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Abstract — Anomaly detection, which aims at identifying 
unexpected trends and data patterns, has widely been used to 
build error detectors, failure predictors or intrusion detectors. 
Internal faults or malicious attacks have a different impact on 
the behavior of the system. They usually manifest as different 
observable deviations from the expected behavior, which may 
be identified by anomaly detection algorithms. Our study aims 
at investigating the suitability of unsupervised algorithms and 
their families in detecting either point, contextual or collective 
anomalies. To provide a complete picture, we consider both 
sliding and non-sliding window algorithms which operate in 
unsupervised mode. Along with qualitative analyses of each 
algorithm and family, we conduct an experimental campaign in 
which we run each algorithm on three state-of-the-art datasets 
in which we inject either point, contextual or collective 
anomalies. Results show that non-sliding algorithms are 
capable to detect point and collective anomalies, while they 
cannot effectively deal with contextual ones. Instead, sliding 
window algorithms require shorter periods of training and 
naturally build a local context, which allow them to effectively 
deal with contextual anomalies. Such observations are 
summarized to support the choice of the correct algorithm 
depending on the investigated class(es) of anomaly.  

Keywords — anomaly detection, unsupervised learning, 
sliding window, algorithms, data mining  

I. INTRODUCTION 

Modern systems such as cyber-physical infrastructures, 
Systems-of-Systems or Cloud environments are composed 
of several software layers and a multitude of services. 
Notoriously, these complex systems have to deal with 
component failures or misbehaviours, or may be targeted by 
cyber-attacks, requiring attentive security countermeasures.  

Consequently, error detectors [42], [20], intrusion 
detectors [5], [12] and failure predictors [8] were proposed 
to enhance system dependability and security by analysing 
system data. They aim at identifying error-prone, malicious 
or unauthorized activities assuming that a fault, or an attack, 
has distinguishable effects on such data, generating 
observable deviations from the expected behaviour. 
Detectors may apply signature-based techniques [5], which 
consist of checking properties or looking for predefined 
patterns (signatures) in monitored data to detect the 
manifestation of a fault, or an ongoing attack. Signature-
based approaches have good detection capabilities when 
dealing with known faults [42] or attacks [2], [5], but they 
may fail in identifying unknown faults. Moreover, when an 
unknown fault or a zero-day attack [1] (i.e., an attack that 
exploit novel or undiscovered system vulnerabilities) is 
revealed, a new signature must be defined and added to the 
signatures set. 

To deal with unknown faults or zero-day attacks, 
research moved to techniques suited to detect unseen, novel 

attacks. Anomaly detectors are intended to find patterns in 
data that do not conform to the expected behaviour of a 
system [2]: such patterns are known as anomalies. Once an 
expected behaviour is defined, anomaly detectors aim at 
identifying deviations from such expectations, providing a 
mean to discover known attacks, zero-day attacks [12] and 
emerging threats [27]. However, anomaly detection is 
particularly effective only when the expected behaviour can 
be defined precisely. Along with an appropriate data quality, 
selecting the correct detection algorithm(s) represents a key 
decision when defining an anomaly detector. 

More precisely, each algorithm has specific strengths 
and weaknesses related to its ability in identifying 
anomalies. As in [2], data points may be unexpected at all 
(point anomaly), unexpected in a given scenario (contextual 
anomaly), or anomalous as a group (collective anomaly). 
Typically, algorithms building a global notion of expected 
behaviour are effective in identifying point anomalies 
(global outliers), while algorithms building a local expected 
behaviour effectively deal with contextual (local outliers) 
[2] and, often, collective anomalies (groups of data points 
that are anomalous as a whole) [3], [4]. Further, although 
most of the algorithms have a generic, system-independent 
definition, they are more effective on specific systems, since 
the same fault may manifest slightly different anomalies 
from system to system. Amongst all the possible algorithms, 
in this study we focus on unsupervised anomaly detection 
algorithms, which do not require labels in training data [40], 
[15]. Unsupervised algorithms aim at partitioning the dataset 
in two classes: the expected data points and the anomalous 
ones. They consider anomalies are rare events, and therefore 
the majority of the data points in the dataset should describe 
an expected behaviour. We refer to 6 families of 
unsupervised algorithms, namely: clustering, statistical, 
classification, neighbour-based, density-based and angle-
based. 

It is worth remarking that most of the available 
algorithms require massive amounts of training data, along 
with high computational power and, consequently, long 
training periods. However, when systems evolve or update 
their internal parameters, the expected behavior changes. 
This calls for a brand new training phase of detection 
algorithms, which might be excessively time-consuming. To 
cope with these issues, there is a noticeable amount of 
research that was carried on in the recent years [41], [42] 
regarding sliding window algorithms, or rather algorithms 
that rely on light training phases, allowing them to promptly 
react to changes or updates of the system, adapting their 
parameters to suit the current behavior. Sliding windows are 
particularly useful to capture the local expected behavior, 
and to limit the processing time of the algorithms, which 
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build their knowledge starting from a limited set of system 
observations, or data points.  

Our work aims at investigating how well different 
algorithm cope with specific classes of anomalies. We i) 
first investigate suitability of algorithms to classes of 
anomalies by reviewing the literature of unsupervised 
anomaly detection algorithms, and ii) then conduct 
quantitative analyses to confirm or deny our initial analyses. 
We select a total of 12 unsupervised algorithms through 
literature review, a non-sliding and a sliding window 
algorithm for each of the 6 families [2], [10]. The selection 
criteria favour well-known, consolidated algorithms with 
public implementations rather than novel proposals.  

