
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On Algorithms Selection for Unsupervised
Anomaly Detection

Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli
Department of Mathematics and Informatics

University of Florence, Florence, Italy
{tommaso.zoppi, andrea.ceccarelli, bondavalli}@unifi.it

Abstract — Anomaly detection, which aims at identifying
unexpected trends and data patterns, has widely been used to
build error detectors, failure predictors or intrusion detectors.
Internal faults or malicious attacks have a different impact on
the behavior of the system. They usually manifest as different
observable deviations from the expected behavior, which may
be identified by anomaly detection algorithms. Our study aims
at investigating the suitability of unsupervised algorithms and
their families in detecting either point, contextual or collective
anomalies. To provide a complete picture, we consider both
sliding and non-sliding window algorithms which operate in
unsupervised mode. Along with qualitative analyses of each
algorithm and family, we conduct an experimental campaign in
which we run each algorithm on three state-of-the-art datasets
in which we inject either point, contextual or collective
anomalies. Results show that non-sliding algorithms are
capable to detect point and collective anomalies, while they
cannot effectively deal with contextual ones. Instead, sliding
window algorithms require shorter periods of training and
naturally build a local context, which allow them to effectively
deal with contextual anomalies. Such observations are
summarized to support the choice of the correct algorithm
depending on the investigated class(es) of anomaly.

Keywords — anomaly detection, unsupervised learning,
sliding window, algorithms, data mining

I. INTRODUCTION

Modern systems such as cyber-physical infrastructures,
Systems-of-Systems or Cloud environments are composed
of several software layers and a multitude of services.
Notoriously, these complex systems have to deal with
component failures or misbehaviours, or may be targeted by
cyber-attacks, requiring attentive security countermeasures.

Consequently, error detectors [42], [20], intrusion
detectors [5], [12] and failure predictors [8] were proposed
to enhance system dependability and security by analysing
system data. They aim at identifying error-prone, malicious
or unauthorized activities assuming that a fault, or an attack,
has distinguishable effects on such data, generating
observable deviations from the expected behaviour.
Detectors may apply signature-based techniques [5], which
consist of checking properties or looking for predefined
patterns (signatures) in monitored data to detect the
manifestation of a fault, or an ongoing attack. Signature-
based approaches have good detection capabilities when
dealing with known faults [42] or attacks [2], [5], but they
may fail in identifying unknown faults. Moreover, when an
unknown fault or a zero-day attack [1] (i.e., an attack that
exploit novel or undiscovered system vulnerabilities) is
revealed, a new signature must be defined and added to the
signatures set.

To deal with unknown faults or zero-day attacks,
research moved to techniques suited to detect unseen, novel

attacks. Anomaly detectors are intended to find patterns in
data that do not conform to the expected behaviour of a
system [2]: such patterns are known as anomalies. Once an
expected behaviour is defined, anomaly detectors aim at
identifying deviations from such expectations, providing a
mean to discover known attacks, zero-day attacks [12] and
emerging threats [27]. However, anomaly detection is
particularly effective only when the expected behaviour can
be defined precisely. Along with an appropriate data quality,
selecting the correct detection algorithm(s) represents a key
decision when defining an anomaly detector.

More precisely, each algorithm has specific strengths
and weaknesses related to its ability in identifying
anomalies. As in [2], data points may be unexpected at all
(point anomaly), unexpected in a given scenario (contextual
anomaly), or anomalous as a group (collective anomaly).
Typically, algorithms building a global notion of expected
behaviour are effective in identifying point anomalies
(global outliers), while algorithms building a local expected
behaviour effectively deal with contextual (local outliers)
[2] and, often, collective anomalies (groups of data points
that are anomalous as a whole) [3], [4]. Further, although
most of the algorithms have a generic, system-independent
definition, they are more effective on specific systems, since
the same fault may manifest slightly different anomalies
from system to system. Amongst all the possible algorithms,
in this study we focus on unsupervised anomaly detection
algorithms, which do not require labels in training data [40],
[15]. Unsupervised algorithms aim at partitioning the dataset
in two classes: the expected data points and the anomalous
ones. They consider anomalies are rare events, and therefore
the majority of the data points in the dataset should describe
an expected behaviour. We refer to 6 families of
unsupervised algorithms, namely: clustering, statistical,
classification, neighbour-based, density-based and angle-
based.

It is worth remarking that most of the available
algorithms require massive amounts of training data, along
with high computational power and, consequently, long
training periods. However, when systems evolve or update
their internal parameters, the expected behavior changes.
This calls for a brand new training phase of detection
algorithms, which might be excessively time-consuming. To
cope with these issues, there is a noticeable amount of
research that was carried on in the recent years [41], [42]
regarding sliding window algorithms, or rather algorithms
that rely on light training phases, allowing them to promptly
react to changes or updates of the system, adapting their
parameters to suit the current behavior. Sliding windows are
particularly useful to capture the local expected behavior,
and to limit the processing time of the algorithms, which

2

build their knowledge starting from a limited set of system
observations, or data points.

Our work aims at investigating how well different
algorithm cope with specific classes of anomalies. We i)
first investigate suitability of algorithms to classes of
anomalies by reviewing the literature of unsupervised
anomaly detection algorithms, and ii) then conduct
quantitative analyses to confirm or deny our initial analyses.
We select a total of 12 unsupervised algorithms through
literature review, a non-sliding and a sliding window
algorithm for each of the 6 families [2], [10]. The selection
criteria favour well-known, consolidated algorithms with
public implementations rather than novel proposals.

More in detail, we qualitatively analyse each algorithm
to extract information related to their ability in detecting
either point, contextual or collective anomalies. Then, we
conduct an experimental campaign to confirm or deny the
conjectures built at the first stage. Results show that non-
sliding algorithms effectively detect point and collective
anomalies. Moreover, some algorithms are strongly
influenced by the choice of input parameters, and therefore
may provide either very good or very bad results depending
on such parameters. Sliding window algorithms have worse
overall detection capabilities, but require shorter periods of
training and naturally build a local context, which ultimately
allow them to effectively detect contextual anomalies.

The remaining of this paper is structured as follows:
Section II presents basics and a review of works related to
anomalies, anomaly detection and sliding window strategies.
Section III describes the selected unsupervised algorithms,
whose suitability in detecting anomalies is qualitatively
discussed in Section IV. Section V presents the
methodology and the results of our experimental campaign.
Qualitative and quantitative results are discussed in Section
VI, while Section VII concludes the paper, elaborating on
possible future works.

