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Abstract. In recent years fiber-reinforced polymers (FRP) have been widely used for strengthening masonry 

structures. In particular, in the case of masonry arches, the use of FRP sheets increases load-bearing capacity by 

limiting or preventing the occurrence of tensile cracks that could activate collapse mechanisms. The effectiveness of 

the strengthening intervention depends on the bond between FRP and substrate, due to the shear and normal stresses 

that occur in the bond interface, so much so that the typical failure mode of an arch reinforced with narrow FRP 

sheets at the intrados is exactly delamination. In this paper a predictive numerical procedure of the combined mode I 

and mode II failure is proposed. Numerical results provided by this procedure are compared to the experimental 

results on in-scale arch models taken from a recent work of the author.  

1 Introduction  

The need for preserving, restoring and consolidating 

architectural and monumental heritage [1, 2], as well as 

ruins in archaeological sites [3-6], is the reason for the 

development of innovative materials and techniques for 

strengthening and repairing them [7-14]. In this 

framework, masonry arches, vaults and domes are typical 

and recurrent structural elements of architectural heritage 

that need to be preserved. For the analysis of these types 

of structures, new numerical tools [15-27] have been 

recently presented. 

A very widespread technique for consolidating and 

retrofitting masonry structures is the use of fiber-

reinforced polymer sheets (FRP) bonded to the substrate 

by an adhesive layer (often an epoxy matrix). In order to 

effectively increase the load carrying capacity and the 

ductility of FRP bonded joints mechanical anchors can 

also be used [28, 29]. The main reason for the success of 

the strengthening intervention using FRP materials is due 

to their compatibility with masonry [30] as well as other 

advantages that they allow, compared to traditional 

materials and techniques, such as lightness, high 

resistance, high elastic modulus and stiffness and rapid 

installment in the structure. 

However, the effectiveness of the reinforcement 

intervention strongly depends on the bond performance 

between FRP and substrate. In the bond interface shear 

and normal stresses (i.e. adhesion and peeling forces) are 

generated during load transfer from the masonry to the 

reinforcement. The peeling forces, that are provoked due 

to the curved shape of the arch, are tension if the 

reinforcement is placed at the intrados. The combination 

of peeling and shear forces are responsible for the typical 

delamination failure, that is the detachment of the sheet 

from the masonry. Experimental investigations have 

shown that, unlike FRCM composites in which failure 

occurs exactly in the fiber-matrix interface [31-33], in 

FRPs failure occurs at the composite-substrate interface 

affecting the superficial layer of the masonry [34-39], due 

to the higher strength of the adhesive as respect to that of 

masonry.  

In this paper a novel mechanical model of an arch 

reinforced with intrados FRP sheets is presented and a 

non-linear numerical procedure for investigating the bond 

behaviour is also proposed. The algorithm checks the 

shear and peeling forces in the bond interfaces and 

monitors the full delamination process, step by step, 

during the increase of an external load. 

2 Reinforced arch model  

Two main failure modes are considered: the occurrence 

of cracks in the mortar joints due to tensile forces and the 

delamination of the sheet from the substrate due to 

peeling and adhesion forces in the bond interfaces. In 

order to address both failure modes, the FRP reinforced 

arch (Fig. 1a) is modeled as follows. The masonry arch is 

composed of n rigid-blocks assembled by elastic mortar 

joints. In the mortar joints, all the elasticity (i.e.: 

deformability) of the arch is concentrated. Each mortar 

joint is, in turn, represented by a device composed of four 

links orthogonal to the mid-surface of the joint, plus an 

additional link arranged along that surface (hereafter 

referred to as tangential link). 

The reinforcement is represented through n+1 

additional links, placed at the intrados of the arch. Such 
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links connect, in series, the midpoints of the intrados of 

adjacent blocks. 

Figure 1. a) The reinforced arch model; b) Decomposition of 

the FRP link axial forces into the adhesion and peeling forces; c) 

Peeling force and bond surface in the generic arch block; area of 

the axial links in a mortar joint. 
 

The links orthogonal to the mid-surface of the mortar 

joints measure the axial force. If the axial force is a 

tension higher than the tensile strength of mortar, the 

corresponding link fails and a crack occurs. Instead, the 

tangential link that measures the shearing force in the 

mortar joint is considered to be infinitely rigid and strong, 

in order to avoid sliding joints. As for the bond behaviour 

between FRP and masonry, each couple of reinforcement 

links (i and j in Fig. 1a) provides, at the intrados midpoint 

of the generic block of the arch, a resultant force directed 

towards the centre of the arch, whose components 

measure both the adhesion and peeling forces (Fig. 1b). If 

such forces exceed the tensile strength of masonry, 

delamination occurs and, in the mechanical model, links i 

and j are substituted by a new reinforcement link that 

connects the midpoint (start node of link i) of the 

previous block to the midpoint (end node of link j) of the 

next one. 

