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1. Introduction

Recent measurements of the spin polarization of Λ hyperons in heavy-ion
collisions [1, 2] triggered broad interest in the relation between polarization
and fluid vorticity. At local thermodynamic equilibrium, the spin polar-
ization tensor is directly related to so-called thermal vorticity [3], provided
that local equilibrium is defined without any constraint on the spin ten-
sor [4]. The latter is defined by the expression $µν = −1

2(∂µβν − ∂νβµ),
where βµ = uµ/T , with T and uµ being the system’s local temperature
and four-velocity, respectively. The other recent topics related to polar-
ization include the kinetics of spin [5–7], anomalous hydrodynamics [8–11],
and the Lagrangian formulation of hydrodynamics [12, 13]. Several issues
connected with the global and local spin polarization have been recently
reviewed in [14].
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While the relation between polarization and thermal vorticity is firmly
established in global equilibrium situations, it is still under investigations
if finite polarization may exist in a properly defined local thermodynamic
equilibrium situation without thermal vorticity. In other words, it is possible
that in the most general relativistic fluid at local thermodynamic equilibrium
the spin polarization tensor ωµν , which is proportional at the leading order
to $µν , does not coincide with −1

2(∂µβν − ∂νβµ). Steps in this direction
have been taken in Refs. [15, 16], where the framework of perfect-fluid hy-
drodynamics with spin 1/2 was formulated. It was demonstrated that global
equilibrium states with spin polarization and vorticity may be interpreted
as stationary solutions of the hydrodynamic equations with spin introduced
in Ref. [15].

Interestingly, global equilibrium states not only include the cases with
rotation but also with constant acceleration along the fluid stream lines. This
case has been recently studied in Ref. [17] for the real scalar field, where it
was shown that the fluid has a minimal proper temperature TU = a/2π,
where a is the magnitude of the four-acceleration vector (aµaµ = −a2).
In this work, we present a preliminary assessment of the case with spin by
using the Ansatz for the Wigner function presented in Ref. [3] and show that
corresponding configurations are also solutions of the formalism developed
in Ref. [15].

We start our presentation with a discussion of the unpolarized case in
Sec. 2. In Sec. 3, the local equilibrium distribution functions including
spin polarization for the accelerating case are constructed (phase-space-
dependent spin density matrices). This, in Sec. 4, allows us to introduce
and solve the hydrodynamic equations with spin. In Sec. 5, we give the
appropriate forms of the spin tensor and the spin polarization vector, while
in Sec. 6, we discuss the overall consistency of our approach which leads
us to the constraint relating acceleration with the temperature. Finally, we
summarize in Sec. 7.

2. The case without spin polarization

2.1. Hydrodynamic flow

In this work, we consider a special case of one-dimensional hydrodynamic
expansion with the fluid four-velocity uµ introduced in Ref. [17],

uµ = γ(1, 0, 0, v) =
1

τ
(A+ gz, 0, 0,−(B − gt)) , (1)

with
τ =

√
(A+ gz)2 − (B − gt)2 , (2)
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which guarantees the normalization uµuµ = 1. With positive A,B, and g,
we demand that u0 = γ > 0 and τ > 0. These two conditions specify
the allowed region of spacetime where our fluid can expand: z > −A/g,
t > −z − (A−B)/g, and t < z + (A+B)/g. It corresponds to a quarter of
the space-time diagram, placed to the right of the spacetime point with the
coordinates (B/g, 0, 0,−A/g), see Fig. 1.

Fig. 1. (Color online) Space-time diagram showing trajectories (dashed gray/red
lines) of the fluid elements moving with a constant acceleration along the stream
lines for the flow defined by Eq. (1).

