
18 May 2024

Compressive Sensing for No-Contact 3D Ground Penetrating Radar / lapo miccinesi; neda rojhani;
massimiliano pieraccini. - ELETTRONICO. - (2018), pp. 1-4. (Intervento presentato al  convegno 2018 41st
International Conference on Telecommunications and Signal Processing (TSP))
[10.1109/TSP.2018.8441448].

Original Citation:

Compressive Sensing for No-Contact 3D Ground Penetrating Radar

Publisher:

Published version:
10.1109/TSP.2018.8441448

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1133172 since: 2018-10-01T09:18:07Z

IEEE  2018 41st International Conference on Telecommunications and Signal Processing (TSP)

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



Compressive Sensing for No-contact 3D Ground 
Penetrating Radar

Lapo Miccinesi, Neda Rojhani, and Massimiliano Pieraccini  
Department of Information Engineering  

University of Florence 
Via Santa Marta, 3 50139 Firenze, Italy 

massimiliano.pieraccini@unifi.it 
 
 

Abstract—No-contact Ground Penetrating Radars (GPRs) 
are popular microwave sensors for investigating soils or 
masonry/stone walls. In this paper the authors evaluated the 
compressive sensing (CS) as possible technique for speeding up 
the acquisition time of this kind of application. In effect the CS 
approach could reduce the number of acquisition points, and 
then the measurement time by using only a random pattern of 
the antennas positions. The authors found that the data 
reconstruction loses quality even with a reduction of 25 % of the 
number of acquisitions, but the features of the targets still visible. 
With a reduction of 50 % the SNR decrease sensibly and most of 
the targets are not detectable. Such a time reduction results 
rather marginal in most practical cases. 

Keywords—compressing sensing (CS); ground penetrating 
radar (GPR); GPR imaging; no-contact GPR; orthogonal 
matching pursuit (OMP). 

I.  INTRODUCTION 
No-contact Ground Penetrating Radars (GPRs) are 

microwave sensors used for investigating soils or 
masonry/stone walls. Typical applications are: detecting buried 
mines [1] scanning walls to find possible damage [2] or hidden 
cavities [3],[4].  

When the GPR operates with a single couple of antennas 
the measurement time can be very long, so its reduction could 
be desirable. There are two possible ways to do that: to reduce 
the integration time or to reduce the number of spatial steps. 
The first way is not viable because the high attenuation 
coefficient. On the other hand, to reduce the number of steps is 
forbidden by Nyquist theorem. Nevertheless, the compressive 
sensing (CS) theory offers a way to overcome the Nyquist limit 
and to reduce the number of spatial steps by using only a set of 
random positions of the antennas [5]. 

Generally speaking, CS is able to reconstruct a sparse 
signal by using a random set of samples of the signal [6], [7]. A 
signal of length N is sampled randomly M times, with M < N. 
Hence, in accord with the CS theory, the signal can be 
recovered by solving the convex optimization problem such as 
l1-norm and basis pursuit [8]- [10].  

However, the radar images reconstructed via CS lose 
quality, could be affected by artefacts and theirs signal-to-noise 
ratio (SNR) decrease [12]. 

II. THE RADAR EQUIPEMENT 
The experimental data have been acquired using the radar 

equipment showed in Figure 1. The equipment was design as 
3D painted walls scanner by two of the authors [4].  The 
scanner operates step-by-step both in frequencies and position. 
Two step motors move the radar head on a surface of 1.4 × 1.9 
m² in a vertical plane. The radar operates a Step Frequency 
Continuous Wave (SFCW) with central frequency of 10 GHz 
and bandwidth of 4 GHz with 801 frequencies step (Nf). The 
output power in TX antenna was 19dBm. For each position of 
the antennas the device measured a complex number given by 
in-phase and quadrature components of the echo. The result of 
an entire acquisition is a three-dimensional matrix of complex 
numbers Nf × Nz × Nx where Nz and Nx are respectively the 
number of positions of radar in z and x axis. 

 
Figure 1. Sketch of the radar equipment  

 

The integration time, tint., for all the measurement is given 
by (1). 

 tint = Nx Nz Nf ttone (1) 

 Where ttone = 10 ms, is the time of a single tone. By using 
Nx = 93, Nz = 126, Nf = 801 the integration time results to be tint 

 26.1 hours. The integration time must be compared with the 
effective measurement time, tmeas, that include the movement 
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and data acquisition, that was 38.8 hours. Thus, the ratio 
tint/tmeas, called duty cycle, has been 67.3 %. 

III. THE CS THEORY AND FOCUSING ALGORITHM  
For applying the CS theory, a pattern of NA antennas has 

been selected randomly from each z coordinate of the echo 
matrix. For each frequency, the sampled vector, y, is define by 
[13]: 

 y = E  (2)  α  + β  = χ. (1) (1) 

Where E
 is a binary random matrix, called measurement 

matrix, with size of M NA

pattern in the selected z-line.

= fft(I), called dictionary, where fft(⋅) is the fast 
Fourier transform and I is the  identity matrix. 

 E = �s  (3)  α  + β  = χ. (1) (1)

Where s,  is the vector of weighting coefficients. By 
substituting (3) in (2), the sampled vector become:

 y = �s  (4)  α  + β  = χ. (1) (1) 

Where  =  is a M matrix. The vector E has to be 
reconstructed from the sampled vector, but retrieving a vector 
of length 

 orthogonal matching pursuit (OMP) 
algorithm [10]. 