More in detail, we qualitatively analyse each algorithm 
to extract information related to their ability in detecting 
either point, contextual or collective anomalies. Then, we 
conduct an experimental campaign to confirm or deny the 
conjectures built at the first stage. Results show that non-
sliding algorithms effectively detect point and collective 
anomalies. Moreover, some algorithms are strongly 
influenced by the choice of input parameters, and therefore 
may provide either very good or very bad results depending 
on such parameters. Sliding window algorithms have worse 
overall detection capabilities, but require shorter periods of 
training and naturally build a local context, which ultimately 
allow them to effectively detect contextual anomalies. 

The remaining of this paper is structured as follows: 
Section II presents basics and a review of works related to 
anomalies, anomaly detection and sliding window strategies. 
Section III describes the selected unsupervised algorithms, 
whose suitability in detecting anomalies is qualitatively 
discussed in Section IV. Section V presents the 
methodology and the results of our experimental campaign. 
Qualitative and quantitative results are discussed in Section 
VI, while Section VII concludes the paper, elaborating on 
possible future works. 

II. BASICS AND RELATED WORKS 

A. On the Nature of Anomalies 

In the paper we will refer to the observation of the state 
of the system at a given instant as a data point. Each data 
point is composed by f feature values, which are collected 
for all the f observed features. Feature values are used to 
determine if the data point is anomalous. More in detail, 
anomalies are rare data points that may be classified as [2]:  

 point anomaly (outlier): a single data point that is out 
of scope or not compliant with the trend of a variable, 
e.g., enormous amount of calls to a (web)service; 

 contextual anomaly: a data point that is unexpected in 
a specific context, e.g., snow during summer in Italy; 

 collective anomaly: a collection of related data points 
that is anomalous with respect to the entire trend or 
dataset e.g., rhythm breakings in heartbeats. 

More in detail, point anomalies, or global outliers, can 
be detected by algorithms that derive patterns [6] or 
statistical-based methods that reconstruct the statistical 
inertia of the data under investigation [7]. Instead, 

contextual anomalies, or local outliers, require knowledge 
on the current state of the system, because they identify data 
points that are unexpected in a given context. Known 
algorithms gather historical [7], user/operator-provided [4], 
or runtime [22] data to define a “contextual” expected 
behavior that is used to evaluate monitored data. Finally, 
collective anomalies may be hard to detect when extensive 
training sets are not available [2]: they represent a group of 
data points that are neither point anomalies nor contextual 
anomalies, but that are unexpected as a whole e.g., rhythm 
breakings in heartbeats. Therefore, these anomalies can be 
detected only by algorithms that are able to consider 
individual observations as correlated data points [3], [4]. 

B. Unsupervised Anomaly Detection  

Different anomaly detectors may be instantiated 
depending on the nature of the data of a target system [2]. If 
fully-labeled training data is available, supervised anomaly 
detection may be adopted [43]. Labelled data points are used 
to train an algorithm using both expected and anomalous 
data points that have already been reported. When labelled 
anomalous data points are unavailable, incomplete or not 
trustable, it is still possible to construct an expected 
behavior in a semi-supervised fashion. Lastly, when training 
data is not labeled at all or not available, the only option is 
an unsupervised anomaly detection approach [10], [40], 
[44]. As remarked in [2], semi-supervised techniques can be 
adapted to operate in an unsupervised mode by using a 
sample of the unlabeled data set as training data, as in [15]. 
Such adaptation assumes that the test data contains very few 
anomalies and the training process is robust enough. 

Noticeably, when configuring an anomaly detector for a 
target system, we can assume that a fully labeled training set 
will not be available in most of the cases due to i) lack of 
trustable labeling techniques, ii) difficulties in gathering 
reliable data, or iii) dynamic and evolving characteristics of 
the system and its workload, which calls for adaptive data 
analysis solutions. Overall, unsupervised algorithms have a 
wider application range than supervised and semi-
supervised algorithms, despite having lower detection 
capabilities due to the absence of labels in training data.  

C. Sliding Windows 

In specific contexts, we can define anomaly detectors 
that use sliding windows, a sequence of n elements 
automatically updated as time passes [41], [23]. Sliding 
window may be i) count-based, containing the n most recent 
data points, or ii) time-based, containing the data points 
within a fixed time interval covering the most recent 
timestamps. Such sliding windows are particularly useful to 
capture the local expected behavior, and to limit the 
processing time of the algorithms, which analyzes a 
maximum of n elements. This way, the scope is limited to 
an interval over the entire set of collected data, and, 
periodically, novel data points are appended to the window, 
while older points are discarded as they become less 
relevant to the analysis. 

Window Update Policy. Policies to manage the window 
have been investigated in the literature. If the window is 
managed as a First In, First Out (FIFO) queue, it may 
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contain anomalies, negatively affecting the definition of the 
local expected behavior, and decreasing the overall ability in 
detecting anomalies. To cope with this problem, the window 
may be updated only if specific conditions are met [24], [23] 
e.g., the value to be added in the window is not an anomaly. 
This improves the quality of the data in the window, but 
requires additional computation at each step.  

Window Size. Broadly, a small window reduces detection 
time and detection capabilities, while a large window 
increases detection time and detection capabilities. Small 
windows contain only a few recent data points and are 
usually efficient in characterizing the current context. Point 
anomalies need more knowledge on the system, because 
they are deviation from the global behavior of the system, 
which can hardly be described by a restricted number of 
data points in the window. An optimal setup for detecting 
collective anomalies is not always easy to identify. Overall, 
the more knowledge we have, the more accurate is the 
characterization of the expected behavior, leading to higher 
possibilities in detecting all classes of anomalies. 

III. SELECTION OF ALGORITHMS 

This section reports on the unsupervised anomaly 
detection algorithms we select for our comparative study. 
We survey the state of the art looking for i) families of 
unsupervised anomaly detection algorithms, ii) a non-sliding 
window algorithm for each family, and iii) a sliding window 
algorithm for each family.  