II. BASICS AND RELATED WORKS

A. On the Nature of Anomalies

In the paper we will refer to the observation of the state
of the system at a given instant as a data point. Each data
point is composed by f feature values, which are collected
for all the f observed features. Feature values are used to
determine if the data point is anomalous. More in detail,
anomalies are rare data points that may be classified as [2]:

 point anomaly (outlier): a single data point that is out
of scope or not compliant with the trend of a variable,
e.g., enormous amount of calls to a (web)service;

 contextual anomaly: a data point that is unexpected in
a specific context, e.g., snow during summer in Italy;

 collective anomaly: a collection of related data points
that is anomalous with respect to the entire trend or
dataset e.g., rhythm breakings in heartbeats.

More in detail, point anomalies, or global outliers, can
be detected by algorithms that derive patterns [6] or
statistical-based methods that reconstruct the statistical
inertia of the data under investigation [7]. Instead,

contextual anomalies, or local outliers, require knowledge
on the current state of the system, because they identify data
points that are unexpected in a given context. Known
algorithms gather historical [7], user/operator-provided [4],
or runtime [22] data to define a “contextual” expected
behavior that is used to evaluate monitored data. Finally,
collective anomalies may be hard to detect when extensive
training sets are not available [2]: they represent a group of
data points that are neither point anomalies nor contextual
anomalies, but that are unexpected as a whole e.g., rhythm
breakings in heartbeats. Therefore, these anomalies can be
detected only by algorithms that are able to consider
individual observations as correlated data points [3], [4].

B. Unsupervised Anomaly Detection

Different anomaly detectors may be instantiated
depending on the nature of the data of a target system [2]. If
fully-labeled training data is available, supervised anomaly
detection may be adopted [43]. Labelled data points are used
to train an algorithm using both expected and anomalous
data points that have already been reported. When labelled
anomalous data points are unavailable, incomplete or not
trustable, it is still possible to construct an expected
behavior in a semi-supervised fashion. Lastly, when training
data is not labeled at all or not available, the only option is
an unsupervised anomaly detection approach [10], [40],
[44]. As remarked in [2], semi-supervised techniques can be
adapted to operate in an unsupervised mode by using a
sample of the unlabeled data set as training data, as in [15].
Such adaptation assumes that the test data contains very few
anomalies and the training process is robust enough.

Noticeably, when configuring an anomaly detector for a
target system, we can assume that a fully labeled training set
will not be available in most of the cases due to i) lack of
trustable labeling techniques, ii) difficulties in gathering
reliable data, or iii) dynamic and evolving characteristics of
the system and its workload, which calls for adaptive data
analysis solutions. Overall, unsupervised algorithms have a
wider application range than supervised and semi-
supervised algorithms, despite having lower detection
capabilities due to the absence of labels in training data.

C. Sliding Windows

In specific contexts, we can define anomaly detectors
that use sliding windows, a sequence of n elements
automatically updated as time passes [41], [23]. Sliding
window may be i) count-based, containing the n most recent
data points, or ii) time-based, containing the data points
within a fixed time interval covering the most recent
timestamps. Such sliding windows are particularly useful to
capture the local expected behavior, and to limit the
processing time of the algorithms, which analyzes a
maximum of n elements. This way, the scope is limited to
an interval over the entire set of collected data, and,
periodically, novel data points are appended to the window,
while older points are discarded as they become less
relevant to the analysis.

Window Update Policy. Policies to manage the window
have been investigated in the literature. If the window is
managed as a First In, First Out (FIFO) queue, it may

3

contain anomalies, negatively affecting the definition of the
local expected behavior, and decreasing the overall ability in
detecting anomalies. To cope with this problem, the window
may be updated only if specific conditions are met [24], [23]
e.g., the value to be added in the window is not an anomaly.
This improves the quality of the data in the window, but
requires additional computation at each step.

Window Size. Broadly, a small window reduces detection
time and detection capabilities, while a large window
increases detection time and detection capabilities. Small
windows contain only a few recent data points and are
usually efficient in characterizing the current context. Point
anomalies need more knowledge on the system, because
they are deviation from the global behavior of the system,
which can hardly be described by a restricted number of
data points in the window. An optimal setup for detecting
collective anomalies is not always easy to identify. Overall,
the more knowledge we have, the more accurate is the
characterization of the expected behavior, leading to higher
possibilities in detecting all classes of anomalies.

III. SELECTION OF ALGORITHMS

This section reports on the unsupervised anomaly
detection algorithms we select for our comparative study.
We survey the state of the art looking for i) families of
unsupervised anomaly detection algorithms, ii) a non-sliding
window algorithm for each family, and iii) a sliding window
algorithm for each family.

A. The Selection Criteria

Our selection criteria favor well-known, consolidated
algorithms with public implementations. These criteria are
defined considering that our study is oriented to a fair
comparison of families of algorithms rather than the
comparison of recent and advanced strategies. Despite
technical advancements that may have been proposed by
domain experts, we assume that algorithms belonging to a
given family have their intrinsic strengths and weaknesses
that may be mitigated, but that cannot be removed at all.
Comparing consolidated versions of algorithms allow us to
evaluate how the baseline idea behind the algorithms of a
given family suits the detection of specific classes of
anomalies. Then, when improved algorithms are proposed,
we expect results related to the suitability of basic ones to
anomalies to maintain their validity.

B. Families of Algorithms

After a literature review [2], [12], we identify six
families of algorithms, briefly described below. The selected
algorithms are summarized in Table I and Table II, along
with their strengths and weaknesses. Details are provided in
Section III-C to Section III-H.

 Neighbor-based algorithms learn by analogy: they
label a data point as anomalous or expected depending
on the label of its nearest neighbor(s), considering an
f-dimensional space. The way the label is chosen may
be the same as a nearest neighbor, or the majority over
the k nearest neighbors.

 Clustering algorithms partition a set of data points in
such a way that data points in the same group (cluster)
share similar characteristics. Data points that cannot be
assigned to any of the existing clusters, or that do not
met specific inclusion criteria, are anomalous.

 Angle-based algorithms relate data to high-
dimensional spaces, and measure the variance in the
angles between the data point to the other points [9].
This is a technique with good scalability. Expected
data points have a large angle variance, while
anomalies typically result in very small variance in the
angles from couples of points.

 Classification algorithms identify the class a new data
point belongs to, depending on information collected
during previous activities e.g., assigning a given email
into spam or non-spam classes. Despite they are
mainly used in supervised setups, there are also some
unsupervised approaches [15], [25].