After reconstruction, the data have been focused by using a 
back-projection algorithm that considers the electromagnetic 
path between the antennas and any image point [14]. In order 
to evaluate the path between the antennas and image point, the 
Snell’s law was applied. In other words, the length of the path 
has been evaluated by searching the minimum of travel time 
between two points in two different media: the antennas in air 
and the image point inside the wall [4]. 

 

IV. SIMULATION RESULTS 
In order to test the CS algorithm a simulation has been 

implemented. A target has been placed inside a simulated wall 
of ε2= 3.9 at a depth of 0.4 m. The distance between radar and 
wall was 1.6 m. 

The image obtained (without CS) is shown in Figure 2. 
Figure 3 and Figure 4 show the results with a compression of 
50 % and 30 %.  

The SNR results to be SNR100%= 84.5 dB for image without 
CS, SNR50%= 29.0 dB for the image focused using 50 % of 

antennas’ position and SNR30%= 26.5 dB  using 30% of 
antennas’ position. 

 
Figure 2. Power image of the simulated echo focused without CS 

 
Figure 3. Power image of the simulated echo focused using 50 % of the 
antennas’ positions 

 
Figure 4. Power image of the simulated echo focused using 30 % of the 
antennas’ positions 
 

It results that in simulation, the reconstruction algorithm 
works successfully even with a reduction of 70 % (Figure 4) 
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of the antennas’ positions. 

V. MEASUREMENT RESULTS 
The CS algorithm was applied to a dataset acquired in a 

real scenario. The wall under test is shown in the background 
of Figure 5. The distance between the equipment and the wall 
was 1.6 m. The thickness of the wall is about 0.42 m. Two 
different depths inside the wall have been investigated.  

The images have been focused without CS and with ratio 
NA/Nx equal to 75 % and 50 %. For all images the SNR was 
found by considering the same target. 

 
Figure 5. Picture of the wall under investigation  
 

Figure 6 shows the focused image at 0.20 m inside the wall 
without CS. The red circles spotlight five different structures 
that are visible inside the wall. The SNR is evaluated for the 
target A at (x  0.4 m, z  1.2 m) and for target B at (x  0.2 m, 
z  0.2 m) and they result SNRA

100%= 21.8 dB, SNRB
100%= 20.8 

dB. 

As shown in Figure 7, with the percentage NA/Nx of 75 % 
the signal-to-noise ratio decreases sensibly (SNRA

75%= 13.6 
dB, SNRB

75%= 12.3 dB): only four of five targets are visible. 
With 50 % of the antennas’ positions (Figure 8) only three 
targets of five are visible and SNR results to be SNRA

50%= 7.8 
dB and SNRB

50%= 7.4 dB. 

 
Figure 6. Power image focused on a vertical plane at 0.20 m inside the wall, 

without CS 

 
Figure 7. Power image focused on a vertical plane at 0.20 m inside the wall, 
with 75 % of the antennas’ positions 

 
Figure 8. Power image focused on a vertical plane at 0.20 m inside the wall, 
with 50 % of the antennas’ positions. 
 

Figure 9 shows the image obtained by focusing at 0.40 m 
inside the wall without CS. In the picture there are seven well-
visible targets. At z  0.3 m and z  1.3 m there are two 
electrical conduit pipes buried in the wall. The SNR was 
measured for the target located at (x  0.3, z  0.3 m). Without 
CS, SNR results to be SNR100%= 15.7 dB. 

 
Figure 9. Power image focused on a vertical plane at 0.40 m inside the wall, 
without CS 
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The Figure 10 and Figure 11 show the image obtained with 

75 % and 50 % of the antennas’ positions. With NA/Nx =75 % 
almost all the targets are visible, but it is not possible to 
recognize the shape of conduits at height of 1.3 m. The signal-
to-noise ratio in this case is SNR75% = 6.2 dB. 

 
Figure 10. Power image focused on a vertical plane at 0.40 m inside the wall, 
with 75 % of the antennas’ positions 

 

With 50 % the targets are hardly visible and the shape of 
the electrical conduits is not recognizable. In this case the SNR 
is not well define. 

 
Figure 11. Power image focused on a vertical plane at 0.40 m inside the wall, 
with 50 % of the antennas’ positions 

VI. CONCLUSION 

In this paper the CS technique is used to reduce the number 
of position of antennas to speed up a GPR scanner. The 
reconstruction algorithm was tested with a simulated dataset. 
The same reconstruction algorithm was used on dataset of a 
real scenario. Although the simulation shows that a reduction 

of 70 % of the antennas’ positions could give images with well 
recognizable targets, the same algorithm used on an 
experimental data set gives image of low quality, even with a 
reduction of only 25 %. Probably the signal-to-noise ratio of 
GPR measurements is too low for sustaining the compressive 
sensing applied using the FFT of Kronecker delta as dictionary 
or to sustain OMP as retrieving algorithm. Nevertheless, other 
kinds of dictionaries or retrieving algorithm could be more 
effective. The author are searching to find a dictionary and a 
retrieving algorithm that can optimize the reconstruction for a 
GPR system.  
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