It is easy to check that for any function of the variable τ , let us say
F = F (τ), its derivative along the fluid stream lines vanishes, namely

uµ∂µF (τ) = 0 . (3)

This means, in particular, that the lines of constant τ describe the stream
lines of the fluid. Using Eq. (3), we further find the fluid four-acceleration

aν = uµ∂µu
ν =

g

τ

(
u3, 0, 0, u0

)
, (4)

which gives

aµaµ = −g
2

τ2
≡ −a2 , aµuµ = 0 . (5)

We thus conclude that the four-accelaration is constant along the stream
lines. It is also straightforward to see that flow (1) is divergence free,

∂µu
µ = 0 . (6)

This result will be used below in the discussion of the conservation laws.
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2.2. Perfect-fluid equations

Before we turn to a discussion of spin polarization, let us demonstrate
that the hydrodynamic flow of the form of (1) is consistent with the evo-
lution of the perfect fluid, provided its thermodynamic variables depend
appropriately on the coordinates t and z. The energy momentum tensor of
the perfect fluid has the form of

Tµν = (ε+ P )uµuν − Pgµν , (7)

where ε and P are the energy density and pressure. In this section, we
assume that both ε and P are functions of the local temperature T and
chemical potential µ, with the relations ε = ε(T, µ) and P = P (T, µ) speci-
fied by the fluid equation of state. The conservation law for the energy and
momentum, ∂µTµν = 0, gives

uνuµ∂µ(ε+ P ) + uν(ε+ P )∂µu
µ + (ε+ P )aν = ∂νP . (8)

In this section, we assume that ε and P depend only on the variable τ ,
namely

ε = ε(T (τ), µ(τ)) , P = P (T (τ), µ(τ)) . (9)

In this case, the first and second term in Eq. (8) vanish, and we obtain

(ε+ P )aν = ∂νP . (10)

Using the standard thermodynamic relations

ε+ P = Ts+ µn (11)

and
s =

∂P

∂T

∣∣∣∣
µ

, n =
∂P

∂µ

∣∣∣∣
T

, (12)

where s and n are entropy and charge densities, respectively, the hydrody-
namic Eq. (10) can be rewritten as

s (Taν − ∂νT ) + n (µaν − ∂νµ) = 0 . (13)

One can check that equations of the form of

Xaν − ∂νX = 0 (14)

are fulfilled if X is of the form of

X(τ) = X0
τ0
τ
. (15)
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Thus, Eq. (13) has the solution of the form of

T (τ) = T0
τ0
τ
, µ(τ) = µ0

τ0
τ
. (16)

We note that the conservation laws for entropy, ∂µ(suµ) = 0, as well as for
the charge, ∂µ(nuµ) = 0, are also fulfilled due to Eqs. (3) and (6).

By using Eqs. (1) and (16), we can show that the four-temperature field

βµ =
uµ

T

is a Killing vector field, that is fulfilling the equation

∂µβν + ∂νβµ = 0 , (17)

which shows that the only solution of ideal hydrodynamics with the given
flow field (1) and equilibrium thermodynamic relations is the global thermo-
dynamic equilibrium one, with non-vanishing acceleration, as discussed in
Ref. [17]. As it is known, the general solution of the Killing equation in flat
space-time reads

βµ = bµ +$µνx
ν , (18)

where bµ and $µν = −$νµ are constants. In our case, with parametrization
(1), one has the following map:

b0 =
A

T0τ0
, b3 =

B

T0τ0
, $03 = −$30 =

g

T0τ0
. (19)

3. Thermodynamic treatment of spin degrees of freedom

3.1. Phase-space spin density matrices

Recently, a new framework of relativistic hydrodynamics for particles
with spin 1/2 has been introduced in Refs. [15, 16]. In this approach, the
spin degrees of freedom are incorporated by using the phase-space density
matrices for particles and antiparticles [3]

f+rs(x, p) =
1

2m
ūr(p)X

+us(p) , f−rs(x, p) = − 1

2m
v̄s(p)X

−vr(p) . (20)

Here, r, s = 1, 2 are spin indices, ur and vs are bispinors, and X± are the
four-by-four matrices

X± = exp [(±µ− uµpµ)/T ]M± , (21)
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where
M± = exp

[
±1

2
ωµν(x)Σµν

]
. (22)

Here, ωµν is the spin polarization tensor, and Σµν is the spin operator ex-
pressed by the Dirac gamma matrices, Σµν = (i/4)[γµ, γν ]. The exponential
functions appearing in (21) and (22) reflect the use of Boltzmann statistics
for both particles and antiparticles.