 Density-based algorithms estimate the density of the
neighborhood of each data point. When a data point
differs from the expected ones, it lies in a low-density
area and it is then labeled as anomalous.

 Statistical algorithms are based on the assumption that
only expected data points occur in high probability
regions of a given statistical distribution. These
techniques fit a distribution to the expected points, and
then apply statistical inference to determine if a novel
data point belongs to this distribution or not. In
unsupervised mode, statistical techniques do not
generally assume knowledge of underlying
distribution, which is derived as data is computed.

C. Neighbor-based Algorithms

Non-Sliding Algorithm - ODIN: stemming from kNN
[13], this distance-based method was designed to identify
point anomalies. For each data point, kNN examines the
whole dataset to determine their feature distances to the
given point. This allows isolating k nearest neighbors (NN),
creating the so-called kNN graph. The Outlier Detection
using Indegree Number (ODIN, [11]) algorithm improves
kNN by defining as anomalies the data points that have a
low number of in-adjacent edges in the kNN graph.

Sliding Window Algorithm - SNN: SNN [23] expands two
techniques, namely i) conceptual partitioning for nearest
neighbor monitoring over update streams, and ii) the skyline
maintenance in the distance-time space, partially pre-
computing future evolutions of the nearest neighbors. The k-
skylines are matched with the kNN. Together, these two
techniques allow the continuous kNN monitoring over both
time-based and count-based sliding windows.

D. Clustering Algorithms

Non-Sliding Algorithm – KMeans: K-means [17] assigns
data points to k subsets, or clusters, by their feature values.
First, k centroids are randomly initialized and each data
point is assigned to the cluster with the nearest centroid.
Centroids may be updated, fitting evolving scenarios also in

4

unsupervised mode. Finally, data points that are too far from
the centroid of their cluster are labeled as anomalies.

Sliding Window Algorithm - SWClustering: this sliding
window clustering [18] extends the classic clustering
algorithms by tracking the evolution of clusters.
SWClustering combines the exponential histogram with the
temporal cluster features to handle the in-cluster evolution,
i) keeping a high quality of the clusters, ii) requiring less
memory and low overheads, and iii) eliminating the
influence of outdated data points.

E. Angle-based Algorithms

Non-Sliding Algorithm - FastABOD: detects anomalous
data points depending on the angles between pairs of
distance vectors to other points [9]. For each data point, the
algorithm first calculates the Angle Based Outlier Factor
(ABOF) to its k-nearest neighbor as the normalized scalar
product of the difference vectors of any triple of neighbors.
According to [9], the usage of kNN provides a better
approximation. Then, FastABOD ranks the data points
according to their ABOF. The smaller the ABOF, the bigger
the probability that the data point represents an anomaly.

Sliding Window Algorithm - ABSAD: To mitigate the
impact of anomaly-irrelevant attributes, in angle-based
subspace anomaly detection (ABSAD, [22]) the ABOF is
computed in a subspace that captures the most information
about the discordance of an object to its adjacent ones. The
subspace is matched by a sliding window. As data flows, the
window is updated aiming to maintain a meaningful
subspace. For each data point, the deviation from its
neighborhood is evaluated as ABOF on the subspace.

F. Classification Algorithms

Non-Sliding Algorithm – One Class SVM: this algorithm
conducts semi-supervised anomaly detection [2] aiming to
learn a decision boundary [14]. However, One-Class SVMs
can be used for unsupervised anomaly detection: a support
vector machine is trained with the dataset and then each data
point is classified considering the normalized distance of the
data point from the determined decision boundary [15].

Sliding Window Algorithm – iForestASD: iForestASD
[24] is an adapted version of iForest [25] with linear time
complexity and low memory requirement, and it does not
use any distance or density measure. Since anomalies are
rare events with feature values that differ from expected
data points, they may be isolated closer to the root of the
tree instead of the leaves, which is typical of expected data
points. Moreover, even if each constituent Isolation Trees
cannot detect all the anomalies, their ensemble Isolation
Forest can balance such weaknesses.

G. Density-based Algorithms

Non-Sliding Algorithm – LOF: Local Outlier Factor
(LOF) [16] compute the kNN for each data point, and use
them to calculate the density index, called Local
Reachability Density (LRD). The anomaly score is then
obtained by comparing the LRD of a data point with the
LRD of its kNN. Expected data points have scores close to
1.0, while anomalies usually result in bigger scores.

Sliding Window Algorithm - INCLOF: LOF assign each
data point an anomaly score. INCLOF [19], an incremental
variant of LOF algorithm, updates this score whenever the
sliding window is updated. Additionally, the quality of the
data in the window is maintained by i) omitting anomalies

TABLE I. NON-SLIDING ALGORITHMS

Algorithm Family Strengths Weaknesses

ODIN [11] Neighbour
Tracks a picture of k-neighbourhoods,

which helps in detecting point anomalies.
If an outlier is too close to some neighbouring inlier, it can be

misclassified.

K-Means [17] Clustering
k Clusters are calculated as data flows,
good in identifying single anomalies.

Converges to a local optimum: good for contextual anomalies.
This negatively impacts on the detection of point anomalies

FastABOD [9] Angle
Robust to high dimensionality data points,

tailored to identify point anomalies
If the amount k of neighbours is too low,

Anomalies other than point may not be detected.

One-Class SVM [15] Classification
A well-defined boundary allows detecting all

anomalies with good overall capabilities.
Outliers in the training set negatively impact the definition of the

boundary, which may not be devised correctly.

LOF [16] Density
Good overall capabilities. Local density score is

normalized and easy to analyse.
Strongly depends on the size k of the neighbourhood.

HBOS [7] Statistical Histograms help in identifying point anomalies.
Hard to characterize the current context,

and collective anomalies may be difficult to detect.

TABLE II. SLIDING WINDOW ALGORITHMS

Algorithm Family Strengths Weaknesses

SNN [23] Neighbour
Continuous kNN monitoring,

especially good for point anomalies.
With small k values,

groups of anomalies are likely to be ignored

SWClustering [18] Clustering
Effectively tracks evolving clusters to identify contextual

and, often, collective anomalies.
Collective anomalies are likely to be considered

as novel small clusters.

ABSAD [22] Angle Effectively extracts multi-point subspaces (contexts)
It becomes asymptotically stable

when using many f features.

iForestASD [24] Classification
Each constituent isolation tree is built for identifying

(isolated) point anomalies.
Data points should not break the “isolation” assumption.

iForest has several input parameters.

INCLOF [19] Density
Adaptation of LOF to sliding windows.

