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ABSTRACT

In this work we investigate the use of Shannon’s infor-
mation theory for the goal of devising quality scores
of image fusion results, that do not require reference
originals. In particular, the mutual information between
re-sampled original and fused MS bands is used to mea-
sure the spectral quality, while the mutual information
between the Pan image and the fused bands yields a
measure of spatial quality. The rationale is that the
mutual information calculated either between any couple
of bands, or between each band and the Pan image,
should be unchanged after fusion, i.e. when the spectral
information is translated from the coarse scale of the MS
data to the fine scale of the Pan image. Experimental
results carried out on Ikonos data demonstrate that the
results provided by the proposed information-theoretic
method are in trend with analysis performed on spatially
degraded data by means of average SAM, Walds’s
ERGAS and the novel Q4 index based on quaternion
theory and recently proposed by the authors. However,
the novel method requires no reference and is therefore
usable in all practical cases.

1 INTRODUCTION

Remote-sensing image fusion techniques aim at inte-
grating the information conveyed by data acquired with
different spatial and spectral resolution from satellite or
aerial platforms. The main goal is photoanalysis, but
also automated tasks such as features extraction and seg-
mentation/classification have been found to benefit from
fusion. A variety of image fusion techniques is devoted
to merge multispectral (MS) and panchromatic (Pan)
images, which exhibit complementary characteristics
of spatial and spectral resolutions [1]. Injection in the
re-sampled MS images of spatial details extracted from
the Pan image has been found to be adequate for pre-
serving the spectral characteristics [2]. Multiresolution
analysis, based on undecimated wavelets decompositions
and Laplacian pyramids, has proven itself effective to
implement fusion at different resolutions [3].

Quantitative results of data fusion are provided thanks
to the availability of reference originals obtained either
by simulating the target sensor by means of high reso-
lution data from an airborne platform [4], or by degrad-
ing all available data to a coarser resolution and carrying
out fusion from such data. In practical cases this strat-
egy is not feasible. The underlying assumption, however,
is that fusion performances are invariant to scale changes
[5]. Hence, algorithms optimized to yield best results at
coarser scales, i.e. on spatially degraded data, should still
be optimal when the data are considered at finer scales,
as it happens in practice. This assumption may be rea-
sonable in general, but unfortunately may not hold for
very high resolution data, especially in a highly detailed
urban environment, unless the spatial degradation is per-
formed by using low-pass filters whose frequency re-
sponses match the shape of the modulation transfer func-
tions (MTF) of the sensor [6].

As an alternative to this protocol, the problem of mea-
suring the quality of fusion may be approached at the
full spatial scale without any degradation. The spectral
and spatial distortions are separately evaluated from the
available data, i.e. from the original low-resolution MS
bands and high resolution Pan image, and the outcomes
are properly combined to yield a global quality index.
According to the protocol described by Zhou [7], the
spectral quality is calculated for each band as the abso-
lute cumulative difference between the fused bands and
the re-sampled input bands, while the spatial quality is
measured by the correlation coefficient between the spa-
tial details of each of the fused MS bands and those of
the Pan image; such details are extracted by means of a
Laplacian filter. The major drawback of this approach is
that spatial and spectral distortion follow opposite trends.
Spectral distortion is zero if no spatial enhancement is
made. Spatial distortion is zero, or better spatial quality is
maximal, if the fused MS bands are each proportional to
the Pan image; in which case spectral information is lost
after fusion. Furthermore, if MS bands with same reso-
lution as the Pan image were hypothetically available, it
would be found by Zhou’s protocol that they are signifi-
cantly distorted and hence of poor quality.
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In this work, we present a global index capable of jointly
measuring the spectral and spatial quality and working at
the full scale, same as in Zhou’s protocol [7]. The spatial
and spectral distortions are separately calculated from
the mutual information between the fused MS image, the
source MS image, and the Pan image. A combination of
the spectral and spatial distortion indices is carried out to
obtain a unique quality index. The rationale is that the
information inter-relationships between any couple of
spectral bands and between each band and the Pan image
should be unchanged after fusion. Changes in the former
are responsible for spectral distortion. Changes in the
latter indicate spatial distortion. The underlying assump-
tion of inter-scale preservation of mutual information is
demonstrated by the fact that true high-resolution MS
data, whenever available, will exhibit spectral and spatial
distortions that are both zero, within the approximations
of the model, and definitely lower than those attained by
any fusion method.