A. The Selection Criteria 

Our selection criteria favor well-known, consolidated 
algorithms with public implementations. These criteria are 
defined considering that our study is oriented to a fair 
comparison of families of algorithms rather than the 
comparison of recent and advanced strategies. Despite 
technical advancements that may have been proposed by 
domain experts, we assume that algorithms belonging to a 
given family have their intrinsic strengths and weaknesses 
that may be mitigated, but that cannot be removed at all. 
Comparing consolidated versions of algorithms allow us to 
evaluate how the baseline idea behind the algorithms of a 
given family suits the detection of specific classes of 
anomalies. Then, when improved algorithms are proposed, 
we expect results related to the suitability of basic ones to 
anomalies to maintain their validity. 

B. Families of Algorithms 

After a literature review [2], [12], we identify six 
families of algorithms, briefly described below. The selected 
algorithms are summarized in Table I and Table II, along 
with their strengths and weaknesses. Details are provided in 
Section III-C to Section III-H. 

 Neighbor-based algorithms learn by analogy: they 
label a data point as anomalous or expected depending 
on the label of its nearest neighbor(s), considering an 
f-dimensional space. The way the label is chosen may 
be the same as a nearest neighbor, or the majority over 
the k nearest neighbors. 

 Clustering algorithms partition a set of data points in 
such a way that data points in the same group (cluster) 
share similar characteristics. Data points that cannot be 
assigned to any of the existing clusters, or that do not 
met specific inclusion criteria, are anomalous. 

 Angle-based algorithms relate data to high-
dimensional spaces, and measure the variance in the 
angles between the data point to the other points [9]. 
This is a technique with good scalability. Expected 
data points have a large angle variance, while 
anomalies typically result in very small variance in the 
angles from couples of points. 

 Classification algorithms identify the class a new data 
point belongs to, depending on information collected 
during previous activities e.g., assigning a given email 
into spam or non-spam classes. Despite they are 
mainly used in supervised setups, there are also some 
unsupervised approaches [15], [25]. 

 Density-based algorithms estimate the density of the 
neighborhood of each data point. When a data point 
differs from the expected ones, it lies in a low-density 
area and it is then labeled as anomalous.  

 Statistical algorithms are based on the assumption that 
only expected data points occur in high probability 
regions of a given statistical distribution. These 
techniques fit a distribution to the expected points, and 
then apply statistical inference to determine if a novel 
data point belongs to this distribution or not. In 
unsupervised mode, statistical techniques do not 
generally assume knowledge of underlying 
distribution, which is derived as data is computed. 

C. Neighbor-based Algorithms 

Non-Sliding Algorithm - ODIN: stemming from kNN 
[13], this distance-based method was designed to identify 
point anomalies. For each data point, kNN examines the 
whole dataset to determine their feature distances to the 
given point. This allows isolating k nearest neighbors (NN), 
creating the so-called kNN graph. The Outlier Detection 
using Indegree Number (ODIN, [11]) algorithm improves 
kNN by defining as anomalies the data points that have a 
low number of in-adjacent edges in the kNN graph. 

Sliding Window Algorithm - SNN: SNN [23] expands two 
techniques, namely i) conceptual partitioning for nearest 
neighbor monitoring over update streams, and ii) the skyline 
maintenance in the distance-time space, partially pre-
computing future evolutions of the nearest neighbors. The k-
skylines are matched with the kNN. Together, these two 
techniques allow the continuous kNN monitoring over both 
time-based and count-based sliding windows. 

D. Clustering Algorithms 

Non-Sliding Algorithm – KMeans: K-means [17] assigns 
data points to k subsets, or clusters, by their feature values. 
First, k centroids are randomly initialized and each data 
point is assigned to the cluster with the nearest centroid. 
Centroids may be updated, fitting evolving scenarios also in 
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unsupervised mode. Finally, data points that are too far from 
the centroid of their cluster are labeled as anomalies.  

Sliding Window Algorithm - SWClustering: this sliding 
window clustering [18] extends the classic clustering 
algorithms by tracking the evolution of clusters. 
SWClustering combines the exponential histogram with the 
temporal cluster features to handle the in-cluster evolution, 
i) keeping a high quality of the clusters, ii) requiring less 
memory and low overheads, and iii) eliminating the 
influence of outdated data points. 

E. Angle-based Algorithms 

Non-Sliding Algorithm - FastABOD: detects anomalous 
data points depending on the angles between pairs of 
distance vectors to other points [9]. For each data point, the 
algorithm first calculates the Angle Based Outlier Factor 
(ABOF) to its k-nearest neighbor as the normalized scalar 
product of the difference vectors of any triple of neighbors. 
According to [9], the usage of kNN provides a better 
approximation. Then, FastABOD ranks the data points 
according to their ABOF. The smaller the ABOF, the bigger 
the probability that the data point represents an anomaly. 

Sliding Window Algorithm - ABSAD: To mitigate the 
impact of anomaly-irrelevant attributes, in angle-based 
subspace anomaly detection (ABSAD, [22]) the ABOF is 
computed in a subspace that captures the most information 
about the discordance of an object to its adjacent ones. The 
subspace is matched by a sliding window. As data flows, the 
window is updated aiming to maintain a meaningful 
subspace. For each data point, the deviation from its 
neighborhood is evaluated as ABOF on the subspace. 

F. Classification Algorithms 

Non-Sliding Algorithm – One Class SVM: this algorithm 
conducts semi-supervised anomaly detection [2] aiming to 
learn a decision boundary [14]. However, One-Class SVMs 
can be used for unsupervised anomaly detection: a support 
vector machine is trained with the dataset and then each data 
point is classified considering the normalized distance of the 
data point from the determined decision boundary [15]. 

