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Abstract
The HypF protein is involved in the maturation and regulation of hydrogenases. The N-terminal domain of HypF (HypF-
N) has served as a key model system to study the pathways of protein amyloid formation and the nature of the toxicity of 
pre-fibrilar protein oligomers. This domain can aggregate into two forms of oligomers having significantly different toxic 
effects when added to neuronal cultures. Here, NMR assignments of HypF-N backbone resonances are presented in its 
native state and under the conditions favouring the formation of toxic and non-toxic oligomers. The analyses of chemical 
shifts provide insights into the protein conformational state and the possible pathways leading to the formation of different 
types of oligomers.
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Introduction

HypF plays a chaperone role in the biogenesis of nickel–iron 
[NiFe] insertion in hydrogenase enzymes from E. coli 
(Maier and Böck 1996). The structure of HypF, lacking 
its N-terminal acylphosphatase domain, has been previ-
ously elucidated by X-ray crystallography (Petkun et al. 
2011) (PDB code: 3TSP, 3TSQ, 3TSU, 3TTD, 3TTF). The 
N-terminal domain of HypF (HypF-N) is a small 11 kDa α/β 
protein of 91 residues (Rosano et al. 2002) that is structured 
in a β-sheet of five strands (S1–S5) and 2 α-helices (H1 
and H2) in a βαββαβ topology (PDB code: 1GXT, 1GXU) 
(Rosano et al. 2002). While HypF-N is not associated to 
any disease, it has been extensively used to elucidate the 
underlying biomolecular processes of neurodegenerative dis-
orders (Chiti et al. 2001; Campioni et al. 2010; Zampagni 
et al. 2011). It is indeed well established that the aggre-
gation of otherwise soluble proteins into amyloid fibrils is 
associated with a number of neurodegenerative conditions, 

including Alzheimer’s and Parkinson’s diseases, and non-
neuropathic conditions such as diabetes type II (Chiti and 
Dobson 2017). It is now generally acknowledged that the 
most pernicious species along the pathways of amyloid 
formation are the small diffusible pre-fibrilar oligomers 
(Campioni et al. 2010; Fusco et al. 2017). In this context, 
HypF-N has unique features to enable the elucidation of the 
molecular basis of the toxicity of protein oligomers, as it 
can form two different types of protein oligomers that, while 
being similar in composition, shape, size and morphology, 
have significantly different toxic effects when incubated with 
cellular cultures, with only one showing toxic effects. Such 
a biological diversity has been attributed to the selective 
interaction with the cellular membrane, with only the toxic 
oligomers being able to penetrate the membrane and cause 
an influx of  Ca2+ ions (Cecchi et al. 2005; Canale et al. 2006; 
Campioni et al. 2010; Zampagni et al. 2011). Despite the 
relevance of this protein in the context of amyloid diseases, 
the assignments of the NMR resonances of HypF-N under 
the conditions A and B, which respectively generate toxic 
and non-toxic oligomers, are not available from the BMRB. 
In the present work we present a detailed characterisation 
of the general structural properties of HypF-N in its native 
state and under the two oligomerising conditions. The analy-
sis of chemical shifts clearly identifies a substantial degree 
of structural and dynamical differences between the protein 
monomers investigated under the conditions leading to toxic 
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and non-toxic oligomers. This work will boost further high-
resolution characterisations in these two states.

Methods and materials

1H, 13C, 15N, isotopically labelled HypF-N was expressed 
and purified as previously reported (Calloni et al. 2008), 
using an N-terminal His-tag construct that was expressed in 
the E. coli strain M15[PREP4] (Qiagen), grown in M9 mini-
mal media by using 15N-enriched ammonium chloride and 
13C-enriched glucose, and purified using a nickel column 
(Sigma Aldrich). The HypF-N protein was then cleaved from 

the nickel resin with thrombin from bovine plasma (Sigma 
Aldrich) overnight at 4 °C in phosphate buffer. Thrombin 
cleavage generates a non-native N-terminal sequence (Gly-
Ser-Ala instead of Met-Ala). This construct is equivalent 
to that employed in the study identifying the conditions (A 
and B) to generate toxic and non-toxic HypF-N oligomers 
(Campioni et al. 2010). The eluted HypF-N was then buffer 
exchanged into 5 mM sodium acetate, 2 mM dithiothreitol 
(DTT) buffer at pH 5.5.