2 MUTUAL INFORMATION

The concept of mutual information (MI) represents a
measurement of the relative entropy between two infor-
mation sources,A andB, that is the measurement of in-
formation redundancy [8]. From this definition, it could
be derived that the MI is maximal when the two sources
coincide; in this case MI becomes equal to the autoinfor-
mation (AI), or entropy:

I(A;B) =
∑

A

∑

B

pA,B(a, b) · log

[
pA,B(a, b)

pA(a) · pB(b)

]

(1)
I(A; A) = H(A) = −

∑

A

pA(a) · log[pA(a)] (2)

with pA(a), pB(b) the marginal distributions and
pA,B(a, b) the joint distribution ofA andB. MI is re-
lated to entropy by the following relationships:

I(A;B) = H(A) + H(B)−H(A,B) (3)

I(A;B) = H(A)−H(A|B) (4)

I(A;B) = H(B)−H(B|A) (5)

with H(A) and H(B) being the entropy ofA and B,
H(A,B) their joint entropy andH(A|B) the conditional
entropy ofA givenB:

H(B) = −
∑

B

pB(b) · log[pB(b)] (6)

H(A,B) = −
∑

A

∑

B

pA,B(a, b) · log[pA,B(a, b)] (7)

H(A|B) = −
∑

A

∑

B

pA,B(a, b) · log[pA|B(a|b)] (8)

While the entropy is known to measure the amount of
uncertainty about the random variable, MI is the amount

Table 1: Some properties of MI
I(A; B) ≥ 0

I(A; B) = I(B; A)
I(A; B) ≤ min{H(A),H(B)}

of information thatB contains inA. Some properties of
MI are summarized in Table 1.
Several applications have shown that MI is capable of ex-
tracting the common information better than the correla-
tion coefficient (CC) [9, 10, 11]. Whenever it is required
to calculate MI on small blocks of the available data and
average the results over the whole data set, algorithms
based on bivariate histograms cannot be utilized because
of statistical instability of the estimated probabilities. In
that case, by modelling the two information sources as a
locally stationary and ergodic bivariate Gaussian random
process, a simple expression is derived for the local MI
[8]:

I(A;B) = − log
(√

1− ρ2
A,B

)
(9)

in which ρA,B is the correlation coefficient between A
and B and is calculated locally on blocks of data.

3 QUALITY INDEX WITHOUT REFERENCE

3.1 Spectral Distortion Index

A spectral distortion index can be derived from the
difference of inter-band MI values calculated from the
fused MS bands, indicated as{Ĝl}L

l=1, and from the
low-resolution MS bands, re-sampled to the spatial scale
of Pan,{G̃l}L

l=1. The MI termsI(Ĝl; Ĝr) andI(G̃l; Ĝr)
can be grouped into twoL × L matrices. The two
matrices are symmetrical and the values on the main
diagonal are all equal to one.

A spectral distortion index, referred to asDλ, is calcu-
lated as

Dλ , p

√√√√√
1

L2 − L

L∑

l=1

L∑
r=1
r 6=l

∣∣∣I(Ĝl; Ĝr)− I(G̃l; G̃r)
∣∣∣
p

(10)
p being a positive integer exponent chosen to emphasize
large spectral differences: forp = 1, all differences are
equally weighted; asp increases, large components are
given more relevance. The index (10) is proportional
to thep−norm of the difference matrix, being equal to
0 if and only if the two matrices are identical. If the
model reported in (9) is exploited to calculate MI, values
of I(Ĝl; Ĝr) and I(G̃l; Ĝr), originated by inter-band
correlation coefficients close to one, are clipped above
one, so that (10) is always lower than one.
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3.2 Spatial Distortion Index
A spatial distortion index is calculated as

Ds , q

√√√√ 1
L

L∑

l=1

∣∣∣I(Ĝl; P )− I(G̃l; P̃ )
∣∣∣
q

(11)

in whichP is the Pan image and̃P a low-pass version of
the Pan image obtained by filtering the Pan image with
a low-pass filter having normalised frequency cutoff at
the resolution ratio between MS and Pan. Analogously,
Ds is proportional to theq−norm of the difference
vector, whereq is chosen so as to emphasize higher
difference values. The indexDs attains its minimum,
(equal to zero) when the two MI vectors are identical.
Analogously to (10), also (11) is upper bounded by one
because the clipping above one of MI values between
MS and Pan is enabled. However clipping occurs very
seldom, because the local correlation between MS and
Pan is moderate.