Sliding Window Algorithm – iForestASD: iForestASD 
[24] is an adapted version of iForest [25] with linear time 
complexity and low memory requirement, and it does not 
use any distance or density measure. Since anomalies are 
rare events with feature values that differ from expected 
data points, they may be isolated closer to the root of the 
tree instead of the leaves, which is typical of expected data 
points. Moreover, even if each constituent Isolation Trees 
cannot detect all the anomalies, their ensemble Isolation 
Forest can balance such weaknesses. 

G. Density-based Algorithms 

Non-Sliding Algorithm – LOF: Local Outlier Factor 
(LOF) [16] compute the kNN for each data point, and use 
them to calculate the density index, called Local 
Reachability Density (LRD). The anomaly score is then 
obtained by comparing the LRD of a data point with the 
LRD of its kNN. Expected data points have scores close to 
1.0, while anomalies usually result in bigger scores. 

Sliding Window Algorithm - INCLOF: LOF assign each 
data point an anomaly score. INCLOF [19], an incremental 
variant of LOF algorithm, updates this score whenever the 
sliding window is updated. Additionally, the quality of the 
data in the window is maintained by i) omitting anomalies 

TABLE I.  NON-SLIDING ALGORITHMS 

Algorithm Family Strengths Weaknesses 

ODIN [11] Neighbour 
Tracks a picture of k-neighbourhoods,  

which helps in detecting point anomalies. 
If an outlier is too close to some neighbouring inlier, it can be 

misclassified. 

K-Means [17] Clustering 
k Clusters are calculated as data flows,  
good in identifying single anomalies. 

Converges to a local optimum: good for contextual anomalies. 
This negatively impacts on the detection of point anomalies 

FastABOD [9] Angle 
Robust to high dimensionality data points,  

tailored to identify point anomalies 
If the amount k of neighbours is too low,  

Anomalies other than point may not be detected. 

One-Class SVM [15] Classification 
A well-defined boundary allows detecting all 

anomalies with good overall capabilities. 
Outliers in the training set negatively impact the definition of the 

boundary, which may not be devised correctly. 

LOF [16] Density 
Good overall capabilities. Local density score is 

normalized and easy to analyse. 
Strongly depends on the size k of the neighbourhood.  

HBOS [7] Statistical Histograms help in identifying point anomalies. 
Hard to characterize the current context,  

and collective anomalies may be difficult to detect.  
 

TABLE II.  SLIDING WINDOW ALGORITHMS 

Algorithm Family Strengths Weaknesses 

SNN [23] Neighbour 
Continuous kNN monitoring,  

especially good for point anomalies. 
With small k values,  

groups of anomalies are likely to be ignored 

SWClustering [18] Clustering 
Effectively tracks evolving clusters to identify contextual  

and, often, collective anomalies. 
Collective anomalies are likely to be considered  

as novel small clusters.  

ABSAD [22] Angle Effectively extracts multi-point subspaces (contexts) 
It becomes asymptotically stable  

when using many f features. 

iForestASD [24] Classification 
Each constituent isolation tree is built for identifying 

(isolated) point anomalies. 
Data points should not break the “isolation” assumption.  

iForest has several input parameters.  

INCLOF [19] Density 
Adaptation of LOF to sliding windows.  

Good Overall Capabilities. 
Need an accurate management of data in the window to keep 

detecting anomalies. 

SPS [20] Statistical 
Detects individual data points that  

do not follow to the expected behaviour. 
High variance of data increases the safety margin,  

exposing to missed detections. 
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from the window, and ii) optimizing the update of LOF 
scores. This activity is particularly useful to release memory 
resources and to avoid polluting expected data.  

H. Statistical 

Non-Sliding Algorithm - HBOS: This approach [7] 
generates an histogram for each feature by using the values 
of all the available data points. The anomaly score is 
computed by multiplying the inverse heights of the columns 
in which each feature of the data point reside. Such 
technique assumes that the investigated features are 
independent, making HBOS fast even when dealing with 
large datasets [10]. If features are dependent, such 
dependencies need to be neglected.  

Sliding Window Algorithm - SPS: the Statistical Predictor 
and Safety Margin (SPS, [20]) algorithm predicts an 
interval, given by a minimum and a maximum value, in 
which the next value is expected to fall. The interval is built 
by combining i) the last observed feature value, ii) a 
prediction of its evolution, and iii) a safety margin, which 
grows when feature values show high variance. SPS 
identifies values that do not follow the statistical inertia of 
the observations, and consequently it is suitable for 
detecting point anomalies [21]. 

IV. SUITABILITY OF ALGORITHMS TO CLASSES OF ANOMALIES 

To the best of our knowledge, there is no detection 
algorithm that can always effectively identify anomalies. To 
such extent, we discuss here how the design choices 
characterizing each family of algorithm impact their ability 
in identifying specific classes of anomalies. Results are built 
as an analytical process, which is complemented by a 
quantitative evaluation described in Section V. 

Each family of unsupervised anomaly detection 
algorithms has their own peculiarities. More in detail, 
algorithms belonging to neighbor-based, angle-based and 
density-based families are primarily intended to identify 
point anomalies, while they may not be able to detect 
collective anomalies if the size k of the selected 
neighborhood is smaller than the size of the collective group 
of anomalies. Indeed, an indegree score may help detecting 
them, as demonstrated in [11]. This issue is shared also with 
clustering algorithms, since a collective anomaly may lead 
them to create a separate cluster for the particular group of 
data points. However, some clustering algorithms [18] 
mitigate this problem by labeling as anomalous both data 
points i) belonging to small clusters and ii) far from known 
clusters. Instead, one of their main weaknesses is on 
detection of contextual anomalies: a data point with feature 
values that occurred frequently in the past but that should 
not occur anymore is likely to fall into a cluster of expected 
data points.  