The explicit form of M± for arbitrary values of ωµν has been recently
worked out in [16]

M± =

[
<(coshZ)±<

(
sinhZ

2Z

)
ωµνΣ

µν

]
+iγ5

[
=(coshZ)±=

(
sinhZ

2Z

)
ωµνΣ

µν

]
. (23)

Here, Z = 1
2
√
2

√
ωµνωµν + iωµν ω̃µν , where ω̃µν = 1

2εµναβω
αβ is the dual

tensor to ωµν . If only the coefficients ω03 and ω30 are different from zero,
one gets

Z =
1

2
√

2

√
ωµνωµν = ± i

2
ω03 . (24)

We stress that at this stage of our analysis, we do not identify the spin
polarization tensor ωµν directly with the thermal vorticity $µν , see Eq. (19),
however, we assume that the only non-zero components of ωµν and $µν are
ω03 = −ω30 and $03 = −$30.

In the calculation of M±, the choice of the sign in Eq. (24) is irrelevant
for cosh(Z) and sinh(Z)/Z, thus in the following, we select the upper sign.
Using the notation

Z = iζ = i
Ω

T
, (25)

one gets

M± = cos (ζ)± sin (ζ)

2ζ
ωµνΣ

µν . (26)

It is interesting to note that Eq. (26) is an analytic continuation of the
expressions used before in Refs. [15, 16] — with real and positive Z = ζ =
Ω/T being continued to a purely imaginary value Z = iζ = iΩ/T . The case
of complex Z was excluded from the investigations done in Refs. [15, 16]
as it may lead to negative values of the energy density. In fact, this is
the situation we encounter in this work unless certain conditions on the
parameters describing the motion of the fluid are imposed. We come back
to a more detailed discussion of this point below in Sec. 6.
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3.2. Basic physical observables

Since the only difference in the calculation of thermodynamic variables,
as compared to the case studied in Refs. [15, 16], is the change Ω → iΩ,
we can immediately use the results obtained before. For the charge current,
the replacement Ω → iΩ in Eq. (11) of Ref. [15] gives

Nµ = nuµ , (27)

where the charge density n equals

n = 4 cos(ζ) sinh(ξ)n(0)(T ) . (28)

Here, n(0)(T ) = 〈(u · p)〉0 is the number density of spinless, neutral Boltz-
mann particles, obtained from thermal averaging defined as

〈. . . 〉0 ≡
∫

d3p

(2π)3Ep
(. . . ) e−β·p , (29)

with p0 = Ep =
√
m2 + p2 being the particle energy. In the similar way,

starting from Eq. (14) of Ref. [15], we find the form of the energy-momentum
tensor,

Tµν = (ε+ P )uµuν − Pgµν , (30)

with the energy density and pressure given by the formulas

ε = 4 cos(ζ) cosh(ξ) ε(0)(T ) (31)

and
P = 4 cos(ζ) cosh(ξ)P(0)(T ) , (32)

where ε(0)(T ) =
〈
(u · p)2

〉
0
and P(0)(T ) = −(1/3)

〈[
p · p− (u · p)2

]〉
0
.

For the entropy current, we use Eq. (17) of Ref. [15] and find

Sµ = suµ , (33)

with the entropy density given by the expression

s = uµS
µ =

ε+ P − µn−Ωw
T

, (34)

where
w = −4 sin(ζ) cosh(ξ)n(0)(T ) . (35)

We note that in the case of the entropy density s, the situation is slightly
different from the case of the thermodynamic variables n, ε, and P , where
the main effect of the analytic continuation is to replace cosh(ζ) simply by
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cos(ζ). The analytic continuation Ω → iΩ changes the sign of the original
product of Ωw derived in Ref. [15], since Ω sinh ζ → −Ω sin ζ. Nevertheless,
we can keep the same sign in front of the product Ωw in Eq. (34), as in
Ref. [15], if we introduce the minus sign in the definition of the new density w,
see Eq. (35). As a matter of fact, such a change of sign is consistent from the
thermodynamic point of view, since with Eq. (35) we can use, in addition
to Eq. (34), the following thermodynamic relations:

s =
∂P

∂T

∣∣∣∣
µ,Ω

, n =
∂P

∂µ

∣∣∣∣
T,Ω

, w =
∂P

∂Ω

∣∣∣∣
T,µ

. (36)

Equations (34) and (36) become natural extensions of Eqs. (11) and (12).