3.3 Jointly Spectral and Spatial Quality Index
The use of two separate indices, may be not sufficient to
establish the ranking of performances of fusion methods.
In fact, Dλ and Ds respectively measure changes in
spectral behaviour occurring between the re-sampled
original and the fused images and discrepancies in spatial
details originated by fusion.

To trade off the above trends, let us introduce a single in-
dex, namely QNR, i.e.Quality with No Reference, which
is the product the one’s complements of the spatial and
spectral distortion indices, each raised to a real-valued ex-
ponents that separately attribute the relevance of spectral
and spatial distortions to the overall quality and jointly
determine the non-linearity of response in the interval
[0, 1], same as aγ to achieve a better discriminations of
the fusion results compared:

QNR , (1−Dλ)α · (1−Ds)β . (12)

Thus, the highest value of QNR is one and is obtained
when the spectral and spatial distortions are both zero.
The main advantage of the proposed index is that, thanks
to the lack of a reference data set, quality can be assessed
at the full scale of Pan. Experimental results aimed
at validating the proposed index are shown in the next
section.

4 EXPERIMENTAL RESULTS

The proposed quality index has been assessed on very
high-resolution image data collected by the Ikonos
space-borne MS scanner on the city of Toulouse, France.
The four MS bands of Ikonos span the visible and NIR
wavelengths and are non-overlapped, with the exception

of B1 and B2: B1=440÷530 nm, B2=520÷600 nm,
B3=630÷700 nm and B4=760÷850 nm. The bandwidth
of Pan embraces the interval 450÷950 nm. The data set
has been radiometrically calibrated from digital counts
and geo-coded to 4 m (MS) and 1 m (Pan) GSD. A
square region of 4.2 km2 was analysed. The original Pan
image is of size 2048×2048 and the original MS image
of size 512×512.

The following fusion methods have been compared:

• GLP-based method with context-based decision
model (CBD) [3, 6];

• Generalised IHS-based method with injection model
based on genetic algorithms (GIHS-GA) [12];

• Gram-Schmidt spectral sharpening method (GS)
[13], as implemented in ENVI [14];

• Intensity-Hue-Saturation method with spectral ad-
justment (Tu-IHS) [15];

The first experiment aims at demonstrating that QNR,
which does not require reference original, is in accor-
dance with other score indices that require reference orig-
inals, like:

• Spectral Angle Mapper (SAM) denotes the absolute
value of the spectral angle between two vectors,v
andv̂,

SAM = arccos
(

< v, v̂ >

‖v‖2 · ‖v̂‖2

)
. (13)

SAM equal to zero denote absence of spectral dis-
tortion, but possible radiometric distortion. SAM
is usually averaged over the whole image to yield
a global distortion index.

• Vectorial Root Mean Square Error (VRMSE) is an
index that measures the overall radiometric distor-
tion

VRMSE =

√√√√ 1
L

L−1∑

l=0

(RMSE(l))2 (14)

• ERGAS, which means relative dimensionless global
error in synthesis, [16, 17], is given by

ERGAS = 100
dh

dl

√√√√ 1
L

L−1∑

l=0

(RMSE (l)
µ(l)

)2

(15)

wheredh/dl is the ratio between the pixel sizes of
the Pan and MS, e.g. 1/4 for QuickBird and Ikonos
data,µ(l) is the mean of thelth band. This score in-
dex measures a distortion and thus must be as small
as possible.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: True color composite of 3-2-1 bands of (a): true MS bands, (b): CBD fusion, (c): GIHS-GA fusion, (d): GS
fusion, (e): Tu-IHS fusion, (f): Re-sampled MS bands.
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• The quality index Q4 [18] is a generalisation to 4-
band images of the Q index [19], which can be ap-
plied only to monochrome images. Q4 is obtained
through the use of CC between hypercomplex num-
bers, orquaternions, representing spectral pixel vec-
tors. Q4 is made of three different factors:

Q4 =
|σz1z2 |

σz1 · σz2

· 2σz1 · σz2

σ2
z1

+ σ2
z2

· 2|z̄1| · |z̄2|
|z̄1|2 + |z̄2|2 (16)

the first is the modulus of the hypercomplex CC be-
tween the two spectral pixel vectors and is sensi-
tive both to loss of correlation and to spectral dis-
tortion between the two MS data sets. The sec-
ond and third terms respectively measure contrast
changes and mean bias on all bands simultaneously.
The modulus of the hypercomplex CC measures the
alignment of spectral vectors. Therefore, its low
value may detect when radiometric distortion is ac-
companied by spectral distortion. Thus, both radio-
metric and spectral distortions may be encapsulated
in a unique parameter. All statistics are calculated
as averages onN × N blocks, eitherN = 16 or
N = 32. Eventually, Q4 is averaged over the whole
image to yield theglobal score index. The highest
value of Q4, attained if and only if the test MS im-
age is equal to the reference, is one; the lowest value
is zero.

Table 2: Global quality indices of fused Ikonos data.
QNR is calculated without reference, unlike the other in-
dices.

SAM VRMSE ERGAS Q4 QNR

REF 0 0 0 1 0.928

CBD 3.214 18.31 3.041 0.899 0.654
GIHS-GA 3.335 20.30 3.391 0.882 0.633

GS 4.786 27.93 4.716 0.780 0.649
Tu-IHS 4.366 23.17 3.788 0.873 0.548

EXP 4.968 36.20 6.070 0.535 0.601

Table 3: QNR values calculated at degraded (4 m) and
full resolution (1 m) on the same geographical area.

QNR 4m 1m
CBD 0.654 0.745

GIHS-GA 0.633 0.726
GS 0.649 0.656

Tu-IHS 0.548 0.697

EXP 0.601 0.670

To this purpose, according to the protocol proposed in
[5], the data sets have been spatially degraded by four,
and statistics have been calculated, for all indices except
QNR, between fused and original data. Fusion results
are shown in Fig. 1. From the numerical values reported

Figure 2: QNR and Q4 indices calculated at degraded
scale (4 m).

in Table 2, two considerations can be made. The QNR
value of the 4 m reference original (REF) is close to
one and far greater than those of any other method.
QNR values, calculated without reference original, are
substantially in accordance with the other scores, which
require reference originals. Discrepancies are due to the
fact that the exponentsα and β in (12) are taken both
equal to one. Thus spectral and spatial quality are given
the same importance. Instead, SAM measures mainly
spectral distortion, VRMSE is little sensitive to spectral
distortion, while in ERGAS and Q4 it is impossible
to quantify the sensitiveness to spectral and spatial
distortion separately. This explain why the re-sampled
image without enhancement (EXP), which has spectral
distortion practically zero exhibits better QNR than other
methods providing a spatial enhancement. However,
for all five indices, CBD attain global scores better than
those of the other method, followed by GIHS-GA. Fig.
2 shows the trends of QNR and Q4 indices varying with
fusion methods applied at degraded resolution.

The second experiment aims at comparing the numerical
values of QNR across scales, i.e. on both fused images
obtained from degraded originals and fused images at
the full scale of Pan. Although values of QNR depend
on the scale, Table 3 evidences that performances of
fusion methods are roughly similar for the two scales. A
notable exception is that the performance ranks of GS
and Tu-IHS are swapped from one scale to the other.

5 CONCLUSIONS

A new quality index of pan-sharpened MS images has
been developed, based on the evidence that the mutual
information relationships between couples of bands and
between each band and the Pan image are unchanged
from one scale to another. Thus, the original MS and
Pan data can be used to measure the spectral and spatial
distortion, without resorting to spatial degradation of the
data-set to a coarse scale. Experimental results, carried
out on Ikonos data by means of a number of fusion
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methods, demonstrate that the results provided by the
proposed information-theoretic method are in trend with
analysis performed on spatially degraded data, as well
as that performances of fusion methods actually depend
on the spatial scale on which fusion is accomplished.
Future developments are focussed on finding another
tool to measure inter-band relationships, more fitting and
flexible than mutual information.
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