When considering sliding windows, the usage of a 
reduced portion of past data limits the overall capabilities of 
characterizing a global expected behavior. As a 
consequence, the overall ability of algorithms in detecting 
point anomalies may decrease since they may not be able to 
characterize a global notion of expected behavior when 
using small windows. Moreover, algorithms belonging to 

neighbor-based, angle-based, and clustering families are 
more likely to identify contextual anomalies, since they 
build their knowledge on a limited portion of recent data 
which, in fact, represent the current context. 

In unsupervised anomaly detection, classification-based 
algorithms are often identified as One-Class SVM [15]. This 
algorithm learns a non-linear boundary that is then used to 
partition expected data points and anomalous ones. 
However, if the data used to create such boundary does not 
follow the assumptions (e.g., no outliers in the training data, 
Gaussian kernel), its detection capabilities will decrease 
dramatically. An alternative classification is provided by 
Isolation Forests [25], i.e., ensembles of Isolation Trees, 
which are also adequate for sliding windows [24]. Despite it 
has a lower but comparable performance with SVMs, it is 
more robust to noise in training data. Lastly, statistical 
algorithms are based on probability distributions and 
statistical analyses: it is therefore difficult to identify a 
general capability in detecting classes of anomalies. 

V. EXPERIMENTAL EVALUATION 

Here we describe our process, the main steps, and the 
results of our experimental study of anomaly detection 
algorithms targeting specific classes of anomalies.  

A. Methodology 

Considering the unsupervised algorithms and algorithm 
families that are summarized in Section III, we create some 
datasets for scoring the performances of the algorithms 
when dealing with specific classes of anomalies. To the 
authors’ knowledge, there is no work that provides effective 
and robust links between safety or security threats and the 
classes of anomalies they usually generate. Therefore, 
existing datasets that log intrusions or the manifestation of 
internal faults of a system are not fitting our needs. To fix 
this issue, we  

i. take expected data coming from 3 state-of-the art 
datasets [29], [30], [26] that are commonly used for 
anomaly-based intrusion detection,  

ii. remove non-numerical features, if any, and  

iii. inject data perturbations which simulate faults or 
attacks manifesting as either point, contextual, or 
collective anomalies.  

This generates 3 sub-datasets for each of the initial ones. 
A sub-dataset is extracted from the initial dataset with the 
artificial injection of either point, contextual or collective 
anomalies. Sub-datasets are used to train the parameters and 
then to run the selected algorithms, ultimately evaluating the 
capabilities of each algorithm in detecting each class of 
anomaly. Multiple instances of the investigated algorithm 
are generated during the training phase. Each algorithm 
instance is assigned to a different dataset feature, or set of 
features. One or more instances may be run in parallel, 
combining their results according to a given strategy. Such 
process is expanded in Section V.D. 

Lastly, we present results by means of metrics such as 
Precision, Recall, False Positive Rate, Accuracy, F-Score, 
Matthews Coefficient and Area Under ROC Curve.  
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B. Datasets 

The data we use in this paper is based on the publicly 
available datasets NSL-KDD [29], ISCX [30] and UNSW-
NB15 [26], which were published in the last 10 years. These 
datasets report on network traffic logged on different 
systems and with different purposes. We filter such datasets 
obtaining subsets of respectively 57592, 122148, and 44353 
data points. We preprocess each dataset to characterize a 
general notion of expected behavior for each feature e.g., 
minimum and maximum values, average, median, variance, 
and we modify such data by inserting additional records 
which contain anomalous values for some features of a data 
point. Despite such artificial anomalies do not perfectly 
replicate real anomalies [2], we simulated them to the best 
of our capabilities as follows: 

 Point anomalies: some feature values are updated 
with values that are either smaller than the minimum 
values or bigger than the maximum values logged in 
the dataset for a given feature. 

 Contextual anomalies: some feature values are 
updated with values that are not contained in the 
95% confidence interval, considering the last 100 
feature values as current context. 

 Collective anomalies: in our experiments a 
collective anomaly is a set of three subsequent data 
points where we updated some feature values with 
values outside the 80% confidence interval, 
considering the last 100 feature values as current 
context. Collective anomalies are not subsequent 
point or contextual anomalies; therefore we used a 
different confidence interval to generate them. 

We inject anomalies in the sub-datasets, obtaining a 95% 
- 5% ratio of expected – anomalous data points. The 
resulting sub-datasets are freely available at [35]. 

C. Metrics 

The effectiveness of anomaly detectors is usually 
analyzed using indicators counting correct detections - true 
positives (TP), true negatives (TN) - and the wrong ones, 
either missed detections (false negatives, FN) or wrong 
detections (false positives, FP). These indicators are 
commonly used to derive the so-called confusion matrix. 
Aggregate metrics based on the abovementioned indicators 
are Precision, Recall (or Coverage), False Positive Rate, 
Accuracy, F-Score(β) [31] and Matthews Coefficient (MCC, 
[32]). Especially in the F-Score(β), varying the parameter β 
makes possible to weight the precision with respect to the 
recall (note that F-Score(1), or F1, is referred as F-
Measure), allowing to give more relevance to either FPs or 
FNs. It is worth remarking that when dealing with critical 
systems, we may prefer reducing the occurrence of missed 
detections (FN), even at the cost of a higher rate of FP. 
Since we want our study to be as generic as possible, we 
investigate Accuracy, F-Measure and MCC, which 
aggregate TPs, TNs, FPs, and FNs considering FPs and FNs 
with the same weight. However, it is acknowledged [39] 
that, under specific circumstances, metrics as F1 or 
Accuracy “can be misleading, since they do not fully 
consider the size of the four classes of the confusion matrix 

in their final score computation”. Therefore, as suggested in 
[39], in our study we choose MCC as reference metric. 

