity in natural language requirements,” Requirements Engi-

neering, vol. 16, no. 3, pp. 163–189, 2011.

[119] J. Yang, W. Deng, J. Wang, Q. Li, and Z. Wang, “Modeling pedestrians’ road

crossing behavior in traffic system micro-simulation in china,” Transportation

Research Part A: Policy and Practice, vol. 40, no. 3, pp. 280–290, 2006.

[120] R. K. Yin, Case study research: Design and methods. Sage publications,

2013.

[121] S. Yoshimura, “MATES : Multi-agent based traffic and environmental

simulator-theory, implementation and practical application,” Computer

Modeling in Engineering and Sciences, vol. 11, no. 1, pp. 17–25, 2006.

[122] T. Yue, L. C. Briand, and Y. Labiche, “aToucan: an automated framework

to derive UML analysis models from use case models,” ACM Transactions

on Software Engineering and Methodology (TOSEM), vol. 24, no. 3, p. 13,

2015.

[123] W. Zeng, P. Chen, H. Nakamura, and M. Iryo-Asano, “Application of social

force model to pedestrian behavior analysis at signalized crosswalk,” Trans-

portation Research Part C: Emerging Technologies, vol. 40, pp. 143–159,

2014.

[124] H. Zhang, T. Yue, S. Ali, and C. Liu, “Towards mutation analysis for use

cases,” in Proceedings of the ACM/IEEE 19th International Conference on

Model Driven Engineering Languages and Systems. ACM, 2016, pp. 363–

373.

[125] L.-J. Zheng, C. Tian, D.-H. Sun, and W.-N. Liu, “A new car-following model

with consideration of anticipation driving behavior,” Nonlinear Dynamics,

vol. 70, no. 2, pp. 1205–1211, 2012.

[126] D. Zowghi, V. Gervasi, and A. McRae, “Using default reasoning to discover

inconsistencies in natural language requirements,” in Proceedings of the 8th

Asia-Pacific Software Engineering Conference (APSEC’01), 2001, pp. 133–

140.

	Contents
	Introduction
	Safety-Critical Systems and their Development Process
	Introduction
	Dependability attributes
	The software development life cycle

	Requirements expressed in Natural Language and Ambiguity
	Introduction
	Literature review
	Preventing and limiting defects
	Detecting defects

	Ambiguity taxonomy
	Lexical ambiguity
	Syntactic ambiguity
	Semantic ambiguity
	Pragmatic ambiguity

	NLP techniques evaluation

	Detecting defects: a rule-based approach
	Introduction
	NLP technologies
	Patterns for defect detection
	Discard patterns
	SREE patterns
	SREE-reduced

	NLP technologies applied to our case study

	Research methodology and Case study design
	Introduction
	Research objective and Research questions
	Data collection and Analysis procedures
	Preparation
	Data collection procedure
	Data analysis procedure

	Validity procedure

	Experimentation
	Introduction
	Case and Subjects description
	The company and its process
	Subjects
	Datasets

	Iterations
	Pilot Study
	Large-scale Study - 1st Iteration
	Large-scale Study - 2nd Iteration
	Large-scale Study - 3rd Iteration
	Large-scale Study – 4th Iteration
	Large-scale Study – 5th Iteration

	Results
	Introduction
	RQ1, RQ2: Pilot Study
	RQ1: What is the accuracy of the NLP patterns for defect detection?
	RQ2: Which are the cases of inaccuracy of the NLP patterns for defect detection?

	RQ1, RQ2: Large-scale Study – 1st Iteration
	RQ1: What is the accuracy of the NLP patterns for defect detection?
	RQ2: Which are the cases of inaccuracy of the NLP patterns for defect detection?

	RQ1, RQ2: Large-scale Study – 2nd Iteration
	RQ1: What is the accuracy of the NLP patterns for defect detection?
	RQ2: Which are the cases of inaccuracy of the NLP patterns for defect detection?

	RQ3: Large-scale Study – 3rd Iteration
	RQ3: What is the precision of NLP patterns for defect detection when complemented with discard patterns?

	RQ4.1: Large-scale Study – 4th Iteration
	RQ4.1: What is the accuracy of SREE with respect to the NLP patterns for defect detection complemented with discard patterns?

	RQ4.2, RQ4.3, RQ4.4: Large-scale Study – 5th Iteration
	RQ4.2: What is the precision of SREE for the defects in its scope?
	RQ4.3, RQ4.4: Which additional defects can be identified with SREE, and which are the false positive cases?

	General Observations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Lessons learned and future research issues
	Introduction
	Domain-customisable NLP Tools
	Requirements language counts
	Requirements level counts
	Validation criteria count

	NLP is only a part of the answer
	Statistical NLP vs Lexical techniques
	Implication for practice and future research
	Implication for practice
	Ongoing and future research

	Public and private transport integration model with STPN
	Introduction
	Analysis of a conflict between public and private transport
	Related Works
	Background
	Stochastic Time Petri Nets
	The method of stochastic state classes
	ORIS overview

	Diacceto-Alamanni: an STPN model
	Tramway submodel
	Private transport submodel
	Interaction between the tramway submodel and the private transport submodel

	Analysis and Results
	Implication for practice and future research
	Implication for practice
	Ongoing and future research

	Conclusion
	Appendix A: Stochastic Discrete Time Petri Nets
	Petri Nets
	Syntax
	Semantics
	State-Space generation

	Discrete-Time Stochastic Petri Nets
	Syntax
	Semantics
	Maximal step semantics
	Stochastic states
	Stochastic State-Space generation

	Stochastic Preemptive Time Petri Nets

	Bibliography