4. Hydrodynamic equations with spin

In order to include spin polarization into hydrodynamic picture, we use
again Eq. (10), which followed directly from the definition of the energy-
momentum tensor and assumed geometry of expansion, and employ ex-
tended thermodynamic relation

ε+ P = Ts+ µn+Ωw . (37)

This leads to the equation

s (Taν − ∂νT ) + n (µaν − ∂νµ) + w (Ωaν − ∂νΩ) = 0 . (38)

Hence, in addition to (13), we should have

Ω = Ω0
τ0
τ
. (39)

The results for T and Ω imply that ω03 is a constant. Indeed, using Eqs. (24)
and (25), one finds

ω03 =
2Ω

T
=

2Ω0

T0
= const. (40)

This result allows us to find the solutions with the spin polarization tensor
equal to the thermal vorticity. In this case, we demand that

$03 =
g

T0τ0
= ω03 =

2Ω0

T0
, (41)

which leads to
g

τ0
= 2Ω0 . (42)
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5. Spin tensor and spin polarization vector

For completeness, in this section, we give the expressions for the spin ten-
sor and the spin polarization vector. The analytic continuation of Eq. (17)
in Ref. [15] together with definition (35) allow us to write the formula for
the spin tensor as

Sλ,µν = −wu
λ

2ζ
ωµν . (43)

In the case of symmetric energy-momentum tensor, which we consider in
this work, the spin tensor is conserved, ∂λSλ,µν = 0. This can be explicitly
verified for the accelerating solution: in this case, ∂λ(wuλ) = 0, while ζ and
ωµν are constants (with ω03 = −ω30 being the only non-zero components of
ωµν).

Similarly, using expressions derived in Ref. [16], we find the average
polarization vector P of particles with the mass m and three-momentum p

P =
1

2
tan

(
g

2T0τ0

)
p× ẑ

m
. (44)

Here, ẑ is a unit vector pointing in the direction of the z-axis.

6. Lower bound on the temperature

In Refs. [15, 16], the two assumptions restricting the form of the spin po-
larization tensor ωµν were made: ωµνωµν > 0 and ωµν ω̃µν = 0. They were
motivated by the positivity condition for the energy density. In this work,
the latter condition is fulfilled, however the former is not, since for the accel-
erating solution studied here we have ωµνωµν < 0. In fact, expression (31),
obtained for the energy density, contains the oscillating function cos(ζ) that
may have negative values. Therefore, although the framework constructed
above is consistent from the thermodynamic and hydrodynamic points of
view, we have to impose further restrictions on the parameters used in our
scheme, which guarantee the positivity of the energy density.

The simplest way to assure that ε > 0 is by demanding that ζ ≤ π
2 . For

the accelerating solution, the quantity ζ is a constant, ζ = Ω0
T0

= g
2T0τ0

, thus
we find g

T0τ0
≤ π (45)

or √−aµaµ
π

=
a

π
≤ T . (46)

For T = a/π, we also get the pressure and charge density vanishing,
according to Eqs. (28) and (32). This may suggest that T = a/π corresponds



1418 W. Florkowski, E. Speranza, F. Becattini

to the Minkowski vacuum for the spin-1/2 field just like T = a/2π is for the
scalar field and that this is a limiting temperature for the fluid with spin.
However, the spin tensor, which is proportional to w (see Eq. (35)) does not
vanish for ζ = π, in fact, it is maximally negative. This indicates that the
condition T = a/π cannot be interpreted as being equivalent to the true
vacuum of the field, like in the Unruh case [17, 18]. This, together with the
fact that the temperature value differs by a factor of two, suggests that the
occurrence of these limiting values is most likely related to the approximate
character of the equilibrium distribution (21). Nevertheless, we believe that
they are symptoms of an Unruh-like behavior of the Dirac field at finite
temperature and acceleration which would most likely be in full agreement
with that of the scalar field in an exact calculation.

7. Summary

In this work, we have presented solutions of a recently introduced frame-
work of hydrodynamics with spin 1/2, which describe the motion with con-
stant acceleration along the stream lines. We have showed that the expansion
of the fluid agrees with an example of the global thermodynamic equilibrium
with non-zero polarization, introduced before in Ref. [17].
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