In addition, we calculate the Area Under ROC Curve 
(AUC), which is used [33], [34] to estimate how the choice 
of the parameters of a given algorithm impacts its detection 
capabilities. Depending on the system, it may be difficult to 
find an optimal combination of input parameters. Therefore, 
the choice of input parameters may lead to a high variance 
of detection scores and, consequently, lower AUC scores.  

D. Instances Generation and Anomaly Threshold 

As described in the methodology, we generate multiple 
instances of each algorithm during training. Instances are 
assigned to the numeric features of the dataset. An algorithm 
instance can be assigned to i) a single feature, ii) a subset of 
features, or iii) the n-dimensional space composed by all the 
available features. In our study, we create subsets of features 
when two or more features show a Pearson Correlation [38] 
above 90%, either positive or negative, always including the 
set composed by all the available features. 

The usage of multiple instances assigned to different 
features helps improving the algorithm performances since 
it allows choosing the instance which show better scores 
during training as the one that will be used in the validation 
phase. Moreover, more than one instance can be run in 
parallel at validation phase, collecting their anomaly 
evaluations separately, and then voting the single scores, 
according to a given anomaly threshold. During training, 
different thresholds are considered, namely  

 ALL: an anomaly alert is raised if and only if all the 
algorithm instances label the current data point as 
anomalous; 

 HALF: half of the algorithm instances must evaluate 
the feature values assigned to them as anomalous; 

 ONE: an anomaly alert is raised if at least one 
algorithm instance detects anomalous feature values. 

It is important to remark that the choice of this threshold 
heavily affects the overall detection performance. 
Considering a single instance (i.e., adopting ONE threshold) 
usually reduces the amount of false negatives; instead, the 
need of a consensus among instances, e.g., ALL threshold, 
reduces the number of (false) alarms.  

E. Experimental Setup 

First, we retrieve available public implementations of the 
selected algorithms. KMeans, ODIN, LOF, FastABOD and 
OneClass SVM are extracted from the ELKI [36], while the 
HBOS implementation is devised starting from the paper 
[7]. Regarding sliding windows algorithms, no public 
implementations were made available by authors, except for 
SPS. Therefore, since sliding windows algorithms are 
usually adapted versions of known algorithms with 
optimized execution time, we simulate the sliding window 
algorithms as follows. Instead of considering the 
experimental data all-at-once, we simulate a sliding window 
of different sizes WS = {10, 20, 50, 100}, and every time a 
new data point is added to the window, we run the 
corresponding algorithm by using the content of the window 
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as training set. Also, we consider as policies to slide the 
windows i) FIFO (see Section II.C), and ii) FIFONormal, 
which extends the FIFO policy by sliding the window only 
if the current data point is not an anomaly. We employ as 
underlying algorithms: ABOD for simulating ABSAD, LOF 
for INCLOF, kNN for SNN, KMeans for SWClustering, and 
IsolationForest (i.e., WEKA [37]) for iForestASD. 

The experiments are conducted according to the 
methodology presented in Section V.A. Parameters tuning is 
employed during training to find an optimal setup of each 
instance of a given algorithm. Tuning is performed by i) 
first, running different combinations of parameters; ii) then, 
comparing results for the different parameters. For example, 
we run kNN and kNN-dependent algorithms i.e., ODIN, 
FastABOD, with k ϵ {1, 2, 3, 5, 10, 20, 50, 100}. In the 
followings we will also elaborate on the relevance of the 
choice of parameters through discussion of AUC scores.  

Datasets with artificial injection of anomalies are created 
according to the process described in Section V.B. Starting 
from the initial portions of NSL-KDD, ISCX, UNSW 
datasets, non-numeric features were removed, leaving 38 
features for NSL-KDD, 6 for ISCX, and 39 for UNSW. 
During training phase, we respectively create 38, 20, and 25 
feature subsets according to Pearson Correlation. This 
results in 77 algorithm instances for NSL-KDD, 27 for 
ISCX, and 65 for UNSW, which sum i) the single features, 
ii) the feature subsets, and iii) the set composed by all the 
available features. All the instances are evaluated together 
during training phase and all the possible algorithm 
configurations are ranked according to a given target metric, 
in our case MCC (see Section V.C). The ranked list is then 
used in the evaluation phase to maximize algorithm scores.  

The data generated during the execution of the 
algorithms was initially stored in CSV files, and 
successively analyzed with MS Excel for fast analytics, such 
as comparing metric scores. The experimental campaign is 
executed on an Intel Core i7, 32GB of RAM server, with at 
least 15GB and up to 20GB dedicated to the execution of 
the experimental campaign. Overall, computing all the 
scores and metrics required approximately three weeks of 
24h execution. A complete view of the collected data cannot 
be presented here for brevity: the files we used to aggregate 
metric data and plot graphs are available at [35]. 

F. Results: Non-Sliding Algorithms 

Table III show the metric scores we obtain by running 
the selected non-sliding algorithms to our three synthetic 
datasets. The table aggregates scores by algorithm, ranking 
the resulting rows according to a decreasing MCC. 