3 Solution algorithm  

The two failure criteria formulated above are represented 

by Eq. (1), Fig. 1b,c: 

 {
Xt≤X̅t

Xbond=Xr
(i)
sin αi+Xr

(j)
sin αj≤Xbond

 

with  {
X̅t=Sm∙σ̅t

(m)

Xbond=Sbond∙σ̅t
(b)

    (1) 

where Xt is the tensile force in a specific link orthogonal 

to a mortar joint, Xr
(i) and Xr

(j) the axial forces in the 

couple of external links that simulate the intrados 

reinforcement in correspondence to a generic block, αi 

and αj the slope of these vectors. Xt is the threshold value 

of the mortar tensile force in the generic link and Xbond is 

the debonding force (herein assumed to be coincident 

with the peeling force, Fig. 1c). Xt  and Xbond  are 

computed by multiplying the tensile strength of mortar 

σ̅t
(m)

 by the cross sectional area of the axial link Sm and 

the tensile strength of the block σ̅t
(b)

 by the bond surface 

Sbond under the generic block respectively. 

To perform the analysis of the reinforced rigid block 

arch, the equilibrium equation and the elastic-kinematic 

equation are formulated in Eq. 2 in matrix form: 

     {
AX=λF

Ãx+KX=∆
   (2) 

where {F} is the vector of the loads and λ the incremental 

load factor, {X} is the vector of the unknown forces in 

the links of the mortar and FRP joints, [A] is the 

equilibrium matrix, {x} is the vector of the displacements 

of the block centroids and [K] is the matrix whose entries 

are the deformability of mortar and FRP links. Vector 

{Δ}, the “impressed distortion vector”, is used to 

simulate, in the model, the mortar tensile failure, i.e. the 

failure of some links orthogonal to the joint. 

Eq. 3 is the solution of Eq. 2, that provides the forces 

both in the mortar and FRP links. At the beginning of the 

analysis, vector {Δ}={0} because the masonry arch and 

the reinforcement are assumed to be undamaged when 

values of λ are low: 

 X = K-1Ã(AK-1Ã)-1∙λF+(I-K-1Ã (AK-1Ã)
-1

A) ∙Δ(3) 

During the analysis, the value of λ is slowly increased 

and, in correspondence to each value of λ, the two failure 

criteria in Eq. (1) are checked. According to Eq. (1), the 

algorithm introduces a distortion coefficient [40] in the 

mortar link whose force, at the current step of the 

incremental analysis, does not respect the first of the 

inequalities in Eq. (1). The distortion provokes the failure 

of that link. Instead, as for the debonding failure of the 

reinforcement, it occurs when the second of Eq. 1 is not 

respected, in which Xbond  is computed considering the 
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strength of masonry, where the failure occurs (ripping), 

rather than the strength of the adhesive. Delamination is 

simulated by changing the reinforcement pattern as 

described in the previous section, without introducing 

further distortion coefficients in the numerical model.  

At the end of the incremental nonlinear analysis, both 

the value of the load factor λ and the failure mode of the 

arch are captured. 

4 Experimental evidence and numerical 
results 

In the experimental campaign performed in [39] on in 

scale 1:2 models of masonry arches reinforced with FRP 

composite materials at the intrados, it was observed that 

the tested specimens with narrow FRP sheets failed due 

to delamination of the reinforcement, while specimens 

reinforced with wider sheets failed due to sliding blocks 

and/or masonry crushing. 

Such models reproduced a segmental arch with a 150 

cm spam, an internal radius corresponding to 86.5 cm, 

with fixed imposts and inclined by 30° and a 10x10 cm 

square cross section. 

The experimental trial took place by impressing an 

increasing vertical displacement at the keystone using a 

hydraulic jack. In correspondence to a load of 1.98 kN 

the first crack at the keystone appeared and then, later, at 

a load of 2.63 kN at the haunches. In correspondence to a 

load of 4.32 kN the delamination process occurred, and, 

starting from the keystone sections this process was 

enlarged little by little to the sections near the left haunch 

taking away part of the masonry (Fig. 2). 

Figure 3. Delamination process computed by the proposed 

algorithm. (Taken from [39]). 

 

Figure 2. Experimental trial. (Taken from [39]). 

 

In the numerical model the action of the hydraulic 

jack at the keystone of the arch was simulated by 

inputting two equal point forces at the centre of gravity of 

both the keystone blocks. During the analysis, these 

forces were slowly increased. 

The numerical model showed (Fig. 3), step by step, 

the delamination process which also occurred in the 

laboratory. It highlighted a peak load of the same level as 

the one achieved experimentally as well as the cracking 

pattern, which shows the failure of mortar joints due to 

tensile forces, and also the position of the sheet detached 

from many intrados interfaces. It is worth noting that the 

configuration drawn by the computer program, in which 

the numerical procedure is implemented, is the mirror 

image of that obtained in the laboratory. 

5 Conclusions 

In this paper a mechanical model and the related 

numerical procedure for the analysis of masonry arches 

reinforced with FRP sheets at the intrados, has been 

presented. 

Even if a reinforced arch can fail in different ways, 

the delamination of the reinforcement from the arch that, 
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generally, follows or occurs simultaneously to a phase of 

micro-cracking in the mortar joints due to tensile forces, 

is herein proposed to be assumed as the reference failure 

mode for designing the reinforcement intervention. 

Indeed, according to the strength hierarchy criterion, the 

failure due to delamination is more preferable to masonry 

crushing, which spoils the structure without any remedy, 

and also to FRP rupture, that causes the arch to collapse 

almost immediately. 

Therefore, the numerical procedure discussed in this 

paper is proposed in order to provide guidance for 

designing a targeted reinforcement system in order to 

avoid undesirable failure modes. 

The agreement between numerical results and the 

results of the experimental arches tested in the laboratory 

confirms the reliability of the proposed procedure. 
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