Good Overall Capabilities.
Need an accurate management of data in the window to keep

detecting anomalies.

SPS [20] Statistical
Detects individual data points that

do not follow to the expected behaviour.
High variance of data increases the safety margin,

exposing to missed detections.

5

from the window, and ii) optimizing the update of LOF
scores. This activity is particularly useful to release memory
resources and to avoid polluting expected data.

H. Statistical

Non-Sliding Algorithm - HBOS: This approach [7]
generates an histogram for each feature by using the values
of all the available data points. The anomaly score is
computed by multiplying the inverse heights of the columns
in which each feature of the data point reside. Such
technique assumes that the investigated features are
independent, making HBOS fast even when dealing with
large datasets [10]. If features are dependent, such
dependencies need to be neglected.

Sliding Window Algorithm - SPS: the Statistical Predictor
and Safety Margin (SPS, [20]) algorithm predicts an
interval, given by a minimum and a maximum value, in
which the next value is expected to fall. The interval is built
by combining i) the last observed feature value, ii) a
prediction of its evolution, and iii) a safety margin, which
grows when feature values show high variance. SPS
identifies values that do not follow the statistical inertia of
the observations, and consequently it is suitable for
detecting point anomalies [21].

IV. SUITABILITY OF ALGORITHMS TO CLASSES OF ANOMALIES

To the best of our knowledge, there is no detection
algorithm that can always effectively identify anomalies. To
such extent, we discuss here how the design choices
characterizing each family of algorithm impact their ability
in identifying specific classes of anomalies. Results are built
as an analytical process, which is complemented by a
quantitative evaluation described in Section V.

Each family of unsupervised anomaly detection
algorithms has their own peculiarities. More in detail,
algorithms belonging to neighbor-based, angle-based and
density-based families are primarily intended to identify
point anomalies, while they may not be able to detect
collective anomalies if the size k of the selected
neighborhood is smaller than the size of the collective group
of anomalies. Indeed, an indegree score may help detecting
them, as demonstrated in [11]. This issue is shared also with
clustering algorithms, since a collective anomaly may lead
them to create a separate cluster for the particular group of
data points. However, some clustering algorithms [18]
mitigate this problem by labeling as anomalous both data
points i) belonging to small clusters and ii) far from known
clusters. Instead, one of their main weaknesses is on
detection of contextual anomalies: a data point with feature
values that occurred frequently in the past but that should
not occur anymore is likely to fall into a cluster of expected
data points.

When considering sliding windows, the usage of a
reduced portion of past data limits the overall capabilities of
characterizing a global expected behavior. As a
consequence, the overall ability of algorithms in detecting
point anomalies may decrease since they may not be able to
characterize a global notion of expected behavior when
using small windows. Moreover, algorithms belonging to

neighbor-based, angle-based, and clustering families are
more likely to identify contextual anomalies, since they
build their knowledge on a limited portion of recent data
which, in fact, represent the current context.

In unsupervised anomaly detection, classification-based
algorithms are often identified as One-Class SVM [15]. This
algorithm learns a non-linear boundary that is then used to
partition expected data points and anomalous ones.
However, if the data used to create such boundary does not
follow the assumptions (e.g., no outliers in the training data,
Gaussian kernel), its detection capabilities will decrease
dramatically. An alternative classification is provided by
Isolation Forests [25], i.e., ensembles of Isolation Trees,
which are also adequate for sliding windows [24]. Despite it
has a lower but comparable performance with SVMs, it is
more robust to noise in training data. Lastly, statistical
algorithms are based on probability distributions and
statistical analyses: it is therefore difficult to identify a
general capability in detecting classes of anomalies.

V. EXPERIMENTAL EVALUATION

Here we describe our process, the main steps, and the
results of our experimental study of anomaly detection
algorithms targeting specific classes of anomalies.

A. Methodology

Considering the unsupervised algorithms and algorithm
families that are summarized in Section III, we create some
datasets for scoring the performances of the algorithms
when dealing with specific classes of anomalies. To the
authors’ knowledge, there is no work that provides effective
and robust links between safety or security threats and the
classes of anomalies they usually generate. Therefore,
existing datasets that log intrusions or the manifestation of
internal faults of a system are not fitting our needs. To fix
this issue, we

i. take expected data coming from 3 state-of-the art
datasets [29], [30], [26] that are commonly used for
anomaly-based intrusion detection,

ii. remove non-numerical features, if any, and

iii. inject data perturbations which simulate faults or
attacks manifesting as either point, contextual, or
collective anomalies.

This generates 3 sub-datasets for each of the initial ones.
A sub-dataset is extracted from the initial dataset with the
artificial injection of either point, contextual or collective
anomalies. Sub-datasets are used to train the parameters and
then to run the selected algorithms, ultimately evaluating the
capabilities of each algorithm in detecting each class of
anomaly. Multiple instances of the investigated algorithm
are generated during the training phase. Each algorithm
instance is assigned to a different dataset feature, or set of
features. One or more instances may be run in parallel,
combining their results according to a given strategy. Such
process is expanded in Section V.D.

Lastly, we present results by means of metrics such as
Precision, Recall, False Positive Rate, Accuracy, F-Score,
Matthews Coefficient and Area Under ROC Curve.

6

B. Datasets

The data we use in this paper is based on the publicly
available datasets NSL-KDD [29], ISCX [30] and UNSW-
NB15 [26], which were published in the last 10 years. These
datasets report on network traffic logged on different
systems and with different purposes. We filter such datasets
obtaining subsets of respectively 57592, 122148, and 44353
data points. We preprocess each dataset to characterize a
general notion of expected behavior for each feature e.g.,
minimum and maximum values, average, median, variance,
and we modify such data by inserting additional records
which contain anomalous values for some features of a data
point. Despite such artificial anomalies do not perfectly
replicate real anomalies [2], we simulated them to the best
of our capabilities as follows:

 Point anomalies: some feature values are updated
with values that are either smaller than the minimum
values or bigger than the maximum values logged in
the dataset for a given feature.

 Contextual anomalies: some feature values are
updated with values that are not contained in the
95% confidence interval, considering the last 100
feature values as current context.

 Collective anomalies: in our experiments a
collective anomaly is a set of three subsequent data
points where we updated some feature values with
values outside the 80% confidence interval,
considering the last 100 feature values as current
context. Collective anomalies are not subsequent
point or contextual anomalies; therefore we used a
different confidence interval to generate them.

We inject anomalies in the sub-datasets, obtaining a 95%
- 5% ratio of expected – anomalous data points. The
resulting sub-datasets are freely available at [35].