Figure 1 reports on the MCC scores for non-sliding 
algorithms, for each class of anomalies. We observe that 
SVM shows the highest scores. However, we can observe 
how algorithms that have low metric scores in Table III are 
really effective in detecting specific classes of anomalies, 
i.e., KMeans and FastABOD. Point anomalies are detected 
well by FastABOD (see column with squares in Figure 1), 
while KMeans show very good capabilities in identifying 
collective anomalies (see horizontal-striped columns in 
Figure 1). These two algorithms also show high AUC 
scores, meaning that the impact of the choice of the 
parameters used for training phase does not heavily affect 
performances. Instead, we observe that the AUC for One-
Class SVM (see Table III), is the lowest out of the selected 
non-sliding algorithms.  

LOF and, to a lesser extent, ODIN, are good generalist 
algorithms, which do not show specific weaknesses for 
identifying each class of anomaly. Lastly, we remark how 
HBOS, despite not optimal in terms of metric scores, is a 
light and fast algorithm, making it useful when a massive 
amount of computational resources is unavailable. 

G. Results: Sliding Window Algorithms 

Figure 2 depicts the MCC scores of the 6 selected sliding 
window algorithms, grouped by class of anomalies. 
Observing the vertical-striped columns in the figure it is 
possible to realize that such algorithms do not really suit the 
detection of point anomalies, despite the neighbor-based 
algorithm SNN achieves the highest average MCC score. 
Instead, contextual anomalies are detected fairly well by 

TABLE III.  AVERAGE METRIC SCORES FOR NON-SLIDING ALGORITHMS 

Non-Sliding 
Algorithm 

# Conf FPR P R F1 ACC MCC AUC 

OneClass SVM [14] 12 0.21% 0.97 0.88 0.92 0.99 0.92 0.65 

LOF [16] 8 1.49% 0.84 0.89 0.86 0.98 0.85 0.67 

ODIN [11] 8 2.45% 0.77 0.87 0.81 0.97 0.80 0.72 

HBOS [7] 9 1.60% 0.84 0.77 0.80 0.97 0.78 0.68 

KMeans [17] 8 4.41% 0.74 0.84 0.78 0.95 0.74 0.71 

FastABOD [9] 16 2.64% 0.62 0.63 0.62 0.94 0.58 0.81 

Fig. 1. Average MCC scores for non-sliding algorithms, for each class of 
anomalies. Error bars represent standard deviation among the datasets.  

Fig. 2. Average MCC scores for sliding window algorithms, for each class 
of anomalies. Error bars represent standard deviation among the datasets.  
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SPS, iForestASD, SWClustering algorithms; the latter is the 
sliding window algorithm with the higher average MCC 
score with collective anomalies (see horizontal-striped 
columns in Figure 2).  

To complete our analysis on sliding window algorithms, 
in Figure 3 we report the average MCC when varying the 
window size and the sliding policy. We can notice how the 
MCC score increases as the window size, or rather the 
amount of system knowledge, grows. In addition, the 
FIFONormal policy prevents anomalous data points to enter 
the window, allow defining a more precise expected 
behavior. This approximately results in 10% higher average 
MCC scores with respect to the former FIFO policy.   

VI. ANALYSIS OF THE RESULTS AND FINDINGS 

We analyze here the results reported in the previous 
section, summarizing the main findings in Section VI-D. 

A. Analysis of the Results 

At a first glance, results in Figure 1 do not match the 
expectations. We expect point anomalies to be the easiest to 
detect, and collective anomalies to be the hardest to detect. 
Instead, their average MCC score is almost the same, while 
contextual anomalies are detected with more difficulties. We 
explain this result as follows: the selected algorithms use 
large training sets, which allow a careful and precise 
definition of the boundaries between anomalous and 
expected behavior. However, during their process they 
derive a global boundary, which does not fit the detection of 
local anomalies, or rather data points that have feature 
values that are not expected in a given context. As a result, 
contextual anomalies cannot be detected easily. An in-depth 
view of metric scores related to each non-sliding algorithm 
is reported in Table III. Starting from the top of the table, we 
can observe how One-Class SVM turns out to have better 
overall metric scores. However, depending on the data 
points used for training, SVMs may not be able to correctly 
derive a boundary, nullifying its detection ability. Therefore, 
it is important to look for other options – a different 
algorithm or a combination of two or more that may be run 
simultaneously - that provide similar metric scores, and 
based on more robust training processes. 

Overall, we can observe how sliding window algorithms 
have lower scores than non-sliding ones. In fact, the usage 
of a sliding window limits the amount of training data. 
While it allows building faster algorithms, such restricted 
knowledge of the system negatively impacts the detection 
capabilities. Comparing the scores in Figure 1 and Figure 2, 
we can notice that sliding window algorithms are not really 

effective in detecting point anomalies, which need a global 
notion of expected behavior to be identified. Instead, they 
identify contextual anomalies with scores comparable with 
non-sliding algorithms. More in detail, they generate more 
false positives i.e., higher FPR and lower Precision, but 
similar Recall scores. Sliding window algorithms show 
fairly good capabilities in detecting collective anomalies, 
although adopting non-sliding algorithms is preferable i.e., 
average MCC score of 0.81 with respect to 0.69 of sliding 
window algorithms.  

As a side remark, we do not report on the impact of 
anomaly thresholds, which instead are logged in our data at 
[35]. In fact, while considering different thresholds helps 
improving metric scores, it is not possible to extract a rule to 
derive an optimal threshold depending on our data. 
Consequently, we do not expand this discussion since it may 
be confusing, as it is not substantiated by detailed and 
extensive sensitivity analyses (planned as future work).   

B. Computational Complexity 

Despite not being the focus of our analysis, for 
completeness we report here on the computational 
complexity of the algorithms we select for our study. The 
complexity of density-based and angle-based algorithms is 
at least O(N2), or rather the complexity of an NN query. 
Clustering is generally more efficient, with complexity of 
O(k N), where k represents the number of clusters. 
Statistical and classification families may have very 
different complexities; therefore it is not easy to present a 
bound. However, statistical algorithms are usually sub-linear 
e.g., O(N log N) for HBOS, while classifiers usually build 
complex structures e.g., tree ensemble [25], or conduct 
complex calculations e.g., OneClassSVM, O(N2). 