NMR measurements were performed on 13C, 15N labelled 
HypF-N samples at a concentration of 200 µM. Three inde-
pendent assignments of the backbone resonances were 
performed, including native (5 mM sodium acetate, 2 mM 
DTT, 50 mM sodium phosphate pH 5.5), toxic condition 

Fig. 1  Assigned 2D 1H–15N HSQC spectra of HypF-N recorded at 25 °C at the 1H frequency of 600 MHz. a Native state. b Condition A. c Con-
dition B
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A (50 mM sodium acetate, 2 mM DTT, 12% 2,2,2-trif-
luoroethanol (TFE) (v/v), pH 5.5) and non-toxic condition 
B [330 mM sodium chloride, 20 mM trifluoroacetic acid 
(TFA), pH 1.7]. Each sample contained 10% (v/v)  D2O for 
the NMR lock. For the aggregation prone conditions A and 
B, NMR measurements were performed in a time frame cor-
responding to the lag phase for aggregation, which enables 
minimal monomer depletion from the solution. Under the 
conditions employed in this work, the lag phases were ~ 16 
and ~ 24 h for condition A and B, respectively. Measure-
ments of 3D NMR spectra were therefore set to be carried 

out within these time ranges, requiring fresh samples to be 
prepared for each 3D measurement.

Assignment of the backbone resonances under these 
three conditions was performed by a combination of 1H–15N 
HSQC, CBCA(CO)NH, HNCACB, HNCO, HN(CA)CO and 
HNHA spectra, collectively providing chemical shifts for 
1Hα, 13Cα, 13Cβ, 1HN, 13CO and 15N atoms. For the non-
toxic condition B, an additional HNcocaNH spectrum (Sun 
et al. 2005) was recorded to aid sequential assignment. NMR 
was performed at 25 °C using Bruker AVANCE spectrom-
eters operating at proton frequencies of 600 or 800 MHz, 

Fig. 2  a Random coil index estimated using the population of coil 
regions from δ2D (Camilloni et al. 2012). Native state and aggrega-
tion prone states of HypF-N (condition A and condition B) are shown 
with green, red and blue lines, respectively. Lines are used to connect 
the data for which RCI values have been calculated based on chemi-
cal shifts. The schematic of the native protein secondary structure is 

shown illustrating the α-helical segments (red blocks) and β-sheet 
strands (blue arrows). b–c) Differences between the 13Cα (b) and 
13Cβ (c) chemical shifts measured for the native state and condition 
A of HypF-N. Data has been excluded where assignments are missing 
in one or both conditions
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both equipped with a triple resonance cryoprobe. NMR data 
were processed using NMRPipe (Delaglio et al. 1995) and 
analysed using CCPNAnalysis (Vranken et al. 2005).

Results

Under native conditions, 81 (out of 86 non-proline) 1H–15N 
correlations were assigned across the protein sequence 
(Fig. 1a). The peak dispersion in the 1H–15N-HSQC spectrum 
indicates that HypF-N is well-folded in its native state, as 
also confirmed by the RCI analysis made using δ2D (Camil-
loni et al. 2012) (Fig. 2a). Under condition A, the spectral 
properties suggest that HypF-N is structured in a native-like 
conformational state (Fig. 1a-b), with 1H 15N resonances 
close to those of the native state, except for the catalytic 
phosphate binding site (residues 18–24), for which no NMR 
resonances are detected under these conditions. Indeed, the 
lack of phosphate ions in the condition A likely generates a 
local conformational exchange that enhances the relaxation 
of the resonances of the loop 18–24 leading to significant 
peak broadening, observed in homologous acylphosphotase 
enzymes (Fusco et al. 2012; De Simone et al. 2011). The simi-
larity of spectral properties between native state and condition 
A is also shown by the difference in chemical shifts for 13Cα 
and 13Cβ (Fig. 2b, c). In contrast, under condition B, HypF-N 
shows spectral properties that are indicative of an unfolded 
protein (Fig. 1c), as previously observed (Calloni et al. 2008). 
The assignment statistics for conditions A and B are listed in 
Table 1.

Using the chemical shift values, random coil index was 
calculated as the population of coil regions in δ2D (Camilloni 
et al. 2012) (Fig. 2a). This analysis indicates that, in contrast to 
the native state and condition A, showing structured and coil 
regions that are consistent with those identified in the X-ray 
structure of HypF-N (PDB code: 1GXT; Rosano et al. 2002), 
condition B exhibits significantly high values of RCI through-
out the sequence, which is indicative of a highly flexible and 
disordered state.

In summary, NMR assignments of HypF-N resonances 
under different oligomerising conditions and in the native 
state have provided crucial insights into the conformational 
and structural properties of the protein in its physiological and 
aggregation-prone states. The assignments will enable further 

investigations to reveal the detailed mechanisms leading to the 
formation of toxic and nontoxic HypF-N oligomers.

The assignments have been deposited to the BMRB under 
the accession codes: 27139 (native), 27137 (toxic) and 27138 
(non-toxic).
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