C. Metrics

The effectiveness of anomaly detectors is usually
analyzed using indicators counting correct detections - true
positives (TP), true negatives (TN) - and the wrong ones,
either missed detections (false negatives, FN) or wrong
detections (false positives, FP). These indicators are
commonly used to derive the so-called confusion matrix.
Aggregate metrics based on the abovementioned indicators
are Precision, Recall (or Coverage), False Positive Rate,
Accuracy, F-Score(β) [31] and Matthews Coefficient (MCC,
[32]). Especially in the F-Score(β), varying the parameter β
makes possible to weight the precision with respect to the
recall (note that F-Score(1), or F1, is referred as F-
Measure), allowing to give more relevance to either FPs or
FNs. It is worth remarking that when dealing with critical
systems, we may prefer reducing the occurrence of missed
detections (FN), even at the cost of a higher rate of FP.
Since we want our study to be as generic as possible, we
investigate Accuracy, F-Measure and MCC, which
aggregate TPs, TNs, FPs, and FNs considering FPs and FNs
with the same weight. However, it is acknowledged [39]
that, under specific circumstances, metrics as F1 or
Accuracy “can be misleading, since they do not fully
consider the size of the four classes of the confusion matrix

in their final score computation”. Therefore, as suggested in
[39], in our study we choose MCC as reference metric.

In addition, we calculate the Area Under ROC Curve
(AUC), which is used [33], [34] to estimate how the choice
of the parameters of a given algorithm impacts its detection
capabilities. Depending on the system, it may be difficult to
find an optimal combination of input parameters. Therefore,
the choice of input parameters may lead to a high variance
of detection scores and, consequently, lower AUC scores.

D. Instances Generation and Anomaly Threshold

As described in the methodology, we generate multiple
instances of each algorithm during training. Instances are
assigned to the numeric features of the dataset. An algorithm
instance can be assigned to i) a single feature, ii) a subset of
features, or iii) the n-dimensional space composed by all the
available features. In our study, we create subsets of features
when two or more features show a Pearson Correlation [38]
above 90%, either positive or negative, always including the
set composed by all the available features.

The usage of multiple instances assigned to different
features helps improving the algorithm performances since
it allows choosing the instance which show better scores
during training as the one that will be used in the validation
phase. Moreover, more than one instance can be run in
parallel at validation phase, collecting their anomaly
evaluations separately, and then voting the single scores,
according to a given anomaly threshold. During training,
different thresholds are considered, namely

 ALL: an anomaly alert is raised if and only if all the
algorithm instances label the current data point as
anomalous;

 HALF: half of the algorithm instances must evaluate
the feature values assigned to them as anomalous;

 ONE: an anomaly alert is raised if at least one
algorithm instance detects anomalous feature values.

It is important to remark that the choice of this threshold
heavily affects the overall detection performance.
Considering a single instance (i.e., adopting ONE threshold)
usually reduces the amount of false negatives; instead, the
need of a consensus among instances, e.g., ALL threshold,
reduces the number of (false) alarms.

E. Experimental Setup

First, we retrieve available public implementations of the
selected algorithms. KMeans, ODIN, LOF, FastABOD and
OneClass SVM are extracted from the ELKI [36], while the
HBOS implementation is devised starting from the paper
[7]. Regarding sliding windows algorithms, no public
implementations were made available by authors, except for
SPS. Therefore, since sliding windows algorithms are
usually adapted versions of known algorithms with
optimized execution time, we simulate the sliding window
algorithms as follows. Instead of considering the
experimental data all-at-once, we simulate a sliding window
of different sizes WS = {10, 20, 50, 100}, and every time a
new data point is added to the window, we run the
corresponding algorithm by using the content of the window

7

as training set. Also, we consider as policies to slide the
windows i) FIFO (see Section II.C), and ii) FIFONormal,
which extends the FIFO policy by sliding the window only
if the current data point is not an anomaly. We employ as
underlying algorithms: ABOD for simulating ABSAD, LOF
for INCLOF, kNN for SNN, KMeans for SWClustering, and
IsolationForest (i.e., WEKA [37]) for iForestASD.

The experiments are conducted according to the
methodology presented in Section V.A. Parameters tuning is
employed during training to find an optimal setup of each
instance of a given algorithm. Tuning is performed by i)
first, running different combinations of parameters; ii) then,
comparing results for the different parameters. For example,
we run kNN and kNN-dependent algorithms i.e., ODIN,
FastABOD, with k ϵ {1, 2, 3, 5, 10, 20, 50, 100}. In the
followings we will also elaborate on the relevance of the
choice of parameters through discussion of AUC scores.

Datasets with artificial injection of anomalies are created
according to the process described in Section V.B. Starting
from the initial portions of NSL-KDD, ISCX, UNSW
datasets, non-numeric features were removed, leaving 38
features for NSL-KDD, 6 for ISCX, and 39 for UNSW.
During training phase, we respectively create 38, 20, and 25
feature subsets according to Pearson Correlation. This
results in 77 algorithm instances for NSL-KDD, 27 for
ISCX, and 65 for UNSW, which sum i) the single features,
ii) the feature subsets, and iii) the set composed by all the
available features. All the instances are evaluated together
during training phase and all the possible algorithm
configurations are ranked according to a given target metric,
in our case MCC (see Section V.C). The ranked list is then
used in the evaluation phase to maximize algorithm scores.

The data generated during the execution of the
algorithms was initially stored in CSV files, and
successively analyzed with MS Excel for fast analytics, such
as comparing metric scores. The experimental campaign is
executed on an Intel Core i7, 32GB of RAM server, with at
least 15GB and up to 20GB dedicated to the execution of
the experimental campaign. Overall, computing all the
scores and metrics required approximately three weeks of
24h execution. A complete view of the collected data cannot
be presented here for brevity: the files we used to aggregate
metric data and plot graphs are available at [35].

F. Results: Non-Sliding Algorithms

Table III show the metric scores we obtain by running
the selected non-sliding algorithms to our three synthetic
datasets. The table aggregates scores by algorithm, ranking
the resulting rows according to a decreasing MCC.

Figure 1 reports on the MCC scores for non-sliding
algorithms, for each class of anomalies. We observe that
SVM shows the highest scores. However, we can observe
how algorithms that have low metric scores in Table III are
really effective in detecting specific classes of anomalies,
i.e., KMeans and FastABOD. Point anomalies are detected
well by FastABOD (see column with squares in Figure 1),
while KMeans show very good capabilities in identifying
collective anomalies (see horizontal-striped columns in
Figure 1). These two algorithms also show high AUC
scores, meaning that the impact of the choice of the
parameters used for training phase does not heavily affect
performances. Instead, we observe that the AUC for One-
Class SVM (see Table III), is the lowest out of the selected
non-sliding algorithms.