C. Final Discussion 

Overall, our results show which unsupervised algorithms 
– and their families – are more suitable than others to detect 
anomalies belonging to specific classes. The final results of 
our qualitative and quantitative analyses are depicted in 
Figure 4. More in detail, Figure 4-A reports on the 
qualitative analyses discussed in Section IV, while Figure 4-
B and 4-C reports on the capabilities of non-sliding and 
sliding window algorithms with respect to the three known 
classes of anomalies. Figure 4-B and 4-C are built 
considering non-sliding algorithms as “capable” of 
identifying a class of anomalies if in our experiments a 
given algorithm reached or exceeded 0.8 of MCC. We lower 
this threshold to 0.65 for sliding window algorithms. We 
choose these two thresholds trying to balance the “good” 
and the “bad” i.e., a MCC of 0.65 splits the scores of Figure 
2 in two groups with the same cardinality. 

By looking at Figure 4 as a whole, we can notice several 
mismatches e.g., Figure 4-A shows clustering algorithms as 
capable of identifying both point and collective anomalies, 
while Figure 4-B puts KMeans, the non-sliding clustering 
algorithm, in the “collective anomaly” set. Discrepancies are 
mainly related to the specific implementations of 
algorithms: despite they clearly belong to a given family, 
they may use some specific techniques that slightly change 
their behavior. Instead, LOF and SVM scores confirm the 

Fig. 3. Average MCC scores varying window size and sliding policy.  
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results of qualitative analyses on density-based and 
classification families i.e., they fall in the intersection of the 
three sets in Figure 4-A and Figure 4-B. Unfortunately, as 
reported in Section VI.B, they both have quadratic 
computational complexity, meaning that the time they need 
for training and for providing an anomaly score for a novel 
data point is not optimal. However, faster algorithms such as 
clustering and statistical (sub-linear complexity), have 
worse detection capabilities, as showed by our metric 
scores. A possible solution could be the parallelization of 
different fast algorithms, with a final voting of their results.    

Figure 4-C deserves a specific mention. The usage of 
sliding windows makes difficult to define a global notion of 
expected behavior, and therefore the ability of detecting 
point anomalies is affected. In fact, only the SNN algorithm 
has a MCC score higher than 0.65 when aiming at point 
anomalies. Instead, algorithms belonging to families 
supposed to be specifically suitable for point anomalies i.e., 
angle-based and statistical, show good performances in 
detecting contextual anomalies. These algorithms identify 
point anomalies in the restricted context described by the 
sliding window, which can be paired with contextual 
anomalies. Other sliding window algorithms follow the 
same pattern being effective in identifying contextual 
anomalies. As a final remark, we do not identify a generalist 
sliding window algorithm e.g., effective in identifying all 
classes of anomalies with good scores. 

D. Our Main Findings 

As a final recap, we summarize our findings as follows.  

 Contextual anomalies are not easily detectable by 
non-sliding algorithms, since they process the 
training data all-at-once, making the identification 
of local contexts more difficult.  

 Sliding window algorithms generally struggle in 
identifying point anomalies, since the restricted 
amount of data points in the window does not allow 
building a global knowledge. 

 We observe how an accurate management of data 
points in the sliding window i.e., avoid putting 
anomalous data points in the window, improves the 
overall scores of sliding window algorithms. 

 SVMs turned out to be the best overall algorithm. 
However, its training phase is heavy i.e., O(N2), and 

strongly dependent on several assumptions which 
may cause the definition of the boundary to fail.  

 Running different algorithms in parallel and 
combining their scores may provide good detection 
capabilities, also allowing to manage the overall 
complexity by selecting the faster ones. 

 There is no anomaly threshold that turned out to be 
overall more useful to improve detection capabilities 
of algorithms with our datasets. 

VII. CONCLUSIONS AND FUTURE WORKS 

We investigated the suitability of unsupervised 
algorithms and their families in detecting either point, 
contextual or collective anomalies. We first reviewed the 
literature of unsupervised anomaly detection algorithms, 
devising initial conjectures on their suitability to classes of 
anomalies through qualitative analyses. Then, the initial 
analyses were substantiated by quantitative analyses 
conducted by executing the selected algorithms on three 
datasets, reporting results throughout common scoring 
metrics. Our study involved 12 unsupervised algorithms, a 
non-sliding and a sliding window algorithm for each of the 6 
(clustering, statistical, classification, neighbour-based, 
density-based and angle-based) families of algorithms. 
Results showed that non-sliding algorithms effectively 
identify point and collective anomalies, while sliding 
window algorithms are particularly suitable for contextual 
anomalies. Additional side discussions are expanded and 
then summarized at the end of the paper.  

As future work, we will investigate and evaluate if and 
how combining different algorithms helps improving 
detection capabilities, along with a sensitivity analysis 
directed to discover optimal anomaly thresholds. Moreover, 
mixtures of both sliding and non-sliding algorithms may 
reveal to be particularly suitable for specific needs or 
systems. In particular, if a system partially changes its 
behaviour and a novel training phase for non-sliding 
algorithms is triggered, sliding window algorithms may be 
employed as a temporary solution until the training phase 
involving the main detection algorithm completes. 
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Fig. 4. Linking Classes of Anomalies to a) Families of Algorithms, b) Non-Sliding Algorithms, and c) Sliding Window Algorithms.  
Symbols match an algorithm with its family in the pictures.  
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