LOF and, to a lesser extent, ODIN, are good generalist
algorithms, which do not show specific weaknesses for
identifying each class of anomaly. Lastly, we remark how
HBOS, despite not optimal in terms of metric scores, is a
light and fast algorithm, making it useful when a massive
amount of computational resources is unavailable.

G. Results: Sliding Window Algorithms

Figure 2 depicts the MCC scores of the 6 selected sliding
window algorithms, grouped by class of anomalies.
Observing the vertical-striped columns in the figure it is
possible to realize that such algorithms do not really suit the
detection of point anomalies, despite the neighbor-based
algorithm SNN achieves the highest average MCC score.
Instead, contextual anomalies are detected fairly well by

TABLE III. AVERAGE METRIC SCORES FOR NON-SLIDING ALGORITHMS

Non-Sliding
Algorithm

Conf FPR P R F1 ACC MCC AUC

OneClass SVM [14] 12 0.21% 0.97 0.88 0.92 0.99 0.92 0.65

LOF [16] 8 1.49% 0.84 0.89 0.86 0.98 0.85 0.67

ODIN [11] 8 2.45% 0.77 0.87 0.81 0.97 0.80 0.72

HBOS [7] 9 1.60% 0.84 0.77 0.80 0.97 0.78 0.68

KMeans [17] 8 4.41% 0.74 0.84 0.78 0.95 0.74 0.71

FastABOD [9] 16 2.64% 0.62 0.63 0.62 0.94 0.58 0.81

Fig. 1. Average MCC scores for non-sliding algorithms, for each class of
anomalies. Error bars represent standard deviation among the datasets.

Fig. 2. Average MCC scores for sliding window algorithms, for each class
of anomalies. Error bars represent standard deviation among the datasets.

8

SPS, iForestASD, SWClustering algorithms; the latter is the
sliding window algorithm with the higher average MCC
score with collective anomalies (see horizontal-striped
columns in Figure 2).

To complete our analysis on sliding window algorithms,
in Figure 3 we report the average MCC when varying the
window size and the sliding policy. We can notice how the
MCC score increases as the window size, or rather the
amount of system knowledge, grows. In addition, the
FIFONormal policy prevents anomalous data points to enter
the window, allow defining a more precise expected
behavior. This approximately results in 10% higher average
MCC scores with respect to the former FIFO policy.

VI. ANALYSIS OF THE RESULTS AND FINDINGS

We analyze here the results reported in the previous
section, summarizing the main findings in Section VI-D.

A. Analysis of the Results

At a first glance, results in Figure 1 do not match the
expectations. We expect point anomalies to be the easiest to
detect, and collective anomalies to be the hardest to detect.
Instead, their average MCC score is almost the same, while
contextual anomalies are detected with more difficulties. We
explain this result as follows: the selected algorithms use
large training sets, which allow a careful and precise
definition of the boundaries between anomalous and
expected behavior. However, during their process they
derive a global boundary, which does not fit the detection of
local anomalies, or rather data points that have feature
values that are not expected in a given context. As a result,
contextual anomalies cannot be detected easily. An in-depth
view of metric scores related to each non-sliding algorithm
is reported in Table III. Starting from the top of the table, we
can observe how One-Class SVM turns out to have better
overall metric scores. However, depending on the data
points used for training, SVMs may not be able to correctly
derive a boundary, nullifying its detection ability. Therefore,
it is important to look for other options – a different
algorithm or a combination of two or more that may be run
simultaneously - that provide similar metric scores, and
based on more robust training processes.

Overall, we can observe how sliding window algorithms
have lower scores than non-sliding ones. In fact, the usage
of a sliding window limits the amount of training data.
While it allows building faster algorithms, such restricted
knowledge of the system negatively impacts the detection
capabilities. Comparing the scores in Figure 1 and Figure 2,
we can notice that sliding window algorithms are not really

effective in detecting point anomalies, which need a global
notion of expected behavior to be identified. Instead, they
identify contextual anomalies with scores comparable with
non-sliding algorithms. More in detail, they generate more
false positives i.e., higher FPR and lower Precision, but
similar Recall scores. Sliding window algorithms show
fairly good capabilities in detecting collective anomalies,
although adopting non-sliding algorithms is preferable i.e.,
average MCC score of 0.81 with respect to 0.69 of sliding
window algorithms.

As a side remark, we do not report on the impact of
anomaly thresholds, which instead are logged in our data at
[35]. In fact, while considering different thresholds helps
improving metric scores, it is not possible to extract a rule to
derive an optimal threshold depending on our data.
Consequently, we do not expand this discussion since it may
be confusing, as it is not substantiated by detailed and
extensive sensitivity analyses (planned as future work).

B. Computational Complexity

Despite not being the focus of our analysis, for
completeness we report here on the computational
complexity of the algorithms we select for our study. The
complexity of density-based and angle-based algorithms is
at least O(N2), or rather the complexity of an NN query.
Clustering is generally more efficient, with complexity of
O(k N), where k represents the number of clusters.
Statistical and classification families may have very
different complexities; therefore it is not easy to present a
bound. However, statistical algorithms are usually sub-linear
e.g., O(N log N) for HBOS, while classifiers usually build
complex structures e.g., tree ensemble [25], or conduct
complex calculations e.g., OneClassSVM, O(N2).

C. Final Discussion

Overall, our results show which unsupervised algorithms
– and their families – are more suitable than others to detect
anomalies belonging to specific classes. The final results of
our qualitative and quantitative analyses are depicted in
Figure 4. More in detail, Figure 4-A reports on the
qualitative analyses discussed in Section IV, while Figure 4-
B and 4-C reports on the capabilities of non-sliding and
sliding window algorithms with respect to the three known
classes of anomalies. Figure 4-B and 4-C are built
considering non-sliding algorithms as “capable” of
identifying a class of anomalies if in our experiments a
given algorithm reached or exceeded 0.8 of MCC. We lower
this threshold to 0.65 for sliding window algorithms. We
choose these two thresholds trying to balance the “good”
and the “bad” i.e., a MCC of 0.65 splits the scores of Figure
2 in two groups with the same cardinality.

By looking at Figure 4 as a whole, we can notice several
mismatches e.g., Figure 4-A shows clustering algorithms as
capable of identifying both point and collective anomalies,
while Figure 4-B puts KMeans, the non-sliding clustering
algorithm, in the “collective anomaly” set. Discrepancies are
mainly related to the specific implementations of
algorithms: despite they clearly belong to a given family,
they may use some specific techniques that slightly change
their behavior. Instead, LOF and SVM scores confirm the

Fig. 3. Average MCC scores varying window size and sliding policy.

9

results of qualitative analyses on density-based and
classification families i.e., they fall in the intersection of the
three sets in Figure 4-A and Figure 4-B. Unfortunately, as
reported in Section VI.B, they both have quadratic
computational complexity, meaning that the time they need
for training and for providing an anomaly score for a novel
data point is not optimal. However, faster algorithms such as
clustering and statistical (sub-linear complexity), have
worse detection capabilities, as showed by our metric
scores. A possible solution could be the parallelization of
different fast algorithms, with a final voting of their results.

Figure 4-C deserves a specific mention. The usage of
sliding windows makes difficult to define a global notion of
expected behavior, and therefore the ability of detecting
point anomalies is affected. In fact, only the SNN algorithm
has a MCC score higher than 0.65 when aiming at point
anomalies. Instead, algorithms belonging to families
supposed to be specifically suitable for point anomalies i.e.,
angle-based and statistical, show good performances in
detecting contextual anomalies. These algorithms identify
point anomalies in the restricted context described by the
sliding window, which can be paired with contextual
anomalies. Other sliding window algorithms follow the
same pattern being effective in identifying contextual
anomalies. As a final remark, we do not identify a generalist
sliding window algorithm e.g., effective in identifying all
classes of anomalies with good scores.

D. Our Main Findings

As a final recap, we summarize our findings as follows.

 Contextual anomalies are not easily detectable by
non-sliding algorithms, since they process the
training data all-at-once, making the identification
of local contexts more difficult.

 Sliding window algorithms generally struggle in
identifying point anomalies, since the restricted
amount of data points in the window does not allow
building a global knowledge.

 We observe how an accurate management of data
points in the sliding window i.e., avoid putting
anomalous data points in the window, improves the
overall scores of sliding window algorithms.

 SVMs turned out to be the best overall algorithm.
However, its training phase is heavy i.e., O(N2), and

strongly dependent on several assumptions which
may cause the definition of the boundary to fail.

 Running different algorithms in parallel and
combining their scores may provide good detection
capabilities, also allowing to manage the overall
complexity by selecting the faster ones.

 There is no anomaly threshold that turned out to be
overall more useful to improve detection capabilities
of algorithms with our datasets.

VII. CONCLUSIONS AND FUTURE WORKS

We investigated the suitability of unsupervised
algorithms and their families in detecting either point,
contextual or collective anomalies. We first reviewed the
literature of unsupervised anomaly detection algorithms,
devising initial conjectures on their suitability to classes of
anomalies through qualitative analyses. Then, the initial
analyses were substantiated by quantitative analyses
conducted by executing the selected algorithms on three
datasets, reporting results throughout common scoring
metrics. Our study involved 12 unsupervised algorithms, a
non-sliding and a sliding window algorithm for each of the 6
(clustering, statistical, classification, neighbour-based,
density-based and angle-based) families of algorithms.
Results showed that non-sliding algorithms effectively
identify point and collective anomalies, while sliding
window algorithms are particularly suitable for contextual
anomalies. Additional side discussions are expanded and
then summarized at the end of the paper.

As future work, we will investigate and evaluate if and
how combining different algorithms helps improving
detection capabilities, along with a sensitivity analysis
directed to discover optimal anomaly thresholds. Moreover,
mixtures of both sliding and non-sliding algorithms may
reveal to be particularly suitable for specific needs or
systems. In particular, if a system partially changes its
behaviour and a novel training phase for non-sliding
algorithms is triggered, sliding window algorithms may be
employed as a temporary solution until the training phase
involving the main detection algorithm completes.

ACKNOWLEDGMENT

This work has been partially supported by the REGIONE
TOSCANA POR FESR 2014-2020 SISTER and FAR-FAS
2014 TOSCA-FI projects.

Fig. 4. Linking Classes of Anomalies to a) Families of Algorithms, b) Non-Sliding Algorithms, and c) Sliding Window Algorithms.
Symbols match an algorithm with its family in the pictures.

Point Anomaly

Contextual Anomaly Collective Anomaly

Density
Neighbour

Clustering

Classification

Angle
Statistical

a)

LOF

ODIN

KMeans

SVM

FastABOD

HBOS

Point Anomaly

Contextual Anomaly Collective Anomaly

b)

INCLOFSWClustering

iForestASD

ABSAD

SNN

SPS

Point Anomaly

Contextual Anomaly Collective Anomaly

c)

10

REFERENCES

[1] J. T. Force and T. Initiative, “Security and privacy controls for federal
information systems and organizations”, NIST Special Publication,
vol.800, no. 53, pp. 8–13, 2013.

[2] Chandola, V., Banerjee, A., & Kumar, V. (2009). “Anomaly
detection: A survey”. ACM computing surveys (CSUR), 41(3), 15.

[3] Bontemps, L., McDermott, J., & Le-Khac, N. A. (2016, November).
Collective anomaly detection based on long short-term memory
recurrent neural networks. In International Conference on Future Data
and Security Engineering (pp. 141-152). Springer, Cham.

[4] Zheng, Y., Zhang, H., & Yu, Y. (2015, November). “Detecting
collective anomalies from multiple spatio-temporal datasets across
different domains”. In Proceedings of 23rd ACM SIGSPATIAL Int.
Conference on Advances in Geographic Information Systems (p. 2).

[5] Modi, Chirag, et al. "A survey of intrusion detection techniques in
cloud." Journal of Network and Computer Appl. 36.1 (2013): 42-57.

[6] Gu, Zhongshu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and
Dongyan Xu. "LEAPS: Detecting camouflaged attacks with statistical
learning guided by program analysis." In Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on, pp. 57-68. IEEE, 2015.

[7] Goldstein, Markus, and Andreas Dengel. "Histogram-based outlier
score (hbos): A fast unsupervised anomaly detection algorithm." KI-
2012: Poster and Demo Track (2012): 59-63.

[8] Salfner, Felix, Maren Lenk, and Miroslaw Malek. "A survey of online
failure prediction methods." ACM Computing Surveys (CSUR) 42.3
(2010): 10.

[9] Kriegel H-P, Zimek A. “Angle-based outlier detection in high-
dimensional data”. In: Proceedings of the 14th ACM SIGKDD Int.
Conference on Knowledge discovery and data mining; ‘08. p. 444–52.

[10] M.Goldstein and S.Uchida, “A comparative evaluation of
unsupervised anomaly detection algorithms for multivariate data,”
PloS one, vol. 11,no. 4, p.e 152 - 173, 2016.

[11] Hautamaki, V., Karkkainen, I., & Franti, P. (2004, August). Outlier
detection using k-nearest neighbour graph. In Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th International Conference
on (Vol. 3, pp. 430-433). IEEE.

[12] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez,
E. (2009). Anomaly-based network intrusion detection: Techniques,
systems and challenges. computers & security, 28(1-2), 18-28.

[13] Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest neighbor classifier
for intrusion detection1. Computers & security, 21(5), 439-448.

[14] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R.
C.Williamson, “Estimating the support of a high-dimensional
distribution”, Neural computation, vol.13, no.7, pp. 1443–1471, 2001.

[15] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in
Proceedings of the ACM SIGKDD Workshop on Outlier Detection
and Description. ACM, 2013, pp. 8–15.

[16] Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May).
LOF: identifying density-based local outliers. In ACM sigmod record
(Vol. 29, No. 2, pp. 93-104). ACM.

[17] Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K. A., &
Zimek, A. (2015). A framework for clustering uncertain data.
Proceedings of the VLDB Endowment, 8(12), 1976-1979.

[18] Zhou, A., Cao, F., Qian, W., & Jin, C. (2008). Tracking clusters in
evolving data streams over sliding windows. Knowledge and
Information Systems, 15(2), 181-214.

[19] Karimian, S. H., Kelarestaghi, M., & Hashemi, S. (2012, May). I-
inclof: improved incremental local outlier detection for data streams.
In Artificial Intelligence and Signal Processing (AISP), 2012 16th
CSI International Symposium on (pp. 023-028). IEEE.

[20] Bondavalli, A., Brancati, F., & Ceccarelli, A. (2009, October). “Safe
estimation of time uncertainty of local clocks”. In Proc. of Int. IEEE
Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, ISPCS (pp. 47-52).

[21] Zoppi, T., Ceccarelli, A., & Bondavalli, A. (2016, September).
Context-Awareness to Improve Anomaly Detection in Dynamic
Service Oriented Architectures. In Int. Conference on Computer
Safety, Reliability, and Security (pp. 145-158). Springer, Cham.

[22] Zhang, Liangwei, Jing Lin, and Ramin Karim. "Sliding window-
based fault detection from high-dimensional data streams." IEEE

Transactions on Systems, Man, and Cybernetics: Systems 47.2
(2017): 289-303.

[23] Mouratidis, K., & Papadias, D. (2007). Continuous nearest neighbor
queries over sliding windows. IEEE transactions on knowledge and
data engineering, 19(6), 789-803.

[24] Ding, Z., & Fei, M. (2013). An anomaly detection approach based on
isolation forest algorithm for streaming data using sliding window.
IFAC Proceedings Volumes, 46(20), 12-17.

[25] Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation
forest. In Data Mining, 2008. ICDM'08. Eighth IEEE International
Conference on (pp. 413-422). IEEE.

[26] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set
for network intrusion detection systems (UNSW-NB15 network data
set),” in Military Communications and Information Systems
Conference (Mil-CIS), 2015. IEEE, 2015, pp. 1–6.

[27] Zoppi, T., Ceccarelli, A., & Bondavalli, A. (2017, April). Exploring
anomaly detection in systems of systems. In Proceedings of the
Symposium on Applied Computing (pp. 1139-1146). ACM.

[28] Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002, May).
Enhancing effectiveness of outlier detections for low density patterns.
In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (pp. 535-548). Springer, Berlin, Heidelberg.

[29] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Computational Intelligence for
Securit and Defense Applications, 2009. CISDA 2009.
IEEESymposium on. IEEE, 2009, pp. 1–6

[30] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,”computers & security, vol. 31, no. 3, pp. 357–
374, 2012.

[31] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenkova,
E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of outlier
detection: Measures, datasets, and an empirical study”, in Lernen,
Wissen, Daten, Analysen 2016.ceur workshop proceedings, 2016.

[32] Boughorbel, Sabri, Fethi Jarray, and Mohammed El-Anbari. "Optimal
classifier for imbalanced data using Matthews Correlation Coefficient
metric." PloS one 12.6 (2017): e0177678.

[33] J. F ̈urnkranz and P. A. Flach, “Roc nrule learning towards a better
understanding of covering algorithms”, Machine Learning, vol. 58,no.
1, pp. 39–77, 2005.

[34] D. M. Powers, “Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation,” 2011

[35] Source Files (online), https://github.com/tommyippoz/Miscellaneous-
Files/blob/master/PRDC_Submission_Datasets_Scores.rar, accessed:
2018-05-30

[36] “Elki data mining,” elki-project.github.io, accessed: 2018-05-30

[37] “Weka 3: Data Mining Software in Java”,
https://www.cs.waikato.ac.nz/~ml/weka/, accessed: 2018-05-30

[38] Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson
correlation coefficient. In Noise reduction in speech processing (pp.
1-4). Springer Berlin Heidelberg.

[39] Chicco, Davide. "Ten quick tips for machine learning in
computational biology." BioData mining 10.1 (2017): 35.

[40] Leung, K., & Leckie, C. (2005, January). Unsupervised anomaly
detection in network intrusion detection using clusters. In Proceedings
of the Twenty-eighth Australasian conference on Computer Science-
Volume 38 (pp. 333-342). Australian Computer Society, Inc..

[41] E. Curry, S. Hasan, N. Pavlopoulou, T. Zaarour et al., “Grand
challenge: Automatic anomaly detection over sliding windows,” in
Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems. ACM, 2017.

[42] L. Zhang, J. Lin, and R. Karim, “Sliding window-based fault
detection from high-dimensional data streams”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. 47, no. 2, pp. 289–303, 2017.

[43] He, S., Zhu, J., He, P., & Lyu, M. R. (2016, October). Experience
report: system log analysis for anomaly detection. In Software
Reliability Engineering (ISSRE), 2016 IEEE 27th International
Symposium on (pp. 207-218). IEEE.

[44] Lin, Q., Zhang, H., Lou, J. G., Zhang, Y., & Chen, X. (2016, May).
Log clustering based problem identification for online service
systems. In Proceedings of the 38th International Conference on
Software Engineering Companion (pp. 102-111). ACM.

